
Mapping strategies for sequence reads
(with focus on RNA-seq)

Ernest Turro

University of Cambridge

14 Sep 2016

Quantification

An important aim in genomics is working out the contents of a
biological sample.

1. What distinct elements are in the sample?

2. How many copies of each element are in the sample?

RNA-seq:

1. What is the sequence of each distinct RNA molecule?

2. What is the concentration of each RNA molecule?

ChIP-seq:

1. What is the sequence/location of each binding site?

2. How frequently is each site bound in a population of cells?

Quantification

An important aim in genomics is working out the contents of a
biological sample.

1. What distinct elements are in the sample?

2. How many copies of each element are in the sample?

RNA-seq:

1. What is the sequence of each distinct RNA molecule?

2. What is the concentration of each RNA molecule?

ChIP-seq:

1. What is the sequence/location of each binding site?

2. How frequently is each site bound in a population of cells?

Quantification

An important aim in genomics is working out the contents of a
biological sample.

1. What distinct elements are in the sample?

2. How many copies of each element are in the sample?

RNA-seq:

1. What is the sequence of each distinct RNA molecule?

2. What is the concentration of each RNA molecule?

ChIP-seq:

1. What is the sequence/location of each binding site?

2. How frequently is each site bound in a population of cells?

Motivation

In an ideal world...

• we would sequence each molecule of interest from start to
finish without breaks

• there would be no errors in the sequences

... and there would be an excess supply of biostatisticians

In the real world...

• molecules of interest need to be selected

• DNA/RNA needs to be shattered into fragments

• fragments need to be amplified

• # reads from a fragment is hard to control (0, 1 or more times)

• different parts of a class of molecules may be sequenced
different numbers of times (leads to variation in coverage)

• there are sequencing errors

Motivation

In an ideal world...

• we would sequence each molecule of interest from start to
finish without breaks

• there would be no errors in the sequences

... and there would be an excess supply of biostatisticians

In the real world...

• molecules of interest need to be selected

• DNA/RNA needs to be shattered into fragments

• fragments need to be amplified

• # reads from a fragment is hard to control (0, 1 or more times)

• different parts of a class of molecules may be sequenced
different numbers of times (leads to variation in coverage)

• there are sequencing errors

Motivation

In an ideal world...

• we would sequence each molecule of interest from start to
finish without breaks

• there would be no errors in the sequences

... and there would be an excess supply of biostatisticians

In the real world...

• molecules of interest need to be selected

• DNA/RNA needs to be shattered into fragments

• fragments need to be amplified

• # reads from a fragment is hard to control (0, 1 or more times)

• different parts of a class of molecules may be sequenced
different numbers of times (leads to variation in coverage)

• there are sequencing errors

Imperfect data

The data consist of

• 1 or 2 read sequences from each fragment

• base call qualities for each base in each read

• meta-data (e.g. read→ cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including

• reference genome sequences

• genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge

• We wish to measure quantities pertaining to features
(transcripts, binding sites)

• Hence we map reads→ features

Imperfect data

The data consist of

• 1 or 2 read sequences from each fragment

• base call qualities for each base in each read

• meta-data (e.g. read→ cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including

• reference genome sequences

• genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge

• We wish to measure quantities pertaining to features
(transcripts, binding sites)

• Hence we map reads→ features

Imperfect data

The data consist of

• 1 or 2 read sequences from each fragment

• base call qualities for each base in each read

• meta-data (e.g. read→ cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including

• reference genome sequences

• genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge

• We wish to measure quantities pertaining to features
(transcripts, binding sites)

• Hence we map reads→ features

Imperfect data

The data consist of

• 1 or 2 read sequences from each fragment

• base call qualities for each base in each read

• meta-data (e.g. read→ cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including

• reference genome sequences

• genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge

• We wish to measure quantities pertaining to features
(transcripts, binding sites)

• Hence we map reads→ features

Mapping by alignment

A common technique for mapping is alignment:

...GCAGCAGCGATCGAGTCAGTCAGTCGACTGACGAGCGCGCGCATACGACT...
AGTCGACTGATGAGRead:

Reference:

Not always easy:

• Reads are ∼100 bp long

• Genome is ∼3,000,000,000 bp long and rather repetitive

• Reference genome , sample genome (SNPs, indels,
structural variants)

• Reads prone to errors (if lucky 1/1000 base calls are wrong)

Mapping ChIP-seq reads

ChIP-seq protocol

Crosslink and shear.

