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Abstract 
Many regression-estimation techniques have been extended to cover the case of depen­

dent observations. The majority of such techniques are developed .from the classica lleast 
squares, M and GM approaches and their properties have been investigated both on theo­
retical and empirical grounds. However, the behavior of some alternative methods- with 
satisfactory performance in the regression case- has not received equal attention in the con­
text of time series. A simulation study offour robu~t estimators for autoregressive models CO/l­

taining innovation or additive outliers is presented. The robustness and efficiency properties 
of the methods are exhibited, some finite-sample results are discussed in combination with 
theoretical properties and the relative merits of the estimators are viewed in connection with 
the outlier-generating scheme. 

Key Words: Robust estimation; Simulation; Innovation and additive outliers; Least me­
dian of squares; Functional least squares 

1. Introduction 

When estimating the parameters of an autoregressive (AR) model, a desirable 
quality of the underlying algorithm is to provide protection against gross errors oc­
curring during the collection or recording of the data. These errors are the most fre­
quent reasons for outliers, namely data which are far away from the pattern set by 
the majority of the data. Traditionally two distinct kinds of outlier -schemes are con­
sidered. In the innovation-outlier (10) scheme, the AR process is perfectly observed 
and gross errors are incorporated in the error distribution which is assumed to be 
non-normal. When the additive-outlier (AO) scheme is preferable, the error is 
normally distributed. However, the observations contain an additive effect not re­
lated to the AR process. In both outlier configurations, a heavy-tailed distribution 
is involved frequently assumed to have infinite variance. Although under the 10-
model the least squares (LS) estimator is known to be consistent ( Kanter and Steiger 
(1974), Hannan and Kanter (1977), Yohai and Maronna(1977», its mean-squared­
error (MSE) performance in the presence of outliers has been questioned. As a re­
sult robust GM-estimators are developed by Denby and Martin (1979) and Bustos 
(1982). M-estimates in the case of innovations with finite variance are proposed by 
Beran (1976). Under less restrictive assumptions, the asymptotic properties of cer-
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tain M-estimators are studied by Campbell (1982) and Davis et aL (1992). Alterna­
tive robust approaches include the least absolute deviation method (Gross and Steiger 
(1979», the S-estimates for AR-models (Martin and Yohai (1991», the minimum 
distance estimators of Dhar (1993) and the recursive estimators considered by Cipra 
et aL (1993) and SejIing et aL (1994). For robust estimation methods in more gen­
eral time-series models the reader is referred to Martin and Yohai (1985), Bustos 
and Yohai (1986), Chang et aL (1988), Li and McLeod (1988), Allende and Heiler 
(1992), McDougall (1994), Mikosch et aL (1995) and Salau (1995). 

In most of the work cited above, finite-sample results are reported. However, 
similar results for the least median of squares (LMS) and the reweighted least squares 
(RLS) of Rousseeuw and Leroy (1987) and the functional least squares (FLS) es­
timator of Heathcote and Welsh (1983) are very limited. These estimators were 
initially introduced in the context of regression by Rousseeuw (1984) and Chambers 
and Heathcote (1981), respectively and were shown to have attractive theoretical 
properties (see also Maronna et aL (1993) for the LMS and the RLS and Csorgo 
(1983) for the FLS-estimator). In this paper we present a comparative simulation 
study for the LMS, the RLS and the FLS AR-model estimators in order to assess 
their performance in the presence of outliers under diverse sampling situations. Re­
sults corresponding to the trimmed least squares (TLS)-estimator of Ruppert and 
Carroll (1980) and the LS-estimator are also reported. 

In the next section the AR-model, the outlier-schemes and the estimation meth­
ods are described. Numerical details are provided in Section 3 whereas, in the fol­
lowing section the Monte-Carlo experiment is specified. The simulation results are 
presented in Section 5 along with a comparative discussion and we conclude by sum­
marizing our findings in the last section. 

2. Ar-Models with Outliers and Robust Estimators 

Consider the autoregressive-model AR(p) of order p 

Y t = IrjYt-j + et 
j=l (1) 

where r = (rl , ... , r p r is a parameter-vector and the errors et are indepen­

dent and identically distributed random variables. Assume that the stationarity con­
dition 

for every complex m, with Iml :s; 1, holds. 

