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Abstract.  An important component of conjoint analysis is market segmentation where the 

main objective is to address the heterogeneity of consumer preferences.  Latent class 

methodology is one of the several conjoint segmentation procedures that overcome the 

limitations of aggregate analysis and a-priori segmentation.  The main benefit of Latent class 

models is that they simultaneously estimate market segment membership and parameter 

estimates for each derived market segment.  In this paper we present two latent class models.  

The first model is a latent class metric model using mixtures of multivariate conditional normal 

distributions to analyze rating data.  The second is a latent class multinomial logit model used 

to analyze choice data.  The EM algorithm is employed to maximize the likelihood in both 

models.  The application focuses on tourists’ preference and choice behaviour when assessing 

package tours.  A number of demographic and product related explanatory variables are used to 

generate segments that are accessible and actionable.  A Monte Carlo study is also presented in 

this paper. This study examines how the number of hypothetical subjects, number of specified 

segments and number of predictors affect the performance of the latent class metric conjoint 

model with respect to parameter recovery and segment membership recovery.   
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1   Introduction 

 

Conjoint analysis is a term used to define a wide range of techniques for estimating the worth 

customers give to the features or attributes that define a product or service.  Today, conjoint 

analysis is an established technique for investigating customer preferences and has a tremendous 

effect on many aspects of business research.  Since its introduction into marketing literature by 

(Green and Rao 1971) conjoint analysis has developed into a methodology for measuring customer 

preferences and predicting choice behaviour.  The popularity of conjoint analysis hinges on the 



belief that it produces valid measurements of preferences as customers trade off between competing 

products.  The application to marketing and business research has increased substantially over the 

last thirty-five years.  This is reflected in the large variety of professionals - marketing research 

consultants, academics, software developers and industry professionals - who contributed to the 

development of conjoint analysis.   

  

One of the objectives of marketers is to identify new products or modify existing ones.  

Another objective is to find the best target market for these products that will optimize profits.  In 

an attempt to satisfy customer needs marketers are also interested in determining what products to 

offer, what prices to charge, how to promote the product and how to design and deliver the 

products to the customer.  (Wittink and Cattin 1989) identified seven application fields in conjoint 

analysis.  One of the most popular fields, which address customer preference heterogeneity, is 

market segmentation. In market segmentation a heterogeneous population of customers is 

represented as a collection of homogeneous subgroups where the customers in each cluster have 

similar needs and similar views of how to worth a product.    

 

Traditionally segmentation procedures were carried out using either a-priori or two-stage 

methods.  In a-priori segmentation approach the type and number of segments are determined in 

advance by the researcher.  In a two-stage approach estimation and clustering are conducted 

consecutively.  Individual-level parameter estimates are first obtained from normal regression 

models and then individuals are clustered on the basis of similarity of the estimated parameters by 

using Ward’s hierarchical clustering algorithm or nonhierarchical (K-means) clustering procedures.  

In response to the limitations of a-priori and two-stage procedures several integrated conjoint 

segmentation methods were proposed in which the parameters within the segments are estimated at 

the same time that the segments are identified.  (Hagerty 1985) proposed a method based on a 

weighting scheme which represents a factor-type partitioning of the sample. This weighting scheme 

optimizes the expected mean squared error of prediction in validation samples.  (Kamakura 1988) 

and (Ogawa 1987) proposed nonoverlapping hierarchical clusterwise regression procedures that 

allow for simultaneous segmentation and estimation of conjoint models.  Kamakura uses least 

squares estimation and Ogawa uses logit estimation.  (DeSarbo, Oliver and Rangaswamy 1989) 

proposed an overlapping nonhierarchical clusterwise regression procedure that uses a simulated 

annealing algorithm for optimization.  (Wedel and Kistemaker 1989) proposed a generalization of 

clusterwise regression by extending (Spath 1979) method to handle more than one observation per 

individual and which yields nonoverlapping, nonhierarchical segments.  Their procedure uses 

(Banfield and Bassil 1977) exchange algorithm to maximize the likelihood.  (Wedel and Steenkamp 

1989, 1991) proposed a fuzzy nonhierarchical clusterwise regression algorithm that permits 

customers to possess partial membership in several segments. 

