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Useful Statistical Concepts

! This course contains a lot of material so we are going to
! assume some background knowledge and

! cover a lot of topics but rather superficially

! We will cover:

! statistical terminology

! tests for independence in contingency tables

! linear regression

! logistic regression

! Poisson regression

! Examples and exercises in R
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Statistics and Statistical Terminology and
Modelling
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What is Statistics?

! Stat[e]istics - originally conceived as the science of the state -
the collection and analysis of facts about a country

! A modern definition: statistics is a set of methods for
reasoning when there is uncertainty

! It can be thought of loosely as a generalisation of logic

! Logic is the study of methods for reasoning from
statements which are definitely known to be true or false

! to reason defn. to think, understand, and form judgements
logically.
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What is Statistics?

An example of logical reasoning:
! Bananas are not spherical
! Apples are coloured red
! I take a fruit from a bowl

containing apples, oranges and
bananas

! The fruit is 1) spherical and 2)
not coloured orange

! Therefore the fruit must be an
apple

! This is a logical inference
! No uncertainty to worry about
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What is Statistics?

An example of statistical reasoning:
! I take a fruit from a bowl

containing 3 bananas, 4 apples
and 5 oranges.

! The fruit is spherical
! What is the probability that the

fruit is an apple?
! 4/(4 + 5) = 4/9

! We have observed some data (knowledge that the fruit is
spherical) and have drawn a statistical inference

! Statistical inferences summarise uncertainty
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Who uses statistics?

! Health services, corporations, governments, scientists all
need to reason with uncertainty

! e.g. plan health services: How many new cases of breast
cancer will occur in Malta in the next 5 years?

! e.g. advertisers: During which TV show is it most profitable
to advertise for a new car?

! e.g. science: (to give a non-Bioinformatics example!) What
is the probability the observed particle decays imply the
existence of the Higgs boson
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Sources of uncertainty

! Random sampling

! Want to know a fact about a population, but too expensive
to ask the question about every member

! e.g. What is mean age children learn to swim in Malta?

! Sample 500 children in at random and use the sample
average as an uncertain estimate of the population average
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Sources of uncertainty

! Measurement error

! e.g. measurement resolution: continuous variables usually
measured on a discrete scale with a fractional resolution.

! We may measure a person’s weight in kg but people do
not weigh whole numbers of kg.
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Sources of uncertainty

! Complexity - real world phenomena often random

! e.g. time between bus arrivals
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Statistical Language

! Scientists frequently study collections of objects or
individuals usually called study subjects by statisticians

! Typical aims:
1 identify qualitative or quantitative relationships between

measured properties of the study subjects
2 summarise uncertainty about these relationships
3 make predictions about the properties for unobserved

individuals
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Study Subjects and Variables

! Some examples

Study Subjects Properties to be related

British doctors cohort smoking, death with lung cancer

mice genotypes, coat colour

UK Biobank cohort age, blood haemoglobin level

cancer drugs molecular structure,

mean 5-year survival rate

schools examination results

12



Subjects and Variables

! A variable is a property of a study subject

! Variables can be
! observed (i.e. measured, possibly with an associated error)
! or unobserved, latent or random

! Variables can be categorical or numerical

! Numerical variables can be continuous ‘real numbers’
(e.g. 10.71, 8.23), or discrete counts (e.g. 0, 1, 120)
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Subjects and Variables

! Some examples

Definition Type

the sex of person i Categorical (Female/Male)

the weight of mouse m Continuous (e.g. measured in kg)

the number brain cells Count

of person i
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Random Variables

! A random variable is a variable with an uncertain value

! e.g. Define Y by, Y = 1 if the Queen of England dies with lung
cancer, Y = 0 otherwise

! The value of Y maybe 0 or it maybe 1. Until the Queen
dies we will not know which

! We can however estimate Y from measured data

! e.g. The Queen has never smoked but her father died of
cancer
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Data

! Measurements of variables generate data.

! A dataset is usually composed of measurements of
multiple variables on many study subjects

! Convention:
! p denotes the number of variables in a dataset

! n denotes the number of study subjects

! Data are used to draw inferences about the relationships
between variables using statistical models
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Models

! A model is a rule for describing a relationship between
variables

! Deterministic models are very common in physics e.g.

E = (∆m)c2

describes the relationship between E, the energy emitted
when an atomic nucleus transmutes and ∆m the change in
the mass of the nucleus. The relationship depends on the
constant c the speed of light

! This is a deterministic model. If we know ∆m precisely we
can calculate the energy released E exactly
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Statistical Models

! Statistical or probabilistic models are alternatives to
deterministic models which are used to describe
relationships between variables when one or more of the
variables is random.

! Statistical models are more common in biology and
medicine than physics because biological mechanisms are
often complex and uncertain and measurements often
noisy.
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Statistical Model: Example

! This statistical model describes the relationship between:
! 2 deterministic variables: sex and smoking status

! a random variable: Y = 1 if individual dies with lung
cancer, Y = 0 if individual dies without lung cancer.

! The uncertainty in Y is presented as a percentage (a
probability).

Smoking Status Sex Y = 1

Smoker Male 20%

Smoker Female 10%

Non-smoker Male 1%

Non-smoker Female 1%

19



Events, their Probabilities and Dependencies
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Events

! Statisticians often need to model the occurrence of events

! Example of an event: Mrs. Smith had a myocardial
infarction between 1/1/2000 and 31/12/2009.

! The occurrence of an event is a binary (dichotomous)
variable. There are two possibilities: the event occurs or it
does not occur.

! Event occurrence variables can always be coded with 0, 1
e.g.

Yi = 1 ⇐⇒ person i became pregnant in 2011.
Yi = 0 ⇐⇒ person i did not become pregnant in 2011.
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Probability, Odds and log-Odds

! There are many equivalent ways of measuring the
plausability of an event.

! We will use three:

1 probability of the event
2 odds in favour of the event
3 log-odds in favour of the event

! These are equivalent in the sense that if you know the
value of one measure for an event you can compute the
value of the other two measures for the same event
cf. measuring a distance in kilometres, statute miles or
nautical miles
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The Probability of an Event

! This is a number π between 0 and 1. We write

π = P(Y = 1)

to mean π is the probability that Y = 1.

! π = 1 means we know the event is certain to occur.

! π = 0 means we know the event is certain not to occur.

! Values between 0 and 1 represent intermediate states of
certainty, ordered monotonically.

! Because we are certain one of Y = 1 and Y = 0 is true and
because they cannot be true simultaneously:

P(Y = 0) = 1 − P(Y = 1) = 1 − π.
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Odds in Favour of an Event

! The odds in favour of an event is defined as the
probability the event occurs divided by the probability the
event does not occur.

! The odds in favour of Y = 1 is defined as:

ODDS(Y = 1) =
P(Y = 1)
P(Y ̸= 1)

=
P(Y = 1)
P(Y = 0)

=
π

1 − π
.

! Note:

ODDS(Y = 0) =
1

ODDS(Y = 1)
=

1 − π

π
.

so

ODDS(Y = 1)× ODDS(Y = 0) = 1.
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Interpreting the Odds in Favour of an Event

! An odds is a number between 0 and ∞.

! An odds of 0 means we are certain the event does not
occur.

! An increased odds corresponds to increased belief in the
occurrence of the event.

! An odds of 1 corresponds to a probability of 1/2.

! An odds of ∞ corresponds to certainty the event occurs.
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Log-odds in Favour of an Event

! The log odds in favour of an event is defined as the log of
the odds in favour of the event:

log ODDS(Y = 1) = log
P(Y = 1)
P(Y = 0)

= log
π

1 − π
.

! Note

log ODDS(Y = 1) = − log ODDS(Y = 0) = log
1 − π

π
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Interpreting the Log-odds in Favour of an Event

! A log-odds is a number between −∞ and ∞.

