
Graphics processing unit implementation and optimisation of a flexible maximum

a-posteriori decoder for synchronisation correction

Johann A. Briffa

Department of Computing, University of Surrey, Guildford GU2 7XH, England
E-mail: J.Briffa@surrey.ac.uk

Published in The Journal of Engineering; Received on 13th February 2014; Accepted on 5th May 2014

Abstract: In this paper, the author presents an optimised parallel implementation of a flexible maximum a-posteriori decoder for synchron-
isation error correcting codes, supporting a very wide range of code sizes and channel conditions. On mid-range GPUs the author demonstrates
decoding speedups of more than two orders of magnitude over a central processing unit implementation of the same optimised algorithm, and
more than an order of magnitude over the author’s earlier GPU implementation. The prominent challenge is to maintain high parallelisation
efficiency over a wide range of code sizes and channel conditions, and different execution hardware. The author ensures this with a dynamic
strategy for choosing parallel execution parameters at run-time. They also present a variant that trades off some decoding speed for signifi-
cantly reduced memory requirement, with no loss to the decoder’s error correction performance. The increased throughput of their implemen-
tation and its ability to work with less memory allow us to analyse larger codes and poorer channel conditions, and makes practical use of such
codes more feasible.
1 Introduction

The problem of correcting synchronisation errors has recently seen
an increase in interest [1]. We believe this is because of two factors:
recent applications for such codes, where traditional techniques for
synchronisation cannot be applied, and the feasibility of decoding
because of improvements in computing resources. A recent applica-
tion is for bit-patterned media [2, 3], where written-in errors can be
modelled as synchronisation errors. Bit-patterned media is of great
interest to the magnetic recording industry because of the potential
increase in writing density. Another example is robust digital water-
marking, where a message is embedded into a media file and an at-
tacker seeks to make the message unreadable. An effective attack is
to cause loss of synchronisation; synchronisation-correcting codes
have been successfully applied to resist these attacks in speech
[4] and image [5] watermarking.
Most practical decoders for synchronisation correction work by

extending the state space of the underlying code to account for
the state of the channel (which represents the synchronisation
error). This increases the decoding complexity significantly, par-
ticularly under poor channel conditions where the state space is ne-
cessarily larger. Although optimal decoding is achievable, the
complexity involved remains a barrier for wider adoption. The
problem is even more pronounced when these codes are part of
an iteratively decoded construction.
A key practical synchronisation-correcting scheme is the conca-

tenated construction by Davey and MacKay [6], where the inner
code tracks synchronisation on an unbounded random insertion
and deletion channel. We presented a maximum a-posteriori
(MAP) decoder for a generalised construction of the inner code in
[7] and improved encodings in [8]. In [9], we presented a parallel
implementation of our maximum a-posteriori (MAP) decoder on
a graphics processing unit (GPU) using NVIDIA’s Compute
Unified Device Architecture (CUDA) [10]. This resulted in a de-
coding speedup of up to two orders of magnitude, depending on
code parameters and channel conditions. Since that work we have
also presented a number of additional improvements to the MAP
decoder algorithm [11], resulting in a speedup of over an order of
magnitude in a serial implementation, as we shall show.
Unfortunately, these algorithmic improvements change the propor-
tion of time spent computing the various equations, so that a
straightforward application of the algorithm improvements to our
J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
earlier GPU implementation does not yield the expected speedup.
A more careful parallelisation strategy is required, which we
discuss in this paper.

Other GPU implementations of the forward–backward algorithm
(on which our MAP decoder is based) have significant fundamental
differences from this paper. Recent work on turbo decoders [12–14]
is limited to the parallel implementation of specific binary code con-
structions. Furthermore, turbo decoders work with a small state
space of a fixed size, and the branch metric is trivial to compute,
so is generally recomputed as needed. These factors simplify the
problem considerably, making it much easier to optimise a parallel
implementation. In contrast, we consider the problem of efficiently
parallelising a flexible MAP decoder implementation, where: (a)
the code size is variable, (b) codes are non-binary and the implemen-
tation works with variable alphabet size, (c) the state space is vari-
able in size, depending on channel conditions, and can easily run
into hundreds of states for poor channels and (d) the branch
metric computation requires a lattice traversal and represents a sig-
nificant fraction of the overall complexity. Owing to these variables,
hard optimisations cannot be done, so our challenge is to plan things
to work well with suitable run-time decisions. Since various opti-
misation decisions are taken at run-time, this also allows us to auto-
matically cater for different hardware.

In this paper, we present an optimised parallel implementation of
the MAP decoder with the algorithmic improvements of [11]. Two
variants of this algorithm are implemented: a direct implementation
where intermediate metrics are stored for the decoding of a whole
frame, and a reduced-memory implementation where some inter-
mediate metrics are recalculated for the backward pass. This consid-
erably reduces the memory footprint of the decoder, which is a
particularly important consideration for a GPU implementation, at
the cost of decoding speed. In optimising the implementation, we
consider the use of GPU on-chip memory to reduce memory trans-
fers and to improve access patterns. We also introduce a dynamic
strategy for choosing how each function is parallelised, including
the number of threads to use, in order to optimise the efficiency
and usage of the GPU compute cores.

The approach presented here can be generalised to other imple-
mentations of the forward–backward algorithm, such as those
used in turbo decoding and in applications of hidden Markov
models. The techniques we propose here are particularly useful in
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
1

similarly flexible implementations, commonly found in simulators
and other research tools. In addition, we discuss a number of tech-
niques for handling device limitations and optimising the parallel-
isation parameters dynamically; these may be relevant to other
researchers working with CUDA.

This paper starts with definitions and a summary of earlier work
in Section 2, including descriptions of the coding scheme, channel
and the MAP decoder algorithm. Our contributions start in Section
3 where we consider the challenges for an efficient parallel imple-
mentation of the MAP decoder. This is followed with an initial par-
allel implementation and a reduced-memory variant in Section 4. In
Section 5 we ensure that the parallel decoder works within hardware
constraints and improve efficiency when code parameters are less
than ideal. We analyse the practical performance on three GPU
systems in Section 7, followed by final results in Section 7 and con-
clusions in Section 8.

2 Preliminaries

2.1 Coding scheme

In this paper, we are concerned with the coding scheme of [9, 11],
which we summarise below. The encoding is defined by the se-
quence C = C0, . . . , CN−1

()
, which consists of the constituent

encodings Ci:Fq a Fn2 for i = 0, …, N− 1, where n, q, N [N,
2n≥ q and a denotes an injective mapping. For any sequence z,
denote arbitrary subsequences as zba = za, . . . , zb−1

()
, where

zaa = () is an empty sequence. Given a message
DN

0 = D0, . . . , DN−1

()
, each Ci maps the q-ary message symbol

Di [Fq to codeword Ci(Di) of length n. That is, DN
0 is encoded

as XnN
0 = C0(D0) ‖ · · · ‖ CN−1(DN−1), where y||z is the juxtapos-

ition of y and z.
The above encoding is normally used as an inner code to correct

synchronisation errors, serially concatenated with a conventional
outer code to correct residual substitution errors. In such a construc-
tion, the MAP decoder’s posterior probabilities are used to initialise
the outer decoder. Such a construction can be iteratively decoded by
setting the prior symbol probabilities of the MAP decoder with
extrinsic information from the previous pass of the outer decoder.

2.2 Channel model

As in [9, 11], we consider the binary substitution, insertion and de-
letion (BSID) channel, an abstract random channel with unbounded
synchronisation and substitution errors. This channel was originally
presented in [15] and more recently used in [6–8, 16, 17] and others.
At ‘time’ t, one bit enters the channel, and one of three events may
happen: insertion with probability Pi where a random bit is output;
deletion with probability Pd where the input is discarded; or trans-
mission with probability Pt = 1− Pi− Pd. A substitution occurs in a
transmitted bit with probability Ps. After an insertion, the channel
remains at time t and is subject to the same events again; otherwise
it proceeds to time t + 1, ready for another input bit.

We define the drift St at time t as the difference between the
number of received bits and the number of transmitted bits before
the events of time t are considered. As in [6], the channel can be
seen as a Markov process with the state being the drift St. It is
helpful to see the sequence of states as a trellis diagram, observing
that there may be more than one way to achieve each state
transition.

