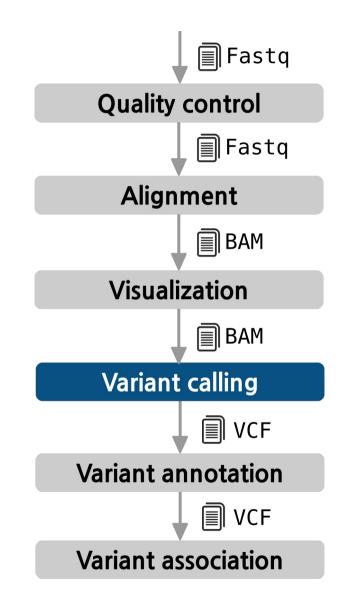
Variant calling Detecting variants in NGS data

Samtools and the Genome Analysis ToolKit (GATK)


University of Cambridge

Cambridge, UK 18th March 2016

Courtesy of Marta Bleda

The pipeline

Objective

Problems

Some variation observed in BAM files is caused by mapping and sequencing artifacts:

- PCR artifacts:
 - Mismatches due to errors in early PCR rounds
 - PCR duplicates
- Sequencing errors: erroneous call, either for physical reasons or to properties of the sequenced DNA
- Mapping errors: often happens around repeats or other low-complexity regions

Separate true variation from machine artifacts

Variant calling process pipeline

1. Mark duplicates

Duplicates should not be counted as additional evidence

2. Local realignment around INDELS

Reads mapping on the edges of INDELS often get mapped with mismatching bases introducing false positives

3. Base quality score recalibration (BQSR)

Quality scores provided by sequencing machines are generally inaccurate and biased

4. Variant calling

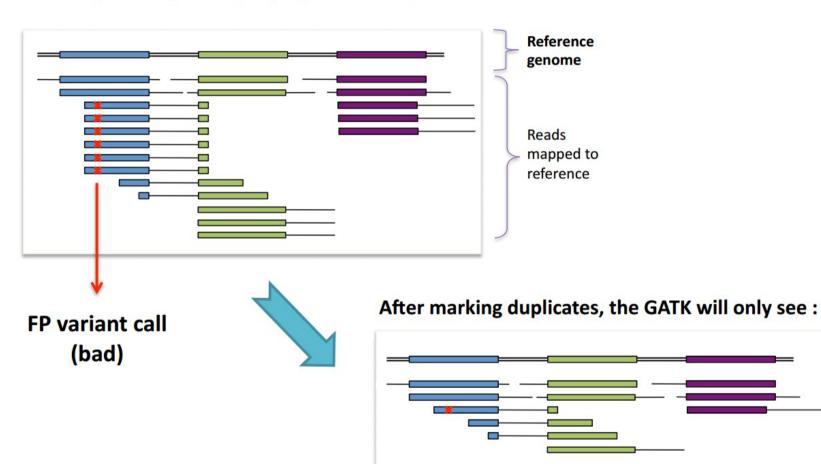
Discover variants and their genotypes

1. Mark duplicates

- The same DNA molecule can be **sequenced several times during PCR**
- Not informative
- Not to be counted as additional evidence for or against a putative variant
- Can result in **false variant calls**

Tools

- Samtools rmdup
- **Picard**: MarkDuplicates


1. Mark duplicates

- The same DNA molecule can be **sequenced several times during PCR**
- Not informative
- Not to be counted as additional evidence for or against a putative variant
- Can result in **false variant calls**

