
Statistical analysis of RNA sequencing data

Practical: Part II

Ernest Turro
University of Cambridge

14 Sep 2016

1 Introduction

In this practical we shall analyse RNA-seq data from a study of the ps splice factor
in Drosophila melanogaster cell cultures [2]. The dataset consists of a treatment and
a control group. The treatment group is composed of three cell cultures in which the
ps splice factor has been knocked down (by approximately 60%). The remaining three
cell cultures are untreated and serve as a control. We will investigate the effect of ps
depletion on gene expression and relative isoform expression.

2 Preliminaries

The practical employs or refers to the following software:

• R (http://www.r-project.org)

• Bioconductor packages: Rsamtools, GenomicRanges, GenomicAlignments, biomaRt,
DESeq (http://bioconductor.org)

• Integrative Genomics Browser

• SAMtools (http://samtools.sf.net)

• FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc)

• FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit)

• Bowtie1 aligner (http://bowtie-bio.sf.net)

• TopHat1 spliced aligner (http://tophat.cbcb.umd.edu)

• MMSEQ (https://github.com/eturro/mmseq)

To begin, log in to the shell as directed and run the following command:

1

http://www.r-project.org
http://bioconductor.org
http://samtools.sf.net
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit
http://bowtie-bio.sf.net
http://tophat.cbcb.umd.edu
https://github.com/eturro/mmseq

cd ~/data/day3/practical

Unless stated otherwise, it is assumed throughout this practical that the working
directory, both in the shell and within RStudio, is as shown above. Below is a brief
summary of the contents of the directory:

all reads/ The six sets of FASTQ files containing the sequenced reads.

ref/ Reference files: genome/transcriptome fastas and Bowtie indexes, gene annotations
in GTF format and as an RData file.

th out/ The TopHat output files. There is one merged BAM file per sample. SRX014458...SRX014460
are the IDs for the untreated group. SRX014461...SRX014463 are the IDs for the
treated group.

bwt out/ As above, but for transcriptome alignment using Bowtie.

mmseq out/ MMSEQ output files containing isoform and gene level expression estimates.

3 Counting reads in R

We will now load the gene annotations for chromosome 2L into R, read in the BAM files
and count the number of reads overlapping each gene.

Load the biomaRt library and use it to connect to Ensembl and download the anno-
tations for Drosophila:

library(biomaRt)

ensembl <- useMart(biomart="ENSEMBL_MART_ENSEMBL",dataset="dmelanogaster_gene_ensembl", host="ensembl.org")

annot<-getBM(

c("chromosome_name",

"strand",

"ensembl_gene_id",

"ensembl_transcript_id",

"ensembl_exon_id",

"start_position", "end_position",

"transcript_start",

"transcript_end",

"exon_chrom_start",

"exon_chrom_end"),

mart=ensembl,

filters="chromosome_name",

values=c("2L")

)

Now have a look at the first few entries of the annot object and interpret the meaning
of all the fields in the table. What is the length of the longest gene? What is the name
of the gene containing the shortest exon? How short is it? What are the implications of
this with regards to the alignment?

head(annot)

2

chromosome_name strand ensembl_gene_id ensembl_transcript_id ensembl_exon_id

1 2L 1 FBgn0031208 FBtr0300689 FBgn0031208:1

2 2L 1 FBgn0031208 FBtr0300689 FBgn0031208:3

3 2L 1 FBgn0031208 FBtr0300690 FBgn0031208:1

4 2L 1 FBgn0031208 FBtr0300690 FBgn0031208:2

5 2L 1 FBgn0031208 FBtr0300690 FBgn0031208:4

6 2L -1 FBgn0002121 FBtr0078168 CG2671:13

start_position end_position transcript_start transcript_end exon_chrom_start

1 7529 9484 7529 9484 7529

2 7529 9484 7529 9484 8193

3 7529 9484 7529 9484 7529

4 7529 9484 7529 9484 8193

5 7529 9484 7529 9484 8668

6 9836 21372 9836 21372 21066

exon_chrom_end

1 8116

2 9484

3 8116

4 8589

5 9484

6 21372

Note: the annotation pertains to the latest release of Ensembl. The release used for
the alignment is no longer available online, so please load a replacement annot object
from the saved Rdata file: load("ref/2L_biomart.Rdata").