2.3 MAP decoder

We summarise here the optimised MAP decoder of [11], which we
are concerned with parallelising. The decoder uses the standard
forward–backward algorithm for hidden Markov models. We
assume a message sequence DN

0 , encoded to the sequence X t
0,

where t = nN. The sequence X t
0 is transmitted over the BSID

channel, resulting in the received sequence Y r
0, where, in general,

ρ is not equal to t. To avoid ambiguity, we refer to the message
This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
2

sequence as a ‘message’ of size N and the encoded sequence as a
frame of size t. We calculate the APP Li(D) of having encoded
symbol D [Fq in position i for 0≤ i <N, given the entire received
sequence, using

Li(D) =
1

lN (r− t)

∑
m′ ,m

si(m
′, m, D) (1)

where li(m) = ai(m)bi(m) (2)

si(m
′, m, D) = ai(m

′)gi(m
′, m, D)bi+1(m) (3)

and αi(m), βi(m) and γi(m′, m, D) are the forward, backward and
state transition metrics, respectively. Note that strictly, the above
metrics depend on Y r

0, but for brevity we do not indicate this de-
pendence in the notation. The summation in (1) is taken over the
combination of m’, m, being, respectively, the drift before and
after the symbol at index i. The forward and backward metrics
are obtained recursively using

ai(m) =
∑
m′ ,D

ai−1(m
′)gi−1(m

′, m, D) (4)

and bi(m) =
∑
m′ ,D

bi+1(m
′)gi(m, m

′, D) (5)

Initial conditions are given by α0(m) and βN(m), set as the prior
probabilities of the frame boundaries. Finally, the state transition
metric is defined as

gi(m
′, m, D) = Pr {Di = D}R(Y n(i+1)+m

ni+m′ |Ci(D)) (6)

where Ci(D) is the n-bit sequence encoding D and R(ẏ|x) is the
probability of receiving a sequence ẏ given that x was sent
through the channel (we refer to this as the receiver metric). The
a priori probability Pr{Di =D} is determined by the source statis-
tics, which we generally assume to be equiprobable so that
Pr{Di =D} = 1/q. In iterative decoding, the prior probabilities are
set using extrinsic information from the previous pass of an outer
decoder.

Since the set of all possible states is unbounded for the channel
considered, a practical implementation has to take sums over a
finite subset, chosen so that only the least likely states are
omitted. For a transmitted segment of length T bits, we denote
the range of states considered by the upper and lower limits m+

T ,
m−

T , respectively, for a state space of size MT = m+
T − m−

T + 1.
Therefore the α and β metrics are defined over a state space of
size Mt = m+

t − m−
t + 1, whereas the γ metric is defined over a

state space of size Mt for the initial drift m′ and a state space of
size Mn = m+

n − m−
n + 1 for the drift change m−m′. The precise

determination of the size of the state space is considered in [11].
The receiver metric R(ẏ|x) is computed using a recursion over a

lattice as follows. The required lattice has n + 1 rows and ṁ+ 1
columns, where ṁ is the length of ẏ and n is the length of x.
Each horizontal path represents an insertion with probability Pi/2,
each vertical path is a deletion with probability Pd, whereas each di-
agonal path is a transmission with probability PtPs if the corre-
sponding elements from x and ẏ are different or Pt(1− Ps) if they
are the same. Let Fi, j represent the lattice node in row i and
column j. Then the lattice computation in the general case is
defined by the recursion

Fi, j =
1

2
PiFi, j−1 + PdFi−1, j + Q̇(ẏj |xi)Fi−1, j−1 (7)

which is valid for i < n and where Q̇(y|x) can be directly computed
Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

Fig. 1 Decoding speedup of a serial CPU implementation for lattice corri-
dor batch computation (new) over individual trellis computation (old) of
receiver metric, at different channel conditions p: = Pi = Pd; Ps= 0 for a
range of
a Message size N
b Alphabet size q
from y, x and the channel parameters:

Q̇(y|x) = PtPs, if y = x
Pt(1− Ps), if y = x

{
(8)

Initial conditions are given by

Fi, j = 1, if i = 0, j = 0
0, if i , 0 or j , 0

{
(9)

The last row is computed differently as the channel model does not
allow the last event to be an insertion. In this case, when i = n, the
lattice computation is defined by

Fn, j = PdFn−1, j + Q̇(ẏj |xn)Fn−1, j−1 (10)

Finally, the required receiver metric is obtained from this computa-
tion as R(ẏ|x) = Fn, ṁ.
Observe that for a given x, the receiver metric R(ẏ|x) needs to be

determined for all subsequences ẏ within the drift limit considered.
Therefore, for a given symbol D and initial drift m′ in (6), the lattice
computation is only done once for the largest drift change m−m′
that needs to be considered. The required values for the remaining
values of m are then also available in the last row of the lattice.
Note also that the horizontal distance of a lattice node from the

main diagonal is equivalent to the channel drift for the correspond-
ing transmitted bit. For the transmitted sequence of n bits consid-
ered, we can take advantage of this by limiting the lattice
computation to paths within a fixed corridor of width Mn around
the main diagonal.
Finally, note that the α and β metrics are normalised as they are

computed to avoid exceeding the limits of floating-point represen-
tation. Specifically, for α the computation (4) is changed to

ai(m) =
a′
i(m)∑

m′ a′
i(m

′)
(11)

where a′
i(m) =

∑
m′ ,D

ai−1(m
′)gi−1(m

′, m, D) (12)

A similar argument applies for the computation of β. In addition, the
receiver metric is computed at single precision (i.e. 32-bit floating
point) whereas the remaining equations use double precision
(i.e. 64-bit floating point).

2.4 CUDA notation

In this paper, we follow the usual CUDA notation, which we sum-
marise here for convenience. For further detail, the reader is referred
to [10]. CUDA defines a general-purpose parallel programming
model for a hybrid system with a ‘host’ central processing unit
(CPU) and an attached GPU ‘device’ (or more than one). The
device contains the GPU chip, organised as a number of ‘multipro-
cessors’ with a fixed number of compute cores each and off-chip
memory. Each multiprocessor also contains a fixed amount of
on-chip ‘shared’ memory, accessible by all compute cores in the
multiprocessor. Off-chip memory is accessible by all GPU
threads through ‘global’ memory variables in read/write mode or
in read-only mode through ‘constant’ or ‘texture’ memory
constructs.
Every function executed on the GPU is called a ‘kernel’; this is

run as a ‘grid’ of equally shaped ‘blocks’ of parallel threads, as spe-
cified by the execution configuration. To avoid ambiguity, we avoid
using the term ‘block’ for any other purpose. Each block of threads
executes on the same multiprocessor in groups of threads called
‘warps’. Threads in a given warp start execution at the same
J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
address but are free to branch and execute independently (i.e.
‘diverge’). However, highest efficiency is achieved when there is
no divergence within a warp. Note that more than one block may
be ‘resident’ in a given multiprocessor if sufficient resources (i.e.
registers and shared memory) are available. This increases the
number of warps available to the scheduler, and may be used to
hide latency.
3 Challenges for parallel implementation

3.1 Effect of changes to receiver metric computation

As compared with our previous GPU implementation, the opti-
mised decoder summarised in Section 2.3 changes to the way the
receiver metric is computed. Of particular relevance to this paper,
in the optimised decoder (a) for a given x, we simultaneously
compute R(ẏ|x) for all subsequences of ẏ and (b) we replace the
trellis-based forward pass of [7] with a more efficient corridor-
constrained lattice implementation. Together, these changes result
in a decrease in complexity (for computing the receiver metric) of
up to three orders of magnitude, depending on channel conditions.

To demonstrate the effect on the overall decoding speed, we
repeat the simulations of [9] using a serial CPU implementation
of the improved decoder. Results comparing the overall decoding
speed, for the same codes and on the same computer, are shown
in Fig. 1. Under moderate channel conditions, it can be seen that
the improved decoder is more than ten times faster over a wide
range of message sizes N and alphabet sizes q. Speedup improves
for poorer channel conditions.

