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Abstract
The transfer of quantum information between different locations is key to many quantum
information processing tasks. Whereas, the transfer of a single qubit state has been extensively
investigated, the transfer of a many-body system configuration has insofar remained elusive. We
address the problem of transferring the state of n interacting qubits. Both the exponentially
increasing Hilbert space dimension, and the presence of interactions significantly scale-up the
complexity of achieving high-fidelity transfer. By employing tools from random matrix theory and
using the formalism of quantum dynamical maps, we derive a general expression for the average
and the variance of the fidelity of an arbitrary quantum state transfer protocol for n interacting
qubits. Finally, by adopting a weak-coupling scheme in a spin chain, we obtain the explicit
conditions for high-fidelity transfer of three and four interacting qubits.

1. Introduction

Quantum information processing (QIP) is shaping the 21st century technology by means of the advantage
it provides, with respect to its classical counterpart, in fields ranging from computation to cryptography [1].
A basic building block of several QIP protocols is the transfer of quantum information between different
locations. In particular, a great variety of different protocols have been devised to achieve the high fidelity
transfer of the quantum state of a single qubit (one-QST). They can be classified into three broad classes:
protocols employing flying qubits [2], teleportation-based ones [3], and those employing spin- 1

2 chains as
quantum data bus [4]. In this paper, we will focus on the last approach. Since the seminal paper of Bose [4],
numerous one-QST protocols have been proposed, and implemented, in systems ranging from evanescently
coupled optical waveguides [5, 6] and cavity-coupled atoms and ions [7], to transmon qubits [8], nitrogen
vacancy centers [9] and Rydberg atoms [10], just to name a few.

As a direct generalization of the original set-up, the quantum state transfer of n-qubits (n-QST) has
received some attention in the last few years, with a focus on the transfer of entangled qubit states. In the
majority of cases, however, the state to be sent is that of a set of non-interacting qubits [11–14]. On the
other hand, the transfer of the quantum state of interacting n-body systems has been insofar barely
addressed. In fact, for many QIP protocols, fast and efficient non-interacting n-QST would already
constitute an important achievement: in distributed quantum computing architectures [15], for instance,
the n-qubit output state of a computation has to be distributed among different quantum processors. In
quantum secret sharing protocols an entangled n-qubit state is shared among several users [16], while a
fully-fledged quantum internet [17] requires nodes capable of exchanging, ideally, arbitrary many-body
states. However, the quantum state transfer of interacting qubits (n-iQST) could be far more beneficial both
for QIP protocols (where, e.g., qubit-decoupling operations prior to transfer could be avoided), and, in

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac86e7
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9324-9336
https://orcid.org/0000-0002-0827-5549
https://orcid.org/0000-0001-8730-0206
mailto:tony.apollaro@um.edu.mt


New J. Phys. 24 (2022) 083025 T J G Apollaro et al

perspective, to also achieve the transfer of the full physical configuration of complex systems, where
complexity is embodied not only by the dimensionality of the system’s Hilbert space [18] but also by the
interactions among its constituents [19]. The transfer of an interacting system’s state may also constitute a
significant advantage in those experiments with many-body systems, where state preparation is not easily
feasible in the same set-up in which the rest of the experiment is performed. In these cases, one could, e.g.,
prepare the state embodying the properties under investigation in a different location and send it later, via a
quantum channel, in order to load it into the main set-up.

Although being closely related, n-QST and n-iQST represent two different aspects of quantum transfer,
with the latter being a non-trivial generalisation of the former. In the non-interacting case, indeed, the
n-qubit state could in principle be transferred sequentially, with qubits sent one by one. On the other hand,
if we aim at transferring the quantum state while the system is interacting, sequential transfer is not feasible
as it has to be accomplished simultaneously for the entire system. Similarly to n-QST, for n-iQST, the
recipient is required to have a physical system able to store the received quantum information. In our case,
it is sufficient to work with a qubit system with the same interaction scheme of the one that is sent.
Therefore, the quality of a n-iQST can be assessed with the same figure of merits as those used for n-QST;
namely, the fidelity.

The n-QST problem has been posed shortly after one-QST via spin- 1
2 chain was proposed. Following the

protocol for perfect state transfer, which entails fully-engineered couplings of the quantum chain, it has
been shown that mirror-periodic Hamiltonians allow for mirror-inversion of an arbitrary quantum state
with respect to the center of the chain [20, 21]. However, in order to apply the same idea to achieve n-iQST,
one would require a fully-engineered quantum channel, implying, in general, a modification of the
couplings among the qubits embodying the sender’s system. On the other hand, uniformly-coupled chains
allow for high-quality n-QST for specific lengths related to prime number theory [22], and extensive
research has been devoted to investigate the transfer of few-qubit entangled states over such spin chains
[12–14, 23–26]. However, a general approach to the n-QST problem has not been put forward yet, and,
moreover, specific n-QST protocols may not be applicable to the n-iQST case due to the dynamical
evolution of the sender’s qubits.

Because of the exponential increase of the Hilbert space dimension d = 2n of an n-qubit state, QST
protocols based on local operations and classical communication (LOCC) perform poorly, displaying a
maximal fidelity scaling as 2

d+1 [27]. It is, therefore, of the utmost importance to identify the conditions on
a quantum dynamical map that allows it to surpass the LOCC limit of n-QST, and to single out physical
models that realise these maps.

In this paper, we address the n-iQST problem via a novel approach, by combining quantum dynamical
maps [18] and random matrix theory [28], in order to derive the average fidelity, and its variance, of an
arbitrary n-iQST protocol. Our approach will be similar to that employed in reference [29] to determine the
average fidelity for the QST of a qudit. We find that the n-iQST average fidelity can be decomposed into two
contributions. A first, classical one achieving the LOCC limit, resulting only from map elements connecting
the diagonal elements of the sender and receiver density matrices, and a second, quantum contribution
embodied by the map elements connecting off-diagonal density matrix elements of the sender and the
receiver. Finally, we apply our information-theoretical formalism to the n-iQST via a spin- 1

2 chain obtaining
the conditions for high-quality iQST via a uniformly coupled system for n = 3 and n = 4 spins, utilising a
generalization of the weak-coupling protocol already employed for one- and two-QST [30–33].