The three types of simulated noise acting on the observed process Z t are de­
scribed as follows: 
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i) No Outliers. The observed process is Z t = Y t and the errors e cfollow the 
standard normal-N(O,l)- distribution. 

ii) IO-scheme. The AR-process is again perfectly observed. However, the errors 
now follow a 

heavy-tailed distribution. 

iii) AO-scherne. The observed process is Z t = Y t + V t ' where Y t as in the 

no-outliers case and independent of v 1: and 
the additive effects v 1: are independent and identically distributed with 

(2) 

where ° < E < 1 is the proportion of contamination, 00 denotes a distribution 

which is degenerate at zero and, the additive-effect distribution denoted by D is 

heavy-tailed. 

Our aim is to estimate the parameter-vector r E 9\ P based on the data Z t 

(t= 1,2, ... ,T) and the corresponding AR-residuals 

It = IJr) = Zt -- Irjzt-j' t = P + 1, ... ,T. 
j=l 

The estimators included in the study are: 
i) The LMS which minimizes the criterion 

medr/ 
t 

where med denotes the median. 
ii) The RLS with corresponding objective function 

T 

LWt I t
2 

t=p+l 

where It are the LMS-residuals. Their scale estimate c is used to determine the 

weights 

I 
-1 'f ~ <25 wt - ,1 A - • 

C 

= 0, otherwise. 

In Rousseeuw and Leroy (1987), the LMS and the RLS-method are employed 
in order to fit AR(l) and AR(2) models to the data RESX. For comparison with 
OM-estimates applied on this data set see Lee and Hui (1993). 
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iii) The FLS-estimator which is found by minimizing the function 

where g, is a compact set of the real line and 

1 T 

UT (r; s) = Leos( srJr)) 
T - P t=p+l 

and 

1 l' 

V T (r; s) = LSin(srt(r)) 
T - P t=p+l 

(3) 

are (under the IO-scheme) the sample estimates for the real and the imaginary 

part of the error characteristicfunction q>( s ) = U ( S ) + i V ( s), i = H, re­
spectively. 

The FLS-method produces a family of estimators for S E g ,with the limit-

ing case S = 0 corresponding to the LS-estimator. In the regression case, Csorgo 
(\983) provided the theoretical background for an efficient version of the method 

in which S is selected by minimizing the asymptotic variance function of the FLS­
estimator 

2 U 2 ( S )( 1 - u (28») - 2u ( 8 )v ( s )V (28) + V 2 ( 8 )( 1 + u (28) a (8)= ·-------------2~--~------------
28

2
(U

2
(8)+V (8)/ 

over g. Dhar (1990) proves the weak convergence and the asymptotic unbi­
asedness of the FLS-estimator in the AR(1 )-model with additive outliers. Howev­
er, he imposes restrictive conditions pertaining to the existence of moments for 
the additive-effect distribution and to the asymptotic behavior of a non-constant 
proportion of contamination. Some encouraging simulation results on the FLS, when 
applied to AR(1) models, can be found in Heathcote and Welsh (1983) and Dhar 
(1993). 

iv) The TLS-estimator with corresponding objective function 
T 

'" 2 ",,--wtr(t) 
t=p+l 

with 
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wt=l, ift~[T-qX(T-p)J 

= 0, otherwise 

where q E (0,1), and [.J , r/), denote the integer-part function and the ordered 
squared LS-residuals, respectively. Naturally the LS-estimator corresponds to the 

limiting case q=O. 

3. Specification of Algorithms 

Calculations are performed in double precision arithmetic on a HP Vectra VL2, 
4/100 with a 

Professional Fortran compiler. The extensive version of the routine PROGRESS 
(Rousseeuw and Leroy (1987» is employed for the calculation of the LMS and the 
RLS-estimator. This routine- kindly provided by Professor PJ. Rousseeuw- is mod­
ified in the data-generation part where the AR-process and the outliers are simu­
lated. 

In order to obtain the FLS-estimator, we use equation (3) and the resulting 
estimating equations 

(4) 

where IT is a vector with jth-element (j=1 , ... ,p) 

a 
ITj (r; s) = dr j LT (r; s) 

lIT 
(T _ ) LZt-i (UT (r; s ) sin { srJr)} - V T (r; s )cos{ srJr )}). 

