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The EM algorithm is a popular method for computing 

maximum likelihood estimates. It tends to be 

numerically stable, reduces execution time compared 

to other estimation procedures and is easy to 

implement in latent class models. However, the EM 

algorithm fails to provide a consistent estimator of the 

standard errors of maximum likelihood estimates in 

incomplete data applications.  Correct standard errors 

can be obtained by numerical differentiation.  The 

technique requires computation of a complete-data 

gradient vector and Hessian matrix, but not those 

associated with the incomplete data likelihood.  

Obtaining first and second derivatives numerically is 

computationally very intensive and execution time 

may become very expensive when fitting Latent class 

models using a Newton-type algorithm.  When the 

execution time is too high one is motivated to use the 

EM algorithm solution to initialize the Newton 

Raphson algorithm.  We also investigate the effect on 

the execution time when a final Newton-Raphson step 

follows the EM algorithm after convergence.  In this 

paper we compare the standard errors provided by 

the EM and Newton-Raphson algorithms for two 

models and analyze how this bias is affected by the 

number of parameters in the model fit.   
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1. Introduction 
 

A limitation of the EM algorithm is that the estimated 

information matrix, in contrast to the case for gradient 

methods such as Newton-Raphson, is not a direct by-

product of maximization.  Procedures for obtaining the 

information matrix within the EM algorithm have been 

suggested by several authors.   

 

An approach for computing the Fisher information matrix 

within the EM framework was suggested by (Louis 

1982).  His methodology is based on a result by (Fisher 

1925) that showed that, given the incomplete data, 

incomplete data scores are conditional expectations of the 

complete data scores. The author derives a procedure for 

extracting the observed information matrix when the EM 

algorithm is used to find maximum likelihood estimates 

in incomplete data problems.  The technique requires the 

computation of the complete data gradient vector and the 

Hessian matrix but does not require those associated with 

the incomplete data log- likelihood function.   A criticism 

of this approach is that the procedure is often 

computationally demanding and hard to implement 

because it requires the computation of both a complete-

data score vector and second derivative matrix.   

 

An alternative approach for computing the Fisher 

information matrix using gradients only was suggested by 

(Meilijson 1989).  Methods that only require gradients are 

easier to compute analytically and less demanding to 

compute numerically.  An appealing advantage of this 

procedure, in contrast to the approach suggested by 

(Louis 1982), is that once the individual scores have been 

identified there is no additional analysis to perform.  

Meilijson’s methodology is based on a result by (Fisher 

1925) in which the evaluation of individual score vectors 

of the incomplete data is a by-product of the application 

of the E-step of the EM algorithm.  The Fisher 

information matrix may be consistently estimated by the 

empirical variance-covariance matrix of these individual 

score vectors and the M step may be replaced by a 

Newton-type step.  This permits a unification of EM 

methodology and Newton methods.  A demerit of 

Meilijson’s technique is that it applies only to specialized 

cases in which the observed data are independent and 

identically distributed samples.   

 

Another approach for computing the observed 

information matrix is the well-known supplemented EM 

(SEM) algorithm, suggested by (Meng and Rubin 1991). 

The SEM algorithm numerically differentiates the EM 

operator ( )M φ  and uses a result by (Dempster, Laird and 

Rubin 1977) that relates the Jacobian of ( )M φ  to the 

Hessian matrix ( )H φ , both evaluated at φ̂ .  The authors 

claim that their algorithm can be applied to any problem 

to which EM has been applied, assuming that one has 

access to the complete-data asymptotic variance-

covariance matrix.  (Segal, Bacchetti and Jewell 1994) 

point out that the SEM algorithm requires very accurate 

estimates of φ̂  and so they can be much more expensive 

to obtain than the EM estimates.  (McCulloch 1998) 

remarks that for many problems the method of obtaining 

standard errors using the SEM algorithm can be 



numerically unstable. (Jamshidian and Jennrich 2000) 

point out that, algorithms that numerically differentiate 

( )M φ  may suffer from the error magnification problem 

when the EM algorithm is slow.  The authors remark that 

algorithms that numerically differentiate the score vector 

( )g φ  are appropriate for all maximum likelihood 

applications and they do not suffer from the error 

magnification problem.  

 

The variance-covariance matrix can be obtained by other 

techniques that do not use numerical differentiation.  

Bootstrapping uses computer intensive resampling and 

treats a given sample as the population.  An empirical 

probability distribution is constructed from the sample of 

size n in which the probability of each observation is 1/n.  

