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An important aim in genomics is working out the contents of a
biological sample.

1. What distinct elements are in the sample?

2. How many copies of each element are in the sample?
RNA-seq:

1. What is the sequence of each distinct RNA molecule?

2. What is the concentration of each RNA molecule?
ChlP-seq:

1. What is the sequence/location of each binding site?

2. How frequently is each site bound in a population of cells?
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Motivation

In an ideal world...

» we would sequence each molecule of interest from start to
finish without breaks

 there would be no errors in the sequences
.. and there would be an excess supply of biostatisticians
In the real world...

e molecules of interest need to be selected
DNA/RNA needs to be shattered into fragments
fragments need to be amplified

# reads from a fragment is hard to control (0, 1 or more times)

different parts of a class of molecules may be sequenced
different numbers of times (leads to variation in coverage)

there are sequencing errors
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* 1 or 2 read sequences from each fragment
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e meta-data (e.g. read — cDNA library)



Imperfect data

The data consist of
* 1 or 2 read sequences from each fragment
e base call qualities for each base in each read
e meta-data (e.g. read — cDNA library)

On their own, unprocessed, these data are not very useful!



Imperfect data

The data consist of
* 1 or 2 read sequences from each fragment
e base call qualities for each base in each read
e meta-data (e.g. read — cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including
 reference genome sequences
e genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge



Imperfect data

The data consist of
* 1 or 2 read sequences from each fragment
e base call qualities for each base in each read
e meta-data (e.g. read — cDNA library)

On their own, unprocessed, these data are not very useful!

We have accumulated (prior) biological knowledge, including
 reference genome sequences
e genome annotations (gene structures, binding motifs, etc)

We must label (or map) reads to relate them to existing knowledge

» We wish to measure quantities pertaining to features
(transcripts, binding sites)

e Hence we map reads — features



Mapping by alignment

A common technique for mapping is alignment:

Read: AGTCGACTGATGAG
Reference: ...GCAGCAGCGATCGAGTCAGTCAGTCGACTGACGAGCGCGCGCATACGACT. ..
Not always easy:
» Reads are ~100 bp long
e Genome is ~3,000,000,000 bp long and rather repetitive

o Reference genome # sample genome (SNPs, indels,
structural variants)

e Reads prone to errors (if lucky 1/1000 base calls are wrong)



Mapping ChIP-seq reads



ChlP-seq protocol

Crosslink and shear.




ChlIP-seq read mapping

Add protein-specific (¢) antibody and immunoprecipitate.

binding site




Sequence one end of each fragment.

binding site




ChlIP-seq read mapping

Genome alignment: read — binding site (or thereabouts)
B aligns directly
B reverse complement aligns

binding site

)

]




Mapping RNA-seq reads



RNA-seq typical protocol

e Select RNAs of interest (e.g. mRNAs (polyadenylated))

e Fragment and reverse-transcribe to ds-cDNA

o Size-select, denature to ss-cDNA

e Sequence n bases from one/both ends of fragments (typically
n € (50, 100) for lllumina)

Fragment size

read 1 read 2
ATCACTCTACTACGCGC ATCTACTATCACTATCAC
TACTATCGACTACTCTAC TTAACTCCTATGTATCTC

TACTATCGACTACTCTAC ACCCGATACTCGACTCT
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Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).
Messenger RNAs of particular interest as they code for proteins.

Paternal gene locus -
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Gene expression

Different kinds of RNAs (tRNAs, rRNAs, mRNAs, other ncRNAs...).
Messenger RNAs of particular interest as they code for proteins.

No one-to-one gene—mRNA mapping:
1. Alternative isoforms have distinct sequences
2. Two versions of each isoform sequence in diploid organisms

mRNA transcripts
Paternal haplotype

Paternal gene locus -
Maternal gene locus -

mRNA transcripts
Maternal haplotype



RNA-seq mapping strategies

Where did the reads come from?



RNA-seq mapping strategies

Where did the reads come from?

We need to map reads — transcripts.