ChIP-seq read mapping

Add protein-specific () antibody and immunoprecipitate.

binding site

ChIP-seq read mapping

Sequence one end of each fragment.

binding site

ChIP-seq read mapping

Genome alignment: read→ binding site (or thereabouts)
aligns directly
reverse complement aligns

binding site

5' 3''

Mapping RNA-seq reads

RNA-seq typical protocol
• Select RNAs of interest (e.g. mRNAs (polyadenylated))
• Fragment and reverse-transcribe to ds-cDNA
• Size-select, denature to ss-cDNA
• Sequence n bases from one/both ends of fragments (typically

n ∈ (50, 100) for Illumina)

Fragment size
4.6 4.8 5.0 5.2 5.4

0
1

2
3

4

density.default(x = rnorm(1e+07, 5, 0.1))

N = 10000000 Bandwidth = 0.003581

D
en

si
ty

ATCACTCTACTACGCGC
read 1

ATCTACTATCACTATCAC
read 2

TACTATCGACTACTCTAC
TACTATCGACTACTCTAC

TTAACTCCTATGTATCTC
ACCCGATACTCGACTCT

... ...

Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

Gene locus

Exon IntronIntergenic region {Protein-coding gene

Intergenic region

Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

Gene locus

Exon IntronIntergenic region {Protein-coding gene

Intergenic region

Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

Gene locus

Exon IntronIntergenic region {Protein-coding gene

Intergenic region

Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

Maternal gene locus
Paternal gene locus

* * * * **

Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).

Messenger RNAs of particular interest as they code for proteins.

No one-to-one gene→mRNA mapping:

1. Alternative isoforms have distinct sequences

2. Two versions of each isoform sequence in diploid organisms

mRNA transcripts
Paternal haplotype

mRNA transcripts
Maternal haplotype

Maternal gene locus
Paternal gene locus

 {

 {
* * * * **

RNA-seq mapping strategies

Where did the reads come from?

We need to map reads→ transcripts.

Three strategies:

1. De novo assembly
I Genome unknown or of poor quality

2. Genome alignment + gene model assembly
I Genome available
I Gene models (“transcriptome”) unknown or of poor quality

3. Transcriptome alignment
I Genome available
I Comprehensive gene models (“transcriptome”) available

RNA-seq mapping strategies

Where did the reads come from?

We need to map reads→ transcripts.

Three strategies:

1. De novo assembly
I Genome unknown or of poor quality

2. Genome alignment + gene model assembly
I Genome available
I Gene models (“transcriptome”) unknown or of poor quality

3. Transcriptome alignment
I Genome available
I Comprehensive gene models (“transcriptome”) available

De novo assembly

• “De novo assembly” almost always involves constructing
some form of “de Bruijn graph”

• De Bruijn graphs (and variations thereof) help assemble reads
into sequences (“contigs”) without a reference

Example:

Say we sequence ATGGCGTGCA in three (stranded) reads:

• ATGGC

• GCGTG

• GTGCA

De novo assembly

• “De novo assembly” almost always involves constructing
some form of “de Bruijn graph”

• De Bruijn graphs (and variations thereof) help assemble reads
into sequences (“contigs”) without a reference

Example:

Say we sequence ATGGCGTGCA in three (stranded) reads:

• ATGGC

• GCGTG

• GTGCA

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG GGCTGGC ?

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG GGCTGGC ?

We’re stuck!

Create two contigs... ATGGC, GCGTGCA

GCG CGTGCGT GTGCGTG TGCGTGC GCATGCA

De Bruijn graphs

ATGGCGTGCA

ATGGC GCGTG GTGCA

List all distinct k -mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k − 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k − 1-mers A → B (nodes) with a k -mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATG TGGATGG GGCTGGC ?

We’re stuck! Create two contigs... ATGGC, GCGTGCA

GCG CGTGCGT GTGCGTG TGCGTGC GCATGCA

De Bruijn graphs
Why was the transcript broken into two contigs?