Now that we have loaded the annotation, let us load in the first BAM file and have
a look at the resulting object.

library(GenomicAlignments)

alnRanges <- readGAlignments("th_out/untreated2/accepted_hits.bam")

head(alnRanges)

GappedAlignments with 6 alignments and 0 elementMetadata values:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] 2L + 37M 37 7599 7635 37

[2] 2L + 37M 37 7608 7644 37

[3] 2L + 37M 37 7611 7647 37

[4] 2L + 37M 37 7612 7648 37

[5] 2L + 37M 37 7614 7650 37

[6] 2L + 37M 37 7624 7660 37

ngap

<integer>

[1] 0

[2] 0

[3] 0

[4] 0

[5] 0

[6] 0

seqlengths:

2L

5000000

length(alnRanges)

3

[1] 5215987

Notice the CIGAR string field, which contains information on whether a read mapped
contiguously (37M: 37 matches) or contains a splice junction (N operation). How many
of the 5,215,987 reads aligned with a splice junction? (hint: try the grepl command).

Now we create a GRanges object containing the ranges of each exon. Since the
protocol used in this experiment is unstranded, we remove strand information from this
object:

exonRanges <- GRanges(seqnames = Rle(annot$chromosome_name),

ranges = IRanges(start=annot$exon_chrom_start,

end=annot$exon_chrom_end),

strand = Rle(annot$strand),

exon=annot$ensembl_exon_id,

gene=annot$ensembl_gene_id)

strand(exonRanges) <- "*"

head(exonRanges)

GRanges with 6 ranges and 2 elementMetadata values:

seqnames ranges strand | exon gene

<Rle> <IRanges> <Rle> | <character> <character>

[1] 2L [7529, 8116] * | FBgn0031208:1 FBgn0031208

[2] 2L [8193, 9484] * | FBgn0031208:3 FBgn0031208

[3] 2L [7529, 8116] * | FBgn0031208:1 FBgn0031208

[4] 2L [8193, 8589] * | FBgn0031208:2 FBgn0031208

[5] 2L [8668, 9484] * | FBgn0031208:4 FBgn0031208

[6] 2L [21066, 21372] * | CG2671:13 FBgn0002121

seqlengths:

2L

NA

Next we count the number of alignments per exon and set the name of the counts to
the gene name:

exonCounts <- countOverlaps(exonRanges, alnRanges)

names(exonCounts) <- elementMetadata(exonRanges)$gene

Take a look at the distribution of read counts per exon:

hist(log10(exonCounts), breaks=100)

Next we split the exonCounts by gene name so we can group the exon-level counts
into gene-level counts. The split function in R is extremely useful: it takes a vector or
data frame and divides it into a list according to a factor of interest. Here we divide the
exonCounts by gene name before summing the counts across exons of the same gene:

splitCounts <- split(exonCounts, names(exonCounts))

geneCounts <- sapply(splitCounts, function(x) sum(x))

Which gene has the highest number of counts in this sample?
Now repeat as above for the remaining 5 samples. This may take a minute or two to

run:

4

sams=file.path("th_out", c(paste("untreated",3:4,sep=""), paste("treated",1:3,sep="")))

for(s in sams) {

cat("Reading in", file.path(s,"accepted_hits.bam"), "\n")

alnRanges <- readGAlignments(file.path(s,"accepted_hits.bam"))

exonRanges <- GRanges(seqnames = Rle(annot$chromosome_name),

ranges = IRanges(start=annot$exon_chrom_start,

end=annot$exon_chrom_end),

strand = Rle(annot$strand),

exon=annot$ensembl_exon_id,

gene=annot$ensembl_gene_id)

strand(exonRanges) <- "*"

exonCounts <- countOverlaps(exonRanges, alnRanges)

names(exonCounts) <- elementMetadata(exonRanges)$gene

splitCounts <- split(exonCounts, names(exonCounts))

geneCounts <- cbind(geneCounts, sapply(splitCounts, function(x) sum(x)))

}

colnames(geneCounts) <- c("untreated2",basename(sams))

head(geneCounts)

You should now have a matrix of gene counts with genes along the rows and samples
along the columns.

