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Abstract

Many regression-estimation techniques have been extended to cover the case of depen-
dent observations. The majority of such techniques are developed from the classical least
squares, M and GM approaches and their properties have been investigated both on theo-
retical and empirical grounds. However, the behavior of some alternative methods- with
satisfactory performance in the regression case- has not received equal attention in the con-
text of time series. A simulation study of four robust estimators for autoregressive models con-
taining innovation or additive outliers is presented. The robustness and efficiency properties
of the methods are exhibited, some finite-sample results are discussed in combination with
theoretical properties and the relative merits of the estimators are viewed in connection with
the outlier-generating scheme.
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1. Introduction

When estimating the parameters of an autoregressive (AR) model, a desirable
quality of the underlying algorithm is to provide protection against gross errors oc-
curring during the collection or recording of the data. These errors are the most fre-
quent reasons for outliers, namely data which are far away from the pattern set by
the majority of the data. Traditionally two distinct kinds of outlier-schemes are con-
sidered. In the innovation-outlier (10) scheme, the AR process is perfectly observed
and gross errors are incorporated in the error distribution which is assumed to be
non-normal. When the additive-outlier (AO) scheme is preferable, the error is
normally distributed. However, the observations contain an additive effect not re-
lated to the AR process. In both outlier configurations, a heavy-tailed distribution
is involved frequently assumed to have infinite variance. Although under the 10-
model the least squares (LS) estimator is known to be consistent ( Kanter and Steiger
(1974), Hannan and Kanter (1977), Yohai and Maronna(1977)), its mean-squared-
error (MSE) performance in the presence of outliers has been questioned. As a re-
sult robust GM-estimators are developed by Denby and Martin (1979) and Bustos
(1982). M-estimates in the case of innovations with finite variance are proposed by
Beran (1976). Under less restrictive assumptions, the asymptotic properties of cer-
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tain M-estimators are studied by Campbell (1982) and Davis et al. (1992). Alterna-
tive robust approaches include the least absolute deviation method (Gross and Steiger
(1979)), the S-estimates for AR-models (Martin and Yohai (1991)), the minimum
distance estimators of Dhar (1993) and the recursive estimators considered by Cipra
et al. (1993) and Sejling et al. (1994). For robust estimation methods in more gen-
eral time-series models the reader is referred to Martin and Yohai (1985), Bustos
and Yohai (1986), Chang et al. (1988), Li and McLeod (1988), Allende and Heiler
(1992), McDougall (1994), Mikosch et al. (1995) and Salau (1995).

In most of the work cited above, finite-sample results are reported. However,
similar results for the least median of squares (LMS) and the reweighted least squares
(RLS) of Rousseeuw and Leroy (1987) and the functional least squares (FLS) es-
timator of Heathcote and Welsh (1983) are very limited. These estimators were
initially introduced in the context of regression by Rousseeuw (1984) and Chambers
and Heathcote (1981), respectively and were shown to have attractive theoretical
properties (see also Maronna et al. (1993) for the LMS and the RLS and Csorgo
(1983) for the FLS-estimator). In this paper we present a comparative simulation
study for the LMS, the RLS and the FLS AR-model estimators in order to assess
their performance in the presence of outliers under diverse sampling situations. Re-
sults corresponding to the trimmed least squares (TLS)-estimator of Ruppert and
Carroll (1980) and the LS-estimator are also reported.

In the next section the AR-model, the outlier-schemes and the estimation meth-
ods are described. Numerical details are provided in Section 3 whereas, in the fol-
lowing section the Monte-Carlo experiment is specified. The simulation results are
presented in Section 5 along with a comparative discussion and we conclude by sum-
marizing our findings in the last section.

2. Ar-Models with Outliers and Robust Estimators

Consider the autoregressive-model AR(p) of order p

Y. = inYt*j +e,
= (D
where ¥ =(¥,,---,¥, ) is a parameter-vector and the errors e, are indepen-

dent and identically distributed random variables. Assume that the stationarity con-
dition

i'yja)f #1
=

for every complex @, with |@| < 1, holds.