ATG TGGATGG GGCTGGC ?

Original sequence: ATGGCGTGCA
• ATGGC

• GCGTG

• GTGCA

Minimum overlap is only 2, so our choice of k (4) is too high.

Try k = 3 (more edges, fewer nodes):

Edges: ATG TGG GGC GCG CGT GTG GTG TGC GCA

Nodes: AT TG GG GC CG GT CA

AT TGATG GGTGG GCGGC CGGCG

GTG

GT

TGC

CGT

CA
GCA

De Bruijn graphs
Why was the transcript broken into two contigs?

ATG TGGATGG GGCTGGC ?

Original sequence: ATGGCGTGCA
• ATGGC

• GCGTG

• GTGCA

Minimum overlap is only 2, so our choice of k (4) is too high.
Try k = 3 (more edges, fewer nodes):

Edges: ATG TGG GGC GCG CGT GTG GTG TGC GCA

Nodes: AT TG GG GC CG GT CA

AT TGATG GGTGG GCGGC CGGCG

GTG

GT

TGC

CGT

CA
GCA

Choosing k
Optimal k depends on coverage

Higher expressed genes (higher coverage):

• produce more reads per kb

• more overlap between reads

• optimal k is larger (more specific)

• simpler graphs (fewer candidates sequences)

Lowly expressed genes (lower coverage):

• produce fewer reads per kb

• less overlap between reads

• optimal k is smaller (more sensitive)

• complex graphs (many candidate sequences)

→ use a range of k and merge contigs (cf. genome assembly)
Robertson et al. 2010

Forks due to SNVs, alternative exons
SNPs/errors complicate the graphs (bubbles, which you can pop)
..TGGAC..

..TGCAC..

TG

GG

TGG

GAGGA

AC

GAC

GC

TGC

CA
CAC

GCA

Alternative splicing complicate graphs even more.

mRNA transcripts
Paternal haplotype

mRNA transcripts
Maternal haplotype

Maternal gene locus
Paternal gene locus

 {

 {
* * * * **

Forks due to SNVs, alternative exons
SNPs/errors complicate the graphs (bubbles, which you can pop)
..TGGAC..

..TGCAC..

TG

GG

TGG

GAGGA

AC

GAC

GC

TGC

CA
CAC

GCA

Alternative splicing complicate graphs even more.

mRNA transcripts
Paternal haplotype

mRNA transcripts
Maternal haplotype

Maternal gene locus
Paternal gene locus

 {

 {
* * * * **

Processing contigs

• Myriad ways in which
contigs can be
processed

• Usually classifying
(e.g. main, junction,
bubble), merging and
discarding contigs

• Paired-end
information can be
used to connect
contigs

• Alignment to the
genome and
comparison to
annotations

 1

Supplementary Figures

Supplementary Figure 1. Schematic of ABySS assembly steps illustrating the
origin of main, junction, and bubble contigs, and the manner in which the contig
alignments are used for analysis. a) Bubble contig branch pairs (green) typically
capture heterozygous SNVs. For each bubble, ABySS writes the higher coverage
branch (mid green) into the single end (SE) contig set, and writes the branch pair
into the global set of bubble contigs. b) SE contigs are constructed from
unambiguous (k-1)-bp overlaps between k-mers. c) Mate pairs identify
overlapping contig neighbors, and alternate contig-joining paths may be
identified. The shorter, pale blue contig represents a candidate junction contig.
Because such a contig typically corresponds of two (k-1) overlaps, it is expected

Nature Methods: doi:10.1038/nmeth.1517

Robertson et al. 2010

Processing contigs

• Myriad ways in which
contigs can be
processed

• Usually classifying
(e.g. main, junction,
bubble), merging and
discarding contigs

• Paired-end
information can be
used to connect
contigs

• Alignment to the
genome and
comparison to
annotations

 1

Supplementary Figures

Supplementary Figure 1. Schematic of ABySS assembly steps illustrating the
origin of main, junction, and bubble contigs, and the manner in which the contig
alignments are used for analysis. a) Bubble contig branch pairs (green) typically
capture heterozygous SNVs. For each bubble, ABySS writes the higher coverage
branch (mid green) into the single end (SE) contig set, and writes the branch pair
into the global set of bubble contigs. b) SE contigs are constructed from
unambiguous (k-1)-bp overlaps between k-mers. c) Mate pairs identify
overlapping contig neighbors, and alternate contig-joining paths may be
identified. The shorter, pale blue contig represents a candidate junction contig.
Because such a contig typically corresponds of two (k-1) overlaps, it is expected