Three strategies:

1. De novo assembly

» Genome unknown or of poor quality
2. Genome alignment + gene model assembly

» Genome available

» Gene models (“transcriptome”) unknown or of poor quality
3. Transcriptome alignment

» Genome available
» Comprehensive gene models (“transcriptome”) available
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e “De novo assembly” almost always involves constructing
some form of “de Bruijn graph”

o De Bruijn graphs (and variations thereof) help assemble reads
into sequences (“contigs”) without a reference



De novo assembly

e “De novo assembly” almost always involves constructing
some form of “de Bruijn graph”

o De Bruijn graphs (and variations thereof) help assemble reads
into sequences (“contigs”) without a reference

Example:

Say we sequence ATGGCGTGCA in three (stranded) reads:
e ATGGC
J GCGTG
o GTGCA
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De Bruijn graphs

ATGGCGTGCA
ATGGC GCGTG GTGCA

List all distinct k-mers (substrings) of the reads:
ATGG TGGC GCGT CGTG GTGC TGCA

List all distinct k — 1-mers from the reads:
ATG TGG GGC GCG CGT GTG TGC GCA

Connect k — 1-mers A — B (nodes) with a k-mer E (edge) if
prefix(E) = A and suffix(E) = B. E.g.:

ATGG —>@— TGGC @

We're stuck! Create two contigs... ATGGC, GCGTGCA

@— acaT H@— CGTG % GTGC H@— TGCA ‘>

-~



De Bruijn graphs

Why was the transcript broken into two contigs?

ATGG %chc ‘)@—) ?

Original sequence: ATGGCGTGCA

e ATGGC
° GCGTG
° GTGCA

Minimum overlap is only 2, so our choice of k (4) is too high.



De Bruijn graphs

Why was the transcript broken into two contigs?

ATGG %chc ‘)@—) ?

Original sequence: ATGGCGTGCA

e ATGGC
° GCGTG
° GTGCA

Minimum overlap is only 2, so our choice of k (4) is too high.
Try k = 3 (more edges, fewer nodes):

Edges: ATG TGG GGC GCG CGT GTG GTG TGC GCA
Nodes: AT TG GG GC CG GT CA

5
aca

GTG



Choosing k

Optimal k depends on coverage

Higher expressed genes (higher coverage):
e produce more reads per kb
e more overlap between reads
o optimal k is larger (more specific)
o simpler graphs (fewer candidates sequences)

Lowly expressed genes (lower coverage):

e produce fewer reads per kb
¢ less overlap between reads
o optimal k is smaller (more sensitive)
e complex graphs (many candidate sequences)
— use a range of k and merge contigs (cf. genome assembly)

Robertson et al. 2010



Forks due to SNVs, alternative exons

SNPs/errors complicate the graphs (bubbles, which you can pop)
.. TGGAC. .
.. TGCAC. .

TGG
77777 >GG><
TGC
OO

O e e O
GAC 7 o
CAC



Forks due to SNVs, alternative exons

SNPs/errors complicate the graphs (bubbles, which you can pop)
.. TGGAC. .
.. TGCAC. .

