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Gene expression

An important aim in genomics is the characterisation of RNA
samples. Specifically:

1. What is the sequence of each distinct RNA in a sample?

2. What is the concentration of each RNA in a sample?
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Gene expression
Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.
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Gene expression
Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

1. Alternative isoforms have distinct sequences
2. Two versions of each isoform sequence in diploid organisms
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RNA-seq read counts

To infer concentrations, we need to identify

• the set of transcript sequences in the sample

• the set of reads (potentially) emanating from each transcript

Approaches:

• Select transcript sequences from a database (e.g. Ensembl)
and align reads to them

• Align reads to genome and infer transcript sequences

• Assemble reads into contigs

In any case, we get a mapping of reads to features of interest
(e.g. genes, isoforms, haplotype-specific isoforms).

How do we model the alignments?
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The Poisson distribution
If independent events occur at a known given rate, then the
number of such events follows a Poisson distribution.

Examples:
• Number of cars crossing a milestone every hour
• Number of raindrops falling on a rooftop every minute

Single rate parameter λ (pets rate = cats rate + dogs rate).
Mean = variance = rate.
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Basic Poisson model for expression quantification

Number of reads aligning to a transcript increases with

• Total number of reads

• Length of transcript

• Abundance of transcript

Number of reads from gene g captured by Poisson model (Marioni
et al. 2008):

rg ∼ Poisson(bµg lg),

• µg: concentration of RNAs from gene g

• lg: effective length of the gene

• b: normalisation constant (e.g. total no. of reads)
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Basic Poisson model for expression quantification

Basic model is useful but:

• “gene length” ambiguous — fragments from several isoforms
with different lengths are sequenced

• reads counts not always observed due to sequence sharing
(e.g. paralogous families)

Can we estimate expression for each isoform?

• Isoform read counts in general not observed:

?

Isoform 1

Isoform 2

• We need a read count model for isoforms
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Basic Poisson model for expression quantification

Recall that sequencing allows us to distinguish alleles at
heterozygous positions.

paternal

maternal

A
T

Can we use RNA-seq to detect allelic imbalance?

We need a read count model for alleles



The binomial distribution
A Bernoulli trial is an experiment in which “success” occurs with
probability p and “failure” occurs with probability 1 − p.

The number of successes given n Bernoulli trials follows a
binomial distribution with parameters n and p. E(X) = np.

Examples:
• Number of heads after n coin tosses. p , 0.5 if not fair
• Number of times you win the lottery (tiny p (but £££))
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The multinomial distribution
A Bernoulli trial is an experiment in which “success” occurs with
probability p and “failure” occurs with probability 1 − p.

The number of successes given n Bernoulli trials follows a
binomial distribution with parameters n and p.

Examples:
• Number of heads after n coin tosses. p , 0.5 if it is unfair
• Number of times you hit the bullseye out of n shots

If there are > 2 categories, the per-category counts follow a
multinomial distribution with parameters n and (p1, p2, . . .).

Example:
• Number of 1s, 2s, 3s, 4s, 5s, 6s if you roll a die n times. If
{pi} ,

1
6 then the die is not fair.



Basic Binomial model for allelic imbalance
• Reads permit discrimination between two copies of an isoform
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• Binomial test:
r0∑

r=0
P(r |p = 0.5, n = r0 + r1) < α? (Degner et

al. 2009)

. E.g. suppose r0 = 2; r1 = 6:

P(r = 0|p = 0.5, n = 8) = 0.00390625

P(r = 1|p = 0.5, n = 8) = 0.03125

P(r = 2|p = 0.5, n = 8) = 0.109375
2∑

r=0

P(r |p = 0.5, n = 8) = 0.1445312 (not significant)
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Basic Binomial model for allelic imbalance

• What if there are multiple SNPs and isoforms?
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• Binomial test not appropriate

• We need a read count model for haplotype-specific
isoforms



Multi-mapping reads

• Align reads back to reference transcript sequences with
Bowtie (Langmead et al. 2009), allowing multiple alignments
per read

• Multi-mapping structure between reads and transcripts
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Multi-mapping reads

• Obtain transcript sets, such that each read maps to only 1 set

• Transcripts may belong to more than one set

• Read counts per set can be observed

• Transcripts can be isoforms sharing exons or from multiple
genes
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Poisson model for transcript set reads counts

Model reads per transcript set instead of per gene (Turro et al.
2011).

