
eQTL practicals TrainMalta

These are the practials used for the eQTL introductory course in the TrainMalta course. The practicals are
based on ideas and data in http://jknightlab.github.io/eqtl-intro/exercises/exercises_and_solutions.html
and on genotyping data from HapMap 2.

Preparation and basic stats

We will start by loading the expression and the genotype data into R, you can do that by:
options(stringsAsFactors=FALSE)
setwd("/data/day5/eqtl_intro")
expr = read.table("simulated/sim_expression1.tab", sep="\t", header=TRUE, row.names = 1)
gt = read.table("simulated/sim_genotypes.tab", sep="\t", header=TRUE, row.names = 1)

Basic stats

Task
To get a basic idea of how many samples, genes and which genotyped positions are available in the dataset,
print out the dimensions of the loaded datasets. For the first 10 genes print out the mean expression levels
+ standard deviation. Do the same for the first 10 SNPs in the table.

MAF

Minor allele frequency (MAF) is a measure of the presence an allele in a population. Every individual person
has about 4.1-5 million bases in which he differs from the reference genome http://www.nature.com/nature/
journal/v526/n7571/full/nature15393.html#a-typical-genome. Some of those variants are common in a
certain population, others not. In order to measure the rareness of a specific variant (allele) MAF can be
calculated. In case of single nucleotide polymorphisms there can be up to four different alleles in one position
(A, C, G, T). Those alleles can be homozygous or heterozygous, when the maternal allele was different from
the paternal allele at that position.

SNPs in a population are always defined by the genomic position and by two alleles: The allele defined in the
reference genome and one allele present in some individuals, but different from the reference sequence. An
example:

1

http://jknightlab.github.io/eqtl-intro/exercises/exercises_and_solutions.html
http://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html#a-typical-genome
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html#a-typical-genome

Spotting the differences:

This individual has two SNPs, he is heterozygous in one of them and homozygous in the other. In eQTL
analyses a SNP is always defined as a single allele being different from the reference. If in a population there
are multiple different alleles for one position, they would be treated as independent entities of SNPs.

Now we know that in eQTL analyses SNPs can only have two alleles: The reference and the alternative.
Calculating MAF is essentially counting the presence of the alleles in a population and representing it as a
percentage. Each individual can have 0, 1 or 2 times the alternative allele.

Task
Try to find out what the values of the genotype matrix mean.

Answer
The values are allele counts of a SNP in each individual.

Task
Calculate the MAF of the SNPs among all inidividuals.

Answer

apply(gt,2,mean)/2

snp_1 snp_2 snp_3 snp_4 snp_5 snp_6
0.006666667 0.030000000 0.020000000 0.065000000 0.046666667 0.126666667
snp_7 snp_8 snp_9 snp_10
0.171666667 0.298333333 0.390000000 0.511666667

The term MAF implies that the allele for which we return the measure has to be the minor (= less common)
allele. This means that the MAF is smaller than 0.5 by definition.

Task
Calculate the MAF for all SNPs among all individuals and correct the returned values so that the value is
always given in respect to the minor allele. Then plot a histogram of the MAFs of all SNPs

Answer

maf <- colMeans(gt)/2
maf <- pmin(maf, 1-maf)
maf
snp_1 snp_2 snp_3 snp_4 snp_5 snp_6
0.006666667 0.030000000 0.020000000 0.065000000 0.046666667 0.126666667
snp_7 snp_8 snp_9 snp_10
0.171666667 0.298333333 0.390000000 0.488333333

2

Filtering SNPs by MAF

In an eQTL study often a minimum MAF is required. Since MAF essentially reflects how often an allele has
been observed in a population, it also defines how often the gene expression levels have been observed for
heterozygous and homozygous alleles.

Task
Calculate the number of heterozygous and homozygous observations expected for SNPs with a MAF of
1%, 5% and 10% in a sample of 300 individuals given Hardy-Weinberg equilibrium. What are useful MAF
thresholds for SNPs to include in an eQTL analysis?

Answer

p = c(0.01, 0.05, 0.1)
q = 1-p
Calulate frequency of minor allele being present in homozygous and heterozygous state
f_hom = p^2
f_het = 2*p*q
Expected number of observations in a sample size of 300
sample_size = 300
round(f_hom * sample_size)

[1] 0 1 3
round(f_het * sample_size)

[1] 6 28 54

Gene expression profiling

Now that we have an idea of what is stored in the genotype matrix we take a look at the expression data.
Important for eQTL analyses is that the gene expression has to be normally distributed among samples,
therefore RNA-seq data has to be transformed by, for example quantile normalisation.

Task
Plot the distribution of gene expression levels across samples for gene “gene_1”.