P s t=p+l 

Equation (4) produces the iterative scheme 

A (m+1) A (m) r A (m) A (m) l-l A (m) 

r =r +lu~(r ;s)+V~(r ;s)J (ZZ r 1 l T (r ;s) 
, (5) 

where ZZ is a pXp matrix with (i,j) element 

1 TIT 1 T 

-T-- L Zt_iZt_j --T-- L Zt--i --- LZt-j 
- P t=p+! - P t=p+l T - P t=p+! 
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1\ (U) 

and r is the 20% TLS-estimator (q=O.20). 

The specific value of s used in (5) is determined by employing the IMSL(I987) 
routine DUVMGS to minimize the current sample estimate of the variance func-

tion (12 (s) over .5 = [10-
3

,1.0 J. Iteration (5) stops when the overall absolute 
change in the values of the estimates falls below 10-9. A few convergence prob­
lems- due to the periodic nature of the trigonometric functions involved- are re­
solved by reducing the upper boundary of in problematic cases. 

4. Description of the Monte Carlo Study 

The model and the sampling situations included are chosen so as to ensure a cred­
ible comparison of the estimators. Specifically, we have incorporated models of 
different orders and different parameter-values and a wide range of shapes for the 
10 and AO simulated noise. The random number generation is implemented by call­
ing the appropriate routines of the IMSL (1987) computer package. More details 
are provided below. 

i) Model and parameter choices. The AR-model (1) withp=2,3 and 

-( 1)j+1080 i "-12 -( 1)j+1060j "-123 r j - - ., J -- , , r j - - ., J - , , , 

respectively, is utilized. The scheme r j = ( -1) j+! a j , a < 1 (due to H. Wold) 
is adopted from Anderson (1971). 

ii) Simulated distributions. The specific shapes of simulated noise under the 
10-scheme correspond to the following innovation-distributions: 

a) The symmetric stable distribution with shape parameter a (, denoted by Sea). 
The values of a are limited to the interval (0,2]. The smaller the value of a, the thick­
er the tails of the distribution. For a= 1 the Cauchy distribution results whereas, 
the normal (a=2) is the only member of the family with finite variance. In any oth­
er case Sea) has finite moments of order only less than a. 

b) The contaminated normal distribution- CN(A,a)- where 

e t - ((1- A)N (0,1) + AN (0,0- 2 
), 

with 0 < It < 1 and (12 > 1. 

This is a standard model for thick-tailed distributions possessing 
a N(O,I) core. 
c) The Student's-tv distribution with V degrees of freedom. 

The three families of distributions considered above have the advantage of con-
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taining the standard normal distribution as a limiting case (a ~2, Il ~O, V ~ 00). 

This enables to study the behavior of the estimators as we depart from the N(O,l) 
model and approach alternative (heavier-tailed) innovation-distributions. When 
simulating the AO-scheme, the distribution D in (2) is taken to belong to any of 
the three categories mentioned above (in the case of CN(A,O), A=l is used). Also, 
the AR-values Yt are adjusted to have variance equal to one and the determination 

of the necessary tuning constants is based on equations [3.4.4] and [3.4.36] in Hamil­
ton (1994). 

iii) Random number generation. The routine DRNSTA is used for stable ran­
dom numbers whereas, when N(0,1) variates are required the routine DRNNOR 
is called. In the CN(A,O) case, the standard normal variates are multiplied by ° 
with probability A simulated by the routine DRNUN which produces random num­
bers in (0,1). The same routine is used to simulate the proportion £ in (2). For tv 

sampling situations we have utilized the normal/chi-squared method, with chi-squared 
generated- by calling DRNGAM- as a special case of the gamma distribution. In or­
der to reduce dependence of the results on initial process-values, a block of 100 vari­
ates is generated according to equation (1) and the last p are used as starting val­
ues for calculating the observations involved in the estimation process. 