The paper is organised as follows: in section 2 we set the stage and derive expressions for the average
fidelity and for the variance of fidelity of an arbitrary n-iQST protocol in terms of dynamical map elements.
After having discussed in section 3 the special case of sequential transmission, which can be employed for
n-QST only, in section 4, we derive the dynamical map elements for a quantum channel modeled by an
U(1)-symmetric spin- 1

2 Hamiltonian. We employ these results in section 5, where we show that, for a
quantum channel modeled by an XX Hamiltonian, efficient three- and four-iQST is achievable via the
weak-coupling protocol; in section 6 we draw our conclusions. Finally, in the appendix we report the
explicit expressions for the elements of the dynamical maps used in the paper.

2. Average fidelity and variance

As stated in the introduction, to assess the performance of an n-iQST protocol, the same
quantum-information theoretical tools used for n-QST can be utilised. An important figure of merit for the
efficiency of a QST protocol is the average fidelity 〈F〉, defined as the fidelity averaged over all pure input
states with respect to the unitarily invariant measure,
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〈F〉 = 1

Ω

∫
Ω

dΩF
(
|Ψ〉, ρ(t)

)
, (1)

with Ω denoting the space of pure states and

F
(
|Ψ〉, ρ(t)

)
= 〈Ψ|ρ|Ψ〉 (2)

is the Uhlmann–Jozsa fidelity [34]. The evaluation of 〈F〉 requires a parametrization of the pure state vector
space in order to carry out integration. While this can be easily done for systems having low Hilbert space
dimension (as it is the case for one [4] and two qubits [33]), for an arbitrary pure state in d-dimensions,
one needs to integrate over 2(d − 1) reals parameters. Alternative methods have been devised, involving
invariant integration over the SU(d) group [35, 36], or algebraic approaches using products of Pauli
matrices [37]. However, in much of the existing literature about high-dimensional systems, the fidelity
between quantum states has been used in a purely information-theoretical perspective, see, e.g., reference
[38] and references therein, and very little is known about the dynamics of the average fidelity in
technologically relevant scenarios, such as the interacting many-body quantum state transfer protocols we
are interested in.

Here, we develop an approach to the n interacting qubits QST combining the formalism of quantum
dynamical maps and invariant SU(d) group integration, in order to obtain the average fidelity of an
arbitrary n-qubit QST protocol. To this end, consider the map Λ : S →R that sends the input state of the
sender into the output state of the receiver [39]

ρ̂R = Λ[ρ̂S]. (3)

Taking an initial pure state for the sender ρ̂S = |s〉〈s|, and expressing the map Λ in its Kraus decomposition
Λ[ρ̂] =

∑
kÊkρ̂Ê†

k, with
∑

kÊ†
kÊk = I, the output fidelity reads

F =
∑

k

〈s|Êk|s〉〈s|Ê†
k|s〉 =

∑
k

∣∣〈s|Êk|s〉
∣∣2
. (4)

The average fidelity over all possible input states can be obtained by integrating equation (4) with respect to
the Haar measure on the unitary group US acting on S [40]:

〈F〉 = 1

Ω

∫
Ω

dΩ
∑

k

∣∣〈s|Êk|s〉
∣∣2
=

∑
k

∫
dUS

∣∣∣〈̃s|Û†
S Êt

kÛS|̃s〉
∣∣∣2

, (5)

where we write the input state |s〉 as the unitarily transformed reference state |̃s〉.
Performing integration we arrive at

〈F〉 =
∑

k

1

dS(dS + 1)

(
Tr{Ê†

kÊk}+ Tr{Ê†
k}Tr{Êk}

)

=
1

(dS + 1)
+

1

dS (dS + 1)

∑
k

∣∣Tr{Êk}
∣∣2

, (6)

where dS stands for the dimension of the Hilbert space S. Note that the same expression can also be used to
evaluate the average gate fidelity of a quantum channel [41, 42]. Expressing the input state |s〉 in some
complete orthonormal basis of the sender Hilbert space {|0〉S , ..|dS − 1〉S},

ρ̂R = Λ[ρ̂S] =
∑

k

dS−1∑
n,m=0

ana∗mÊk|n〉S〈m|Ê†
k, (7)

and choosing a basis also for the receiver Hilbert space R, {|0〉R, ..|dR − 1〉R}, we obtain

ρ̂R = Λ[ρ̂S] =
∑

k

dS−1∑
n,m=0

dR−1∑
i,j=0

ana∗mR〈i|Êk|n〉S〈m|Ê†
k|j〉R|i〉R〈j|

=

dS−1∑
n,m=0

dR−1∑
i,j=0

Anm
ij ana∗m|i〉R〈j|, (8)

and, hence, define the elements of the map Λ

Anm
ij =

∑
k

R〈i|Êk|n〉S〈m|Ê†
k|j〉R. (9)
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The dynamical map in equation (8) is usually represented as a ij × nm matrix acting on the input (sender)
density matrix ρS expressed as a column vector and giving the output (receiver) density matrix,
�ρ R = A(t)�ρ S. In the following, we will consider only the case where the Hilbert spaces S and R have the
same dimensions, i.e. dS = dR = d, as our aim is to apply the present formalism to the n-iQST protocol.

The fidelity between ρ̂R and an arbitrary pure input state

|Ψ〉 =
d−1∑
p=0

ap|p〉S , (10)

is given in terms of the dynamical map elements in equation (9), by

F
(
|Ψ〉, ρ

)
= 〈Ψ|ρ|Ψ〉 =

d−1∑
pqijnm=0

a∗paqana∗mAnm
ij δpiδjq =

d−1∑
ijnm=0

a∗i ajana∗mAnm
ij , (11)

where all of the a’s refer to the initial state of equation (10), while the δ’s arise from choosing the same basis
for ρS and ρR. Although from equation (11) the full probability distribution function (PDF) for the fidelity
can be derived for a given map, we will focus, in the following, only on the first and second moments of the
distribution for arbitrary maps. Related results for the PDF between arbitrary quantum states can be found
in reference [43].

In order to evaluate the average fidelity, we use the results of reference [36], where it is shown that the
only non-zero averages are given by〈

|ai|2
〉
=

1

d
,

〈
|ai|4

〉
=

2

d(d + 1)
,

〈
|ai|2

∣∣aj

∣∣2
〉

i�=j
=

1

d(d + 1)
, (12)

which, in our case, yield

〈F〉 = 1

d(d + 1)

⎛
⎝2

d−1∑
i=0

Aii
ii +

d−1∑
i�=j=0

Ajj
ii + 2R

⎧⎨
⎩

d−1∑
i>j=0

Aij
ij

⎫⎬
⎭
⎞
⎠. (13)

Similarly to the results of references [41, 42, 44–46], Equation (13) provides quite a simple expression for
the average fidelity in terms of the quantum dynamical map elements (notice, indeed, that only d

2 (3d − 1),
out of d4, of the quantum map’s elements really matter). It will be exploited many times in the following, in
order to assess the performance of d-dimensional QST in various physically relevant cases.