! A log odds of −∞ means we are certain the event does
not occur.

! An increased log-odds corresponds to increased belief in
the occurrence of the event.

! A log-odds of 0 corresponds to a probability of 1/2.

! A log-odds of ∞ corresponds to certainty the event occurs.
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Moving between Probability, Odds and Log-odds

! You can use the following table to compute one measure
of probability from another:

P ODDS log ODDS

P(Y = 1) = π π
1−π log π

1−π

ODDS(Y = 1) = o o
1+o log o

log ODDS(Y = 1) = x ex

1+ex ex

! Choose the row corresponding to the quantity you start
with and the column corresponding to the quantity you
want to compute.

! log π
1−π is often written logit(π).

! exp(x)
1+exp(x) is often written inv. logit(x) (sometimes expit(x)).
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Dependency Between Events

! Sometimes we are interested in understanding the
dependency between events

! e.g.
! Event A = Study subject no. 12 has measured genotype GG

at rs2383206

! Event B = Study subject no. 12 had a heart attack between
2000 and 2009

! Cross-classify into four probabilities:
Event A occured Event A did not occur

Event B occured πAB πAB

Event B did not occur πAB πAB
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Measuring Dependency Between Events

! Dependency between events is measured using odds ratios

A occured A did not occur

B occured πAB πAB πB(≡ πAB +πAB)

B did not occur πAB πAB 1 −πB

πA(≡ πAB +πAB) 1 −πA

! Two possible odds ratios:
! odds in favour of A when B is true divided by the odds in

favour of A when B is false
! odds in favour of B when A is true divided by the odds in

favour of B when A is false

! It happens both are equal:

OR(A, B) ≡ ODDS(A|B)
ODDS(A|B)

=
ODDS(B|A)

ODDS(B|A)
=

πABπAB
πABπAB
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Properties of Odds Ratios and log Odds Ratios

! The log odds ratio is defined as the log of the odds ratio
LOR(A, B) ≡ log OR(A, B)

! OR(A, B) > 1, (equivilantly LOR(A, B) > 0) =⇒ A and B
are positively correlated; when A is true B is more likely
to be true than when A is false (and vice versa)

! OR(A, B) < 1, (equivilantly LOR(A, B) < 0) =⇒ A and B
are negatively correlated; when A is true B is less likely to
be true than when A is false (and vice versa)

! OR(A, B) = 1, (equivilantly LOR(A, B) = 0) =⇒ A and B
are uncorrelated; when A is true B has the same likelihood
of being true as when A is false (and vice versa)
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Independence of Events

A occured A did not occur

B occured πAB πAB πB

B did not occur πAB πAB 1 −πB

πA 1 −πA

! Events A and B are independent if and only if πAB = πAπB

! When A and B are independent:
! knowledge of whether or not A has occurred gives you no

information about whether or not B be has occurred
! A and B are uncorrelated, i.e.

OR(A, B) ≡
πABπAB
πABπAB

= 1

LOR(A, B) ≡ log(OR(A, B)) = 0
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Testing for Departures from Independence

! We can perform statistical tests to determine the strength
of evidence against pairs of events being independent

! To perform such a test we need to collect data on multiple
instances of the events

! e.g. Suppose we are interested in the relationship between
genotypes at the SNP rs2383206 and risk of heart attack

! We collect 1000 cases (heart attack in ten year window)
and 1000 controls (no heart attack in ten year window)
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Testing for Departures from Independence

AA
rs2383206
genotype

AG
rs2383206
genotype

GG
rs2383206
genotype

Heart attack 2000-2009 248 436 244

No heart attack 2000-2009 185 436 379

! Two statistical tests i) Pearson’s test ii) Fisher’s test

! Pearson’s test is computationally efficient but is only
accurate when each cell has a count of at least 5

! Fisher’s test is computationally intensive for tables with
very large counts
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Testing for Departures from Independence

> genotype_counts
[,1] [,2] [,3]

[1,] 248 436 244
[2,] 185 436 379
> fisher.test(genotype_counts)

Fisher’s Exact Test for Count Data

data: genotype_counts
p-value = 1.539e-08
alternative hypothesis: two.sided

> chisq.test(genotype_counts)

Pearson’s Chi-squared test

data: genotype_counts
X-squared = 35.781, df = 2, p-value = 1.699e-08
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Regression Modelling
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Regression Models

! A regression model describes the relationship between the
average value of a random response variable and the value
of values of one or more predictor variables

! A regression is defined by
1 the random response variable
2 a list of predictor variables
3 a regression equation
4 a distribution for the value of the random response variable
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Response and Univariate Predictor
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The Response Variable

! The response (sometimes outcome or dependent) is random

! The notation Yi is usually used to indicate the response
value of study subject i

! EYi is used to denote the average or expected value of the
response variable for study subject i

! Responses variables can be continuous or categorical
(binary or count)

! The word response is used by analogy with a
treatment-response experiment

! Such an experiment allocates subjects to treatment classes
and seeks to identify differences in the distribution of the
responses between the treatments
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The Response Variable Distribution

! The response is usually modelled as a random variable
with a particular parametric form (shape):

! e.g. a Normal distribution:

Yi ∼ N(µi,σ2)

! e.g. a Bernouilli distribution (i.e. a 0/1 distribution):

P(Yi = 1) = µi

P(Yi = 0) = 1 − µi

! Note in both these cases we have written µi = EYi

40



Response Distributions

! Normal distribution ! Bernoulli distribution (0/1
distribution)
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Predictors

! Predictors are deterministic (non-random) variables

! The aim of regression modelling is to associate a predictor
with a response or to associate multiple predictors with
the average value of a response variable

! Predictor variables are usually numerical

! Categorical variables can be used as predictors but the
categories must be coded numerically
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Predictor Notation

! The letter x is generally used to denote data from
predictor variables (although other letters are used, e.g. z
is common)

! If a regression model has a single predictor x then xi is
used to denote the value of the predictor measured on
study subject i

! If a regression model has multiple predictors, double
subscripts are used. xij denotes the data measured on
study subject i for predictor variable j
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Regression Equation

! This is the deterministic bit of the regression model

! It describes how the average value of the response varies
with the predictor variables

! e.g. a univariate (one predictor) linear regression equation
has the form

EYi = µi = α+ xiβ
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Response and Univariate Predictor
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General Multiple Regression Equation

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! This general equation can be applied with:
! a range of probability distributions for the response

variable

! multiple predictor variables
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Expected Value of Response

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! EYi is the expected value of the response for subject i

! EYi can be thought of as the mean value of Y in an
infinitely large group of hypothetical study subjects who
have the same predictor variable measurements as study
subject i
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Linear Predictor

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! The right hand side of the equation is called the linear
predictor

! α is the intercept

! β1, ... βp are the regression coefficients

! The intercept and the regression coefficients are numbers

! α, β1,... βp are usually unknown

! The purpose of statistical analysis is to estimate α, β1,...
βp from data
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Link Function

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! g is called the link function

! g is always a monotonic, strictly increasing function

! This means that an increase in the linear predictor
corresponds to an increase in EYi
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Purpose of the Link Function

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! In principle α, β1,... βp can each take any value between
−∞ and ∞

! Consequently, the linear predictor can be any value
between −∞ and ∞

! Sometimes the distribution of Yi is such that EYi can only
take a certain set of values

! e.g. If Yi is binomial taking values 0/1 then 0 ! EYi ! 1

! The link function allows us to map the set of possible
values of g(EYi) to the whole number line
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Intercept

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! α is the intercept term

! α represents the value of g(EYi) taken by a hypothetical
study subject i which has predictor variables all equal to
zero.

! i.e. g(EYi) = α, xij = 0 for all j.
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Regression Coefficients

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

! The regression coefficient βj defines the relationship
between the jth predictor variable and the response
variable

! If βj is equal to zero then a change in the value xij has no
effect on the distribution of the response

! If βj > 0 then an increase in the value of the xij increases
the average value of the response EYi

! If βj < 0 than in increase in the value of xij decreases the
average value of the response EYi
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Regression Coefficients
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Regression Coefficients
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Regression Coefficients
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Why Use Regression?

