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Gravitational-wave memory effect: Overview

Figure 1. The left plot shows the evolution and saturation of the memory hmem near the
merger time. The solid (black) line uses the full-EOB formalism calibrated to numerical relativity
simulations as in Ref. [20]. The dashed-dotted (green) line uses this same formalism but without

the EOB amplitude correction factors fNQC
22 F22. The dotted (cyan) curve is the minimal-

waveform model. The short-dashed (blue) curve is the minimal-waveform model multiplied by a
“fudge factor” ≈ 0.77 so that it matches the full-EOB curve at late times. The red (dashed) curve
is similar to the treatment in [15]: the inspiral memory is truncated at an orbital separation
r = 5M . Note that the PN/EOB corrections tend to reduce the memory’s magnitude. The
right plot shows the h+ polarization with memory (sold/blue) and without (dashed/red). This
is computed using the full-EOB model. The inset plots show the early-time evolution. Both
plots are for an equal-mass binary with the matching to the ringdown signal at tm/M ≈ 3522.

where σlmn = iωlmn + τ−1
lmn, with QNM angular frequencies ωlmn and damping times τlmn given

in Ref. [18]. These QNMs depend on the final mass Mf and the dimensionless spin parameter
af of the BH merger remnant and are determined by NR simulations [eg., the fits in Eqs. (C5)-
(C6) of [19]]. The coefficients A22n are determined by matching Eqs. (6)-(7) at t = tm for
2 ≤ (q, p + 2) ≤ nmax + 2. Substituting these relations into hmem yields a simple expression for
the memory’s evolution:
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where H(T ) is the Heaviside function. Choosing nmax = 2 and rm = 3M (corresponding to the
light-ring of a Schwarzschild BH), yields a final saturation value of the memory ∆hmem

MWM ≈ 16.
In addition to the MWM, we can model the evolution of I2±2 using the EOB approach of

Ref. [20], where the freely adjustable EOB parameters are determined by fitting to simulations
from the Jena and Caltech/Cornell NR groups. The main differences between the MWM and
the full-EOB calculation are: (i) the EOB equations of motion are solved to determine the
binary separation and orbital frequency during the inspiral, (ii) PN correction factors to the

amplitude of I(q),insp
2±2 are included as in Ref. [20], and (iii) we match to 5 QNMs at 5 points near

the EOB-deformed light-ring for q = p + 2 = 2. The results of the MWM and full-EOB model
are presented in Figure 1. Further details are presented in Ref. [16].

These results can be used to compute the signal-to-noise ratio (SNR) for the memory signal
[16]. For initial LIGO the memory will be undetectable, but advanced LIGO may have a slim
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FIG. 1. Illustration of the BH binary initial configuration.

boost parameter γ, the magnitude of the dimension-
less spin χi = Si/M2

i (where in all of our simulations
χ1 = χ2 = χ), the initial separation d, the impact param-
eter b = L/P and the orientation of the spins measured
by the angle θ relative to the coordinate axis connecting
the initial BH positions (see Fig. 1). For both sequences,
we fix the boost parameter γ = 1.52, corresponding to
P/M = 0.374, the dimensionless spin χ = 0.621 and the
initial separation d = 58.2 M . The two sequences differ
in the impact parameter; b = 3.34 M for the s-sequence
(scattering) and b = 3.25 M for the m-sequence (merging
binaries). We carried out a total of twenty simulations for
selected values of the angle θ in the range [0◦, 360◦]. For
comparison, we also present results from two nonspin-
ning, equal-mass binaries with the same rest mass, boost
and impact parameters. Radiated energy and angular
momenta, and (for the merger cases) final horizon prop-
erties are summarized in Table I (some of these quantities
have not yet been introduced, but they will be defined
later on in the paper).

B. Computational grid and uncertainties

We have evolved all binary configurations on a numer-
ical grid consisting of ten nested refinement levels, three
levels with one component centered on the coordinate
origin and seven levels with two components each, cen-
tered on either BH. Using the notation of Sec. II E of
Ref. [14], the exact grid setup in units of M (rounded to
three significant digits) is given by

{(258, 184, 92)

×(13.8, 6.90, 3.45, 1.73, 0.863, 0.431, 0.216), h} .