5. Simulation Results 

The results presented in this section correspond to 1000 replications. With each 

replication, the methods are applied to 100 standardized observations z,fmedlz, I. 
For selected cases, we have generated more samples (up to 3(00) and our conclu­
sion is that the discussion reported below would not be altered if a higher number 
of replications was used. In the left entries of Table 1, the sums of the root nor­
malized (times 1(0) absolute biases over an estimated coefficients are reported for 
the IO-case. The right entries show the corresponding figures for the ~ariances. The 
same statistics under the AO-scheme are reported in Tables 2,3,4 for £= O.01,O.OS,O.1 0, 
respectively. Based on the simulation results the following observations can be made: 

i) IO-scheme 
The RLS-estimator has (overall) the smallest bias followed by the LMS where­

as, the TLS, the FLS and the LS are less reliable methods under this criterion. Al­
so, within the family of symmetric-stable error-distributions, the bias of the estima­
tors decreases, as the tail-length of the underlying distribution increases. This 
phenomenon is in agreement with theoretical results- pertaining to the LS and M­
estimators- which indicate consistency rates related to (T_p)l/a (see, for example, 
Davis et a1. (1992». Turning to variability we observe that the FLS followed by the 
TLS and the RLS are the most preferable methods whereas, the LS and (by far) 
the LMS are less efficient. With the exception of the LS-method, the estimated vari­
ance is a decreasing function of the tail-length of the innovation-distribution. Thus, 
previous results (see, for example, Denby and Martin (1979» indicating that heavy-
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tailed innovation-distributions improve the accuracy of certain estimators can be 
possibly extended to the robust methods considered here. For the LS-method, the 
exhibited t1atness in cases of errors with finite variance is consistent with the fact 
that the asymptotic variance of the estimator is independent of the innovation-dis­
tribution. In order to assist final comparison we have graphed the sum of the root 
normalized MSE's (TRMSE) of the parameter-estimators in Figures 1-4. Appar­
ently the FLS is the best and the LMS is the worst among the estimators considered 
in terms of estimated TRMSE. However, when the underlying error-distribution is 
extreme-tailed, the last estimator is on the whole more reliable than the LS-esti­
matar which, naturally, is very efficient at (or near) the standard normal model. Fi­
nally, the TLS and the RLS-estimatar exhibit a considerable agreement in their 
values of estimated TRMSE in the majority of cases. 
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Table 1. IO-scheme: Total root normalized bias (left entry) and total root nor-
malized variance (right entry) of estimatorsAND FIGURES 1-4 APPROXI-

MATELYHERE 

Inllovation LS LMS RLS FLS TLS 
Distribution 

e=2 

Sea) a 
1.0 0.92 2.24 0.83 0.57 0.65 0.38 0.51 0.43 0.90 0.53 
1.3 1.51 1.50 1.24 1.42 l.l9 0.86 0.92 0.79 1.20 0.82 
1.6 1.83 1.43 1.80 2.36 1.86 1.27 1.69 1.13 1.70 1.23 
1.9 2.14 1.51 2.33 3.50 2.32 1.63 2.22 1.44 2.21 1.66 

N(O,l) 1.98 1.55 206 3.39 2.01 1.81 2.02 1.57 1.86 1.84 

CN(A,O') a 
Ar=O.05 2 2.03 1.54 0.93 3.79 1.67 1.76 1.89 1.52 1.90 1.75 

Ar=O.lO 3 2.13 1.53 1.85 3.10 1.45 1.45 1.58 1.35 1.83' 1.52 

Ar=O.20 5 1.99 1.46 1.22 I.S1 0.93 0.96 1.09 0.94 1.53 0.99 

Ar=O.30 10 1.80 1.45 0.98 0.75 0.76 0.45 0.83 0.52 0.82 0.59 

tv V 
2 1.86 1.39 1.01 1.91 1.32 1.10 1.03 1.09 1.55 1.02 
3 1.63 1.49 1.29 2.46 1.23 1.36 1.49 1.28 1.33 1.33 
6 1.98 1.53 2.27 3.25 1.88 1.66 1.84 1,48 1.92 1.60 
12 2.17 1.55 2.15 3,48 2.00 1.68 2.18 1.54 2.08 1.69 

~-~-' 

Sea) a 
1.0 2.03 7.70 1.11 1.64 0.96 1.08 1.59 l.l8 1.59 1.19 
1.3 2.30 3.07 1.41 3.25 1.36 1.93 1.87 1.75 2.19 1.71 
1.6 2.62 2.80 3.16 5.15 2.54 2.69 2.90 2.33 2.72 2.38 
1.9 2.98 2.93 4.07 7.14 3.26 3.30 3.74 2.84 3.23 3.23 

N(O,l) 2.22 3.02 1.76 7.60 2.18 3,45 3.63 3.04 2.24 3.52 

CN(A,O') 0' 