! There are two reasons for doing regression modelling:
1 Inference of relationships between variables
2 Prediction of response values in new subjects with given

predictor values

! We address both these questions by fitting the model to data

! When we fit the model we can draw inferences about
relationships by:

1 Obtaining point estimates of the regression coefficients
2 Quantifying our uncertainty about the regression

coefficients

! Point estimates of the regression coefficients can then be
used to predict the response in new study subjects.
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Estimating Regression Coefficients

! There are a number of methods for estimating regression
coefficients from a dataset of measured values for the
response and predictor variables.

! We will touch briefly on the most widely used method,
maximum likelihood estimation although the details are not
terribly important in practice

! Maximum likelihood estimation is the standard method
implemented in most widely used statistical software

! Other methods include methods of moments estimation and
Bayesian estimation neither of which we will consider

57



Likelihood

! Given a regression model and a dataset we can write
down the likelihood function

! The likelihood function is a multivariate function which
assigns a a number to each possible value of the
regression coefficients

L(α,β1,β2, ...βp) =
∏

i

P(Yi|α,β1,β2, ...βp)

! It is calculated by multiplying the probability of each
observed response value at the desired values of the
parameters
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Maximum Likelihood Estimation

! The maximum likelihood estimate (MLE) of the regression
coefficients is the set of values for the regression
coefficients for which the likelihood is largest

! The MLE is usually denoted using a hat symbol. β̂1 is the
maximum likelihood estimate of the regression coefficient
corresponding to predictor variable 1.

L(α̂, β̂1, β̂2, ...β̂p) = max
α,β1,β2,...βp

∏

i

P(Yi|α,β1,β2, ...βp)

! Intuitively the MLE of the regression coefficients is the
value of the regression coefficients which makes the
observed data most probable
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Uncertainty

! The MLE gives us a point estimate for regression
coefficients

! However, estimates are almost never correct

! To draw an inference about the relationship between a
predictor and the response, we usually want to say
something about our uncertainty about the corresponding
regression coefficient

! One method of summarising uncertainty is to quote a
confidence interval
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Confidence Intervals

! A confidence interval is a pair of numbers L (the lower
limit) and U (the upper limit) together with an associated
confidence level.

! The confidence level is quoted as a percentage (normally
95% is used)

! Given a confidence level of γ% a lower L(γ%) and an
upper U(γ%) limit can calculated from the observed data

! There are many methods for calculating confidence
intervals. We will not go into the details

! However, most methods of calculating a confidence
interval rely on the likelihood function
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Interpretation of Confidence Intervals

! The interpretation of confidence intervals can be
counter-intuitive at first

! Uncertainty is quantified using the idea of imaginary
replicate experiments

! Suppose, in an imaginary world in which time and money
are no object, we:

1 repeat our experiment very many times
2 generate a new dataset on each occasion
3 calculate a new γ% level confidence interval for the

coefficient β using each dataset
then approximatelp γ% of those confidence intervals
should contain the true value of the parameter. i.e.

L(γ%) < β < U(γ%)

in γ% of the imaginary replicates
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Interpretation of Confidence Intervals

! Red line is the interval calculated from the actual dataset

! Black lines are the imaginary intervals from repeat
experiments

! 95% of lines cross true parameter value
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Response Prediction with Regression Models

! Once we have obtained estimates of regression coefficients
we can predict the value of the response for a new study
subject i with known predictor values, using the
regression equation

g(EYi) = α+ xi1β1 + xi2β2 + ... + xipβp

1 Denote the predicted value by Ŷi. Plug in the maximum
likelihood estimates of the coefficients:

g(Ŷi) = α̂+ xi1β̂1 + xi2β̂2 + ... + xipβ̂p

2 Invert the link function:

Ŷi = g−1(α̂+ xi1β̂1 + xi2β̂2 + ... + xipβ̂p)

64



Linear Regression
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Simple Linear Regression

! The regression equation for simple linear regression is:

EYi = µi = α+β× xi

! Note that the link function g is the identity function for
linear regression.

! The assumption here is that the relationship between x
and EYi is a straight line

! The slope of the line is β
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Interpretation of α

! To interpret α put xi = 0 into the regression equation:

EYi = α+β× xi

then

EYi = α

! α is the average value of the response variable amongst
study subjects for which the predictor variable is zero.
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Interpretation of β

! To interpret β put x = z and x = z + 1 for study subjects i
and i ′ into the regression equation to obtain:

EYi = α+β× z (1)
EYi ′ = α+β× (z + 1) (2)

then take equation (1) from equation (2)

EYi ′ − EYi = β (3)

! β is the difference in the average value of the response
variable between groups of study subjects for which the
predictor variable differs by one unit.
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Linear Regression Response

! For linear regression the response distribution is assumed
to be normal (sometimes called Gaussian).

Yi ∼ N(µi,σ2) equivalently Yi ∼ N(α+β× xi,σ2)
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Linear Regression Errors

! The quantity

ϵi = Yi − µi

= Yi − (α+β× xi)

is the error corresponding to study subject i

! The distributional assumption of linear regression is
equivalent to the assumption that the errors are normally
distributed, with mean zero:

ϵi ∼ N(0,σ2)

! The error variance σ2 is the same for each study sample

! σ2 can be estimated from the data using maximum
likelihood
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Linear Regression Error Assumption

! We can put the regression equation and distribution
assumption into a single statement:

Yi = α+β× xi + ϵi, ϵi ∼ N(0,σ2)
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Linear Regression Residuals

! We define residual for study subject i by:

ri = Yi − (α̂+ β̂× xi)

Recall that the error for study subject i is defined by

ϵi = Yi − (α+β× xi)

! Note that residuals and errors are not the same.

! Errors are unknown because we don’t know α and β

! Residuals can be computed from the data

! Residuals can be thought of as estimates of errors
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Properties of Linear Regression Residuals

! Although residuals and errors are not the same, residuals
have similar properties to errors:

1 The mean (and sum) of the residuals for a study sample is
equal to zero

2 Residuals are normally distributed
3 The variance of the residuals should not depend on the

value of the predictors

! The first property holds regardless of the validity of the
modelling assumptions

! The second and third properties only holds if the model
assumptions are valid. Specifically only if

1 The relationship between x and Y is linear
2 The errors are normally distributed
3 The variance of the errors is constant
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Checking Modelling Assumptions

! Before we rely on an inference made from a linear
regression model, we should always verify that the
modelling assumptions hold

! Specifically we should check
1 EY is a linear function of x
2 The properties of the residuals are consistent with the

assumption about the distribution of Y
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Check Linearity

! Suppose the R variable y is a vector containing data from
a response variable Y and the R variable x is a vector
containing data from a predictor variable x.

! We can generate a plot
of y against x with the
command

> plot(x,y)
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Fitting a Linear Model in R

! We can fit a linear regression in R using the lm function.