The three types of simulated noise acting on the observed process Z, are de-
scribed as follows:
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i) No Outliers. The observed processis z, = ¥, and the errors e (follow the
standard normal-N(0,1)- distribution.

ii) I0-scheme. The AR-process is again perfectly observed. However, the errors
now follow a

heavy-tailed distribution.

iii) AO-scheme. The observed processis 2, = ¥, +V, ,where ¥, asinthe
no-outliers case and independent of v« and

the additive effects v zare independent and identically distributed with

ve T(1—€)d, + €D, )

where 0 < & < 1 is the proportion of contamination, O denotes a distribution

which is degenerate at zero and, the additive-effect distribution denoted by D is
heavy-tailed.

Our aim is to estimate the parameter-vector ¥ & RP based on the data z .
(t=1,2,...,T) and the corresponding AR-residuals

r,=r(y)=z,— iyjzt,j, t=p+1,..T.
j=1

The estimators included in the study are:
i) The 1.MS which minimizes the criterion
med 1/’
t
where med denotes the median.
ii) The RLS with corresponding objective function

T
2w,z
Wtrt

t=p+1

2

where 1, are the LMS-residuals. Their scale estimate ¢ is used to determine the

weights

Iy
w, =1, if |-H <25

[+
= 0, otherwise.

In Roussecuw and Leroy (1987), the LMS and the RLS-method are employed
in order to fit AR(1) and AR(2) models to the data RESX. For comparison with
GM-estimates applied on  this data set see Lee and Hui (1993).
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iii) The FLS-estimator which is found by minimizing the function

1 2 2
LT('y;s):—;;log[UT(y;s)+VT‘(7;s)l seg, (3)

where 3, is a compact set of the real line and

1 T
UT('}’;S)’:mt;fOS(SQ(')’))
and
1 L
VT(Y"S):F;,;}QH(“‘(W}

are (under the 10-scheme) the sample estimates for the real and the imaginary
part of the error characteristic function @(s)=u(s)+iv(s), i =~-1,re-

spectively.
The FLS-method produces a family of estimators for § € 3 , with the limit-

ing case § = 0 corresponding to the LS-estimator. In the regression case, Csorgo
(1983) provided the theoretical background for an efficient version of the method

in which § is selected by minimizing the asymptotic variance function of the FLS-
estimator

_ul(s)1-u(2s)—2u(s)v(s)v(2s)+v (s )1 +u(2s))
B 28*(u’(s)+v’>(s))’

c°(s)

over 3. Dhar (1990) proves the weak convergence and the asymptotic unbi-
asedness of the FLS-estimator in the AR(1)-model with additive outliers. Howev-
er, he imposes restrictive conditions pertaining to the existence of moments for
the additive-effect distribution and to the asymptotic behavior of a non-constant
proportion of contamination. Some encouraging simulation results on the FLS, when
applied to AR(1) models, can be found in Heathcote and Welsh (1983) and Dhar
(1993).

iv) The TLS-estimator with corresponding objective function

T
2
2w,r},

t=p+l

with
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w,=1, f t< [T —gx(T - p)]
=0, otherwise

where ¢ € (0,1), and [], r’,, denote the integer-part function and the ordered
squared LS-residuals, respectively. Naturally the LS-estimator corresponds to the
limiting case g=0.

3. Specification of Algorithms

Calculations are performed in double precision arithmetic on a HP Vectra VL2,
4/100 with a

Professional Fortran compiler. The extensive version of the routine PROGRESS
(Rousseeuw and Leroy (1987)) is employed for the calculation of the LMS and the
RLS-estimator. This routine- kindly provided by Professor P.J. Rousseeuw- is mod-

ified in the data-generation part where the AR-process and the outliers are simu-
lated.

In order to obtain the FLS-estimator, we use equation (3) and the resulting
estimating equations

I:(y.s)=0, 4)
where I, is a vector with ji-element (j=1,...,p)

d
ITj(y;s):by—Lr(y;s)

i

1 1 &
“(T-p)s Ezt—j(UT(’y;S)Siﬂ{srt(’;V)} — V. (Y:s)cos{ st,(Y ).
t=p+1

Equation (4) produces the iterative scheme

almi)  am | , A (m PNEY T A (m)
YooSY F|U(Y ) kVe(y s (ZZ)'I(y ;s)

where ZZ isa pXp matrix with (i,j) element

l T 1 T 1 T
a—— 2 Z, 2z, ; — 2 Z, Ezt*j

T - P t=p+1 T - P t=p+l T - P t=p+1
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ALY

and ¥ is the 20% TLS-estimator (¢=0.20).