3

Answer
gname = "gene_1"
hist(expr[,gname], main=paste("Gene expression profile:",gname),

xlab="Expression level")

Gene expression profile: gene_1

Expression level

F
re

qu
en

cy

4 5 6 7 8 9 10

0
10

20
30

40
50

60

Task
Now plot the expression levels of gene “gene_1” against “snp_1” and “gene_10” against “snp_10”
depending on the genotypes of the samples by using dot plots. Consider adding a bit of random noise to
the genotype data to make it look nicer.

4

Answer

snps = c("snp_1", "snp_10", "snp_1")
genes = c("gene_1", "gene_10", "gene_10")

par(mfrow=c(1,length(snps)))
for (index in seq(length(snps))){

genotype = gt[,snps[index]]
expression = expr[,genes[index]]
plot(genotype + runif(length(genotype), min=-0.2, max=0.2), expression,

main=paste(snps[index], "vs", genes[index]), xlim= c(-0.5,2.5),
xlab = "genotype", xaxt="n")

axis(1, at=c(0,1,2), labels = c("BB", "Bb", "bb"))
}

4
5

6
7

8
9

snp_1 vs gene_1

genotype

ex
pr

es
si

on

BB Bb bb

4
6

8
10

12
snp_10 vs gene_10

genotype

ex
pr

es
si

on

BB Bb bb

4
6

8
10

12

snp_1 vs gene_10

genotype

ex
pr

es
si

on

BB Bb bb

Understanding the basics

This chapter should explain the basic ideas behind eQTL analyses. What we are doing here is not what one
would do to run an eQTL analysis, but it explains how eQTL calling works in general.

Linear regression of genotype on phenotype

The most common way of estimating the effect of a SNP on gene expression is by performing a linear
regression of sample genotypes on sample gene expression levels. The p-value indicates the significance of the
genetic component in the model. Let’s try that for gene 10 with snp 1 and snp 10.

5

lm_1_10 = lm(expr[,"gene_10"] ~ gt[,"snp_1"])
summary(lm_1_10)

##
Call:
lm(formula = expr[, "gene_10"] ~ gt[, "snp_1"])
##
Residuals:
Min 1Q Median 3Q Max
-4.5262 -1.1412 0.0577 1.1552 4.0071
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.55324 0.09138 93.600 <2e-16 ***
gt[, "snp_1"] -1.07768 0.79138 -1.362 0.174

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.572 on 298 degrees of freedom
Multiple R-squared: 0.006185, Adjusted R-squared: 0.00285
F-statistic: 1.854 on 1 and 298 DF, p-value: 0.1743
lm_10_10 = lm(expr[,"gene_10"] ~ gt[,"snp_10"])
summary(lm_10_10)

##
Call:
lm(formula = expr[, "gene_10"] ~ gt[, "snp_10"])
##
Residuals:
Min 1Q Median 3Q Max
-3.2863 -0.7161 0.0474 0.6658 2.4429
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.88488 0.10941 62.93 <2e-16 ***
gt[, "snp_10"] 1.61627 0.08788 18.39 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.079 on 298 degrees of freedom
Multiple R-squared: 0.5317, Adjusted R-squared: 0.5301
F-statistic: 338.3 on 1 and 298 DF, p-value: < 2.2e-16

This is the standard summary output from R for linear regressions. Since we are interested in eQTLs our
main interest lies in the second line of “Coefficients”. What is stated as “Estimate” is the slope of the linear
regression, which in eQTL terms is called “effect size” or “beta”. In eQTL studies one normally compares
thousands of genes for which each hundreds to thousands of SNPs have been tested. The common way
to identify eQTLs is by their p-value. The p-value given here (Pr(>|t|)) will later be referred to as raw
p-value. It can be calculated in many different ways, here it is based on the t-value which is derived from the
estimation of the coefficient and its standard error. For a nice explanation of the summary(lm) output see:
http://stats.stackexchange.com/questions/5135/interpretation-of-rs-lm-output

Now let’s display our results using the code from before:

6

http://stats.stackexchange.com/questions/5135/interpretation-of-rs-lm-output

snps = c("snp_1", "snp_10", "snp_1")
genes = c("gene_1", "gene_10", "gene_10")

par(mfrow=c(1,length(snps)))
for (index in seq(length(snps))){

genotype = gt[,snps[index]]
expression = expr[,genes[index]]
lm_result = lm(expression ~ genotype)
plot(genotype + runif(length(genotype), min=-0.2, max=0.2),

expression, main=paste(snps[index], "vs", genes[index]),
xlim= c(-0.5,2.5), xlab = "genotype", xaxt="n")

abline(lm_result, col="red")
axis(1, at=c(0,1,2), labels = c("BB", "Bb", "bb"))
Add p-values as text
y_range = range(expression)
text(x=1, y=y_range[1] + 0.95*diff(y_range), paste0("p=",

format(summary(lm_result)$coefficients[2,4],
scentific=TRUE, digits=2)))

