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Abstract

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) is the largest synchrotron built to date, having a circumference of approx-

imately 27 km. The LHC is able to accelerate two counter-rotating proton and/or

heavy-ion beams up to 7TeV per charge. These highly energetic beams are contained

inside a vacuum chamber with an inner diameter of 80mm by means of strong mag-

netic fields produced by superconducting magnets. A beam cleaning and machine

protection system is in place to prevent high-energy halo particles from impacting and

heating the superconducting magnets.

Due to the tight tolerances on the beam trajectory imposed by the beam cleaning

and machine protection system, the LHC was the first accelerator to require automatic

beam-based feedback control. Until the LHC Run 2, this was implemented by the

Beam-Based Feedback System (BBFS) which was mainly responsible for collecting

beam measurements from various types of beam instrumentation and calculating the

corrections in the current of corrector magnets throughout the whole length of the

LHC.

Throughout the years of LHC operation, some of the original BBFS functionality

became deprecated and fell into disuse. Various minor upgrades were performed, how-

ever, without a systematic redesign of the BBFS the code became difficult to maintain.

The BBFS also suffered from a computational bottleneck during the calculation of the

optics matrices used by the BBFS controllers. A feasibility study was performed to

assess whether Hardware Acceleration (HA) in the form of Graphical Processing Units

(GPUs) would improve the performance. It was found that the use of GPUs was not

necessary and as a result the hardware upgrade for the BBFS could be finalised. Fol-

iv



lowing this was the redesign and implementation of a more streamlined BBFS called

BFCLHC. This work was done in collaboration with BE-OP-LHC and was designed

with a more intuitive interface. A new feature called Function Players was imple-

mented at the request of the LHC operators, which allows certain BFCLHC settings

to be automated.

The Base-Band Q (tune) (BBQ) system is responsible for estimating the values

of the horizontal and vertical tunes in both beams of the LHC. It was found that

noise harmonics were perturbing the tune estimates and consequently causing the

Tune Feedback (QFB) within the BBFS to behave erroneously. In this work, new

tune estimation algorithms were developed to improve upon the accuracy of the BBQ

system. To aid with this development, a simulation procedure was set up which mimics

the frequency spectra obtained by the BBQ system. Two algorithmic approaches

were proposed which take into consideration the location of the noise harmonics. A

data-driven approach was also attempted where a combination of simulated and real

frequency spectra were used to train a neural network to predict the value of the tune

from a BBQ spectrum. It was observed that the data-driven approach improves upon

the stability of the tune estimates in the presence of noise harmonics.

The use of Reinforcement Learning (RL) in beam-based feedback control systems

was considered since it offers the possibility of optimal control, regardless of any dy-

namical changes in the machine. Since this work was performed during the LHC Long

Shutdown 2 (LS2), the control problem present in the BBFS was formulated in a sim-

ulation environment called QFBEnv that allowed RL agents to be trained offline. The

linear beam optics models used in the standard Proportional-Integral (PI) controllers

of the BBFS were used to simulate the response of the LHC. In particular, the perfor-

mance of several RL agents in the task of tune correction were assessed in detail and

run through different failure scenarios. All the tests performed showed that certain

RL agents can achieve a better performance than a standard PI controller, also in the

presence of actuator failures. The possibility of using RL in the orbit feedback was

also considered and discussed.
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Chapter 1

Introduction

1.1 CERN and the LHC

The European Organization for Nuclear Research (CERN) houses the Large Hadron

Collider (LHC), which is the largest particle accelerator of its type built to date [13].

The LHC was constructed in the tunnel of the Large Electron Positron (LEP) collider,

and is a 27 km long synchrotron capable of accelerating protons and heavy ions up

to 7 TeV per charge and storing them in two counter-rotating beams [2]. Each beam

in the LHC can store up to 362 MJ and is thus able to cause irreparable damage

to equipment inside the tunnel if it comes into contact with the sides of the vacuum

chamber [14]. It is also important that the beam is kept far from the sides of the beam

pipe, since loss of particles in the superconducting material of the magnets may cause

a phase-transition to normal conductivity. This sudden increase of resistivity in the

superconducting magnet coils would transform all the electrical energy into heat and

cause irreparable damage to the coils themselves.

To prevent this, the LHC is equipped with a state-of-the-art machine cleaning and

protection system which would dump the beam into an external absorber made of

graphite, situated at a safe distance from all sensitive equipment [2, 15]. The purpose

of the cleaning system is to control the particle losses which subsequently ensures a

maximal luminosity. Luminosity is one of the two main performance measurements in

particle colliders, with the other being beam energy. Simply stated, the luminosity, L is
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the proportionality factor between the number of events (particle collisions) per second

and the beam cross-section at the Interaction Point (IP). It can be approximated by

the following formula:

L =
N1N2fNb

A
· F

Where N1 and N2 are the number of particles (protons or heavy ions) per bunch

for the two beams, respectively, Nb is the number of bunches in each beam, f is the

revolution frequency of the LHC which is 11.245 kHz, and A = 4πσxσy is the cross-

sectional area of two colliding Gaussian beams. A is expressed as the area within

one sigma of a two-dimensional Gaussian, where the horizontal and vertical standard

deviations are σx and σy, respectively. F represents a reduction factor which includes

reduction in luminosity due to a non-zero crossing angle between the beams and an

imperfect beam overlap [16].

The Beam-Based Feedback System (BBFS) relies on measurements from beam

instrumentation, e.g. beam positions within the beam pipe, in order to control the

performance of the LHC. The BBFS is also traditionally reliant on the use of linear

beam optics models in order to reliably control the beam. The early design of the BBFS

implemented feedback systems for various beam parameters including: a) the Orbit

Feedback Controller (OFC) which mitigates the effects of beam orbit perturbation

sources and ensures optimal beam position and stability within the vacuum chamber

and; b) the Tune Feedback (QFB) which corrects the tune shifts from the reference

tune [1]

1.2 Beam-based feedback systems

The LHC was designed to handle particle momenta between one and two orders of

magnitude higher than previous accelerators. More energetic beams imply more ener-

getic halo particles, which run the risk of damaging sensitive equipment in the LHC

complex. From the early design stages of the LHC it was already understood that

the state-of-the-art beam cleaning system, also known as the collimation system could
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only effectively clean the particle beam if it imposed tightened tolerances on the design

and operational parameters of the LHC [17].

As a direct consequence of these tightened tolerances, the LHC was the first particle

accelerator which required a feedback control system on the orbit stability for safe and

reliable operation. It was found that if some beam orbit perturbation sources were not

compensated by adjustments to the LHC magnetic lattice, the orbit stability would

decrease by one order of magnitude and subsequently increase beam losses [1].

The orbit feedback control system was implemented by the OFC, which measured

the beam orbit and calculated the corrections required in magnetic lattice. This was

achieved by a 2D Response Matrix (RM), a linear model which takes as input the

magnetic deflections produced by the magnets and outputs the the response on the

beam orbit. This model can either be found by executing a series of calibration tests

on the LHC during commissioning or by using tools such as Methodical Accelerator

Design (MAD-X), which iteratively calculate the RM from the beam optics [18].

The BBFS was also equipped with feedback systems for the energy, tune, coupling

and chromaticity. The tune is defined as the number of transverse oscillations that

a particle makes in one turn around the LHC. These oscillations are obtained when

quadrupole magnets are used to confine the beam. Coupling is the phenomenon when

betatron oscillations are no longer confined to one plane, but have components on

two orthogonal planes. Finally there is chromaticity, which is a measurement of the

dependency of the tune on the particle’s momentum [19]. This is synonymous to

chromatic aberration which is the effect created by the varying refraction of different

wavelengths of light. Following this analogy, the distortion in an image caused by

chromatic aberration, is called chromaticity and results in an unwanted tune spread

in the particle beam [4, 20].

The tune and coupling feedback systems went hand in hand, since the values of

the tunes in both planes were responsible for the coupling between the two planes.

These feedback systems were incorporated within the QFB, where the skewed betatron

oscillations caused by coupling are mitigated with the aid of skew quadrupoles, which

are quadrupole magnets rotated by 45◦. Studies have also shown that if coupling is
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left unattended, it could push the tune in either plane to a resonant state which results

in the loss of beams [21].

Quadrupole magnets are used to confine the beam, however, each quadrupole fo-

cuses the beam on one plane and defocuses it in an orthogonal plane in the direction

of the beam. These magnets directly influence the betatron function of the beam and

thus have an impact on the value of the tune. As a consequence any inherent mag-

netic imperfections at specific locations of the quadrupoles’ magnetic fields also have

an effect on the tune of the beam. If the tune was at a value which resulted in the

same transverse oscillations occurring in the same longitudinal location, a resonance

would ensue. The amplitude of the betatron motion would monotonically increase

over many turns and finally results in beam loss. Therefore, the ideal value of the

tune is an irrational number, since the same transverse oscillations could not occur in

the same location of the magnetic lattice [19].

1.3 Machine learning

Machine Learning (ML) is a subset of Artificial Intelligence and emerged from the

fields of computer science, mathematics and statistics. It concerns itself with the

study of algorithms, designed to solve particular tasks without the use of explicit

instructions, which are tailor-made for the task at hand. Rather, ML aims to perform

tasks based only on previous experiences [22]. Due to this remarkable property, ML

tools have a potential use on systems which produce large amounts of data, e.g. particle

accelerators.

The most relevant ML fields to this work are Supervised Learning (SL), Generative

Adversarial Networks (GANs), and Reinforcement Learning (RL). SL is the study of

algorithms which given a set of correctly labelled data, can learn to accurately predict

the labels of potentially unseen data. GAN is a framework, where two networks are

trained to solve a minimax problem. The resultant effect is that one of the networks

learns to generate new data from an approximation of the real world distribution

which produced the training data. RL is the study of algorithms that can learn a
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behavioural policy by interacting with an environment which produces a scalar signal

called reward. The ultimate purpose of the learned policy is to maximise the reward

given by the environment at each step.

1.4 Motivation and aims

The BBFS comprised of a standalone C++ program using ROOT libraries and a

FESA class which communicates with it. The BBFS included a multitude of unused

functionality left over from early versions and throughout the years, various efforts

were made in order to improve its maintainability and to fix any bugs found during

operation. Long Shutdown 2 (LS2) allows enough time for major upgrades to take

place and one of the aims of this work is the renovation of both the OFC and Orbit

Feedback Service Unit (OFSU).

Another important sub-system of the BBFS was the QFB, which only had per-

turbed tune estimates as input for tune control. Therefore, one of the aims of this

work is to develop alternatives to the current tune estimation algorithm, which can

alleviate the effect of tune perturbations.

During LS2, some of the hardware running the BBFS was also upgraded. In

particular, more powerful machines are planned to be installed, which potentially

could harness Hardware Acceleration (HA). One of the aims of this work is to perform

a feasibility study on the use of HA in the BBFS sub-systems.

RL has become increasingly popular at CERN and other particle accelerator com-

munities. One of the aims of this work is to assess the feasibility of applying RL within

the BBFS. Various state-of-the-art RL algorithms need to be taken into consideration,

as well as the formulation of a beam-based feedback system into an RL environment.

1.5 Dissertation structure

Following the introduction, Chapter 2 provides the necessary theory and definitions

for the work presented in this thesis. This chapter starts by going through the relevant
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beam dynamics, which explain the movement of the beam inside the LHC. Following is

a review of the hardware which comprises both (a) the instrumentation which provides

beam measurements and (b) the magnets which allow for the control of said parame-

ters. Consequently, the design of the BBFS until Run 2 is introduced and discussed.

This is followed by an overview of HA, which introduces the work done to analyse the

feasibility of HA in the OFC. The background research ends by giving an introduction

to the various branches of ML relevant to this work.

Chapter 3 takes a closer look at the source of the QFB controller failures, which is

inaccurate tune estimates. Work was done to improve the tune estimate of the LHC,

which in turn helps the QFB improve its operational performance. Two alternative

tune estimation processes are presented in this work, one which attempts an improved

algorithmic approach, whilst the other uses machine learning tools that learn to esti-

mate the tune by training on offline data. The results of both approaches are compared

and discussed.

In Chapter 4, the results of the first attempt at using RL for the tune feedback

control in a particle accelerator are presented. This chapter offers a comparative study

of using different state-of-the-art RL algorithms to train a data-driven QFB. The

possibility of applying state-of-the-art RL algorithms to the OFC is also considered

and discussed.

Chapter 5 goes further through the design of the OFC until Run 2 and explains the

operation of OFC. Following this is a feasibility study on the use of HA to compute

optics calculations faster. Then, the design choices that were made in the renovation

of the OFC code are introduced and discussed. Finally, the development of a new

testing framework by BE-OP-LHC is summarised.
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Chapter 2

Background and literature review

This chapter will provide an appropriate background for the various topics explored

in this work. A literature review of the state-of-the-art is also provided. Primarily,

Section 2.1 will introduce the physics required to accurately model the beam dynamics

relevant to the Beam-Based Feedback System (BBFS). Section 2.2 and Section 2.3

will delve into the hardware which is installed in the LHC, that ultimately produced

all the data that was accrued during Run 2. Section 2.4 will describe the design,

implementation and limitations of the BBFS which was used during Run 2. Section 2.5

will introduce a possible solution to one of the limitations of OFC in terms of applying

Hardware Acceleration (HA) to accelerate the Singular Value Decomposition (SVD)

operation. Finally Section 2.6 will provide a concise summary of ML with special focus

on the topics most relevant to this work, such as GANs and RL.

2.1 Overview of beam dynamics

The design of the BBFS in the LHC is built on a number of key beam dynamics

principles for circular accelerators. Firstly, consider the co-rotating local coordinate

system as shown in Figure 2.1 where by definition x(s+C) = x(s), y(s+C) = y(s),

ρ(s+C) = ρ(s) and bn(s+C) = bn(s), where C is the accelerator circumference, x is

the horizontal local axis pointing outward, y is the vertical local axis pointing upward,

s is the longitudinal axis pointing in the direction of motion of the ideal particle, ρ(s)
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Figure 2.1: Co-rotating local coordinate system of an ideal particle (black), circular
design trajectory (red) and a perturbed orbit (blue) [1].

is the local bending radius of the dipole magnetic fields at longitudinal position s, and

bn represents the nth magnetic multi-pole strength for n > 1 ∈ N

To derive a system of equations which describe the particle dynamics in a gener-

alised magnetic field is a cumbersome task. For the purpose of obtaining an analytical

representation of the beam dynamics, linearity can be assumed. This implies that

only dipoles with bending radius ρ(s) and quadrupoles with a linear magnetic field

b2(s, x, y) are considered (Dipoles and quadrupoles are discussed in more detail in

Section 2.2). Following this assumption a Hill type system of equations as shown in

Equation (2.1) can be obtained by considering a particle which traverses the blue path

on Figure 2.1 [1, 23].

x
′′ +

(
k(s) + 1

ρ2(s)

)
· x = 1

ρ(s)
· ∆p

p

y′′ − k(s) · y = 0

(2.1)

where k(s) is the quadrupole strength normalised by the momentum of the moving
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particle and ∆p
p

is the particle momentum offset with respect to the ideal particle

following the red path.