The specific value of § used in (5) is determined by employing the IMSL(1987)
routine DUVMGS to minimize the current sample estimate of the variance func-

tion 62(s) over 3= [107,1.0] 1teration (5) stops when the overall absolute
change in the values of the estimates falls below 10-%. A few convergence prob-
lems- due to the periodic nature of the trigonometric functions involved- are re-
solved by reducing the upper boundary of in problematic cases.

4. Description of the Monte Carlo Study

The model and the sampling situations included are chosen so as to ensure a cred-
ible comparison of the estimators. Specifically, we have incorporated models of
different orders and different parameter-values and a wide range of shapes for the
10 and AO simulated noise. The random number generation is implemented by call-
ing the appropriate routines of the IMSL (1987) computer package. More details
are provided below.

i) Model and parameter choices. The AR-model (1) with p=2,3 and

7, =(-1)7"0807, j=12, y,=(-1)""0607, j=123,

respectively, is utilized. The scheme ¥ ; = (-1)’ Tal, a1l (due to H. Wold)
is adopted from Anderson (1971).

i) Simulated distributions. The specific shapes of simulated noise under the
10O-scheme correspond to the following innovation-distributions:

a) The symmetric stable distribution with shape parameter a (, denoted by S(a.).
The values of o are limited to the interval (0,2]. The smaller the value of o, the thick-
er the tails of the distribution. For a=1 the Cauchy distribution results whereas,
the normal (a=2) is the only member of the family with finite variance. In any oth-
er case S(a) has finite moments of order only less than o.

b) The contaminated normal distribution- CN(A,0)- where

e,~ (1- N0+ AN(0,0%),

with 0 < A< 1 and 6% > 1.

This is a standard model for thick-tailed distributions possessing
a N(0,1) core.
¢) The Student’s-t, distribution with v degrees of freedom.
The three families of distributions considered above have the advantage of con-
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taining the standard normal distribution as a limiting case (o — 2, A =0,V —> o0).

This enables to study the behavior of the estimators as we depart from the N(0,1)
model and approach alternative (heavier-tailed) innovation-distributions. When
simulating the AO-scheme, the distribution D in (2) is taken to belong to any of
the three categories mentioned above (in the case of CN(A,0), A=1 is used). Also,
the AR-values y, are adjusted to have variance equal to one and the determination
of the necessary tuning constants is based on equations [3.4.4] and [3.4.36] in Hamil-
ton (1994).

iii) Random number generation. The routine DRNSTA is used for stable ran-
dom numbers whereas, when N(0,1) variates are required the routine DRNNOR
is called. In the CN(},0) case, the standard normal variates are multiplied by o
with probability A simulated by the routine DRNUN which produces random num-
bers in (0,1). The same routine is used to simulate the proportion € in (2). For t»
sampling situations we have utilized the normal/chi-squared method, with chi-squared
generated- by calling DRINGAM- as a special case of the gamma distribution. In or-
der to reduce dependence of the results on initial process-values, a block of 100 vari-
ates is generated according to equation (1) and the last p are used as starting val-
ues for calculating the observations involved in the estimation process.

5. Simulation Results

The results presented in this section correspond to 1000 replications. With each

replication, the methods are applied to 100 standardized observations z,/med|z,| .
For selected cases, we have generated more samples (up to 3000) and our conclu-
sion is that the discussion reported below would not be altered if a higher number
of replications was used. In the left entries of Table 1, the sums of the root nor-
malized (times 100) absolute biases over all estimated coefficients are reported for
the I0-case. The right entries show the corresponding figures for the variances. The
same statistics under the AO-scheme are reported in Tables 2,3,4 for e= 0.01,0.05,0.10,
respectively. Based on the simulation results the following observations can be made:
i) I0-scheme