Define Mit =

{
1 if transcript t in set i,
0 otherwise.

Now model for reads counts is:

ki ∼ Poisson(bsi

∑
t

Mitµt),

where si is the effective length shared by transcripts in set i.



Latent variables for read counts
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Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

Latent variables for read counts

A

B

D

A

B

C

Reads Transcripts Transcript
sets

1

2

3

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

k =

�
⇤

2
1
2

⇥
⌅

r =
�

r1 r2 r3 r4
⇥
Xit � Poisson(bsiMitµt),

ki � Poisson(bsi
⌃

t

Mitµt),

{X1t , . . . , Xmt}|rt � Mult

⇤
rt ,

M1ts1⇧
i Mitsi

, . . . ,
Mmtsm⇧

i Mitsi

⌅
.

A B C D

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Transcript
sets

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Observed
set counts

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti. Unobserved
transcript counts

Poisson model for transcript set reads counts

Model reads per transcript set instead of per gene.

Define Mit =

�
1 if transcript t in set i ,
0 otherwise.

Now model for reads counts is:

ki � Poisson(bsi
⇥

t

Mitµt),

where si is the e�ective length shared by transcripts in set i .

3

Xit ∼ Poisson(bsiMitµt),

ki ∼ Poisson(bsi

∑
t

Mitµt),

rt ∼ Poisson(bµt

∑
i

Mitsi) = Poisson(bltµt),

{Xi1, . . . ,Xin}|{µ1, . . . , µn}, ki ∼ Mult(ki ,
Mi1µ1∑
t Mitµt

, . . . ,
Minµn∑
t Mitµt

).



Latent variables for read counts

A

B

D

A

B

C

Reads Transcripts Transcript
sets

1

2

3

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

M =

⇤
⇧

1 1 0 0
1 1 1 0
0 0 0 1

⌅
⌃

X =

⇤
⇧

X11 X12 0 0
X21 X22 X23 0
0 0 0 X44

⌅
⌃

r =
�

r1 r2 r3 r4
⇥

Latent variables for read counts

A

B

D

A

B

C

Reads Transcripts Transcript
sets

1

2

3

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

Latent variables for read counts

A

B

D

A

B

C

Reads Transcripts Transcript
sets

1

2

3

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

A B C D

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Latent variables for read counts

M =

�
⇤

1 1 0 0
1 1 1 0
0 0 0 1

⇥
⌅

X =

�
⇤

X11 X12 0 0
X21 X22 X23 0
0 0 0 X34

⇥
⌅

ki � Poisson(bsi
�

t

Mitµt)

Xit � Pois(bsiMitµt)

Similar model has been used by Richard et al. 2010; Jiang and Wong 2009
(defining transcript sets by exon-sharing, don’t use reads mapping to
multiple genes),
also by Li et al. 2010.

None of these have used haplotype-specific isoforms.
Alex Lewin (Imperial) Haplotype-specific isoform expression 12 April 2011 8 / 20

k =

�
⇤

2
1
2

⇥
⌅

r =
�

r1 r2 r3 r4
⇥
Xit � Poisson(bsiMitµt),

ki � Poisson(bsi
⌃

t

Mitµt),

{X1t , . . . , Xmt}|rt � Mult

⇤
rt ,

M1ts1⇧
i Mitsi

, . . . ,
Mmtsm⇧

i Mitsi

⌅
.

A B C D

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti.