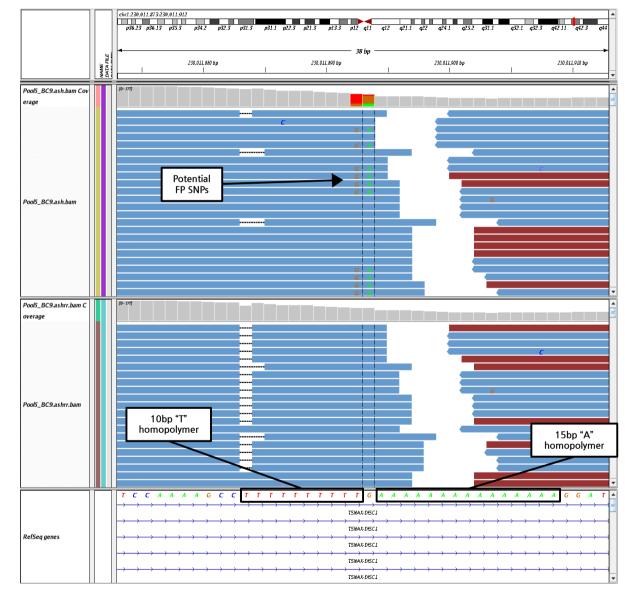
Tools

- Samtools rmdup
- **Picard**: MarkDuplicates

1. Mark duplicates The reason why duplicates are bad

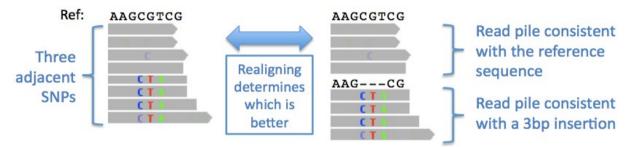
× = sequencing error propagated in duplicates

... and thus be more likely to make the right call


1. Mark duplicates Duplicate identification

Duplicates have the same starting position and the same CIGAR string

2. Local realignment around INDELS


- Reads near INDELS are mapped with mismatches
- **Realignment** can identify the most consistent placement for these reads
 - 1. **Identify** problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- Refines location of INDELS

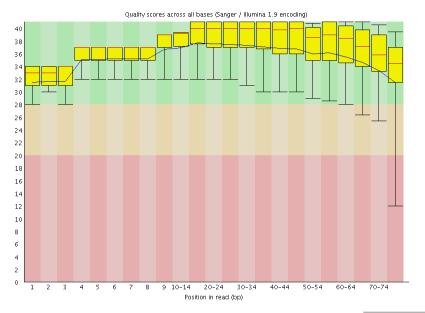
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. PMID: 21478889

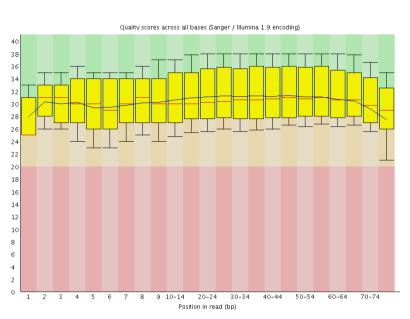
2. Local realignment around INDELS

- Reads near INDELS are mapped with mismatches
- **Realignment** can identify the most consistent placement for these reads
 - 1. **Identify** problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- **Refines** location of **INDELS**

3. Base quality score recalibration

- Calling algorithms rely heavily on the quality scores assigned to the individual base calls in each sequence read
- Unfortunately, the scores produced by the machines are subject to various sources of systematic error, leading to over- or under-estimated base quality scores in the data


How?


- 1. Analyze covariation among several features of a base:
 - Reported quality score
 - Position within the read
 - Preceding and current nucleotide
- 2. Use a set of **known variants** (i.e.: dbSNP) to model error properties of real polymorphism and determine the **probability that novel sites are real**
- 3. Adjust the quality scores of all reads in a BAM file

3. Base quality score recalibration

Before

After

Phred Quality score:

$$Q = -10 \log_{10} P(error)$$

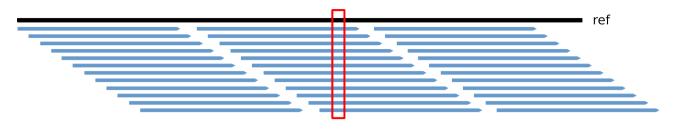
Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

<u>Steps</u>

- 1. Variant calling: Identify the positions that differ from the reference
- 2. Genotype calling: calculate the genotypes for each sample at these sites

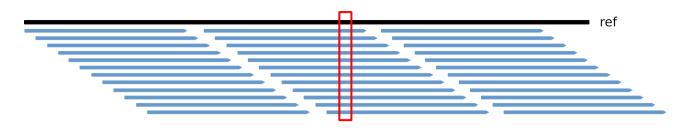
Initial approach

Independent base assumption

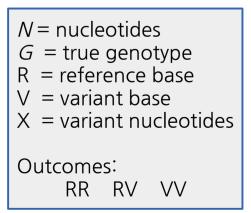

Counting the number of times each allele is observed

Evolved approach

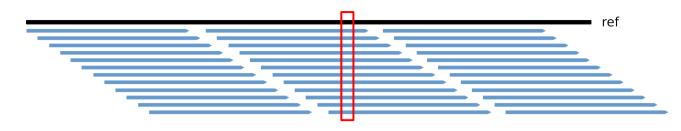
Bayesian inference → Compute genotype likelihood Advantages:


Provide statistical measure of **uncertainty** Lead to **higher accuracy** of genotype calling