Our standard resolution is h = M/223, but for conver-
gence testing we have also evolved one merger case us-
ing a coarser resolution hc = M/195 and finer resolution
hf = M/250. GWs have been extracted on a a set of six
concentric spheres of coordinate radii Rex = 57.5M to
86.3M in steps of 5.76M .
The convergence analysis for the recoil velocity is

shown in Fig. 2. Here we define a time-dependent kick as
the quotient of the radiated momentum and the final BH
mass: vkick = −Prad(t)/Mfin. The figure demonstrates

Mergers Scatters

Average Max. Dev. Average Max. Dev.

Erad/M 0.295 2.3% 0.252 2.2%

Ephys/M 0.265 2.6% 0.222 2.1%

Jrad/J 0.643 2.6% 0.580 1.2%

Jphys 0.605 5.2% 0.531 0.7%

Mirr/M 0.607 0.3% — —

jfin 0.869 3.2% — —

jQNM 0.890 4.4% — —

jAH 0.889 2.2% — —

TABLE I. Initial and final parameters for the two sequences of
binary models. Note that in all cases the estimated uncertain-
ties in these quantities (not shown) from numerical truncation
error or finite extraction radius is larger than the intrinsic
variation within each sequence, including the two nonspin-
ning comparison cases. Therefore, rather than list the values
for all the separate cases, here we just list the average value,
and the maximum deviation relative to the average. Note
that for merger cases we only have apparent horizon informa-
tion from roughly half the simulations, and so corresponding
averages and deviations for the mass Mirr and spin jAH only
include those.
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FIG. 2. Convergence test for the recoil velocity vkick(t) ≡

Prad(t)/Mfin. The convergence factor Q2 = 1.459 corresponds
to second-order convergence.

second-order convergence. Richardson extrapolation re-
veals a relative uncertainty of the numerical kick velocity
obtained with medium resolution of about 9%.

A second main source of error is inherited from the use
of finite extraction radii. We study the resulting error by
analyzing vkick(t) extracted for the high-resolution simu-
lation of the test model at six different radii in Fig. 3. For
this purpose we have first aligned the velocity functions
in time to compensate for differences in the propagation

Ex. Hyperbolic  
Scattering

Zel’dovich & Polnarev, 1974
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Sources of GW memory
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boost parameter γ, the magnitude of the dimension-
less spin χi = Si/M2

i (where in all of our simulations
χ1 = χ2 = χ), the initial separation d, the impact param-
eter b = L/P and the orientation of the spins measured
by the angle θ relative to the coordinate axis connecting
the initial BH positions (see Fig. 1). For both sequences,
we fix the boost parameter γ = 1.52, corresponding to
P/M = 0.374, the dimensionless spin χ = 0.621 and the
initial separation d = 58.2 M . The two sequences differ
in the impact parameter; b = 3.34 M for the s-sequence
(scattering) and b = 3.25 M for the m-sequence (merging
binaries). We carried out a total of twenty simulations for
selected values of the angle θ in the range [0◦, 360◦]. For
comparison, we also present results from two nonspin-
ning, equal-mass binaries with the same rest mass, boost
and impact parameters. Radiated energy and angular
momenta, and (for the merger cases) final horizon prop-
erties are summarized in Table I (some of these quantities
have not yet been introduced, but they will be defined
later on in the paper).

B. Computational grid and uncertainties

We have evolved all binary configurations on a numer-
ical grid consisting of ten nested refinement levels, three
levels with one component centered on the coordinate
origin and seven levels with two components each, cen-
tered on either BH. Using the notation of Sec. II E of
Ref. [14], the exact grid setup in units of M (rounded to
three significant digits) is given by

{(258, 184, 92)

×(13.8, 6.90, 3.45, 1.73, 0.863, 0.431, 0.216), h} .

Our standard resolution is h = M/223, but for conver-
gence testing we have also evolved one merger case us-
ing a coarser resolution hc = M/195 and finer resolution
hf = M/250. GWs have been extracted on a a set of six
concentric spheres of coordinate radii Rex = 57.5M to
86.3M in steps of 5.76M .
The convergence analysis for the recoil velocity is

shown in Fig. 2. Here we define a time-dependent kick as
the quotient of the radiated momentum and the final BH
mass: vkick = −Prad(t)/Mfin. The figure demonstrates

Mergers Scatters

Average Max. Dev. Average Max. Dev.