The following ansatz, along with Floquet’s Theorem is used to solve the homoge-

neous part of Equation (2.1):

zβ(s) =
√
ϵzβz(s) · cos (Φz(s) + ϕz) (2.2)

where z can be either the horizontal or vertical coordinate (x,y), and ϵz and ϕz are the

particle’s initial conditions. Equation (2.2) describes the particle oscillations known

as the Betatron oscillations, which derive their name from the Betatron accelerator

in which they were first observed [24]. Consequently, the amplitude modulation due

to the changing focusing strengths of the quadrupoles, βz(s), is known as the betatron

function. Φz(s) is known as the betatron phase advance and is obtained from βz:

Φz(s) =

∫ s

s0

1

βz(s′)
ds′ (2.3)

where s0 is an arbitrary longitudinal reference point on the ideal particle trajectory. Φ

is also related to the number of transverse oscillations that a particle performs in one

full turn around the machine. The latter can be measured for any circular accelerator

and is called tune, Q:

Qz =
1

2π

∫ C

0

Φz(s)ds (2.4)

It is important to note that the choice of both Qx and Qy, which denote the tunes in

the horizontal and vertical planes respectively, is critical to the stability of a circular

machine. The inevitable small imperfections in the quadrupole magnets can lead to

the growth of a particle’s transverse oscillations after many turns. Uncontrolled, this

effect leads to large betatron amplitudes which cause energetic particles to come in

contact with the beam pipe. This contact creates a cascade of particle losses which

ultimately results in the loss of the beam itself. In particular, Qz has to be a non-

integer number and ideally an irrational number to avoid resonance. In addition, any

choice of Qx and Qy which satisfies the resonance condition in Equation (2.5) should
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also be avoided, where for m,n, p ∈ Z.

mQx + nQy = p (2.5)

Figure 2.2: LHC Tune diagram. The x-axis and y-axis are the horizontal and vertical
tunes, respectively. The green circle shows an example of of the tune working point at
injection with the red dotted circle being the boundary of acceptable tunes. The blue
circle shows an example of the tune working points during collisions.

Figure 2.2 shows an enlarged tune diagram, with an example of injection and col-

lision tune working points (respectively the green and blue circles). The red dotted

circle around the injection working point indicates the allowed tune values during

injection. The red straight line signifies the second order resonance and the blue or-

thogonal straight lines the third order resonance. The other grey lines are higher order

resonances which have little effect on the tune with respect to the BBFS. Regardless,

the collision tune reference values are shifted to a relatively calm region of the tune

diagram after injection.

The inhomogeneous part of Equation (2.1) describes a shift in the equilibrium

beam position which is due to the particle momentum offset, ∆p
p
, and which can be
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found from the bending radii, ρ(s), of the dipole magnets. The special solution of

the inhomogeneous part of Equation (2.1) is called the Dispersion function, D(s).

Normally D(s) is defined for ∆p
p

= 1 and is periodic. The shift of the equilibrium

beam position due to dispersion is given by Equation (2.6).

zd(s) = D(s) · ∆p
p

(2.6)

where zd(s) is known as the dispersion orbit. Dispersion is an intrinsic property of

dipole magnets and is evident when considering the definition of beam rigidity, Bρ:

Bρ =
p

q
(2.7)

where p and q are the momentum and charge of a particle, respectively, and B is the

dipolar field acting on the particle. Equation (2.7) shows that under the same B,

the bending radius, ρ, experienced by a particle is proportional to its momentum, p.

Therefore, the natural presence of momentum spread within a particle bunch is the

source of the dispersion orbit.

The general solution to Equation (2.1) can be written as the superposition of

Equation (2.2) and Equation (2.6):

z(s) = zβ(s) + zd(s)

z(s) =
√
ϵzβz(s) · cos (Φz(s) + ϕz) + D(s) · ∆p

p
(2.8)

The equations of motion alone however are not enough to fully design the beam

optics of circular machine with potentially thousands of individual components that

need to be taken into consideration. It is not possible to find the optimal betatron

function and phase advance analytically and therefore numerical approaches have to be

used which attempt to iteratively find the best configuration of parameters given the

constraints of the machine. The parameters used to describe the beam optics are called

Twiss parameters : a) the betatron function, β(s), introduced in Equation (2.2), b)

α(s) ≜ −1
2
β′(s) and c) γ(s) ≜ 1+α2(s)

β(s)
[25]. A general-purpose tool specifically
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intended for optics design is MAD-X, distributed freely by CERN, and which is actively

used by LHC operators to design new optics for the LHC [26].

2.2 LHC accelerator and its magnets

Figure 2.3: The LHC accelerator layout [2].

The LHC accelerator layout is not a perfect circle, instead it has 8 arcs joined by 8

straight sections. Figure 2.3 illustrates this layout where the arcs are coloured green

and the Long Straight Sections (LSSs) are coloured light blue. The yellow regions are

called the Dispersion Suppressors (DSs) and their role is threefold: 1) to adapt the

reference orbit of the beams to the geometry of the LHC; 2) to cancel the horizontal

dispersion; 3) and to help match the insertion optics. The two beams are shown by

the blue and red lines, where beam 1 moves clockwise and beam 2 counter-clockwise.

The beams themselves are not a continuous stream of particles but consist of bunches.

These bunches are accelerated close to the speed of light by the Radio-Frequency

(RF) system, which are also spaced by a minimum of 25 ns: this is equivalent to

minimum distance between the bunches of ≈ 7.5m. By June 2017 the maximum
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number of bunches per beam was 2556, which marked a significant increase in the

peak luminosity [27]. The bunched beams themselves can be both entirely made up

of either protons or heavy-ions, as well as one proton beam and one heavy-ion beam

at the same time.

An Insertion Region (IR) contains a LSS and its two adjacent DSs. The eight

IRs of the LHC are balanced between experiments and accelerator utilities. It can be

seen in Figure 2.3 that the beams swap places at four Interaction Points (IPs), which

is where the beams are collided in the four main experiments of the LHC. The two

high-luminosity general-purpose experiments, A Toroidal LHC ApparatuS (ATLAS)

and Compact Muon Solenoid (CMS) are placed symmetrically on two ends of the

accelerator at IR1 and IR5, respectively. The other two experiments, A Large Ion

Collider Experiment (ALICE) and Large Hadron Collider beauty (LHCb) are placed

in IR2 and IR8, respectively. IR3 and IR7 are dedicated to the beam cleaning systems

and IR4 holds the two independent RF systems for the two beams. The two beams

are injected from below the reference plane in the same LSSs as ALICE and LHCb,

and they are inserted inside the beam pipes via vertical kicks from insertion dipoles.

Lastly, there is also an independent beam dump system per beam, where fast-pulsed

horizontal kickers and vertical septum magnets are used to extract the bunched beams

and deposit them in 7.7m long graphite blocks located in IR6.

The arcs are made up of 23 arc cells and each cell is made up of two symmetrical

half-cells, each 53.45m long. A cell contains the required magnets to form one period

of the betatron oscillations described by Equation (2.2). Each half-cell contains one

6.63m long cryostat known as the Short Straight Section (SSS), and three 14.3m

long cryo-dipoles, also known as the main dipoles (MB). One SSS contains one arc

quadrupole (MQ) which can be either focusing (QF) or defocusing (QD), along with

several corrector magnets. In particular, one horizontal arc orbit corrector (MCBH) is

installed at each QF and similarly, one vertical arc orbit corrector (MCBV) is installed

at each QD. The tuning quadrupole correctors (MQT) are also installed in some of

the SSSs, which together can adjust the tune in the order of ±0.1. The MB, QF and

QD are grouped by sector, respectively, and powered in series. On the other hand, all
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the corrector magnets can be independently controlled.

The experimental IRs also contain what are known as inner triplet assemblies that

mainly consist of quadrupoles which adjust the beta function of the beams around the

IP. The value of the beta function at the IP, also known as the Beta star, must be

as small as possible to ensure maximal luminosity. The inner triplets also consist of

several corrector magnets, in particular to this work is a set of orbit correction dipoles

(MCBX).

Outside the inner triplets, the IRs contains other types of quadrupoles, namely

quadrupoles of similar construction as MQ (MQM) and quadrupoles with a larger

aperture which are required for high beta values of the beam (MQY). Both MQM

and MQY are adjoined with two different sets of orbit correctors, named MCBC

and MCBY, respectively. The beam cleaning IRs contain collimators which strip

halo particles from the beams. As a result this process creates higher beam losses

in the immediate vicinity of the collimators. Since the probability of quenches are

proportional to the beam losses, IR3 and IR7 contain the only normal conducting

orbit correction dipoles (MCBW).

Name Description Count Imax[A] Irate[As
−1]

MCBH Hor. arc orbit corrector 375 55 0.5
MCBV Ver. arc orbit corrector 375 55 0.5
MCBCH Hor. orbit corrector 84 80/100 0.667/1
MCBCV Ver. orbit corrector 84 80/100 0.667/1
MCBXH Hor. orbit corrector 24 400 2.5
MCBXV Ver. orbit corrector 24 400 2.5
MCBYH Hor. orbit corrector 38 72 0.667
MCBYV Ver. orbit corrector 38 72 0.667
MCBWH Hor. single aperture warm orbit correc-

tor
8 500 5

MCBWV Ver. single aperture warm orbit correc-
tor

8 500 5

MQTF Focusing tuning quadrupole corrector 8 550 1.5
MQTD Defocusing tuning quadrupole correc-

tor
8 550 1.5

Table 2.1: Types of corrector magnets used by the Orbit Feedback Controller (OFC)
and Tune Feedback (QFB). H and V denote horizontal and vertical, respectively. F
and D denote focusing and defocusing, respectively [2].
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Table 2.1 summarises the magnets which are relevant throughout the later chapters.

The dipole corrector magnet names are suffixed with either H or V to signify whether

they act on the horizontal or the vertical plane, respectively. The magnets MCBH(V),

MCBCH(V), MCBXH(V), MCBYH(V) and MCBWH(V) are collectively called Orbit

Corrector Dipoles (CODs) in the Beam-Based Feedback System (BBFS) nomenclature.

The tuning quadrupole magnet name is suffixed with either F or D to indicate whether

they are focusing or defocusing magnets, respectively. Other higher order multipole

corrector magnets are required for stable operation of the LHC, however, the main

focus of this work primarily relates to dipole and quadrupole corrector magnets.

The superconducting coils 

A twin-aperture dipole consists of two single dipoles, each around a beam channel. Each dipole consists of 
an upper and a lower pole that are identical. Each pole consists of a coil wound in two layers, called inner 
layer and outer layer, wound with two cable types. Fig. 7.5 shows the flux plot as computed for the whole 
structure of the main dipole. 

 
Figure 7.5:  Dipole magnetic flux plot 

The distribution of the cables in the two coil layers is shown in Fig. 7.1. The six sets of adjacent coil turns 
within the limits of the various copper wedges are defined as cable (or conductor) blocks. The precise 
azimuthal and radial position of the cables/blocks is of the utmost importance to achieve the nominal 
magnetic field and its homogeneity in the beam channels. The inner radius of the inner coil layer is 28 mm 
while the outer layer has an inner radius of 43.9 mm. 

In addition to the insulated superconducting cable the following components are necessary in order to 
produce a coil (see Fig. 7.6): 

•  Copper wedges made from OF copper according to standard ASTM C102, DIN 1787. These wedge-
shaped copper spacers are inserted between blocks of conductors in order to produce the desired field 
quality.  In addition they approximate a quasi-circular coil geometry, thus compensating for the 
insufficient keystoning of the cables (see Figs. 7.1 left and 7.6 right). Before use they are insulated 
following the same procedure adopted for the superconducting cable. 

•  End spacers and end chips. These special saddle-shaped insulating fillers are designed to constrain the 
conductor to a consistent and mechanically stable shape. 

 
For the end spacers satisfactory shapes were determined using a “constant perimeter” approach combined 

with empirical methods and refined during prototyping [35]. Several manufacturing techniques and materials 
are used for these elements. Large and thick pieces (end spacers) are produced by 5-axis machining of epoxy 
impregnated fibreglass thermoset while thin pieces, having a maximum wall thickness below 10 mm (end 
chips) are produced by injection moulding of polyetherimide resin with 30% loading by volume of glass 
fibre. This combination of techniques and materials has been instrumental in reducing the cost and the 
production time whilst maintaining quality. 

171

Figure 2.4: Simulated cross-section showing direction and magnitude of magnetic flux
in a LHC dipole [2].

Dipoles provide a homogeneous, quasi-unidirectional magnetic field within the

beam pipes as illustrated in Figure 2.4. The field in each beam pipe, Bz, is per-

pendicular to the direction of motion of the ideal particle and serves to guide the

beams around the accelerator. Most of the dipole magnets in the LHC constitute of

superconducting coil configured as shown in Figure 2.5.

Quadrupoles provide a linearly varying magnetic field, Bz = −gz, where g is

the magnetic field gradient. It is important to note from Equation (2.1) that if the

quadrupole strength is positive in one plane, it must be negative in the orthogonal

plane. As seen in Figure 2.6, if the poles are configured to focus the beams in the hor-
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Figure 2.5: The superconducting coils and the magnetic field lines (yellow) of a LHC
dipole[3].

izontal plane, the orthogonal force components from the magnetic field would defocus

in the vertical plane [4]. From Figure 2.6, it is also evident that if the quadrupole is

perfectly symmetric, there would be no magnetic field on the central axis, and so the

ideal particle would remain virtually unaffected by a quadrupole. Figure 2.7 shows a

standard arrangement of QF and QD quadrupoles called a FODO cell. Two arc half-

cells make up one FODO cell, which ultimately confines the beam envelope to within

the beam pipes. Finally, Figure 2.8 shows a cross-section of an LHC superconducting

quadrupole.
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Figure 2.7: Beam envelope inside a FODO cell [4].

Figure 2.6: Forces acting on a particle moving through the quadrupole. Particle beam
moves into the page [4].
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Figure 2.8: Cross-section showing the coils that provide the magnetic field in a super-
conducting quadrupole.

2.3 Beam Instrumentation

Beam instrumentation can be considered as a field of study within particle accelerator

physics. The aim is to design, build and maintain the necessary hardware to perform

measurements on the beam. Any upgrade that is done to a particle accelerator, will

generally require more accurate measurements of key parameters in order to allow for

effective controllers to be implemented. This also makes beam instrumentation an

active field of study which seeks to improve the measurements done on the beam [28].

2.3.1 Beam Position Monitors (BPMs)

Beam Position Monitors (BPMs) are some of the most important beam instrumenta-

tion devices with respect to the needs of the OFC. BPMs are a non-destructive type

of instrumentation which can measure the position of the center of mass of a bunched

beam, through the induced electromagnetic field by the particle as it moves past the

BPM. Various designs of BPMs exist and operate within a specific design objective,

such as a trade-off between accuracy and acquisition rate. The LHC uses two different

kinds of BPMs which are the button-type and the strip-line BPMs.
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Figure 2.9: Cross-section of the button BPM showing the 4 electromagnetic pick-ups
(buttons) [5].

The first type of BPM is one of the most compact designs for beam position

measurement and is also a relatively simple design as shown in Figure 2.9. Therefore

this means that it is not expensive to manufacture, which became a very important

factor during the design phase of the LHC, as over 900 button BPMs were eventually

installed in the accelerator. Its operating principle is relatively simple: the position

of the beam in a plane is measured from the image current that is induced in two

opposing buttons when a charged particle bunch passes by them through the vacuum.

If the bunch is not passing exactly from the center of the beam pipe, the two opposite

buttons will produce different image currents. The two readings are processed together

by the BPM electronics, which output the position of the center of mass on the axis

of the buttons. Another pair of buttons are places orthogonally, to measure the center

of mass on the other plane [6, 5].

The second type of BPM to be found in the LHC is the strip-line BPM. This

kind of beam instrumentation is used when the two counter-rotating beams are in

the same vacuum chamber in the experiment regions of the LHC. The strip-line BPM

can discriminate between the two beams and find their positions respectively. The

strip-line BPM operates as follows: The bunch enters the BPM and induces an image
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Figure 2.10: Simple strip-line BPM configuration with a matched load impedance [6].

signal at the first edge of the strip-line on port 1. The signal and the beam travel in

phase to the direction of port 2. At the second edge of the strip-line another image

signal is formed, but this time it travels in the opposite direction. Therefore half of

the signal is cancelled by the propagating signal from port 1 and the other half of the

signal propagates back to port 1. If a second bunch is seen at that time, the reflected

signal from the first bunch is cancelled by the signal from the second bunch, and so

on. The magnitude of the signal coming out of port 1 is then amplified, and passes

through the electronics and the numerical methods needed to find the measurement

for the beam position [6, 29]. A diagram illustrating the design of a strip-line BPM

can be seen in Figure 2.10.