The RLS-estimator has (overall) the smallest bias followed by the LMS where-
as, the TLS, the FLS and the LS are less reliable methods under this criterion. Al-
so, within the family of symmetric-stable error-distributions, the bias of the estima-
tors decreases, as the tail-length of the underlying distribution increases. This
phenomenon is in agreement with theoretical results- pertaining to the LS and M-
estimators- which indicate consistency rates related to (T-p)l/« (see, for example,
Davis et al. (1992)). Turning to variability we observe that the FLS followed by the
TLS and the RLS are the most preferable methods whereas, the LS and (by far)
the LMS are less efficient. With the exception of the LS-method, the estimated vari-
ance is a decreasing function of the tail-length of the innovation-distribution. Thus,
previous results (see, for example, Denby and Martin (1979)) indicating that heavy-
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tailed innovation-distributions improve the accuracy of certain estimators can be
possibly extended to the robust methods considered here. For the LS-method, the
exhibited flatness in cases of errors with finite variance is consistent with the fact
that the asymptotic variance of the estimator is independent of the innovation-dis-
tribution. In order to assist final comparison we have graphed the sum of the root
normalized MSE’s (TRMSE) of the parameter-estimators in Figures 1-4. Appar-
ently the FLS is the best and the 1LMS is the worst among the estimators considered
in terms of estimated TRMSE. However, when the underlying error-distribution is
extreme-tailed, the last estimator is on the whole more reliable than the LS-esti-
mator which, naturally, is very efficient at (or near) the standard normal model. Fi-
nally, the TLS and the RLS-estimator exhibit a considerable agreement in their
values of estimated TRMSE in the majority of cases.
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Table 1. I0-scheme: Total root normalized bias (left entry) and total root nor-
malized variance (right entry) of estimatorsAND FIGURES 1-4 APPROXI-

MATELY HERE
Innovation LS LMS RLS FLS TLS
Distribution
I}:
Sy o
1.0 092 224 0.83 057 0.65 038 051 043 090 033
1.3 151 1.50 124 142 119 086 092 079 120 0.82
1.6 183 143 1.80 236 186 1.27 169 L13 170 123
1.9 2.14 151 233 350 232 163 222 144 221 166
N(0,1) 198 155 206 339 200 181 202 157 0 186 184
CN(ALO) ©
A=0.05 2 203 154 093 379 167 176 189 152 © 19 175
A=0.10 3 213 153 185 3.10 145 145 158 135 183 152
A=020 5 199 146 122 181 093 096 109 094 153 099
A=030 10 180 145 098 075 076 045 0.83 052 082 039
tV
2 186 139 101 191 {32 L10 103 1.09 155 1.02
3 163 149 129 246 123 136 149 128 133 133
6 198 153 - 227 325 188 1.66 1.84 148 192 160
12 217 155 215 348 200 168 218 154 208 1.69
- = -
S(o) o
1.0 203 770 LI 164 096 1.08 159 118 159  1.19
1.3 230 3.07 141 325 136 1.93 187 L.75 219 171
1.6 262 280 316 515 254 2.69 290 233 272 238
1.9 298 293 407 7.4 326 330 374 284 323 3.3
N(0,1) 222 302 176 7.60 2.18 345 363 304 224 352
CN(ALo) ©
A=0.05 2 208  3.01 343 716 213 339 289 301 241 339
=010 3 210 293 097 6.10 143 292 263 262 192 289
A020 5 198 2.83 0.68 3.65 134 195 179 193 165 192
A=030 10 187 2.89 107 149 044 087 049 1.06 115 122
t, v
2 291 276 156 4.02 130 233 1.67 220 230 208
3 257 291 242 508 271 281 3.02 256 245 258
6 207 302 1.62 630 L3 320 293 192 167  3.11
12 254 296 308 679 0 250 328 0 336 297 286 323
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it) AO-scheme

