
Lecture 1

Summer school Malta 12 September 2016

THE UNIX COMMAND LINE

2

Luigi Grassi

Department of Haematology

Long Road Cambridge, CB2 0PT UK

lg490@medschl.cam.ac.uk

mailto:lg490@medschl.cam.ac.uk

Course Contents (I)

It is a unix course and has to be as much interactive as possible:
please let try the commands as we are going to describe them!

● Unix files and structure

● Shells and file handling

● Unix Tools

● Users and permissions

● Coffee break

● Standard input/output, redirections, pipes

Course Contents (II)

● Task control

● Environment variables & bashrc

● Text editor (nano)

● Compressing and archiving

● Locating files

The Unix and GNU / Linux command line

Unix files and structure

UNIX FILES

● Regular files

● Directories
Directories are just files
listing a set of files

Unix is made of files!

Filesystem structure

/ Root directory
/bin/ Basic, essential system commands
/boot/ Kernel images, initrd and configuration files
/dev/ Files representing devices
/dev/hda: First IDE hard disk
/etc/ System configuration files
/home/ User directories
/lib/ Basic system shared libraries

File names

● Case sensitive

● No length limit

● Can contain any character (including whitespace, except /).
File types stored in the file.
File name extensions not needed and not interpreted. Just
used for user convenience.

● File name examples:
README .bashrc
index.htm index.html index.html.old

File paths

A path is a sequence of nested directories with a file or
directory at the end, separated by the / character

● Relative path: documents/fun/microsoft_jokes.html
Relative to the current directory

● Absolute path: /home/documents/fun/microsoft_jokes.html

The Unix and GNU / Linux command line

Shells and file handling

Command line interpreters

● Shells: tools to execute user commands (Called “shells”
because they hide the details on the underlying operating
system under the shell's surface).

● Commands are input in a text terminal, either a window in a
graphical environment or a text-only console.

● Results are also displayed on the terminal. No graphics are
needed at all.

● Shells can be scripted: provide all the resources to write
complex programs (variable, conditionals, iterations...)

Well known shells

Most famous and popular shells

● sh: The Bourne shell (obsolete)
Traditional, basic shell found on Unix systems, by Steve Bourne.

● csh: The C shell (obsolete)
Once popular shell with a C-like syntax

● tcsh: The TC shell (still very popular)
A C shell compatible implementation with evolved features
(command completion, history editing and more...)

● bash: The Bourne Again shell (most popular)
An improved implementation of sh with lots of added features
too.

CONSOLE

Open the web browser a go to the address

http://ec2-52-209-201-139.eu-west-
1.compute.amazonaws.com:3000/connect

Use your credentials to login

Command help

Commands take “arguments” which tell them what exactly
to do (most of them start with - or --)

Some Unix commands and most GNU / Linux commands
offer at least one help argument:

● -h
(- is mostly used to introduce 1-character options)

● --help
(-- is always used to introduce the corresponding “long”
option name, which makes scripts easier to understand)

You also often get a short summary of options when you
input an invalid argument.

Manual pages

man <keyword>
Displays one or several manual pages for <keyword>
● man man

Most available manual pages are about Unix commands, but
some are also about C functions, headers or data structures,
or even about system configuration files!

● man stdio.h
● man fstab (for /etc/fstab)

Manual page files are looked for in the directories specified by
the MANPATH environment variable.

TIPS AND TRICKS

1)The tab key is a shortcut for auto complete your command

2)Unix saves your commands in a history that you can trace
back whenever you need (try to type “history” in your
terminal and you'll see all last 500-1000 launched
commands)

3)using arrows UP and DOWN you can navigate across you
history

4)ctrl + a → moves the cursor at the beginning of the line

5)ctrl + e → moves the cursor at the end of the line

TIPS AND TRICKS

6)ctrl + b → moves the cursor one character back

7)ctrl + f → moves the cursor one character forward

8) You can recall a command by its number
!100

9) You can recall the latest command:
!!