Nature Methods: doi:10.1038/nmeth.1517

Robertson et al. 2010

RNA-seq alignment strategies

Genome alignment (e.g. align to 23 chromosomes):

easy to align

genome

paired-end read
hard to align

exon 1 exon 2 exon 3
insert size

Transcriptome alignment (e.g. align to 150,000 known transcripts):

transcriptome
exon 1 exon 2 exon 3

paired-end read
easy to align easy to align

insert size

RNA-seq alignment strategies
Genome alignment (e.g. align to 23 chromosomes):

easy to align

genome

paired-end read
hard to align

exon 1 exon 2 exon 3
insert size

Transcriptome alignment (e.g. align to 150,000 known transcripts):

transcriptome
exon 1 exon 2 exon 3

paired-end read
easy to align easy to align

insert size

RNA-seq alignment strategies
Genome alignment (e.g. align to 23 chromosomes):

easy to align

genome

paired-end read
hard to align

exon 1 exon 2 exon 3
insert size

Transcriptome alignment (e.g. align to 150,000 known transcripts):

transcriptome
exon 1 exon 2 exon 3

paired-end read
easy to align easy to align

insert size

RNA-seq alignment strategies
Genome alignment
Pros:

• Detection of novel genes and isoforms

Cons:

• Spliced alignment is tough

• Requires mapping from genome coordinates to transcripts

• Insert sizes hard to interpret due to introns

Transcriptome alignment
Pros:

• No need for spliced alignment

• Simplifies read counting for each isoform

• Simplifies discrimination between mappings using insert sizes

Cons:

• Potential confounding if gene model is wrong

• Novel genes go undetected

RNA-seq alignment strategies
Genome alignment
Pros:

• Detection of novel genes and isoforms

Cons:

• Spliced alignment is tough

• Requires mapping from genome coordinates to transcripts

• Insert sizes hard to interpret due to introns

Transcriptome alignment
Pros:

• No need for spliced alignment

• Simplifies read counting for each isoform

• Simplifies discrimination between mappings using insert sizes

Cons:

• Potential confounding if gene model is wrong

• Novel genes go undetected

RNA-seq alignment strategies
Genome alignment
Pros:

• Detection of novel genes and isoforms

Cons:

• Spliced alignment is tough

• Requires mapping from genome coordinates to transcripts

• Insert sizes hard to interpret due to introns

Transcriptome alignment
Pros:

• No need for spliced alignment

• Simplifies read counting for each isoform

• Simplifies discrimination between mappings using insert sizes

Cons:

• Potential confounding if gene model is wrong

• Novel genes go undetected

TopHat spliced aligner

1. Align to genome

2. Assemble aligned
reads into putative
exons

3. Map remaining reads
to putative canonical
splice junctions

99% of splice junctions in-
volve canonical splice sites:

exon exon

GT AG

intron

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1106 1105–1111

C.Trapnell et al.

While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the

1106

Trapnell et al. 2009

Gene models

We now have aligned reads to the genome

We would like to know which “features” (genes, isoforms, etc)
produced the reads.

Two options:

• Use annotations

• Try to infer the gene structures from the data

Cufflinks gene model assembler

1. Order spliced alignment
pairs by start coordinate

2. Connect compatible read
pairs in an overlap graph
from left to right

3. Compatibility: same
implied splices if they
overlap

4. no. of transcripts = max.
no. of mutually
incompatible fragments =
min. no of transcripts
required to cover all nodes
(max. parsimony)