4 Differential expression

Let us start by creating a CountDataSet object containing the count data and the
condition contrast:

library(DESeq)

cds = newCountDataSet(geneCounts, c(rep("untreated", 3), rep("treated", 3)))

cds

head(counts(cds))

pData(cds)

sizeFactor condition

SRX014458 NA untreated

SRX014459 NA untreated

SRX014460 NA untreated

SRX014461 NA treated

SRX014462 NA treated

SRX014463 NA treated

Notice how the pData slot sizeFactor, which corresponds to the sample-level nor-
malisation factor, is set to NA for all samples. Let us calculate the appropriate normal-
isation factors with the DESeq method:

cds <- estimateSizeFactors(cds)

pData(cds)

5

sizeFactor condition

SRX014458 1.2733205 untreated

SRX014459 0.8327400 untreated

SRX014460 0.8933315 untreated

SRX014461 1.1883723 treated

SRX014462 0.8535191 treated

SRX014463 1.0669885 treated

Recall from the lecture how DESeq calculates and applies the normalisation factors:

• For each gene g in sample i, calculate deviation of log rig from the mean log rig
over all libraries: dig = log rig − 1

I

∑
log rig.

• Calculate median over all genes: logS(i) = median(dig)

• Adjust µ̂ig by a factor of S(i) for all genes g

Are you able to calculate the size factor for the first sample without using the DE-
Seq function? (hint: the sum of the counts on the log scale can be obtained with
rowSums(log(counts(cds))) and the median of a vector containing non-finite values
can be obtained with median(vec[is.finite(vec)])).

The next step is to estimate the dispersion values for each gene and fitting a curve
through the mean of the normalised counts vs. the dispersion estimates. By “nor-
malised” we mean that the counts have been adjusted by the size factors. You can
obtain them by setting the normalized option to TRUE in the counts accessor:

counts(cds, normalized=TRUE)[1:3,]

SRX014458 SRX014459 SRX014460 SRX014461 SRX014462 SRX014463

FBgn0000018 605.5035 583.6155 611.1953 626.9079 601.0411 549.2093

FBgn0000052 8737.7846 11447.7508 11738.0834 8403.9321 11002.6833 10417.1692

FBgn0000053 3650.2987 4429.9541 4549.2629 4491.8583 5972.9187 5796.6884

Can you reproduce the table above without using normalized=TRUE ?
Let’s calculate the dispersion and plot the scatterplot of the normalised mean vs.

the estimated dispersions with an overlay of the fit.

cds <- estimateDispersions(cds)

plot(rowMeans(counts(cds, normalized=TRUE)), fitInfo(cds)$perGeneDispEsts, log="xy")

xg <- 10^seq(-.5, 5, length.out=300)

lines(xg, fitInfo(cds)$dispFun(xg), col="red")

The function fitInfo(cds)$dispFun simply returns α0 +α1/x, where x is the input
normalised counts. In our case, the fitted coefficients are:

fitInfo(cds)$dispFun

function (q)

coefs[1] + coefs[2]/q

<environment: 0x13d62f740>

attr(,"coefficients")

asymptDisp extraPois

0.01562284 2.87826709

attr(,"fitType")

[1] "parametric"

6

Finally we can perform the negative binomial test to obtain p-values under the null
of no differential expression between the treated and untreated groups:

res <- nbinomTest(cds, "untreated","treated")

head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange

1 FBgn0000018 596.245425 600.104766 592.386085 0.9871378 -0.01867664

2 FBgn0000052 10291.233902 10641.206273 9941.261531 0.9342232 -0.09816086

3 FBgn0000053 4815.163527 4209.838569 5420.488486 1.2875763 0.36465796

4 FBgn0000055 30.229172 41.829550 18.628793 0.4453501 -1.16698826

5 FBgn0000056 15.235224 20.877262 9.593186 0.4595040 -1.12185058

6 FBgn0000061 2.727951 2.928028 2.527874 0.8633367 -0.21200470

pval padj

1 0.91657303 1.0000000

2 0.64215907 1.0000000

3 0.02554497 0.2865028

4 0.23318301 0.9159927

5 0.21713177 0.8988226

6 1.00000000 1.0000000

Plot a histogram of the p-values—is there an enrichment of low p-values? The padj

label is is a misnomer: a gene has a padj value of x if it is significant at a false discovery
rate (FDR) of x% while a gene has a pval value of x if it is significant at a false positive
rate (FPR) of x% (the standard definition of a p-value). How many genes are significant
at a FDR of 10%? How many genes are significant at a FPR of 5%? The family-wise
error rate (FWER) is the probability of a single false positive among all your tests and
can be controlled with the Bonferroni correction. How many genes are significant at a
FWER of 5%? (hint: look up the p.adjust function).

Now plot the log global mean vs. the log fold change and colour in the significant
genes in red:

plot(res$baseMean, res$log2FoldChange, log="x", col=ifelse(res$padj < 0.1, "red","black"))

Notice how the threshold on the log fold change appears to be stricter for lowly
expressed genes. Do you have any intuition as to why this is? (hint: what does this plot
look like under the null?).