Moving between directories

● pwd
Displays the current directory ("working directory")

● cd <dir>
Changes the current directory to <dir>

$ cd ~/Unix_course/MALTA_2016

$ pwd

Moving between directories

● cd ..
Gets back to the previous directory

● cd ../..
Gets back to the previous two directories

● cd (cd ~)
Goes directly to the home directory

$ cd ..

$ pwd

$ cd MALTA_2016

ls command

● ls -a (all)
Lists all the files (including .*
files)

● ls -l (long)
Long listing (type, date, size,
owner, permissions)

● ls -t (time)
Lists the most recent files first

● ls -S (size)
Lists the biggest files first

● ls -r (reverse)
Reverses the sort order

● ls -ltr (options can be
combined)
Long listing, most recent files
at the end

Lists the files in the current directory (by default) , in alphanumeric order (if no
other option is specified), except files starting with the “.” character.

$ ls -ltrh

$ ls -lSrh

Wildcards

Commands can use wildcards to perform actions on more
than one file at a time, or to find part of a phrase in a text
file.

? (question mark)

this can represent any single character.

* (asterisk)

this can represent any number of characters (including zero,
in other words, zero or more characters).

$ ls -ltrh *txt

$ ls -ltrh ?.txt

The cp command

● cp <source_file> <target_file>
Copies the source file to the target.

● cp file1 file2 file3 ... dir
Copies the files to the target directory (last argument).

● cp -r <source_dir> <target_dir> (recursive)
Copies the whole directory.

$ cd ~/Unix_course/

$ cp -r MALTA_2016 MALTA_2016_copy

mv and rm commands

● mv <old_name> <new_name> (move)
Renames the given file or directory.

● mv -i (interactive)
If the new file already exits, asks for user confirm

● rm file1 file2 file3 ... (remove)
Removes the given files.

● rm -r dir1 dir2 dir3 (recursive)
Removes the given directories with all their contents.

$ cd MALTA_2016_copy

$ ls -ltrh

$ cd ..

$ rm -rf MALTA_2016_copy

Creating and removing directories

● mkdir dir1 dir2 dir3 ... (make dir)
Creates directories with the given names.

● rmdir dir1 dir2 dir3 ... (remove dir)
Removes the given directories
Safe: only works when directories and empty.
Alternative: rm -r (doesn't need empty directories).

$ mkir TEST1

$ cd TEST1

$ ls

$ cd ..

$ rmdir TEST1

The shell has plenty of tools ready to use

Unix tools

The Unix and GNU / Linux command line

Unix tools are robust and fast programs
designed with the “one thing well” philosophy

Displaying file contents

Several ways of displaying the contents of files.

● less <file>
visualize a text file, you can also look for specific words in
the file press “q” to exit

● less -S <file>
does not split the lines

● more <file>
visualize the file (less interactive).

$ cd ~/Unix_course/MALTA_2016

$ less -S 6.txt

$ /

$ 3

The head and tail commands

● head [-<n>] <file>
Displays the first <n> lines (or 10 by default) of the given file.
Doesn't have to open the whole file to do this!

● tail [-<n>] <file>
Displays the last <n> lines (or 10 by default)

$ cd MALTA_2016

$ head -n1 6.txt

$ tail -n1 6.txt

The grep command
● grep <pattern> <files>

Scans the given files and displays the lines which match the given
pattern.

● grep error *.log
Displays all the lines containing error in the *.log files

● grep -i error *.log
Same, but case insensitive

● grep -F “error” .
Interpret pattern as a set of fixed strings

● grep -v info *.log
Outputs all the lines in the files except those containing info.

$ cd ~/Unix_course/MALTA_2016

$ grep 1 *.txt

$ grep 6 *.txt

The sort command

● sort <file>
Sorts the lines in the given file in character order and
outputs them.

● sort -r <file>
Same, but in reverse order.

● sort -ru <file>
u: unique. Same, but just outputs identical lines once.

$ cd ~/Unix_course/MALTA_2016

$ sort 6 .txt

$ sort -r 6 .txt

The wc command

● wc -l <file>
counts the line number in the file.

● wc -w <file>
counts the word number in the file.

● wc -m <file>
counts the character number in the file.

