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Gene expression

An important aim in genomics is the characterisation of RNA
samples. Specifically:

1. What is the sequence of each distinct RNA in a sample?
2. What is the concentration of each RNA in a sample?
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NB: in general only relative proportions available



Gene expression
Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.
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Gene expression
Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

1. Alternative isoforms have distinct sequences
2. Two versions of each isoform sequence in diploid organisms
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RNA-seq read counts

To infer concentrations, we need to identify
e the set of transcript sequences in the sample
e the set of reads (potentially) emanating from each transcript
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RNA-seq read counts

To infer concentrations, we need to identify
e the set of transcript sequences in the sample
e the set of reads (potentially) emanating from each transcript

Approaches:

» Select transcript sequences from a database (e.g. Ensembl)
and align reads to them

 Align reads to genome and infer transcript sequences
e Assemble reads into contigs

In any case, we get a mapping of reads to features of interest
(e.g. genes, isoforms, haplotype-specific isoforms).

How do we model the alignments?



The Poisson distribution
If independent events occur at a known given rate, then the
number of such events follows a Poisson distribution.



The Poisson distribution
If independent events occur at a known given rate, then the
number of such events follows a Poisson distribution.

Examples:

* Number of cars crossing a milestone every hour

e Number of raindrops falling on a rooftop every minute
Single rate parameter A (pets rate = cats rate + dogs rate).
Mean = variance = rate.
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Basic Poisson model for expression quantification

Number of reads aligning to a transcript increases with
o Total number of reads
e Length of transcript
e Abundance of transcript



Basic Poisson model for expression quantification

Number of reads aligning to a transcript increases with
o Total number of reads
e Length of transcript
e Abundance of transcript

Number of reads from gene g captured by Poisson model (Marioni
et al. 2008):
rg ~ Poisson(bpuglg),

* ug: concentration of RNAs from gene g
* ly: effective length of the gene
e b: normalisation constant (e.g. total no. of reads)



Basic Poisson model for expression quantification

Basic model is useful but:
¢ “gene length” ambiguous — fragments from several isoforms
with different lengths are sequenced
e reads counts not always observed due to sequence sharing
(e.g. paralogous families)



Basic Poisson model for expression quantification

Basic model is useful but:

¢ “gene length” ambiguous — fragments from several isoforms
with different lengths are sequenced

e reads counts not always observed due to sequence sharing
(e.g. paralogous families)

Can we estimate expression for each isoform?

¢ Isoform read counts in general not observed:
tsoform 1 I
tsoform 2 I —— I

-?

¢ We need a read count model for isoforms



Basic Poisson model for expression quantification

Recall that sequencing allows us to distinguish alleles at
heterozygous positions.
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Can we use RNA-seq to detect allelic imbalance?

We need a read count model for alleles



The binomial distribution
A Bernoulli trial is an experiment in which “success” occurs with
probability p and “failure” occurs with probability 1 — p.

The number of successes given n Bernoulli trials follows a
binomial distribution with parameters n and p. E(X) = np.



The binomial distribution

A Bernoulli trial is an experiment in which “success” occurs with
probability p and “failure” occurs with probability 1 — p.

The number of successes given n Bernoulli trials follows a
binomial distribution with parameters n and p. E(X) = np.

Examples:

* Number of heads after n coin tosses. p # 0.5 if not fair
e Number of times you win the lottery (tiny p (but £££))
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The multinomial distribution

If there are > 2 categories, the per-category counts follow a
multinomial distribution with parameters n and (p1, p2, . . .).
Example:

e Number of 1s, 2s, 3s, 4s, 5s, 6s if you roll a die n times. If
{pi} # % then the die is not fair.