Such a significant change means that the receiver metric compu-
tation can no longer be considered to dominate the overall complex-
ity. This is particularly so for a GPU implementation, where we
expect a higher speedup in computing the γ metric since this has
greater data parallelism. Therefore in parallelising this improved al-
gorithm, we also have to pay particular attention to an efficient par-
allel computation of the α and β metrics, which have internal
dependencies.
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
3

3.2 Effect of implementation flexibility

The GPU implementation of this MAP decoder also faces chal-
lenges not considered in similar parallel implementations for
turbo codes [12–14]. In our case, the flexibility of the MAP
decoder and the nature of the channel we are concerned with
pose additional difficulties for parallelisation, as noted in Section
1. The reference CPU implementation is intended for simulation
applications, and consequently supports a wide range of code para-
meters. Specifically, the CPU implementation supports: (a) arbitrary
codeword length n≥ 1, (b) channel symbols from an arbitrary finite
alphabet, as long as the alphabet is defined in an additive Abelian
group, (c) messages defined over an arbitrary finite alphabet of
size q≥ 2, as long as each message symbol is representable by a
codeword, that is, q≤ sn for a channel symbol alphabet of size s,
(d) arbitrary message length N≥ 1, (e) arbitrary state space limits
m−

n ≤ 0, m+
n ≥ 0, m−

t ≤ m−
n and m+

t ≥ m+
n , chosen dynamically

based on channel conditions, (f) arbitrary received sequence
length ρ, as long as the drift at the end falls within the chosen
state space limits, that is, m−

t ≤ r− t ≤ m+
t , (g) arbitrary specifica-

tion of constituent encodings Ci, (h) arbitrary thresholds to avoid
pursuing low-probability trellis paths (not considered in this
paper) and (i) lazy computation of the γ metric (not considered in
this paper; potentially useful with path thresholding).

Additionally, the implementation supports the independent
choice of real number types for the computation of the forward–
backward algorithm and the inner lattice traversal. On the CPU im-
plementation, supported types include single and double precision
IEEE floating-point numbers, as well as GNU multi-precision
numbers [18]. This allows the user to trade off arithmetic speed
and storage requirements for accuracy, and the comparison of
results with an exact implementation. The implementation also
allows the user to choose between different algorithms to
compute the receiver metric. These include the constrained-corridor
lattice algorithm of Section 2.3, an unconstrained version of the al-
gorithm and the trellis-based algorithm used in our earlier work.

All these variables pose a number of particular challenges for an
efficient parallel implementation. First of all, it is important for the
parallel implementation to support the same range of parameters as
the CPU implementation. This can be a problem when functions are
parallelised across one of these variables, as the required range may
exceed constraints of the parallel architecture. For example, in our
earlier GPU implementation, q was limited by hardware constraints
and results were given for alphabet sizes up to q = 512. Another
expected problem is that the parallelisation efficiency depends on
the code parameters. With so many variables and such a wide
range for each, it becomes particularly problematic to ensure high
parallelisation efficiency under all conditions. Unlike our earlier
GPU implementation, in this paper we propose specific steps to
improve efficiency under suboptimal conditions. This variability
also has an effect on scheduling kernel issues across multiple
streams, as the time taken by individual kernels depends on the
code parameters. On most current hardware, the ideal issue order
for different kernels that can execute concurrently depends on
their relative timings [19]. When such decisions had to be taken
in this paper, we have favoured larger codes, where the speedup
is of greater objective benefit.

A more subtle problem is that functions which have many distinct
execution paths tend to require a higher register count. In a parallel
implementation, this can reduce the upper limit for parallel threads,
as each multiprocessor will have a finite register bank to share.
Furthermore, the compiler may reduce register usage by ‘spilling’
some values to global memory, for a very significant increase in
latency. This problem can be alleviated in part by using C++ tem-
plates [20, 21]. Each template instance is effectively independent,
so that the corresponding execution path decisions are taken at
compile time. This reduces register requirements, which is of
great benefit in the parallel implementation; although also useful
This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
4

for the CPU implementation, the difference in execution speed is
minimal. However, this solution is not without its cost: the use of
templates increases the compiler’s work in proportion to the
number of combinations of template parameters. This can increase
object code size and compilation time considerably. Furthermore,
for a CUDA compilation with current tools, this also presents a con-
straint because of the limit on constant memory use within the same
compilation unit. The solution we have applied to this problem was
to divide the instantiation of the various combinations of template
parameters into separate units. That is, the class methods were spe-
cified in a separate implementation header, imported by a number of
source files, each of which instantiated an independent subset of all
required template parameter combinations.

Finally, it is worth realising that the requirements of a CPU im-
plementation can be at odds with those of a GPU implementation.
For example, the sequence of constituent encodings C is held in
memory as a vector of N constituent encodings Ci, each of which
is a vector of q codewords, where each codeword is in turn a
vector of n channel symbols. This is ideal for a CPU implementa-
tion, allowing each symbol to be accessed by indirect addressing,
and also allowing references to individual codewords or codebooks
to be specified naturally. On the GPU, however, such an organisa-
tion is problematic because it requires Nq independent memory
allocations and memory transfers, each of which is an expensive op-
eration. It is more efficient to reorganise the table on the CPU,
copying the data into a single flat array and using that structure
on the GPU. This avoids changing the canonical data structure on
the CPU, which would have wider repercussions, and is the solution
we have adopted in this paper.

4 Initial parallel implementation

4.1 Global storage

The most straighforward implementation of the MAP decoder con-
siders it as consisting of four functions, one for computing each of
the γ, α, β and L metrics. These depend on each other, dictating the
order of computation: specifically, α and β depend on γ, whereas L
depends on α, β and γ. Therefore γ needs to be computed first, fol-
lowed by α and β (in any order, as these are independent of each
other), and finally L is computed. This methodology, which we
refer to as ‘global’ storage, assumes that there is sufficient
memory to store the α, β and γ metrics.

4.1.1 γ metric: Starting with the computation of the γ metric (6),
we have already observed in [9] that the computation is independent
for each of i, D, m′ and m. Furthermore, as noted in Section 2.3, for
any given i, D and m′, we only need to perform the lattice compu-
tation for the largest drift change m−m′ to be considered. It makes
sense, therefore, to compute and store the γ metric for the whole
valid range of m, for any given i, D and m′.

To make the best use of the available data parallelism, we initial-
ly use block coordinates (i, m′) for grid size N ×Mt, and threads
with coordinate D for block size q. This increases the parallelism
by a factor Mt with respect to our earlier GPU implementation,
where the γ computation kernel had a grid size N. This increased
parallelism is particularly useful when global storage is not pos-
sible, as we shall see in Section 4.2. Each thread performs an inde-
pendent lattice computation and determines the γ metric for the
whole valid range of m (i.e. Mn entries).

As in our earlier GPU implementation, we store the four-
dimensional γ matrix as a flat array in global memory. However,
we change the indexing order, so as to have index D innermost.
This allows the threads in a warp to access a contiguous range of
memory; this access is fully coalesced as long as the initial
address and the transaction size are a multiple of 128 bytes. Since
q is always a power of two, this is guaranteed for any q≥ 16 with
double precision storage. This effect is particularly valuable since
Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

Fig. 2 Metric storage requirements for a moderate message size N = 210
and half-rate codewords (n, q), over a range of channel conditions. It is
assumed that all metrics are stored as double precision values.
there is no warp divergence, as the lattice traversal is identical for all
D. This index is followed by m−m′, so that consecutive accesses
by the same thread are as close to each other as possible, maximis-
ing cache re-use for small q.
To minimise global memory access and avoid register spilling

into local memory, each thread holds the current lattice row being
computed in shared memory. This requires an array of size
n+ m+

n + 1 single precision numbers per thread, dynamically allo-
cated on kernel launch. The lattice computation algorithm is re-
written accordingly.

