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0 
About this introduction 



What will we do today? 

•  unfortunately I can’t teach you R in a few hours 
•  luckily you wont need me to 

•  you will get a lot of errors 
•  you might be frustrated 
•  you might need to google 

… just like all R users 

•  today is more about providing the vocabulary you will need 
for google when alone (use “R:”) 

 



1 
Introduction to R and its environment 



What is R and why do we use it? 

•   a statistical programming environment 
•   based on the statistical programming language S 
•   suited to high level data analysis 
•   open source & cross platform 
•   extensive graphics capabilities 
•   diverse range of add-on packages 
•   active community of developers 
•   thorough documentation 
 



www.r-project.org 



Getting Started 

•  R is a program which, once installed on your system, can be 
launched and is immediately ready to take input directly from 
the user 

•  there are two ways to launch R: 

1)  from the command line (particularly useful if you’re quite 
familiar with Linux) 

2) as an application called RStudio 



Prepare to launch R 
From command line 

•  to start R in Linux we need to enter the Linux console (also 
called Linux terminal and Linux shell) 

 
•  to start R, at the prompt simply type: 

  $ R 
 



Prepare to launch R 
Using RStudio 

•  to launch RStudio, go to the web host http://
ec2-52-209-201-139.eu-west-1.compute.amazonaws.com:
3000 and go to “Connect to RStudio” 



•  Typing lots of commands into R can be tedious. A better way 
is to write the commands to a file and the load it into R. 

•  Click on File -> New in Rstudio 
•  Type in some R code, e.g. 
  > x <- 2 + 2 
  > print(x) 

•  Click on Run to execute the current line, and Source to 
execute the whole script 

•  Sourcing can also be performed manually with 
   > source("myScript.R") 

Writing scripts with Rstudio 



The working directory (wd) 

•  like many programs R has a concept of working directory 
(wd) 

•  it is the place where R will look for files to execute and where 
it will save files, by default 

•  for this course we need to set the working directory to the 
location of the course scripts 

•  at the command prompt in the terminal or in RStudio console 
type: 

  > setwd(“~/scratch/day1”) 



Interacting with the R console 

•  R console symbols: 
•  # comment 

 indicates text is a comment and not executed 
•  + command line wrap 

 R is waiting for you to complete an expression 
•  Ctrl-c or escape to clear input line and try again 
•  Ctrl-l to clear window 
•  press q to leave help (using R from the terminal) 
•  use the TAB key for command auto completion 
•  use up and down arrows to scroll through the command 

history 
•  Alt-- (Alt and minus) gives the assignment operator <- 
•  extra spaces usually do not matter 



Basic concepts in R 
Command line calculation 
 

•   the command line can be used as a calculator: 
  > 2 + 2 
  [1] 4 

  > 20/5 - sqrt(25) + 3^2 
  [1] 8 

  > sin(pi/2) 
  [1] 1 

 

•  Note: The number in the square brackets is an indicator of 
the position in the output. In this case the output is a 'vector' 
of length 1 (i.e. a single number). More on vectors coming 
up… 



Basic concepts in R 
Variables 
 

•  a variable is a letter or word which takes (or contains) a 
value. We use the assignment 'operator', <- (or = ) 

  > x <- 10 
  > x 
  [1] 10 

  > myNumber <- 25 
  > myNumber 
  [1] 25 

•   we can perform arithmetic on variables: 
  > sqrt(myNumber) 
  [1] 5 

•   we can add variables together: 
  > x + myNumber 
  [1] 35 



Basic concepts in R 
Variables 
 •  we can change the value of an existing variable: 
  > x <- 21 
  > x 
  [1] 21 

•  we can set one variable to equal the value of another 
variable: 

  > x <- myNumber 
  > x 
  [1] 25 

•  we can modify the contents of a variable: 
  > myNumber <- myNumber + sqrt(16) 
  > myNumber  
  [1] 29 



Basic concepts in R 
Vectors 
 

•  the basic data structure in R is a vector – an ordered 
collection of values. The function c() combines its arguments 
into a vector: 

  > x <- c(3, 4, 5, 6) 
  > x 
  [1] 3 4 5 6 
•  the square brackets [] indicate position within the vector (the 

index). We can extract individual elements by using []: 
  > x[1] 
  [1] 3 

  > x[4] 
•  we can even put a vector inside [] (vector indexing): 
  > y <- c(2, 3) 
  > x[y] 
  [1] 4 5 