2.3.2 Tune Measurement and Feedback

The LHC Base-Band Q (tune) - (BBQ) system was the first quasi non-intrusive tune

measurement in a synchrotron machine, which could increase the betatron signal levels

by order of magnitudes whilst still observing the beam in its naturally excited form

for short bunch lengths.

This system works on the principle of Direct Diode Detection (3D), which as shown

in Figure 2.11, is comprised of an envelope detector which is normally used for demod-

ulating Amplitude Modulation (AM) signals. The latter works by having the diode

(D) letting only signals above its threshold voltage through and consequently filtering

the low frequency components of the resulting signal sd(t) via an RC circuit with the
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Figure 2.11: Principle of Direct Diode Detection (3D) [7] for the purpose of tune
measurement.

time constant in Equation (2.9).

τ = RfCf (2.9)

The resultant effect of the circuit in Figure 2.11 is the time-stretching of the short

bunch length signal spectra to baseband frequencies. As a result the betatron oscil-

lations are conserved and can be observed in baseband with higher Signal-to-Noise

Ratios (SNRs) with respect to its classical counterpart. This concept alone makes the

Base-Band Q (tune) (BBQ) capable of accurately measuring the tune of a bunched

beam without external excitation.

Classical tune measurement techniques did not use the 3D principle and instead di-

rectly estimated the tune from the se(t) signals obtained by the pick-up (PU) as shown

in Figure 2.11. As shown in the work of Gasior et al., the BBQ system had outper-

formed the classical tune measurement systems by more than an order of magnitude

in terms of the SNR [7].

Ultimately, the value of the tune is equal to the frequency of the largest mode

of oscillation within sd(t). After converting the signal into frequency domain, this

mode can be easily found by finding the position of the largest magnitude within the

spectrum. It is also important to note that the general location of the tune in the
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spectrum is inferred from the optics of the LHC, therefore only a small frequency

window is considered when estimating the tune.

Present tune estimation algorithm

The present tune estimation system, which in this text will be referred to as the BQ

algorithm, was used in the LHC until the end of Run 2 as the main source of tune

estimates. BQ uses the signal sd(t) as shown in Figure 2.11 sampled at 11 245.55Hz;

the LHC revolution frequency. Every 2048 samples, a Fast Fourier Transform (FFT)

is performed to obtain a spectrum containing 1024 frequency bins. Following this,

the spectrum is clipped to a specific frequency window chosen by the LHC operators,

roughly centered around the expected tune. Figure 2.12a shows an example of a

resultant spectrum after these operations. The resultant spectral resolution, fres can

then be found by considering that the Nyquist frequency of the BBQ spectrum is half

the LHC revolution frequency. Equation (2.10) finds the spectral resolution of a BBQ

spectrum.

fres =
Fs

2Nf

=
11245.55

2× 1024
≈ 5.5Hz (2.10)

The BQ algorithm has been in operation since the BBQ system was developed and

throughout the years it has had some small design upgrades which were put in place

to improve its performance. BQ is comprised of a set of sequential processing blocks

as depicted in Figure 2.13. First each frequency spectrum obtained from the BBQ

system is passed through a bank of independent Exponential Moving Average (EMA)

filters, where each filter works on a single frequency bin. This pre-processing stage is

essentially used to reduce spectral white noise. Figure 2.12b is the same spectrum in

Figure 2.12a, after the EMA smoothing operation.

Median and average filters are subsequently applied to the EMA filtered spectrum

to increase its smoothness with respect to the tune peak. At this stage the frequency

corresponding to the maximum value of the processed spectrum is taken. This fre-

quency is then refined by going back to the output of the bank of exponential moving
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(a) Spectrum obtained directly from BBQ signal which is picked up by PU.
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(b) Spectrum with filtered frequency bins which is used by BQ.

Figure 2.12: A comparison of the BBQ and the EMA filtered spectra from operational
data logged during the LHC Run 2 in 2018.
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Figure 2.13: Present tune estimation algorithm diagram [8]

averages and performing a Gaussian fit of the spectral region in its immediate vicin-

ity. The Gaussian fit essentially corrects the location of the maximum by fitting the

maximum found earlier, and its 2 adjacent points onto a Gaussian distribution and

after set the new maximum location at the mean of the Gaussian [19, 30].

Performance issues

Since the first time that the BBQ system was switched on, spectral components at

mains frequency have been observed and confirmed by independent diagnostic systems.

The origin of these 50Hz noise harmonics has been identified by recent studies to be

the main dipoles and therefore these harmonics are present in the beam itself and are

not a product of the instrumentation [31]. Figure 2.12a provides an example of BBQ

spectrum polluted with 50Hz noise harmonics where it can be easily understood why

these harmonics might affect the tune estimation process as described in Section 2.3.2.

The top plot in Figure 2.14 shows the tune trace of the resultant tune estimates of

the BQ algorithm from EMA filtered spectra during an LHC fill in 2018. Here we can

observe that BQ is estimating a tune value which is coincident with two adjacent 50Hz

noise harmonics. First we can observe Points A and B which are providing a relatively
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Figure 2.14: BQ tune trace showing adjacent harmonic jumps. 6 points on this tune
trace were chosen and their respective spectra are shown on the bottom plots.
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good estimate, however the tune estimate jumps at Point C and the tune estimate is

coincident with the 50Hz harmonic at 3050Hz until Point D. After one time step at

Point E, the tune estimate becomes coincident with the next 50Hz harmonic at 3100

Hz. The spectra of Points E and F show the magnitude growth of the harmonic at

3100 Hz which caused the error in the tune estimate.

Figure 2.15 shows a similar plot from the same fill, after approximately one minute

of real operation. Now Points A to C are following the tune trace which is coincident

with the 3100 Hz harmonic that was noted in Figure 2.14. Following this we can

see from the respective spectra of Points D and E that the tune peak has somewhat

shifted to left by a few frequency bins, which finally allowed the BQ algorithm to

avoid the harmonic peak. Point F shows the tune estimate jumping again to the same

harmonic. This example shows the sensitivity of BQ to small changes in the tune peak

which might cause it to jump to a harmonic and no longer measure the tune. From

this example it can also be seen that since the tune peak itself is coinciding with a

harmonic, the behaviour of BQ becomes undefined since then the estimate directly

comes from the position of the peak of the harmonic.

Figure 2.16 shows the tune trace from BQ on a different fill where the focus is on

a sample of the estimates which exhibits a large variance. Here we can observe that

initially, Points A and B provide very similar tune estimates, however at Points C and

D the tune estimate drops by approximately 70 Hz. After another time step we can

see at Point E that the tune estimate has jumped by approximately 120 Hz. The latter

is equivalent to almost 22 frequency bins of variation from consecutive estimates. At

point F the tune estimate falls closer to Points A and B again. This example illustrates

that when the tune peak is wide within the spectrum, BQ suffers from large variance

in adjacent tune estimates.
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Figure 2.15: BQ tune trace showing estimates coincident with a 50Hz noise harmonic.
6 points on this tune trace were chosen and their respective spectra are shown on the
bottom plots.
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Figure 2.16: BQ tune trace showing large variance. 6 points on this tune trace were
chosen and their respective spectra are shown on the bottom plots.
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Figure 2.17: Schematic view of the Beam-Based Feedback System (BBFS) in the LHC
complex.

2.4 The LHC Beam-Based Feedback System State-

of-the-Art

Figure 2.17 is a schematic overview of the Beam-Based Feedback System (BBFS),

which represents all the beam-based feedbacks as they were implemented within the

LHC complex up until Run 2. The basic layout of the LHC is shown in the background

along with the four main experiments labelled in red text. Four essential components

for the BBFS are also shown which are the Beam Position Monitors (BPMs), Base-

Band Tune (BBQ), quadrupole magnets and the dipole magnets. The direction of the

arrows linking these components to the BBFS indicates the direction of the data flow

to and from the feedback system.

Figure 2.18 illustrates a more detailed view of the BBFS architecture which is

comprised of the Orbit Feedback Service Unit (OFSU) and the Orbit Feedback Con-

troller (OFC). The OFSU is connected to the OFC via a private Ethernet connection
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Figure 2.18: Schematic view of the data paths and a more detailed view of the BBFS
architecture.

and Transmission Control Protocol (TCP) is used for lossless communication. The

Tune Feedback (QFB) is enclosed within the OFC and is virtually hidden from the

outside. Data from the BPMs and the BBQ is received by the OFC in the form of

User Datagram Protocol (UDP) packets. The BPM packets arrive from 118 Front-

End Computers (FECs) which can interface up to 18 BPMs each. The BPMs are not

connected to FECs in a sequential order, rather they are interlaced to increase robust-

ness in the presence of FEC failures. Similarly, the Orbit Corrector Dipole (COD)

and tuning quadrupole packets arrive from, and are sent to the Power Converter (PC)

gateways. The PC gateways are connected to the Function Generator/Controllers

(FGCs) which control the magnets themselves [32].

This configuration allowed the Orbit Feedback Controller (OFC) to collect informa-

tion about the beam tune and orbit in real-time, whereby it can calculate the required

corrections to the magnets at a rate of 25Hz [1]. The OFC was designed in C++ with

the aid of ROOT libraries. ROOT is a scientific software framework originating from

CERN with the purpose in mind to be used for the processing, analysis, visualisation
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and storage of big data related to high energy and nuclear physics [33]. The limited

responsibility of the OFC with respect to all the tasks required to be performed by

the BBFS was prompted by the computational limitations of the hardware in place at

the start of the LHC operation. By keeping the program structure of the OFC simple,

the designers could ensure a deterministic execution.

Figure 2.18 also shows that the OFSU served as an interface for the OFC and

was used by the LHC operators to monitor and control the OFC [34]. The OFSU

was also responsible for loading the configuration files, which contained the settings

and beam optics required by the OFC. This information was communicated to the

OFC upon initialisation as well as by request of the operators. The OFSU also served

as a hub for the beam orbit data collected by the OFC and as a result a myriad of

Graphical User Interfaces (GUIs) used by the LHC operators depended on the data

relayed by the OFSU. Finally the OFSU was responsible for logging the data collected

by the OFC along with the settings of the BBFS itself. The OFSU was designed in

CERN’s own Front-End Software Architecture (FESA) and the sheer number of tasks

described above made the OFSU the largest FESA class in CERN until the LHC Run

2 [35, 36, 37].

In its initial implementation the BBFS comprised of a series of nested feedback

loops, each controlling a specific parameter of the LHC. First and foremost was the

orbit feedback loop, which calculated the change in COD deflections necessary to kick

the beam trajectories back to the reference orbit. Second was the energy feedback loop,

which calculated the change in frequency required in the RF cavities to counteract

any systematic momentum offset introduced by the CODs during orbit correction.

The other three nested feedback loops controlled the tune, coupling and chromaticity

simultaneously. It is important to note that in the latest implementation of the OFC,

only the QFB remained. Due to the instabilities observed in the tune estimates,

subsequent derived measurements, e.g. coupling and chromaticity, where not reliable

enough to merit a feedback system. Therefore when adjustments on the coupling and

chromaticity were required, manual operator-calculated corrections had to be uploaded

to the OFC [38]. The QFB was used to correct the tune in critical operational modes
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of the LHC; however, it was only used sparingly since frequent feedback instabilities

caused it to shut itself off. It was suspected that erroneous tune estimates from the

BBQ system were the cause for these failures.

The response of the currents in the CODs on the BPM measurements is estimated

by a RM. The main principle behind the orbit correction performed by the OFC is to

(a) measure the beam position using the BPMs, (b) calculate the error with respect

to the reference orbit, (c) use a Proportional-Integral (PI) controller as a feedback

loop (d) calculate the change in current needed in each COD to correct the beam

position and (e) finally send the current corrections to the CODs. A similar procedure

is used by the QFB to correct the tunes in both planes for both beams with the main

difference from the OFC being that the currents of tuning quadrupoles are changed

to correct the tunes.

Several methods exist which calculate the required COD currents and the most

popular are the MINimisation des Carrés des Distortions d’Orbite (MICADO) and

SVD [39]. The MICADO algorithm optimises the global orbit of the beam by finding

a set of the most effective CODs in the lattice which minimise the Root Mean Square

(RMS) by using as few corrector kicks as possible. The SVD algorithm is used in

a different approach, by which the RM is decomposed into three more manageable

matrices from which the so called Pseudo-Inverse (PInv) is found. The PInv directly

relates the required COD magnetic field strengths as a function of the measured orbit

error. During the early design of the OFC it was decided that the SVD algorithm was

a more robust and faster orbit correction algorithm than MICADO for use in the OFC

[1].

The following is a basic description of the PInv and the SVD algorithm. The

pseudo-inverse of a matrix A, is the matrix which when multiplied to A produces an

identity matrix. It is similar to an inverse of a square matrix with the difference being

that A can be any rectangular matrix. The PInv is calculated after applying SVD on

A, which allows us to express A as a multiplication of three sub-matrices with special

properties, that make it possible to find the PInv matrix. Below is the result of SVD
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on A:

A = UΣV ∗

where U and V are unitary matrices, meaning that their complex conjugate is their

own inverse and Σ is a rectangular diagonal matrix, with non-negative real numbers

on its diagonal and zero padding to allow for matrix multiplication. The diagonal

values of Σ are also known as the singular values of A and the columns of U and V

are known as the left singular vectors and the right singular vectors of A, respectively

[40]. Therefore:

PInv ≜ A−1

A · A−1 = I

(U · Σ · V ∗) · A−1 = I

A−1 = V · Σ−1 · U∗ (2.11)

where I is an identity matrix and Σ−1 is the inverse of Σ.

In the OFC, the number of singular values is purposefully reduced and corresponds

to COD deflections which are less localised. This is an attractive property of the SVD

algorithm since that during collisions, it is preferable to correct the beam orbit with

slow changing COD deflections [1]. For this reason, depending on the LHC beam

mode, a PInv with different qualities is required. In standard operation, the number

of eigenvalues used to build PInv from Equation (2.11) is reduced from 550, down

to 40. Figure 2.19 illustrates the Pseudo-Identity (PId), which is the result of the

multiplication of a PInv using 390 singular values and the RM. The change in PId is

more pronounced in Figure 2.20, obtained by a PInv using 40 eigenvalues, and used

during collisions. It can be seen that the PId matrix obtained with 40 singular values

has a wider diagonal which corresponds to a less localised response and gentler changes

in the COD deflections.

The SVD algorithm has to be employed whenever there is a change in the RM of

the LHC as well as when there is a COD or BPM failure. When a COD does not
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Figure 2.19: Pseudo-identity matrix obtained by multiplying the pseudo-inverse cal-
culated with the first 390 eigenvalues, to the response matrix

provide the magnetic field that the OFC has requested, the beam position will start

to deviate from the reference orbit. As a result, the PI controller keeps increasing the

integral error to no effect, which may lead to a beam dump due to the beam shifting

too close to the sides of the vacuum chamber. This problem can be mitigated if the RM

is altered to account for the malfunctioning COD and having the PInv recalculated.

If the current corrections send to the CODs and tuning quadrupoles are too large,

it could be the case that the beam response become non-linear. This arises due to a

magnet not being supplied enough current to apply the corrections requested by the

controller. To avoid this problem, both the OFC and QFB were designed to scale down

all the corrections by the same factor to accommodate the magnet with the largest

current delta relative to its maximum allowable current rate. The resultant effect is a

sub-optimal correction, however, convergence is still ensured.

34



Figure 2.20: Pseudo-identity matrix obtained by multiplying the pseudo-inverse cal-
culated with the first 40 eigenvalues, to the response matrix

2.4.1 Limitations

When the positional error vector is multiplied with the PInv, the entire set of corrector

magnets included in the RM is used. Applying a correction involving the use of

a malfunctioning COD may lead to significant distortions in the entire beam orbit.

This occurs due to the absence of a kick at the location of the malfunctioning COD.

The PInv attempts to restore the missing kick as given by the optics model. As a

consequence, in the event of a corrector failure the feedback must be stopped and the

SVD recomputed without that corrector.