 

Probably, the advent of latent class and finite mixture models stands out to be the most far-

reaching development in market segmentation.  The works of (Wedel and DeSarbo 1995) and 

(DeSarbo, Wedel, Vriens and Ramaswamy 1992) brought major changes in market segmentation 

applications.  The major merit of these models is that they allow for simultaneous estimation and 

segmentation and enable statistical inference.  In an excellent review, (Vriens, Wedel and Wilms 

1996) conducted a Monte Carlo comparison of several traditional and integrated conjoint 

segmentation methods.  The authors found that Latent Class segmentation models performed best 

in terms of parameter recovery, segment membership recovery and predictive accuracy.   

 

 



2   A Latent Class Metric conjoint model 

 

One of the criteria for effective market segmentation is to identify differences between 

distinct groups of customers in the market and be able to classify each customer into a segment.  

The general principle of latent class models is that each segment defines a different probability 

structure for the response variable.  For the segmentation procedure a latent class model with K 

segments is proposed. 
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1, ,n N  respondents;  

1, ,k K  derived segments; 

k  is the proportion of respondents in segment k and  1,..., K π ; 

ny  is the vector of response ratings elicited by consumer n; 

X  is the data matrix; 

kβ  is the vector of parameter estimates for segment k and  
'

1,..., Kβ β β ; 

kΣ  is the covariance matrix estimated for segment k and  
'

1,..., KΣ Σ Σ . 
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k   and each nkf  has a conditional multivariate normal distribution. 
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The log-likelihood expression for N independent respondents is given by: 
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The derivatives of the expected log-likelihood function  ln , , ,E L  π X β Σ  with respect to the 

parameters are not straightforward.  An effective procedure to fit a latent class model with K 

segments is to maximize the expected complete log-likelihood function using the iterative EM 

algorithm.  The idea behind the EM algorithm is to augment the observed data by introducing 

unobserved data nk .  This is a 0-1 indicator indicating whether respondent n is in segment k.  

Given the matrix  nkΛ  the complete log-likelihood function is given by: 
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 ln , , ,  L π X β Σ Λ  has a simpler form than  ln , , ,L π X β Σ  and the derivatives are manageable.  

Each iteration is composed of two steps - an E-step and an M-step.  In the E-step, the expected log-



likelihood function is calculated with respect to the conditional distribution of the unobserved data 

matrix  nkΛ  given the data and the provisional parameter estimates ˆ ˆˆ ,   and k k k β Σ .  This is 

carried out by replacing  nkE   by the posterior probabilities ˆ
nkp   
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In the M-step the two terms of  ln , , ,  E L 
 π X β Σ Λ  are maximized separately with respect to 

the parameters k  and kβ .  Maximizing the first term of Eq. (2.5) with respect to kβ  leads to 

independently solving each of the K expressions 
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Maximizing the second term of Eq. (2.5) with respect to k , subject to the constraint
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The iterative procedure is initiated by setting random values to ˆ
nkp .  The algorithm then alternately 

updates the parameters ˆ ˆˆ ,   and k k k β Σ  and the probabilities ˆ
nkp  until the process converges.  The 

assignment of individuals to segments is done probabilistically by Bayes’ Theorem Eq. (2.6).  

Individuals are assigned to the segment with the highest posterior probability ˆ
nkp . 

 

 

3.   An Illustrative Application for Rating Data 

 

The increasing number of tourist travelling to various destinations and the issues connected 

with different travel preferences makes the tourist a target of interest, especially for the travel 

agencies.  To illustrate the methodology a conjoint study on 200 travellers was conducted to 

investigate tourist preferences for different package tours.  Three key attributes that determine 

tourist choice behaviour are the cost of the package tour, the type of lodging offered and the city 

visited.  The study compared four city destinations, four different prices and whether the 

accommodation was a single or a twin room.  A complete factorial design was utilized which 

included 32 combinations of attribute manifestations.  For data collection a full profile approach 

was used in which all the profiles (cards) had a unique attribute combination for a package tour.  