}

4
5

6
7

8
9

snp_1 vs gene_1

genotype

ex
pr

es
si

on

BB Bb bb

p=0.077

4
6

8
10

12

snp_10 vs gene_10

genotype

ex
pr

es
si

on

BB Bb bb

p=5.2e−51

4
6

8
10

12

snp_1 vs gene_10

genotype

ex
pr

es
si

on

BB Bb bb

p=0.17

A nicer way to plot it

In ggplot2 these kinds of plots can be produced very nicely by doing the following:
require(tidyr)

Loading required package: tidyr

7

Warning: package 'tidyr' was built under R version 3.1.3
library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.1.3
genoLong = tidyr::gather(gt, snp, genotype, snp_1, snp_10)
exprLong = tidyr::gather(expr, gene, expression, gene_1, gene_10)
dataLong = cbind(genoLong[,c("snp", "genotype")], exprLong[,c("gene", "expression")])
dataLong$comparison = paste(dataLong$snp, "vs", dataLong$gene)
dataLong$genotype = factor(dataLong$genotype)
p = ggplot(dataLong, aes(genotype, expression)) +

geom_jitter(colour="darkgrey", position=position_jitter(width=0.25)) +
geom_boxplot(outlier.size=0, alpha=0.6, fill="grey") +
facet_wrap(~comparison) + theme_bw()

plot_lm_results = c()
for (i in c(1,10)){

lm_out = lm(expr[,i] ~ gt[,i])
new_data = data.frame("intercept"=lm_out$coefficients[1] - lm_out$coefficients[2],

"slope"=lm_out$coefficients[2], "comparison" =
paste(colnames(gt)[i],"vs", colnames(expr)[i]))

plot_lm_results = rbind(plot_lm_results, new_data)
}
p = p+ geom_abline(data=plot_lm_results,aes(slope = slope, intercept = intercept),

col="red") + facet_grid(~comparison)
p

snp_1 vs gene_1 snp_10 vs gene_10

4

6

8

10

12

0 1 2 0 1 2
genotype

ex
pr

es
si

on

8

Covariates

Many different factors can affect gene expression, such as age, sex, smoking habits, genetic mutations and
environmental factors, such as nutrition, etc. The more factors can be described in the model, the more
accurate it will be and the higher are chances to find more subtle genetic effects.

Covariates therefore are features of samples which may describe effects on gene expression. In technical terms
one covariate is therefore a vector of the same length as there are samples, e.g.: age.

The examples before worked nicely, because it was simulated data without any covariates. Now we will be
using data where one covariate has been modelled additionally, your task is now to calculate the p-value with
and with the use of covariates and plot the results.
setwd("/data/day5/eqtl_intro")
expr_cov = read.table("simulated/sim_expression2.tab", sep="\t",

header=TRUE, row.names = 1)
covariates = read.table("simulated/sim_covariates.tab", sep="\t",

header=TRUE, row.names = 1)

Task
Calculate the linear regression with and without the covariates for combination of gene 10 with snp 10.
Then plot the results from the linear regression with and without the use of covariates. What are the
differences in the plot and in the summary?

9

Answer

lm_10_10 = lm(expr_cov[,"gene_10"] ~ gt[,"snp_10"])
summary(lm_10_10)

##
Call:
lm(formula = expr_cov[, "gene_10"] ~ gt[, "snp_10"])
##
Residuals:
Min 1Q Median 3Q Max
-21.8886 -4.4990 -0.2714 5.1006 20.2046
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.8321 0.7492 7.784 1.16e-13 ***
gt[, "snp_10"] 2.9265 0.6018 4.863 1.87e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.391 on 298 degrees of freedom
Multiple R-squared: 0.07353, Adjusted R-squared: 0.07042
F-statistic: 23.65 on 1 and 298 DF, p-value: 1.873e-06
lm_10_10_covs = lm(expr_cov[,"gene_10"] ~ gt[,"snp_10"] + as.matrix(covariates))
summary(lm_10_10_covs)