512 VOLUME 28 NUMBER 5 MAY 2010 NATURE BIOTECHNOLOGY

L E T T E R S

junction (Supplementary Table 1). Of the splice junctions spanned
by fragment alignments, 70% were present in transcripts annotated
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as
PASA introduced the idea of collapsing alignments to transcripts
on the basis of splicing compatibility17, and Dilworth’s theorem18
has been used to assemble a parsimonious set of haplotypes from
virus population sequencing reads19. Cufflinks extends these ideas,
reducing the transcript assembly problem to finding a maximum
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary
Methods, section 4). Noncoding RNAs20 and microRNAs21 have
been reported to regulate cell differentiation and development, and
coding genes are known to produce noncoding isoforms as a means
of regulating protein levels through nonsense-mediated decay22.
For these biologically motivated reasons, the assembler does not
require that assembled transcripts contain an open reading frame
(ORF). As Cufflinks does not make use of existing gene annotations

during assembly, we validated the transcripts by first comparing
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated
from previously known transcripts (Supplementary Table 2). Of the
new isoforms, 7,395 (58%) contain novel splice junctions, with the
remainder being novel combinations of known splicing outcomes;
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop
codon. Although we sequenced deeply by current standards, 73% of
the moderately abundant transcripts (15–30 expected fragments per
kilobase of transcript per million fragments mapped, abbreviated
FPKM; see below for further explanation) detected at the 60-h time
point with three lanes of GAII transcriptome sequencing were fully
recovered with just a single lane. Because distinguishing a full-length
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that
were unique to a single time point. Out of the new isoforms, 3,724
were present in multiple time points, and 581 were present at all
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of
the multiple time point novel isoforms were tiled by high-identity

a

c

db

e

Map paired cDNA
fragment sequences

to genome
TopHat

Cufflinks

Spliced fragment
alignments

Abundance estimationAssembly
Mutually

incompatible
fragments

Transcript coverage
and compatibility

Fragment
length

distribution

Overlap graph

Maximum likelihood
abundances

Log-likelihood

Minimum path cover

Transcripts

Transcripts
and their

abundances

3

3

1

1

2

2

Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA
fragment sequences that have been aligned to the genome by software
capable of producing spliced alignments, such as TopHat. (b–e) With
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as
a single alignment. The algorithm assembles overlapping ‘bundles’ of
fragment alignments (b,c) separately, which reduces running time and
memory use, because each bundle typically contains the fragments from
no more than a few genes. Cufflinks then estimates the abundances of
the assembled transcripts (d,e). The first step in fragment assembly is
to identify pairs of ‘incompatible’ fragments that must have originated
from distinct spliced mRNA isoforms (b). Fragments are connected in an
‘overlap graph’ when they are compatible and their alignments overlap
in the genome. Each fragment has one node in the graph, and an edge,
directed from left to right along the genome, is placed between each
pair of compatible fragments. In this example, the yellow, blue and red
fragments must have originated from separate isoforms, but any other
fragment could have come from the same transcript as one of these
three. Isoforms are then assembled from the overlap graph (c). Paths
through the graph correspond to sets of mutually compatible fragments
that could be merged into complete isoforms. The overlap graph here can
be minimally ‘covered’ by three paths (shaded in yellow, blue and red),
each representing a different isoform. Dilworth’s Theorem states that
the number of mutually incompatible reads is the same as the minimum
number of transcripts needed to ‘explain’ all the fragments. Cufflinks
implements a proof of Dilworth’s Theorem that produces a minimal set
of paths that cover all the fragments in the overlap graph by finding the
largest set of reads with the property that no two could have originated
from the same isoform. Next, transcript abundance is estimated
(d). Fragments are matched (denoted here using color) to the transcripts
from which they could have originated. The violet fragment could have
originated from the blue or red isoform. Gray fragments could have come
from any of the three shown. Cufflinks estimates transcript abundances
using a statistical model in which the probability of observing each
fragment is a linear function of the abundances of the transcripts from
which it could have originated. Because only the ends of each fragment
are sequenced, the length of each may be unknown. Assigning a fragment
to different isoforms often implies a different length for it. Cufflinks
incorporates the distribution of fragment lengths to help assign fragments
to isoforms. For example, the violet fragment would be much longer, and
very improbable according to the Cufflinks model, if it were to come from
the red isoform instead of the blue isoform. Last, the program numerically
maximizes a function that assigns a likelihood to all possible sets of
relative abundances of the yellow, red and blue isoforms (1, 2, 3)
(e), producing the abundances that best explain the observed fragments,
shown as a pie chart.