$ cd ~/Unix_course/MALTA_2016

$ wc -l *txt

File links

A symbolic link is a special file which is just a reference to the name of another
one (file or directory):

● Useful to reduce disk usage and complexity when 2 files have the same
content.

● Example:
anakin_skywalker_biography -> darth_vador_biography

● How to identify symbolic links:

ls -l displays -> and the linked file name.

ls displays links with a different color.

Inode

File Hard linkSoft link

Inode
interface

File name interface

Filesystem

Users

rm
rm

Inode

Creating symbolic links

● To create a symbolic link (same order as in cp):
ln -s file_name link_name

● To create a link with to a file in another directory, with the
same name:
ln -s ../README.txt

● To create multiple links at once in a given directory:
ln -s file1 file2 file3 ... dir

● To remove a link:
rm link_name
Of course, this doesn't remove the linked file!

Hard links

● The default behavior for ln is to create hard links

● A hard link to a file is a regular file with exactly the same
physical contents

● While they still save space, hard links can't be distinguished
from the original files.

● If you remove the original file, there is no impact on the hard
link contents.

● The contents are removed when there are no more files
(hard links) to them.

Files names and inodes

$ cd ~/Unix_course/MALTA_2016

$ ls -ltrh

$ ln -s 6.txt sl6.txt

$ ls -ltrh

$ ln 6.txt hl6.txt

$ rm 6.txt

$ less sl6.txt

$ less hl6.txt

$ mv hl6.txt 6.txt

$ less sl6.txt

The wget command

Instead of downloading files from your browser, just copy and
paste their URL and download them with wget!

wget main features

● http and ftp support

● Can resume interrupted downloads

● Can download entire sites or at least check for bad links

● Very useful in scripts or when no graphics are available
(system administration, embedded systems)

awk

● Scripting language on it’s own

● I mostly use it to change values in a certain column of a
tab/comma-separated file

● Much more powerful than just that

● Worth digging deeper (not covered here)

awk

● awk ‘<code>’ <files>

Conditional printing

awk -F”\t” '($1==”yes”) {print $2}' file.txt

 We can print only the second and third column

awk -F”\t” '{print $2,$3}' file.txt

We can change change numeric values by

awk -F"\t" '{$2=$2+1000;print$0}' awk_example.tsv

$ cd ~/Unix_course/MALTA_2016

$ less -S awk_example.tsv

$ less -S -x15 awk_example.tsv

$ awk -F"\t" '($1=="yes") {$2=$2+1000;print$0}' awk_example.tsv

The Unix and GNU / Linux command line

Users and permissions

Users and permissions

Every UNIX user has a user name to define an account

The user is defined by his group and privileges

File access rights

3 types of access rights

● Read access (r)
● Write access (w)

● Execute rights (x)

3 types of access levels

● User (u): for the owner of the
file

● Group (g): each file also has
a “group” attribute,
corresponding to a given list
of users

● Others (o): for all other users

$ cd ~/Unix_course/MALTA_2016

$ ls -ltrh

Access rights examples

● -rw-r--r--
Readable and writable for file owner, only readable for others

● -rw-r-----
Readable and writable for file owner, only readable for users
belonging to the file group.

● drwx------
Directory only accessible by its owner

● -------r-x
File executable by others but neither by your friends nor by
yourself. Nice protections for a trap...

chmod: changing permissions

● chmod <permissions> <files>
2 formats for permissions:

● Symbolic format. Easy to understand by examples:
chmod go+r: add read permissions to group and others.
chmod u-w: remove write permissions from user.
chmod a-x: (a: all) remove execute permission from all.

$ cd ~/Unix_course/MALTA_2016

$ ls -ltrh

$ chmod g+w awk_example.tsv

$ ls -ltrh

$ chmod g-w awk_example.tsv

Beware of the dark side of root

● root user privileges are only needed for very specific
tasks with security risks: mounting, creating device
files, loading drivers, starting networking,
changing file ownership, package upgrades...

● Your regular account should be sufficient for 99.9 %
of your tasks (unless you are a system administrator).

● In real life, you may not even have access to this
account, or put your systems and data at risk if you
do.

Using the root account

In case you really want to use root...