Erad/M 0.295 2.3% 0.252 2.2%

Ephys/M 0.265 2.6% 0.222 2.1%

Jrad/J 0.643 2.6% 0.580 1.2%

Jphys 0.605 5.2% 0.531 0.7%

Mirr/M 0.607 0.3% — —

jfin 0.869 3.2% — —

jQNM 0.890 4.4% — —

jAH 0.889 2.2% — —

TABLE I. Initial and final parameters for the two sequences of
binary models. Note that in all cases the estimated uncertain-
ties in these quantities (not shown) from numerical truncation
error or finite extraction radius is larger than the intrinsic
variation within each sequence, including the two nonspin-
ning comparison cases. Therefore, rather than list the values
for all the separate cases, here we just list the average value,
and the maximum deviation relative to the average. Note
that for merger cases we only have apparent horizon informa-
tion from roughly half the simulations, and so corresponding
averages and deviations for the mass Mirr and spin jAH only
include those.
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second-order convergence. Richardson extrapolation re-
veals a relative uncertainty of the numerical kick velocity
obtained with medium resolution of about 9%.

A second main source of error is inherited from the use
of finite extraction radii. We study the resulting error by
analyzing vkick(t) extracted for the high-resolution simu-
lation of the test model at six different radii in Fig. 3. For
this purpose we have first aligned the velocity functions
in time to compensate for differences in the propagation
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boost parameter γ, the magnitude of the dimension-
less spin χi = Si/M2

i (where in all of our simulations
χ1 = χ2 = χ), the initial separation d, the impact param-
eter b = L/P and the orientation of the spins measured
by the angle θ relative to the coordinate axis connecting
the initial BH positions (see Fig. 1). For both sequences,
we fix the boost parameter γ = 1.52, corresponding to
P/M = 0.374, the dimensionless spin χ = 0.621 and the
initial separation d = 58.2 M . The two sequences differ
in the impact parameter; b = 3.34 M for the s-sequence
(scattering) and b = 3.25 M for the m-sequence (merging
binaries). We carried out a total of twenty simulations for
selected values of the angle θ in the range [0◦, 360◦]. For
comparison, we also present results from two nonspin-
ning, equal-mass binaries with the same rest mass, boost
and impact parameters. Radiated energy and angular
momenta, and (for the merger cases) final horizon prop-
erties are summarized in Table I (some of these quantities
have not yet been introduced, but they will be defined
later on in the paper).

B. Computational grid and uncertainties

We have evolved all binary configurations on a numer-
ical grid consisting of ten nested refinement levels, three
levels with one component centered on the coordinate
origin and seven levels with two components each, cen-
tered on either BH. Using the notation of Sec. II E of
Ref. [14], the exact grid setup in units of M (rounded to
three significant digits) is given by

{(258, 184, 92)

×(13.8, 6.90, 3.45, 1.73, 0.863, 0.431, 0.216), h} .

Our standard resolution is h = M/223, but for conver-
gence testing we have also evolved one merger case us-
ing a coarser resolution hc = M/195 and finer resolution
hf = M/250. GWs have been extracted on a a set of six
concentric spheres of coordinate radii Rex = 57.5M to
86.3M in steps of 5.76M .
The convergence analysis for the recoil velocity is

shown in Fig. 2. Here we define a time-dependent kick as
the quotient of the radiated momentum and the final BH
mass: vkick = −Prad(t)/Mfin. The figure demonstrates

Mergers Scatters

Average Max. Dev. Average Max. Dev.