Transcripts

Transcript
sets

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Transcript
sets

1
2
3

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit=

�
1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki�Poisson(bsi
⇥

t

Mitµt),

wheresiisthee�ectivelengthsharedbytranscriptsinseti.

Observed
set counts

Poissonmodelfortranscriptsetreadscounts

Modelreadspertranscriptsetinsteadofpergene.

DefineMit = �1iftranscripttinseti,
0otherwise.

Nowmodelforreadscountsis:

ki �Poisson(bsi ⇥t Mit µt ),

wheresi isthee�ectivelengthsharedbytranscriptsinseti. Unobserved
transcript counts

Poisson model for transcript set reads counts

Model reads per transcript set instead of per gene.

Define Mit =

�
1 if transcript t in set i ,
0 otherwise.

Now model for reads counts is:

ki � Poisson(bsi
⇥

t

Mitµt),

where si is the e�ective length shared by transcripts in set i .

3

Xit ∼ Poisson(bsiMitµt),

ki ∼ Poisson(bsi

∑
t

Mitµt),

rt ∼ Poisson(bµt

∑
i

Mitsi) = Poisson(bltµt),

{Xi1, . . . ,Xin}|{µ1, . . . , µn}, ki ∼ Mult(ki ,
Mi1µ1∑
t Mitµt

, . . . ,
Minµn∑
t Mitµt

).



Concrete example

e1 e2 e3

e1 e3

d1 d2 d3

d1 d3d4

A

t1

t2

ε-1

ε-1



Concrete example

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

1

t2

t1

t1 t2

e1 e2 e3

e1 e3

d1 d2 d3

d1 d3d4

A

t1

t2

ε-1

ε-1

t1,t2 t1 t1,t2
t1t1,t2 t1,t2

t1t1,t2 t1,t2



Concrete example

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

�− 1


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

1

t2

t1

t1 t2

e1 e2 e3

e1 e3

d1 d2 d3

d1 d3d4

A

t1

t2

ε-1

ε-1

t1,t2 t1 t1,t2
t1t1,t2 t1,t2

t1t1,t2 t1,t2



Heterozygotes and haplo-isoforms
B

t1A
C
G

d1 d3d2 ε-1

t1B



Heterozygotes and haplo-isoforms
B

t1A
C
G

d1 d3d2 ε-1

t1B

t1A,t1B
t1A,t1B

t1A,t1B

t1A
t1A

t1A,t1B

t1B
t1B



Same model structure for isoforms and haplo-isoforms

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




M =




1 1
1 0
0 1




k =




4
2
2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

1

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

�− 1


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

1

t2

t1

t1 t2

e1 e2 e3

e1 e3

d1 d2 d3

d1 d3d4

A

t1

t2

ε-1

ε-1

t1,t2 t1 t1,t2
t1t1,t2 t1,t2

t1t1,t2 t1,t2

B

t1A
C
G

d1 d3d2 ε-1

t1B

t1At1B

t1A,t1B
t1A,t1B

t1A,t1B

t1A
t1A

t1A,t1B

t1B
t1B

BRIEF ARTICLE

THE AUTHOR

M =




1 1
1 0
0 1




k =




6
4
1




s =




d1 + d3

d2

d4


 =




e1 + e3 − 2(�− 1)
e2 + �− 1

�− 1




d1 = e1 − � + 1(1)

d2 = e2 + �− 1(2)

d3 = e3 − � + 1(3)

l1 = s1 + s2 = d1 + d3 + d2(4)

l2 = s1 + s3 = d1 + d3 + �− 1(5)

l1 = s1 + s2 = e1 + e2 + e3 − (�− 1)(6)

l2 = s1 + s3 = e1 + e3 − (�− 1)(7)

s =




d1 + d3

d2

d2




M =




1 1
1 0
0 1




k =




4
2
2




1

Heterozygotes can be treated
like alternative exons!