Basic Binomial model for allelic imbalance

» Reads permit discrimination between two copies of an isoform
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Basic Binomial model for allelic imbalance

» Reads permit discrimination between two copies of an isoform

paternal

maternal

o Binomial test: Zo P(rlp =0.5,n=ry + r1) < @? (Degner et
r=0
al. 2009). E.g. suppose rp = 2;r1 = 6:

P(r=0|p = 0.5,n = 8) = 0.00390625
P(r=1|p=0.5,n=8) = 0.03125
P(r=2|p =0.5,n=8) = 0.109375

2

P(rlp = 0.5,n = 8) = 0.1445312 (not significant)
r=0



Basic Binomial model for allelic imbalance

o What if there are multiple SNPs and isoforms?
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e Binomial test not appropriate
e We need a read count model for haplotype-specific

isoforms



Multi-mapping reads

e Align reads back to reference transcript sequences with
Bowtie (Langmead et al. 2009), allowing multiple alignments
per read

e Multi-mapping structure between reads and transcripts

Reads Transcripts

p—



Multi-mapping reads

o Obtain transcript sets, such that each read maps to only 1 set
e Transcripts may belong to more than one set
e Read counts per set can be observed

e Transcripts can be isoforms sharing exons or from multiple
genes

Reads Transcripts Transcript
sets

Reads Transcripts
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Poisson model for transcript set reads counts

Model reads per transcript set instead of per gene (Turro et al.

2011).
1 if transcript t in set |,

Define Mir = { 0 otherwise.

Now model for reads counts is:

ki ~ Poisson(bs; Z Mitpet),
t

where s; is the effective length shared by transcripts in set i.



Latent variables for read counts
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Latent variables for read counts

Reads Transcripts Transcript

sets

——

1

{Xit, ..o Xin}H{pa, ..

Xit ~ Poisson(bsiMiyut),
ki ~ Poisson(bs; Z Mitpt),
t

rt ~ Poisson(bu; Z Mitsi) = Poisson(bl;yu;),
i
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Concrete example
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Concrete example
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Heterozygotes and haplo-isoforms
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Heterozygotes and haplo-isoforms
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Same model structure for isoforms and haplo-isoforms
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Heterozygotes can be treated
like alternative exons!



Remarks on expression estimation

e Poisson distribution captures the unavoidable variance due to
counting independent events

» The mapping of a read or read pair to a feature can be
ambiguous

o Deconvolution methods help quantify expression of different
isoforms and even haplotype-specific isoforms

e This really sets RNA-seq and microarrays apart!



Normalisation

Normalisation aims to ensure our expression estimates are:

o comparable across features (genes, isoforms, etc)
e comparable across libraries (different samples)
e on a human-friendly scale (interpretable magnitude)



Normalisation

Normalisation aims to ensure our expression estimates are:

o comparable across features (genes, isoforms, etc)
e comparable across libraries (different samples)
e on a human-friendly scale (interpretable magnitude)

Necessary for valid inference about DE
» between transcripts within samples
e between samples belonging to different biological conditions



Basic Poisson model

Number of reads from gene g in library i can be captured by a
Poisson model (Marioni et al. 2008):

rig ~ Poisson(kigptig),
= E(rig) = Kigitig

where g is the concentration of RNA in the library and kjg is a
normalisation constant.
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RPKM normalisation

Normalisation is procedure for setting ki such that the estimates of
Hig are comparable between genes and across libraries.

The number of reads rjg is roughly proportional to
e the length of the gene, Iy
o the total number of reads in the library, N;
Thus it is natural to include them in the normalisation constant.

If kig = 107°N;lg, the units of f1;; are Reads Per Kilobase per Million
mapped reads (RPKM) (Mortazavi et al. 2008).

This is the most elementary form of normalisation.



RPKM normalisation
 RPKM works well for technical and some biological replicates

° pig = ujg for all libraries i and j
o RPKM units obtained by scaling of counts by N,.‘1

l Density

Density

Log RPKM



Sample to sample normalisation

o Between different biological samples, homogeneity
assumption does not hold
o Why is this a problem?
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Sample to sample normalisation

o Between different biological samples, homogeneity
assumption does not hold
o Why is this a problem?
Number of reads is limited
E.g. counts from very highly expressed genes leave less real
estate available for counts from lowly expressed genes

e Suppose you have two RNA
A B populations A and B sequenced at
same depth
e A and B are identical except half of
genes in B are unexpressed in A
e Only ~ half of reads from B come
from shared gene set

o Estimates for shared genes differ
by factor of ~ 2!