##
Call:
lm(formula = expr_cov[, "gene_10"] ~ gt[, "snp_10"] + as.matrix(covariates))
##
Residuals:
Min 1Q Median 3Q Max
-3.4494 -0.6804 0.0657 0.6722 2.5683
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.82775 0.11393 59.928 < 2e-16 ***
gt[, "snp_10"] 1.65776 0.09172 18.074 < 2e-16 ***
as.matrix(covariates)var_1 2.50006 0.06416 38.967 < 2e-16 ***
as.matrix(covariates)var_2 2.24993 0.07045 31.935 < 2e-16 ***
as.matrix(covariates)var_3 2.21608 0.06487 34.163 < 2e-16 ***
as.matrix(covariates)var_4 2.20670 0.06667 33.097 < 2e-16 ***
as.matrix(covariates)var_5 2.18179 0.06466 33.740 < 2e-16 ***
as.matrix(covariates)var_6 1.90274 0.06336 30.031 < 2e-16 ***
as.matrix(covariates)var_7 1.87298 0.06779 27.631 < 2e-16 ***
as.matrix(covariates)var_8 1.67675 0.06664 25.163 < 2e-16 ***
as.matrix(covariates)var_9 1.64621 0.06771 24.311 < 2e-16 ***
as.matrix(covariates)var_10 1.55134 0.06076 25.531 < 2e-16 ***
as.matrix(covariates)var_11 1.48276 0.06598 22.475 < 2e-16 ***
as.matrix(covariates)var_12 1.31934 0.06802 19.396 < 2e-16 ***
as.matrix(covariates)var_13 1.23396 0.06564 18.799 < 2e-16 ***
as.matrix(covariates)var_14 1.14690 0.06383 17.967 < 2e-16 ***
as.matrix(covariates)var_15 1.13261 0.06344 17.854 < 2e-16 ***
as.matrix(covariates)var_16 0.96792 0.06647 14.562 < 2e-16 ***
as.matrix(covariates)var_17 0.75899 0.06875 11.039 < 2e-16 ***
as.matrix(covariates)var_18 0.70516 0.06483 10.876 < 2e-16 ***
as.matrix(covariates)var_19 0.64040 0.06584 9.727 < 2e-16 ***
as.matrix(covariates)var_20 0.50829 0.06822 7.450 1.18e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.084 on 278 degrees of freedom
Multiple R-squared: 0.9814, Adjusted R-squared: 0.98
F-statistic: 699.3 on 21 and 278 DF, p-value: < 2.2e-16
par(mfrow=c(1,2))
dot plot of expression vs. genotype
plot(gt[,"snp_10"] + runif(nrow(gt), min=-0.2, max=0.2), expr_cov[,"gene_10"],

main="No covariates", xlim= c(-0.5,2.5), xlab = "genotype", xaxt="n")
plot linear regression without covariates
abline(lm_10_10, col="red")
axis(1, at=c(0,1,2), labels = c("BB", "Bb", "bb"))
Add p-values as text
y_range = range(expr_cov[,"gene_10"])
text(x=1, y=y_range[1] + 0.95*diff(y_range), paste0("p=",

format(summary(lm_10_10)$coefficients[2,4], scentific=TRUE, digits=2)))

dot plot of expression vs. genotype
plot(gt[,"snp_10"] + runif(nrow(gt), min=-0.2, max=0.2), expr_cov[,"gene_10"],

main="Covariates", xlim= c(-0.5,2.5), xlab = "genotype", xaxt="n")

plot linear using covariates (genotype is in line 2,
that's why we select the intercept and the genotype for plotting)
abline(lm_10_10_covs$coefficients[1:2], col="red")
axis(1, at=c(0,1,2), labels = c("BB", "Bb", "bb"))

Add p-values as text
y_range = range(expr_cov[,"gene_10"])
text(x=1, y=y_range[1] + 0.95*diff(y_range), paste0("p=",

format(summary(lm_10_10_covs)$coefficients[2,4], scentific=TRUE, digits=2)))

−
10

0
10

20
30

No covariates

genotype

ex
pr

_c
ov

[,
"g

en
e_

10
"]

BB Bb bb

p=1.9e−06

−
10

0
10

20
30

Covariates

genotype

ex
pr

_c
ov

[,
"g

en
e_

10
"]

BB Bb bb

p=8e−49

10

As we can see the slope is different when covariates are incorporated in the model. This addition modifies
the estimated slope and it’s associated p-value. The lower p-value when using covariates indicates that the
regression describes the data more accurately. If we were to apply multiple testing correction on the p-values
it could happen that the first case would not reach significance even though biologically there is an effect.
The reason for this is if we don’t include covariates we try to explain many sources of variation by just the
genotype, which clearly cannot account for all the individual sources, therefore the p-value is higher and also
the estimated effect size will be wrong.

As a side note: There is another way to deal with covariates, instead of including them in the model directly
one can “clean” the expression data from the effects caused by covariates by “regressing them out”. This
can be done by building a linear model only on the covariates and then removing the covariates from the
expression data using the estimated effect sizes. The eQTL calculation can then be performed by directly
just using the genotype data.