Erad/M 0.295 2.3% 0.252 2.2%

Ephys/M 0.265 2.6% 0.222 2.1%

Jrad/J 0.643 2.6% 0.580 1.2%

Jphys 0.605 5.2% 0.531 0.7%

Mirr/M 0.607 0.3% — —

jfin 0.869 3.2% — —

jQNM 0.890 4.4% — —

jAH 0.889 2.2% — —

TABLE I. Initial and final parameters for the two sequences of
binary models. Note that in all cases the estimated uncertain-
ties in these quantities (not shown) from numerical truncation
error or finite extraction radius is larger than the intrinsic
variation within each sequence, including the two nonspin-
ning comparison cases. Therefore, rather than list the values
for all the separate cases, here we just list the average value,
and the maximum deviation relative to the average. Note
that for merger cases we only have apparent horizon informa-
tion from roughly half the simulations, and so corresponding
averages and deviations for the mass Mirr and spin jAH only
include those.
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second-order convergence. Richardson extrapolation re-
veals a relative uncertainty of the numerical kick velocity
obtained with medium resolution of about 9%.

A second main source of error is inherited from the use
of finite extraction radii. We study the resulting error by
analyzing vkick(t) extracted for the high-resolution simu-
lation of the test model at six different radii in Fig. 3. For
this purpose we have first aligned the velocity functions
in time to compensate for differences in the propagation
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Detecting displacement memory with LIGO2
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FIG. 1: Gravitational-wave time series of the higher-order
modes for an edge-on binary with parameters consistent with
GW150914 [1, 17], where the vertical axis �h`m is defined
in Eqn. (1). The red curve shows the �h

22

mode, which is
identically zero, implying the GW polarization angle  and
phase at coalescence �c are degenerate variables. The blue
trace shows

P
`

P
m �h`m for ` = 2, 3 and all corresponding

values of |m| > 0. The fact that �h`m 6= 0 implies that
higher-order modes can be used to break the  degeneracy
and thus determine the sign of the memory.

order modes.
Using the h22 mode, the oscillatory waveform is in-

variant under a simultaneous rotation of the polarisa-
tion angle,  !  + ⇡/2, and a shift in the phase
at coalescence, �c ! �c + ⇡/2. That is h22( , �c) =
h22( +⇡/2, �c+⇡/2). However, memory acquires a mi-
nus sign under the same transformation: hmem( , �c) =
�hmem( + ⇡/2, �c + ⇡/2). This degeneracy between  
and �c implies we cannot know the sign of the memory
using only the h22 component.

Higher-order h`m’s can be used to break the degener-
acy between  and  + ⇡/2; see Fig. 1. We calculate
waveforms using surrogate models [19] that include all
modes up to ` = 3 [20]. We define

�h`m ⌘ [h`m( , �c)� h`m( + ⇡/2, �c + ⇡/2)]�2Y`m,
(1)

where �2Y`m are the spin-weighted spherical harmonics.
One can think of �h`m as a degeneracy-breaking param-
eter; a measurable �h`m(t) breaks the degeneracy be-
tween  and  + ⇡/2, and determines the sign of the
memory2.

The red trace in Fig. 1 shows �h22 = 0, because the
` = m = 2 mode does not break the degeneracy. The
blue curve shows

P
`

P
m �h`m for ` = 2, 3 and all cor-

responding |m| > 0. The  degeneracy is broken and the

2 In principle, uncertainty in parameters such as component
masses and inclination angle reduces our ability to measure
�h`m. Using a Monte Carlo simulation, we estimate only an
⇡ 2% systematic error in �h`m on average, suggesting this is a
small e↵ect.
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FIG. 2: Gravitational-wave strain time series using parame-
ters consistent with GW150914 [1, 17]. The top panel shows
the strain time series with GW memory (blue curve) and
without (black). The bottom panel shows only the memory-
induced strain series, where the blue curve uses the maximum
likelihood parameters for GW150914 [1, 17]. The red dot-
ted and dashed curves are binaries at the same distance (410
Mpc) and with the same orientation (✓ = 140�), but equal
mass binaries with m

1,2 = 20M� and 50M� respectively (cf.
65M� for the blue curve). Inset: the solid blue curve shows
a zoomed-in version of the blue curve from the bottom panel,
while the dashed curve is after a high-pass filter to show the
signal visible in aLIGO.