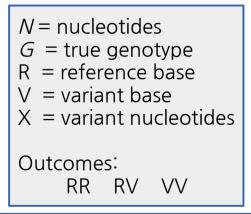
Variant discovery process



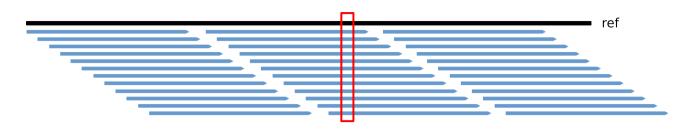
Reference = A


Variant discovery process

Reference = A

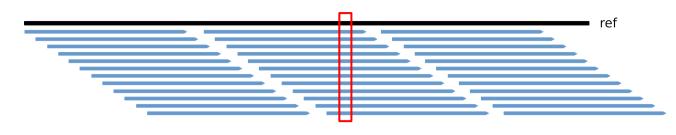


Variant discovery process



Reference = A

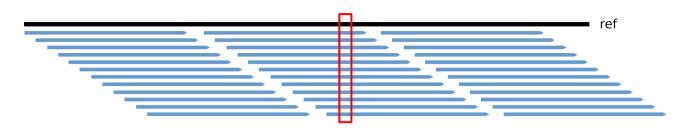
ААААААААААААААААААААААААААААА	N=30, X=0
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	N=30, X=30


Variant discovery process

Reference = A

ААААААААААААААААААААААААААААА	N=30, X=0
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	N=30, X=30
AAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGG	N=30, X=15

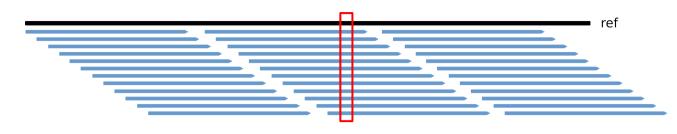
Variant discovery process



Reference = A

ААААААААААААААААААААААААААААА	N=30, X=0
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	N=30, X=30
AAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGG	N=30, X=15
AAAAAAAAAAAAAAGGGGGGGGGGGGGCT	N=30, X=12

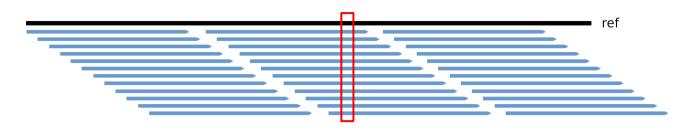
N = nucleotides
G = true genotype
R = reference base
V = variant base
X = variant nucleotides
Outcomes: RR RV VV


Variant discovery process

Reference = A

- - N=30, X=0 N=30, X=30 N=30, X=15 N=30, X=12 N=10, X=3

Variant discovery process


Reference = A

Cutoff for $X \rightarrow$ value or proportion

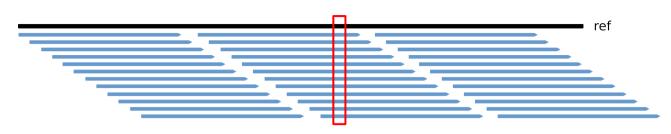
•
$$c_1 = 10\%, c_2 = 30\%$$
 $X \le c_1 \rightarrow \mathbf{RR}$
 $c_1 < X < c_2 \rightarrow \mathbf{RV}$
 $X \ge c_2 \rightarrow \mathbf{VV}$

N=30, X=0 N=30, X=30 N=30, X=15 N=30, X=12 N=10, X=3

Variant discovery process

Reference = A

Cutoff for $X \rightarrow$ value or proportion


•
$$c_1 = 10\%, c_2 = 30\%$$
 $X \le c_1 \rightarrow \mathbf{RR}$
 $c_1 < X < c_2 \rightarrow \mathbf{RV}$
 $X \ge c_2 \rightarrow \mathbf{VV}$

 $N=30, X=0 \rightarrow \mathbf{RR}$

- *N*=30, *X*=30 → **VV**
- *N*=30, *X*=15 → **RV**
- *N*=30, *X*=12 → **RV**
- $N=10, X=3 \rightarrow RV?$

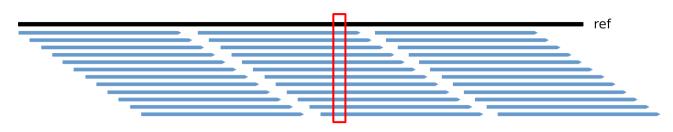
```
N = nucleotides
G = true genotype
R = reference base
V = variant base
X = variant nucleotides
Outcomes:
RR RV VV
```

Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate

 N = nucleotides G = true genotype R = reference base V = variant base X = variant nucleotides
Outcomes: RR RV VV


$$P(G=RR,X|N,\alpha)$$

 P of all R calls being correct and all V calls being wrong

$$P(G = VV, X | N, \alpha) = P \text{ of all } V \text{ calls being correct and}$$

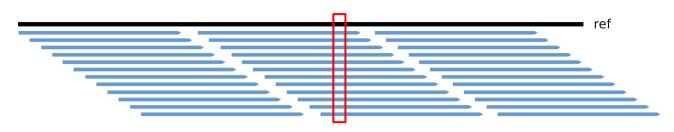
all R calls being wrong

 $P(G = RV, X | N, \alpha) = P \text{ of all } R \text{ and } V \text{ calls being correct}$

Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate


N = nucleotides G = true genotype R = reference base V = variant base X = variant nucleotides
Outcomes: RR RV VV

$$P(G=RR, X|N, \alpha) = \binom{N}{X} \alpha^{X} (1-\alpha)^{N-X}$$

$$P(G=VV, X|N, \alpha) = \binom{N}{X} (1-\alpha)^{X} \alpha^{N-X}$$

$$P(G=RV, X|N, \alpha) = \binom{N}{X} \left(\frac{1}{2}\right)^{N}$$

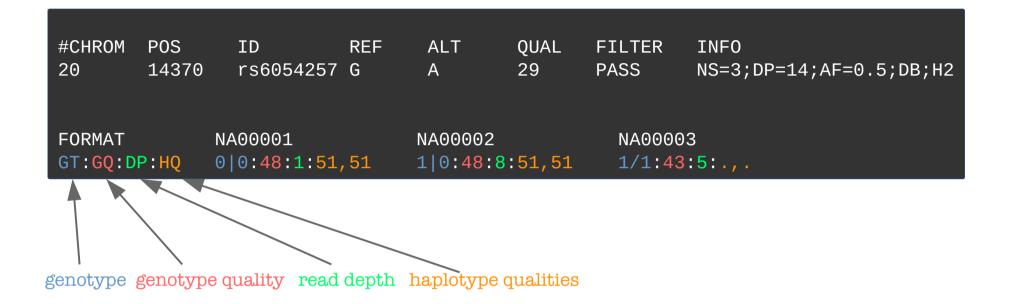
Variant discovery process

Bayesian approximation

 α = nucleotide-base error rate

$$\left. \begin{array}{c} \rho_{VV} \\ \rho_{VR} \end{array} \right\}$$
 Prior probabilities

$$P(G = RR, X | N, \alpha) = {\binom{N}{X}} \alpha^X (1 - \alpha)^{N - X} (1 - p_{VV} - p_{RV})$$


$$P(G = VV, X | N, \alpha) = {\binom{N}{X}} (1 - \alpha)^X \alpha^{N - X} p_{VV}$$

$$P(G = RV, X | N, \alpha) = {\binom{N}{X}} {\binom{1}{2}}^N p_{RV}$$

VCF file format

- Specification defined by the 1000 genomes (current version 4.2): http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
- Commonly **compressed and indexed** with bgzip/tabix
- Single-sample or multi-sample VCF

##fileformat=VCFv4.1	
##fileDate=20090805	
##source=myImputationProgramV3.1	
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta	
<pre>##contig=<id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo sapiens",taxonomy="x"></id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo></pre>	
##phasing=partial	
##INFO= <id=ns,number=1,type=integer,description="number data"="" of="" samples="" with=""></id=ns,number=1,type=integer,description="number>	
##INFO= <id=dp,number=1,type=integer,description="total depth"=""></id=dp,number=1,type=integer,description="total>	
##INFO= <id=af,number=a,type=float,description="allele frequency"=""></id=af,number=a,type=float,description="allele>	
##INFO= <id=aa,number=1,type=string,description="ancestral allele"=""></id=aa,number=1,type=string,description="ancestral>	
##INFO= <id=db,number=0,type=flag,description="dbsnp 129"="" build="" membership,=""></id=db,number=0,type=flag,description="dbsnp>	
##INFO= <id=h2,number=0,type=flag,description="hapmap2 membership"=""></id=h2,number=0,type=flag,description="hapmap2>	
##FILTER= <id=q10,description="quality 10"="" below=""></id=q10,description="quality>	
##FILTER= <id=s50,description="less 50%="" data"="" have="" of="" samples="" than=""></id=s50,description="less>	
##FORMAT= <id=gt,number=1,type=string,description="genotype"></id=gt,number=1,type=string,description="genotype">	
##FORMAT= <id=gq,number=1,type=integer,description="genotype quality"=""></id=gq,number=1,type=integer,description="genotype>	
##FORMAT= <id=dp,number=1,type=integer,description="read depth"=""></id=dp,number=1,type=integer,description="read>	
##FORMAT= <id=hq,number=2,type=integer,description="haplotype quality"=""></id=hq,number=2,type=integer,description="haplotype>	
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003	
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0 0:48:1:51,51 1 0:48:8:51,51 1/1:43:5:	۰ , ۰
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0 0:49:3:58,50 0 1:3:5:65,3 0/0:41:3	
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1 2:21:6:23,27 2 1:2:0:18,2 2/2:35:4	
20 1230237 T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0 0:54:7:56,60 0 0:48:4:51,51 0/0:61:2	
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3	