An eQTL analysis

Now the basics are defined and we can focus on real expression and genotyping data. For this example we will
be using the famous R package “MatrixEQTL”. It is a very fast way to perform a very basic eQTL analysis.
library(MatrixEQTL)

Importing genotype and expression data

Genotype and expression data come in all sorts of flavours and great attentation has to be drawn on the
preprocessing of this data. In this course it will not be possible to cover this in detail, but common input
formats for genotypes are VCF, PLINK files, or even other custom files which give the genotype of each
sample on all queried genomic positions. Expression data can also be made available in various formats
depending on the underlying technology (RNAseq or expression micro array). Most available eQTL datasets
are available only from microarray experiments. R-packages like lumi are very helpful for handling expression
microarray data.

In this exercise we will be using a simulated dataset, based on genotypes of a part of the HapMap 2 data.
This simulation will be different from real data mainly in:

• Here we only have 81 individuals, normally eQTL studies have to have more than 200 samples (detection
power, noise)

• We analyse here only 500 genes, normally around 20,000 genes are analysed.

The more samples and genes, the longer the calculation will take, so we are using a subset here. The data
preprocessing has already been done for you and you can load the expression and genotyping data directly
into MatrixEQTL.

Loading data

Data is stored in the files: “eqtl/genotypes.txt” and “eqtl/expression.txt” where the columns are samples and
the rows are SNPs or genes, respectively. The input files for MatrixEQTL should have samples as columns
for genotype and phenotype matrices and their order has to be identical.

Task
Using the MatrixEQTL functions import gene expression and genotype data as “SlicedData” objects.
Verify that the samples are ordered correctly for genotype and phenotype

11

http://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/

Answer

library(MatrixEQTL)
setwd("/data/day5/eqtl_intro")
snp_values = read.table("eqtl/genotypes.txt", row.names=1, header=TRUE)
gene_values = read.table("eqtl/expression.txt", row.names=1, header=TRUE)
snps <- SlicedData$new()
snps$CreateFromMatrix(as.matrix(snp_values))
genes <- SlicedData$new()
genes$CreateFromMatrix(as.matrix(gene_values))

Now we make sure that the sample order is identical:
all(colnames(snps) == colnames(genes))

[1] TRUE

In order to perform an eQTL analysis we also must know where the individual SNPs and genes are located in
the genome so that we can distinguish between cis- and trans-eQTL analyses. Therefore we need to load the
SNP and gene annotation files.
setwd("/data/day5/eqtl_intro")
probePos <- read.table("eqtl/probe_loc_hg19.txt", sep="\t", header=TRUE)
snpPos <- read.table("eqtl/gt_anno.txt", sep="\t", header=TRUE)

Task
Take a look at the individual files to familiarise yourself with the layout and content.

cis-eQTL analysis

To perform an eQTL analysis we don’t only need to know the genotype and gene expression values for
every sample, but also the genomic positions of genes and SNPs. This is necessary to define which SNPs
should be tested against which genes. For cis-eQTL analyses SNPs in proximity to the gene are chosen
and for trans-eQTL analyses SNPs further away are being chosen. The window around the gene body is
conventionally chosen as 500kb-1Mb.

Task
Perform a cis-eQTL analysis using the “Matrix_eQTL_main” function. Check the manual (by typing
?Matrix_eQTL_main) how to set the p-value output thresholds in order to get cis (local) and trans
(distant) eQTLs. Print a list of found eQTLs and try to understand the meaning of the rows in the table
and the individual columns.

12

Answer

eQTL <- Matrix_eQTL_main(snps, genes,
output_file_name=NULL,
output_file_name.cis=NULL,
pvOutputThreshold.cis=1e-3, snpspos=as.data.frame(snpPos[,1:3]),
genepos=as.data.frame(probePos[1:4]))

Matching data files and location files
500 of 500 genes matched
41462 of 41462 SNPs matched
Task finished in 0.056 seconds
Reordering genes
##
Task finished in 0.157 seconds
Processing covariates
Task finished in 0.001 seconds
Processing gene expression data (imputation, residualization, etc.)
Task finished in 0.003 seconds
Creating output file(s)
Task finished in 0.01 seconds
Performing eQTL analysis
100.00% done, 4,149 cis-eQTLs, 639 trans-eQTLs
Task finished in 2.402 seconds
##
head(eQTLciseqtl)

snps gene statistic pvalue FDR
1 rs12549085 ENSG00000221542.1 -14.16024 2.214255e-23 6.060705e-18
2 rs7015818 ENSG00000252067.1 13.59721 2.173704e-22 2.974855e-17
3 rs7001819 ENSG00000255144.1 13.08122 1.825001e-21 1.665088e-16
4 rs10503829 ENSG00000104290.6 -12.83505 5.093843e-21 2.788502e-16
5 rs10087762 ENSG00000104290.6 12.83505 5.093843e-21 2.788502e-16
6 rs2686187 ENSG00000255144.1 -12.74819 7.329855e-21 3.343794e-16
beta
1 -1.286131
2 1.760449
3 1.607049
4 -1.324083
5 1.324083
6 -1.593782
The first two columns are derived from the rownames given in the snps and genes matrices. The “snps”
column displays the ids of SNPs that have been identified. In the gene column gene ids are displayed. The
“statistic” column shows the statistic on top of which the values in the “p-value” column are calculated.
We will discuss the content of “FDR” soon and the “beta” column gives the effect size which is the slope
of the linear regression.