K random samples each of size n are drawn with 

replacement from this empirical distribution where some 

of the observations in a sample may be duplicated.  The 

EM algorithm is then performed on each sample to 

calculate the vector of parameters ˆ
kφ . Hence a 

probability distribution is constructed from all the 

resampled parameter estimates in which the probability of 

each ˆ
kφ  is 1/K.  This distribution is the bootstrapped 

estimate of the sampling distribution of φ̂  which can be 

used to provide estimates for the standard errors.  The 

primary advantage of bootstrapping is that no 

assumptions about the shape of the sampling distribution 

are made.  Jackknifing is a different resampling technique 

in which a single observation is omitted at a time.  Thus, 

each sample consists of n-1 observations formed by 

deleting a different observation from the sample.  A 

jackknifed estimate of the sampling distribution of φ̂  can 

be obtained in a similar way to the bootstrap procedure.  

(Agresti 2002) remarks that bootstrap and jackknife 

procedures are useful tools for estimating standard errors 

when samples are small or data is sparse.   

 

 

2. A General Model 
 

The purpose of this study is to fit latent class models that 

analyze ordinal categorical responses using both the EM 

algorithm and a Newton-type algorithm to assess the bias 

between the standard errors of these two maximization 

procedures.  

  

A latent class model relates a set of observed multivariate 

categorical variables to a latent variable which is discrete.  

Latent class analysis, unlike cluster analysis, uses a 

model-based approach that combines conventional 

statistical estimation methods to classical clustering 

techniques.  In this methodology latent classes are defined 

by the criterion of conditional independence where the 

observed variables within each segment are statistically 

independent. The assumption of conditional 

independence has been widely used in latent class 

modelling.  It is directly analogous to the assumption, in 

the factor analysis model, that observed variables are 

conditionally independent given the factors.  This implies 

that the observed correlations between the items are due 

to the clustered nature of the population, whereas within a 

cluster, the items are independent. 

 

Let ( , , )φ α  β π  be the vector comprising the parameters 

of the latent class model with K segments. The thn density 

function is of the form  
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k  are the unconditional probabilities that sum to 1 and 

represent the proportion of respondents that are allocated 

to each segment.  The marginal or conditional 

probability ( , )jn kP y r α β  follows the Proportional 

Odds model suggested by (McCullagh 1980) 
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In this model jny  is a rating response elicited by the thn  

respondent for the thj item; α  is a vector of threshold 

parameters; β  is a vector of regression parameters and 

jx are item covariates. The choice of (.)F  is the 

Logistic distribution which leads to the logit link.   

 

The likelihood function of the data set is obtained by 

taking the product of the N density functions. 
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The log-likelihood function is given by: 
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Maximum likelihood estimation can be carried out via 

standard numerical optimization routines such as the 

Newton Raphson method or alternatively using the EM 

algorithm. The popularity of the EM algorithm arises 

from its computational elegance, particularly for latent 

class models.  The idea behind the EM algorithm is to 

augment the observed data by introducing unobserved 

data, nk  indicating whether the thn  respondent belongs 

to the thk  segment.  

 

An effective procedure to fit a latent class model with K 

segments is to maximize the expected complete log-

likelihood function using the iterative EM algorithm. 
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The complete log likelihood  l φ  Λ  is given by: 
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The complete log-likelihood function ( )l φ Λ  has simpler 

form compared to ( )l φ  given by (4) and the derivatives 

are easier to compute. 

 

Each iteration is composed of two steps: an E-step and an 

M-step. In the E-step, [ ( )]E l φ Λ  is calculated with 

respect to the conditional distribution of the unobserved 

data 
1 2( , ,..., )NΛ λ λ λ  given the vector of observed 

responses 
ny  and using the provisional parameter 

estimates φ .  This is achieved by using Bayes’ theorem 

to estimate 
nk . 
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satisfying the constraint 
1

1
K

nkk
p


 .   

 
In the M-step, [ ( )]E l φ Λ  is maximized with respect to 

φ .  This is achieved by replacing 
nk  by their expected 

posterior probabilities 
nkp .   So  
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The two terms on the right hand side of the expression 

can be maximized separately.  The maximization of 

[ ( )]E l φ Λ  with respect to α  and 
kβ  is performed by 

transforming the polychotomous responses as a vector of 

0-1 indicators.  This allows the use of Poisson likelihood 

in model fitting by considering each term of 

1 1
.ln ( , )

N K

nk n n kp P   Y y α β  as a weighted Poisson log-

likelihood function.   

 

The maximization of [ ( )]E l φ Λ  with respect to 
k  

subject to the constraint 
1

1
K

k  , is obtained by 

maximizing the augmented function. 
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  is the Lagrange multiplier.  Setting the derivative 

with respect to k  equal to zero yields 
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Since the probabilities, 
nkp  are unknown then the 

iterative procedure is initiated by setting random 

assignment to these probabilities. The algorithm 

alternately updates the parameters , ,α  β π  and the prior 

weights, nkp  until the process converges. 