To reduce information overload on respondents two blocks of cards were presented and each 

respondent was handed a set of 16 cards with random assignment to block.  Preference ratings 



were measured on a seven point scale where 1 corresponds to ‘worst’ and 7 corresponds to ‘best’.  

To make the derived market segments more accessible and actionable three demographic variables 

were recorded which included the age, gender and status of the respondents. 

 

The utility function which relates the utility of a package tour to its attributes includes all 

main effects, a quadratic function of price and relevant pairwise interactions between item 

attributes and demographic variables.  The quadratic function for price allows a dual role – tourists 

use the price both as a signal of the package tour quality and as a monetary constraint in choosing 

it.  The EM algorithm for fitting latent class models was implemented as a set of GLIM macros.   

 

Latent class models assume that observed data is made up of several unknown homogeneous 

segments which are mixed up in an unknown proportion. The first statistical objective is to 

discover the true number of segments. To address this issue, three criteria were used to identify the 

correct number of homogeneous groups of respondents in a heterogeneous population.  Two of 

these information criteria are based on the bias-corrected log-likelihood. 

 

 2logC L dc  Ψ                                                        (3.1) 

 

d is the number of estimated parameters and c is a penalty constant and measures the complexity of 

the model.  For the Akaike information criterion (AIC), 2c   and for the Bayesian information 

criterion (BIC),  lnc N , where N is the sample size.  The third criterion, which uses the entropy  
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to assess the degree of separation between the segments, is an approximation of the Integrated 

Classification Likelihood (ICL).     
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This criterion is more appropriate for large cluster sizes and attempts to overcome the short-

comings of AIC and BIC.  

  

This latent class model was fitted four times varying the number of segments from three to 

six clusters.  To overcome the problem of convergence to local optima, five different random 

starting values were considered for each model fit.  The solution with the smallest log-likelihood 

was selected.  The entropy and the number of estimated parameters were also recorded for each 

solution to determine the number of segments that minimize the three specified criteria.   

 

Number of 

Segments 
 2log L Ψ

 

Number of 

parameters 

Entropy AIC BIC ICL 

3 3842.7 69 125.11 3980.7 4208.3 4458.5 

4 2625.8 92 37.21 2809.8 3113.2 3187.7 

5 2549.9 115 42.36 2779.9 3159.2 3243.9 

6 2510.3 138 53.61 2786.3 3241.5 3348.7 
          
           Table 1 - Determination of the number of segments using AIC, BIC and ICL 



BIC and ICL reach a four-segment solution whereas AIC reaches a five-segment solution.   Many 

authors have observed that AIC tend to overestimate the correct number of segments.  Since AIC 

does not penalize complex models as heavily as the other two criteria we opt for a four-segment 

solution.    

 

After assigning each respondent to the segment with highest posterior probability, these were 

then categorized by their age group and status.  The median age was used as a cut point for the two 

age categories.  Interesting differences between the segments emerge when observed frequencies 

in each segment are compared by these two demographic variables.   

 

 

Segment Age Group 
Status 

Total 
Single Married 

1 

27 years or less 9 21 30 

More than 27 years 5 17 22 

Total 14 38 52 

2 

27 years or less 8 3 11 

More than 27 years 18 9 27 

Total 26 12 38 

3 

27 years or less 44 2 46 

More than 27 years 7 18 25 

Total 51 20 71 

4 

27 years or less 8 5 13 

More than 27 years 6 20 26 

Total 14 25 39 

              Table 2 - Frequency of respondents assigned to segments by age group and status 

 

The second statistical objective is to define these segments by investigating how respondents 

in each segment trade off between different package tours.  For ease of interpretation of the fitted 

model, predicted worth was converted to an expected value of the rating.  Thus for each segment, 

the relationship between worth and price was examined for each destination.  The price profiles in 