Multiple testing correction

Whenever multiple statistical tests are performed, a multiple testing correction has to be performed. This
is necessary because many hypotheses are tested. Therefore each calculated association p-value has to be
corrected for multiple testing. MatrixEQTL does this for you automatically and returns the corrected p-value
as a false discovery rate (FDR). Common thresholds on FDR are 5% or 10%.

13

Interpreting eQTL results

LD

Linkage disequilibrium (LD) is a very important effect that plays a big role in genetic association studies.
It describes the effect that genetic variants are not always inherited independently due to recombination
patterns during reproduction. SNPs in LD are inherited in similar patterns and therefore can explain gene
expression in similar ways. This means that LD makes it harder for association studies to identify one single
SNP being associated with altered gene expression. Also it is possible that the combination of SNPs (as a
haplotype) causes differences in gene expression and not only one single SNP. Watch this video which explains
the basics of LD: https://elearning.cpp.edu/learning-objects/linkage-disequilibrium/.

Selecting eQTLs

Commonly one selects at most one associated SNP per gene. If there are many SNPs associated with a gene
it is most likely that those SNPs are highly linked to each other (“in high LD”) and therefore they describe
the same effect. There are still cases in which genes are regulated by different SNPs independently, this
cannot be seen in table produced by MatrixEQTL. In this course we will not try to identify the independent
lead eQTL signals.

Task
From the cis-eQTL results identify which SNPs are (significantly) associated with which genes at a
maximum FDR of 10%. Print a table in which only the lead SNP per gene is given. Also add the MAF
for every SNP in the table.

14

https://elearning.cpp.edu/learning-objects/linkage-disequilibrium/

Answer
There many ways to achieve that, I will be using the plyr package here.
cis_eqtl_res = eQTLciseqtls
cis_eqtl_res = cis_eqtl_res[cis_eqtl_res$FDR < 0.1,]

top_eqtls = cis_eqtl_res[order(cis_eqtl_res$pvalue),]
top_eqtls = top_eqtls[!duplicated(top_eqtls$gene),]

mafs = apply(as.matrix(snp_values),1,mean)/2
mafs = data.frame(snps=names(mafs), maf = mafs)
top_eqtls = merge(top_eqtls, mafs, by="snps")
top_eqtls = top_eqtls[order(top_eqtls$FDR),]

head(top_eqtls)

snps gene statistic pvalue FDR
38 rs12549085 ENSG00000221542.1 -14.16024 2.214255e-23 6.060705e-18
212 rs7015818 ENSG00000252067.1 13.59721 2.173704e-22 2.974855e-17
203 rs7001819 ENSG00000255144.1 13.08122 1.825001e-21 1.665088e-16
12 rs10503829 ENSG00000104290.6 -12.83505 5.093843e-21 2.788502e-16
90 rs2137790 ENSG00000239065.1 -12.25818 5.804971e-20 1.986120e-15
179 rs4925810 ENSG00000147804.5 -12.28367 5.208902e-20 1.986120e-15
beta maf
38 -1.286131 0.3703704
212 1.760449 0.3086420
203 1.607049 0.3395062
12 -1.324083 0.6666667
90 -1.497434 0.2037037
179 -1.367674 0.3086420

Presenting eQTL results

There are a few standard plots which are common in eQTL analyses. We already produced one of them
earlier where we plotted gene expression versus genotype. This gives a visual insight in how clear the data
was and what the linear regression actually detected.

Task
Plot gene expression vs. genotype for the eqtl with the lowest association p-value. Add a representative
title and label the genotype axis using the sample genotypes.