Maximum likelihood estimation via a Newton-Raphson 

algorithm uses numerical first and second derivatives of 

the likelihood function.  The algorithm is computationally 

demanding and time expensive even with few model 

parameters.  The Newton-Raphson algorithm can be 

derived by considering an approximation of ( )l φ φ  

using a first order Taylor series expansion around the 

parameter m
φ  evaluated at the thm  iteration.  
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Gradient methods are iterative and updated parameters 

can be evaluated by setting   l φ φ  to zero. Denoting 

the gradient vector and Hessian matrix by ( )m
g φ  and  

( )m
H φ , the updated parameters are given by: 
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If the log-likelihood is quadratic in the parameters, as in 

the case of linear regression models, the equations can be 

solved in closed form and maximum likelihood estimates 

φ̂  are found in a single iteration. 

 
 

3. Application 

 
To illustrate the procedure, 310 respondents were asked 

to rate a number of items (profiles) on an ordinal scale.  

The items described different combinations of car 

attributes, namely the brand, price and door feature.  We 

utilized a full profile method of collecting respondent 

evaluations. Since the study compared 4 brands, 4 price 

values and 2 door features, a complete design yielded 32 

combinations of attribute levels.  Presenting respondents 

with 32 product profiles to assess their worth was not 

considered feasible because the information overload very 

often leads to the temptation on the part of the respondent 

to adopt patterned types of responses. To simplify the 

task, the chosen design had two blocks of 16 items each. 

Each respondent was provided with a set of 16 items to 

compare with random assignment to block. The rating 

responses had 7 categories where 1 corresponded to 

‘worst’ and 7 corresponded to ‘best’. 

 

Two latent class models were fitted using both the EM 

and Newton Raphson algorithms.  In the first model, the 

linear predictor included brand as a sole main effect.  The 

latent variable, segment, was interacted with each level of 

brand and the model was estimated with two latent 

classes, four latent variables and a logit link function. In 

the second model, the linear predictor included brand and 

door feature as main effects and the interaction of a 

quadratic function of price with brand.  Each term was 

interacted with the latent variable, segment. The model 

was estimated with two latent classes, thirteen latent 

variables and a logit link function.    

 



The EM algorithm for fitting latent class models, 

proposed by Dempster et al (1977), is equivalent to 

iterative fitting of a weighted GLM, where the posterior 

probabilities are recalculated at each iteration.  This 

model is implemented as a set of GLIM (Generalized 

linear interactive models) macros.  Being a non-linear 

model, the proportional odds model is accommodated 

using the OWN model facilities of GLIM.  A problem 

associated with the application of the EM algorithm to 

latent class models is its convergence to local maxima.  It 

is caused by the likelihood being multimodal, so that the 

algorithm becomes sensitive to the starting values used.  

One way of addressing this problem is to perturb the 

posterior probabilities at each iteration to widen the 

search for the global maximum.  This is achieved by 

adding to each probability a pseudo-random real value 

from a uniform distribution in the range [0, 1] multiplied 

by a scalar.  The posterior probabilities are rescaled such 

that 
1

1
K

nkk
p


 . The scalar is then reduced 

systematically so that the iterative procedure will finally 

converge.  An alternative way of tackling this problem is 

to consider several starting values chosen from a wide 

range of seed numbers.   The selected solution is the one 

that yields the smallest log-likelihood. 

 

The Newton-Raphson algorithm is implemented using the 

facilities of GLLAMM (Generalized linear latent and 

mixed models).  This software, which accommodates a 

large class of models including multilevel, item response, 

structural equation, longitudinal and latent class models, 

uses numerical first and second derivatives of the log-

likelihood function and produce standard errors by 

maximizing the marginal log-likelihood.  GLLAMM 

software can fit proportional odds models by specifying 

the family to be binomial and the link to be ologit.  

This link corresponds to the logit link functions 

appropriate for ordinal data.  The syntax nrf specifies 

the number of latent variables; the syntax nip specifies 

the number of latent classes (segments) and the syntax 

ip(fn) yields non-centred latent classes.  Some of the 

terms in the GLIM output were intrinsically aliased.  In 

order to get a similar solution using GLLAMM we had to 

constrain these parameters to zero using the 

constraint define command in GLLAMM.   

 

 

4. Results of the study 
 
Although the EM algorithm yields maximum likelihood 

estimates of the parameters it fails to provide standard 

errors of these parameter estimates as a by-product of the 

iterative algorithm.  On the other hand, a Newton-type 

algorithm provides correct standard errors; however, there 

is a computing cost associated with our patience in 

waiting for an output.  It is well known that Newton-type 

methods require good starting values and a fast 

convergence is only guaranteed if these starting values are 

near the solution.  Another problem is that obtaining first 

and second derivatives numerically is computationally 

intensive and a Newton-type algorithm may become very 

expensive particularly when fitting models with a 

considerable number of parameters. This paper compares 

the standard errors of the parameters provided by the EM 

and Newton-Raphson algorithms for the two models and 

contrast execution times when using the two estimation 

methods.   