> fit.obj = lm(y~x)

! Fits the regression equation

EY = α+β× x

! The result of the model fit is stored in the R object
fit.obj
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Extracting the Residuals

! The residuals can be extracted from the linear regression
object using fit.obj$residuals

! For example to draw a histogram of the residuals you can
type:
> hist(fit.obj$residuals)

! Alternatively you can do the fitting and plotting in one
statement, without storing a model object:
> hist(lm(y~x)$residuals)
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Histogram of the Residuals

! By examining a histogram of the residuals we can check
the normality assumption holds78



Plot the Residuals vs. the Predictor

! Plot the residuals against the predictor variable to verify
that the distribution of the residuals is independent of x
> plot(x, lm(y~x)$residuals)
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Maximum Likelihood Estimation

! For linear regression there are formulae for the maximum
likelihood estimates of the regression coefficients:

β̂ =

∑n
i (xi − x̄)(Yi − Ȳ)∑n

i (xi − x̄)2

α̂ = ȳ − β̂x̄

! However we do not need to worry about these too much
as R will do the calculations for us
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Viewing Model Fit Information in R

! The simplest way to view model fit information in R is to
type the name of a fitted model object and hit return:
> fit.obj = lm(y~x)
> fit.obj

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.9803 1.9794

! This prints the MLEs of the coefficients
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Printing Confidence Intervals Using R

! 95% confidence limits can be computed with the confint
function
> confint(fit.obj)

2.5 % 97.5 %
(Intercept) 0.9349681 1.025687
x 1.9343508 2.024393

! A different confidence level can be specified if desired,
e.g. 99%:
> confint(fit.obj, level=0.99)

0.5 % 99.5 %
(Intercept) 0.9206313 1.040023
x 1.9201208 2.038623
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The display command

> display(fit.obj)
lm(formula = y ~ x)

coef.est coef.se
(Intercept) 0.98 0.023
x 1.98 0.013
---
n = 500, k = 2
residual sd = 0.51, R-Squared = 0.94

! Prints: the MLE, the standard errors of the coefficient
MLEs, the standard deviations of the regression
coefficients, the residual standard deviation and R2
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Standard Errors of the MLEs

! Back to the idea of imaginary repeated experiments

! Suppose, in an imaginary world we:
1 repeat our experiment very many times
2 generate a new dataset on each occasion
3 estimate a new MLE β̂ using each dataset

! The MLE is a random variable under this replication
process

! The standard error of β̂ denoted SE(β̂) is defined as the
standard deviation of the MLE.
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Proportion of Variance Explained

! R2 is the proportion of the variance in the response which
is explained by the predictor.

! R2 is a number between 0 and 1

! R2 is a measure of the correlation between x and y.

! When R2 = 1, x is perfectly correlated with y and the
residuals are all equal to 0

! When R2 = 0, x contains no information about y.
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Residual Standard Deviation

! The residual standard deviation is what it says on the tin:

sd(ϵ̂) =

√√√√1
n

n∑

i

(ϵi − ϵ̄)2
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The R summary Command

> summary(fit.obj)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.39718 -0.35082 -0.00092 0.31271 1.60025

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.98033 0.02309 42.46 <2e-16 ***
x 1.97937 0.01291 86.38 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5149 on 498 degrees of freedom
Multiple R-squared: 0.9374,^^IAdjusted R-squared: 0.9373
F-statistic: 7462 on 1 and 498 DF, p-value: < 2.2e-16
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p-values

! The p-value in the Pr(>|t|) column of the summary
command is a measure of the weight of evidence against
the null hypothesis that the regression coefficient in that
row is equal to zero.

! The null hypothesis is so called because it refers to the
assumed position that there is no association between the
predictor and the response.

! Usually the evidence must be strong before a null
hypothesis is rejected

! A p-value is a number between 0 and 1. The smaller the
number the greater the evidence against the null
hypothesis. Typically a p-value at least as small as 0.05 is
required to reject a null hypothesis.
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Interpretation of p-values

! The interpretation of p-values, is based on the idea of
imaginary repeated experiments.

! Suppose, in an imaginary world we:
1 repeat our experiment very many times
2 generate a new dataset on each occasion
3 calculate a new p-value level using each dataset

then assuming the null hypothesis is true α× 100% of
the calculated p-values should be less than α

! Small p-values are rare when the null hypothesis is true
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Computing Confidence Intervals Manually

! Although R provides the confint function, confidence
intervals can also be computed manually from standard
errors

! Not all statistical software provides functions to compute
confidence intervals so this is a useful skill

! Standard errors are listed in the second column of the
summary output. (They are also printed by the display
command)

! Manual calculation of confidence intervals is based the
assumption that the MLE of the regression coefficient
follows a normal distribution.
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Computing Confidence Intervals Manually

! We can compute a 95% confidence interval for a
regression coefficient using a normal approximation:

β̂− 1.96 × SE(β̂) < β < β̂+ 1.96 × SE(β̂)
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Multiple Linear Regression

! Multiple linear regression is very similar to simple linear
regression

! More than one predictor is now allowed on the right
handside of the equation

EYi = µi = α+β1 × xi1 +β2 × xi2 + ...β1 × xip

! The assumptions about the distribution of Yi (normal,
homogeneous variance) are the same as those for simple
linear regression.
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Fitting a Multiple Linear Regression

! A multiple linear regression can be fitted with the lm
command.

> fit.obj=lm(y~x1+x2)

! Information can be extracted from the model object using
the functions already seen: confint, display and
summary.
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When to Use Multiple Linear Regression

! Multiple linear regression is useful when more than one
predictor is thought to associate with the response
simultaneously

! By fitting both predictors in the same model we can get
more precise estimates of the regression coefficients
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Fitting a Multiple Linear Regression

> summary(fit.obj)

Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-2.0953 -0.7377 -0.1590 0.7445 3.0638

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001302 0.154968 0.008 0.9933
x1 0.987808 0.165837 5.957 3.13e-07 ***
x2 0.424832 0.158882 2.674 0.0103 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.089 on 47 degrees of freedom
Multiple R-squared: 0.4533,^^IAdjusted R-squared: 0.4301
F-statistic: 19.49 on 2 and 47 DF, p-value: 6.864e-07
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Multiple Linear Regression: Interpretation of α

! To interpret α put xij = 0 into the regression equation for
each predictor:

EYi = µi = α+β1 × xi1 +β1 × xi1 + ...β1 × xip

then

EYi = α

! α is the average value of the response variable amongst
study subjects for which every predictor variable is zero.

96



Interpretation of βj

! To interpret βj, the regression coefficient for the jth
predictor variable, put x = z for study subjects i and i ′ and
x = z + 1 into the regression equation to obtain:

EYi = α+β1 × xi1 + ....βj × z + ...βp × xip (4)

EYi ′ = α+β1 × xi ′1 + ....βj × (z + 1) + ...βp × xi ′p (5)

then take equation (1) from equation (2)

EYi ′ − EYi = β

! β is the difference in the average value of the response
variable between groups of study subjects for which the
predictor variable differs by one unit.
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Logistic Regression
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Motivation for (Multiple) Logistic Regression

! We want to model P(Y = 1) in terms of a set of predictor
variables X1, X2,... Xp (for univariate regression p = 1).

! In linear regression we use the regression equation

E(Y) = β0 +β1X1 +β2X2 + ... +βpXp (6)

! However, for a binary Y (0 or 1), E(Y) = P(Y = 1).

! We cannot now use equation (6), because the left hand
side is a number between 0 and 1 while the right hand
side is potentially a number between −∞ and ∞.

! Solution: replace the LHS with logit EY :

logit E(Y) = β0 +β1X1 +β2X2 + ... +βpXp
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Logistic Regression Equation Written on Three Scales

! We defined the regression equation on the logit or
log ODDS scale:

log ODDS(Y = 1) = β0 +β1X1 +β2X2 + ... +βpXp

! On the ODDS scale the same equation may be written:

ODDS(Y = 1) = exp(β0 +β1X1 +β2X2 + ... +βpXp)

! On the probability scale the equation may be written:

P(Y = 1) =
exp(β0 +β1X1 +β2X2 + ... +βpXp)

1 + exp(β0 +β1X1 +β2X2 + ... +βpXp)
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Interpreting the Intercept

! In order to obtain a simple interpretation of the intercept
we need to find a situation in which the other parameters
(β1, ...,βp) vanish.

! This happens when X1, X2..., Xp are all equal to 0.

! Consequently we can interpret β0 in 3 equivalent ways:
1 β0 is the log-odds in favour of Y = 1 when

X1 = X2... = Xp = 0.
2 β0 is such that exp(β0) is the odds in favour of Y = 1 when

X1 = X2... = Xp = 0.