Trapnell et al. 2010

Cufflinks gene model assembler

Cufflinks gene model assembler
There may be several forks and joins in the graph:

Above, there are 3x2 possible exhaustive paths.
Max. parsimony→ keep only 3 transcripts
How to ‘phase’ distant exons?

E.g.

or ?

Minimise total cost using cost function based on “percent-splice-in”
(Wang et al. 2008): C(y, z) = − log(1 − |φy − φz |).

Trapnell et al. 2010

Cufflinks gene model assembler
There may be several forks and joins in the graph:

Above, there are 3x2 possible exhaustive paths.
Max. parsimony→ keep only 3 transcripts
How to ‘phase’ distant exons? E.g.

or ?

Minimise total cost using cost function based on “percent-splice-in”
(Wang et al. 2008): C(y, z) = − log(1 − |φy − φz |).

Trapnell et al. 2010

Cufflinks gene model assembler
There may be several forks and joins in the graph:

Above, there are 3x2 possible exhaustive paths.
Max. parsimony→ keep only 3 transcripts
How to ‘phase’ distant exons? E.g.

or ?

Minimise total cost using cost function based on “percent-splice-in”
(Wang et al. 2008): C(y, z) = − log(1 − |φy − φz |).

Trapnell et al. 2010

Cufflinks gene model assembler

Caveats:

• Assembles contiguous overlapping reads so may break up
low expressed transcripts into pieces

• Paths maximally extended, so cannot find alternate transcript
start or end sites within exons

• Maximum parsimony does not necessarily correspond to
biological reality

• Heuristics (simple rules) used to filter out reads and
transcripts

Transcriptome pseudoalignment using hash tables

Recent developments in “alignment-free” methods for RNA-seq
using a pre-specified transcriptome reference:

• Sailfish (2014, Nature Biotech.)

• RNA-Skim (2014, Bioinformatics)

• kallisto (2016, Nature Biotech.)

A hash table maps keys (e.g. a k -mer from a read or a transcript)
to values (e.g. an integer identifier). Hash tables are not tolerant to
mismatches.

Primary purpose is computational speed-up (e.g. compared to
Bowtie1), as perfect hash functions allow fast, constant-time
look-ups. However, index construction may be time-consuming.

Unlike aligners, they also implement expression quantification
using standard algorithms (see Li & Dewey 2011, Turro et al. 2011)

Sailfish

Index(T, k) Reads

t1
t2
t3
t4

s1
s2
s3
s4

0
1
2
3

c1
c2
c3
c4

k1
k2
k3
k4

tra
ns

cri
pts

k-m
ers

int
eg

er

ind
ex co

un
ts

in
tra

ns
cri

pts

co
un

ts

in
rea

ds

hashlook-up

• Index construction depends only on transcriptome T and k

• A look-up table maps each k -mer (si) to a transcript set. The
number of observations in the transcripts is also available (ci)

• k−mers in the reads also in T are assigned integer indexes
using the hash function and counted (ki ; others discarded)

RNA-Skim

This is in spirit similar to the likelihood function used in other studies,
except that this is the likelihood of observing sig-mers rather than frag-
ments (Li and Dewey, 2011) or k-mers (Patro et al., 2013). Thus, we also
used an EM algorithm to find ! that maximizes the likelihood: it alter-
nates between allocating the fraction of counts of observed sig-mers to
transcripts according to the proportions ! and updating ! given the
amount of sig-mers assigned to transcripts. RNA-Skim also applies the
same technique used in Patro et al. (2013), Nicolae et al. (2011) and Turro
et al. (2011) to collapse sig-mers if they are contained by the same set of
transcripts. (See the Supplementary Material)

RNA-Skim reports both Reads Per Kilobase per Million mapped
reads (RPKM) and Transcripts Per Million as the relative abundance
estimations of the transcripts, and both metrics are calculated by the
way used in Sailfish (Patro et al., 2013).

So far, we have described both preparation and quantification stages in
RNA-Skim. In the last, a toy example is provided to illustrate how each
stage works in RNA-Skim in Figure 3.