Figure 1 characterize different patterns in tourist behaviour.  Segment 1, which constitutes a higher 

proportion of married respondents in the younger age group, represents tourists who worth Paris 

most and Prague least for their holiday destination.  For these tourists high-priced package tours 

have a negative deterrent effect.  Segment 2, which contains a higher proportion of single 

individuals in the older age group, represents tourists who strongly discriminate between different 

destination package tours.  These tourists prefer Paris most and Amsterdam least and exhibit a 

strong reliance on price as a signal of quality.  Segment 3, which comprises a higher proportion of 

single respondents in the younger age group, represents tourists who hardly discriminate between 

city destinations.  However, these tourists are price sensitive and worth cheap package tours more 

than expensive ones.  Segment 4, which constitutes a higher proportion of married individuals in 

the older age group, represents tourists who worth Prague most and London least for their holiday 

destination. These tourists have a slight reliance on price and consider the middling prices as ideal. 



 

Figure 1 – Price profiles of the expected worth for each destination in the fitted segments 

              Amsterdam _________________            Paris      ___  _  ___  ___  _  ___ 

     London       ..................................      Prague   ___  ___  ___  ___  ___ 

 

  

 

4   A Latent Class Choice-based conjoint model 

 

In metric conjoint analysis respondents are asked to provide ratings or rankings to a set of 

profiles for the response scale, whereas in choice-based conjoint analysis a respondent is asked to 

choose the most preferred option from several competing alternatives.  An advantage of a choice-

based task is that it has greater external validity because it mimics what consumers actually do in 

the marketplace.  Another advantage is that a choice-based task is simpler for respondents than 

rating or ranking alternatives and people will answer choices about almost anything.  The major 

limitation of choice data is that it contains minimal information about consumer preferences.  A 

choice simply indicates the most preferred profile but it does not provide an estimate of the utility 

of the product profiles.  Choice-based conjoint analysis uses the basic ideas and designs of metric 

conjoint analysis.  The procedure that has been developed to identify segments based on choice 

data is conceptually similar to that for metric conjoint segmentation.   

 

The most popular discrete choice model is the multinomial logit model.  The respondent’s 

probability of choosing profile j, from a set of J profiles, conditional upon belonging to segment k 

is given by: 
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1, ,n N  consumers;  

1, ,k K  derived segments; 

1,...,j J  choice conjoint profiles; 

k  is the proportion of respondents in segment k and  1,..., K π ; 

njy  is a 0-1 indicator indicating  whether the profile j is chosen by respondent n; 

jx  is the vector containing the values of the explanatory variables corresponding to profile j; 

kβ  is the vector of parameter estimates for segment k and  
'

1,..., Kβ β β ; 

 

The unconditional choice probability that a respondent chooses profile j can be expressed as: 
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The modelling framework thus entails a finite mixture of conditional multinomial logit models to 

estimate latent segments with choice data.  Given that the choice responses of the N respondents 

are independent, the likelihood function is given by: 
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The maximization procedure is again carried out using the EM algorithm. Once the parameters 

ˆˆ  and k k β  are estimated for any iteration of the maximum likelihood procedure, one can assign 

any consumer n to the segment k with the highest posterior probability ˆ
nkp .  
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5.   An Illustrative Application for Choice Data 

 

To illustrate the procedure a further task was included in the study to assess how well the 

Latent Class choice-based model predicted the respondents’ choice behaviour.  All the respondents 

were presented with four choice cards (package tour descriptions) which are displayed in table 3 

and were asked to indicate the one they prefered most.   

 

 



Choice card Destination Lodging Price 

A Amsterdam Single room Lm 575 

B London Single room Lm 675 

C Paris Twin room Lm 475 

D Prague Twin room Lm 375 
 

                                  Table 3 – Choice Cards 

 

The observed frequencies in table 4 are obtained by first assigning respondents to the segment with 

highest posterior probability and then counting their first preferences.  The expected frequencies in 

table 5 are the corresponding total of the predicted choice probabilities given by Eq. (4.1).   