3 β0 is such that exp(β0)
1+exp(β0)

is the probability that Y = 1 when
X1 = X2... = Xp = 0.

! You can choose any one of these three interpretations
when you make a report.
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Univariate Picture: Intercept
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! P(Y = 1) vs. X1 when p = 1 (univariate regression).
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Univariate Picture: Sign of β1
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! When β1 > 0, P(Y = 1) increases with X1 (blue curve).

! When β1 < 0, P(Y = 1) decreases with X1 (red curve).
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Univariate Picture: Magnitude of β1
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! β1 = 2 (blue curve), β1 = 4 (red curve).

! When |β1| is greater, changes in X1 more strongly
influence the probability that the event occurs.
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Interpreting β1: Univariate Logistic Regression

! To obtain a simple interpretation of β1 we need to find a
way to remove β0 from the regression equation.

! On the log-odds scale we have the regression equation:

log ODDS(Y = 1) = β0 +β1X1

! This suggests we could consider looking at the difference
in the log odds at different values of X1, say t + z and t.

log ODDS(Y = 1|X1 = t + z)− log ODDS(Y = 1|X1 = t)

which is equal to

β0 +β1(t + z)− (β0 +β1t) = zβ1.
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Interpreting β1: Univariate Logistic Regression

! By putting z = 1 we arrive at the following interpretation
of β1:
β1 is the additive change in the log-odds in favour of Y = 1
when X1 increases by 1 unit.

! We can write an equivalent second interpretation on the
odds scale:
exp(β1) is the multiplicative change in the odds in favour of
Y = 1 when X1 increases by 1 unit.
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β1 as a Log-odds Ratio

! The first interpretation of β1 expresses the equation:

log
ODDS(Y = 1|X1 = t + z)

ODDS(Y = 1|X1 = t)
= zβ1

whilst the second interpretation expresses the equation:

ODDS(Y = 1|X1 = t + z)
ODDS(Y = 1|X1 = t)

= exp(zβ1).

! The quantity ODDS(Y=1|X1=t+z)
ODDS(Y=1|X1=t) is the odds-ratio in favour

of Y = 1 for X1 = t + z vs. X1 = t.
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Interpreting Coefficients in Multiple Logistic
Regression

! The interpretation of regression coefficients in multiple
logistic regression is similar to the interpretation in
univariate regression.

! We dealt with β0 previously.

! In general the coefficient βk (corresponding to the variable
Xk) can be interpreted as follows:
βk is the additive change in the log-odds in favour of Y = 1
when Xk increases by 1 unit, while the other predictor variables
remain unchanged.

! As in the univariate case, an equivalent interpretation can
be made on the odds scale.
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Fitting a Logistic Regression in R

! We fit a logistic regression in R using the glm function:
> output <- glm(sta ~ sex, data=icu1.dat, family=binomial)

! This fits the regression equation

logit P(sta = 1) = β0 +β1 × sex.

! data=icu1.dat tells glm the data are stored in the data
frame icu1.dat.

! family=binomial tells glm to fit a logistic model.

! As an aside, we can use glm as an alternative to lm to fit a
linear model, by specifying family=gaussian.
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! Summary of the distribution of the deviance residuals.

! Deviance residuals measure how well the observations fit
the model. The closer a residual to 0 the better the fit of
the observation.
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! β̂0, the maximum likelihood estimate of the intercept
coefficient β0.

! exp(β̂0)

1+exp(β̂0)
is an estimate of P(sta = 1) when sex = 0
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! SE(β̂0), the standard error of the maximum likelihood
estimate of β0.
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! z-value for a Wald-statistic, z = β̂0/SE(β̂0)

! p-value for test of null hypothesis β0 = 0 via the Wald-test.

! p = 2Φ(z), where Φ is the cdf of the normal distribution.
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! Significance codes for p-values.

! List of p-value thresholds (the critical values)
corresponding to significance codes.
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Logistic Regression: glm Output in R

Call:
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.6876 -0.6876 -0.6559 -0.6559 1.8123

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! All entries are as for intercept row but apply to β1 rather
than to β0.

115



Computing a 95% Confidence Interval from glm

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

! We can compute a 95% confidence interval for a
regression coefficient using a normal approximation:

β̂k − 1.96 × SE(β̂k) < βk < β̂k + 1.96 × SE(β̂k)

! Plugging in the numbers for β1:

0.105 − 1.96 × 0.362 <β1 < 0.105 + 1.96 × 0.362
−0.603 <β1 < 0.814
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Computing a 95% Confidence Interval on Odds Scale

! We can compute a 95% confidence interval for the
odds-ratio parameter exp(β1) by transforming the limits
to the new scale (see table above).

! Start with the log-odds scale interval:

−0.603 < β1 < 0.814

! Transform the limits:

exp(−0.603) < exp(β1) < exp(0.814)
0.547 < exp(β1) < 2.257
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Logistic Regression with Dummy Variables

! A dummy variable is a 0/1 representation of a
dichotomous catagorical variable.

! Such a numeric representation allows us to use categorical
variables as predictors in a regression model.

! For example the dichotomous variable sex can be coded

sexi = 0 means individual i is male
sexi = 1 means individual i is female
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Logistic Regression with Dummy Variables

! Suppose we fit the regression specified by the equation

logit P(Yi = 1) = β0 +β1sexi.

! Recall one interpretation of β1:
exp(β1) is the multiplicative change in the odds in favour of
Y = 1 as sex increases by 1 unit.

! The only unit increase possible is from 0 to 1, so we can
write an interpretation in terms of male/female:
exp(β1) is multiplicative change of the odds in favour of Y = 1
as a male becomes a female.

! A bit ridiculous, so better to say:
exp(β1) is the odds-ratio (in favour of Y = 1) for females vs.
males.
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Multiple Logistic Regression Example

! Data on admisssions to an intensive care unit (ICU).

! sta - outcome variable, status on leaving: dead=1, alive=0.

! loc - level of consciousness: no coma/stupor=0, deep
stupor=1, coma=2.

! sex - male=0, female=1.

! ser - service at ICU: medical=0, surgical=1.

! ser and sex are dummy variables

! loc is a categorical/factor variable with 3 levels.
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Multiple Logistic Regression ICU Example

! Summarise the data:
> summary(icu1.dat)

sta loc sex ser
Min. :0.0 0:185 0:124 0: 93
1st Qu.:0.0 1: 5 1: 76 1:107
Median :0.0 2: 10
Mean :0.2
3rd Qu.:0.0
Max. :1.0

! 20% leave ICU dead.

! Categories 1 and 2 of loc are rare, not many people arrive
in a stupor/deep coma. This variable may not be very
informative.

! sex and ser are reasonably well balanced.
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Multiple Logistic Regression ICU Example

! Take an initial look at the 2-way tables cross classifying
the outcome with each predictor variable in turn.

! vital status (rows) vs. sex (columns):

> table(icu1.dat$sta, icu1.dat$sex)
0 1

0 100 60
1 24 16

! Observed death rate in males: 24/124 = 0.19

! Observed death rate in females: 16/76 = 0.21

! Without doing a formal test, looks significantly different.
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Multiple Logistic Regression ICU Example

! vital status (rows) vs. service type at ICU (columns):

> table(icu1.dat$sta, icu1.dat$ser)

0 1
0 67 93
1 26 14

! Observed death rate at medical unit (ser=0): 26/93 = 0.28

! Observed death rate at surgical unit (ser=1): 14/107 = 0.13
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Multiple Logistic Regression ICU Example

! vital status (rows) vs. level of consciousness (columns):

> table(icu1.dat$sta, icu1.dat$loc)

0 1 2
0 158 0 2
1 27 5 8

! Few observations but higher death rate amongst those in
a stupor or coma.
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Multiple Logistic Regression ICU Example

! Take an initial look at the 2-way tables cross classifying
each pair of predictors.