5 Transriptome alignment and isoform-level estimates

The reads were also aligned to the transcriptome. cDNA sequences for chromosome 2L
of Drosophila melanogaster were downloaded from Ensembl (http://ensembl.org) and
saved in the ref directory. A Bowtie index was built for them with the bowtie-build

utility. The sets of FASTQ files were aligned against the reference transcript sequences
with the bowtie program. We set -a --best --strata to keep only the best align-
ments. We used -S to output to SAM format. We also used the --fullref option to
make sure the full FASTA headers were saved in the output. This is important because
the headers contain information about which gene each transcript belongs to. We set the
maximum insert size to 400 with -X 400. Again, we used -p 12 to spawn 12 threads.

7

http://ensembl.org

We only kept pairs that were properly aligned and sorted the alignments by read name
using samtools.

Here is an example of a Bowtie command:

cd ~/data/day3/practical/all_reads/GSM461178_untreated3

bowtie -a --best --strata -S --fullref -p 12 -X 400 ../../../ref/2L_cdna \

-1 SRR031714_1.fastq,SRR031715_1.fastq -2 SRR031714_2.fastq,SRR031715_2.fastq | \

samtools view -F 0xC -bS - | samtools sort -n - ../../../bwt_out/SRX014459_namesorted

The BAM files are inside the bwt out directory.
We then produced a list of mappings between reads and transcript sets using the

bam2hits program in the MMSEQ package [3]. These mappings were then fed to the
mmseq program to produce tables of expression estimates at the isoform level. Aggregate
estimates over isoforms of the same gene were also produced. These tables are in the
mmseq out folder and are called *.mmseq and *.gene.mmseq for isoform and gene-level
estimates respectively.

6 Isoform-level analysis

The mmseq2counts.R R function reads in the MMSEQ estimates, combines them and
unnormalises them to (estimated) count equivalents. Read in the MMSEQ files contain-
ing isoform and gene level estimates:

setwd("mmseq_out")

tab_iso <- mmseq2counts()

tab_gene <- mmseq2counts(dir(pattern=".*gene.mmseq"))

head(tab_iso)

SRX014458 SRX014459 SRX014460 SRX014461 SRX014462

FBtr0005088 9.621853e+03 2.254283e+03 2.229896e+03 9.427421e+03 2.192797e+03

FBtr0005673 2.144494e-01 9.033614e-04 8.085199e-04 4.585436e+01 4.373476e-04

FBtr0005674 4.593497e-03 5.724035e-04 6.868712e-04 3.348064e-02 2.209242e-04

FBtr0006151 1.873065e-03 3.162023e-04 4.537447e-04 9.549578e-04 0.000000e+00

FBtr0077377 1.150837e+01 4.529747e+00 6.177427e-01 1.257522e+01 6.171641e-01

FBtr0077378 4.577007e+00 0.000000e+00 0.000000e+00 2.513351e+00 1.560714e+00

SRX014463

FBtr0005088 2.373606e+03

FBtr0005673 2.950444e-01

FBtr0005674 1.055402e-02

FBtr0006151 1.137599e-04

FBtr0077377 4.497688e+00

FBtr0077378 0.000000e+00

head(tab_gene)

SRX014458.gene SRX014459.gene SRX014460.gene SRX014461.gene

FBgn0000018 821.2365617 2.263759e+02 236.0301298 809.0954520

FBgn0000052 3967.4363495 1.517246e+03 1555.5077560 3685.8030291

FBgn0000053 3306.1248728 1.169517e+03 1213.3348390 3960.9798652

FBgn0000055 7.6726818 4.744607e-02 3.4092459 4.1906191

8

FBgn0000056 0.5693853 6.426933e-02 0.1066947 0.3356476

FBgn0000061 2.6221067 6.451597e-01 1.6041405 4.4879443

SRX014462.gene SRX014463.gene

FBgn0000018 224.0171085 2.798952e+02

FBgn0000052 1378.8453342 1.789369e+03

FBgn0000053 1400.3271860 1.934607e+03

FBgn0000055 0.0000000 5.851156e-01

FBgn0000056 0.0000000 1.767749e-02

FBgn0000061 0.6391335 6.320105e-01

Let us now use the gene-level count estimates obtained by MMSEQ by summing
over isoforms to run a differential expression analysis and compare them to the previous
results that used counts from genome alignment:

cds_gene = newCountDataSet(round(tab_gene), c(rep("untreated",times=3), rep("treated",times=3)))

cds_gene <- estimateDispersions(estimateSizeFactors(cds_gene))

res_gene <- nbinomTest(cds_gene, "untreated","treated")

How many of the genes are significant at a FPR of 5%? Of these, how many were
also significant with the gene counts approach used earlier?