Robinson and Oslack 2010



Poisson approximation to Binomial
« Total RNA output, }.4 uiglg, inversely affects read counts rj
(for fixed wig)

o RPKM normalisation assumes implicitly that total RNA output
(unknown) is the same for all libraries:
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Poisson approximation to Binomial
« Total RNA output, }.4 uiglg, inversely affects read counts rj
(for fixed wijg)

o RPKM normalisation assumes implicitly that total RNA output
(unknown) is the same for all libraries:

il
rig ~ Binomial (N;, Hig's )
g Higlg

il
~ Poisson (Ni Hig'g ) as N - o
g Miglg

Miglg

= E(ry) = N;
(r) ’Zgﬂig’g

* RPKM assumption: i, 3.4 uigly = 10° (so fig = T 9N(,g)

o Better assumption: output between samples for a core set

only of genes G is similar: }, pjgly = Z Higlg
geG



TMM normalisation

The naive MLE is proportional to the normalised counts:

Tg _ _1 g
Kg 107 N,
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It > figly # Z fjglg, the MLEs for all genes need to be adjusted.
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TMM normalisation

The naive MLE is proportional to the normalised counts:

Tg _ _1 g
Kg 107 N,

fig =
It > figly # X [jglg, the MLEs for all genes need to be adjusted.
geG geG

Calculate scaling factor for sample j relative to reference sample i:

I',g g(i)) Z g
geG geG

Adjust the MLEs for sample j for all genes:

A~ _le Mg (i)
Hio = kg ~ 10°Njlg

Robinson and Oslack 2010
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How to choose the subset G used to calculate S(+)?
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How to choose the subset G used to calculate S(+)?

« For pair of libraries (i, j) determine log fold change of
normalised counts
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TMM normalisation

How to choose the subset G used to calculate S(+)?

« For pair of libraries (i, j) determine log fold change of
normalised counts

M( ) — Iog Iog

N, N,

e and the mean of the log normalised counts

(i) _
Aq [Iog N, + log N,]

» Set G to genes remaining after trimming upper and lower x%
of the {Ag} and {Mg}. l.e. genes in G have unexceptional

values of Ag(,i’j) and Mg’j)

Robinson and Oslack 2010



TMM normalisation (with edgeR)
o Compute summary of {Mg’j)} for genes in G (weighted mean)

« Let S(W) be the exponential of this summary
« Adjust fij4 by a factor of S(¥) for all genes g
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Robinson and Oslack 2010



Median log deviation normalisation (with DESeq)

An alternative normalisation provided in DESeq package

 For each gene g in sample i, calculate deviation of log rig from
the mean log rig over all libraries: dig = log rig — 172,- log rig.

« Calculate median over all genes: log S{) = median;(dj)

» Adjust 1 by a factor of SU) for all genes g



Median log deviation normalisation (with DESeq)

An alternative normalisation provided in DESeq package

 For each gene g in sample i, calculate deviation of log rig from
the mean log rig over all libraries: dig = log rig — 172,- log rig.

« Calculate median over all genes: log S{) = median;(dj)
» Adjust 1 by a factor of SU) for all genes g

edgeR and DESeq are both robust across genes (weighted mean
of core set vs. median of all genes)

Call N; = g the “adjusted library size”.

Anders and Huber 2010



Normalisation between genes

» So far we have looked at library-level scaling to make the
expression of a given gene comparable across libraries

¢ In other words, we have been seeking to account for factors
affecting all genes in a library similarly
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¢ In other words, we have been seeking to account for factors
affecting all genes in a library similarly

» Are there factors affecting different genes differently?
» Recall normalisation equation:
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Normalisation between genes

» So far we have looked at library-level scaling to make the
expression of a given gene comparable across libraries

¢ In other words, we have been seeking to account for factors
affecting all genes in a library similarly

» Are there factors affecting different genes differently?
» Recall normalisation equation:

I’,'g

Hig = 7—
Ki

[}

Consider the decomposition of kig = kkikg
« k: global scaling to get more convenient units. E.g. 107°.
« k;: library-specific normalisation factors. E.g. N; = N;/S()
* Ky: gene-specific normalisation factors. E.g. Iy



Normalisation between genes
Where does the Iy factor come from anyway?