3 SOFTWARE FOR COMPARISON

RNA-Skim is implemented in C++ with heavy usage of the
open-source libraries bloomd (Dadgar, 2013), protobuf
(Google, 2013) and an open-source class StringPiece (Hsieh,
2013). The parameter settings will be discussed in the Section 5.
We compared RNA-Skim with four different quantification

methods: Sailfish (0.6.2), Cufflinks (2.1.1), RSEM (1.2.8) and
eXpress (1.5.1) in both simulated and real datasets. TopHat
(2.0.10) and Bowtie (1.0.0) are used as the aligners when needed.
For Sailfish, we set k-mer size to be 31 because this value gives

the highest accuracy in the simulation study, among all k-mer
sizes supported by Sailfish (k ! 31). For other software, we

followed the experiments in Patro et al. (2013) to set the param-
eters. Input to Cufflinks was generated by TopHat, which used
Bowtie (–bowtie1), allowing up to three mismatches per read (-N
3 and –read-edit-dist 3). Both TopHat and Cufflinks were pro-
vided with a reference transcriptome. RSEM and eXpress dir-
ectly used Bowtie to align the reads to the transcriptome, with
the argument (-N 3) to allow up to three mismatches per read.
The eXpress was executed in the streaming mode, to save the
total quantification running time. For simulation study, we used
the estimations without bias correction for Sailfish, Cufflinks and
eXpress. For real datasets, the estimations with bias correction
are used for these three methods. For RSEM, since it does not
provide an option to control the bias correction, we did not
differentiate its usage in the simulation and real data studies.
Other parameters were set to default values for these methods.
All methods were run on a shared cluster managed by the

Load Sharing Facility (LSF) system. The running time and
CPU time of these methods are measured by LSF. Each cluster
node is equipped with Intel(R) Xeon(R) 12-core 2.93GHz CPU
and at least 48GB memory. All files were served by the Lustre
file system.

4 MATERIALS

All materials including both simulated and real data are based on
the mouse population and consist of paired-end reads with 100bp
length per read. We used C57BL/6J downloaded from Ensembl
(Build 70) as the reference genome in all experiments. All methods
studied in this article were provided with 74215 protein-coding
annotated transcripts from the Ensembl database. The simulation

Fig. 3. An illustration of how RNA-Skim works on a toy transcriptome of five transcripts

i287

RNA-Skim

 at U
niversity of C

am
bridge on A

pril 4, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

• Partition transcripts into clusters

• Identify & select “sig-mers” (k -mers specific to one cluster)

• Run Sailfish-like algorithm independently on each cluster
using subset of sig-mers (if all transcripts are in one cluster,
then Sailfish ≡ RNA-Skim)

kallisto

• Generate a coloured
transcriptome de
Bruijn graph (each
colour represents a
transcript)

• k -compatibility class
of a k -mer is the
transcripts it is
present in

• Identify
k -compatibility class
of a read as the
intersection of the
k -compatibility
classes of its
constituent k -mers

Figure 1: Overview of kallisto. (a) The input consists of a reference transcriptome and
reads from an RNA-Seq experiment. (b) An index is constructed by creating the
Transcriptome de Bruijn Graph (T-DBG) where nodes are k-mers, each transcript
corresponds to a path and the path cover of the transcriptome induces a k-compatibility
class for each k-mer. (c) Conceptually, the k-mers of a read are hashed (black nodes) to
find the k-compatibility class of a read. (d) Skipping uses the information stored in the T-
DBG to skip k-mers that are redundant due to having the same k-compatibility class. (e)
The k-compatibility class of the read is determined by taking the intersection of the k-
compatibility classes of its constituent k-mers.

...

... ...

...

...

... ...

...

...

... ...

...

∩∩ =

a

b

c

d

e

Filtering alignments
How to pick subset among competing alignments?

Number of mismatches (different genomic positions):

genome GCCCGACTCTAGCTAC........ATATTATCTCGAGTCCGA

candidates CTCTAG CTCTAG

Number of mismatches (different alleles):

haplotype1 GCACCCGACTCTAGCTAC

haplotype2 GCACCCGACTCGAGCTAC

read CTCTAG

→ keep alignments within best “mismatch stratum”:

alignment A B C D
mismatches 1 1 2 1

Filtering alignments
How to pick subset among competing alignments?