! sex (rows) vs. service type (columns):

> table(icu1.dat$sex, icu1.dat$ser)

0 1
0 54 70
1 39 37

! Rate of admission to SU in males: 70/124 = 0.56

! Rate of admission to SU in females: 37/76 = 0.48

! Some correlation to be aware of but confounding of ser by
sex seems unlikely given weak effect of sex.
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Multiple Logistic Regression ICU Example

! sex (rows) vs. level of consciousness (columns):

> table(icu1.dat$sex, icu1.dat$loc)

0 1 2
0 116 3 5
1 69 2 5

! Hard to say much, maybe females have higher levels of
loc.
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Multiple Logistic Regression ICU Example

! Service type (rows) vs. level of consciousness (columns):

> table(icu1.dat$ser, icu1.dat$loc)

0 1 2
0 84 2 7
1 101 3 3

! Hard to say much.

! loc may not to be a useful variable due to low variability.
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Multiple Logistic Regression ICU Example

! Now look at univariate regressions.
glm(formula = sta ~ sex, family = binomial, data = icu1.dat)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4271 0.2273 -6.278 3.42e-10 ***
sex1 0.1054 0.3617 0.291 0.771
---
$intercept.ci
[1] -1.8726220 -0.9816107

$slopes.ci
[1] -0.6035757 0.8142967

$OR
sex1

1.111111

$OR.ci
[1] 0.5468528 2.2575874

! Wide confidence interval for sex including OR = 1.
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Multiple Logistic Regression ICU Example

glm(formula = sta ~ ser, family = binomial, data = icu1.dat)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9466 0.2311 -4.097 4.19e-05 ***
ser1 -0.9469 0.3682 -2.572 0.0101 *
---
$intercept.ci
[1] -1.3994574 -0.4937348

$slopes.ci
[1] -1.6685958 -0.2252964

$OR
ser1

0.3879239

$OR.ci
[1] 0.1885116 0.7982796

! OR < 1 so being in surgical unit may lower risk of death.

! CI implies at least 20% effect.
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Multiple Logistic Regression ICU Example

Call:
glm(formula = sta ~ loc, family = binomial, data = icu1.dat)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.7668 0.2082 -8.484 < 2e-16 ***
loc1 18.3328 1073.1090 0.017 0.986370
loc2 3.1531 0.8175 3.857 0.000115 ***
---
$intercept.ci
[1] -2.174912 -1.358605

$slopes.ci
[,1] [,2]

[1,] -2084.922247 2121.587900
[2,] 1.550710 4.755395

! Huge SE, should be wary of using this variable.
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Multiple Logistic Regression ICU Example

Summary of univariate analyses:

! Vital status not significantly associated with sex.

! Vital status associated with service type at 5% level.

! Admission to surgical unit associated with reduced death
rate.

! loc variable not very useful, will now drop.
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Multivariate Logistic Regression ICU Example

! Multivariate analysis:
Call:
glm(formula = sta ~ sex+ser, family = binomial, data = icu1.dat)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.96129 0.27885 -3.447 0.000566 ***
sex1 0.03488 0.36896 0.095 0.924688
ser1 -0.94442 0.36915 -2.558 0.010516 *
---
$intercept.ci
[1] -1.5078281 -0.4147469

$slopes.ci
[,1] [,2]

[1,] -0.6882692 0.758025
[2,] -1.6679299 -0.220904

$OR
sex1 ser1

1.0354933 0.3889063
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Multivariate Logistic Regression ICU Example

Main Conclusions:
! Univariate and multivariate parameter models show same

pattern of significance.

! Direction of association of service variable the same.

! Admission to surgical unit associated with reduced death
rate (OR = 0.39, 95% CI = (0.19, 0.80).
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Prediction In Logistic Regression

! Suppose we fit a logistic regression model and obtain
coefficient estimates β̂0, β̂1, ...β̂p.

! Suppose we observe a set of predictor variables
Xi1, Xi2, ...Xip for a new individual i.

! If Yi is unobserved, we can estimate the log-odds in
favour of Yi = 1 using the following formula:

logit
π̂i

1 − π̂i
= β̂0 + β̂1Xi1 + β̂2Xi2 + ... + β̂pXip

! Equivilently an estimate of the probability that Yi = 1:

π̂i =
exp(β̂0 + β̂1Xi1 + β̂2Xi2 + ... + β̂pXip)

1 + exp(β̂0 + β̂1Xi1 + β̂2Xi2 + ... + β̂pXip)

! π̂i can be thought of as a prediction of Yi.
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Prediction In Logistic Regression Using R

! We can use the predict function to calculate π̂i
> output <- glm(sta ~ sex, data=icu1.dat, family=binomial)
> newdata <- data.frame(sex=as.factor(c(0,0,1,1)),

ser=as.factor(c(0,1,0,1)))

> newdata
sex ser

1 0 0
2 0 1
3 1 0
4 1 1

! Predict on the log-odds scale (i.e. log π̂i
1−π̂i

) :
> predict(output, newdata=newdata)

1 2 3 4
-0.9612875 -1.9057045 -0.9264096 -1.8708266

! Predict on the probability scale (i.e. π̂i) :
> predict(output, newdata=newdata, type="response")

1 2 3 4
0.2766205 0.1294642 0.2836537 0.1334461
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Multivariate Logistic Regression Example

! Return to ICU example and consider additional variables
age and typ.

! sta - outcome variable, status on leaving: dead=1, alive=0.

! sex - male=0, female=1.

! ser - service at ICU: medical=0, surgical=1.

! age - in years

! typ - type of admission: elective=0, emergency=1.
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Multivariate Logistic Regression ICU Example

! Look at the joint distribution of the new predictors and
the outcome:

! vital status (rows) vs. admission type (columns):

> table(icu2.dat$sta, icu2.dat$typ)

0 1
0 51 109
1 2 38

! Observed death rate for elective admissions: 2/53 = 0.04

! Observed death rate for emergencies: 38/147 = 0.25

! Much higher risk of death for admission as an emergency.
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Multivariate Logistic Regression ICU Example

! Look at the joint distribution of ser and typ:

! service at ICU (rows) vs. admission type (columns):

> table(icu2.dat$ser, icu2.dat$typ)

0 1
0 1 92
1 52 55

! ser and typ are highly correlated.

! We know both variables are associated with outcome

! One might be a confounder for the other
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Multivariate Logistic Regression ICU Example

! Box showing distribution of age stratified by vital status
> boxplot(list(icu2.dat$age[icu2.dat$sta==0],

icu2.dat$age[icu2.dat$sta==1]))
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Multivariate Logistic Regression ICU Example

! Multivariate analysis:
Call:
glm(formula = sta ~ sex + ser + age + typ, family = binomial,

data = icu2.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.2753 -0.7844 -0.3920 -0.2281 2.5072

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.26359 1.11678 -4.713 2.44e-06 ***
sex1 -0.20092 0.39228 -0.512 0.60851
ser1 -0.23891 0.41697 -0.573 0.56667
age 0.03473 0.01098 3.162 0.00156 **
typ1 2.33065 0.80238 2.905 0.00368 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
65050

! There is now no significant difference between medical
and surgical service types: (ser) has lost its significance.140



Multivariate Logistic Regression ICU Example

! Multivariate analysis on odds scale:
$OR

sex1 ser1 age typ1
0.8179766 0.7874880 1.0353364 10.2846123

$OR.ci
[,1] [,2]

[1,] 0.3791710 1.764602
[2,] 0.3477894 1.783083
[3,] 1.0132920 1.057860
[4,] 2.1340289 49.565050

! age has a strong effect odds ratio of 1.035 for a 1 year
change in age.