sign of the memory determined when �h`=(2,3)m (blue
curve) is detectable with matched filtering.
In Fig. 2, we plot the strain time series for a binary

with parameters equivalent to the maximum-likelihood
estimates for GW150914: m1 = 36M�, m2 = 29M�,
d = 410Mpc and ✓ = 140� [1, 17]. The top panel shows
the full signal with and without memory (blue and black
curves, respectively). The bottom panel shows only the
memory component. The memory component is calcu-
lated using Eqn. (9) from Ref. [16] and the method de-
scribed therein. The red dotted and dashed curves are
binaries at the same distance, and with the same orien-
tation, but with di↵erent masses: m1,2 = 20M� (dotted
curve) and 50M� (dashed curve).
LIGO is not sensitive to strain below ⇡ 10 Hz. The

solid blue curve in the inset to Fig. 2 shows a zoomed-
in version of the GW strain corresponding to the blue
curve in the bottom panel, while the dashed curve shows
the signal after applying a high-pass filter with a 10 Hz
cut-o↵.
The memory amplitude scales linearly with the black-

hole masses. The mass also changes the memory rise
time, and hence its spectral shape, but only at frequen-
cies greater than one over the rise time. LIGO is more
sensitive to higher mass binaries providing the character-
istic rise time of the memory signal is smaller than 1/f0,
where f0 is the detector’s low-frequency seismic cut-o↵.

Lasky et al., PRL 117, 061102 (2016)

SNR for h ⇠ 24

GW150914-like  
event

SNR, �h+ ⇠ 0.5



Stacking memory signals to detect with LIGO 5
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FIG. 4: Evolution of the cumulative Bayes factor as a func-
tion of the number of binary black hole mergers. All binaries
have the same distance and mass as the maximum likelihood
parameters of GW150914, but have random distributions of
inclination, polarisation and sky position. The thick, solid
curves represent the expectation value and the shaded region
is the one-sigma uncertainties. The blue curve sums the mem-
ory signal-to-noise contribution from all binaries, and the red
curve assigns memory hS/Ni = 0 for those binaries where the
polarisation angle, and hence the sign of the memory cannot
be determined. We also show in grey 10 individual realisa-
tions from the red curve.

Given there is only a single GW observation to date,
we do not know the mass distribution of binary black
holes throughout the Universe. The memory component
of the GW strain scales proportionally to the mass of the
binary; if GW150914 was a relatively high-mass binary
compared to the population, then the number of events
required to detect memory increases. However, there are
some theoretical suggestions [e.g., 25] that GW150914
may be at the lower end of the mass distribution, imply-
ing GW memory could be detected sooner.

We provide a proof-of-principle that LIGO and the
global network of ground-based GW interferometers will
be able to detect GW memory with dozens of nearby
events. The addition of more GW detectors such as
Virgo, KAGRA or LIGO-India will further reduce the
time to detection.
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FIG. 4: Evolution of the cumulative Bayes factor as a func-
tion of the number of binary black hole mergers. All binaries
have the same distance and mass as the maximum likelihood
parameters of GW150914, but have random distributions of
inclination, polarisation and sky position. The thick, solid
curves represent the expectation value and the shaded region
is the one-sigma uncertainties. The blue curve sums the mem-
ory signal-to-noise contribution from all binaries, and the red
curve assigns memory hS/Ni = 0 for those binaries where the
polarisation angle, and hence the sign of the memory cannot
be determined. We also show in grey 10 individual realisa-
tions from the red curve.

Given there is only a single GW observation to date,
we do not know the mass distribution of binary black
holes throughout the Universe. The memory component
of the GW strain scales proportionally to the mass of the
binary; if GW150914 was a relatively high-mass binary
compared to the population, then the number of events
required to detect memory increases. However, there are
some theoretical suggestions [e.g., 25] that GW150914
may be at the lower end of the mass distribution, imply-
ing GW memory could be detected sooner.