- CHROM: chromosome
- POS: position
- ID: identifier
- **REF**: reference base(s)
- ALT: non-reference allele(s)

- **QUAL**: quality score of the calls (phed scale)
- FILTER: "PASS" or a filtering tag
- INFO: additional information
- **FORMAT**: describes the information given by sample

Software

Software	Available from	Calling method	Prerequisites	Comments	Refs
SOAP2	http://soap.genomics.org. cn/index.html	Single-sample	High-quality variant database (for example, dbSNP)	Package for NGS data analysis, which includes a single individual genotype caller (SOAPsnp)	15
realSFS	http://128.32.118.212/ thorfinn/realSFS/	Single-sample	Aligned reads	Software for SNP and genotype calling using single individuals and allele frequencies. Site frequency spectrum (SFS) estimation	-
Samtools	http://samtools. sourceforge.net/	Multi-sample	Aligned reads	Package for manipulation of NGS alignments, which includes a computation of genotype likelihoods (samtools) and SNP and genotype calling (bcftools)	53
GATK	<u>http://www.</u> broadinstitute.org/gsa/ wiki/index.php/The_ Genome_Analysis_Toolkit	Multi-sample	Aligned reads	Package for aligned NGS data analysis, which includes a SNP and genotype caller (Unifed Genotyper), SNP filtering (Variant Filtration) and SNP quality recalibration (Variant Recalibrator)	32,33
Beagle	http://faculty.washington. edu/browning/beagle/ beagle.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation, phasing and association that includes a mode for genotype calling	42
IMPUTE2	<u>http://mathgen.stats.</u> ox.ac.uk/impute/ impute_v2.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation and phasing, including a mode for genotype calling. Requires fine-scale linkage map	44
QCall	<u>ftp://ftp.sanger.ac.uk/pub/</u> rd/QCALL	Multi-sample LD	'Feasible' genealogies at a dense set of loci, genotype likelihoods	Software for SNP and genotype calling, including a method for generating candidate SNPs without LD information (NLDA) and a method for incorporating LD information (LDA). The 'feasible' genealogies can be generated using Margarita (<u>http://www.sanger.</u> <u>ac.uk/resources/software/margarita</u>)	54
MaCH	http://genome.sph.umich. edu/wiki/Thunder	Multi-sample LD	Genotype likelihoods	Software for SNP and genotype calling, including a method (GPT_Freq) for generating candidate SNPs without LD information and a method (thunder_glf_freq) for incorporating LD information	-

A more complete list is available from <u>http://seqanswers.com/wiki/Software/list</u>, LD, linkage disequilibrium; NGS, next-generation sequencing.