! Corresponds to an odds ratio of 1.03510 = 1.41 for a 10
year change in age.
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Multivariate Logistic Regression ICU Example

! Multivariate analysis on odds scale:
$OR

sex1 ser1 age typ1
0.8179766 0.7874880 1.0353364 10.2846123

$OR.ci
[,1] [,2]

[1,] 0.3791710 1.764602
[2,] 0.3477894 1.783083
[3,] 1.0132920 1.057860
[4,] 2.1340289 49.565050

! age has a strong effect: odds ratio of 1.035 for a 1 year
change in age.

! Corresponds to an odds ratio of 1.03510 = 1.41 for a 10
year change in age.
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Multivariate Logistic Regression ICU Example

! Draw a causal diagram (DAG)

ser

typ sexage?

sta

! Arrow illustrates the direction of causality

! Causality (and so arrows) must obey temporal ordering

! Admission type (emergency/elective) determined before
service type (medical/surgical)

! Further evidence that typ is the confounder: ser is not
significant in the multivariate model
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Poisson Regression
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Estimating Rates

! Context: Suppose we are interested in how the rate at
which a particular kind of event occurs depends on a set
of predictor variables.

! e.g. factors affecting the rates at which people visit their
general practitioners.

! We might be interested in estimating the joint effects of a
number of predictors simultaneously: e.g. sex, age,
employment status, smoking status.
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Rates Per Unit of What?

! Because events usually accumulate over time, the
denominator of an event rate often includes time.

! Nevertheless other dimensions can be included in the
denominator together with time. e.g. if the unit of
observation is a population we might look at deaths from
liver cancer per unit time per person.

! Further, time may not appear at all in the denominator if
we are not modelling event rates. e.g we might wish to
model the number of skin lesions per unit area of skin.

! From now on we will assume we are modelling events in
time so rates are measured with denominator time.

! It is easy enough to adjust the methods of the lecture to
other denominators if you wish.
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Estimating Rates Using Counts

! Poisson regression links event rate parameters to count
data.

! This allows us to estimate the effect of a change in a
predictor variable on event rates from counts of the
number of times the event occurs to various units of
observation.

! e.g. We might have counts of the number of times 10 000
people visit their GP over the period of a year.

! The name Poisson regression because it uses the Poisson
distribution for event counts.
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Poisson Distribution

! The Poisson distribution is used for modelling counts.

! A random outcome variable Y has a Poisson distribution
with mean λ, if it has probability mass function:

P(Y = s) =
λs

s!
exp(−λ)

! Y is a count, so s can be any whole number 0, 1, 2, 3....

! Counts are positive so the mean parameter must be
greater than zero. i.e. λ > 0.

! Some maths shows that if Y has a Poisson distribution
with mean λ then var(Y) = λ.

148



Poisson Distribution: Some Examples
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Poisson Regression: The Regression Equation

! Poisson regression models Yi, the event count for
observation unit i, as a Poisson distribution with mean λi.

! The Poisson regression equation is:

log EYi = log λi = log Ti +α+β1Xi1 +β2Xi2 + ... +βpXip

! λi is linked to the predictor variables via log λi.

! This is because λi is a positive number whereas log λi can
be any number between −∞ and ∞.

! Yi counts the number of events that occurred in the length
of time Ti for which observation unit i was ‘at risk.’

! The Xij are the usual predictor variables measured for
individual i.
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Poisson Regression: Comments on Ti

log EYi = log λi = log Ti +α+β1Xi1 +β2Xi2 + ... +βpXip

! Exponentiate both sides of the regression equation:

EYi = Ti exp(α) exp(β1Xi1 +β2Xi2 + ... +βpXip)

! We see that the expected event count for observation unit i
is proportional to the time Ti that the unit was at risk.

! Divide both sides by Ti

EYi
Ti

= exp(α) exp(β1Xi1 +β2Xi2 + ... +βpXip)

We can interpret this as the event rate for an observation
unit with predictor values Xi1, Xi2, ...Xip.
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Poisson Regression: Comments on Ti

log EYi = log Ti +α+β1Xi1 +β2Xi2 + ... +βpXip

! We need to be careful about the unit of measurement of Ti.

! Strictly, it doesn’t make sense to take the logarithm of a
physical measurement with a unit.

! We can get away with this notation because, as we will
see, the units of exp(α) contain the reciprocal of the unit
of Ti so that Ti exp(α) is unitless.

! e.g. if Ti has units of years then exp(α) has units years−1

i.e. units of ‘per year.’
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Poisson Regression: Interpretation of the Intercept

log EYi = log Ti +α+β1Xi1 +β2Xi2 + ... +βpXip

! To interpret the intercept, as usual, we set the Xijs to zero:

log EYi = log Ti +α

rearranging:

exp(α) = EYi/Ti

! exp(α) is the event rate for an observation unit for which
all the Xjs are equal to zero.
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Poisson Regression: Interpretation of the βj

! To interpret βj, as usual, we set the Xj to two different
values differing by 1. Say Xi1j = z + 1 for observation i1:

log EYi1 = log Ti1 +α+β1Xi11... +βj(z + 1)... +βpXi1p

and Xi2j = z in observation i2:

log EYi2 = log Ti2 +α+β1Xi21... +βjz... +βpXi2p

! Assuming Xi1j = Xi2j for all the other j, looking at the
difference of these equations we see:

log EYi1 − log EYi2 = βj + log Ti1 − log Ti2

so rearranging:

exp(βj) =
EYi1/Ti1
EYi2/Ti2
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Poisson Regression: Interpretation of the βj

! So

exp(βj) =
EYi1/Ti1
EYi2/Ti2

is a rate ratio.

! exp(βj) is the ratio of the event rates for a pair of
observations with values of Xj which differ by 1 but for
which the other predictor variables are the same.

! exp(βj) is the multiplicative change in the event rate for
an observational unit when the predictor Xj increases by
one unit while the other predictor variables remain fixed.
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Lung Cancer Example

! You can fit a Poisson regression in R using the glm
command.

! We will look at a lung cancer example.

! 56 122 thousand individuals were followed over one year.

! Number of lung-cancer deaths were counted and grouped
by smoking status and age.
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Poisson Regression

Lung Cancer Example

> lung.cancer

age smoke pop dead

1 40-44 no 656 18

2 45-59 no 359 22

3 50-54 no 249 19

4 55-59 no 632 55

5 60-64 no 1067 117

6 65-69 no 897 170

7 70-74 no 668 179

8 75-79 no 361 120

9 80+ no 274 120

10 40-44 cigarPipeOnly 145 2

11 45-59 cigarPipeOnly 104 4

12 50-54 cigarPipeOnly 98 3

13 55-59 cigarPipeOnly 372 38

14 60-64 cigarPipeOnly 846 113

15 65-69 cigarPipeOnly 949 173

16 70-74 cigarPipeOnly 824 212

17 75-79 cigarPipeOnly 667 243

18 80+ cigarPipeOnly 537 253

19 40-44 cigarrettePlus 4531 149

20 45-59 cigarrettePlus 3030 169

21 50-54 cigarrettePlus 2267 193

22 55-59 cigarrettePlus 4682 576

23 60-64 cigarrettePlus 6052 1001

24 65-69 cigarrettePlus 3880 901

25 70-74 cigarrettePlus 2033 613

26 75-79 cigarrettePlus 871 337

27 80+ cigarrettePlus 345 189

28 40-44 cigarretteOnly 3410 124

29 45-59 cigarretteOnly 2239 140

30 50-54 cigarretteOnly 1851 187

31 55-59 cigarretteOnly 3270 514

32 60-64 cigarretteOnly 3791 778

33 65-69 cigarretteOnly 2421 689

34 70-74 cigarretteOnly 1195 432

35 75-79 cigarretteOnly 436 214

36 80+ cigarretteOnly 113 63
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## pop is the population size (in 1000s) followed in each age/smoking category