4.1.2 α metric: The α metric computation can be divided into two
main operations: the main computation (12), followed by normal-
isation (11). We have already observed in [9] that the main compu-
tation at index i and statem depends on normalisation at index i− 1.
For all m′, while normalisation at index i for state m depends on
computation at index i for all m′. In addition, for any given i, com-
putation and normalisation are independent for different values of
m.
Parallelisation strategy is the same as our earlier GPU implemen-

tation, where a separate kernel call is required for the main compu-
tation at each i, followed by a separate kernel to perform
normalisation at that i. This is necessary because the only way to
synchronise across a grid is the completion of a kernel call [10].
The main computation at i uses block coordinate m for a grid size

of Mt and threads with coordinate D for block size q, where each
thread computes the corresponding partial summation over m′.
The final result is then computed from these partial sums using a
parallel summation across the threads in the block, using shared
memory to communicate between threads. This requires a shared
memory array of q double precision values per block.
Normalisation requires two steps: computing the sum of all a′

i
and dividing each a′

i by this sum. Both are most easily parallelised
across a single block ofMt threads. This uses only one multiproces-
sor, but greatly facilitates implementation in a function which cor-
responds to a very small proportion of the overall computation time.
In contrast with our earlier GPU implementation, we extract the

initialisation of the α metric at i = 0 to a separate kernel. Since ini-
tialisation consists simply of setting each ofMt values, this is imple-
mented as a single block of Mt threads. Although this change may
not seem very significant, it slightly simplifies the main computa-
tion, keeping register usage to a minimum. In turn, this allows us
to maximise occupancy by allowing more resident kernels.
The α metric is stored as a two-dimensional array in global

memory, with the state index m innermost. This speeds up access
in the alpha metric computation kernel, where each thread needs to
read the metric values at all states for the previous index i− 1. The
speedup is achieved by copying the row at index i− 1 to shared
memory, requiring a shared memory array of Mt double precision
values per block. This memory copy can be done in parallel across
the block, so that global memory access is coalesced. The use of a
two-dimensional array ensures this by correctly aligning each row.

4.1.3 β metric: A similar argument applies to the computation of
β, except that now the main computation at index i depends on nor-
malisation at index i + 1. Furthermore, α and β can be computed
concurrently as there is no data dependency between them; this
can be achieved using streams on devices that support concurrent
kernel execution.
Recall that the computation of α and β requires a number of con-

secutive kernel calls each. Specifically, for α, this sequence consists
of the intialisation kernel, normalisation at i = 0, computation at
i = 1, normalisation at i = 1 and repeating computation and normal-
isation for increasing i until i =N. Since each kernel depends on the
completion of the preceding one, this dependency is best expressed
by issuing the kernels in the same stream. For β, the sequence is the
same but the index order is reversed (i.e. initialisation and normal-
isation for i = N, followed by computation and normalisation pairs
J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
for decreasing i from i =N− 1 to i = 0). The independence of the
β kernels from the α kernels is expressed by issuing these in a
second stream.

Unfortunately, hardware limitations in Fermi and initial Kepler
devices (GK104 architecture, for compute capability 3.0) cause
additional complication. Since these devices have only one
compute engine queue, if any stream has more than one kernel
scheduled consecutively, the issuer will stall until the last kernel
in the sequence is dispatched [19]. Since the kernels for α and β
at each index have the same complexity, we avoid this problem
by using a breadth-first launch order, as follows. Issue first the ini-
tialisation of αi = 0 in stream one and of βi = N in stream two, fol-
lowed by the normalisation of αi = 0 in stream one and of βi = N in
stream two. This is followed by the computation of αi = 1 in
stream one and of βi = N−1 in stream two, and the normalisation of
αi = 1 in stream one and of βi = N−1 in stream two. This is repeated,
incrementing i for α and decrementing for β. Concurrent execution
improves device utilisation when the grid size for a single kernel
call is small. Note that this problem does not exist in the latest
Kepler architecture (GK110), which has 32 compute engine
queues [22].
4.1.4 L metric: Finally, the L computation (1) is independent
across i, D. As in our earlier GPU implementation, we parallelise
this across blocks with index i for a grid size N and threads with
index D for block size q. In this paper, however, we also avoid mul-
tiple global memory reads and ensure coalesced memory access by
first copying the required rows at αi and βi + 1 to shared memory.
This requires two shared memory arrays of Mt double precision
values per block. Each γ value is only read once, and this is done
in an order that ensures coalesced access.

4.2 Local storage

Unfortunately, ‘global’ storage is only possible when there is suffi-
cient memory to store the α, β and γ metrics. The required storage
capacity increases with increasing N, n, q and poorer channel con-
ditions (since this increases the required state space). To illustrate
this, consider a system with a moderate message size N = 210 and
a range of alphabet sizes q; we plot the required metric storage
memory in Fig. 2 over a range of channel conditions. For ease of
comparison, horizontal lines are included at values of 1 GiB and
2 GiB, corresponding to common per-CPU core or per-GPU
device limits for metric storage. It can be readily seen that these
limits are reached at moderate to low channel error rates for
larger alphabet sizes, and also at high channel error rates for mod-
erate alphabet sizes.

This problem can be resolved by dividing the computation of γi
across i and observing that each of αi, βi and Li depend only on a
single index for γ. Specifically, (a) αi depends on αi−1 and γi−1,
(b) βi depends on βi + 1 and γi and (c) Li depends on αi, βi + 1 and
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
5

γi. Since the order of computation of αi and βi is enforced by their
internal dependencies, each γi has to be computed at least twice. We
avoid computing it a third time by first completing the α metric
computation, then combining the computation of L with that of β.
This is shown graphically in Fig. 3.

This mode requires us to divide the γ and L kernels to compute
values at a single index i. Therefore the γ compute kernel now
uses block coordinate m′ for grid size Mt. Similarly, the L
compute kernel now only uses a single block. In both cases, i is
passed as a kernel parameter. This significantly reduces device util-
isation, particularly under good channel conditions where Mt is
relatively small.

We can mitigate this problem using concurrent execution by
issuing multiple kernels, as follows. Consider first the computation
of the α metric, requiring kernel calls as shown in Fig. 3a. In this
figure, each row corresponds to the computation of a particular
row of the α metric, with index i. Each kernel within a given row
depends on the previous kernel, whereas the compute kernel also
depends on the normalisation kernel of the previous row. The
former dependency can be expressed by issuing the three kernels
of a given row in the same stream; the latter dependency can be
expressed using CUDA events [19]. Such an arrangement allows
compute kernels for the γ metric to execute concurrently with
other kernels from previous rows, increasing device usage.

In this way, kernel issues could be divided over N + 1 different
streams. Observe, however, that independent storage space is
required for the γ metric at each index that may be computed inde-
pendently. This makes it impractical to use a separate stream for
Fig. 3 Graphical representation of the interdependencies and the sequence
of kernel calls required to compute
a α metric
b β and L metrics in local storage mode

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
6

each possible index, in which case the amount of space required
is the same as for global mode. Instead, we limit the number of
streams to a depth of four, used on a rotating basis. This limit
was chosen empirically; others have already observed that it is dif-
ficult to have more than four kernels running concurrently [19].

The use of streams raises the question of how best to order kernel
issues, as considered for the concurrent computation of α and β in
Section 4.1. In this case, the problem is somewhat more complex, as
different streams may be executing kernels of different sizes and
durations. Additionally, the use of events to synchronise between
streams requires that the event on stream i is recorded before the
wait on that event is issued on stream i + 1. Now for the event to
be recorded, all prior kernels on that stream need to be issued (al-
though not necessarily executed). Effectively, this means that for
stream i we need to issue the following sequence consecutively:
wait for event completion on stream i− 1→ compute αi� normal-
ise αi� record event on stream i. All this has to be issued before
we can repeat the issue sequence for the next stream. This require-
ment forbids us from issuing all kernels across the four streams in
breadth-first order. Instead, we issue the γ computation kernels in
breadth-first, and then issue the above sequences for each stream
in the order required. This maximises concurrency of execution
for the γ computation kernels, but limits concurrency of the remain-
ing kernels to the combination of computation and normalisation of
α (this applies to Fermi and first-generation Kepler devices).

A similar argument applies for the computation of the β and L
metrics, requiring kernel calls as shown in Fig. 3b. Other than the
order of index traversal, the only difference in this case is the pres-
ence of the computation kernel for the Lmetric. The simplest way to
deal with this is to issue this kernel after the normalisation kernel in
the same row. This automatically satisfies its dependencies, which
are the same as for the compute kernel for the β metric in the
same row. It also allows the β computation and normalisation to
occur first, minimising delays to subsequent rows. The L computa-
tion kernel has a significant duration but only has one block; this
inefficiency is easily hidden by concurrent kernels from subsequent
rows. In this case, we again issue the γ computation kernels breadth-
first, and then issue the remaining sequence for each stream in the
order required. We include the L computation in this sequence
rather than issuing it separately in breadth-first order. This allows
that kernel to be concurrent with the β kernels rather than only
with itself, making more efficient use of the available
multiprocessors.