● If you have the root password:
su - (switch user)

● In modern distributions, the sudo command gives you access to some
root privileges with your own user password.
Example: sudo mount /dev/hda4 /home

Exercise 1
In the directory Unix_course there is a directory named
Exercise_1

1) How many files are in it ? Which owner and group do they
have ?

2) What are they ? (Visualize the content)

3) Look for the word Malta in each of it

4) How many lines are in each file?

5) How many words are in each file?

6) Create a folder named “Res_1” outside the Exercise_1
path and create in it an hard and a soft link of one file

Coffee break (15 min)

The Unix and GNU / Linux command line

Standard I/O, redirections, pipes

Standard output

More about command output

● All the commands outputting text on your terminal do it by writing to their
standard output.

● Standard output can be written (redirected) to a file using the > symbol

It creates a new file (or replaces it) where saves the output

● Standard output can be appended to an existing file using the >> symbol

It creates a new file if not already present, otherwise appends the
output to the existing file

Standard output

$ cd ~/Unix_course/MALTA_2016

$ less 5.txt

$ less 5.txt > redirect.txt

$ less redirect.txt

$ ls -ltrh

$ less 6.txt >> redirect.txt

$ less redirect.txt

$ ls -ltrh

$ less 1.txt > redirect.txt

$ less redirect.txt

$ ls -ltrh

$ rm redirect.txt

Concatenate multiple files in one

The cat tool reads files sequentially, writing them to the standard
output.

cat <file1> <file 2> <etc.>

$ cd ~/Unix_course/MALTA_2016

$ cat 1.txt 2.txt 3.txt >1_2_3.txt

$ less -S 1_2_3.txt

Standard input

More about command input

● Lots of commands, when not given input arguments, can
take their input from standard input.

● sort takes its input from the standard input: in this case,
what you type in the terminal (ended by [Ctrl][D])

● sort < participants.txt
The standard input of sort is taken from the given file.

Pipes

● Unix pipes are very useful to redirect the standard output of a
command to the standard input of another one.

Pipes

● Examples

cat *.txt | grep 1 | sort
● This one of the most powerful features in Unix shells!

$ cat ~/Unix_course/Exercise_1/*.txt |grep -F -a "Malta"|sort

Standard error

● Error messages are usually output (if the program is well
written) to standard error instead of standard output.

● Standard error can be redirected through 2> or 2>>
● Example:

cat f1 f2 nofile > newfile 2> errfile
● Note: 1 is the descriptor for standard output, so 1> is equivalent to

>.

● Can redirect both standard output and standard error to the
same file using &> :
cat f1 f2 nofile &> wholefile

The Unix and GNU / Linux command line

Task control

Full control on tasks

● Since the beginning, Unix supports true preemptive multitasking.

● Ability to run many tasks in parallel, and abort them even if they
corrupt their own state and data.

● Ability to choose which programs you run.

● Ability to choose which input your programs takes, and where
their output goes.

Processes

● Instances of a running programs

● Several instances of the same program can run at the same time

● Data associated to processes:
Open files, allocated memory, stack, process id, parent, priority,
state...

Running jobs in background

Same usage throughout all the shells

● Useful

For command line jobs which output can be examined later, especially for
time consuming ones.

To start graphical applications from the command line and then continue
with the mouse.

● Starting a task: add & at the end of your line:

find_results --interesting --clever --rich &

Background job control

● An alternative way to put a job in background is to stop it with
[Ctrl] z and than digit bg

● jobs
Returns the list of background jobs from the same shell

● fg %<n>
Puts the last / nth background job in foreground mode

● kill %<n>
Aborts the nth job.

Listing all processes

... whatever shell, script or process they are started from

● ps -ux
Lists all the processes belonging to the current user

● ps -aux (Note: ps -edf on System V systems)
Lists all the processes running on the system

● ps -aux | grep bart | grep bash
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
bart 3039 0.0 0.2 5916 1380 pts/2 S 14:35 0:00 /bin/bash
bart 3134 0.0 0.2 5388 1380 pts/3 S 14:36 0:00 /bin/bash
bart 3190 0.0 0.2 6368 1360 pts/4 S 14:37 0:00 /bin/bash
bart 3416 0.0 0.0 0 0 pts/2 RW 15:07 0:00 [bash]

● PID: Process id
VSZ: Virtual process size (code + data + stack)
RSS: Process resident size: number of KB currently in RAM
TTY: Terminal
STAT: Status: R (Runnable), S (Sleep), W (paging), Z (Zombie)...