In the current implementation of the OFC, the SVD algorithm is not used during

operation since its calculation takes in the order of tens of seconds to be executed,

making it unfeasible to be used in real-time. As a workaround, when a malfunctioning

COD is found, the LHC operators mask the current corrections sent to it. Conse-
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quently, the calculation of a new PInv has to be manually started offline on the OFSU

then uploaded to the OFC. This procedure has been shown to work in the past with

non-critical CODs however with a time limit of around one minute. This is not a

sustainable solution mainly due to the possible unavailability of expert operators to

complete the task [37, 38].

In the case of a BPM malfunctioning, the LHC operators mask the measurements

of the respective BPM and set the beam position at that location to be the reference

orbit. This may also be done automatically by the OFC itself and is accomplished by

reading the hardware state given to it by the BPM UDP packets. Ideally, following

the masking of a BPM the PInv is recomputed immediately, however, due to the

same limitations for malfunctioning CODs and the lessened impact of BPM failures

on operation, this is never done in the OFC until LHC Run 2.

Ultimately, in the current OFC implementation, the required COD deflections are

calculated using the original PInv without taking into consideration the malfunctioning

BPM. The result is that the beam position at the location of the BPM malfunction is

left relatively unaffected due to the assumption that the position at that location is at

reference orbit [37, 38]. This is a reasonable solution when a small number of BPMs are

malfunctioning in sparse locations, however should it be the case that adjacent BPMs

are defective, the OFC might induce significant beam distortions. Thus it would be a

significant improvement to recalculate the PInv immediately and in real-time following

any failure.

It is important to note that for an efficient and accurate correction, the OFC

relies on the quality of the RM. Two factors may affect the quality, the status of the

elements (BPMs or CODs) and the accuracy of the optics (machine versus model).

The typical optics errors (beta-beating) are in the range of 1-10% which translates into

errors of similar amplitude on the elements of RM. During the commissioning of a new

machine configuration or optics, the errors may reach up to 30-40%. When the gain

of the PI controller was not too high and the number of singular values in the PInv

was small, the orbit corrections have always converged and this has been confirmed by

simulations [1]. Non-functioning BPMs or CODs must be removed from the matrix
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before applying the SVD, for example by zeroing the corresponding column or row of

RM.

The LHC correctors are grouped into 2 main categories. Correctors with maximum

currents between 70A and 600A (≈ 300) are installed in the Long Straight Sections

(LSS) and in the beginning of the arc sections. They are connected by hardware link

to the PIC powering interlock system. In case of a powering failure a dump trigger is

generated immediately by the PIC. The ≈750 arc correctors with a maximum current

of 60A are surveyed by the Software Interlock System (SIS). As soon as SIS detects a

failure of a corrector, a dump trigger is generated if the corrector deflection is larger

than 5µrad. For smaller deflections, it is possible for the OFC to handle the problem.

Since the RMS kick strength of the arc correctors is around 12µrad, the beam

is dumped for the majority of corrector failures. The beam dump due to corrector

failure occurs with a frequency of 5 to 10 events per year, resulting in a few hours of

downtime each time and is therefore undesirable. The circuit time constants of those

arc corrector ranges between 20 and 60 seconds depending on the normal conducting

cable length. This time is sufficiently long to open a “beam rescue window” provided

the OFC detects the failure immediately using the state information stored in the

FGC UDP packets and is able to update the PInv accordingly within no more than

2 seconds. The missing corrector will leave a bump on the orbit, but it is possible to

continue operation in those conditions [41].

It has also been observed during the LHC operation, that the QFB becomes un-

stable multiple times per fill and as a result is automatically turned off. The source

of the problem was not immediately clear, however after analysis of logged data it

was found that erroneous tune estimates from the BBQ system were causing the QFB

instability. The erroneous tune estimate examples shown in Figure 2.14, Figure 2.15

and Figure 2.16 are relevant when viewed from the perspective of the QFB. Since the

QFB is essentially a Proportional-Integral (PI) controller, the error in the estimate

will result in a large control error within the QFB. The Integral part of a PI controller

accumulates past errors in order to compensate for any residual errors, the estimation

errors will be accumulated within the QFB resulting in stochastic behaviour.
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To maintain determinism within the QFB, it was decided that a tune estimate

stability metric had to be set up in order to automatically switch off the QFB in

the presence of instability. This is done by keeping two Exponential Moving Averages

(EMAs) with time constants of 2 and 10 seconds respectively, of the difference between

adjacent tune estimates (See Equation (3.15) in Section 3.5).

During operation, when both the slow and fast stability measurements are above

a certain threshold, the tune estimates are considered to be too unstable to be used

for control. As a result, the QFB is automatically switched off. Also note that large

variances, such as that shown in Figure 2.16, will cause the stability measurement to

get a kick and consequently marking the estimate as more unstable. The automatic

switching off of the QFB was not an uncommon event, and could occur multiple times

per fill. Due to the increased frequency of the feedback failures, constant operator

supervision was required.

Chromaticity feedback in the OFC was based and designed on chromaticity values

derived from tune estimates, which created a significant margin of error. This made it

difficult to effectively implement the chromaticity feedback in previous years and thus

it is not currently in use in the LHC. Instead, operators monitor the chromaticity and

correct it manually if necessary through offline calculations.

2.5 Hardware acceleration

Hardware Acceleration (HA) is defined as the use of specialised computing hardware,

that can execute certain typed of programs more efficiently than general-purpose Cen-

tral Processing Units (CPUs). Initially, HA was intended for faster graphics rendering

for computer displays and introduced by Graphical Processing Units (GPUs). Origi-

nally GPUs were introduced in the market by NVIDIA for the sole purpose of rendering

graphics on computer monitors. The unusual architecture of such devices created their

potential to be used to accelerate general-purpose computing [42]. While today there

exist many GPU manufacturers, with the main two brands being NVIDIA and AMD,

NVIDIA is often considered at the forefront of the competition [43, 44].
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NVIDIA also developed a parallel computing platform specialised for their GPUs

called CUDA. CUDA gives the programmer the possibility to exploit the parallel archi-

tectures of both modern CPUs and GPUs for mathematical calculations [45]. There

exists another parallel computing platform, OpenCL, which unlike CUDA is non-

proprietary and royalty-free [46]. In this work only NVIDIA devices were considered,

primarily due to their higher availability as offered by Techlab at CERN [47]. This

made it paramount to understand the difference among each of the three families of

NVIDIA GPUs.

The first and most popular one being the GeForce family of GPUs which mainly

focus on the gaming industry as well as optimised hardware specifically for real-time

game rendering. Consider as an example their most recent GeForce RTX line of GPUs

which focus on optimising ray tracing, a heavily-used concept in game engines.

The second family is called Quadro, which is more focused on the professional sector

such as companies using Computer Aided Design (CAD) and photo-realistic rendering.

These GPUs offer highly accurate vectorised images to the computer’s monitor and

are normally installed in professional workstations rather than in a personal gaming

computer. This is done through a significant increase in double precision FLoating

Point Operations (FLOPs) when compared to their GeForce counterparts. Their price

tag also sets them apart from the GeForce family, with the Quadro family usually

being one order of magnitude more expensive [48].

The third and last family is called Tesla, which is the General-Purpose Graphical

Processing Unit (GPGPU) family from NVIDIA. This is a special kind of GPU, where

its purpose is not to render images for a computer monitor, but solely to aid in math-

ematical calculations over a large amount of data. GPGPU are conventionally used

for simulations, such as in the engineering sector however their parallel architecture

made them ideal for ML applications as well [49].

Several HA libraries exist today, however, ArrayFire [50] was chosen as it provides

well documented and updated methods for the calculation of the SVD algorithm.

ArrayFire abstracts the hardware drivers from the programmer as well as provides

a straightforward interface. Furthermore, ArrayFire provides a myriad of hardware
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accelerated mathematical functions ranging from simple array manipulations to multi-

dimensional matrix manipulation and linear algebra. ArrayFire also provides the user

with an API to easily switch the computational device during program execution, as

well as different programming paradigms to compile the program itself.

In particular ArrayFire gives the programmer the ability to choose from OpenCL,

CUDA and asynchronous multi-threaded execution on multi-core CPUs. Both OpenCL

and CUDA offer the possibility to interface with massively parallel architectures in-

cluding, but not only limited to GPUs whereas the latter CPU implementation uses

optimised thread and cache manipulations. As a final note, the main difference be-

tween OpenCL and CUDA is that the former is a royalty-free standard, maintained

by an open-source community, whilst CUDA is the NVIDIA standard and uniquely

optimised for NVIDIA hardware [46, 51].

2.6 Machine Learning

2.6.1 Supervised Learning (SL)

SL concerns itself with learning a mathematical model which maps some input to an

output. An introductory example is the house pricing problem where the aim is to

learn a model which can accurately predict the price of a house given a set of attributes

that describe it; e.g. total area, sound pollution levels and garage option. Given many

examples of house prices and their attributes, SL methods would obtain a model that

achieves a high level of accuracy in predicting the price of a new house on sale [52, 53].

Consider that the price of a house is exclusively proportional to its total area.

Given this assumption, a linear model can be set, called the hypothesis, h, which is

parameterised by a parameter vector, θ:

hθ(x) = θ0 + θ1x (2.12)

where hθ denotes the parameterised model and θ0 and θ1 are the model parameters

which are initialised randomly. Model training starts by formulating the ”goodness”
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of the model with respect to the training data. This is done through the cost function,

and for this simple example the cost function can be the average squared difference

between each entry of the model prediction x(i), and the training data y(i):

J(θ) = min
θ

1

2m

m∑
i=1

(
hθ

(
x(i)

)
− y(i)

)2
(2.13)

where min
θ

indicates that the optimisation occurs with respect to the model parameters

and 1
2
is introduced to simplify the mathematics further on. By using Equation (2.13)

as a metric, a model which better fits the data would have a lower cost. The current

hypothesis can be improved by using Gradient Descent, an optimisation algorithm

which can iteratively reach the local minimum of any arbitrary continuous function.

Gradient descent is based on the simple principle that a minimum in a function has

a gradient of zero. Analytically this converts to finding the first-order derivative of

the function, setting it equal to zero and solving for the parameter which is being

optimised. In practice this converts to an update function, which changes the sub-

optimal parameters in the direction which minimises J(θ):

θj ← θj − α
∂

∂θj
J(θ) (2.14)

where α is the learning rate. The partial derivatives of the hypothesis in Equa-

tion (2.12) with respect to θ are expressed as follows:

∂

∂θj
J(θ) =

1

m

m∑
i=1

(
hθ

(
x(i)

)
− y(i)

)
x
(i)
j (2.15)

It is important that all parameters are updated simultaneously over the same batch

of data to ensure that the hypothesis is wholly updated by the end of each iteration

[54].
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2.6.2 Universal Function Approximators

The previous section made a hypothesis that the relationship between house prices

and their area is linear, however, this is rather stringent. One can always choose a

hypothesis with more degrees of freedom in order to introduce some complexity in

the predictions, however, as it is often the case, the data supplied to the model has

an unknown and multi-dimensional distribution which makes it harder to design a

well-behaving hypothesis. That is where the idea of a universal function approximator

comes in, which is also parameterised by some parameter vector θ, and is able to model

any type of continuous function given that θ is chosen accordingly.

Artificial Neural Networks

1 1

Input Layer Hidden Layer 1 Hidden Layer H Output Layer

1

Figure 2.21: A generic diagram of an ANN where the nodes/neurons consist of the
input, hidden and output nodes. The number of hidden layers, H must be ≥ 1
otherwise the resultant effect is a simple linear transformation. The constant node
represents the bias term, where when multiplied by the bias weights b (shown in red),
acts as the y-intercept for the activation function of the respective consecutive node.
The length ℓ of each hidden layer is denoted by the same symbol however each hidden
layer can have an arbitrary length where ℓ ≥ 1.

Artificial Neural Network (ANN) are such universal function approximators. Fig-

ure 2.21 shows a generic diagram of an ANN structure. An ANN should contain at

least one hidden layer, otherwise, the output is restricted to a linear combination of
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Layer h-1

1

Layer h

1

Figure 2.22: Generic segment of a ANN.

the inputs. With one or more hidden layers, an ANN can approximate any continu-

ous real-valued function. ANNs with less than three layers are referred to as shallow

networks, and those with three or more hidden layers are called deep networks.

From Figure 2.21 it can be observed that every hidden node Z, is connected to

all the nodes in the previous and the succeeding layers. The first layer is supplied

with an input vector X and the last layer produces the output. A constant node with

the value of 1 is also added to all layers except the input layer, and it is multiplied

by the bias weights, b, to act as the threshold of the activation function used in the

connected node. The activation function, denoted by σ(·), is applied to the sum of

the weighted inputs to a node. The forward propagation through one node at index j

of layer h will produce an output Z
(h)
j . The connections to one generic node is shown

in Figure 2.22. Equation (2.16) shows the calculation of the total input v
(h)
j and the

relationship between the connections in forward propagation:

v
(h)
j =

ℓ1∑
i=0

Z
(h−1)
i · w(h−1)

i,j + b
(h)
j (2.16)

Z
(h)
j = σ

(
v
(h)
j

)
(2.17)
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Figure 2.23: Four of the most extensively used activation functions. Due to its sim-
plicity and good empirical results, ReLU is often considered the best choice for hidden
layers.

The first formal analysis and proof of the universal function approximation prop-

erty of ANNs can be seen in [55] and is known as the Universal Approximation Theorem

(UAT). The main results of the latter work prove that functions of the form:

G(x) =
N∑
j=1

αjσ
(
w⊤

j · x + bj
)

where w ∈ RN and α, b ∈ R are fixed throughout one forward pass, and σ(·) is a

bounded differentiable discriminatory function known as the activation function which

can take various forms; can approximate any real-valued continuous function.

Throughout the years many more accompanying theorems were developed which

generalised over some assumptions made in [55], as well as to strengthen the math-

ematical understanding of UATs in general. As a result, some conditions required

by [55] for the Universal Approximation Property to remain valid were found to not

be necessary, e.g. a bounded activation function. A condensed and comprehensive

overview of the various mathematical advances of the UAT can be seen in [56].
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Figure 2.23 illustrates some of the most used activation functions. The sigmoid

function is expressed by:

σsigmoid(x) =
1

1 + e−x
=

1 as x→∞

0 as x→ −∞;

the tanh function is the hyperbolic tangent which is expressed by:

σtanh(x) =
2

1 + e−2x
− 1 =

1 as x→∞

−1 as x→ −∞;

the ReLU function rectifies its input:

σrelu(x) = max(0, x);

and the linear function is normally used in the output layer and is simply given by:

σlinear(x) = x

Many other variants have been developed and each created as a possible solution

for specific drawbacks present in all activation functions in Figure 2.23. The default

activation function used in the hidden layers of a ANN is ReLU, which is owed to its

simplicity and good performance on various kinds of tasks [57]. As it can be seen from

the plot of ReLU, its gradient is either 0 or 1 where standard machine learning libraries

assume that the gradient at x = 0 is 0. Notwithstanding the unlikely occurrence that

x is exactly equal to 0, this choice of default value of x alludes to sparse networks,

where most nodes have a value of 0. Sparse networks have desirable properties, such as

more efficient storage and computations as well as being a better model of the cortical

neurons in brains [58].
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Back-propagation

Learning vis-à-vis ANNs is the process of adjusting the weights on the edges of Fig-

ure 2.21 in order for the network to better approximate the real-world function that

created the training data. The same procedure as the housing problem in Section 2.6.1

is used to train neural networks, and it is called back-propagation. To aid with the

derivation of the training procedure, the small segment of a network in Figure 2.22

is considered where the ReLU activation function is used. Let v
(h)
j denote the total

input to a node j in layer h. For simpler notation, the bias can be omitted from the

derivation of back-propagation since it can be treated like any other weight. Therefore:

v
(h)
j =

ℓ1∑
i=0

Z
(h−1)
i · w(h)

i,j (2.18)

and,

Z
(h)
j = max

(
0, v

(h)
j

)
(2.19)

First a cost signal has to be set up, similar to Equation (2.13), where it is assumed

that a desired output state for node j, denoted by D
(h)
j , exists:

J(Z(h−1)
: ,w

(h)
:,j ) = J =

1

2

(
Z

(h)
j −D

(h)
j

)2

(2.20)

Second, the derivative of Equation (2.20) with respect to the output of node j is

found:

∂J

∂Z
(h)
j

= Z
(h)
j −D

(h)
j (2.21)

Using the chain rule on Equation (2.21), the effect of a change to the total input

of the node to the cost is obtained:

∂J

∂v
(h)
j

=
∂J

∂Z
(h)
j

·
dZ

(h)
j

dv
(h)
j

(2.22)

where
dZ

(h)
j

dv
(h)
j

depends on the type of activation function. Since ReLU is used in this
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network segment,
dZ

(h)
j

dv
(h)
j

is given by:

dZ
(h)
j

dv
(h)
j

=

1 if v
(h)
j > 0

0 otherwise

(2.23)

By applying the chain rule to Equation (2.22) and differentiating Equation (2.18) with

respect to a weight w
(h)
i,j to obtain

∂v
(h)
j

∂w
(h)
i,j

, the effect of a change in w
(h)
i,j is the chain of

derivatives shown in Equation (2.25):

∂v
(h)
j

∂w
(h)
i,j

= Z
(h−1)
i (2.24)

∂J

∂w
(h)
i,j

=
∂J

∂Z
(h)
j

·
dZ

(h)
j

dv
(h)
j

·
∂v

(h)
j

∂w
(h)
i,j

(2.25)

By substituting Equation (2.21), Equation (2.23) and Equation (2.24) in Equation (2.25),

the effect of changing a weight w
(h)
i,j on the cost J can be found:

∂J

∂w
(h)
i,j

=


(
Z

(h)
j −D

(h)
j

)
·
(
Z

(h−1)
i

)
if v

(h)
j > 0

0 otherwise

(2.26)

To continue propagating backwards it is required to re-formulate Equation (2.21),

to take into account the change in cost due to a change in the outputs of layer h− 1.