It is straightforward to show that equation (13) encompasses both the trivial case Φ(t) = I, i.e.,
Anm

ij = δinδjm, yielding 〈F〉 = 1, and the LOCC-limit. The latter, in particular, is obtained from the first two
contributions to 〈F〉, which come from those elements of the map A connecting all of the diagonal elements
of the density matrices of S and R. The third term, instead, is due to off-diagonal map elements, connecting
input to output coherences. It has, thus, a purely quantum origin, and it disappears for a classical map. The
LOCC limit is obtained by setting Anm

ij = δijδnm, yielding 〈F〉 = 2
d+1 . This is the maximum possible value

achievable from the first two terms only, as one can infer by using the following constraints on the map
elements, which are obtained from the fact that A represents a CPTP map in the chosen basis:∑

i

Anm
ii =

∑
i

∑
k

R〈i|Êk|n〉S〈m|Ê†
k|i〉R

=
∑

i

∑
k

S〈m|Ê†
k|i〉R〈i|Êk|n〉S

= S〈m|
∑

k

Ê†
kÊk|n〉S

= δnm, (14)

∑
i

Ann
ii = 1 → 0 � Ann

ii � 1,
∑
inm

Anm
ii = d, (15)

Anm
ij =

(
Aji

mn

)∗
, Aij

ij =
(

Aji
ji

)∗
. (16)

Thus, the last quantum term is crucial for a good performance of the channel, and it becomes more and
more relevant by increasing the dimension d, as it may amount to a value up to 1 − 2

d−1 = d−1
d+1 . As a final

comment to the expression above for 〈F〉 in equation (13), we notice that map’s elements connecting
different off-diagonal elements of ρR and ρS do not play any role, as they are averaged out by the integral
over unitaries.
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Figure 1. Sketch of the parallel protocol for the transfer of n non-interacting qubits via n independent channels.

2.1. Variance of the fidelity
Up to now, we have focused on the average fidelity. However, this does not give a complete characterization
of the performance of a quantum state transfer protocol, and thus, we shall now turn our attention to the
variance of the fidelity distribution, which provides a description of the dispersion of the values of F for
different input states. To obtain the variance, which is defined in the usual way as

(ΔF)2 =
〈

F2
〉
− 〈F〉2, (17)

we need to evaluate the second moment of the distribution of the possible values of the fidelity taken over
all pure input states, equation (11), which is obtained by averaging the following expression

F2
(
|Ψ〉, ρ

)
=

d−1∑
ijnmpqrs=0

a∗i ajana∗ma∗paqara
∗
s Anm

ij Ars
pq. (18)

Using, again, the results of reference [47], we get

〈
F2
〉
=

1

d(d + 1)(d + 2)(d + 3)

×
d−1∑

i,m,p,s=0

(
(Amm

ii + Aim
im)(Ass

pp + Aps
ps) + (Apm

ii + Aim
ip )(Ass

pm + Ams
ps )

+ (Asm
ii + Aim

is )(Aps
pm + Ams

pp ) + (Apm
im + Amm

ip )(Ass
pi + Ais

ps)

+ (Asm
im + Amm

is )(Aps
pi + Ais

pp) + (Asm
ip + Apm

is )(Ams
pi + Ais

pm)
)
. (19)

As an easy check for this expression, if the map is the unit map, i.e., Anm
ij = δinδjm, then

〈
F2
〉
= 1. In the

next sections, we will explicitly evaluate the second moment and the variance for the case of an n-qubit
channel, both in the absence and in the presence of interactions. Let us stress that the formalism outlined in
this section is not limited to unitary evolutions of the quantum channel as the formulation in terms of
Krauss operators allow us to include open system dynamics scenarios.

3. n-QST over independent channels

Before turning our attention to the transfer of n interacting qubits via a single quantum channel, embodied
by a spin- 1

2 chain, let us analyse the case of n non-interacting qubits transferred ‘in parallel’ across
n-independent channels. The topology of the independent channels can be arbitrary, and here we model
them as U(1)-symmetric spin- 1

2 networks as depicted in figure 1. For two- and three-dimensional spin
networks allowing for perfect QST see, e.g., reference [48].

Besides being interesting in itself, this case will serve as a benchmark to compare the performance of
other, more involved, transmission set-ups.

With this approach, we need to transfer one qubit per channel; thus, we can make use of the well known
result that, for an initially fully polarized channel + receiver system, one-QST is completely determined by a

5
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Figure 2. (Left) n-QST average fidelity 〈Fn〉 vs transition amplitude f for n = 1, 2, 3, 4, 5, 6 (top-down). Horizontal dotted lines
represent the LOCC limit and the vertical dotted line is set at f =

√
2 − 1. It is possible to appreciate that the higher the

dimensionality of the state to be transferred, the closer to 1 the transition amplitude f has to be in order to achieve a high-quality
QST. (Right) Required transition amplitude f as a function of the number of qubits n in order to achieve F̄n = 0.5, 0.8, 0.9
(main); achieved average n-QST fidelity vs n for single-particle transition amplitudes f = 0.5, 0.8, 0.9 (inset).

single parameter, the transition amplitude for one-spin excitation to be transferred from sender to receiver
[4]. Such a transition amplitude, that can be taken to be real (see also next section), and that we call here f ,
can be manipulated in various ways, using any of the control schemes reported in the literature. Whatever
approach one employs to maximize f , once its value is set, the dynamical map representing the single qubit
transmission has the amplitude damping form, and it is reported in equation (A.1) of appendix A.

Under the assumption that the dynamical maps A of the various parallel transmission channels are all
the same, the n-QST average fidelity of equation (13) becomes

〈Fn〉 =
1

d + 1
+

1

d(d + 1)
|1 + f |2n. (20)

In order to overcome the classical n-QST LOCC limit, the single-particle amplitude f has to exceed the
one-QST LOCC limit, f >

√
2 − 1. This is independent of the number of qubits n and results in a

polynomially decaying fidelity for decreasing f . In figure 2 we report the n-QST average fidelity as a
function of the transition amplitude f and show that for a large number of qubits, e.g., n � 20, high-quality
QST is achieved only for almost-unit single-particle transition amplitude.

From equation (20), we notice that the average fidelity 〈Fn〉 �=
∏n

i=1〈F1〉. In fact, the product of 〈F1〉
gives the average fidelity of the QST only for fully factorized states, i.e., if |Ψ〉n =

⊗n
i=1|ψ〉i. As, in general,

for independent processes, the average of the product of a set of random variables is equal to the product of
their averages, we conclude that, when n > 2, entanglement gives rise to a breakdown of independence in
the parallel transfer processes, and it does so in such a way as to reduce the fidelity.