Live process activity

● top - Displays most important processes, sorted by cpu
percentage

● You can change the sorting order by typing
M: Memory usage, P: %CPU, T: Time.

● You can kill a task by typing k and the process id.

$ top

$ M

$ P

$ q

Killing processes

● kill <pids>
Sends an abort signal to the given processes. Lets processes
save data and exit by themselves. Should be used first.
Example:
kill 3039 3134 3190 3416

● kill -9 <pids>
Sends an immediate termination signal. The system itself
terminates the processes. Useful when a process is really
stuck (doesn't answer to kill -1).

● kill -9 -1
Kills all the processes of the current user. -1: means all
processes.

● killall [-<signal>] <command>
Kills all the jobs running <command>. Example: killall bash

Sequential commands

● Can type the next command in your terminal even when
the current one is not over.

● Can separate commands with the ; symbol:
echo “I love thee”; sleep 10; echo “ not”

● Conditionals: use || (or) or && (and):
more Goodresults || echo “Sorry, Goodresults don't exist”
Runs echo only if the first command fails

ls ~sd6 && cat ~sd6/* > ~sydney/recipes.txt
Only cats the directory contents if the ls command succeeds
(means read access).

Exercise 2

In the directory Unix Exercise_2 there is a bash script

1) Which permissions it has? (Can you visualize the
content ?)

2) Run it in a normal mode (./kind_job) redirecting its output to
a file named ex2_res.out

3) stop it and put in background

4) how can you see that it still working?

5)kill the job

6)visualize the results

7)remove the results

The Unix and GNU / Linux command line

Environment variables

Environment variables

● Shells let the user define variables.
They can be reused in shell commands.
Convention: lower case names

● You can also define environment variables:
variables that are also visible within scripts or
executables called from the shell.
Convention: upper case names.

● env
Lists all defined environment variables and their
value.

$ env

Shell variables examples

Shell variables (bash)

● projdir=/home/marshall/coolstuff
ls -la $projdir; cd $projdir

Environment variables (bash)

● cd $HOME
● export DEBUG=1

./find_extraterrestrial_life
(displays debug information if DEBUG is set)

Main standard environment variables

● LD_LIBRARY_PATH
Shared library search path

● DISPLAY
Screen id to display X
(graphical) applications on.

● EDITOR
Default editor (vi, emacs...)

● HOME
Current user home
directory

● HOSTNAME
Name of the local machine

● MANPATH
Manual page search path

● PATH
Command search path

● PRINTER
Default printer name

● SHELL
Current shell name

● TERM
Current terminal type

● USER
Current user name

Used by lots of applications!

VISUALIZE A VARIABLE

The echo utility writes any specified operands to the standard output.

echo "you are the best unix user" will print to the screen the sentence "you
are the best unix user";

You can declare a variable in the shell and print it

mytestvar='you'
echo “$mytestvar are the best unix user”

At the same manner you can also print system variables as user, shell, etc.

$ echo $USER

$ echo $SHELL

$ echo $PRINTER

PATH environment variables

● PATH
Specifies the shell search order for commands

/
home/acox/bin:/usr/local/bin:/usr/kerberos/bin:/usr/bin:/bin:/usr/
X11R6/bin:/bin:/usr/bin
● LD_LIBRARY_PATH

Specifies the shared library (binary code libraries shared by
applications, like the C library) search order for ld

/usr/local/lib:/usr/lib:/lib:/usr/X11R6/lib
● MANPATH

Specifies the search order for manual pages

/usr/local/man:/usr/share/man

PATH usage warning

It is strongly recommended not to have the “.” directory in your
PATH environment variable, in particular not at the beginning:

● A cracker could place a malicious ls file in your directories. It
would get executed when you run ls in this directory and could do
naughty things to your data.