This can also be derived by the chain rule and summing up the contributions of Z
(h−1)
i ,

to layer h:

∂J

∂Z
(h−1)
i

=

ℓ2∑
j=0

∂J

∂v
(h)
j

·
∂v

(h)
j

∂Z
(h−1)
i

(2.27)

where Z
(h−1)
i is some node i in layer h− 1 and ℓ2 is the length of layer h, as shown in

Figure 2.21. To obtain
∂v

(h)
j

∂Z
(h−1)
i

, Equation (2.18) is differentiated with respect to Z
(h−1)
i :

∂J

∂Z
(h−1)
i

=

ℓ2∑
j=0

∂J

∂v
(h)
j

· w(h)
i,j (2.28)
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Now if layer h is the output layer then it is possible to obtain D
(h)
j from the

training label. Hence back-propagation is required to start from the right-most layer

of Figure 2.21. Following this, by storing the gradients calculated in the last layer,

Equation (2.28) is used to calculate the gradients in the penultimate layer, and so on.

Convolutional Neural Networks

ANNs are universal, meaning that any continuous function can be approximated.

However, as the input size increases, so does the training time. This was especially

a problem when ANNs were being applied to images, since increasing the image res-

olution meant a quadratic increase in training time, as well as other issues such as

over-fitting. A more efficient network architecture was developed specifically for im-

ages, the Convolutional Neural Network (CNN) [59].

CNNs were inspired by the same mechanism observed in a mammalian visual cor-

tex, which is specialised to work with images [60]. Local regions in images are highly

correlated, i.e. to form any shape, adjacent pixels need similar values. Other types

of data where local correlation is high are therefore compatible with CNNs. One such

example of data used in this work are BBQ spectra, where the tune peak is formed by

adjacent frequencies having similar amplitudes.

The network architecture of any CNN contains at least one convolutional layer.

A convolutional layer is a set of small filters, also called kernels, which are slid over

the input data to create what is known as a feature map. Specifically, each kernel is

parameterised by a set of trainable weights, which are used during the convolution of

a subset of input data with the same size as the kernel. Each operation produces a

feature which is sorted in a feature map respective to the position of the kernel over

the input data. When one step of the filter is done, it is then moved to the adjacent

subset of input data by distance called a stride length, which defines the number of

pixels to slide over when shifting the kernel [57].

Stacking convolutional layers also means that more complex features can be ex-

tracted while still using a small number of kernels. Figure 2.24 shows an example of a

CNN being applied to an image classification task. One kernel having only 9 weights
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Figure 2.24: An example of a CNN used for image classification.

(blue), is shifted over the input image to create one feature map. The addition of

more kernels creates more feature maps. When another convolutional layer is stacked

on top of the feature maps, another set of kernels (orange) are shifted over the feature

maps to create another set of feature maps themselves. After the elements in the last

feature map are flattened into one dimension, they are then connected to a dense layer.

For the task of image classification, the last dense layer uses the Softmax activation

function, where the output is the probability distribution of the image label.

CNNs offer the advantage of a significantly smaller number of parameters needed

to achieve the same performance as a ANN when applied to data types such as images.

However, CNNs can also be used for 1D time series data, e.g. real-time electrocardio-

gram (ECG) monitoring [61], as well as for 3D data, e.g. prediction of macro-scale

mechanical properties of a microscopically heterogeneous material [62].

Back-propagation as shown in Section 2.6.2 can still be applied to CNNs, however,

with slight adjustments. Equation (2.18) defines the total input to one node in a ANN.

For CNNs, the total input to one feature, j, in a map in layer, h, becomes:

v
(h)
j =

ℓk∑
i=0

Z
(h−1)
i .k

(h)
i

,

where ℓk is the size of the kernel, and Zi corresponds to the segment of the previous

layer output, which is being convolved with the kernel k. Therefore, ki, denotes the i
th
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weight of the kernel. The rest of the steps required for back-propagation follow suit.

2.6.3 Generative Deep Learning

Generative Deep Learning (GDL) is a subset of machine learning with the aim of

training deep networks that can approximate a probabilistic model of a dataset. These

networks can in turn be used to provide more samples of the input dataset [63]. This

technique is useful for various applications, such as in reduced data representation

in Variational Auto-Encoders (VAEs) and data generation in Generative Adversarial

Networks (GANs).

VAEs have an Auto-Encoder network structure, where the hidden layers in the

Encoder reduce in size to create a latent space representation of the input data. This

encoded data is then used by the Decoder, which recreates the input data. Auto-

Encoder structures require a representational loss, which compares the reconstructed

input with the real input. In addition, VAEs include a regularisation loss on the latent

space variables. This loss relates to the capability of the Decoder to generate new data

from the latent space [64].

Generator 
Network
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NetworkR
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p
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R
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Discriminator 
Loss

Generator Loss

Figure 2.25: Generative Adversarial Network (GAN) architecture applied to image
generation using the input data distribution [9].

Figure 2.25 shows the basic architecture used in GANs, where two networks are set

up in an adversarial manner. The generator is a function which transforms a random

initial distribution into an approximation of the data distribution. The discriminator is

a function that accepts a data sample, and predicts whether it is coming from the real
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data distribution or from the generator. To train the GAN, the generator needs access

to the network parameters of the discriminator. Since GANs are an optimisation of a

minimax problem, the generator is set up to maximise the loss of the discriminator,

while the discriminator is set up to minimise its classification error. Ideally, GANs

converge to a generator which is able to accurately mimic the data distribution, and

a discriminator which cannot distinguish between true and fake samples [65].

SimGAN

The SimGAN is a modified version of the GAN, where the goal is to refine a synthetic

or simulated image to look more realistic [66]. Since the role of the GAN generator is

now changed to refine an input synthetic image, SimGAN nomenclature refers to the

generator network as a Refiner Network (R).

In the original work, SimGANs were used to refine simulate images to look more

realistic. The problem was that in order to train an accurate model which can esti-

mate the eye gaze from the image of an eye, a large set of real images were required.

Since data acquisition of this scale are time consuming, a game simulator was used

to produce a large set of simulated images of eyes with different gaze directions. By

using adversarial training, the refiner could alter the image to appear obtained from

the real data distribution. This allowed for an improved refined dataset that could

train models which perform well on real data.

The generating process within GANs is thus transformed into a controlled refine-

ment process, where the annotation information stored in the image is conserved. This

allowed for an arbitrarily large dataset to be created, which was used to train a more

robust model when used on real data. Section 3.4.2 goes into more detail with regards

to the application of SimGANs in the tune estimation system.
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2.6.4 Reinforcement Learning (RL)

Introduction

Reinforcement Learning (RL) is the study of a class of algorithms which learn from

their interactions with the environment through what is called an agent. The envi-

ronment can be anything that is measurable and interacted with such as the following

examples: A cart-pole with an inverted pendulum with control of the forces on the

cart and the current angle of the pole per time step; a game of chess with the positions

of the chess pieces being observable after every move; and a robot moving in a maze

where it can only detect if it bumped into a wall.

The environment is responsible for giving a reward, which is a measure of the

goodness of the previous action passed to the environment. The agent is responsible

for interacting with the environment, assessing the value of the current state of the

environment, and choosing an action accordingly which would maximise the next

reward. Every state has a value and it signifies the potential of future rewards when

starting from said state. The reward is the only external performance metric to the

agent and all RL algorithms essentially try to maximise the future rewards through

various techniques. Another important term in RL is the policy which is a function

within the agent that maps the states to the actions. The agent uses the policy to

choose the next action that will maximise the future reward.

Figure 2.26: Top-level view of the interaction between the Agent and the Environment
[10].

Figure 2.26 shows a top-level view of the essential RL components and how they

interact. The various signals between the agent and environment are labelled with the

mathematical notation used in RL nomenclature. St and At refer to the state of the
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environment and the action chosen at time t. Rt refers to the reward being given to

the agent for the action taken at time t− 1, hence Rt+1 is defined as the reward given

to the agent for choosing action At when in state St.

Figure 2.27: Each episode consists of a repeated sequence of state-action pairs along
with a respective reward outcome.

An introductory RL algorithm is called State-Action-Reward-State-Action (SARSA),

which is an on-policy Temporal Difference (TD) prediction algorithm aimed at solving

the control problem [10]. SARSA gets its name from the sequence of state-action pairs

which make an episode as seen in Figure 2.27. An episode is an agent-environment

interaction trajectory which ends in a terminal state that can also have a reward, e.g.

one tic-tac-toe game is an episode and its terminal state reward can be a win, lose or

draw. SARSA uses the action value, Q(s, a), which is simply a measure used by the

agent to estimate how good a specific action is when in a specific state. SARSA is

also known as an on-policy method, meaning that qπ is continually being estimated

from the actions chosen from the behavioural policy, π, where the latter will in turn

be updated with the new estimate of qπ. The TD nature of SARSA also means that

the action values of the visited states are updated as soon as they have been visited

and awarded a reward. The action value update function for SARSA is defined as:

Q(St, At) ← Q(St, At) + α [Rt+1 + γQ (St+1, At+1) − Q(St, At)] (2.29)

In SARSA every transition to a non-terminal state, St̸=T , calls the update function

in Equation (2.29), from which the estimate of qπ for the behavioural policy, π, is

continuously refined. Effectively this means that whenever the agent finds itself in

St again, it would remember how good the previously selected action was in the long

run, and either selects or discards this action depending on its past performance. A

standard behavioural policy is greedy in Q(St, a), meaning that it will choose the

action with the highest estimated action value.
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Figure 2.28: A non-exhaustive taxonomy of RL algorithms [11].

The state-of-the-art in Reinforcement Learning

RL is a vast field of study which ranges from the development of its foundational theory,

the exploration of its practical applications, and the development of new techniques

that implement the algorithms themselves. Self-driving cars, surveillance drones and

machine tuning for optimal resources usage are just some of the usages of RL [67, 68,

69, 70]. This section looks at the development of RL algorithms throughout the years

and highlights difference between various algorithms.

Figure 2.28 shows a non-exhaustive taxonomy of the various branches of RL algo-

rithms (orange cells), along with several examples of RL algorithm (blue cells). RL

algorithms can be split into two categories where: a) those that explicitly use an in-

ternal world model are called Model-Based (MB) and; b) those that do not are called

Model-Free (MF). Model-based range from algorithms that have complete access to the
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world model, such as AlphaGo [71], to algorithms that approximate the world model

from previous experiences, such as Anchored Ensemble DYNA-style (AE-DYNA) [72].

Model-free algorithms consist of algorithms that: a) train a policy network to choose

the next action directly, e.g Proximal Policy Optimisation (PPO) [73]; b) train a sep-

arate q-network to predict the expected action-value of the current state-action pair

and act greedily on it, e.g. Deep Q-Network (DQN) [74] and; c) a combination of

both by using the actor-critic architecture, e.g. Deep Deterministic Policy Gradient

(DDPG) [75].

One common set of benchmark environments is provided by OpenAi’s Atari 2600

emulator which challenges RL algorithms to reach a maximum high score in all games

[76]. Discrete environments embody a strict set of rules, however the real world is made

up of continuously varying parameters. This prompts the shift to Deep Reinforcement

Learning (DRL) where instead of tabular methods, universal function approximators

are trained to predict the action which maximises the reward from the environment.

One example of a fully continuous environment is called Humanoid, where the aim is

to train an agent to control the joints of a humanoid structure learn complex tasks

such as walking, without external guidance [77].

Q-Learning

SARSA was introduced as an on-policy method using TD learning to train the policy.

An equally simple method which was developed in the early days of RL is called

Q-Learning [78]. Q-Learning is very similar to SARSA with the difference that the

current policy is not used to find the next best action but instead Q-Learning chooses

the action which will maximise the Q-value of the next state as much as possible.

It is for this reason that Q-Learning is called an off-policy method. The equivalent

action-value update function for Q-Learning as to the update function Equation (2.29)

for SARSA, is shown in Equation (2.30).

Q(St, At) ← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a) − Q(St, At)

]
(2.30)

Neural Fitted Q Iteration (NFQ)
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Q-learning has been shown to always converge making it a very reliable algorithm,

however, akin to SARSA, it is still considered as a tabular method. This means that

all the state-action pairs are saved in a table with their respective Q-value. In the case

that a state has never been visited during training, the agent does not know which

action to choose. Early attempts at solving this problem involved training an Artificial

Neural Network (ANN) to fit the Q-function and this is known as the Neural Fitted

Q Iteration (NFQ). The proposed algorithm by Riedmiller involved storing previous

state-action-next-state triplets encountered during training as a set of experiences,

which are known as the sample set [79]. This method involved updating the ANN

offline using the sample set with the aim of updating the ANN globally. In other

words, the ANN is not updated on every state transition. Instead, NFQ collects

experiences and trains the ANN offline in batches. This was done to better harness

the generalisation property of ANNs [79].

Deep Q-Network (DQN)

However as the number of actions increase, the required number of samples stored

in experience makes NFQ too sample inefficient and thus making it unfeasible to be

used with large ANNs. This limitation motivated the work of Mnih et al. with the

development of the DQN algorithm [74]. The main idea of DQN is to approximate

the Q-function using an Artificial Neural Network (ANN), given the agent’s previous

experiences within the environment. Given adequate training, the ANN is able to

approximate the Q-value of even unseen state-action pairs. Thus DQN introduces a

new level of generalisation in RL which is able to compress very large state-spaces

via a function approximator [74]. This also means that the Q-function, Q(s, a), now

becomes a parametric function, Q(s, a, θ), where θ is a parameter vector signifying

the weights of all the nodes in the ANN. It has been shown that the parametrised

Q-function allows for the agent to learn different policies for different environments

with the same ANN. For this reason, DQNs are considered an important milestone in

deep RL [10, 74].

Double Deep Q-Network (DDQN)

It has been shown that DQN has a tendency to have over-optimistic Q-values due
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to the use of the max operator as used in Equation (2.30). Using the same Q value

to both select the action and to valuate it will further bias DQN to over-optimism.