In order to quantify the effect of entanglement on the n-QST with the set-up reported in figure 1, we
introduce, as a figure of merit, the ratio R between the fidelity of the n-QST of the subset of product states
and of the full set of states. R can then be expressed both as a function of the transition amplitude f and as
a function of the fidelity.

In the first case, we obtain

R(f) =
〈F1〉n

〈Fn〉
=

3−n(2n + 1)(f(f + 2) + 3)n

(f + 1)2n + 2n
� 1, (21)

with equality holding for f = 0, 1. The maximum of R(f ) occurs precisely at the amplitude value
fLOCC =

√
2 − 1 that saturates the LOCC-limit, yielding R(fLOCC) = 1

2

((
2
3

)n
+
(

4
3

)n − 2
)
. Equation (21) is

displayed in the left panel of figure 3, which shows that, at fixed transition amplitude f , product states enjoy
a higher n-QST fidelity than entangled states. To further sustain the claim that product states are better
transferred than entangled ones by independent channels, it is instructive to report also the ratio, R(F),
between the n-QST fidelity averaged over product states only, and over the full set of states at a given value,
F, of the average fidelity. From equation (20), we obtain that 〈Fn〉 = F when the transition amplitude attains

the value fF =
√

2
(

(2n + 1)
(

F − 1
2n+1

)) 1
2n − 1. Using this value of the transition amplitude, fF, into the

n-QST average fidelity over the subset of product states 〈F1〉n, we get the ratio R to be

R(F) =

(
1 + (2nF + F − 1)

1
n

)n

3nF
n→∞−−−→ F− 1

3 . (22)
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Figure 3. (Left) Plot of R(f) = 〈F1〉n
〈Fn〉 in equation (21). Here, the black, dashed line, signals the maximum of the ratio R(f ),

occurring at fLOCC =
√

2 − 1, corresponding to the LOCC limit for 〈Fn〉. Curves are for n = 1, 2, . . . , 6 (bottom-up). For n > 1
the n-QST fidelity of the subset of product states, 〈F1〉n , is always greater than that of the full set of states 〈Fn〉, at fixed transition
amplitude f �= 0, 1. (Right) Plot of R(F) = 〈F1〉n

〈Fn〉 in equation (22), as a function of F ≡ 〈Fn〉. Here, the black, dashed lines, signal

the maximum of the ratio R(F) occurring at FLOCC = 2
d+1 , corresponding to the LOCC limit for 〈Fn〉. Curves are for

n = 1, 2, . . . , 6 (bottom-up). For n > 1 the n-QST fidelity of the subset of product states, 〈F1〉n, is always greater than that of the
full set of states 〈Fn〉, at fixed average fidelity of the latter 〈Fn〉 �= 0, 1.

Figure 4. (Left) Variance ΔF2 vs average fidelity 〈F〉 for n-QST across independent channels for product states (dotted lines)
and arbitrary states (continuous lines). Curves are for n = 2, 3, 4, 5, respectively red, blue, black, and green. (Right) Coefficient of
variation vs 〈Fn〉 for n = 1, 2, . . . , 5, as given in equation (23). Black, dashed lines correspond to the random guess scenario, i.e.,
f = 0 yielding 〈Fn〉 = 1

d .

In the right panel of figure 3, we plot the ratio in equation (22) and show that, for n > 1, at a fixed fidelity
of the full set of states, the subset of product states enjoys a higher n-QST average fidelity.

Let us now turn our attention to the variance evaluated for the case of independent channels. The
variance for an n-qubit arbitrary state is given by equation (17), whereas the variance restricted to product
states input follows the law (ΔF)2 =

〈
F2

1

〉n − 〈F1〉2n, where F1 is the one-QST fidelity. From the left panel in
figure 4 we see that the variance for product states is greater for high-average fidelity values. Intuitively, this
can be explained by noticing that the set of separable pure states is of zero measure within the set of pure
states. Hence, there are less states in the neighborhood of the sender state giving the targeted fidelity,
resulting in a flatter PDF of the fidelity, and an increased variance with respect to the variance obtained for
the full set of pure states.

To conclude this section, we report the coefficient of variation CV as a figure of merit of the relative
variability for the fidelity

CV =
σ

〈Fn〉
=

√
〈F2

n〉
〈Fn〉2 − 1, (23)

where σ = ΔF is the standard deviation. For the case of independent channels we are dealing with here, CV
is reported in the right panel of figure 4 as a function of 〈Fn〉. From the plot, we can conclude that, as
perhaps expected, the relative dispersion becomes smaller as the average fidelity increases. Moreover, at
fixed fidelity, CV tends to zero with increasing n, meaning that the average fidelity 〈Fn〉 is a self-averaging
quantity, for n � 1 and 〈Fn〉 > 1

d .
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Figure 5. Setup of an n interacting qubit quantum state transfer protocol (n-iQST). The sender and receiver blocks are weakly
coupled by J0 at both edges of a wire. Each part consists of a 1D lattice described by the Hamiltonian in equation (33) with (i)
nearest neighbor couplings only, (ii) Δ = 0, (iii) uniform parameters (that is, Ji = J and hi = h ∀ i) and (iv) J0 
 J. ns (= nr)
indicates the number of sender (receiver) qubits, respectively in red and blue, nw the number of qubits in the wire, shown in
green, while N = ns + nr + nw is the total numer of qubits in the system described by the Hamiltonian in equation (33).

4. n-iQST via spin chains

In this section, we discuss quantum transfer for n interacting qubits via spin chains, where the sender’s, the
receiver’s as well as the wire’s qubit dynamics are described by the same Hamiltonian. Whereas the latter
condition is not a requirement for the validity of the formalism outlined in section 2, our aim here is to
showcase an efficient n-iQST protocol, and we will leave to future works the investigation of efficient
n-iQST protocols where the Hamiltonians of the sender, the receiver and the wire differ. A much
investigated QST protocol models the channel as an open boundary linear spin- 1

2 chain [49], where the
sender and the receiver are located at opposite edges, see figure 5 for a pictorial representation of the
protocol applied to n-qubit QST via weak-coupling. This protocol has been shown to allow for both one-
and two-qubit high-fidelity QST under a variety of different dynamical parameters [30, 50–53]. For n > 2,
however, only a few results have been obtained up to now.