A summary of the kernels required for the initial parallel imple-
mentation described so far, for global and local storage, is given in
Table 1. It can be seen that the block size is equal to q or Mt.

5 Advanced considerations

5.1 Handling resource limits

The initial parallel implementation described previously assumes
that it is possible to issue kernels with the given block sizes: q
for the γ, α, β and L computation kernels, and Mt for the remaining
Table 1 Summary of the kernels required for the initial parallel
implementation, for global and local storage

Kernel Storage mode Grid size Block size Call

Compute γ
global N ×Mt q 1
local 1 ×Mt q N

Initialise α, β both 1 Mt 1
Compute α, β both Mt q N
Normalise α, β both 1 Mt N + 1

Compute L
global N q 1
local 1 q N

Compute ΦT both 1 Mt 2

Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

kernels. However, this may not be possible because of a number of
constraints: (a) the device limit on the maximum number of threads
per block, (b) register pressure, which depends on both the number
of registers needed per thread and the number of registers available
per multiprocessor and (c) shared memory pressure, which depends
on the requirements for a given block size and the available shared
memory per multiprocessor. Limits for a device depend on its
compute capability, and can be queried by the implementation at
run-time [10].
To illustrate the shared memory requirements, consider again a

system with N = 210 and a range of alphabet sizes q; we plot the
required shared memory per block in Fig. 4 over a range of
channel conditions. For ease of comparison, horizontal lines are
included at values of 48 KiB and 24 KiB. The former corresponds
to the maximum amount of shared memory per multiprocessor on
Fermi and Kepler devices; this is the limit for a kernel launch to
succeed. The latter corresponds to half this value, allowing two resi-
dent blocks per multiprocessor. Observe how the requirements for
the γ computation kernel exceed device limits for larger q. Other
kernels only approach device limits when channel conditions are
poor; limits are exceeded if N is sufficiently large.
A kernel launch that violates any of these limits will fail at

run-time. For the four computation kernels, we solve this problem
by dynamically determining a suitable block size at run-time, and
adapting the kernel implementation to work with a block size that
is not equal to q. We choose a block size equal to the smaller of
q or the largest allowed multiple of the warp size, taking into
account device limits, register pressure and the shared memory
required for a given thread count. We denote this block size by
Bg
x for the γ computation kernel, Bab

x for the α and β computation
kernels and BL

x for the L computation kernel. For the γ, α and β com-
putation kernels, if the block size is less than q, each thread loops
through values of D equal to its thread index plus multiples of
the block size. For the L computation kernel, we adopt a different
approach: for BL

x , q, we extend the grid size by a factor
GL

y = q/BL
x

⌈ ⌉
, dividing the computation of the range of q across
Fig. 4 Shared memory requirements per block for the γ, α, β and L compu-
tation kernels, assuming a block size of q, for a moderate message size
N = 210 and half-rate codewords (n, q), over a range of channel conditions.
It is assumed that internal metrics for the γ kernel are stored as single
precision values, whereas those for the other kernels are stored as double
precision values.

J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
multiple blocks. This has the advantage of keeping the same paral-
lelisation in a kernel which normally has a small grid size. In both
cases, unless q is an exact multiple of the block size chosen, some
threads will have no work to do. In the common case where q is a
power of two, any large q is also a multiple of the warp size (32 for
current hardware); in this case there will be no warp divergence, so
any effect on performance should be limited to the loss in latency
hiding.

5.2 Improving occupancy

At the other end of the scale, we had suggested in [9] that one may
improve performance for small q (and large N) by computing mul-
tiple indexes in a single block. This can potentially improve multi-
processor occupancy, and therefore reduce latency in
memory-limited kernels. It is worth noting here that occupancy
does not depend only on the block size, but also on the number
of resident blocks per multiprocessor [23]. In turn, this depends
on register pressure and shared memory pressure. Therefore it is ad-
vantageous to increase the block size as long as this does not in-
crease register and shared memory requirements proportionally.

Consider first the γ metric computation. A suitable strategy for
increasing block size is to aggregate the work done in multiple
blocks; rather than aggregating multiple indexes i, however, we ag-
gregate multiple states m′. This has the advantage of allowing the
aggregation to happen in both global and local storage methodolo-
gies. At the limit, one could attempt to use thread coordinates (D,m′)
for block size q ×Mt. This would require block coordinate i for grid
size N in global storage; there would only be one block in local
storage. However, such a block size is very likely to exceed
device limits because of resource constraints. Instead, for small q,
we use a block size q× Bg

y , where Bg
y is the smaller of Mt or the

largest allowed multiple of the warp size. In determining Bg
y , we

take into account device limits, register pressure and the shared
memory required for a given thread count. This results in a grid
size N × Gg

y in the case of global storage or 1× Gg
y for local

storage, where Gg
y = Mt/B

g
y

⌈ ⌉
. We also limit Bg

y so that the result-

ing grid size is not smaller than the number of streaming multipro-
cessors on the device, NSM. Specifically, the constraint is
NGg

y ≥ NSM for global storage and Gg
y ≥ (1/4)NSM for local

storage (where four such kernels are issued concurrently, potentially
allowing greater occupancy). This ensures that we do not trade off
parallel execution for an increased occupancy, since the former
usually has a greater impact on speed.

A similar argument applies for the α and β computation kernels.
For small q we use a block size q× Bab

y , where Bab
y is the smaller of

Mt or the largest allowed multiple of the warp size. This results in a

grid size Gab
x = Mt/B

ab
y

⌈ ⌉
. In addition to considerations for device

limits, we limit Bab
y so that Gab

x ≥ (1/2)NSM for global storage
(where α and β kernels are computed concurrently) and
Gab

x ≥ NSM for local storage.
We do not apply the same technique to the computation of L

since the proportion of time spent in this kernel is not very signifi-
cant on the GPU implementation. A summary of the kernels
required for the complete parallel implementation, including the
advanced considerations described above, for global and local
storages, is given in Table 2. We also list in the table the complexity
of computations for a single thread.

6 Performance analysis

We consider the GPU performance of the above implementation on
two Fermi devices and one Kepler device. The GTX 480 and GTX
680 are the highest-performing single-GPU devices in the
consumer-oriented GeForce range for the Fermi and Kepler archi-
tectures, respectively. The C2075 is the highest-performing proces-
sor in the computation-oriented Tesla range for the Fermi
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
7

Table 2 Summary of the kernels required for the complete parallel implementation, including considerations for resource limits and multiprocessor
occupancy, for global and local storage

Kernel Storage mode Grid size Block size Call Shared memorya Thread complexity

Compute γ
global N × Gg

y Bg
x × Bg

y 1
n+ m+

n + 1
() · Bg

x · Bg
y O nMn − m−

n (m
−
n − 1)

()
/2

()
local 1× Gg

y Bg
x × Bg

y N
Initialise α, β both 1 Mt 1 — O(Mt)
Compute α, β both Gab

x Bab
x × Bab

y N (q+Mt) · Bab
y O(Mn)

Normalise α, β both 1 Mt N + 1 — O(Mt)

Compute L
global N × GL

y BL
x 1

2Mt O(MtMn)local N × GL
y BL

x N
Compute ΦT both 1 Mt 2 — O(Mt)

aShared memory is expressed here as the unit size of an array of real numbers; for the γ computation kernel these are single precision values, whereas for all
other kernels these are double precision values.
architecture. CPU performance is considered for a serial reference
implementation, on the same system as in [9]. Hardware specifica-
tions are summarised in Table 3.
Fig. 5 Time spent in each of the four metric computations as a proportion of
the total time required to decode a frame, for global storage and a moderate
alphabet size q = 32, over a range of message sizes N. Channel conditions
are given by p: = Pi = Pd = 10−3; Ps = 0.
6.1 Division of computation time

We consider first the time spent in each of the four metric computa-
tions as a proportion of the total time required to decode a frame.
For global storage, this is shown in Fig. 5 for a moderate alphabet
size q = 32 over a range of message sizes N, for the CPU and the
C2075 device. Note that we show a combined timing for the com-
putation of the α and β metrics as these are computed concurrently
on the GPU. On the CPU the division of computation time is almost
constant, with the γmetric taking over 75% of the time for moderate
to large N. On the GPU we observe a number of distinct differences:
(a) the computation of the γmetric takes a substantially smaller pro-
portion of time, (b) the α and βmetrics seem to make up for most of
the difference for moderate to large N and (c) for smaller N a sub-
stantial proportion of time is unaccounted for. These differences
may be explained as follows. Computation of γ is more easily par-
allelised than α and β, which also suffer from greater kernel call
overhead. This makes the computation of γ considerably more effi-
cient than α and β on the GPU. For smaller block sizes, the over-
head in setting up and transferring data to and from the GPU is
also a more significant contributor. Note that this timing depends
on the processor, mainboard and memory speeds of the system
where the GPU is fitted. Results for the other two GPU devices
show a similar trend.