G
ea— GAC

~~~~~ O
TGC CAC
\@7 . ‘)

Alternative splicing complicate graphs even more.

mRNA transcripts
Paternal haplotype
Paternal gene locus ] - - _— ||
* * * * * *
Maternal gene locus - - - —_— -_—

mRNA transcripts
Maternal haplotype



Processing contigs

» Myriad ways in which
contigs can be
processed

e Usually classifying
(e.g. main, junction,
bubble), merging and
discarding contigs

e Paired-end
information can be
used to connect
contigs

e Alignment to the
genome and
comparison to
annotations



Processing contigs

e Myriad ways in which ) pop bubbles bubble contigs
. extend contigs . <
contigs can be a =
processed
. . SE contigs
e Usually classifying b | — [Fp—

|
(e.g. main, junction, I e o w—

bubble), merging and
discarding contigs ¢ === e

define neighbors

=

° Palred-end PE contigs, assemblies
information can be 4 ————— e conics
used to connect = e
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annotations

Robertson et al. 2010
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RNA-seq alignment strategies
Genome alignment (e.g. align to 23 chromosomes):

paired-end read

easy to align hard to align

— I .

genome
exon 1 exon 2 exon 3

J——iNSErt SiZC e—

Transcriptome alignment (e.g. align to 150,000 known transcripts):

paired-end read
easy to align easy to align

‘/

I B B transcriptome

exon 1 exon2 exon3

= insert size —
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Genome alignment
Pros:

o Detection of novel genes and isoforms
Cons:
e Spliced alignment is tough
* Requires mapping from genome coordinates to transcripts
e Insert sizes hard to interpret due to introns
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RNA-seq alignment strategies

Genome alignment
Pros:

e Detection of novel genes and isoforms
Cons:
e Spliced alignment is tough
* Requires mapping from genome coordinates to transcripts
e Insert sizes hard to interpret due to introns

Transcriptome alignment
Pros:

» No need for spliced alignment

o Simplifies read counting for each isoform

o Simplifies discrimination between mappings using insert sizes
Cons:

» Potential confounding if gene model is wrong

* Novel genes go undetected



TopHat spliced aligner

Map reads to whole

f;i_: = genome with Bowtie
H Collect initiall
1 . Allgn tO genome unmappa;le :ead);
2. Assemble aligned Assemble
reads into putative e estons
exons
. Generate possible
3. Map rema'nlng I’eadS splices between
. . neighborin,
to putative canonical oxons
splice junctions Buildsd bl

unmappable reads

99% of splice junctions in-
volve  canonical splice sites:

GT AG
— L

exon intron exon .
T Map reads to possible
gt ag ag splices via seed-and-

extend

Trapnell et al. 2009



Gene models

We now have aligned reads to the genome

We would like to know which “features” (genes, isoforms, etc)
produced the reads.
Two options:

¢ Use annotations

e Try to infer the gene structures from the data



Cufflinks gene model assembler

Assembly

H i Mi )
1. Order spliced alignment nompatile
pairs by start coordinate fragments

2. Connect compatible read
pairs in an overlap graph
from left to right

3. Compatibility: same
implied splices if they
overlap

4. no. of transcripts = max.
no. of mutually
incompatible fragments =

Minimum path cover

min. no of transcripts Y
required to cover all nodes Transcripts
(max. parsimony) - — {—"

Trapnell et al. 2010
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Cufflinks gene model assembler

There may be several forks and joins in the graph:

Lo

Above, there are 3x2 possible exhaustive paths.
Max. parsimony — keep only 3 transcripts
How to ‘phase’ distant exons? E.g.

S

Minimise total cost using cost function based on “percent-splice-in”
(Wang et al. 2008): C(y, z) = —log(1 — ¢y — ¢2).

Trapnell et al. 2010



Cufflinks gene model assembler

Caveats:

e Assembles contiguous overlapping reads so may break up
low expressed transcripts into pieces

e Paths maximally extended, so cannot find alternate transcript
start or end sites within exons

e Maximum parsimony does not necessarily correspond to
biological reality

e Heuristics (simple rules) used to filter out reads and
transcripts



Transcriptome pseudoalignment using hash tables

Recent developments in “alignment-free” methods for RNA-seq
using a pre-specified transcriptome reference:

 Sailfish (2014, Nature Biotech.)
» RNA-Skim (2014, Bioinformatics)
