Auxetic Materials ### **The Invention** Auxetics are materials and systems which exhibit the very unusual properties of becoming wider when stretched and narrower when squashed, that is, they have Negative Poisson's Ratio. A team of University researchers have extensive expertise on materials possessing auxetic properties and how they can be used to develop and manufacture new or improved commercial structures and products. #### **NOVELTY** Apart from possessing a Negative Poisson's Ratio, auxetic materials display additional unique qualities such as increased shear stiffness, an increased plane strain fracture toughness and an increased indentation resistance. When an object hits an auxetic material and compresses it in one direction, the material contracts laterally. That is, material flows into the location of impact creating a denser material which is less resistant to impact. Auxetic materials are also known to have better shock and vibration absorption properties. They also have a natural tendency to form dome-shaped double-curved surfaces, unlike conventional materials which tend to form saddle-shaped surfaces. Such materials are particularly desirable in applications that require highly curved hard surfaces, such as those found in the body parts of aircrafts and cars. ### **APPLICATION FIELDS** - Auxetic materials and structures can also be used to replace conventional components in various products used in specialised applications to produce higher quality products. - Smart filters for easy unclogging of filters - Medical industry: hierarchical kink-less stents, skin grafting, implants and dressings to adapt to body contours - Sporting accessories such as running shoes and garments. # COMMERCIAL INTEREST We are interested in collaborating with entities to design smart materials. #### **LEAD INVENTOR** Prof. Joseph Grima Dr. Ruben Gatt **Dr. Daphne Attard** The development was executed at and supported by the University of Malta, sole owner of the rights. The university's IP is managed by its Knowledge Transfer Office. Inquiries shall be submitted to knowledgetransfer@um.edu.mt, or further information may be obtained on +356 2340 3466.