It is also instructive to repeat this experiment for a moderate
message size N = 210 over a range of alphabet sizes q. Results for
this are shown in Fig. 6. In this case, we can see that even on the
CPU the time required to compute γ takes a more significant propor-
tion of time as q increases. The time required by α, β and L
decreases proportionally. This is expected, as while the computa-
tion of α, β and L scales with N, Mt, Mn and q, the computation
of γ also scales with n. For the codes considered in this experiment,
n = 2 log2 q to keep the same code rate. On the GPU, the change is
more pronounced, with the γ computation again becoming domin-
ant for large q. The main reason for this is that as q increases, the
computation of α and β becomes considerably more efficient,
Table 3 Hardware specifications for CPU and GPU systems

Opteron 2431 GTX 480 C2075 GTX 680

Processors × cores 2 × 6 15 × 32 14 × 32 8 × 192
Core speed, GHz 2.412 1.401 1.147 1.0585
Memory, MiB 32 768 1536 5376 2048
GFLOPs (float) 2.412 (scalar) 672.48 513.856 1625.856
GFLOPs (double) 2.412 (scalar) 336.24 256.928 67.744

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
8

each kernel call has more computation to perform and call overhead
becomes less significant. Again, results for the other two GPU
devices show a similar trend.
6.2 Computation efficiency

We consider next the efficiency of computing the γ, α and β metrics
for the different architectures. For each metric, this can be visua-
lised by plotting the time taken to compute the metric, normalised
by the expected complexity of computation. This is shown in Fig. 7
for global storage and a moderate alphabet size q = 32 over a range
of message sizes N. Starting with the γ metric, observe that the
Fig. 6 Time spent in each of the four metric computations as a proportion of
the total time required to decode a frame, for global storage and a moderate
message size N = 210, over a range of alphabet sizes q. Channel conditions
are given by p: = Pi = Pd = 10−3; Ps = 0.

Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

Fig. 8 Time to compute γ, normalised by a factor NqMt(nMn−
m−

n (m
−
n − 1)/2), and α and β, normalised by a factor NqMtMn,

for global storage and a moderate message size N = 210, over a range
of alphabet sizes q. Channel conditions are given by p: = Pi = Pd = 10−3;
Ps = 0.
normalised time is constant for the CPU; this is expected, and indi-
cates that the expected complexity is an accurate estimate of actual
complexity. This is most likely because of the tight optimisation of
the implementation. For the GPU implementation, we can see that
maximum efficiency is reached quickly, slightly beyond N = 10 on
all devices. Efficiency fluctuates beyond this point, although is gen-
erally better for larger N. Comparing with the equivalent plot in [9,
Fig. 1], observe that in this paper maximum efficiency is reached
much earlier (for the GTX 480 this was achieved around N = 100
in [9]). This is because of the increased grid size (see Section
4.1) and the use of block aggregation to increase occupancy (see
Section 5.2). Note that the normalised time units in this paper
and those in [9] cannot be compared directly as the complexity is
obtained for different algorithms.
For the α and β metrics, we can see in Fig. 7 that CPU

efficiency is almost constant, decreasing slightly as N increases.
Although unexpected, this is not surprising, as the complexity
expression considers only the floating-point arithmetic and
ignores overheads of loop handling and memory access. On the
other hand, GPU efficiency continues to improve as N increases.
This is most likely because an increase in N causes an increase in
Mt under the same channel conditions; this increases the compu-
tation done in each kernel call, reducing the significance of kernel
call overhead. Furthermore, the efficiency of each kernel call also
improves because of the increased grid size and the use of block
aggregation.
The experiment is repeated for a moderate message size N = 210,

over a range of alphabet sizes q. Results are shown in Fig. 8. In this
case, observe that the efficiency of computing the γ metric remains
approximately constant throughout the range, with a decrease in ef-
ficiency only for the smallest alphabet sizes. We can achieve good
efficiency throughout the range because of the use of block aggre-
gation, which increases occupancy and allows good device utilitisa-
tion even for small q. For the α and β metrics, again efficiency
continues to improve as q increases; furthermore, this improvement
happens more quickly than when N is increased (see Fig. 7). This is
because an increase in q has two effects: it directly increases
the block size and indirectly increases the grid size (since Mt

depends on n, which depends on q if the code rate is fixed).
A similar experiment with larger N shifts the curves to the left, so
that maximum efficiency is reached at a lower q.
Fig. 7 Time to compute γ, normalised by a factor NqMt(nMn−
m−

n (m
−
n − 1)/2), and α and β, normalised by a factor NqMtMn,

for global storage and a moderate alphabet size q = 32, over a range
of message sizes N. Channel conditions are given by p: = Pi = Pd = 10−3;
Ps = 0.

J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
6.3 Multiprocessor occupancy and usage

To understand the effect of changes in code parameters on compu-
tation efficiency, it is instructive to look at metrics that directly
measure the effectiveness of parallelisation. At multiprocessor
level, it is important to keep the hardware busy by having a suffi-
ciently high thread count per block. Since instructions are issued
at warp level, the block size is ideally a multiple of the warp size,
ensuring that each thread in each warp is doing something useful.
Furthermore, the hardware hides latencies in instruction issue and
memory access by executing warps that are ready. It is therefore
useful to maximise the number of active warps per multiprocessor,
which can be achieved by increasing the thread count per block or
by ensuring that multiple blocks can be resident. The latter is often
limited by register pressure, so that the former is often the most
practical approach. Occupancy, the proportion of active warps to
the maximum supported by the hardware, is a useful measure to de-
termine how well latency is hidden.

At device level, effectiveness of parallelisation depends on how
many of the available multiprocessors are executing a kernel. We
refer to this proportion as the device usage. Clearly, if only a
single kernel is being executed, usage depends on the grid size,
which is ideally a multiple of the number of multiprocessors
NSM. However, this presents a trade-off between the grid size and
block size. Usage can also be improved by running multiple
kernels concurrently. A good strategy is to maximise block size,
but only so far as to allow a grid size which keeps all multiproces-
sors busy.

For this analysis, we limit our results to the GTX 480 and GTX
680 devices. Multiprocessor occupancy and usage for the C2075
are similar to those of the GTX 480, as the two devices have multi-
processors of the same architecture and only differ in the number of
multiprocessors available (by one).
6.3.1 Global storage: Starting first with global storage, we deter-
mine occupancy for the γ, α, β and L computation kernels, based on
the actual block size used and assuming no hardware overhead.
Note that this is the theoretically achievable occupancy with the
chosen parameters; when measured with the profiler the true
value will usually be marginally lower. This is shown in Fig. 9
for a moderate alphabet size q = 32 over a range of message sizes
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
9

Fig. 9 Multiprocessor occupancy for the γ, α, β and L computation kernels
for global storage and a moderate alphabet size q = 32, over a range
of message sizes N. Channel conditions are given by p: = Pi = Pd = 10−3;
Ps = 0.

Fig. 11 Multiprocessor occupancy for the γ, α, β and L computation kernels
for global storage and a moderate message size N = 210, over a range
of alphabet sizes q. Channel conditions are given by p: = Pi = Pd = 10−3;
Ps = 0.
N. We annotate in colour the limiting factor that stops us from
achieving higher occupancy. For each of the computation kernels,
the nominal block size (equal to q) is the same as the warp size.
If this was the chosen block size, occupancy would be limited by
the number of resident blocks. For Fermi devices this would be at
most eight, for a maximum occupancy of 16%. Increasing the
block size as explained in Section 5.2, however, allows us to
achieve an occupancy of 40% for the γ kernel on Fermi (and
very close to that on Kepler). Observe that occupancy is limited
at the higher end by the shared memory requirement for the γ
kernel. For the α and β kernels, occupancy is limited by the grid
size; this depends on Mt and there is nothing we can do about it.
Comparing these results with Fig. 7, it is worth realising that
peak efficiency for γ is reached at the same point when peak occu-
pancy is reached. Similarly, efficiency for the α and β kernels
increases with the kernel occupancy as N is increased.