In this case, the effect of additive outliers on the estimated bias increases with
the proportion of contamination and seems impossible to remove it. This drastic
effect of additive outliers is also observed by Sejling et al. {1994) in their simula-
tion study of recursive robust estimators. Comparison of biases favors the LMS-es-
timator uniformly in and over all additive-effect distributions. The RLS follows
whereas, the LS and, to a lesser extent, the TLS and the FLS are less reliable meth-
ods in terms of bias. For the last three estimators the estimated bias increases with
the tail-length of the additive-effect distribution. This resembles the monotonicity-
with respect to the variance of D- property of the asymptotic bias of the LS-esti-
mator in the AR(1) case (Denby and Martin (1979)). In addition, the bias of the
LMS, the RLS and the FLS-estimator is significantly affected by the order of the
AR-model. Hence, we may conjecture that the breakdown point of these methods
is reduced compared to the regression setup and depends on the orderp, asits is the
case for the GM and the S-estimator (see Martin and Yohai (1985) and (1991), re-
spectively). Turning to efficiency, it can be seen that the calculated variance indi-
cates the LMS to be the least appropriate method. All other methods appear to be
(overall) comparable, since no estimator clearly dominates the others. Nevertheless,
differences do exist in extreme-tailed situations particularly for the lower order mod-
el. In Figures 5-12 the TRMSE is shown for selected sizes and shapes of contami-
nation. Apparently the performance of the LMS-estimator is not significantly af-
fected by tail-changes within any £-family of additive-effect distributions. This is
also true, though to a lesser extent, for increases in the value of the contamination
parameter £. The flatness of the LMS in combination with the relative sensitive-
ness of the remaining estimators to changes in size and shape of contamination makes
the LMS competitive for large values of heavy-tailed £-contamination. Also the FLS
and the TLS become indistinguishable for £ 0.10 indicating that iteration (5)
fails to produce a more efficient estimator in such cases, especially for the AR(3)-
model. The estimator with the best performance overall is the RLS followed by the
FLS and the TLS-estimator whereas, the LS is comparable to the best estimator
for small percentage of medium-tailed contamination but looses MSE-efficiency
with increasing and tail-heaviness.
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Table 2. AO-scheme: Total root normalized bias (left entry) and total root nor-
malized variance (right entry) of estimators

£=0.01
Additive Effect LS LMS RLS FLS TLS
Distribution
=2
S(0) o
1.0 598 351 247 394 277 183 410  2.67 493 296
13 493 274 2.68 390 280  1.82 366 216 400 242
1.6 426 223 2.82  3.89 282 182 326 1.89 3.60 210
1.9 378 182 2.66 3.89 284 182 321 172 330 192
N0,G?) o
2 480  2.00 229 400 315 196 382 181 393 1.9
3 633 257 195 4.02 317 2.04 379 205 483  2.10
5 859 353 222 400 312 206 311 245 626 247
10 116 449 206 403 2.89 209 301 356 8.65 3.63
t, v
2 447 243 275 381 268 1.80 33 192 376 218
3 388 1.89 209 402 261 186 300 1.68 308 190
6 AR W) 178  3.87 233 184 271 1.68 269 185
12 293 1.64 1.78 391 257 182 276 161 263 183
3
S(o) o
1.6 690 4.03 356 754 436  3.62 6.81 3.86 6.56  4.20
1.3 577 359 3.88 157 406 355 585 344 540 382
1.6 502 332 351 757 386 354 521 331 477 3.67
19 450 3.10 373 153 381 349 497 313 435 357
N@o6>) o
2 5.64 316 285 755 447 354 6.00 3.15 502 353
3 748 346 419 752 557  3.66 724 346 6.58 3.62
5 100 4.00 479 750 6.52 384 922 393 8.88 393
10 132 449 504 7.62 737 415 11.6 459 119 436
ty 14
2 523 342 388 750 388 3.55 544 336 503 372
3 457 321 382  7.66 380 354 507 317 424 362
6 373 312 246 761 312 349 424 313 352 349
12 343 3.03 249 76l 299 344 410  3.06 337 355
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Table 3. AO-scheme: Total root normalized bias (left entry) and total roet nor-