Here, after revisiting the one- and two-QST using our formalism, we will move to n > 2 iQST, and
propose a protocol for high-quality three and four-iQST. In particular, we will analyze the set-up where the
whole sender + wire + receiver system has U(1) symmetry, i.e., it preserves the total magnetization along
the z-axis, and we assume both our channel (i.e., the wire), and the receiver qubits to be initially fully
polarized. This class of U(1)-symmetric Hamiltonians encompasses a large number of models, including,
e.g., the following general Heisenberg-type Hamiltonian

H =
∑

n

∑
r

(
Jn,r

(
σ̂x

nσ̂
x
n+r + σ̂y

nσ̂
y
n+r

)
+Δn,rσ̂

z
nσ̂

z
n+r + hnσ̂

z
n

)
, (24)

where the sum runs over lattice sites n and interaction range r, and where we allowed for an anisotropic
exchange coupling between spins along the z-axis (so that, in general, Jn,r �= Δn,r), and for an external
transverse field hn.

An arbitrary initial pure state, having up to ns excitations, i.e., spin-up states |1〉, located in the sender
block, with the rest of the system being in |0〉 ≡ |00 . . . 00〉, can be written in the computational basis (with
|n〉 ≡ |01, 02, . . . 1n . . . 0〉), as

|Ψ(0)〉 = a0|0〉+
∑

n∈{ns}
an|n〉 +

∑
n<m∈{ns}

anm|nm〉

+
∑

n<m<p∈{ns}
anmp|nmp〉+

∑
n<m<p<q∈{ns}

anmpq|nmpq〉+ . . . (25)

According to the dynamics generated by the Hamiltonian in equation (24), such an initial state evolves into
[32]

|Ψ(t)〉 = a0|0〉+
N∑

m=1

⎛
⎝ ∑

n∈{ns}
anf m

n

⎞
⎠|m〉+

N∑
p<q=1

⎛
⎝ ∑

n<m∈{ns}
anmf pq

nm

⎞
⎠|pq〉

+

N∑
r<s<t=1

⎛
⎝ ∑

n<m<p∈{ns}
anmpf rst

nmp

⎞
⎠|rst〉 +

N∑
r<s<t<u=1

⎛
⎝ ∑

n<m<p<q∈{ns}
anmpqf rstu

nmpq

⎞
⎠|rstu〉 + . . . , (26)

where f r1r2...rn
s1s2...sn

= 〈r1r2 . . . rn|e−iĤt |s1s2 . . . sn〉 is the transition amplitude for n-excitation states from sites
s1s2 . . . sn to r1r2 . . . rn.

The state of the receiver’s qubits at sites {nr} is generally given by a density matrix, which can be
obtained, via a lengthy but straightforward calculation, by tracing out all but the receiver’s qubits. Finally,
the dynamical map A is derived from the latter by comparison with equation (8). Below, we give a brief
overview of this procedure for the cases of n = 1 and n = 2, and then move to the three- and four-iQST.
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4.1. One-QST
For the QST of one qubit, the average fidelity of equation (13) reads

〈F1〉 =
1

6

(
2
(
A00

00 + A11
11

)
+ A11

00 + A00
11 + 2R

{
A10

10

})
. (27)

The non-zero map elements entering this expression (see appendix A) are

A00
00 = 1, A11

11 =
∣∣fN

1

∣∣2
, A10

10 =
(
fN

1

)∗
, A11

00 = 1 −
∣∣fN

1

∣∣2
, (28)

where fN
1 = 〈N|e−iĤt |1〉 is the transition amplitude of one-spin excitation to travel from the sender location

1 to the receiver location N. With these map elements, equation (27) becomes

〈F1〉 =
1

2
+

|fN
1 |

2

6
+

R{ fN
1 }

3
=

1

2
+

|fN
1 |

2

6
+

|fN
1 | cos φ

3
, (29)

which coincides with the result in reference [4], and has been used also before, in section 3, when analysing
transmission along parallel channels. In the previous expression, φ is the argument of the complex number
fN

1 . In order to maximise 〈F1〉, one chooses to perform a rotation on the receiver (or to apply a magnetic
field to the quantum channel) such that cosφ = 1, so that only the modulus of the transition amplitude
matters.

4.2. Two-QST
The transfer of a (possibly entangled) two-qubit state along a spin chain has been analyzed, e.g. in reference
[32]. There, it was shown that the receiver’s state and the fidelity can be written in terms of one- and
two-spin excitation transfer amplitudes. The map allowing to obtain the output (receiver) state from the
input (sender) one, is reported in equation (B.1) in appendix B. Using these results, a lengthy but
straightforward calculation gives for the average fidelity of equation (13)

〈F2〉 =
1

4
+

1

20

(∣∣fN
1

∣∣2
+
∣∣fN−1

2

∣∣2
+
∣∣fNN−1

12

∣∣2
)

+
1

10
R
{

fN
1 + fN−1

2 + fNN−1
12 + fN−1

2

(
fN

1

)∗
+ fNN−1

12

(
fN

1

)∗
+ fNN−1

12

(
fN−1

2

)∗}
, (30)

which simplifies the expression already obtained in reference [33], and has a straightforward physical
interpretation: to achieve unit fidelity, all of the excitations initially located on sender sites i need to reach
their mirror-symmetric sites N + 1 − i located in the receiver’s block, at the same time, with unit transition
amplitude. Notice that a similar map has been used in reference [54] to investigate the non-Markovian
dynamics of two qubits coupled to spin environments.

Let us stress here that, at variance with the one-QST in section 4.1, we cannot, in general, turn the
expression contained in the last term into a sum of transition amplitude moduli with a common phase, as
the different transition amplitudes will have, in general, different arguments. The same will be true for the
average fidelity of every n > 1-QST protocol.

4.3. n-iQST
The n-iQST average fidelity 〈Fn〉 can be derived, for a quantum map given by U(1)-symmetric
Hamiltonians where the receiver and the channel are initially fully polarized, by a procedure similar to that
outlined in section 4.2. The n-qubit dynamical map (which we do not report for the sake of brevity) is
derived in terms of p → q qubit transition amplitudes, with p, q ∈ [1, n]. A straightforward calculation
yields

〈Fn〉 =
1

d
+

1

d(d + 1)

∑
S

∣∣f S
S

∣∣2
+

2

d(d + 1)
R

⎧⎨
⎩1

2

∑
S

fS
S

⎛
⎝1 +

∑
S′ �=S

fS′
S′

⎞
⎠

∗⎫⎬
⎭. (31)

We recognise equation (31) to have the same structure as 〈F2〉 in equation (30), with the classical
contribution given by the sum of all transition probabilities between the mirror-symmetric partitions of the
sender and receiver blocks, and the quantum part given by the product of all of the n-qubit transition
amplitudes times the (complex conjugate) of all of the m-qubit transition amplitudes between the S and R,
with m < n. Before analysing this expression for the particular cases of n = 3 and n = 4, some observations
are in order: the first term in equation (31) corresponds to a random guess 〈Fn〉 = 1

d ; on the other hand, the
summation in the second term runs over all possible transitions i ∈ S → i′ ∈ R with i = i′, achieving a total
number of

∑n
r=1

( n
r

)
= 2n − 1. The sum of the first two terms, then, gives the LOCC limit 〈Fn〉 = 2

d+1 if all

9
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transition probabilities are equal to unity. As mentioned before, the third terms contains the product of all
the transition amplitudes that build up the coherence in the output state, and for this reason we consider
this to be a purely quantum contribution.