The corresponding device usage for each kernel is shown in
Fig. 10. As expected, device usage is optimal for the γ and L
kernels whenever N is a multiple of NSM for the given device.
Note that for the α and β kernels, device usage peaks at 50% as
we know that these kernels will be running concurrently. This
allows us to reach peak usage earlier for these kernels.
Fig. 10 Device usage for the γ, α, β and L computation kernels for global
storage and a moderate alphabet size q = 32, over a range of message
sizes N. Channel conditions are given by p: = Pi = Pd = 10−3; Ps = 0.

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
10
Comparing these results with Fig. 7, observe that the fluctuations
in device usage for γ explain the corresponding fluctuations in
efficiency.

The experiment is repeated for a moderate message size N = 210,
over a range of alphabet sizes q. Multiprocessor occupancy and
device usage are shown, respectively, in Figs. 11 and 12.
Consider first the Fermi device. For the γ kernel, observe that occu-
pancy remains fairly constant, limited at the lower end by register
pressure and otherwise by shared memory requirements. Together
with the constantly high device usage for this kernel, this explains
the flat efficiency in Fig. 8. For the α and β kernels, however, occu-
pancy increases until it reaches a peak limited by register pressure.
This is consistent with the point where maximum efficiency is
reached in Fig. 8.

A few points are worth noting with respect to the Kepler device.
This has a higher peak single-precision performance, so one would
expect faster performance for the γ kernel. However, it is much
harder to reach the necessary efficiency, for two reasons: (a) each
multiprocessor has six times as many single-precision cores, so
requires more resident warps to hide latency and (b) the available
shared memory per multiprocessor remains the same, limiting the
occupancy that can be reached.
Fig. 12 Device usage for the γ, α, β and L computation kernels for global
storage and a moderate message size N = 210, over a range of alphabet
sizes q. Channel conditions are given by p: = Pi = Pd = 10−3; Ps = 0.

Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

Fig. 13 Multiprocessor occupancy for the γ, α, β and L computation kernels
for local storage and a moderate message size N = 210, over a range of
alphabet sizes q. Channel conditions are given by p: = Pi = Pd = 10−3; Ps

= 0. Shared memory per multiprocessor remains the same, limiting the oc-
cupancy that can be reached.
6.3.2 Local storage: We repeat the analysis for local storage with
a moderate message size N = 210, over a range of alphabet sizes q.
Multiprocessor occupancy and device usage are shown, respective-
ly, in Figs. 13 and 14. For local storage, each γ kernel computes the
metric for a single index i; this reduces the grid size by a factor of N
in comparison with global storage. This places a considerable con-
straint on the achievable occupancy, especially if we want to avoid a
drop in multiprocessor usage. For this reason, peak occupancy is
only reached for larger q. There is no direct change to the α and
β kernels with local storage, except that now we do not run these
concurrently. Therefore we now try to keep all multiprocessors
busy with these kernels (rather than only half). This limits the
block size by a factor of two, so that we now reach the same occu-
pancy when q is doubled.
A similar issue occurs with the L metric, which is also computed

for a single index i, reducing the grid size by a factor of N. In this
case, we make no attempt to increase the grid size, relying instead
on the concurrent execution of this kernel with the γ and β compu-
tation kernels. Given the above observations, we expect the local
storage implementation to be less efficient than global storage,
except for large q.
Fig. 14 Device usage for the γ, α, β and L computation kernels for local
storage and a moderate message size N = 210, over a range of alphabet
sizes q. Channel conditions are given by p: = Pi = Pd = 10−3; Ps = 0.

J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
7 Results

In this section, we compare the overall performance of the proposed
implementation on all three GPU systems of Section 6 with the
CPU implementation of the same algorithm and with the earlier
GPU implementation of [9]. Following this, we consider the limita-
tions imposed by our implementation and the overall performance
achieved under a range of conditions.
7.1 Overall speedup

We first consider the speedup for complete frame decoding on the
different GPU devices as compared with the CPU implementation
using the same storage methodology. This is shown in Fig. 15 for
both global and local storage. When we set a moderate alphabet
size q = 32, the speedup improves as the message size N is
increased. Observe that for small N, any improvement is very
poor; indeed for the smallest values of N, the CPU implementation
is faster than the GPU implementations. This is because of the
increased impact of GPU overhead when N is small, as we have
seen in Section 6.1. For this value of q, observe also that the
speedup for global storage is better than for local storage, for mod-
erate to large N. This is because of the decreased occupancy and
multiprocessor usage for small q and low channel error rate,
which affects local storage computation in a more significant way
(see Section 6.3).
Fig. 15 Ratio of complete frame decoding timings on CPU as compared
with C2075, GTX 480 and GTX 680 GPU devices, for global and local
storage. Channel conditions are given by p: = Pi = Pd = 10−3; Ps = 0.
Comparisons are for:
a Moderate alphabet size q = 32, over a range of message sizes N
b Moderate message size N = 210, over a range of alphabet sizes q.

access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
11

Setting a moderate message size N = 210, we find that speedup
improves as the alphabet size q is increased. Observe that for
small q, the speedup achieved for local storage is slightly less
than that for global storage. For larger q, the speedup achieved
for local storage is practically the same as that for global storage.
This indicates the increased efficiency of local storage computation
for larger q, as expected.
Fig. 17 Decoder throughput on CPU and C2075, GTX 480 and GTX 680
GPU devices, for global and local storage, and a large message size N =
840, over a range of alphabet sizes q, under moderate to good channel con-
ditions. Channel conditions are given by p: = Pi = Pd = 10−3; Ps = 0.
7.2 Speedup over previous parallel implementation

Next, we repeat the simulations of [9] using the improved GPU im-
plementation. Results comparing the overall decoding speed, for the
same codes and on the same GTX 480 system, are shown in Fig. 16.
The speedup obtained for the improved implementation compares
favourably with the expected speedup because of algorithmic
changes, shown in Fig. 1. For larger values of N and q, this
speedup approaches or exceeds the speedup achieved on the CPU
implementation, indicating that the improved GPU implementation
achieves at least the same efficiency. This is significant, as a signifi-
cant fraction of time is spent in computing the α and β metrics,
which are much harder to parallelise efficiently. As expected,
speedup improves for poorer channel conditions.
7.3 Limitations and overall performance

The main limits imposed by our implementation are discussed
below. The largest supported state space Mt is limited by the
block size for the α, β initialisation and normalisation kernels and
the ΦT computation kernel. Since these kernels are very simple,
this limit corresponds to the maximum number of threads per
block, which on current hardware is 1024. Now Mt increases
with t and the channel error probabilities, and depends on the
allowed probability for an actual drift to exceed these limits.
Even for a poor channel with Pi = Pd = 0.2 and an exclusion prob-
ability Pr = 10−10, this allows us to support t⪅ 12 000. For a very
poor channel having Pi = Pd = 0.4, this limit drops to t⪅ 4000;
note that this is beyond the decoding ability of any known codes.
Fig. 16 Decoding speedup for the GPU implementation of this paper (new)
over the GPU implementation of [9] (old), at different channel conditions,
given by p: = Pi = Pd; Ps = 0, for a range of
a Message size N
b Alphabet size q

This is an open access article published by the IET under the Creative
Attribution-NonCommercial-NoDerivs License (http://creativecommon
licenses/by-nc-nd/3.0/)
12
Larger message lengths are possible when the target channel error
rates are lower.

Another limitation depends on available device memory. The use
of local storage goes a long way to increase the limits of supported
code parameters. By way of example, a code with N = 840, n = 20
and q = 1024 uses a little over 1 GiB of device memory at
Pi = Pd = 0.1 using local storage. In general, this tends to be an
issue only with larger alphabet sizes.