Basic concepts in R 
Vectors 
 

•  there are shortcuts to create a vector. Instead of: 
  > x <- c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 
•  we can write: 
  > x <- 3:12 
•  or we can use the seq() function, which returns a vector: 
  > x <- seq(2, 10, 2) 
  > x 
  [1] 2 4 6 8 10 

  > x <- seq(2, 10, length.out = 7) 
•   or the rep() function: 
  > y <- rep(3, 5) 
  > y 
  [1] 3 3 3 3 3 

  > y <- rep(1:3, 5) 



Basic concepts in R 
Vectors 
 

•  for extracting elements from a vector, we can use shortcuts 
to make things easier (or more complex!): 

  > x <- 3:12 
  > x[3:7] 
  [1] 5 6 7 8 9   
  > x[seq(2, 6, 2)] 
  [1] 4 6 8 

  > x[rep(3, 2)] 
•  we can add an element to a vector: 
  > y <- c(x, 1) 
  > y 
  [1] 3 4 5 6 7 8 9 10 11 12 1 

•  we can glue vectors together: 
  > z <- c(x, y) 



Basic concepts in R 
Vectors 
 

•  we can remove element(s) from a vector: 
  > x <- 3:12 
  > x[-3] 
  [1] 3 4 6 7 8 9 10 11 12 
  > x[-(5:7)] 

[1] 3 4 5 6 10 11 12 
  > x[-seq(2, 6, 2)] 
•  finally, we can modify the contents of a vector: 
  > x[6] <- 4 
  > x 
  [1] 3 4 5 6 7 4 9 10 11 12 

  > x[3:5] <- 1 
•  Keep in mind: square brackets for indexing [], 

parentheses for function arguments ()! 



Basic concepts in R 
Vector arithmetic 
 •  when using standard arithmetic operations on vectors, application 
is element-wise: 

  > x <- 1:10 
  > y <- x*2 
  > y 
  [1] 2 4 6 8 10 12 14 16 18 20 

  > z <- x^2 
•  adding two vectors: 
  > y + z 
  [1] 3 8 15 24 35 48 63 80 99 120 

•  if vectors are not the same length, the shorter one will be recycled: 
  > x + 1:2 
  [1] 2 4 4 6 6 8 8 10 10 12 

•  but be careful if the vector lengths aren't factors of each other: 
  > x + 1:3 



Basic concepts in R 
Character vectors and classes 
 •  all the vectors we have seen so far have contained numbers,   
but we can also create character vectors: 

  > gene.names <- c("Pax6","Beta-actin","FoxP2","Hox9") 
•  BUT: each vector can contain only a single class of elements: 
  > y <- c(3,”F”, x) 
  > y 
•  class can be: 
  numeric      0.5, 1000, pi 
  integer      1, 2, 3 
  character     “actin”, “Romina” 
  logical/Boolean   TRUE or FALSE 
  factor      read as character, but treated as 
         categorical 
 
•  important debugging note: always check the class of your object! 



•  all values in R really are vectors, so indices are actually 
vectors, and can be numeric or logical: 

   > s <- letters[1:5] 
   > s[c(1,3)] 
   [1] "a" "c" 
   > s[c(TRUE, FALSE, TRUE, FALSE, FALSE)] 
   [1] "a" "c" 
   > a <- 1:5 
   > a < 3 
   [1]  TRUE  TRUE FALSE FALSE FALSE 
   > s[a<3] 
   [1] "a" "b" 
   > s[a>1 & a<3] 
   [1] "b” 
   > s[a==2]     

Basic concepts in R 
Advanced indexing 



•  arithmetic 
 +, -, *, /, ^ 

 

•  comparison 
 <, >, =<, >=, ==, != 

 
•  logical 

 !, &, |, xor 

equal to 
these always 
return logical 
values 
(TRUE, FALSE) 

Basic concepts in R 
Operators 

not equal to 

not 
and or 

exclusive or 



Basic concepts in R 
Functions 
 

•  Functions in R perform operations on arguments (the 
input(s)). E.g. sin(x) has one argument, x. Arguments are 
always contained in parentheses (), separated by commas: 

  > sum(3, 4, 5, 6) 
  [1] 18 

  > max(3, 4, 5, 6) 
  [1] 6 

  > min(3, 4, 5, 6) 
  [1] 3 

•  Arguments can be named or unnamed, but if they are 
unnamed they  must be ordered: 

  > seq(from=2, to=10, by=2) 
  [1] 2 4 6 8 10 

  > seq(2, 10, 2) 
  [1] 2 4 6 8 10 



•  to get help on any R function, type ? followed by the function 
name. For example: 
 > ?seq 

•  this retrieves the syntax and arguments for the function. You 
can see the default order of arguments here. The help page 
also tells you which package it belongs to. 