Remarks on expression estimation

• Poisson distribution captures the unavoidable variance due to
counting independent events

• The mapping of a read or read pair to a feature can be
ambiguous

• Deconvolution methods help quantify expression of different
isoforms and even haplotype-specific isoforms

• This really sets RNA-seq and microarrays apart!



Normalisation

Normalisation aims to ensure our expression estimates are:

• comparable across features (genes, isoforms, etc)

• comparable across libraries (different samples)

• on a human-friendly scale (interpretable magnitude)

Necessary for valid inference about DE

• between transcripts within samples

• between samples belonging to different biological conditions
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Basic Poisson model

Number of reads from gene g in library i can be captured by a
Poisson model (Marioni et al. 2008):

rig ∼ Poisson(kigµig),

=⇒ E(rig) = kigµig

where µig is the concentration of RNA in the library and kig is a
normalisation constant.

µ̂ig =
rig

kig



RPKM normalisation

Normalisation is procedure for setting kig such that the estimates of
µig are comparable between genes and across libraries.

µ̂ig =
rig

kig

The number of reads rig is roughly proportional to

• the length of the gene, lg
• the total number of reads in the library, Ni

Thus it is natural to include them in the normalisation constant.

If kig = 10−9Ni lg, the units of µ̂ig are Reads Per Kilobase per Million
mapped reads (RPKM) (Mortazavi et al. 2008).

This is the most elementary form of normalisation.
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RPKM normalisation

• RPKM works well for technical and some biological replicates

• µig ' µjg for all libraries i and j

• RPKM units obtained by scaling of counts by N−1
i

Log counts

De
ns

ity

Log RPKM

De
ns

ity



Sample to sample normalisation
• Between different biological samples, homogeneity

assumption does not hold
• Why is this a problem?

Number of reads is limited
E.g. counts from very highly expressed genes leave less real
estate available for counts from lowly expressed genes

A B

• Suppose you have two RNA
populations A and B sequenced at
same depth

• A and B are identical except half of
genes in B are unexpressed in A

• Only ∼ half of reads from B come
from shared gene set

• Estimates for shared genes differ
by factor of ∼ 2!

Robinson and Oslack 2010
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Poisson approximation to Binomial
• Total RNA output,

∑
g µig lg, inversely affects read counts rig

(for fixed µig)
• RPKM normalisation assumes implicitly that total RNA output

(unknown) is the same for all libraries:

rig ∼ Binomial
(
Ni ,

µig lg∑
g µig lg

)
∼ Poisson

(
Ni

µig lg∑
g µig lg

)
as N → ∞

=⇒ E(rig) = Ni
µig lg∑
g µig lg

• RPKM assumption: ∀i,
∑

g µig lg = 109 (so µ̂ig =
rig

10−9Ni lg
)

• Better assumption: output between samples for a core set
only of genes G is similar:

∑
g∈G

µig lg =
∑

g∈G
µjg lg
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TMM normalisation
The naive MLE is proportional to the normalised counts:

µ̂jg =
rjg

kjg
=

1
10−9lg

rjg

Nj

If
∑

g∈G
µ̂ig lg ,

∑
g∈G

µ̂jg lg, the MLEs for all genes need to be adjusted.

Calculate scaling factor for sample j relative to reference sample i:∑
g∈G

rig

Ni
' S(i,j)

∑
g∈G

rjg

Nj
.

Adjust the MLEs for sample j for all genes:

µ̂jg =
rjg

kjg
=

rjg

10−9Nj lg
· S(i,j).

Robinson and Oslack 2010
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TMM normalisation
How to choose the subset G used to calculate S(i,j)?

• For pair of libraries (i, j) determine log fold change of
normalised counts

M(i,j)
g = log

rig

Ni
− log

rjg

Nj
.

• and the mean of the log normalised counts

A (i,j)
g =

1
2

[
log

rig

Ni
+ log

rjg

Nj

]
.