e kallisto (2016, Nature Biotech.)

A hash table maps keys (e.g. a k-mer from a read or a transcript)
to values (e.g. an integer identifier). Hash tables are not tolerant to
mismatches.

Primary purpose is computational speed-up (e.g. compared to
Bowtie1), as perfect hash functions allow fast, constant-time
look-ups. However, index construction may be time-consuming.

Unlike aligners, they also implement expression quantification
using standard algorithms (see Li & Dewey 2011, Turro et al. 2011)



Sailfish

Index(T, k) Reads
3 o ) 0 &2 &
Q«s@é& &S ﬁ;ﬁé\q o‘iﬁe”t’e
He+—>»SI—>»0 © Cq Ky
ty So——p1 Co ko
i3 S3——>2 C3 kg
Y«—>»sy—»3 Cy Ky
look-up hash

¢ Index construction depends only on transcriptome T and k

¢ A look-up table maps each k-mer (s;) to a transcript set. The
number of observations in the transcripts is also available (c;)

e k—mers in the reads also in T are assigned integer indexes
using the hash function and counted (k;; others discarded)



RNA-Skim

+ ST i
Transcripts (e.g. in FASTA file) = s SRETE | Sig-mers 0 1 0 )cerr
8 ) 13 AAAGGGAARA : | i
EnB ARREEERRVENENE Transcriptome | t,: AAAGGGAAAAGGGTT ! discovery and {¥= 1 GGAAi
t,: AAAGGGAAAAGGGTT Partitioning . P CTATC | selecti ! 1 | TATC]
ty: ATTTCATCGA , Es: RARGGGRARACTAIC | selection -
t,: ATTTCCTCTC i I :
t,: AAAGGGAAAACTATC 1:3: ”_Etigziz § i
L ! Y= 11 1|aTrT

e Partition transcripts into clusters
e |dentify & select “sig-mers” (k-mers specific to one cluster)

¢ Run Sailfish-like algorithm independently on each cluster
using subset of sig-mers (if all transcripts are in one cluster,
then Sailfish = RNA-Skim)



kallisto

e Generate a coloured
transcriptome de a
Bruijn graph (each
colour represents a
transcript)

e k-compatibility class
of a k-mer is the
transcripts it is
present in

e |dentify
k-compatibility class d -
of a read as the
intersection of the
k-compatibility e Sommnmo=
classes of its
constituent k-mers




Filtering alignments

How to pick subset among competing alignments?

Number of mismatches (different genomic positions):
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Filtering alignments

How to pick subset among competing alignments?

Number of mismatches (different genomic positions):

genome GCCCGACTCTAGCTAC........ ATATTATCTCGAGTCCGA
candidates CTCTAG CTCTAG

Number of mismatches (different alleles):

haplotypel GCACCCGACTCTAGCTAC
haplotype2 GCACCCGACTCGAGCTAC
read CTCTAG

— keep alignments within best “mismatch stratum”:

alignment | A |
3

B[C|D
#mismatches\ \1 2 | 1



Filtering alignments
How to pick subset among competing alignments?

Multiple matches to same transcript (different positions):

transcript TCCCGACTCTAGCTACGCCCGACGGTC
candidates CCCGAC CCCGAC



Filtering alignments
How to pick subset among competing alignments?

Multiple matches to same transcript (different positions):

transcript TCCCGACTCTAGCTACGCCCGACGGTC
candidates  CCCGAC CCCGAC

This fragment produced at ~ twice the rate as other fragments
We observe only one fragment, do not double count

— This fragment should map only once to this transcript

— Keep one alignment at random?



Filtering alignments

How to pick subset among competing alignments?

Multiple matches with different insert sizes:

Insert size



Filtering alignments

How to pick subset among competing alignments?

Multiple matches with different insert sizes:

v
v
2
— — 1
Insert size
. . T I o 2
Or perhaps filter alignment i if % < k,

s;: insert size of candidate alignment i
1, 02: mean and variance of insert size



Summary of mapping strategies

Reads can be...
e Assembled from scratch into features

» Aligned to the genome (using unspliced alignment for
ChlP-seq or spliced alignment for RNA-seq and mapped to
transcripts using reference or gene model assembly)

¢ Aligned to the transcriptome, thus mapped directly to
transcripts



Summary of mapping strategies

Reads can be...

e Assembled from scratch into features

» Aligned to the genome (using unspliced alignment for
ChlP-seq or spliced alignment for RNA-seq and mapped to
transcripts using reference or gene model assembly)

¢ Aligned to the transcriptome, thus mapped directly to

transcripts

The processed data comprise a table of counts for each feature (or

set of features)

sample 1 | sample 2 | sample 3 | sample 4
feature (set) 1 24 14 33 15
feature (set) 2 29 11 76 91
feature (set) 3 0 2 1 4
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