Number of mismatches (different genomic positions):

genome GCCCGACTCTAGCTAC........ATATTATCTCGAGTCCGA

candidates CTCTAG CTCTAG

Number of mismatches (different alleles):

haplotype1 GCACCCGACTCTAGCTAC

haplotype2 GCACCCGACTCGAGCTAC

read CTCTAG

→ keep alignments within best “mismatch stratum”:

alignment A B C D
mismatches 1 1 2 1

Filtering alignments
How to pick subset among competing alignments?

Number of mismatches (different genomic positions):

genome GCCCGACTCTAGCTAC........ATATTATCTCGAGTCCGA

candidates CTCTAG CTCTAG

Number of mismatches (different alleles):

haplotype1 GCACCCGACTCTAGCTAC

haplotype2 GCACCCGACTCGAGCTAC

read CTCTAG

→ keep alignments within best “mismatch stratum”:

alignment A B C D
mismatches 1 1 2 1

Filtering alignments
How to pick subset among competing alignments?

Multiple matches to same transcript (different positions):

transcript TCCCGACTCTAGCTACGCCCGACGGTC

candidates CCCGAC CCCGAC

• This fragment produced at ∼ twice the rate as other fragments
• We observe only one fragment, do not double count
• → This fragment should map only once to this transcript
• → Keep one alignment at random?

Filtering alignments
How to pick subset among competing alignments?

Multiple matches to same transcript (different positions):

transcript TCCCGACTCTAGCTACGCCCGACGGTC

candidates CCCGAC CCCGAC

• This fragment produced at ∼ twice the rate as other fragments
• We observe only one fragment, do not double count
• → This fragment should map only once to this transcript
• → Keep one alignment at random?

Filtering alignments

How to pick subset among competing alignments?

Multiple matches with different insert sizes:

4.6 4.8 5.0 5.2 5.4

0
1

2
3

4

density.default(x = rnorm(1e+07, 5, 0.1))

N = 10000000 Bandwidth = 0.003581

D
e
n
s
it
y

Insert size

Or perhaps filter alignment i if p(si |µ,σ
2)

arg maxj p(sj |µ,σ2)
< k ,

si : insert size of candidate alignment i
µ, σ2: mean and variance of insert size

Filtering alignments

How to pick subset among competing alignments?

Multiple matches with different insert sizes:

4.6 4.8 5.0 5.2 5.4

0
1

2
3

4

density.default(x = rnorm(1e+07, 5, 0.1))

N = 10000000 Bandwidth = 0.003581

D
e
n
s
it
y

Insert size

Or perhaps filter alignment i if p(si |µ,σ
2)

arg maxj p(sj |µ,σ2)
< k ,

si : insert size of candidate alignment i
µ, σ2: mean and variance of insert size

Summary of mapping strategies

Reads can be...

• Assembled from scratch into features

• Aligned to the genome (using unspliced alignment for
ChIP-seq or spliced alignment for RNA-seq and mapped to
transcripts using reference or gene model assembly)

• Aligned to the transcriptome, thus mapped directly to
transcripts

The processed data comprise a table of counts for each feature (or
set of features)

sample 1 sample 2 sample 3 sample 4
feature (set) 1 24 14 33 15
feature (set) 2 29 11 76 91
feature (set) 3 0 2 1 4

· · ·

Summary of mapping strategies

Reads can be...

• Assembled from scratch into features

• Aligned to the genome (using unspliced alignment for
ChIP-seq or spliced alignment for RNA-seq and mapped to
transcripts using reference or gene model assembly)

• Aligned to the transcriptome, thus mapped directly to
transcripts

The processed data comprise a table of counts for each feature (or
set of features)

sample 1 sample 2 sample 3 sample 4
feature (set) 1 24 14 33 15
feature (set) 2 29 11 76 91
feature (set) 3 0 2 1 4

· · ·

Further reading

Turro E, Lewin A. Statistical analysis of mapped reads from
mRNA-seq data. In: Do K-A, Qin ZS, Vannucci M, eds. Advances
in Statistical Bioinformatics: Models and Integrative Inference for
High-Throughput Data. Cambridge, England: Cambridge
University Press; 2013:77-104.

Janes J*, Hu F*, Lewin AM, Turro E. A comparative study of
RNA-seq analysis strategies. Briefings in Bioinformatics, 2015
Mar; 1–9.