 

 Segment 1 Segment 2 Segment 3 Segment 4 Total 

Choice card A 4 11 2 4 21 

Choice card B 2 7 2 7 18 

Choice card C 29 24 17 11 81 

Choice card D 19 8 48 5 80 
 

                Table 4 – Observed frequencies of first-choice preferences by choice cards and segments 

 

 Segment 1 Segment 2 Segment 3 Segment 4 Total 

Choice card A 1.82 11.2 1.04 3.56 17.6 

Choice card B 1.12 13.4 0.25 3.35 18.1 

Choice card C 28.4 19.1 14.3 11.9 73.7 

Choice card D 22.7 6.36 53.4 8.16 90.6 
 

               Table 5 – Expected frequencies of first-choice preferences by choice cards and segments 

 

Visual comparison of the observed and expected frequencies in the four segments shows that 

the model is picking up the main features of individual choice preferences.  The latent class model 

is correctly eliciting a higher proportion of respondents in segments 1, 2 and 4 who prefer the 

package tour described by choice card C and a higher proportion of respondents in segment 3 who 

prefer the package tour corresponding to choice card D.  In addition, the model correctly picks out 

the two most preferred package tours described by the cards C and D. 

 

The following cross-tabulations compare the observed and expected frequencies of first-

choice preferences by choice cards, gender, marital status and age groups.  

 

 Males Females Total   Males Females Total 

Choice card A 13 8 21  Choice card A 9.52 8.05 17.6 

Choice card B 14 4 18  Choice card B 10.3 7.90 18.2 

Choice card C 34 47 81  Choice card C 37.3 36.3 73.6 

Choice card D 40 40 80  Choice card D 43.9 46.7 90.6 
      
     Table 6 – Observed and Expected frequencies of first-choice preferences by choice cards and gender 

 



 
 
 

 

 

 
          Table 7 – Observed and Expected frequencies of first-choice preferences by choice cards and status 

 
 

 Young Old Total   Young Old Total 

Choice card A 11 10 21  Choice card A 6.8 10.8 17.6 

Choice card B 4 14 18  Choice card B 7.2 11.0 18.2 

Choice card C 43 38 81  Choice card C 34.7 38.9 73.6 

Choice card D 42 38 80  Choice card D 51.3 39.3 90.6 
 

          Table 8 – Observed and Expected frequencies of first-choice preferences by choice cards and age-group 

 

The median age was used as the cut-point between the two age categories.  Widows and 

separated/divorced respondents were assumed to be single.  The model correctly elicits a higher 

proportion of respondents who prefer twin rooms rather than single rooms.  This is attributed to the 

fact that very often tourists prefer to travel with friends or partners with the added benefit that they 

have to pay less.  The model correctly picks very little gender, status and age bias for first choice 

preferences.  However, the model incorrectly picks a higher proportion of respondents who prefer 

the package tour described by card D rather than the one described by card C.  The model correctly 

elicits low proportions of respondents who prefer the package tours described by cards A and B. 

 

 

6.   Factors affecting the performance of Latent Class metric models (Monte Carlo study)   

 

This Monte Carlo study was conducted to examine the factors that affect the performance of 

latent class metric conjoint models with respect to parameter recovery, segment membership 

recovery and computational effort.  The simulation was devised to mimic the application in which 

four destination cities; four price values and two types of hotel rooms were generated to define the 

product attributes.  The price values and the design were set the same as in the application. Two 

blocks were generated each consisting of 16 distinct attribute level combinations.  The two blocks 

guaranteed a full factorial design and hypothetical subjects were alternately assigned to block.  To 

generate the gender, status and age of these subjects, three sets of N uniformly distributed pseudo-

random real values in the range [0, 1] were used.  Pseudo random values less than 0.5 corresponded 

to male subjects in the first set and single subjects in the second set.  The generated ages ranged 

from 15 to 75 years by using a linear transformation of the pseudo random values in the third set.  