We provide a proof-of-principle that LIGO and the
global network of ground-based GW interferometers will
be able to detect GW memory with dozens of nearby
events. The addition of more GW detectors such as
Virgo, KAGRA or LIGO-India will further reduce the
time to detection.
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boost parameter γ, the magnitude of the dimension-
less spin χi = Si/M2

i (where in all of our simulations
χ1 = χ2 = χ), the initial separation d, the impact param-
eter b = L/P and the orientation of the spins measured
by the angle θ relative to the coordinate axis connecting
the initial BH positions (see Fig. 1). For both sequences,
we fix the boost parameter γ = 1.52, corresponding to
P/M = 0.374, the dimensionless spin χ = 0.621 and the
initial separation d = 58.2 M . The two sequences differ
in the impact parameter; b = 3.34 M for the s-sequence
(scattering) and b = 3.25 M for the m-sequence (merging
binaries). We carried out a total of twenty simulations for
selected values of the angle θ in the range [0◦, 360◦]. For
comparison, we also present results from two nonspin-
ning, equal-mass binaries with the same rest mass, boost
and impact parameters. Radiated energy and angular
momenta, and (for the merger cases) final horizon prop-
erties are summarized in Table I (some of these quantities
have not yet been introduced, but they will be defined
later on in the paper).

B. Computational grid and uncertainties

We have evolved all binary configurations on a numer-
ical grid consisting of ten nested refinement levels, three
levels with one component centered on the coordinate
origin and seven levels with two components each, cen-
tered on either BH. Using the notation of Sec. II E of
Ref. [14], the exact grid setup in units of M (rounded to
three significant digits) is given by

{(258, 184, 92)

×(13.8, 6.90, 3.45, 1.73, 0.863, 0.431, 0.216), h} .

Our standard resolution is h = M/223, but for conver-
gence testing we have also evolved one merger case us-
ing a coarser resolution hc = M/195 and finer resolution
hf = M/250. GWs have been extracted on a a set of six
concentric spheres of coordinate radii Rex = 57.5M to
86.3M in steps of 5.76M .
The convergence analysis for the recoil velocity is

shown in Fig. 2. Here we define a time-dependent kick as
the quotient of the radiated momentum and the final BH
mass: vkick = −Prad(t)/Mfin. The figure demonstrates

Mergers Scatters

Average Max. Dev. Average Max. Dev.

Erad/M 0.295 2.3% 0.252 2.2%

Ephys/M 0.265 2.6% 0.222 2.1%

Jrad/J 0.643 2.6% 0.580 1.2%

Jphys 0.605 5.2% 0.531 0.7%

Mirr/M 0.607 0.3% — —

jfin 0.869 3.2% — —

jQNM 0.890 4.4% — —

jAH 0.889 2.2% — —

TABLE I. Initial and final parameters for the two sequences of
binary models. Note that in all cases the estimated uncertain-
ties in these quantities (not shown) from numerical truncation
error or finite extraction radius is larger than the intrinsic
variation within each sequence, including the two nonspin-
ning comparison cases. Therefore, rather than list the values
for all the separate cases, here we just list the average value,
and the maximum deviation relative to the average. Note
that for merger cases we only have apparent horizon informa-
tion from roughly half the simulations, and so corresponding
averages and deviations for the mass Mirr and spin jAH only
include those.
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FIG. 2. Convergence test for the recoil velocity vkick(t) ≡

Prad(t)/Mfin. The convergence factor Q2 = 1.459 corresponds
to second-order convergence.

second-order convergence. Richardson extrapolation re-
veals a relative uncertainty of the numerical kick velocity
obtained with medium resolution of about 9%.

A second main source of error is inherited from the use
of finite extraction radii. We study the resulting error by
analyzing vkick(t) extracted for the high-resolution simu-
lation of the test model at six different radii in Fig. 3. For
this purpose we have first aligned the velocity functions
in time to compensate for differences in the propagation
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Spin memory effect: Post-Newtonian binaries

Cannot measure with LIGO, but can measure�⌃ h⇥

Non-spinning compact binaries, spin memory in (L,m)=(3,0) mode
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Spin memory effect for compact binaries



Spin memory effect for compact binaries

Mode SNR in LIGO SNR in ET
Quadrupole ⇠ 1⇥ 102 ⇠ 5⇥ 103

Displacement Memory ⇠ 1 ⇠ 30
Spin Memory ⇠ 0.03 ⇠ 1
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A prediction of GR in nonlinear and dynamical regime and an 
observational consequence of symmetry/asymptotic flatness 

Detectable LIGO by stacking ~100 GWs from BBH mergers

Prediction of GR related to extended symmetries 

Requires stacking and next generation detectors to observe 

GW memory effect 

Spin memory effect