Underlying assumption: constant Poisson rate across bases.

[Hg [Mg[Hg [Mg[Hg Mgl gl Mgl Hg[ Mgl 0 [0 [0 [0 ]

'9




Normalisation between genes
Where does the Iy factor come from anyway?

Underlying assumption: constant Poisson rate across bases.

[Hg [Mg[Hg [Mg[Hg Mgl gl Mgl Hg[ Mgl 0 [0 [0 [0 ]

'9

Ig
lig = Z ligp
p=1
IQ

rig ~ Pois(kki > tg)
p=1



Normalisation between genes
There are in fact local

ey sequence-specific biases (Li et al.
5| 2010, Hansen et al. 2010) (non-random
iel amplification?).
] - . - This suggests a variable-rate model
with weights agp:
; Po1HggaHggatighgatighigsigPgegigrigigeig 0 [ O |
R ! Iy
position Ig
. > 7 coefficients, red-T, green-A, blue-C, black- r,-g N POiS ( kkl Z agp#ig)
3 p=1
iz ~ Pois(kkilgpig)
e ; ORI ..

position



Accounting for sequencing biases with mseq

Log FC expression
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Log FC transcript length



Normalisation between genes (adjust for insert size
distro)
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Normalisation between genes (adjust for insert size
distro)

It
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[(TTTTT] =)
[ — N
— | =2: 5 posions (assuming each position equally
. — J
(" r—— N
E— If = 3: 4 positions
==
| J

lg=4:3 positiona

P
e
[
.
lg=5:2 posmona
o |
e -

I = 6: 1 position )

o'aanYa




Normalisation between genes (adjust for insert size
distro)
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Normalisation between genes (adjust for insert size

distro)
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If pre-selection fragments roughly
uniform up to I; within insert size
distribution, then p(lfll;) ~ p(lf)

Glaus et al 2012



Differential expression

We have obtained library and gene specific normalisation factors to
make counts/concentration estimates as comparable as possible.
This allows us to:

e obtain reasonably unbiased log fold changes between two
groups of samples

e obtain p-values under the null hypothesis of no differential
expression



Differential expression

We have obtained library and gene specific normalisation factors to
make counts/concentration estimates as comparable as possible.
This allows us to:

e obtain reasonably unbiased log fold changes between two
groups of samples

e obtain p-values under the null hypothesis of no differential
expression

Recall hypothesis testing:
e define a function of the data, T (the test statistic)

derive distribution of T under the null (e.g. no DE)

define critical regions of T

compute observed value t from actual data

reject null if t is in a critical region



Differential expression
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Differential expression

Option 1. Hy P H1g = H2g

E VS. ﬁ ?
(B)

. A
Option 2. Ho : u1g = pag = Hag :,Ug(; ) = Hag = Hsg = Heg = Hg

E-§

Both options are inadequate!

Hig is the RNA concentration parameter for library i, which varies
across biological replicates.



Negative binomial distribution
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If the rate parameter of the Poisson distribution is not fixed, but

varies according to a Gamma distribution, then the counts follow a
negative binomial distribution.



Negative binomial distribution

e GE(A)

Gamma

Eklgﬂlg E’Qg/@g k3gl/43g

Pmsson P0|sson P0|ssun

rlg rzg r3g

If the rate parameter of the Poisson distribution is not fixed, but
varies according to a Gamma distribution, then the counts follow a
negative binomial distribution.

Unlike the Poisson, the variance is greater than the mean.



Negative binomial distribution

aaaaaaaaaaaaaaaaa

Biological
h variance
Poisson

t] noise
e Read count
0o T e variance

Mean(NB) = mean(Gan{ma) = E(mean(Poisson))
Var(NB) = var(Gamma) + E(var(Poisson))



Negative binomial distribution

Number of reads from gene g in library i of condition ¢ can be
captured by a negative binomial model:

leig = NB(kig,cha ch)

where uqg and sq4 are, respectively, the mean and dispersion for
reads from gene g in condition c.