Ar=O.05 2 2.08 3.01 3.43 7.16 2.13 3.39 2.89 3.01 2,41 3.39 

Ar=O.lO 3 2.11 2.93 0.97 6.10 1.43 2.92 2.63 2.62 1.92 2.89 

Ar=O.20 5 1.98 2.83 0.68 3.65 1.34 1.95 1.79 1.93 1.65 1.92 

Ar=O.30 10 1.87 2.89 1.07 1,49 0,44 0.87 0,49 1.06 1.15 1.22 

tv V 
2 2.91 2.76 1.56 4.02 1.30 2.33 1.67 2.20 2.30 2.08 
3 2.57 2.91 2.42 5.08 2.71 2.81 3.02 2.56 2,45 2.58 
6 2.07 302 1.62 6.30 L13 122 2.93 2.92 1.67 3.11 
12 2.54 2.96 3.01 6.79 2.50 3.28 3.36 2.97 2.86 3.23 
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ii) AO-scheme 
In this case, the effect of additive outliers on the estimated bias increases with 

the proportion of contamination and seems impossible to remove it. This drastic 
effect of additive outliers is also observed by Sejling et a1. (1994) in their simula­
tion study of recursive robust estimators. Comparison of biases favors the LMS-es­
timator uniformly in and over aU additive-effect distributions. The RLS follows 
whereas, the LS and, to a lesser extent, the TLS and the FLS are less reliable meth­
ods in terms of bias. For the last three estimators the estimated bias increases with 
the tail-length of the additive-effect distribution. This resembles the mono tonicity­
with respect to the variance of D· property of the asymptotic bias of the LS-esti­
mator in the AR(l) case (Denby and Martin (1979». In addition, the bias of the 
LMS, the RLS and the FLS-estimator is significantly affected by the order of the 
AR-model. Hence, we may conjecture that the breakdown point of these methods 
is reduced compared to the regression setup and depends on the order p, as its is the 
case for the GM and the S-estimator (see Martin and Yohai (1985) and (1991), re­
spectively). Turning to efficiency, it can be seen that the calculated variance indi­
cates the LMS to be the least appropriate method. All other methods appear to be 
(overall) comparable, since no estimator clearly dominates the others. Nevertheless, 
differences do exist in extreme-tailed situations particularly for the lower order mod­
el. In Figures 5-12 the TRMSE is shown for selected sizes and shapes of contami­
nation. Apparently the performance of the LMS-estimator is not significantly af­

fected by tail-changes within any £-family of additive-effect distributions. This is 
also true, though to a lesser extent, for increases in the value of the contamination 

parameter £. The flatness of the LMS in combination with the relative sensitive­
ness of the remaining estimators to changes in size and shape of contamination makes 

the LMS competitive for large values of heavy-tailed £-contamination. Also the FLS 

and the TLS become indistinguishable for £20.10 indicating that iteration (5) 

fails to produce a more efficient estimator in such cases, especially for the AR(3)­
model. The estimator with the best performance overall is the RLS followed by the 
FLS and the TLS-estimator whereas, the LS is comparable to the best estimator 
for small percentage of medium-tailed contamination but looses MSE-efficiency 
with increasing and tail-heaviness. 
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Table 2. AO-scheme: Total root normalized bias (left entry) and total root nor-
malized variance (right entry) of estimators 

e=O.Ol 

Additive Effect LS LMS 
Distribution 

/!.=2 

Sial a 
1.0 5.98 3.51 2.47 3.94 2.77 1.83 4.10 2.67 4.93 2.96 
1.3 4.93 2.74 2.68 3.90 2.80 1.82 3.66 2.16 4.09 2.42 
1.6 4.26 2.23 2.82 3.89 2.82 1.82 3.26 1.89 3.60 2.10 
1.9 3.78 1.82 2.66 3.89 2.84 1.82 3.21 1.72 3.30 1.92 

N(O,cr 2
) cr 

2 4.80 2.00 2.29 4.00 3.15 1.96 3.82 1.81 3.93 1.96 
3 6.33 2.57 1.95 4.02 3.17 2.04 3.79 2.05 4.83 2.10 
5 8.59 3.53 2.22 4.00 3.12 2.06 3.11 2.45 6.26 2.47 
10 11.6 4.49 2.06 4.03 2.89 2.09 3.01 3.56 8.65 3.63 

tv V 
2 4.47 2.43 2.75 3.81 2.68 L80 3.13 1.92 3.76 2.18 
3 3.88 1.89 2.09 4.02 2.61 1.86 3.00 1.68 3.08 1.90 
6 3.11 1.72 1.78 3.87 2.33 1.84 2.71 1.68 2.69 1.85 