15

Answer
Get gene name of gene with lowest association p-value
gene_id = top_eqtls$gene[1]
Get corresponding SNP
snp_id = top_eqtls[top_eqtls$gene == gene_id,"snps"][1]
data = data.frame(t(snp_values[snp_id,]), t(gene_values[gene_id,]))
Get reference and alternative allele of the SNP
ref_alt = unlist(snpPos[snpPos$rsid== snp_id, c("ref", "alt")])
Prepare the genotype labels
gt_states= c(paste(ref_alt[1], ref_alt[1], sep="/"), paste(ref_alt[1],

ref_alt[2], sep="/"), paste(ref_alt[2], ref_alt[2], sep="/"))
gt_states = factor(gt_states, levels=gt_states)
Assign the labels
data$gt = gt_states[data[,snp_id]+1]
Subset to only genotype labels and expression
data = data[,c("gt", gene_id)]
colnames(data) = c("genotype", "expression")
Plot
p = ggplot(data, aes(genotype, expression)) +

ggtitle(paste("eQTL of gene",gene_id, "with",snp_id))+
geom_jitter(colour="darkgrey", position=position_jitter(width=0.25)) +
geom_boxplot(outlier.size=0, alpha=0.6, fill="grey") + theme_bw()

print(p)

5

6

7

8

G/G G/A A/A
genotype

ex
pr

es
si

on

eQTL of gene ENSG00000221542.1 with rs12549085

16

Manhanttan plots

Manhattan plots are a way to depict association p-values of multiple SNPs at once. They are also very
common in GWAS. Manhattan plots are an important measure of interpretation of results, such as interpreting
eQTL signals in terms of LD.

Task
Generate a manhattan plot for gene ENSG00000221542.1, plotting the base-pair position on the x-axis
and the -log_10_(p-value) of the SNP in the y axis. Manhattan plots usually depict all tested SNPs, not
only the ones passing a certain p-value threshold. Therefore try to obtain all the association p-values for
all tested SNPs for gene ENSG00000221542.1.

17

Answer
gene_id = "ENSG00000221542.1"
single_gene_exp = SlicedData$new()
single_gene_exp$CreateFromMatrix(as.matrix(gene_values[gene_id,, drop=FALSE]))
single_cis_eqtl_res = Matrix_eQTL_main(snps, single_gene_exp,

output_file_name.cis = NULL,
output_file_name = NULL,
pvOutputThreshold.cis=1, snpspos=as.data.frame(snpPos[,1:3]),
genepos=as.data.frame(probePos[1:4]))

Matching data files and location files
1 of 1 genes matched
41462 of 41462 SNPs matched
Task finished in 0.043 seconds
Processing covariates
Task finished in 0.001 seconds
Processing gene expression data (imputation, residualization, etc.)
Task finished in 0.002 seconds
Creating output file(s)
Task finished in 0.015 seconds
Performing eQTL analysis
100.00% done, 630 cis-eQTLs, 0 trans-eQTLs
No significant associations were found.
Task finished in 0.255 seconds
##
manh_data = merge(single_cis_eqtl_resciseqtl, snpPos, by.x="snps", by.y = "rsid")
manh_data =manh_data[,c("pos", "chrom", "pvalue", "snps")]
par(mfrow=c(1,1))
Plot the Manhattanplot
with(manh_data ,plot(pos, -log10(pvalue), xlab = "genomic position (bp)",

main=paste(gene_id, "associated SNPs")))
Highlight the lead SNP
with(manh_data[which.min(manh_data$pvalue),,drop=FALSE] ,

points(pos, -log10(pvalue), pch=20, col="red"))
Add a label to the lead SNP
with(manh_data[which.min(manh_data$pvalue),,drop=FALSE],

text(pos + diff(range(manh_data$pos))*0.2, -log10(pvalue), labels = snps))

123000000 123500000 124000000 124500000

0
5

10
15

20

ENSG00000221542.1 associated SNPs

genomic position (bp)

−
lo

g1
0(

pv
al

ue
)

rs12549085

This was a very simple approach to Manhattan plots, there are packages such as qqman which are able to
generate plots when SNPs across different chromosomes have been tested (which is rarely ever done in
eQTL analyses).

18

Task
Now produce manhattan plots for the top 10 cis-eQTL results and for the bottom 10 cis-eQTL in the
top_eqtls matrix we have created earlier. Try to interpret the structures.

Answer

for (gene_id in top_eqtls$gene[c(1:10,(nrow(top_eqtls)-10):nrow(top_eqtls))]){
print(gene_id)
single_gene_exp = SlicedData$new()
single_gene_exp$CreateFromMatrix(as.matrix(gene_values[gene_id,, drop=FALSE]))
single_cis_eqtl_res = Matrix_eQTL_main(snps, single_gene_exp,

output_file_name.cis = NULL,
output_file_name = NULL,
pvOutputThreshold.cis=1, snpspos=as.data.frame(snpPos[,1:3]),
genepos=as.data.frame(probePos[1:4]))

manh_data = merge(single_cis_eqtl_resciseqtl, snpPos, by.x="snps", by.y = "rsid")
manh_data =manh_data[,c("pos", "chrom", "pvalue", "snps")]
par(mfrow=c(1,1))
Plot the Manhattanplot
with(manh_data ,plot(pos, -log10(pvalue), xlab = "genomic position (bp)",

main=paste(gene_id, "associated SNPs")))