• Set G to genes remaining after trimming upper and lower x%
of the {Ag} and {Mg}. I.e. genes in G have unexceptional

values of A (i,j)
g and M(i,j)

g

Robinson and Oslack 2010
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TMM normalisation (with edgeR)
• Compute summary of {M(i,j)

g } for genes in G (weighted mean)

• Let S(i,j) be the exponential of this summary
• Adjust µ̂jg by a factor of S(i,j) for all genes g

Other datasets
The global shift in log-fold-change caused by RNA com-
position differences occurs at varying degrees in other
RNA-seq datasets. For example, an M versus A plot for
the Cloonan et al. [12] dataset (Figure S3 in Additional
file 1) gives an estimated TMM scaling factor of 1.04
between the two samples (embryoid bodies versus
embryonic stem cells), sequenced on the SOLiD™ sys-
tem. The M versus A plot for this dataset also highlights
an interesting set of genes that have lower overall

expression, but higher in embryoid bodies. This explains
the positive shift in log-fold-changes for the remaining
genes. The TMM scale factor appears close to the med-
ian log-fold-changes amongst a set of approximately 500
mouse housekeeping genes (from [17]). As another
example, the Li et al. [18] dataset, using the llumina 1G
Genome Analyzer, exhibits a shift in the overall distri-
bution of log-fold-changes and gives a TMM scaling fac-
tor of 0.904 (Figure S4 in Additional file 1). However,
there are sequencing-based datasets that have quite
similar RNA outputs and may not need a significant
adjustment. For example, the small-RNA-seq data from
Kuchenbauer et al. [19] exhibits only a modest bias in
the log-fold-changes (Figure S5 in Additional file 1).
Spike-in controls have the potential to be used for

normalization. In this scenario, small but known
amounts of RNA from a foreign organism are added to
each sample at a specified concentration. In order to
use spike-in controls for normalization, the ratio of the
concentration of the spike to the sample must be kept
constant throughout the experiment. In practice, this is
difficult to achieve and small variations will lead to
biased estimation of the normalization factor. For exam-
ple, using the spiked-in DNA from the Mortazavi et al.
data set [11] would lead to unrealistic normalization fac-
tor estimates (Figure S6 in Additional file 1). As with

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of (a) technical replicates and (b) liver versus
kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-
fold-changes of the housekeeping genes. (c) An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points
indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the
estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney
tissues. The black arrow highlights the set of prominent genes that are largely attributable for the overall bias in log-fold-changes.

Table 1 Number of genes called differentially expressed
between liver and kidney at a false discovery rate <0.001
using different normalization methods

Library size
normalization

TMM
normalization

Overlap

Higher in liver 2,355 4,293 2,355

Higher in
kidney

8,332 4,935 4,935

Total 10,867 9,228 7,290

House keeping
genes (545)

Higher in liver 45 137 45

Higher in
kidney

376 220 220

Total 421 357 265

TMM, trimmed mean of M values.

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25
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Median log deviation normalisation (with DESeq)

An alternative normalisation provided in DESeq package

• For each gene g in sample i, calculate deviation of log rig from
the mean log rig over all libraries: dig = log rig −

1
I
∑

i log rig.

• Calculate median over all genes: log S(i) = mediani(dig)

• Adjust µ̂ig by a factor of S(i) for all genes g

edgeR and DESeq are both robust across genes (weighted mean
of core set vs. median of all genes)

Call Ñi =
Ni
Si

the “adjusted library size”.

Anders and Huber 2010



Median log deviation normalisation (with DESeq)

An alternative normalisation provided in DESeq package

• For each gene g in sample i, calculate deviation of log rig from
the mean log rig over all libraries: dig = log rig −

1
I
∑

i log rig.