12 2.93 1.64 1.78 3.91 2.57 1.82 2.76 1.61 2.63 1.83 

__ --EL~. 
Sial a 

1.0 6.90 4,03 3.56 7.54 4.36 3.62 6.81 3.86 6.56 4.20 
1.3 5.77 3.59 3.88 7.57 4,06 3.55 5,85 3.44 5.40 3.82 
1.6 5,02 3.32 3.51 7.57 3.86 3.54 5,21 3.31 4.77 3.67 
1.9 4.50 3.10 3.73 7.53 3.81 3.49 4,97 3.13 4.35 3.57 

N(O,cr 2
) cr 

2 5.64 3.16 2.85 7.55 4.47 3.54 6.00 3.15 5,02 3.53 
3 7.48 3.46 4.19 7.52 5.57 3.66 7,24 3.46 6.58 3.62 
5 10.0 4.00 4,79 7.50 6.52 3.84 9.22 3.93 8,88 3.93 
10 13.2 4.49 5,04 7.62 7.37 4,15 11.6 4.59 11.9 4.36 

tv V 
2 5.23 3.42 3.88 7.50 3.88 3.55 5.44 3.36 5,03 3.72 
3 4.57 3.21 3,82 7.66 3.80 3.54 5.07 3.17 4.24 3.62 
6 3.73 3.12 2.46 7.61 3.12 3.49 4.24 3.13 3.52 3.49 
12 3.43 3.03 2.49 7.61 2.99 3.44 4.10 3.06 3.37 3.55 
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Table 3. AO-scheme: Total root normalized bias (left entry) and total root nor­
malized variance (right entry) of estimators 

£=0.05 

TLS 

S(a) a 
1.0 10.6 4.85 3.94 4.16 4.65 2.22 7.80 4.48 9.06 4.43 
1.3 8.97 4.07 4.06 4.08 4.78 2.16 6.69 3.46 7.59 3.56 
1.6 7.71 3.24 4.17 4.06 4.81 2.06 5.95 4.57 6.50 2.80 
1.9 6.68 2.35 4.00 4.03 4.79 2.05 5.71 2.12 5.71 2.24 

N(O,cr 2
) cr 

2 8.32 2.40 4.02 4.26 5.48 2.39 6.87 2.50 6.96 2.28 
3 10.6 2.82 4.05 4.33 5.67 2.63 7.18 3.53 8.89 2.78 
5 13.3 2.85 3.68 4.37 5.51 2.86 8.88 5.08 11.6 3.37 

10 15.6 1.98 3.38 4.17 4.78 2.77 13.8 5.08 14.8 2.91 

tv V 
2 7.S3 3.31 3.63 4.0S 4.52 2.11 5.53 2.47 6.48 2.69 
3 6.64 2.55 3.67 4.21 4.39 2.11 5.07 2.10 5.48 2.19 
6 5.55 2.02 3.33 4.07 4.19 2.02 4.88 1.90 4.78 2.01 

12 5.06 1.86 3.52 4.03 4.20 2.00 4.78 1.81 4.49 1.98 

e=3 
S(a) a 

1.0 12.1 4.72 6.52 7.S1 8.21 4.09 11.6 4.54 11.5 4.74 
1.3 10.4 4.30 6.96 7.57 7.88 3.S5 10.2 4.10 9.88 4.37 
1.6 9.09 3.82 6.71 7.57 7.53 3.78 9.03 3.65 8.63 3.98 
1.9 8.01 3.35 6.62 7.49 7.14 3.61 8.23 3.29 7.66 3.68 

N(O,cr 2
) cr 

2 9.94 3.32 7.58 7.44 8.69 3.73 10.0 3.28 9.29 3.61 
3 12.5 3.43 9.01 7.34 10.3 3.94 12.1 3.56 11.7 3.64 
5 15.2 3.22 9.81 7.37 11.7 4.20 14.5 3.65 14.4 3.48 
10 17.3 2.31 10.7 7.15 12.5 4.61 16.8 2.83 16.9 2.63 

tv V 
2 9.20 3.89 6.47 7.54 7.31 3.74 9.01 3.72 8.76 4.01 
3 7.96 3.50 6.19 7.51 6.78 3.65 8.06 3.40 7.49 3.82 
6 6.74 3.23 3.99 7.56 5.86 3.65 7.06 3.22 6.47 3.57 
12 6.23 3.12 4.68 7.55 5.79 3.47 6.70 3.13 6.02 3.56 