The variance has two components:
2 2 2
Teg = Kigheg + KightegScg

Poisson noise Overdispersion



Negative binomial distribution

Number of reads from gene g in library i of condition ¢ can be
captured by a negative binomial model:

leig = NB(kig,ucga ch)

where uqg and sq4 are, respectively, the mean and dispersion for
reads from gene g in condition c.

The variance has two components:
2 2 2
Teg = Kigheg + KightegScg

Poisson noise Overdispersion

¢ Notice there are now two parameters to estimate

* How do we obtain precise estimates of the dispersion if we
have a small number of libraries per condition?



DESeq

How do we estimate the variance robustly?
Assumption: dispersion is a smooth function of the mean.
O%Q = Kigltcg + kigluggs(ﬂcg)

Poisson noise Overdispersion

Use fitted values (or values
above the line) instead of
raw estimates.

1e-01

g(,U'cg)
1e-03

This is a form of pool-
ing (sharing of information
across genes) to stabilise
1 100 10000 the estimates.

Heg

1e-05

Anders and Huber 2010



Differential expression with DESeq

Back to hypothesis testing...

reig = NB(Kighicg, Scg)

Ho : p1g = pzg-



Differential expression with DESeq

Back to hypothesis testing...

reig = NB(Kigttcg, Scg)
Ho : pt1g = pag-

Perform a negative binomial exact test.

How extreme is the partitioning of counts between the two
conditions under the null?



Differential expression with DESeq

Let the observed condition-specific counts be qg, = 2. rcig-

The probability of the data under the null is
P* = P(q},. Gsglilg: 52).



Differential expression with DESeq

Let the observed condition-specific counts be qg, = 2. rcig-

The probability of the data under the null is
P* = P(q}g G3,litg: 52).
Obtain gene-wise exact p-values:

A a2
Z P(q1g’ CI2g|llg’O'g)
Q1g’q293P(Q1g,ng|,ag’6'g2;)<P*/\q1g+q2g:q:g+ng
Pg = Y
2 P(q1ga QZgWg,O'g)

Q1g,q2giq1g+q29:CJ;‘g+ng

where jig and & are estimates for the mean and variance under
the null.

Anders and Huber 2010



Differential isoform expression

o At the gene level, counts are often observed (however beware
of isoform switching)

o At other levels (isoforms, haplo-isoforms) counts almost
always have to be estimated (e.g. with MMSEQ) because
reads map to multiple overlapping transcripts

e Count-based methods such as DESeq can be used to obtain
differential isoform expression results by using estimated
counts instead of observed counts

» A more powerful approach is to take into account posterior

uncertainty in expression estimates (MMDIFF; Turro et al
2014)
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Closing remarks

e Variation in total RNA output per sample leads to biases in
expression estimates (limited real estate)

e Variation in sequence composition of genes leads to biases
(non-random hexamer priming)

¢ Normalisation seeks to correct for these biases

 Biological and Poisson variability can be modelled with a
negative binomial distribution

e Variance of negative binomial hard to estimate gene-by-gene
(best to share information acrosss genes)

¢ Negative binomial exact test produces p-values under the null
of no differential expression



Further reading (transcriptome-based analysis)

Turro E, Su S-Y, Goncalves A , Coin LUM, Richardson S, Lewin A.
Haplotype and isoform specific expression estimation using
multi-mapping RNA-seq reads. Genome Biology, 2011 Feb;
12:R13.

Turro E, Astle WJ, Tavaré S. Flexible analysis of RNA-seq data
using mixed effects models. Bioinformatics, 2014 Jan;
30(2):180-188.
MMSEQ, MMDIFF
o Haplotype-specific, isoform, gene-level expression estimation
¢ Flexible model comparison (polytomous model selection)
https://github.com/eturro/mmseq


https://github.com/eturro/mmseq