Optimism in this context is the proclivity of the agent to choose the actions which

have been shown to work in the past, and solely relying on them to find the optimal

policy. Van Hasselt et al. proposed an algorithm that split the maximum operation

in two. An online ANN which is used with a greedy policy to choose the next best

action, and another ANN to estimate the state-action values. From these two deep

ANNs arises the name Double Deep Q-Network (DDQN). It is also important to note

that experiences are assigned randomly to any one of the two networks [80].

Stochastic Policy Gradient (PG)

Another class of RL algorithms aims at parametrising the policy directly without

the need to parametrise the Q-function itself. In Stochastic Policy Gradient (PG)

methods the parametrised policy is used to choose the next best action given a state.

A performance measurement, J(θ), of the agent is used to achieve this. This family

of algorithms express the policy differently from other algorithms such as Q-learning,

where the policy, π(a|s), is expressed as π(a|s, θ) or πθ(a|s). An important analytic

result known as the policy gradient theorem is used extensively in PG methods. It

specifically addresses how the performance measurement of an agent can be improved,

if both the state and action distributions depends on the policy parameters, θ. The

policy gradient theorem establishes that the gradient of the performance measurement

does not depend on the gradient of the state distribution and that:

∇θJ(πθ) =

∫
S

ρπ(s)

∫
A

∇θπθ(a|s)Qπ(s, a) da ds

= Es∼ρπ ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)]

(2.31)

where ρπ(s) is the (on-policy) state distribution when following policy π. Following

this the update function of the policy parameter can be defined as a small change in

the direction of the gradient of the performance measure [81]:

θt+1 = θt + α∇θJ(πθt) (2.32)
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A common architecture in which PG methods are used is the actor-critic algorithm,

where the actor is responsible for tuning the policy parameter, θ, with respect to the

stochastic policy, πθ(s), as shown in Equation (2.32), whilst the critic estimates the

state-action value function by using proper policy evaluation techniques. The Q-

function estimate is expressed by the critic as Qw(s, a) where given enough samples it

would converge to the optimal Q-function under policy π [10]:

Qw(s, a) ≈ Qπ(s, a)

Normalised Advantage Functions (NAF)

Normalised Advantage Functions (NAF) was designed to work in the continuous action

domain and is considerably simpler than DDPG. The main idea is to represent the

Q-function in a way such that the argmax
a

Q(s, a) can be computed analytically and

quickly [82]. To better explain the NAF algorithm, the idea of an advantage function

has to be introduced:

V π = Eri≥t,si>t∼E,ai≥t∼π [Rt|st, at]

Aπ = Qπ(st, at)− V π(st)
(2.33)

From Equation (2.33) it can be seen that the advantage function measures the value

of an action, at, with respect to the average value that can be taken in a state st.

NAF, as introduced by Gu et al. is based on a neural network which can separately

output both the value and the advantage of a specific state-action pair. Gu at el.

parametrised the advantage function as a quadratic function of the nonlinearities of

the state as well as represented the Q-function as follows:

Q(s, a|θQ) = A(s, a|θA) + V (s|θV ) (2.34)

A(s, a|θA) = −1

2
(a− µ(s|θµ))TP (s|θP )(a− µ(s|θµ)) (2.35)

P (s|θP ) = L(s|θP )L(s|θP )T (2.36)

Equation (2.34) shows how to obtain the state-action value from the advantage and
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value of a specific state-action pair and comes from Equation (2.33). Equation (2.35)

is the parametrised version of the advantage function in Equation (2.33). Note that

P (s|θP ) in Equation (2.36) is a state-dependent, positive-definite square matrix and

L(s|θP ) is a lower triangular matrix constructed from the linear output layer of the

value network.

Another important milestone of NAF was the acceleration in the learning rate

through imagination rollouts, which generate synthetic experiences from an iteratively

refitted, time-varying linear model. This approach varies from a naive attempt at cre-

ating an off-line behavioural policy based purely on a learned model by mixing the

synthetic experience with real experience obtained from interaction with the environ-

ment. Tests by Gu et al. concluded that teaching an off-policy agent by only using a

learned model as a behavioural policy, will not be effective at training the agent since

only good action will be chosen by the behavioural policy. To learn an effective policy,

the agent has to be allowed to make mistakes and learn on its own the impact of each

action [82].

Trust Region Policy Optimisation (TRPO)

Unconstrained PG methods are known to suffer from policy collapse if the learning

rate is too high. This is due to the sensitivity of the policy output to seemingly

small changes in the network parameters. To solve this problem, Trust Region Policy

Optimisation (TRPO) was introduced, which sets a limit to how much a policy can

change after each update. Consider an update being done to a policy, and let the old

policy be denoted by πθ, and the new policy be denoted by πθ′ . Then let J denote the

objective function that is maximised by TRPO:

J(θ) = Es∼ρπθ ,a∼πθ

[
πθ′(a|s)
πθ(a|s)

Âθ(s, a)

]
(2.37)

s.t. Es∼ρπθ [DKL (πθ(·|s)||πθ′(·|s))] ≤ σ

where Âθ denotes the estimate of the advantage when in state s and choosing action

a. ρπθ denotes the state visitation frequency when using policy πθ. The condition of

Equation (2.37) measures the Kullback-Leibler divergence between the old and new
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policies and ensures that it is smaller than a threshold parameter σ [83].

Proximal Policy Optimisation (PPO)

TRPO is a notoriously complex algorithm to implement, however, the idea to limit the

maximum change to a policy is relatively simple to understand. PPO also maximises

Equation (2.37), however, the Kullback-Leibler constraint is not used. Instead, PPO

imposes constraints directly to the probability ratio, r(θ, θ′):

r(θ) ≜
πθ′(a|s)
πθ(a|s)

g(ϵ, A) ≜

(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0

J(θ) = Es∼ρπθ ,a∼πθ

[
min

(
r(θ)Âπθ(s, a), g

(
ϵ, Âπθ(s, a)

))]
(2.38)

where ϵ is a small hyperparameter and controls how much a policy can change after

each update. It has been shown that the performance of PPO is similar to that of

TRPO on a majority of benchmark environments [73, 84].

Deterministic Policy Gradient (DPG)

So far, only stochastic policies were considered, which have the form of πθ(a|s). For

every state, s, a stochastic policy outputs an action distribution. The next action, a,

is randomly selected from this distribution. θ, is the vector containing the network pa-

rameters that make up the policy. However, another approach, known as Deterministic

Policy Gradient (DPG), is to choose an action from a state in a deterministic manner,

where the conditional parametric distribution, π is replayed by a deterministic policy

described by:

a = µθ(s)

The deterministic policy gradient has an equivalent theorem to Equation (2.31):

∇θJ(πθ) =

∫
S

ρµ(s)∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s) ds

= Es∼ρµ
[
∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)

] (2.39)
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In the work of Silver et al. it has also been shown that if the stochastic policy gra-

dient is parameterised by a deterministic policy, µθ, and a variance parameter, σ, such

that the stochastic policy becomes πµθ,σ, then the latter approaches the deterministic

policy as the variance tends to zero [85]:

lim
σ→0
∇θJ(πµθ,σ) ≡ ∇θJ(µθ)

Deep Deterministic Policy Gradient (DDPG)

The problem of high-dimensional state-spaces was solved by DQN by fitting a deep

ANN to the Q-function to approximate the state-action value at any state. However,

this only works on discrete and relatively small action-spaces. Large action-spaces

become unfeasible to explore efficiently with a DQN. DDPG builds upon the deter-

ministic policy gradient in Equation (2.39) to create a model-free, off-policy actor-critic

algorithm. In DDPG, separate copies of the main actor and critic networks are created

and are called the target networks. Thus DDPG uses a total of four networks [86]:

• Q(s, a|θQ) is the main critic Q-network and is initialised randomly

• Q′(s, a|θQ′
) is the target Q-network and is initialised to Q(s, a|θQ)

• µ(s|θµ) is the main deterministic policy network of the actor and is initialised

randomly

• µ′(s|θµ′
) is the target deterministic policy network and is initialised to µ(s|θµ)

Subsequently the agent chooses actions on every step made in the environment and

stores these experiences in a replay buffer, R. Mini-batches of length N are sampled

from R and are used to train the critic Q-network and the policy network. The Q-

network of the critic is optimised by minimising the loss L(θQ):

L(θQ) = Est∼ρβ ,at∼β,rt∼E

[(
Q(st, at|θQ)− yt

)2]
(2.40)

where β is a separate stochastic behaviour policy used to learn Qµ and yt is called

the target. Lillicrap et al. reported that directly applying Q-learning using ANNs was
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unstable in many environments. However, by using the target critic and actor networks

to estimate yt, the learning is stabilised. The target yt for DDPG is formulated by:

yt = rt + γQ′
(
st+1, µ

′(st+1|θµ
′
)|θQ′

)
(2.41)

The better learning stability, albeit at a slower rate, is due to the Polyak averaging

of the main and target network parameters. Equation (2.42) describes the target

networks parameter update rule, where τ is usually a small value, e.g. 0.005.

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

 τ ≪ 1 (2.42)

Twin-delayed Deep Deterministic Policy Gradient (TD3)

While it is possible to successfully train DDPG on many environments, it is often very

sensitive to hyperparameter tuning. One common problem with DDPG is shared by

DQN, where the predictions of the Q-values are over-optimistic. Similar to the solu-

tion introduced by DDQN, Twin-delayed Deep Deterministic Policy Gradient (TD3)

implements two Q networks and chooses the smaller between them as the estimate for

the state-action value. The second improvement that TD3 introduced was the delayed

target policy update, which was reported to increase training stability. The final im-

provement was the addition of clipped smoothing noise added to all target actions,

which was reported to help the agent assign higher values to actions which are robust

to noise [87].

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) was the first RL algorithm to combine a stochastic policy with

a DDPG-style actor-critic agent. This was done by introducing the idea of entropy

maximisation. Entropy, in information theory stands for the measure of randomness

present in a variable. The following equation shows how the entropy for a random

variable, x, drawn from probability distribution, P , is calculated:

H(P ) = Ex∼P [−logP (x)] (2.43)
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Since the policy is stochastic, Equation (2.43) can be used on the action distribution of

the policy for any given state. SAC changes the objective of standard RL algorithms

to include a maximisation of entropy. Therefore:

J(π) =
T∑
t=0

E(st,at)∼ρpi [r(st, at) + αH (π(·|st))] (2.44)

where α is called the temperature parameter which controls the relative importance of

entropy with respect to the reward. This augmented objective incentivises the policy

to explore regions of the state-action space which were not visited and also helps the

policy to stop exploring unpromising paths. Similar to TD3, SAC also uses two Q

networks to reduce over-estimation [88].

2.6.5 Use of ML in particle accelerators

There has been an interest in the application of ML in particle accelerators in re-

cent years and some of the key points of interest are highlighted in [89]. Here several

ML-based techniques were discussed and their potential to provide a significant im-

provement over the current systems in a particle accelerator was analysed.

The sheer size of a particle accelerator such as the LHC synchroton, requires a

high level of precision from all of the thousands of components which are needed for

its correct operation. This inevitably demands highly complex and data-intensive

operations which might be sensitive to even the smallest failure in any component

making the particle accelerator work. To solve these issues, ML has previously been

used to detect anomalies in critical components as they occur, in turn strengthening

the LHC machine protection systems.

One such example is the anomaly detection for the beam loss maps, which are used

to validate the LHC collimator settings for beam cleaning and machine protection. In

this work Beam Loss Monitors (BLMs) from IR7 were used as features for anomaly

detection. Principal Component Analysis (PCA) can orthogonally transform a set of

potentially correlated variables into a smaller set of uncorrelated variables. This was

used to reduce the feature dimensionality of all the BLMs onto a two dimensional plane
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Figure 2.29: Beam 1 vertical loss maps at 450GeV for nominal collimator settings
(left) and a 200µm displacement in one vertical collimator (right) [12].

corresponding to the two largest principal components of the BLM signals. Thus, any

small change in the beam loss maps would result in a shift of the point on the principal

component plot. Adding the fact that after each set of measurements, the loss maps

are not expected to change a lot due to the same optics being used, loss maps done

at different times would result in a cluster in the principal component plot. Any loss

map which contains erroneous measurements would thus manifest itself as an outlier in

the principal component plot. Finally these outliers were detected using Local Outlier

Factor (LOF), which is an Unsupervised Learning (UL) algorithm and which works

based on the idea of measuring the density of the local region around a point, and

declaring it an outlier if its local region has a lower density than its neighbouring

points [90]. Figure 2.29 illustrates the small change (at position of green markers) in

the measured loss map as detected by this anomaly detection scheme and corresponds

to a 200µm shift in one vertical collimator [12].

The use of RL in particle accelerators has also been quite recently explored and

successfully implemented on relatively small environments. In particular, Kain et al.

used NAF with Prioritised Experience Replay (PER) to control the electron beam

position in AWAKE [91]. PER is a replay buffer sampling strategy used in off-policy

RL algorithms, which revisits trajectories with a high Temporal Difference error (TD-

error). This error measures the difference between the estimated and the actual returns

when following a policy, π.

Another work by Hirländer et al. saw the development of two RL algorithms

called NAF2 and AE-DYNA, which were subsequently used to maximise the intensity
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of a seeded Free-Electron Laser (FEL). NAF2 is the NAF algorithm with some of the

improvements introduced by TD3: double Q-learning and smoothing target action

noise. AE-DYNA is a model-based RL algorithm, which trains a model that captures

both the aleatoric and epistemic noise of the environment. This uncertainty-aware

model is subsequently used train a model-free RL algorithm, which performs well in

the real world [72].

2.7 Summary

This chapter provides the necessary background for all the work presented in this

thesis. The first topic to be considered in Section 2.1 introduces the physics of the

systems within the Large Hadron Collider (LHC) which are related to the Beam-Based

Feedback System (BBFS). Sections 2.2 and 2.3 introduce the hardware which serve

as output and input of the BBFS, respectively. Section 2.4 goes through the software

architecture of the BBFS as it existed by the end of the LHC Run 2. Section 2.5

introduces the basics of Hardware Acceleration (HA) to serve as a possible solution to

the computational bottleneck within the BBFS. Finally, Section 2.6 goes through the

different Machine Learning (ML) tools employed in this work in a bottom-up approach.

All these topics are then linked together in the proceeding chapters to explain a certain

aspect of the results obtained in this work.

In particular, Chapter 3 delves into the development of new tune estimation sys-

tems in the presence of the 50Hz harmonics introduced in Section 2.3.2. The develop-

ment of the data-driven solution in this chapter is built upon the literature introduced

in Sections 2.6.1 to 2.6.3.

The information about the LHC magnets provided in Section 2.2 becomes more

relevant in the feasibility study done in Chapter 4. The work in this chapter aims to

develop a control system using a Reinforcement Learning (RL) agent, which would

ultimately interact with the beam via the corrector magnets. Section 2.6.4 serves

to understand the differences among the various types of RL agents attempted in

Chapter 4.
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The last chapter in this thesis, Chapter 5, draws upon the design of the BBFS as

introduced in Section 2.4, to explain the work done during the code renovations. The

feasibility study on the application of HA is a direct continuation of the background

research provided by Section 2.5.
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Chapter 3

Development of new tune

estimation systems

This chapter starts with a recapitulation of the BQ algorithm in Section 3.1, which

provided tune estimates from Base-Band Q (tune) (BBQ) spectra until Long Shutdown

2 (LS2). Section 2.3.2 looked at some of the effects of 50Hz noise harmonics on the BQ

tune estimates. During the LHC LS2, it was decided to look into potential solutions

to more reliably estimate the tune from a harmonically noisy spectrum.

Early on during the development of new tune estimation algorithms, the need

for ground truth values of the tune within a spectrum became apparent. Ground

truth values were not available since the logged tune estimates from real operation

were labelled by BQ tune estimates. To compare the performance of BQ and any

alternative tune estimation algorithm, Section 3.2 introduces a method to simulate

spectra with known tune values and artificially injected 50Hz harmonics.

In Section 3.3, a series of algorithms were developed, which explicitly removed

the harmonics from a spectrum, and estimated the tune from a spectrum with gaps.