Due to mirror-symmetry, we can employ a smarter notation in which S = {(i), (ij), (ijk), (ijkl), . . .} are
the labels of the sender sites (for the different n values) and in which we label the receiver site r = N + 1 − s
by the same numbering, s, as its mirror-symmetric counterpart on the sender block. With this convention,
equation (31) can be rewritten in a more compact form as

〈Fn〉 =
1

d + 1
+

1

d(d + 1)

∣∣∣∣∣1 +
∑

S

fS
S

∣∣∣∣∣
2

. (32)

In the following we will evaluate the n-iQST for three and four qubits for an XX Hamiltonian. The fidelity
and the variance is reported with respect to two possible scenarios: (a.) the sender qubits are let to evolve
for a time t∗, yielding the state |ψs(t∗)〉, when the sender and the receiver block, still made out of interacting
qubits, are coupled to the wire and (b.) one loads an arbitrary state onto the sender qubits (on a time-scale
shorter than the typical evolution of the full Hamiltonian) while they are connected to the wire + receiver
system. In scenario (a.) the fidelity is evaluated with respect to the state at the time t∗, i.e., when the sender
(receiver) qubits are connected to the wire; in the scenario (b.) the fidelity is reported with respect to the
state that is loaded onto the sender qubits.

5. Efficient three- and four-iQST in the XX spin- 1
2 model with weak links

Here, we propose a high-quality three- and four-iQST protocol by means of an integrable U(1)-symmetric
Hamiltonian (see equation (24)) based on a weak-coupling protocol between the sender (receiver) blocks
and the wire. We consider a 1D spin- 1

2 chain with isotropic interactions in the XY plane

Ĥ =
1

4

N∑
i

Ji

(
σ̂x

i σ̂
x
i+1 + σ̂

y
i σ̂

y
i+1

)
+

hi

2
σ̂z

i , (33)

where σ̂α
i (α = x, y, z) is the Pauli operator sitting on site i, and we assume open boundary conditions

σ̂α
N+1 = 0. In the following, we will also assume that the couplings Ji are all uniform, except for the

couplings Ji = J0 between the sender (receiver) block and the wire (see figure 5). This is the so-called
weak-coupling scheme which has been already successfully investigated for one- and two-qubit QST
[30, 31, 33, 55]. We will also set the coupling within the sender (receiver) block and within the wire as our
time and energy unit Ji = J = 1. Note that these assumptions are unnecessary for the diagonalisation of the
model we are going to outline.

Using the Jordan–Wigner transformation, equation (33) is mapped to a spinless quadratic fermion
model [56],

Ĥ =

N∑
i

Ji

2

(
ĉ†i ĉi+1 + h.c.

)
+

N∑
i

hiĉ
†
i ĉi −

N∑
i

hi

2
, (34)

where, hereafter, the energy is rescaled by the constant term.
The U(1) symmetry of the model implies that the number operator, N̂ =

∑N
i=1 ĉ†i ĉi is a conserved

quantity. This allows the dynamics to be addressed in excitation-number invariant subspaces. Moreover,
due to the quadratic, i.e., non-interacting, nature of the Hamiltonian, the n-qubit dynamics can be
expressed in terms of the single-particle transition amplitudes. In the single-particle sector, equation (34) is
diagonalised as

Ĥ =

N∑
k=1

ωk|φk〉〈φk| ≡
N∑

k=1

ωkĉ†kĉk, (35)

where {ωk, |φk〉}, with |φk〉 = ĉ†k|0〉, are the eigenvalues and the eigenvectors of the tridiagonal matrix,
A ≡ 〈i|Ĥ|j〉 = Ji

2

(
δi,j+1 + δi,j−1

)
+ hiδi,j, describing the single-particle dynamics in the direct space basis,

|i〉 ≡ ĉ†i |0〉.
Finally, the single-particle transition amplitude from site i to site j reads

f j
i (t) = 〈 j|e−itĤ |i〉 =

N∑
k=1

e−iωkt〈j|φk〉〈φk|i〉 =
N∑

k=1

e−iωktφjkφki, (36)
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and builds up the transition amplitude Hermitian matrix

F(t) =

⎛
⎜⎜⎜⎝

f1
1(t) f2

1(t) . . . fN
1 (t)

f1
2(t) f2

2(t) . . . fN
2 (t)

...
...

. . .
...

f1
N (t) f2

N(t) . . . fN
N(t)

⎞
⎟⎟⎟⎠. (37)

The transition amplitude for the transfer of ns excitations, residing on the sender sites
{ns} = {s1, s2, . . . , sns}, to the receiver sites r, residing on the receiver sites {nr} = {r1, r2, . . . , rnr}, is the

minor F(t){nr}
{ns} of F(t), i.e., the determinant of the matrix where only the {ns} rows and {nr} columns of

F(t) are considered. The minor {nr} = {r1, r2, . . . , rnr} is the quantity of interest entering equation (32)
where it is represented by f S

S.
Let us also recall that, whereas the n-iQST formalism developed in sections 2 and 4 is valid, respectively,

for arbitrary Hamiltonians and for U(1)-symmetric ones, the results outlined in this section are valid only
for quadratic, U(1)-symmetric Hamiltonians. Relaxing either, or both, of these constraints significantly
increases the complexity of the problem already for one-QST [57]. E.g., including in the Hamiltonian of
equation (33) the ZZ-interaction, does not allow the n-body transition amplitude to be expressed as a
determinant of single-particle transition amplitudes as in equation (36), due to the interacting nature of the
XXZ Hamiltonian. As a consequence, the scattering events of excitations will likely degrade the n-iQST
efficiency of the channel. Similarly, relaxing the U(1)-symmetry allows the dynamics to access different
particle-number subspaces than those given by the initial conditions, which will similarly introduce a
detrimental effect on the n-iQST efficiency.