Although the implementation considered is intended for use in a
simulator, it is interesting to consider whether the achieved per-
formance is suitable for real-time applications. We show in
Fig. 17 the achieved throughput for our CPU and GPU implemen-
tations for global and local storage, a large message size N = 840
and a range of alphabet sizes q, under moderate to good channel
conditions. Even with the algorithm improvements of [11], the
CPU implementation is clearly too slow for real-time use except
in low throughput applications. The GPU implementation,
however, reaches 100 kbit/s even with this relatively large
message length. Note that the missing simulation results for
global storage with large q indicate conditions where available
memory was exceeded.
8 Conclusions

In this paper, we have presented an optimised parallel implementa-
tion of the MAP decoder of [11] with algorithmic improvements
over the equivalent decoder of [7]. This implementation achieves
a speedup of more than 100 × over the CPU implementation of
the same algorithm and more than 10 × over the previous GPU im-
plementation of [9], on the same hardware. This increases our
ability to analyse larger codes and poorer channel conditions and
makes practical use of such codes more feasible.

We also present a reduced memory implementation where some
intermediate metrics are computed twice: once for the forward pass
and once again for the backward pass and final results. This variant
trades off some decoding speed for significantly reduced-memory
requirements. This allows the decoder to work with longer
message sizes and poorer channel conditions than would otherwise
be possible.

The speed improvements of this implementation are made pos-
sible by a number of specific optimisations. We use shared
memory judiciously to reduce global memory transfers and to
improve memory access patterns. We also introduce a dynamic
strategy for choosing kernel block sizes, ensuring efficient use of
device resources under a wide range of code and channel
Commons
s.org/

J Eng 2014
doi: 10.1049/joe.2014.0049

parameters. Specifically, we determine settings that maximise occu-
pancy while avoiding idle time on multiprocessors. Taking these
decisions at run-time also has the advantage that this automatically
caters for different devices. We hope that other researchers working
with CUDA will also find these techniques relevant to their work.
Although this implementation represents a considerable improve-

ment on earlier implementations, some aspects bear further ana-
lysis. In particular, efficiency of the parallel implementation for
small alphabets is still significantly lower than for larger alphabets.
Aggregation of work previously done on multiple blocks into a
single block has helped by improving occupancy. However, not
all kernels can be improved equally, and for smaller alphabets a
greater proportion of decoding time is spent in the α and β metric
computations. This effect is more pronounced under better
channel conditions, when the required state space is much
smaller. Another aspect that may be improved is the optimisation
of multiprocessor usage. Although our dynamic strategy for choos-
ing kernel block size ensures that the usage is never low, we do not
seek to optimise the value, prioritising instead a higher occupancy.
Of course, improving usage is further complicated by the concur-
rent execution of kernels of different sizes and durations.
However, it may be possible to increase overall efficiency by adapt-
ing our dynamic strategy to take into account empirical kernel
timings, which may, for example, be obtained during system initial-
isation. Clearly, neither of the above is a trivial proposition; both are
the subject of further work.

9 Acknowledgments

The author would like to thank Professor Ing. V. Buttigieg and
Dr. S. Wesemeyer for helpful discussion and comments. Parts of
this research have been carried out using computational facilities
procured through the European Regional Development Fund,
Project ERDF-080 and a gift from NVIDIA.

10 References

[1] Mercier H., Bhargava V., Tarokh V.: ‘A survey of error-correcting
codes for channels with symbol synchronization errors’, IEEE
Commun. Surv. Tutor., 2010, 12, (1), pp. 87–96, First Quarter

[2] Hu J., Duman T., Erden M., Kavcic A.: ‘Achievable information rates
for channels with insertions, deletions, and intersymbol interference
with i.i.d. inputs’, IEEE Trans. Commun., 2010, 58, (4),
pp. 1102–1111

[3] Hu J., Duman T., Kurtas E., Erden M.: ‘Bit-patterned media with
written-in errors: modeling, detection, and theoretical limits’, IEEE
Trans. Magn., 2007, 43, (8), pp. 3517–3524

[4] Coumou D.J., Sharma G.: ‘Insertion, deletion codes with feature-
based embedding: a new paradigm for watermark synchronization
J Eng 2014
doi: 10.1049/joe.2014.0049

This is an open
Attribution-
with applications to speech watermarking’, IEEE Trans. Inf.
Forensics Sec., 2008, 3, (2), pp. 153–165

[5] Bardyn D., Briffa J.A., Dooms A., Schelkens P.: ‘Forensic data
hiding optimized for JPEG 2000’. Proc. IEEE Int. Symp. Circuits
and Systems, Rio de Janeiro, Brazil, 15–18 May 2011

[6] Davey M.C., MacKay D.J.C.: ‘Reliable communication over chan-
nels with insertions, deletions, and substitutions’, IEEE Trans. Inf.
Theory, 2001, 47, (2), pp. 687–698

[7] Briffa J.A., Schaathun H.G., Wesemeyer S.: ‘An improved decoding
algorithm for the Davey–MacKay construction’. Proc. IEEE Int.
Conf. Communications, Cape Town, South Africa, 23–27 May 2010

[8] Buttigieg V., Briffa J.A.: ‘Codebook and marker sequence design for
synchronization-correcting codes’. Proc. IEEE Int. Symp.
Information Theory, St. Petersburg, Russia, 31 July–5 August 2011

[9] Briffa J.A.: ‘A GPU implementation of a MAP decoder for synchron-
ization error correcting codes’, IEEE Commun. Lett., 2013, 17, (5),
pp. 996–999

[10] NVIDIA CUDA C Programming Guide, NVIDIA Corporation,
October 2012, version 5.0

[11] Briffa J.A., Buttigieg V., Wesemeyer S.: ‘Time-varying block codes
for synchronization errors: MAP decoder and practical issues’,
J. Eng., 2014, doi: 10.1049/joe.2014.0062

[12] Lee D., Wolf M., Kim H.: ‘Design space exploration of the turbo de-
coding algorithm on GPUs’. Proc. Int. Conf. Compilers,
Architectures and Synthesis for Embedded Systems. ACM, 2010,
pp. 217–226

[13] Wu M., Sun Y., Wang G., Cavallaro J.: ‘Implementation of a high
throughput 3GPP turbo decoder on GPU’, J. Signal Process. Syst.,
2011, 65, (2), pp. 171–183

[14] Xianjun J., Canfeng C., Jaaskelainen P., Guzma V., Berg H.:
‘A 122Mb/s turbo decoder using a mid-range GPU’. 2013 Ninth
Int. Wireless Communications and Mobile Computing Conf.
(IWCMC), 2013, pp. 1090–1094

[15] Bahl L.R., Jelinek F.: ‘Decoding for channels with insertions, dele-
tions, and substitutions with applications to speech recognition’,
IEEE Trans. Inf. Theory, 1975, 21, (4), pp. 404–411

[16] Ratzer E.A.: ‘Marker codes for channels with insertions and dele-
tions’, Ann. Telecommun., 2005, 60, pp. 29–44

[17] Briffa J.A., Schaathun H.G.: ‘Improvement of the Davey–MacKay
construction’. Proc. IEEE Int. Symp. Information Theory and its
Applications, Auckland, New Zealand, 7–10 December 2008,
pp. 235–238

[18] Granlund T.: ‘GNU MP: the GNU multiple precision arithmetic
library’, Free Software Foundation, December 2012, edition 5.1.0.
[Online]. Available at http://www.gmplib.org/gmp-man-5.1.0.pdf

[19] Rennich S.: ‘CUDA C/C++ streams and concurrency’. GPU
Technology Conf. NVIDIA, 2011

[20] Eckel B.: ‘Thinking in C++’ (Pearson Education, 2000, 2nd edn.),
vol. 1

[21] Eckel B., Allison C.: ‘Thinking in C++’ (Pearson Education, 2003,
2nd edn.), vol. 2

[22] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110, NVIDIA Corporation, 2012, version 1.0

[23] NVIDIA CUDA C Best Practices Guide, NVIDIA Corporation,
October 2012, version 5.0
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
13

	1 Introduction
	2 Preliminaries
	3 Challenges for parallel implementation
	4 Initial parallel implementation
	5 Advanced considerations
	6 Performance analysis
	7 Results
	8 Conclusions
	9 Acknowledgments