Throughout this work, the new algorithms are collectively called the Alternative ap-

proach and in total, three different algorithms were proposed. At the end of this

section, a Monte Carlo simulation is performed to compare the two best approaches.

Following this work, the first attempts at solving the tune estimation problem

with ML tools are called the Simple Approach, where the tune estimation task was
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delegated to an Artificial Neural Network (ANN). Due to the lack of ground-truth tune

estimates in the real BBQ data, the training data in the simple approach was simulated

using the method in Section 3.2. Different network architectures were attempted and

their performances were analysed and compared. It was found that over-fitting to

the simulated spectra might have caused a sub-standard performance in the simple

approach.

As a potential solution, it was proposed to use a variant of Generative Adversarial

Network (GAN) called SimGAN. A 1D version of SimGAN was used to refine the

simulated spectra to make them look more realistic, whilst still retaining the spectrum

information from the simulator, i.e. ground-truth tune value. It was found that many

SimGANs, with slightly different loss functions were required to create a varied training

dataset for a tune estimation network. To create a refined dataset, a simulated dataset

is created first, then a trained SimGAN is randomly chosen from disk, and finally

the simulated batch is fed to the SimGAN. By repeating this process, an arbitrarily

large training dataset could be created. The best model architecture from the simple

approach was then trained with the improved dataset.

The performance of the salient algorithms and models attempted in this work was

compared on unseen BBQ spectra. The impact on the Tune Feedback (QFB) following

these enhancements is also discussed at the end of this chapter.

3.1 A review of the BQ algorithm

Throughout the years in operation, the design of the BQ algorithm has evolved through

a series of upgrades guided by the LHC operators. BQ worked with a sequence of

exponential moving averages, median filters, average filters and Gaussian fits in order

to estimate the position of the dominant peak within a spectrum. By LS2, BQ had

become a complex algorithm, however, its performance was still heavily affected by

the noise harmonics.

Section 2.3.2 discussed the decrease in performance of BQ, in the presence of 50 Hz

noise harmonics. This was due to the nature of the tune estimation algorithm, which
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allowed a tune estimate to be made from a spectrum with harmonic spikes. The prob-

ability that the maximum of the spectrum occurs at a harmonic spike is proportional

to largest harmonic amplitude. This was observed by the LHC operators where in the

presence of strong noise harmonics, the stability of the estimate degrades significantly.

In the presence of erroneous estimates, the use of the Proportional-Integral (PI) con-

troller within QFB created numerical problems, which at times crashed the BBFS. In

the end, the QFB was fitted with its own stability metric to discern whether the tune

estimates fed into it were stable enough to be used for control.

A lot stands to be gained from a more robust tune estimation algorithm. In line

with the goal of this work, which is to improve the beam-based feedback systems,

a more stable tune estimate would directly affect the performance of the QFB. This

would also allow the operators to have more control on the tune and consequently gain

more control on the beam. A reduction in the risk of beam instabilities also improves

the long-term performance of the LHC.

3.2 Simulations

The performance of the alternative algorithms developed in Section 3.3 could not be

reliably measured and compared to the BQ algorithm. This also meant that if there

were any improvements detected through simulated spectra, they could not be justified

on real data.

As shown in Equation (2.1), the transverse beam dynamics can be expressed by a

Hill’s type equation. Due to Floquet’s Theorem, the homogeneous solutions to these

differential equations can be expressed by Equation (2.2). This manifests as transverse

oscillations in the beam called betatron oscillations. It was found that this motion

can be modelled by a damped second-order system with added Gaussian noise. The

frequency response of a damped second-order system with a resonant frequency, ωres,

and a damping factor, ζ, is given by:

G(ω) =
ω2
res√

(2ωωresζ)2 + (ω2
res − ω2)2

+N (0, σ), (3.1)
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Damping causes the true resonant frequency of the system to be different from,

ωres. The true system frequency, ωtrue
res , is calculated by:

ωtrue
res =

√
1− 2ζ2ωres. (3.2)

Therefore the peak in the simulated spectrum occurs at ωtrue
res and can be considered

equivalent to the value of the tune in a BBQ spectrum. By using this simulation, any

tune estimate can be compared to the actual resonance in a spectrum. Thus a reliable

metric for the accuracy of the tune estimates could now be obtained. Equation (3.1)

simulates the shape of the baseline by using ωres and ζ, as well as adds Gaussian noise,

N (0, σ). Simulated spectra are shown superimposed on two examples of BBQ spectra

where: Figure 3.1 shows the baseline simulated spectrum and Figure 3.2 shows the

baseline with added Gaussian noise.

Some of the new tune estimation approaches developed in this chapter require

a fixed length input, e.g. ANNs. Since the LHC operators use different frequency

windows during a fill, it was decided to pre-define the size of all simulated spectra

to be 100 frequency bins long. This value was chosen to be slightly larger than the

frequency windows chosen during real machine operation using the BQ algorithm. The

average operational frequency window obtained from a sample of parameters used in

the BBQ system for the beam during FLATTOP is around 80 frequency bins long. It

was empirically observed however that sometimes the dominant peak lay close to the

edges of the chosen window, which subsequently limited the performance of the BQ

algorithm. Figure 3.4 compares the new window length to that used in operation in

LHC Run 2. It can be observed that the BQ tune estimates around the 15s were close

to edge of the operational window (grey). This example shows that the bounds set on

the inputs to all tune estimation approaches developed in this chapter are realistic.

It is important to note that the absolute y-values of the spectrum are not impor-

tant for tune estimation. Therefore, each spectrum created with Equation (3.2) was

normalised to the range [0, 1]. To recreate the 50 Hz harmonics, it was decided to ran-

domly choose a normalised amplitude per harmonic from U(0.5, 2), and after adding
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Simulated spectrum

Figure 3.1: BBQ spectrum (blue) from: Beam 1, Plane V, Beam Mode INJPHYS,
Fill 6847. Simulated spectrum (orange): Second-order system baseline spectrum.
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Simulated spectrum

Figure 3.2: BBQ spectrum (blue) from: Beam 2, Plane V, Beam Mode ADJUST,
Fill 6874. Simulated spectrum (orange): Baseline spectrum with added Gaussian
noise.
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Simulated spectrum

Figure 3.3: BBQ spectrum (blue) from: Beam 2, Plane V, Beam Mode FLATTOP,
Fill 6881. Simulated spectrum (orange): Noisy baseline spectrum with injected
50Hz noise harmonics.
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Figure 3.4: An example of the operational frequency windowing used by the BQ
algorithm during the LHC Run 2 to the new window length used in this work. The
tunes were obtained from LHC fill 6890, horizontal plane of beam 1 in the FLATTOP
beam mode. During FLATTOP the optics are changed and thus the tune shifts to a
new frequency.

the harmonics to the simulated spectrum. Moreover, a simple linear digital filter of

size 3 was passed forward and backward to the spectrum in order to give width to the

harmonics. The spectrum was then normalised again, and ωtrue
res was found in terms of

the normalised frequency range with respect to frequency window limits. Figure 3.3

shows another example of a BBQ spectrum with a superimposed simulated spectrum,

created with the approximate ωtrue
res and ζ required to mimic the shape of the tune peak.

Note that all simulated spectra shown in Figures 3.1 to 3.3 were scaled appropriately

to match with the BBQ spectra for these examples.

Ultimately, all the tests comparing the performance of alternative algorithms in

Section 3.3 and the creation of large datasets of simulated spectra in Section 3.4,

use a Monte Carlo (MC) simulation of the second-order system spectrum to create

spectra with different shapes and peak positions relative to the frequency window. To

avoid the creation of spectra with the tune peak at the edge of the frequency window,

all normalised resonant frequencies were sampled from U(0.1, 0.9) and the damping

factor, ζ ∼ 10U(−2.5,−1.8).
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3.3 An alternative approach

During LS2 it was decided to attempt to mitigate the impact of the 50 Hz harmonics

on the tune estimates by upgrading the software side of the tune estimation to be

more robust to harmonic noise. An observation was made that the noise harmonics

are relatively stable when viewed from the point of view of the spectral resolution of

BBQ spectra at 5.5 Hz (Equation (2.10)). Figure 3.6 shows an example of the evolution

of the 50 Hz harmonics (red), superimposed on a heat-map made up of spectra from

Fill 6890, beam 1, horizontal, during beam modes PRERAMP to SQUEEZE. The red

traces correspond to mean, µ, and standard deviation, σ, of the peak frequencies of

each respective harmonic frequency. It can be observed that the position of the tune

peak in the spectra changes around 05/07/18 13:17:00, however, the 50 Hz harmonic

frequencies remain relatively stable.

Following this observation it made sense to assume that the general position of

all the possible harmonics within the frequency spectrum could be precalculated and

removed from every spectrum. The number of points that would have to be removed

was sufficiently low as to still retain the shape of the spectrum [8].

Figure 3.5 shows an example of a BBQ spectrum. The red bands show the regions

of the frequency axis which are ignored during the tune estimation. The spectrum

with gaps (orange) was used by all the alternative algorithms attempted in this work.

The following sections will explore three different algorithmic approaches to improving

the BBQ tune estimates.
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Figure 3.6: Traces of individual harmonics within a frequency window. Every column in the heat-map is a normalised BBQ
spectrum obtained from a fill in Run 2.
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Figure 3.5: An example of a spectrum from Fill 6890, beam 1, horizontal, in beam
mode FLATTOP (blue). The red vertical bands correspond to the frequencies which
are dropped from the spectrum. The resulting spectrum contains gaps (orange scatter).

3.3.1 Polynomial Fit

In the first attempt, polynomial fits were used on the spectra with gaps. The fits used

a finer frequency axis, which could capture the tune estimate with a higher resolution.

The initial idea was to capture the tune peak by fitting a quadratic curve, and if it

converges well, its maximum should coincide with the tune value. Therefore, the tune

estimate can be found with respect to the parameters of the quadratic fit, Fpoly:

Fpoly(ω) = aω2 + bω + c

d(Fpoly(ω)

dω
= 2aω + b

At maximum:
d(Fpoly(ω)

dω
= 0

fmax =
−b
4πa

(3.3)

While this approach seemed to work on spectra with a symmetrical and centered
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tune peak, it suffered over spectra with an asymmetrical tune peak. A quadratic fit

over an asymmetrical peak would not necessarily have its maximum coincide with

the value of the tune. Another limitation of quadratic fits is that the spectrum has

to be clipped so that only the tune peak is present. To decide where to clip the

frequency spectrum, various smoothing techniques have to be applied prior to fitting

the quadratic curve, to ensure that Equation (3.3) is equivalent to the tune value.

By using higher-order (> 10th order) polynomials the tune peak asymmetries can

be modelled better. However, it was observed that higher-order polynomial fits were

susceptible to bad fitting at the edges of the spectrum window. This causes certain

spectra to obtain polynomial fits whose edges are higher than the tune peak. This

makes it difficult to retrieve the value of the tune from the fit and would need to

introduce yet more logic in the algorithm. Due to these problems, this approach is

not considered as a viable candidate to replace BQ.

3.3.2 Weighted Moving Average (WMA)

The second attempt implemented a Weighted Moving Average (WMA), which slides

a window of length 2L+1 over the spectra to produce a smoothed fit of the spectrum

with gaps. As an example, consider a window centered around frequency bin i in the

spectrum, then the smoothed value for point i, ŷ, can be obtained by:

ŷi(L) =

L∑
j=−L

w(j, L)× yi+j

L∑
j=−L

w(j, L)

(3.4)

where y is the spectrum with gaps. The weights, w, are proportional to the distance

of the bin from the center frequency bin of the window :

w(k, L) =

L− |k| , if ∃ yi+j

0 , if ∄ yi+j

(3.5)
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where the second case occurs at the edges of the spectrum and in the 50Hz gaps.

Therefore, the length of the window must be larger than the number of contiguous

frequency bins removed for each 50Hz noise harmonic. This is to ensure a non-zero

denominator in the smoothing operation of Equation (3.4).

Figure 3.7 shows three examples of BBQ spectra (dashed black) with three re-

constructed spectra each, obtained from Equation (3.4) with L set to 5, 10 and 20,

respectively. It can be seen that the majority of the frequency bins contained within

a harmonic spike have been successfully removed. The reconstruction of the spectrum

with gaps is smoother as L increases, however,there is a probability that this also

affects the position of the tune peak.

3.3.3 Gaussian Process (GP)

The third and final approach uses a type of Bayesian modelling called Gaussian Pro-

cesss (GPs), to fit over the spectra with gaps. GPs can be thought of as functions of

functions, where given a set of noisy data over domain X1, a multi-variate Gaussian

distribution is created to sample over another domain, X2. The advantage is that

X2 can have a higher resolution than X1 which makes it possible to easily interpolate

over a spectrum with gaps and produce a finer and smoother fit. The multi-variate

Gaussian distribution obtained is written as:

f(X) ∼ N (µ = m(X),Σ = k(X,X)) (3.6)

m(X) in Equation (3.6) obtains the means of f(X) whilst k(X,X) is the ker-

nel function, which calculates the covariance matrices. Given some observed data,

(X1, Y1), a covariance matrix, Σ, is obtained from the kernel. One such kernel is

the exponentiated quadratic kernel, or the Radial Basis Function kernel. This uses

the squared Euclidean distance between points xa and xb as a measure of correlation

between the points:

k(xa, xb) = e−
1

2σ2 ∥xa−xb∥2 (3.7)
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Figure 3.7: Performance of WMA with different window lengths on three samples of
real BBQ spectra.
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In Equation (3.7), σ is a free parameter which controls the smoothness of the

resultant sampled functions from f(X). Using this formalism, a multi-variate Gaussian

can be formed, which given the observed data (X1, Y1), can predict Y2 over a new input

dataset, X2:

P (y2 | y1, X1, X2) ∼ N (µ2|1,Σ2|1) (3.8)

where:

Σab ≜ k(Xa, Xb)

µ2|1 =
(
Σ−1

11 Σ12

)⊤
y1 (3.9)

Σ2|1 = Σ22 −
(
Σ−1

11 Σ12

)⊤
Σ12 (3.10)

One advantage of GPs is that the reconstructed fit can be computed over an X2

with more frequency bins. Therefore, in theory, the location of the tune peak can be

found with a higher accuracy. On the other hand, the main disadvantage of GPs is

their computational complexity, where Σ11 is a 100×100 matrix and is constructed for

every GP fit calculation. In both Equation (3.9) and Equation (3.10), the inverse of Σ11

needs to be calculated, which involves relatively expensive computations. However,

when considering the processing power that will be available to the BBQ system in

LHC Run 3, the high computational cost can be handled deterministically.

Figure 3.8 shows three examples of BBQ spectra (dashed black) with three recon-

structed spectra each, obtained from Equation (3.9), while using an RBF kernel with

a length scale of 25, 70 and 130, respectively. It can be seen that the majority of the

frequency bins contained within a harmonic spike have been successfully removed and

the reconstruction of the spectrum with gaps is smoother as the length scale increases.

However, this also slightly affects the position of the tune peak, similarly to WMA.
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Figure 3.8: Performance of GPs with different RBF kernel length scales on three
samples of real BBQ spectra.
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3.3.4 Measuring performance

A Monte Carlo simulation was performed, where 10000 spectra were simulated using

the distribution of parameters listed in Section 3.2. GPs and the WMA were used

to obtain tune estimates while using different hyperparameters. In particular, the

approach using a GP used an RBF kernel with a length scale of 25, 70 and 130,

respectively. The approach using using a WMA uses window lengths of 5, 10 and 20,

respectively.

Algorithm µ[Hz] σ[Hz] Max. abs. error [Hz]

BQ 2.68 15.45 65.73

GP25 0.11 4.49 27.09

GP70 0.16 4.98 33.58

GP130 0.36 10.77 55.09

WMA5 0.07 5.93 42.49

WMA10 0.06 7.21 34.28

WMA20 0.16 13.92 61.01

Table 3.1: Error statistics from 10000 simulated spectra for alternative approach al-
gorithms (GP and WMA).