• Calculate median over all genes: log S(i) = mediani(dig)

• Adjust µ̂ig by a factor of S(i) for all genes g

edgeR and DESeq are both robust across genes (weighted mean
of core set vs. median of all genes)

Call Ñi =
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Normalisation between genes

• So far we have looked at library-level scaling to make the
expression of a given gene comparable across libraries

• In other words, we have been seeking to account for factors
affecting all genes in a library similarly

• Are there factors affecting different genes differently?

• Recall normalisation equation:

µ̂ig =
rig

kig

Consider the decomposition of kig = kkikg

• k : global scaling to get more convenient units. E.g. 10−9.

• ki : library-specific normalisation factors. E.g. Ñi = Ni/S(i)

• kg: gene-specific normalisation factors. E.g. lg
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Normalisation between genes
Where does the lg factor come from anyway?

Underlying assumption: constant Poisson rate across bases.

μg μg μg μg μg μg μg μg μg μg 00 0 0

lg

rigp ∼ Pois(kkiµg)

rig =

lg∑
p=1

rigp

rig ∼ Pois(kki

lg∑
p=1

µg)

∼ Pois(kki lgµg)

∼ Pois(10−9Ñi lgµig)
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Normalisation between genes
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There are in fact local
sequence-specific biases (Li et al.
2010, Hansen et al. 2010) (non-random
amplification?).

This suggests a variable-rate model
with weights αgp :

αg1μg

lg

0 0αg2μgαg3μgαg4μgαg5μgαg6μgαg7μgαg8μg

rig ∼ Pois(kki

lg∑
p=1

αgpµig)

∼ Pois(kki l̃gµig)

∼ Pois(10−9Ñĩ lgµig)



Accounting for sequencing biases with mseq
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Normalisation between genes (adjust for insert size
distro)

lt = 6

lf = 3: 4 positions

lf = 4: 3 positions

lf = 5: 2 positions

lf = 6: 1 position

lr = 2

lf = 2: 5 positions

l̃t =
lt∑

lf=lr

p(lf |lt)(lt − lf + 1)

(assuming each position equally
likely)

l̃t =
lt∑

lf=lr

p(lf |lt)
lt−lf+1∑

p=1

α(p, t , lf )

(weight α(p, t , lf ) for fragments of
length lf at position p, transcript t)

If pre-selection fragments roughly
uniform up to lt within insert size
distribution, then p(lf |lt) ' p(lf )

Glaus et al 2012
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Differential expression

We have obtained library and gene specific normalisation factors to
make counts/concentration estimates as comparable as possible.

This allows us to:

• obtain reasonably unbiased log fold changes between two
groups of samples

• obtain p-values under the null hypothesis of no differential
expression

Recall hypothesis testing:

• define a function of the data, T (the test statistic)

• derive distribution of T under the null (e.g. no DE)

• define critical regions of T

• compute observed value t from actual data

• reject null if t is in a critical region
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µig is the RNA concentration parameter for library i, which varies
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Mean(NB) = mean(Gamma) = E(mean(Poisson))
Var(NB) = var(Gamma) + E(var(Poisson))



Negative binomial distribution

Number of reads from gene g in library i of condition c can be
captured by a negative binomial model:

rcig = NB(kigµcg, scg)

where µcg and scg are, respectively, the mean and dispersion for
reads from gene g in condition c.

The variance has two components:

σ2
cg = kigµcg + k 2

igµ
2
cgscg

Poisson noise Overdispersion

• Notice there are now two parameters to estimate
• How do we obtain precise estimates of the dispersion if we

have a small number of libraries per condition?
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DESeq
How do we estimate the variance robustly?

Assumption: dispersion is a smooth function of the mean.
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Figure 1: Empirical (black dots) and fitted (red lines) dispersion values plotted against mean
expression strength.

> plotDispEsts( cds )

The plot in Figure 1 is doubly logarithmic; this may be helpful or misleading, and it is worth
experimenting with other plotting styles.