•  there will typically be example usage, which you can test 
using the example function: 
 > example(seq) 

•  if you can't remember the exact name type ?? followed by 
your guess. R will return a list of possible ones: 
 > ??rint 
 

Basic concepts in R 
Functions 
 



Basic concepts in R 
Functions 
 

•  functions can be concatenated: 
  > length(seq(1,100,2)) 
•  we can also write our own functions! makes sense if we want 

to carry out an operation repeatedly 
  > add_1 <- function(number) { 
    number + 1 
   } 
 
  > add_1(1) 
   [1] 2 
•  or we can get additional functions by loading R packages 

(more later) 
•  Keep in mind: square brackets for indexing [], 

parentheses for function arguments ()! 

 



Questions??? 



Exercise 
Variables, vectors and functions 
 

•  Save your code for the answers to a script called 
“Exercise1.R” in your working directory and add comments 

1.  Assign the value of 40 to x 
2.  Assign the value of 30 to y 
3.  Make z the value of x minus y 
4.  Display the value of z in the console 
5.  Create a vector called vect1 containing the values of x, y 

and z 
6.  calculate the sum, mean, min and max of vect1 
7.  Use a:b notation to create a second vector vect2 containing 

the numbers 4 to 6 
8.  Subtract vect2 from vect1 and look at the result 
9.  Use seq to create a vector vect3 of 50 values starting at 2 

and increasing by 4 each time 
10. Extract the values at positions 5, 10 and 15 of vect3 



2 
R and experimental data 



R is designed to handle experimental data 

•  very often experimental data come as “tables” 
•  there are two types of “table” in R: matrices and data frames 
•  a matrix can only hold one class of data, e.g. only numeric 
•  a data frame can be a mix of classes (and therefore is more 

common) 
•  you can think of individual columns of a data frame as 

individual vectors 
•  we will use the iris data set as an example (already loaded): 

  > iris 
•  usually we would load our data with 

  > read.table(“path/to/table”) 
  > read.csv(“path/to/table”) 
  > read.delim(“path/to/table”) 

 
 
 



Data frames 

•  always check your data before you start working with them! 
•  useful functions: 
  > head() 
  > tail() 
  > dim() 
  > length() 
  > summary() 
  > str() 
  > colnames() 
  > class() 

 
•  we can address individual columns with a $ sign: 

  > iris$Species 
  > class(iris$Species) 



Special cases: 
a[i, ] i-th row 
a[ ,j] j-th column Indexing data frames 

•  we can index multidimensional data structures like data frames 
using commas. If you don't provide an index for either rows or 
columns, all of the rows or columns will be returned: 

   object [ rows , columns ] 

  >  iris[3,2] 

  [1] 3.2 

  > iris[1,] 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
1  5.1           3.5          1.4         0.2    setosa 

  > iris[3,”Species”] 

  [1] setosa 

  > iris$Sepal.Length[3] 

  [1] 4.7 
 

 



Data frames 

•  we can add rows and columns to a data frame (as long as 
they are vectors of the appropriate length): 
  > year <- rep(2014,150) 
  > iris_year <- cbind(iris, year) 

 
  > new_obs <- c(4.6, 3.6, 1.0, NA, "setosa", 2016) 
  > iris_year_current <- rbind(iris_year, new_obs) 

•  info: R uses NA to represent a missing value 
•  we can remove rows and columns from a data frame 
•  we can change the values in a data frame: 
  > iris[1,1] <- 5.5 

•  we can save our processed data as tables: 
	 	> write.table(data.frame, “path/to/table”) 
  > write.csv(data.frame, “path/to/table”)	



Plotting 

•  R comes with some nice plotting functions: 
  > plot() 
  > barplot() 
  > boxplot() 
  > hist() 
   
•  We can use these functions to look at our data: 
  > plot(iris$Petal.Length)          
  > plot(iris$Petal.Length, iris$Petal.Width)  
  > boxplot(iris$Petal.Length, iris$Petal.Width) 
  > hist(iris$Petal.Length) 
  > boxplot(iris$Petal.Length~iris$Species) 



Plotting 

•  plotting functions accept a lot of arguments, so we can tailor 
our plots to our liking (colours, labels, background,…) – 
check out the help page (and google!) 