malized variance (right entry) of estimators

£=0.05
Additive Effect LS LMS RLS FLS TLS
Distribution
p=2
S(ary o
1.0 106 485 394 416 465 222 780 448 9.06 443
1.3 897 407 406 408 478, 2.16 6.69 346 759 3.56
1.6 771 324 417 406 481 206 595 257 650 2.80
19 668 235 400 403 479 2.05 571 212 571 224
N0,c%) o
2 832 240 400 426 548 2.39 687 2.50 696 228
3 106 282 405 433 567 263 718 353 889 278
5 133 285 368 437 551 2.86 888 5.08 116 337
10 156 198 338 417 478 2.77 138 5.08 148 291
t, Vv
2 7835 331 3.63 - 4.08 450 211 553 247 648  2.69
3 6.64 255 367 421 439 201 507 210 548 219
6 555 2.02 333 407 419 202 | 488 1.90 478 201
12 506 186 352 40 420 200 478 18 449 198
S(a) o
1.0 121 47 652 781 821 4.09 116 454 115 474
1.3 104 430 696 757 788 385 102 410 988 437
16 909 3.82 671 757 753 378 903  3.65 863 398
19 801 335 6.62 749 7.14 36l 823 329 766 3.68
N,o?) o
2 994 332 758 744 369 3.73 100 328 929 36l
3 125 343 901 734 103 394 121 356 117 364
3 152 322 981 737 117 420 145 3.65 144 348
16 173 231 107 715 125 461 168 283 169 263
t, V
2 920 3.89 647 754 731 374 901 372 8.76 401
3 796 350 6.19 751 678 3.65 806 340 749 382
6 6.74 323 399 756 586 365 706 322 647 357
12 623 3.2 468 755 579 347 670 313 602 356
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Table 4. AO-scheme: Total root normalized bias (left entry) and total root nor-
malized variance (right entry) of estimators

£=0.10
Additive Effect LS LMS RLS FLS TLS
Distribution
p=2
S() o
1.0 141 393 581 448 731 290 123 514 130 435
13 124 390 6.10 444 746 273 104 436 112 397
16 108 337 620 445 757 266 919 333 9.63 319
19 945 251 623 446 752 249 861 2350 854 249
N,6%) ©
2 112 245 6.58 472 849 292 103 290 102 263
3 134 241 718 508 927 356 122 369 126 280
5 152 198 719 542 998 433 146 342 148 230
10 164 146 706 578 860 4.98 163 1.63 163 144
t, 14
2 108 357 563 435 695 261 859 337 942 33t
3 936 2.86 559 444 676 252 797 275 822 262
6 800 233 520 427 640 235 732 225 712233
12 731 209 547 438 630 230 699  2.06 6.68 220
p:
S(a) o
1.0 159 370 1.0 720 123 413 153 387 154 385
1.3 142 388 106 734 116 4.00 138 385 136 397
1.6 126 369 100 731 110 375 125 3355 121 384
1.9 112 330 991 719 104 3.60 113 326 109 362
N0,6%) ©
2 131 320 109 732 120 368 131 316 127 339
3 152 307 128 690 139 367 151 296 149 313
5 168 279 145 609 153 3.59 168 252 167 257
10 179 243 155 550 162 364 179 172 178 180
t, V
2 125 389 977 727 106 392 122 371 120 39
3 110 338 907 746 985 3.5 11.0 347 106 377
6 953 334 803 7152 870 376 972 332 923 359
12 884 323 745 749 834 362 9.16 323 8.70 361
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Figure 9. 10-scheme: Efficiency under Student’s-t additive effects
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Figure 12. AO-scheme: Efficiency under studet’s-t additive effects
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6. Conclusion

Robust autoregressive-model estimators occupy a particularly important place
in time-series methodology. In this article we present a simulation study of four ro-
bust alternatives to the LS- estimator under innovation and additive outliers. The
results indicate that under the 10- scheme, the functional least squares is the esti-
mator on which innovation outliers have the relatively mildest impact. However, the
reweighted least squares and the trimmed least squares also perform well iind the
general conclusion is that in most cases the estimators are not seriously affected by
this type of outliers. On the contrary, the effect of additive outliers on all five esti-
mators considered is significant and for most of them, of increasing importance as
the proportion and the shape of contamination changes. Nevertheless, the reweight-
ed least squares appears to be the most efficient method. The other two estimators
mentioned in the IO-case above also deserve some merit under the AQ-scheme. Fi-
nally, on the whole and under both outlier schemes the least squares and the least
median of squares are the estimators with less satisfactory performance, although
the former exhibits considerable efficiency near the standard normal model while
the latter outperforms almost all estimators in terms of estimated bias.
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