5.1. Three-iQST via weak links
From the previous discussion, we derive that, in order to have 〈F3〉 = 1, each of the transition amplitudes f j

i

belonging to distinct sets of equation (32), i.e., those belonging to a different row and column of
equation (37), need to have unit modulus and the same phase.

Without loss of generality, we choose i − j (or, equivalently, i + j) to be even, so that f j
i is purely real

(imaginary) by choosing the transition amplitudes between sites (1, N − 2), (2, N − 1), (3, N) for N odd
(even). From reference [58], we know that for a length of the wire nw = 4l + 1 and nw = 4l + 3 there are,
respectively, one and three resonant single-particle levels with the sender (receiver) block. We will refer to
these two cases as non-resonant and resonant three-iQST respectively, because, in the former case, the QST
time is ruled by the non-resonant energy level splitting and in the latter by the resonant energy level
splitting. For the non-resonant case, i.e., for length of the wire nw = 4l + 1, each single-particle transition
amplitude in equation (36) can be approximated, up to 2nd-order, by

f j
i (t) =

7∑
k=1

e−iωktφjkφki, (38)

where only the quasi-degenerate energy levels enter the sum, and occupy, in the increasing ordered energy
spectrum ωk < ωk′ for k < k′, the following positions: the four 2nd-order perturbed energy levels are at
{�N−5

4 �, �N−5
4 �+ 1, �N−5

4 �+ nw , �N−5
4 �+ nw + 1}, where �x� is the ceiling function, and the three

1st-order perturbed energy levels are at
{

N+1
2 − 1, N+1

2 , N+1
2 + 1

}
. In figure 6, an instance of the

single-particle energy levels is given for the non-resonant case with nw = 9. Exploiting the parity relations
for the eigenvectors of mirror-symmetric matrices [59], φk,N+1−i = (−1)kφk,N+1−i, and elementary
trigonometric identities, it is easy to show that the longest time-scale is governed by the 2nd-order
perturbative energy splitting. As a consequence, the envelope of the n-qubit QST average fidelity is given by

〈F〉env �
∣∣sin2

(
δω
2 t

)∣∣2
, where δω = ω�N−5

4 �+1 − ω�N−5
4 �. Within the transfer time τ = π

δω
, oscillations on a

timescale of order of J occur because of the internal dynamics of the receiver block. Nevertheless, the
fidelity reaches its maximum value of 〈F〉 = 1 − O

(
J2

0

)
multiple times, giving the receiver the opportunity

to read-out the state within a time-window of the order of J. In figure 6 we show an instance of the
aforementioned timescales.

5.2. Four-iQST via weak links
Here we turn our attention to the QST of four interacting qubits, again over the channel depicted in
figure 5, and with the same Hamiltonian as in equation (33), where, now, the weak-coupling condition
entails Ji = J0

(
δi,4 + δi,N−4

)
and we set Ji = 1 otherwise. However, it has been shown in reference [58] that,
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Figure 6. (Upper left) Resonance conditions for three-qubits iQST via a nw = 9 site wire for a total length of N = 15 chain with
J0 = 0.03. The central, dark-green band indicates the 1st-order perturbative correction to the energy levels and the external,
light-green bands the 2nd-order ones. (Upper right) three-iQST average fidelity 〈F3〉 vs t (green line) and the 〈F〉env given by the
sinusoidal function (orange line); (lower right) shows a zoom for the average fidelity 〈F〉3 (green), the single-particle transition
amplitudes f 1

1 = f 3
3 (blue) and f 2

2 (goldenrod). (Lower left) Average fidelity with its standard deviation 〈F3〉 ± σ.

for such a uniform coupling scheme, either all, or none, of the four single-particle energy levels are in
resonance with the wire’s energy level. As a consequence, because of the incommensurability of the
frequencies entering equation (38) (where now the summations extends over 12 or eight frequencies for the
all-resonant and the non-resonant cases, respectively), the average fidelity of the four-iQST will not
approach unity. In order to introduce a time-scale separation, as done in the three-iQST case, a
minimal-engineering solution can be achieved by acting on the intra-sender (-receiver) couplings Ji such
that two (symmetric) energy levels are in resonance with the wire’s energies and two are left
out-of-resonance. The values for Js can be readily found by setting

Js =
cos kπ

nw+1

cos sπ
5

, (39)

where s ∈ (1, 2) represents the sth-energy level of the sender put in resonance with the kth-energy level of
the wire for that value of Js. In figure 7 a schematic representation is given for nw = 10, k = 2, and s = 1.
With such a protocol, we achieve a separation of time-scales in the single-particle transition amplitudes,
and achieve, once again, a transfer time of the order of magnitude of the 2nd-order energy perturbation
correction, represented in figure 7 by the sinusoidal envelop of F̄4. Without loss of generality, we report in
figure 7 the single-particle transition amplitudes f 1

1 = f 4
4 � f 2

2 = f 3
3 > 0.99, resulting in 〈F4〉 � 0.98 at the

optimal transfer time.

5.3. Comparison between n-QST and n-iQST
In sections 3 and 5, we showed that a single interacting channel is able to efficiently transfer the quantum
state of n spins, with n independent (parallel) transmissions if they are non-interacting, and in a single
transfer instance, if we are in the presence of interactions between the sender’s qubits, up to n = 4. Here, we
address the question: which of these two type of transfer performs more reliably at a fixed value of given
average fidelity? We do this by using the variance in equation (19) as a figure of merit.

As can be seen from figure 8, at fixed average fidelity 〈F〉, the variance ΔF2 is always greater for the case
of n-iQST with a single channel, than for n-QST with n independent channels. This can be readily
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Figure 7. Four-QST average fidelity vs time t via a quantum channel with nw = 10 spins. (Upper right) Resonance conditions
for four-qubits iQST via a nw = 10 site wire for a total length of N = 18 chain with J0 = 0.01. The two central, light-green bands
indicates the 1st-order perturbative correction to the energy levels and the external, dark-green bands the 2nd-order ones. This
resonance condition can be achieved by acting on the sender (receiver) couplings JS as given in equation (39). (Upper-right)
Average fidelity 〈F4〉 (dark blue), its sinusoidal envelop (blue), and the single-particle transition amplitudes f 1

1 = f 4
4 (orange) and

f 2
2 = f 3

3 (goldenrod). (Lower right) Zoom of the dotted box in the upper right panel with the same color code. (Lower left)
Average fidelity with its standard deviation 〈F4〉 ± σ.