Robust Estimators of Ar-Models: A Comparison 41 

Table 4. AO-scheme: Total root normalized bias (left entry) and total root nor­
malized variance (right entry) of estimators 

e=O.lO 

Additive Effect LS FLS TLS 

Sial a 
1.0 14.1 3.93 5.81 4.48 7.31 2.90 12.3 5.14 13.1 4.35 
1.3 12.4 3.90 6.10 4.44 7.46 2.73 10.4 4.36 11.2 3.97 
1.6 10.8 3.37 6.20 4.45 7.57 2.66 9.19 3.33 9.63 3.19 
1.9 9.45 2.51 6.23 4.46 7.52 2.49 8.61 2.50 8.54 2.49 

N(0,cr 2
) cr 

2 11.2 2.45 6.58 4.72 8.49 2.92 10.3 2.90 10.2 2.63 
3 13.4 2.41 7.18 5.08 9.27 3.56 12.2 3.69 12.6 2.80 
5 15.2 1.98 7.19 5.42 9.28 4.33 14.6 3.42 14.8 2.30 
10 16.4 146 7.06 5.78 8.60 4.98 16.3 1.63 16.3 144 

ty V 
2 10.8 3.57 5.63 4.35 6.95 8.59 3.37 9.42 3.31 
3 9.36 2.86 5.59 4.44 6.76 7.97 2.75 8.22 2.62 
6 8.00 2.33 5.20 4.27 6.40 7.32 2.25 7.12 2.33 
12 7.31 2.09 5.47 4.38 6.99 2.06 6.68 2.20 

Sial a 
1.0 15.9 3.70 110 7.20 12.3 4.13 15.3 3.87 15.4 3.85 
1.3 14.2 3.88 10.6 7.34 11.6 4.00 13.8 3.85 13.6 3.97 
1.6 12.6 3.69 10.0 7.31 110 3.75 12.5 3.55 12.1 3.84 
1.9 11.2 3.30 9.91 7.19 10.4 3.60 11.3 3.26 10.9 3.62 

N(O,cr 2
) cr 

2 13.1 3.20 10.9 7.32 12.0 3.68 13.1 3.16 12.7 3.39 
3 15.2 3.07 12.8 6.90 13.9 3.67 15.1 2.96 14.9 3.13 
5 16.8 2.79 14.5 6.09 15.3 3.59 16.8 2.52 16.7 2.57 
10 17.9 2.43 15.5 5.50 16.2 3.64 17.9 172 17.8 180 

ty V 
2 12.5 3.89 7.27 10.6 3.92 12.2 3.77 12.0 3.94 
3 110 3.58 7.46 9.85 3.75 110 3.47 10.6 3.77 
6 9.53 3.34 8.70 3.76 9.72 3.32 9.23 3.59 
12 8.84 3.23 8.34 3.62 9.16 3.23 8.70 3.61 
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6. Conclusion 

Robust autoregressive-model estimators occupy a particularly important place 
in time-series methodology. In this article we present a simulation study of four ro­
bust alternatives to the LS- estimator under innovation and additive outliers. The 
results indicate that under the 10- scheme, the functional least squares is the esti­
mator on which innovation outliers have the relatively mildest impact. However, the 
reweighted least squares and the trimmed least squares also perform well :ll1d the 
general conclusion is that in most cases the estimators are not seriously affected by 
this type of outliers. On the contrary, the effect of additive outliers on all five esti­
mators considered is significant and for most of them, of increasing importance as 
the proportion and the shape of contamination changes. Nevertheless, the reweight­
ed least squares appears to be the most efficient method. The other two estimators 
mentioned in the 10-case above also deserve some merit under the AO-scheme. Fi­
nally, on the whole and under both outlier schemes the least squares and the least 
median of squares are the estimators with less satisfactory performance, although 
the former exhibits considerable efficiency near the standard normal model while 
the latter outperforms almost all estimators in terms of estimated bias. 
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