 
It was noted that estimation with GLLAMM using a 

Newton-type algorithm took about fifty times longer 

compared to GLIM using an EM algorithm.  For 

problems with large numbers of parameters and latent 

variables, Newton-type methods can become infeasible 

and computationally demanding.  When the computer 

cost is too high one is motivated to use GLIM’s EM 

algorithm solution to initialize GLLAMM’s Newton 

Raphson algorithm.  This reduces considerably the 

execution time for GLLAMM.  It was noted that when a 

final Newton-Raphson step was applied to GLIM’s EM 

solution after convergence the algorithm always 

converged in at most three iterations yielding a solution 

which was concave.  In spite of this improvement, 

estimation with GLLAMM still took about five times 

longer compared to GLIM. 

 

Table 1 displays the parameter estimates and standard 

errors of the first model using both the EM and Newton-

Raphson algorithms.   Six threshold (cut-point) 

parameters were estimated since a 7-point likert scale was 

used for the rating scores.  The GLIM solution required 

34 iterations and took 3 minutes to converge.  The log-

likelihood of this solution was 9807.98.  The parameter 

estimates elicited from the EM algorithm were then used 

as starting values for the Newton-Raphson algorithm. 

GLLAMM required three iterations and took 9 minutes to 

converge.  The log-likelihood of the GLLAMM solution 

was 9807.62.   
 

 

Table 1: Parameter estimates and standard errors elicited    

 the EM and EM+NR algorithms. 

 

Another interesting observation is that GLIM provided 

deflated standard errors where the deflation for each 

standard error varied from 24% to 47%. The cause for 

this deflation is that the EM algorithm has to estimate KN 

missing or unobserved values nk  together with the 

model parameters. 

Term  EM algorithm Newton-Raphson 

algorithm 

 

Estimate 

 

St Error 

 

Estimate 

 

St Error 

Cutp1 -4.061 0.134 -4.063 0.177 

Cutp2 -2.816 0.127 -2.814 0.171 

Cutp3 -1.858 0.124 -1.856 0.169 

Cutp4 -0.927 0.122 -0.925 0.168 

Cutp5 0.118 0.121 0.119 0.167 

Cutp6 1.362 0.126 1.364 0.168 

Brand(1).Seg(1) -2.871 0.177 -2.870 0.274 

Brand(1).Seg(2) -1.149 0.140 -1.148 0.191 

Brand(2).Seg(1) -0.636 0.174 -0.636 0.270 

Brand(2).Seg(2) -0.603 0.139 -0.603 0.189 

Brand(3).Seg(1) -2.628 0.176 -2.629 0.332 

Brand(3).Seg(2) -1.360 0.140 -1.360 0.190 

Brand(4).Seg(1) -2.541 0.177 -2.541 0.273 

Brand(4).Seg(2) Aliased Aliased Aliased Aliased 



Table 2 displays the parameter estimates and standard 

errors of the second model using both estimation 

methods.   The GLIM solution required 34 iterations and 

took 10 minutes to converge.  The log-likelihood of this 

solution was 9004.64.  Using GLIM’s parameter 

estimates as initial values, GLLAMM required 3 

iterations that took 36 minutes to converge.  The log-

likelihood of the GLLAMM solution was 9003.24 and the 

amount of deflation of GLIM’s standard errors compared 

to GLLAMM’s varied from 0% to 19%. 

 

 

Table 2: Parameter estimates and standard errors elicited    

 the EM and EM+NR algorithms. 

 

An interesting observation is that when complex models 

are fitted the discrepancy between GLIM’s standard 

errors compared to GLLAMM’s was smaller. An 

explanation for this occurrence is that the proportion of 

model parameters compared to the proportion of missing 

values increases when more terms are included in the 

model fit.   

 
 

4   Conclusion 
 

Newton-type algorithms are essential to elicit correct 

standard errors for the parameter estimates; however, 

these algorithms are extremely slow since they use 

numerical first and second derivatives of the log-

likelihood.  This execution time problem becomes more 

severe when the number of latent variables in the latent 

class model is increased.  Estimation with a Newton-type 

algorithm may take fifty times longer compared to 

estimation with an EM algorithm.  The study proposes 

using the EM algorithm solution as an initialization step.  

Equipped with very good starting values the final 

Newton-Raphson step converges quickly.  This procedure 

guarantees correct standard errors of the parameters 

estimates and reduces execution times considerably.  

Another interesting finding is that the bias between the 

correct and incorrect standard errors obtained respectively 

by Newton-type and EM algorithms becomes less 

conspicuous as the model complexity increases. 
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