Figure 8. Variance ΔF2 vs average fidelity 〈F〉 for independent channels (continuous lines), as depicted in figure 1, and for an
interacting channel (dotted lines), as depicted in figure 5. Curves are for n = 2, 3, 4, respectively green, red, and blue.

explained by noticing that the presence of interactions allows the receivers to explore a higher portion of the
Hilbert space during the evolution, with respect to the case of independent channels. E.g., in the case of
independent channels, the entanglement of the receivers cannot exceed that of the senders, whereas this is
not the case for the single channel scenario.

5.4. Effect of imperfections and disorder
For experimentally feasible implementations of the proposed n-iQST protocol, one needs to take into
account that both imperfections in tuning the weak coupling J0 to specific values and the presence of
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Figure 9. (Left) Average fidelity 〈F3〉 for three-iQST in the presence of disorder in the wire in the spin–spin couplings J (orange
curve, triangles) and in the magnetic field h (green curve, circles). Each point is the average over 100 realisations of the disorder
with uniform distribution in the interval ΔJ (Δh) reported on the horizontal axis and centered around their ideal values, i.e.,
J = 1 and h = 0. Average fidelity 〈Fn〉 for different values of the weak coupling J0 for n = 3 (middle) and n = 4 (right). The
upper, dashed curve reports the LOCC limit, 〈F3〉 = 2

9 and 〈F4〉 = 2
17 , while the lower, dot-dashed curve is the random guess

limit 〈F3〉 = 1
8 and 〈F4〉 = 1

16 , respectively for n = 3 and n = 4.

disorder in the wire may affect detrimentally the efficiency of the transfer. Both type of deviations from
ideal protocols have been largely investigated for one-QST, see, e.g., references [30, 60–64] where both
imperfections and the disorder is mainly considered to be static, i.e., values deviating from the ideal
(weak)-coupling and random distributions of spin–spin couplings and magnetic fields in the wire,
respectively. We perform a similar analysis for the n-iQST average fidelity by allowing the sender (receiver)
block to be coupled to the wire via values of J0 different from those reported in figures 6 and 7 and we
consider the case of disorder, independently for h and J, in the wire with a uniform distribution in the
interval [−Δh,Δh] and [J −ΔJ, J +Δh], respectively.

Figure 9 shows that the three-iQST fidelity is more resilient in the presence of spin–spin coupling
disorder than in the presence of magnetic field disorder. However, in both cases, an average fidelity higher
than the LOCC limit is obtained also in the presence of strong disorder of order O(1), whereas, for
ultrastrong disorder the random guess scenario is realised. Clearly, being the weak-coupling protocol based
on the resonance of a sender (receiver) single-particle energy level with one of the wire, disorder starts to
significantly affect the fidelity only once the energy level of the wire is brought out of resonance, which
occurs earlier for magnetic disorder.

Similarly, for values of J0 different than those used in sections 5.1 and 5.2, the quality of the three− and
four−iQST remains well above the LOCC limit also for values of J0 up to 0.1, whereas, for values
approaching unit and above, the random guess scenario is approached, as can be seen in the middle and
right panel of figure 9.

6. Concluding remarks

Quantum state transfer of an n-qubit system is a key protocol in many QIP tasks. Whereas single qubit
quantum state transfer has been intensively investigated, and also experimentally realised on a variety of
different experimental platforms, arbitrary n-qubit quantum state transfer is still a goal to be achieved. The
quantum transfer of a many-body interacting system is a formidable task, made difficult both by the
exponentially-increasing dimensionality of the Hilbert space, and by the complexity due to the particle
interactions. In this paper, we have provided a new approach to the n interacting qubit QST via dynamical
maps. By considering the receiver block as an open quantum system coupled to an environment, embodied
both by the sender block and the quantum channel, we have derived a general expression for the average
fidelity of n-iQST in terms of quantum dynamical maps elements. We have also analyzed the dispersion of
the values of the fidelity, when evaluated on all possible pure input states, that we expressed by the fidelity
variance, for which we provided a general expression as well. Then, we specialised to short-range
transmission obtained by coupling senders and receivers to a linear spin chain. In the case of
U(1)-symmetric dynamics, we expressed the average fidelity in terms of transition amplitudes in the
occupation-number invariant subspaces. We investigated in detail the U(1)-symmetric XX spin- 1

2
Hamiltonian, and, by exploiting its non-interacting nature in the fermionic representation, we were able to
express the n-qubit iQST average fidelity only in terms of single-particle transition amplitudes.
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Our formalism also encompasses the non-interacting scenario, where we have shown that independent
channels achieve a higher n-QST fidelity, at a fixed single-particle transition amplitude, for product states
than for entangled states, although the variance of the former is greater than that of the latter, at a fixed
value of the average fidelity. Interestingly, we obtained that the average fidelity is a self-averaging quantity, as
quantified by the vanishing coefficient of variation for n � 1 at high-values of the average
fidelity.

Finally, we have proposed a protocol for the high-fidelity transfer of the quantum state of both three and
four interacting qubits, arranged in a linear chain with uniform couplings, via a weak-coupling scheme to a
non-engineered XX spin- 1

2 chain. Whereas up to n = 4, high-quality iQST can be achieved by means of a
uniform channel, it appears that for n > 4 our protocol has to be substantially modified because of the
impossibility to introduce a time-scale separation in the single-particle transition amplitudes when the
involved energy levels become too numerous.

Considering the importance of quantum state transfer of a many-qubit system in several QIP tasks,
ranging from cryptography to quantum computation, it is crucial to establish a theoretical framework that
can encompass all of the various possibilities. We believe that this can be provided by the quantum map
approach supplemented by the investigation of the statistics of the fidelity, that we started to establish in this
paper, and that we applied to the general n-qubit state transfer. We provided analytical expressions of the
1st and 2nd moment of the n-iQST PDF and random matrix theory may be used to derive all moments of
the QST PDF. Knowledge of the full PDF is relevant not only from a quantum information theoretical
perspective but also in scenarios where single-shot QST is implemented. We will leave this topic as future
works as the PDF is highly dependent on the chosen QST protocol. Moreover, our approach explicitly
includes interactions among the sender’s particles, opening the way to investigate quantum transfer
protocols of complex interacting systems.
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Appendix A. One-qubit map

The one-qubit density matrix map ρ̂N = Φ(t)ρ̂1 is given by
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. (A.1)

Appendix B. Two-qubit map

From reference [32], we derive the following two-qubit map’s elements ρ̂N−1,N = Φ(t)ρ̂1,2,
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where m denotes the summation over all i �= S, R
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