As we estimated the dispersion from only two samples, we should expect the estimates to
scatter with quite some sampling variance around their true values. Hence, we DESeq should not
use the per-gene estimates directly in the test, because using too low dispersion values leads to
false positives. Many of the values below the red line are likely to be underestimates of the true
dispersions, and hence, it is prudent to instead rather use the fitted value. On the othe hand,
not all of he values above the red line are overestimations, and hence, the conservative choice is
to keep them instead of replacing them with their fitted values. If you do not like this default
behaviour, you can change it with the option sharingMode of estimateDispersions. Note that
DESeq orginally (as described in [1]) only used the fitted values (sharingMode="fit-only").
The current default (sharingMode="maximum") is more conservative.

Another di↵erence of the current DESeq version to the original method described in the
paper is the way how the mean-dispersion relation is fitted. By default, estimateDispersion

now performs a parametric fit: Using a gamma-family GLM, two coe�cients ↵0,↵1 are found to
parametrize the fit as ↵ = ↵0 + ↵1/µ. (The values of the two coe�cients can be found in the
fitInfo object, as attribute coefficients to dispFunc.) For some data sets, the parametric
fit may give bad results, in which case one should try a local fit (the method described in the
paper), which is available via the option fitType="local" to estimateDispersions.
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Use fitted values (or values
above the line) instead of
raw estimates. X
X
This is a form of pool-
ing (sharing of information
across genes) to stabilise
the estimates.

Anders and Huber 2010
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Differential expression with DESeq

Back to hypothesis testing...

rcig = NB(kigµcg, scg)

H0 : µ1g = µ2g.

Perform a negative binomial exact test.

How extreme is the partitioning of counts between the two
conditions under the null?
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Differential expression with DESeq

Let the observed condition-specific counts be q∗cg =
∑

i rcig.

The probability of the data under the null is
P∗ = P(q∗1g, q

∗
2g |µ̂g, σ̂

2
g).

Obtain gene-wise exact p-values:

pg =

∑
q1g ,q2g:P(q1g ,q2g |µ̂g ,σ̂

2
g)<P∗∧q1g+q2g=q∗1g+q∗2g

P(q1g, q2g |µ̂g, σ̂
2
g)∑

q1g ,q2g:q1g+q2g=q∗1g+q∗2g

P(q1g, q2g |µ̂g, σ̂
2
g)

,

where µ̂g and σ̂2
g are estimates for the mean and variance under

the null.

Anders and Huber 2010
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Differential isoform expression

• At the gene level, counts are often observed (however beware
of isoform switching)

• At other levels (isoforms, haplo-isoforms) counts almost
always have to be estimated (e.g. with MMSEQ) because
reads map to multiple overlapping transcripts

• Count-based methods such as DESeq can be used to obtain
differential isoform expression results by using estimated
counts instead of observed counts

• A more powerful approach is to take into account posterior
uncertainty in expression estimates (MMDIFF; Turro et al
2014)



Closing remarks

• Variation in total RNA output per sample leads to biases in
expression estimates (limited real estate)

• Variation in sequence composition of genes leads to biases
(non-random hexamer priming)

• Normalisation seeks to correct for these biases

• Biological and Poisson variability can be modelled with a
negative binomial distribution

• Variance of negative binomial hard to estimate gene-by-gene
(best to share information acrosss genes)

• Negative binomial exact test produces p-values under the null
of no differential expression
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Further reading (transcriptome-based analysis)

Turro E, Su S-Y, Gonçalves Â , Coin LJM, Richardson S, Lewin A.
Haplotype and isoform specific expression estimation using
multi-mapping RNA-seq reads. Genome Biology, 2011 Feb;
12:R13.

Turro E, Astle WJ, Tavaré S. Flexible analysis of RNA-seq data
using mixed effects models. Bioinformatics, 2014 Jan;
30(2):180-188.

MMSEQ, MMDIFF

• Haplotype-specific, isoform, gene-level expression estimation

• Flexible model comparison (polytomous model selection)

https://github.com/eturro/mmseq

https://github.com/eturro/mmseq