This gives random individual characteristics to each subject.  To allocate subjects to segments the 

proportion k  of members in each segment was specified, satisfying the constraint
1
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This was carried out by first generating N uniformly distributed pseudo-random real values in the 

range [0, 1] and then by computing the cumulative probabilities
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k ii
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corresponding value was in the range  1,k kq q
 was allocated to segment k.  This gives a random 

  Single Married Total    Single  Married Total 

Choice card A 13 8 21  Choice card A 7.20 10.4 17.6 

Choice card B 5 13 18  Choice card B 7.70 10.5 18.2 

Choice card C 45 36 81  Choice card C 39.0 34.6 73.6 

Choice card D 42 38 80  Choice card D 51.1 39.5 90.6 



segment allocation to each hypothetical subject.  To simulate the subjects’ rating responses, the 

linear predictors and the corresponding parameters kβ  were specified for the K segments.  Given 

the segment membership allocation, 16 synthetic data values were generated for each subject.  

These values were then perturbed by adding an error term having a normal distribution.  Six 

specified cut-points r  were used to convert these values to rates ranging from 1 to 7.  Values in 

the range  1,r r 
 were converted to rate r.  This gives a random worth category allocation for 

each hypothetical response.  120 synthetic datasets were generated according to the following three 

factors. 

 

1.   Number of hypothetical subjects: 100N   or 200N   

2.   Number of segments: 2K   or 4K   

3.   Number of predictors: 3S   or 6S   

 

These three factors were chosen because they are expected to affect the performance of the 

algorithm.  The factor levels were selected to reflect a variation in conditions representative of 

practical applications.  In the construction of synthetic data two linear predictors were used.  The 

first included product-related attributes only 3S   and the second included both product-related 

and individual attributes 6S  .  15 data sets were generated for each of the eight factor level 

combinations and each data set was fitted to the latent class metric conjoint model, presented in 

section 2.  To overcome problems related with convergence to local maxima five starting values 

were considered for each fit.  These were selected from a wide range of seed numbers and the 

solution with the smallest deviance was selected.  The estimated parameters were then compared to 

the true parameters using the following measures to assess parameter and segment membership 

recovery.  
 

1.  The percentage of correctly classified subjects into their true segments on the basis of the 

estimated segment membership.   

 

2.   The statistic  ˆRMS β  is used to assess recovery of the P parameters.  
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3.   The statistic  ˆRMS π   is used to assess recovery of the K segment proportions. 
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The mean performance measures for parameter recovery were computed by averaging the values of 

 ˆRMS β  and  ˆRMS π  across the 15 data sets of a particular factor level combination.  Similarly, 

the mean performance measure for segment membership recovery was computed by averaging the 

percentages of correctly classified subjects across the 15 data sets. 



7.   Results 

 

Table 9 shows the mean performance measures for parameter and segment membership recovery at 

each factor level combination. The mean  ˆRMS π  is sensitive to changes in the number of subjects 

but less sensitive to changes in the number of segments.  Recovery of segment membership 

proportions improve with an increase in the number of subjects and number of segments but are 

hardly affected by the number of predictors.  The mean  ˆRMS β  is sensitive to changes in the 

number of subjects, predictors and segments.  Parameter recovery improves with an increase in the 

number of subjects and number of predictors but deteriorates with an increase in the number of 

segments.  Segment membership recovery decreases with an increase in the number of segments 

but is hardly affected by the number of subjects and predictors.  The computational effort was 

measured by recording the number of iterations required for convergence at each fit. Computational 

effort is affected mostly by a change in the number of segments but to a lesser extent by the number 

of subjects.  Increasing the number of segments increases the number of iterations required.  

 

Number of 

segments 

Number of 

subjects 

No of 

predictors 
 ˆRMS β   ˆRMS π  

Segment 

Recovery 

2 

100 
3 0.9459 0.0406 99.61% 

6 0.6338 0.0443 99.82% 

200 
3 0.8724 0.0291 99.65% 

6 0.5563 0.0361 99.91% 

4 

100 
3 1.1301 0.0385 98.47% 

6 0.9442 0.0416 98.93% 

200 
3 0.9664 0.0273 98.57% 

6 0.8666 0.0249 98.97% 
                    
                    Table 9 - Mean performance measures for parameter and segment membership recovery 
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