Now repeat as above for the isoform-level estimates:

cds_iso = newCountDataSet(round(tab_iso), c(rep("untreated",times=3), rep("treated",times=3)))

cds_iso <- estimateDispersions(estimateSizeFactors(cds_iso))

res_iso <- nbinomTest(cds_iso, "untreated","treated")

How many of the isoforms are significant at a FPR of 5%?
Finally, let us investigate whether some isoforms appear to be differentially expressed

while the overall gene does not. To achieve this, we first need to obtain mappings from
isoforms to the genes they belong to and add them to our isoform table:

t2g <- unique(annot[,c("ensembl_transcript_id","ensembl_gene_id")])

res_iso <- cbind(res_iso, gene_id = t2g[match(res_iso$id, t2g[,1]),2])

res_iso$gene_id <- as.vector(res_iso$gene_id)

head(res_iso)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange

1 FBtr0005088 3651.156058 3727.2553316 3575.056784 0.9591661 -0.0601475

2 FBtr0005673 3.410750 0.0000000 6.821500 Inf Inf

3 FBtr0005674 0.000000 0.0000000 0.000000 NaN NaN

4 FBtr0006151 0.000000 0.0000000 0.000000 NaN NaN

5 FBtr0077377 4.482797 4.8669930 4.098602 0.8421219 -0.2478990

6 FBtr0077378 1.140104 0.7240645 1.556143 2.1491779 1.1037849

pval padj gene_id

1 0.8438824 1 FBgn0260439

2 0.4190353 1 FBgn0002887

3 NA NA FBgn0002887

4 NA NA FBgn0000056

5 0.9901268 1 FBgn0031620

6 0.9891312 1 FBgn0031621

Now, that we have mappings from isoform names to gene names, the list of genes for
the significant isoforms can be obtained:

sig_iso <- res_iso[res_iso$pval < 0.05 & !is.na(res_iso$pval),]$gene_id

9

How many isoforms which are declared differentially expressed belong to genes which
are declared non-differentially expressed? (hint: try the intersect function).

Perhaps a good way to visualise this and end the practical is to produce a scatterplot
of the log fold change for genes vs. isoforms within those genes. First we need to create
a vector containing gene-level estimates which are repeated as many times as it has
isoforms:

x <- unlist(sapply(1:nrow(res_gene),

function(i) {

rep(res_gene[i,]$log2FoldChange, sum(res_iso$gene_id==res_gene[i,]$id))

}

)

)

Then we create a second vector containing the isoform-level estimates corresponding
to the genes in the first vector:

y <- unlist(sapply(1:nrow(res_gene),

function(i) {

res_iso[res_iso$gene_id==res_gene[i,]$id,]$log2FoldChange

}

)

)

Finally, we plot x vs. y.

plot(x,y, xlab="gene log2FC", ylab="isoform log2FC")

abline(0,1,col=2)

smoothScatter(x,y, xlab="gene log2FC", ylab="isoform log2FC") # smoothed density version

abline(0,1,col=2)

7 Acknowledgement

Parts of this practical were inspired by the DESeq [1] vignette and an EMBL practical
produced by Ângela Gonçalves and Gabriella Rustici from the European Bioinformatics
Institute.

References

[1] Anders, S. and Huber, W. 2010. Differential expression analysis for sequence count
data. Genome Biol, 11(10):R106.

[2] Brooks, A. N., Yang, L., Duff, M. O., Hansen, K. D., Park, J. W., Dudoit, S.,
Brenner, S. E., and Graveley, B. R. 2011. Conservation of an RNA regulatory map
between Drosophila and mammals. Genome Res, 21(2):193–202.

[3] Turro, E., Su, S.-Y., Goncalves, A., Coin, L. J. M., Richardson, S., and Lewin,
A. 2011. Haplotype and isoform specific expression estimation using multi-mapping
RNA-seq reads. Genome Biol, 12(2):R13.

10

	Introduction
	Preliminaries
	Counting reads in R
	Differential expression
	Transriptome alignment and isoform-level estimates
	Isoform-level analysis
	Acknowledgement