Highlight the lead SNP
with(manh_data[which.min(manh_data$pvalue),,drop=FALSE] ,

points(pos, -log10(pvalue), pch=20, col="red"))

Add a label to the lead SNP
with(manh_data[which.min(manh_data$pvalue),,drop=FALSE],

text(pos + diff(range(manh_data$pos))*0.2, -log10(pvalue), labels = snps))
scan(stdin())

}
Mostly there is a very clear eQTL signal visible, a clean peak. Variants which are similar in “height” as
the lead cis-eQTL SNP, but lower are most likely SNPs in LD with the lead SNP. In some cases horizontal
lines become visible which means that those variants are in very high LD among each other - they are
usually inherited together. Here you can see again that when variants are in very high LD (horizontal
lines) their importance for gene expression cannot be distinguished. Other methods such as fine mapping
try to use information like genome segmentation to break the LD blocks into smaller fractions of being
more or less likely causal.

eQTL SNP distance from the TSS

Usually cis-eQTL SNPs are located around the transcription starting site (TSS) of the associated gene.
Depending on the dataset there may be a slight bias to more associations upstream the TSS. When looking
at the SNP positions relative to the TSS one has to take the strand of the gene into account, as up- and
downstream are always relative to the strand the gene lies on.

Task
Display the distribution of the distance between lead cis-eQTL SNPs and the TSS of the associated gene.
Take the gene strand into account.

19

Answer

top_eqtls = merge(top_eqtls,probePos, by.x = "gene", by.y="gene_ids")
top_eqtls = merge(top_eqtls,snpPos, by.x = "snps", by.y="rsid")
dtss = top_eqtls$gene_tsss - top_eqtls$pos
dtss[top_eqtls$strand == "-"] = -dtss[top_eqtls$strand == "-"]
hist(dtss, breaks=50, main="Distance distribution of cis-eQTLs",

xlab="Distance between lead eQTL and TSS (bp)")

Distance distribution of cis−eQTLs

Distance between lead eQTL and TSS (bp)

F
re

qu
en

cy

−1e+06 −5e+05 0e+00 5e+05 1e+06

0
10

20
30

40
50

60
70

Trans-eQTL analysis

So far we have only worked with cis-eQTL analyses. Trans- as opposed to cis-analyses test genes which are
linearly far away from the gene body. This increases the multiple testing burden produced by performing
many more tests. Cis-eQTLs are believed to describe direct effects between a SNP and gene expression of the
respective gene. Trans effects are believed to be describe indirect effects. These could be alterations of gene
expression of the tested gene which is caused by e.g. other genes in a pathway of which some are directly
controlled by the associated SNP. Here the question of causality comes into play, which will not be tackled in
this course.

Other tools and QTL analyses

Locus zoom

Locus zoom is an online tool which produces a more informative version of Manhattan plots. For each tested
SNP it adds information of LD between the individual SNPs, it displays the position of genes and one can
add multiple additional layers of information such as results from ChIPseq experiments and many other
annotations.

20

Apart from locus zoom you might also find the package gviz very interesting, which offers a wide range of
functionality for plotting genomics data in R.

Other QTLs

Apart from expression QTLs also other molecular features which have been linked to genetic variation:

• expression QTL
• protein QTL
• splicing QTL
• histone mark QTL
• intron retention QTL (PSI QTL)
• . . .

Basically one can think of relating any kind of molecular measurement with genetic variation, but not
everything will be biologically important and many things will be highly correlated. Always have a hypothesis
of what should be shown before starting an analysis.

Other (e)QTL calling algorithms

There are many other algorithms for eQTL calling. Most of which are based on a linear regression. Other
tools involve:

• Linear (mixed) models
– matrixEqtl (R package)
– FastQTL
– LIMIX
– PLINK
– . . .

• Random Forests
– LIMIX
– . . .

• Bayesian approach
– GOAL (R package)

21

	Preparation and basic stats
	Basic stats
	MAF
	Filtering SNPs by MAF
	Gene expression profiling

	Understanding the basics
	Linear regression of genotype on phenotype
	A nicer way to plot it

	Covariates

	An eQTL analysis
	Importing genotype and expression data
	Loading data
	cis-eQTL analysis
	Multiple testing correction

	Interpreting eQTL results
	LD
	Selecting eQTLs
	Presenting eQTL results
	Manhanttan plots
	eQTL SNP distance from the TSS
	Trans-eQTL analysis

	Other tools and QTL analyses
	Locus zoom

	Other QTLs
	Other (e)QTL calling algorithms