•  for example, there are whole colour palettes available 
•  more advanced plots can be created with the ggplot2 CRAN 

R package 
•  we can save our plots for example as a pdf either by clicking 

“Export” on the “Plots” tab, or using the pdf() function 
•  we can also save them in various other graphical formats 



Lists 

•  If we want to store data of multiple types, or vectors of 
different lengths in one object, we can use a list. Lists can 
contain objects of any type: 
  > vect1 <- c(1,2,3,4) 
  > vect2 <- c("a", "b", "c”) 
  > data.frame(vects1, vect2) 
   Error in data.frame(vect1, vect2) 
  > list1 <- c(vect1, vect2) 

    [[1]] 
    [1] 1 2 3 4 
    [[2]] 
    [1] “a” “b” “c” 
•  you can recognise lists by the double square brackets [[]] 
•  some functions return the result as a list (for me often 

undesired), unlist() can help (but be careful!)   



Questions??? 



Exercise 
Data frames and plotting 
 

•  Save your code for the answers to a script called 
“Exercise2.R” in your working directory and add comments 

1.  How many observations are in the iris data frame? 
2.  What is the mean petal length? 
3.  How many species were analysed, and how many samples 

of each species? 
4.  What is the minimum sepal width for species versicolor? 
5.  Create a scatterplot of the sepal length of all samples 
6.  Create a boxplot showing the Sepal.Length for each of the 

species, and give each of the boxes a different colour 
7.  Add a meaningful title, x-axis label and y-axis label to your 

boxplot (hint: look at ?plot) 
8.  Save your boxplot to your working directory 



3 

Advanced data analysis 
 



Three steps to data analysis 

1. reading in data 
•  read.table() 
•  read.csv(), read.delim() 
 
2. analysis 
•  manipulating & reshaping the data 
•  any maths you like 
•  plotting the outcome 
 
3. writing out results 
•  write.table() 
•  write.csv() 



R packages 

•  R comes ready loaded with various libraries of functions 
called packages 

•  there are 1000s of additional packages provided by third 
parties, and the packages can be found in numerous server 
locations on the web called repositories 

•  the two repositories you will come across the most are The 
Comprehensive R Archive Network (CRAN) and 
Bioconductor 

•  to install a CRAN R package, simply type 
  > install.packages("PackageName”) 

•  to install a Bioconductor package, set the Bioconductor 
package download tool by typing 
  > source("http://bioconductor.org/biocLite.R") 
 and then load the package with the biocLite function: 
  > biocLite("PackageName") 

 
 
 



R packages 

•  5400+ packages on CRAN: 
 use CRAN search to find functionality you need: 
 http://cran.r-project.org/search.html 
 or look for packages by theme: 
 http://cran.r-project.org/web/views/ 

•  750 packages on Bioconductor 
specialised in genomics: 
http://www.bioconductor.org/packages/release/bioc/ 

•  Other repositories: 
•  1700+ projects on R-forge: http://r-forge.r-project.org/ 
•  R graphical manual: http://rgm3.lab.nig.ac.jp/RGM 
•  always look first if there is already an R package available that 

does what you want before trying to implement it yourself! 
•  every package comes with documentation (manuals/vignettes) 
 
 
 
 



R packages 

•  packages we regularly use in genomics (very subjective list): 
•  GenomicRanges: very useful when working with genomic 

regions, e.g. if we want to find out whether our transcription 
factor binding sites overlap promoters or enhancers 

•  biomaRt: to extract information from databases, e.g. to find 
the Ensembl gene ID for a list of our genes of interest 

•  reshape2: to remodel data frames prior to plotting with 
ggplot2 

•  ggplot2: advanced graphics 
•  DESeq2: popular for differential expression analysis 
 
 
 



Exercise 
Installing swirl 

•  we will install swirl, a package for learning R interactively 
•  swirl is a CRAN package 
•  Use the install.packages() function – only required once 

for each package: 
  > install.packages(”swirl”) 

•  R needs to be told to load the newly installed functions from 
the new package – required for every R session in which you 
want to use the package 
  > library(“swirl”)# loads swirl functions 

•  one of the new functions is swirl() 
 
 
 



•  type swirl() 
•  follow the instructions to choose a name and install the R 

programming course 
•  type info() at the prompt to get swirl options 
•  go through as many lessons as you like in whatever order you 

prefer (you can also easily continue at home!) 
•  very relevant lessons: 1,3,4,5,6,7,8,9,12,15 
•  not as relevant: 13,14 
•  advanced: 2,10,11 
•  you can also load additional courses (check out the homepage) 
•  swirl can be very exact about the answers 
•  sometimes swirl gives up on you too easily and prints the 

answer for you – in that case try to understand it! 
•  the individual lessons do not always link well to the previous 

ones 

 
 
 

Exercise 
Using swirl 



Thank you! 
Questions??? 