## e.g. 656 000 non-smokers aged 40-44 were followed over the year

## dead is the death count from lung cancer in each age/smoking category

## e.g. 18 non-smokers aged 40-44 died over the year.

## Note that numbers of people followed in each category do not reflect the population

## level differences in the category sizes. Otherwise we would be dealing with a

## population where 90% of people smoke.

## This doesn’t matter: Poisson regression is concerned with rates and

## comparisons of rates between exposure categories. The proportions of people in

## each exposure category do not need to reflect population proportions.

## The pop variable is analogous to the "time at risk" variable T in the slides.

## In this case, because each unit of observation is a group of people, we are

## dealing with events occurring in person-time rather than events occurring

## just in time. So T is person-time at risk for each unit of exposure.

## First lets fit a Poisson regression regressing dead on age, assuming smoking

## does not cause lung cancer.

## In order to specify the log(T) term of the slides, (log(pop) here) we use the

## offset command inside the regression formula:

> age.mod.obj<-glm(dead~offset(log(pop))+age, data=lung.cancer,family=poisson)

> age.mod.obj

Call: glm(formula = dead ~ offset(log(pop)) + age, family = poisson,

data = lung.cancer)

Coefficients:

(Intercept) age45-59 age50-54 age55-59 age60-64 age65-69

-3.3957 0.5560 0.9881 1.3715 1.6290 1.9571

age70-74 age75-79 age80+

2.2058 2.4578 2.6875

Degrees of Freedom: 35 Total (i.e. Null); 27 Residual

Null Deviance: 4056
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## We need to think about what the unit of the event rate is for this model.

## We are following the individuals for one year, so the denominator of the

## unit includes time in units of 1 year. Each unit of observation is

## a cohort of people in a particular exposure group (defined by age interval

## and smoking category). Since we are measuring the size of these units in 1000s

## of people, the denominator should also include a unit of 1000 persons.

## rate unit = per 1000 persons * per 1 year = per 1000 person years

## What is an estimate of the lung cancer death rate in the age 40-44 category?

## The regression coefficients are stored in age.mod$coef:

> age.mod.obj$coef

(Intercept) age45-59 age50-54 age55-59 age60-64 age65-69

-3.3957217 0.5560324 0.9881493 1.3714516 1.6289950 1.9571451

age70-74 age75-79 age80+

2.2057743 2.4577851 2.6874888

## age40-44 is the reference category of the factor variable, so we can

## compute the rate as:

> exp(age.mod.obj$coef[1])

(Intercept)

0.03351636

## There are 0.034 lung cancer deaths per 1000 person years in 40-44 year olds.

## What is the estimated rate ratio for lung-cancer deaths comparing

## 60-64 year olds with 40-44 year olds?

## We can compute this rate-ratio as:

> exp(age.mod.obj$coef[5])

age60-64

5.098748

## The lung cancer rate ratio is 5.1 (note as a ratio of two quantities

## with the same units this is a unitless quantity). The lung cancer rate is about

## 5 times as high in 60-64 year olds as in 40-44 year olds

## What is the lung cancer death rate in the age 60-64 category?

## This is the product of the two things we have just calculated: the rate in the

## 40-44 year old category and the rate ratio comparing the 60-64 year olds
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## with the 40-44 year olds.

## We can calculate it directly like this:

> exp(age.mod.obj$coef[1]+age.mod.obj$coef[5])

(Intercept)

0.1708915

## The lung cancer death rate in 60-64 year olds is 0.17 deaths

## per 1000 person years.

## Now lets fit a model including the various smoking categories as dummy variables

## by adding smoke to the model:

> age.smoke.mod.obj<-glm(dead~offset(log(pop))+age+smoke,

data=lung.cancer,family=poisson)

> summary(age.smoke.mod.obj)

Call:

glm(formula = dead ~ offset(log(pop)) + age + smoke, family = poisson,

data = lung.cancer)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.06055 -0.54773 0.06431 0.29963 1.48348

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.68002 0.06824 -53.929 < 2e-16 ***

age45-59 0.55388 0.07999 6.924 4.38e-12 ***

age50-54 0.98039 0.07682 12.762 < 2e-16 ***

age55-59 1.37946 0.06526 21.138 < 2e-16 ***

age60-64 1.65423 0.06257 26.439 < 2e-16 ***

age65-69 1.99817 0.06279 31.824 < 2e-16 ***

age70-74 2.27141 0.06435 35.296 < 2e-16 ***

age75-79 2.55858 0.06778 37.746 < 2e-16 ***

age80+ 2.84692 0.07242 39.310 < 2e-16 ***

smokecigarPipeOnly 0.04781 0.04699 1.017 0.309

smokecigarretteOnly 0.41696 0.03991 10.447 < 2e-16 ***

smokecigarrettePlus 0.21796 0.03869 5.633 1.77e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 4055.984 on 35 degrees of freedom

Residual deviance: 21.487 on 24 degrees of freedom

AIC: 285.51

Number of Fisher Scoring iterations: 4

## The estimated rate ratio comparing those who smoke cigarettes only,

## with those who do not smoke, within the same age band is:

> exp(age.smoke.mod.obj$coeff[11])

smokecigarretteOnly

1.517341

## Compute a 95% confidence interval for this rate ratio.

## We can use confint to get a 95% confidence interval for the

## regression coefficients (on the log-rate scale):

> intervals<-confint(age.smoke.mod.obj)

Waiting for profiling to be done...

> intervals

2.5 % 97.5 %

(Intercept) -3.81561558 -3.5480606

age45-59 0.39729564 0.7110067

age50-54 0.83034745 1.1316137

age55-59 1.25314788 1.5090627

age60-64 1.53341845 1.7787749

age65-69 1.87691591 2.1231296

age70-74 2.14695537 2.3993120

age75-79 2.42712423 2.6929365

age80+ 2.70602687 2.9900292

smokecigarPipeOnly -0.04414904 0.1400901

smokecigarretteOnly 0.33928488 0.4957578

smokecigarrettePlus 0.14271999 0.2944183

## Then exponentiate to get the intervals on the rate scale:

> exp(intervals)

2.5 % 97.5 %

(Intercept) 0.02202415 0.0287804

age45-59 1.48779572 2.0360399

age50-54 2.29411568 3.1006561

age55-59 3.50134746 4.5224900

age60-64 4.63399086 5.9225961

age65-69 6.53332439 8.3572514

age70-74 8.55876044 11.0155956



6

age75-79 11.32626342 14.7749991

age80+ 14.96968079 19.8862627

smokecigarPipeOnly 0.95681134 1.1503774

smokecigarretteOnly 1.40394324 1.6417420

smokecigarrettePlus 1.15340679 1.3423453

## The relevant interval is (1.40394324,1.6417420)

## If we repeated the experiment many times, each time estimating a

## confidence interval, the estimated intervals will include the true

## rate ratio parameter 95% of the time.

## We could also have done this using a normal approximation, using the

## standard formula:

## estimate - 1.96*se < true value < estimate+1.96*se

## to calculate the interval on the log-rate scale. We can then exponentiate

## to get the interval on the rate-scale. In a single step for each limit:

## lower limit of interval:

> exp(age.smoke.mod.obj$coeff[11]+1.96*0.03991)

smokecigarretteOnly

1.640799

## upper limit of interval:

> exp(age.smoke.mod.obj$coeff[11]-1.96*0.03991)

smokecigarretteOnly

1.403173

## It seems likely smoking does cause lung cancer.



Negative Binomial Regression

! When Y has a Poisson distribution with mean λ,
var(Y) = λ.

! In practice however, count data often have EY < var(Y).
This is over dispersion

! It is common with count data from sequencing reads

! Over dispersion can be consequence of "mixing" of
multiple Poisson distributions each with a slightly
different mean (e.g. due to batch effects)

! There are count regression models which account for over
dispersion

! Negative binomial regression is one such examples
(glm.nb in R MASS package)
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The End!
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