● If you have an executable file called test in a directory, this will
override the default test program and some scripts will stop
working properly.

● Each time you cd to a new directory, the shell will waste time
updating its list of available commands.

Call your local commands as follows: ./test

Alias

Shells let you define command aliases: shortcuts for commands you
use very frequently.

Examples

● alias ls='ls -la'
Useful to always run commands with default arguments.

● alias rm='rm -i'
Useful to make rm always ask for confirmation.

● alias frd='find_rambaldi_device --asap --risky'
Useful to replace very long and frequent commands.

● alias cia='. /home/sydney/env/cia.sh'
Useful to set an environment in a quick way
(. is a shell command to execute the content of a shell script).

~/.bashrc file

● ~/.bashrc
Shell script read each time a bash shell is started

● You can use this file to define

Your default environment variables (PATH, EDITOR...).

Your aliases.

Your prompt (see the bash manual for details).

A greeting message.

$ less -S ~/.bash_profile

Quoting (1)

Double (") quotes can be used to prevent the shell from
interpreting spaces as argument separators, as well as to
prevent file name pattern expansion.

> echo "Hello World"
Hello World

> echo "You are logged as $USER"
You are logged as bgates

> echo *.log
find_prince_charming.log cosmetic_buys.log

> echo "*.log"
*.log

Quoting (2)

Single (') quotes bring a similar functionality, but what is
between quotes is never substituted

> echo 'You are logged as $USER'
You are logged as $USER

Back quotes (`) can be used to call a command within another

> cd /lib/modules/`uname -r`; pwd
/lib/modules/2.6.9-1.6_FC2

Back quotes can be used within double quotes

> echo "You are using Linux `uname -r`"
You are using Linux 2.6.9-1.6_FC2

Text editors

Graphical text editors
Fine for most needs

nedit

Emacs, Xemacs

Kate, Gedit

Text-only text editors
Often needed for sysadmins and great for power users

vi, vim

nano

Kate and gedit

● Kate is a powerful text editor dedicated
to programming activities, for KDE

http://kate.kde.org

● Gedit is a text editor for the Gnome
environment

http://projects.gnome.org/gedit/

http://kate.kde.org/
http://projects.gnome.org/gedit/

vi

Text-mode text editor available in all Unix systems. Created before
computers with mice appeared.

● Difficult to learn for beginners used to graphical text editors.

● Very productive for power users.

● Often can't be replaced to edit files in system administration or in
Embedded Systems, when you just have a text console.

It is extremely powerful, its main 30 commands are easy to learn and are
sufficient for 99% of everyone's needs!

You can also take the quick tutorial by running vimtutor.

A vi “Cheat Sheet” is present in the handouts folder or online at
http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

GNU nano

http://www.nano-editor.org/

● Another small text-only, mouse free text editor.

● An enhanced Pico clone (non free editor in Pine)

● Friendly and easier to learn for beginners thanks to on screen command
summaries.

http://www.nano-editor.org/

GNU nano screenshot

Exercise 3

In the directory Unix Exercise_2 there is a bash script

1) copy it into a different file in the same directory

2) open with nano and edit it add “you are not” before the
sentence and remove the sleep command

3) run it redirecting its output to a file in a bakgroundg mode

4) stop it an remove its ouput

The Unix and GNU / Linux command line

Compressing and archiving

Measuring disk usage

Caution: different from file size!

● du -h <file> (disk usage)
-h: returns size on disk of the given file, in human
readable format: K (kilobytes), M (megabytes) or G
(gigabytes), . Without -h, du returns the raw number of
disk blocks used by the file (hard to read).
Note that the -h option only exists in GNU du.

● du -sh <dir>
-s: returns the sum of disk usage of all the files in the
given directory.

Measuring disk space

● df -h <dir>
Returns disk usage and free space for the filesystem
containing the given directory.
Similarly, the -h option only exists in GNU df.

● Example:
> df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/hda5 9.2G 7.1G 1.8G 81% /

● df -h
Returns disk space information for all filesystems
available in the system. When errors happen, useful to
look for full filesystems.