Software

Software	Available from	Calling method	Prerequisites	Comments	Refs
SOAP2	http://soap.genomics.org. cn/index.html	Single-sample	High-quality var database (for example, dbSNF	individual genotype caller (SOAPsnp)	15
realSFS	http://128.32.118.212/ thorfinn/realSFS/	Single-sample	Aligned reads	Software for SNP and genotype calling using single individuals and allele frequencies. Site frequency spectrum (SFS) estimation	-
Samtools	http://samtools. sourceforge.net/	Multi-sample	Aligned reads	Package for manipulation of NGS alignments, which includes a computation of genotype likelihoods (samtools) and SNP and genotype calling (bcftools)	53
GATK	<u>http://www.</u> broadinstitute.org/gsa/ wiki/index.php/The_ Genome_Analysis_Toolkit	Multi-sample	Aligned reads	Package for aligned NGS data analysis, which includes a SNP and genotype caller (Unifed Genotyper), SNP filtering (Variant Filtration) and SNP quality recalibration (Variant Recalibrator)	32,33
Beagle	http://faculty.washington. edu/browning/beagle/ beagle.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation, phasing and association that includes a mode for genotype calling	42
IMPUTE2	<u>http://mathgen.stats.</u> ox.ac.uk/impute/ impute_v2.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation and phasing, including a mode for genotype calling. Requires fine-scale linkage map	44
QCall	ftp://ftp.sanger.ac.uk/pub/	Multi-sample LD	'Feasible'	Software for SNP and genotype calling, including a	54
•	Hang Phan, Iain Mathies wigg, WGS500 Consort		ode	method for generating candidate SNPs without LD information (NLDA) and a method for incorporating LD information (LDA). The 'feasible' genealogies can be generated using Margarita (<u>http://www.sanger.</u>	
ie, Gil McV embly- and ants in clir	ean, Gerton Lunter. Inte I haplotype-based app nical sequencing applie) doi:10.1038/ng.3036	egrating mappi roaches for cal	ng-, _{pe} ling ods	FreeBayes: Garrison, E. & Marth, G. Haplotype-based variar detection from short-read sequencing. arXiv http://arxiv.org/abs/1207.3907 (2012).	nt

Prerequisites: JAVA and Picard tools

- Requires Java (http://www.oracle.com/technetwork/java/javase/downloads/index.html)
 - Check your java version

java -version

 $GATK \ge 2.6 \rightarrow Requires Java version 1.7$

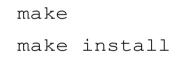
- Picard (current version 1.130)
 - Website: http://broadinstitute.github.io/picard/
 - For a compiled version click on "Latest Release" and download picard-tools-1.130.zip
 - Testing:

java -jar picard.jar -h

- Usage

java -jar picard.jar <ToolName> [options]

Latest	Download	Download	View On
Release	ZIPFile	TAR Ball	GITHUD

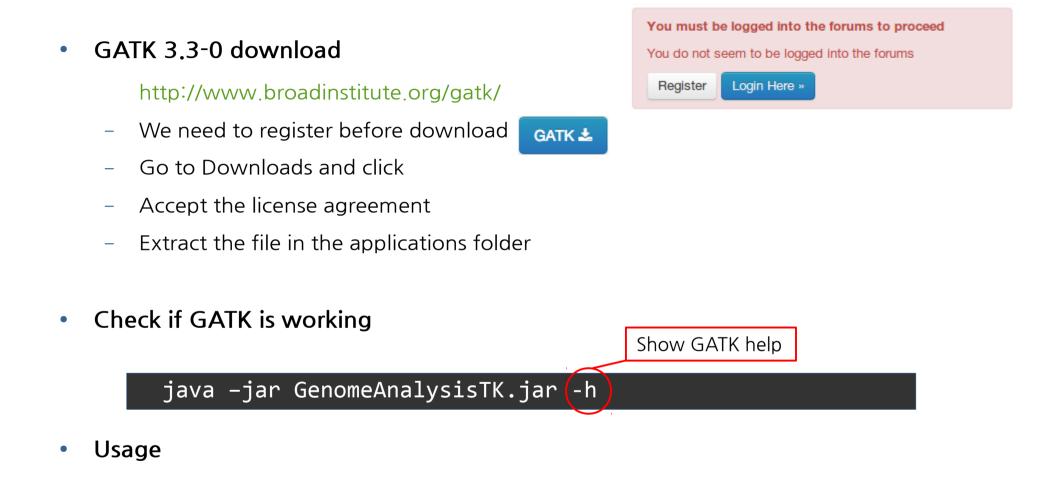

Samtools installation

Samtools 1.2 download

- Download

La bcftools-1.2 La htslib-1.2.1

- Uncompress each of the files and inside the uncompressed folder execute:


Check if Samtools is working

samtools

Usage

samtools <command> [options]

GATK installation

java -jar GenomeAnalysisTK.jar -T <ToolName> [arguments]

Filtering recommendations

Filtering recommendations for SNPs:

- QD < 2.0
- MQ < 40.0
- FS > 60.0
- HaplotypeScore > 13.0
- MQRankSum < −12.5</p>
- ReadPosRankSum < -8.0

Filtering recommendations for indels:

- QD < 2.0
- ReadPosRankSum < -20.0
- InbreedingCoeff < -0.8</p>
- FS > 200.0