Compressing and decompressing

Very useful for shrinking huge files and saving space

● g[un]zip <file>
GNU zip compression utility. Creates .gz files.
Ordinary performance (similar to Zip).

● b[un]zip2 <file>
More recent and effective compression utility.
Creates .bz2 files. Usually 20-25% better than gzip.

● [un]lzma <file>
Much better compression ratio than bzip2 (up to 10 to 20%).
Compatible command line options.

Archiving (1)

Useful to backup or release a set of files within 1 file

● tar: originally “tape archive”

● Creating an archive:
tar cvf <archive> <files or directories>
c: create
v: verbose. Useful to follow archiving progress.
f: file. Archive created in file (tape used otherwise).

● Example:
tar cvf /backup/home.tar /home
bzip2 /backup/home.tar

Archiving (2)

● Viewing the contents of an archive or integrity check:
tar tvf <archive>
t: test

● Extracting all the files from an archive:
tar xvf <archive>

● Extracting just a few files from an archive:
tar xvf <archive> <files or directories>
Files or directories are given with paths relative to the
archive root directory.

The find command

Better explained by a few examples!

● find . -name “*.pdf”
Lists all the *.pdf files in the current (.) directory or
subdirectories. You need the double quotes to prevent
the shell from expanding the * character.

● find docs -name "*.pdf" -exec xpdf {} ';'
Finds all the *.pdf files in the docs directory and displays
one after the other.

● Many more possibilities available! However, the above 2
examples cover most needs.

The locate command

Much faster regular expression search alternative to find
● locate keys

Lists all the files on your system with keys in their name.

● locate “*.pdf”
Lists all the *.pdf files available on the whole machine

● locate “/home/fridge/*beer*”
Lists all the *beer* files in the given directory (absolute path)

● locate is much faster because it indexes all files in a dedicated
database, which is updated on a regular basis.

● find is better to search through recently created files.

Exercise 4

In the directory Exercise_4 there is a the file usconst.txt, it
contains the American constitution

1)How many words, lines and bites is made of?

2) Can you count how many times are mentioned the words
“Congress” , “State” and c/Citizen ?

3)archive and compress the complete folder

Bonus Exercise

From the gutenberg web page download the 12034-8.txt (
http://www.gutenberg.org/files/12034/12034-8.txt)

1)What is it?

2) How many chapter is made of ?

3) How many words is made of ?

4) How many times the word Malta is present in it?

5) Display the content of the 365th line

6) Save in separate files the first 100, the last 150 and all the
lines beginning with the word Malta

7)Join all the three files in one and zip it

http://www.gutenberg.org/files/12034/12034-8.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	UNIX FILESYSTEM
	Everything is a file
	GNU / Linux filesystem structure (1)
	File names and paths
	File paths
	Slide 10
	Command line interpreters
	Well known shells
	Slide 13
	Command help
	Manual pages
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	File name patterns
	The cp command
	mv and rm commands
	Create and remove directories
	ls command
	COMMAND DOCUMENTATION
	Displaying file contents
	The head and tail commands
	The grep command
	The sort command
	Slide 31
	Symbolic links
	Creating symbolic links
	Hard links
	Names and inodes
	The wget command
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Access rights
	Access rights examples
	Changing permissions
	Beware of the dark side of root
	Using the root account
	Slide 46
	Slide 47
	Slide 48
	Standard output
	Slide 50
	Slide 51
	Standard input
	Pipes
	Slide 54
	Standard error
	TASK CONTROL
	Full control on tasks
	Processes
	Run background jobs
	Job control
	Listing all processes
	Live process activity
	Killing processes (1)
	Sequential commands
	Slide 65
	Slide 66
	Environment variables
	Shell variable examples
	Standard environment variables
	Slide 70
	PATH environment variables
	PATH usage warning
	Alias
	~/.bashrc file
	Quoting (1)
	Slide 76
	Text editors
	Kate and gedit
	vi
	GNU Nano
	GNU nano screenshot
	Slide 82
	MISCELLANEOUS - Compressing and archiving
	Measuring disk usage
	Measuring disk space
	Compressing and decompressing
	Archiving (1)
	Archiving (2)
	The find command
	The locate command
	Slide 91
	Slide 92