The error obtained between each respective tune estimate, and the resonance fre-

quency used to create the spectrum, was used to compare the performance of the

alternative approaches. As a reference, the BQ algorithm was also tested on the sim-

ulated spectra. Table 3.1 tabulates the average, µ, standard deviation, σ, and the

maximum absolute error, in Hertz. Figure 3.9 shows the distributions of the errors

from each respective algorithm configuration attempted. The results show that BQ was

outperformed by all the alternative approaches. In particular, WMA5 and WMA10

obtained the best accuracy while GP25 and GP70 obtained the best precision. The

smallest maximum absolute error was obtained by GP25 which suggests that it is the

most stable tune estimation algorithm from those attempted. It can also be observed,

that the performance of GPs degrades at a slower rate than WMA with respect to the

scale of their hyperparameters. This suggests that GP is easier to tune than WMA.
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Regardless, the good performance of WMA5 and WMA10, and the simplicity of the

WMA algorithm, make WMA the most ideal candidate for replacing BQ within the

BBQ system.

3.4 A Machine Learning approach

The alternative approaches presented in Section 3.3 provide a possible upgrade which

incorporates the observation that the 50 Hz harmonics are relatively stable when

compared to the resolution of the spectrum. Despite the removal of points from the

spectrum and interpolation by using WMA or GP, it is observed in Section 3.5 that

tune estimates over real BBQ spectra still suffered sever inaccuracies.

It is not possible to quantitatively measure the accuracy of the alternative algo-

rithms over real spectra since ground-truth tune values do not exist. Due to this

limitation, when the tune estimates are suspected to be inaccurate, operators directly

look at the real spectrum and try to estimate the tune empirically.

Machine Learning (ML) provides a set of tools which can be used to build, train

and validate a model, over some set of training data. The type of model chosen in

this work was an Artificial Neural Network (ANN), which can be trained to predict

the tune estimate directly from an EMA spectrum.

3.4.1 Simple approach

Section 2.6 introduced and discussed Supervised Learning (SL) where provided a set of

correctly labelled data, a model can be trained to predict a label for any data coming

from the same distribution as the training data. SL can be used to directly predict the

value of the tune for any real BBQ spectrum passed as input to the network. First, a

sensible network architecture has to be chosen, and then trained using BBQ spectra

and the most reliable tune estimate found using either BQ, WMA or GP. Through

this approach however, the tune estimation ANN model can never give predictions

that are better than the labels used during training.

As a solution to this problem, a dataset of second-order spectra was simulated as
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Table 3.2: Number of nodes per hidden layer used for ANN tune estimation models.

Layer 1 Layer 2 Layer 3 #1

Model #0 150 50 10 23,221
Model #1 300 100 20 62,441
Model #2 500 250 50 188,351

1Number of trainable parameters

shown in Section 3.2 and the resonant frequencies of the simulated spectra were used

as labels. A subset of the dataset was used as training data for the ML tune estimation

models and another subset was used for validation.

Fully-connected layers

The first tune estimation model attempted used a fully-connected layer neural network

design. Three ANN models were attempted and their respective parameters are tabu-

lated in Table 3.2. These models all contained three hidden layers, the same activation

function per hidden layer, but different number of nodes. For the models shown in

Table 3.2, Rectified Linear Unit (ReLU) was used for all hidden layers. The last layer

contained only one node, densely connected to the penultimate layer. Its activation

function was linear.

Figure 3.10 shows the distribution of the errors between the tune estimates obtained

by each respective ANN model and the resonant frequencies used by the simulator to

create the respective input spectrum. It can be observed that Model #1 and Model

#2 have the best performance, in terms of accuracy and precision. It can also be

seen despite Model #2 having much more parameters than Model #1, the latter still

exhibits a similar performance. By comparing Figure 3.9 and Figure 3.10, it can be

seen that the error density plot of the three ML models drops to zero below −20Hz

and above 20Hz, which is already better than the results obtained by the alternative

approaches in Figure 3.9.
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Figure 3.10: Histograms showing the distribution of errors of the tune estimates from
the resonance used to simulate the data. Tune estimates obtained using the fully-
connected networks; Model #0 to Model #2.
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Figure 3.11: Network using convolutional layers

Table 3.3: Model architectures presented for CNNs

Layer 1 Layer 2 Layer 3
f1 k2 s3 f k s f k s

Dense Parameters

Model #3 32 3 3 16 3 3 8 3 3 20 2,753
Model #4 32 3 1 16 3 1 8 3 1 20 18,113
Model #5 64 3 3 32 3 1 16 3 1 20 18,905
Model #6 128 3 3 64 3 3 16 3 3 20 29,561
Model #7 64 3 1 32 3 1 16 3 1 20 40,025

1Number of filters 2Kernel size of convolution 3 Stride, shift size of kernel

Convolutional layers

The next type of neural network design attempted was a Convolutional Neural Network

(CNN) where its basic architecture is shown in Figure 3.11. Five CNN models were

attempted and their respective parameters are tabulated in Table 3.3. These models

all contained three convolutional layers, ReLU activation function in the hidden layers,

and one dense layer connected to the flattened feature maps of the last hidden layer,

and with one output node having a linear activation. The convolutional layers that

were used are adapted to one dimensional data, where a kernel operates on adjacent

frequency bins.

Figure 3.12 shows the distribution of the errors between the tune estimates obtained

by CNN models and the resonant frequencies used by the simulator to create the

respective input spectrum. The best CNN model was ML Model #5, and it can

be seen that its error drops to zero below −30Hz and above 20Hz. This makes its
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Figure 3.12: Histograms showing the distribution of errors of the tune estimates from
the resonance used to simulate the data. Tune estimates obtained using the convolu-
tional networks; Model #3 to Model #7.
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performance slightly worse the average performance of the ANN models in Figure 3.10.

3.4.2 Improving the dataset with SimGANs

It was observed that regardless of the model architecture used, the performance of

the model trained on simulated spectra was sub-optimal in estimating the tune from

a real spectrum (Section 3.5 illustrates the sub-optimal tune estimates obtained by

ML Model #1 (ML#1) and ML Model #5 (ML#5) when using BBQ spectra instead

of simulated spectra). There was a possibility that the models trained so far were

over-fit to some features only present in simulated spectra, which would explain the

sub-optimal performance on real data. Following this hypothesis, another source of

realistic training data was needed to train another model which is more robust on

unlabelled real data.

Figure 3.13: Overview of the SimGAN architecture.

Figure 3.13 illustrates the architecture of the SimGAN used in this work. Two no-

table differences which distinguish SimGANs from GANs are: The input of the refiner

is now coming from a simulator; the addition of a regularisation loss to the refiner loss,

which restricts the output of the network to remain similar to the input. The discrim-

inator is continuously trained to distinguish between refined and real spectra. This

ultimately helps the refiner to create more realistic spectra in an adversarial manner.

SimGANs were originally developed to work with images via 2D convolutional net-

works. Since the aim is to refine simulated spectra to look more like spectra obtained

from the BBQ system, all the networks in Figure 3.13 use 1D convolutional networks.
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The theory presented below remains valid since the same losses are minimised, regard-

less of the input shape and the network type.

The goal is to use a set of unlabelled real data, yi ∈ Y , to learn a refiner network,

Rθ(x) that refines simulated data x, with θ as the function parameters. Therefore we

can define refined data, x̃ as:

x̃ := Rθ(x)

The key requirement is that x̃ should look similar in appearance to the real data in

the set Y , while still preserving the annotation information from the simulator. The

training procedure of θ involves the minimisation of a combination of two losses:

LR(θ) =
∑
i

ℓreal(θ;xi,Y) + λℓreg(θ;xi) (3.11)

where xi is the ith simulated spectrum. ℓreal adds realism and ℓreg regulates the

preservation of the annotation information of the input. ℓreg is scaled by a scalar

λ > 0, which balances the effect of regularisation over realism. Since a refiner makes

it difficult to classify spectra as real or refined, an adversarial discriminator Dϕ is

trained to classify spectra as real or refined. Thus the output of the discriminator can

be considered as the probability that the input spectrum is real on a scale [0, 1]. The

discriminator updates ϕ by minimising the following cross-entropy loss:

LD(ϕ) = −
∑
i

log(Dϕ(x̃i)) −
∑
j

log(1−Dϕ(yj)) (3.12)

Also note that ℓreal can be formed by using Dϕ to update θ:

ℓreal(θ;xi,Y) = −log (1−Dϕ (Rθ(xi))) (3.13)

By minimising Equation (3.13), θ is updated in the direction that makesDϕ classify

refined spectra as real, thus improving the performance of the refiner by using the

discriminator as a metric. Apart from this, ℓreg is introduced as a self-regularisation

measure to preserve the annotation information of the input:
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ℓreg = ||ψ(x̃− x)||1

where ψ(·) modifies how the regularisation loss is obtained. For example ψ could

be an identity matrix which maps the input to itself. In this work, ψ was configured

to satisfy an empirical observation that the 50 Hz noise harmonics in real spectra are

always additive artefacts and never manifest as dips. Due to this observation ψ(·)

was designed as shown in Equation (3.14) so that any artefacts introduced below the

baseline have a higher cost on the model for η > 1.

e ≜ x̃− x

ℓreg =
∑
i

max(0, ei) + η
∑
i

max(0, −ei) (3.14)

3.4.3 Training

The second-order spectrum simulator that was used to create the spectra to train the

models in the Simple Approach was modified to not inject the 50Hz noise harmonics.

Instead the simulator would now only create a spectrum from Equation (3.1) and add

Gaussian noise. Note that the effect of noise on the input is twofold: 1) It helps the

refiner to generalise the refinement process, as in any update process utilising backward

propagation [92]; 2) It is the only source of randomness which the refiner can use to

generate somewhat different artefacts in its output.

The real dataset, Y , used in Equation (3.12) was obtained from the BBQ data

logged during Fill 6890, Beam 1, horizontal plane, during FLATTOP. Since the input

size of all networks considered in this work was 100, each real spectrum was truncated

by a frequency window having a randomised position, while guaranteeing that the

dominant peak of the spectrum lies within said window. This was done to ensure that

the discriminator does not over-fit to the dominant peak always occurring at the same

relative location with respect to the frequency window. This ensures stabler and more

generalised training of all the constituent components of SimGAN.

The network architectures used for both the refiner and discriminator are a 1D
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version of the networks used in [66]. All convolutional layers used were 1D and unless

otherwise specified, all stride lengths were 1. The refiner was a Residual Network

(ResNet) with an input size of 100 which was fed to a first convolutional layer having

64 filters and a kernel size of 3. The output of this layer was fed to 4 ResNet blocks

connected in sequence. Each block consisted of two convolutional layers having 64

filters each with a kernel size of 3 and a connection merging the input of the block

with the output of the block’s second convolutional layer. The output of the last

ResNet block was then fed to a final convolutional layer with 1 filter having a kernel

size of 1, producing an output of size 100. All hidden layers of the refiner used

the ReLU activation function and the output was linear. The discriminator was a

1D convolutional neural network with an input layer size of 100 which was fed to a

convolutional layer having 96 filters with a kernel size of 3 and a stride length of 2,

followed by another convolutional layer having 64 filters with a kernel size of 3 and a

stride length of 2. Following the second hidden layer, Max pooling was applied with

a pool size of 3. The output of the pooling was fed to a convolutional layer having

32 filters, kernel size of 3 and a stride length of 3 followed by two convolutional layers

having 16 and 2 filters respectively and a kernel size of 1. All hidden layers of the

discriminator used the ReLU activation function and the last layer had an output

size of 2 with the softmax activation function. The two outputs of the discriminator

correspond to the probabilities that the input spectrum is real or refined, respectively.

All layer weights were initialised using the Glorot normal initialiser. Tables 3.4 and 3.5

summarise the network architectures used for SimGAN.
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Table 3.4: SimGAN Refiner network architecture

Refiner Network Architecture

Layer type
Number Kernel Stride Activation
filters size length type

Conv1D 64 3 1 ReLU

ResNet block
Conv1D 64 3 1 ReLU
Conv1D 64 3 1 ReLU

ResNet block
Conv1D 64 3 1 ReLU
Conv1D 64 3 1 ReLU

ResNet block
Conv1D 64 3 1 ReLU
Conv1D 64 3 1 ReLU

ResNet block
Conv1D 64 3 1 ReLU
Conv1D 64 3 1 ReLU

Conv1D 1 1 1 Linear

Table 3.5: SimGAN Discriminator network architecture

Discriminator Network Architecture

Layer type
Number Kernel Stride Activation

filters size length type

Conv1D 96 3 2 ReLU

Conv1D 64 3 2 ReLU

MaxPool Pool size = 3

Conv1D 32 3 3 ReLU

Conv1D 16 1 1 ReLU

Conv1D 2 1 1 SoftMax

The initial value of η in Equation (3.14) was set to 5 and the initial value of λ in

Equation (3.11) was set to 1× 10−3.8. These values were found empirically to achieve

the best balance between realism and preservation of the annotation information from

the simulated spectra to the refined spectra. During the training of one SimGAN

it was observed that it is possible for a refiner to learn to add valid artefacts which

are able to trick its respective discriminator into classifying the refined spectra as real.

However, the ultimate goal was to generate spectra with enough variety in their shapes

to reliably train a tune estimation model. Equation (3.11) only constrains the refiner
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network to make simulated spectra look similar in appearance to spectra obtained from

the BBQ system. An individual refiner is not incentivised to learn different types of

artefacts and in fact using one refiner to generate realistic spectra caused the tune

estimation model to over-fit to the type of artefacts that one refiner produced.

Refined 
Spectra batch

Refined 
Spectra batch

Refined 
Spectra batchSimGANSimGANSimGANSimGAN

Real 
Spectra 

(>1000)

Simulated
Spectra

500 
SimGANs

Create a batch 
of simulated 

spectra

Randomly 
choose a 
Refiner

Refine 
simulated 

spectra

Refined 
Spectra batch

Loop

Refined 
dataset

Figure 3.14: Refined spectrum generation scheme using a bank of trained SimGANs.

To overcome this problem, the scheme shown in Figure 3.14 was developed, to

obtain a new set of labelled spectra (Refined dataset) to train a new tune estima-

tion model. In this scheme, 500 SimGANs were initialised with different values of

λ in Equation (3.11), and trained individually. A good distribution for λ was found

empirically to be;

λ ∼ 10U(−4,−3.5)

Due to Equation (3.11), a refiner with λ = 10−4 introduces somewhat less realism

than a refiner with λ = 10−3.5. In turn, this variety allowed the tune estimation model

to become more generalised and perform better over real BBQ spectra. Results from

randomly selected refiners can be seen in Figure 3.15. It can be seen that from a

baseline simulated spectrum (red), a trained refiner is able to add artefacts to create

a refined spectrum (blue). The refined spectra look similar to real BBQ spectra, such

as the one shown in Figure 2.12b.

The results shown in Section 3.4.1 were bootstrapped to obtain the best performing

network architecture for the tune estimation problem. The same architecture as ML#1

was used for ML-refined, a model trained by a Refined dataset of 10000 synthetic

spectra.
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Figure 3.15: Results from a trained SimGAN. The green line represents the tune
estimate from BQ algorithm on the refined spectrum.
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3.5 Results comparison and analysis

When using real BBQ spectra, it is difficult to show any objective difference among

the performances of the original tune estimation algorithm BQ, the new ML tune esti-

mation models and the alternative using WMA and GPs. The accuracy and precision

of any tune estimation system can only be assessed visually by superimposing the tune

estimates over the real spectra.

A set of spectra obtained in the LHC Run 2 during the transition from INJPHYS

to ADJUST were used to evaluate the performance of the tune estimation systems.

It was made sure that the spectra used during evaluation were not used during the

SimGAN training in order to remove any bias. Specifically, BBQ spectra from Fill

6768, Beam 1, horizontal plane were used. A tune evolution estimate was calculated

from each spectrum by BQ, GP25, GP70, GP130, WMA5, WMA10, WMA20, ML#1,

ML#5 and ML-Refined, respectively. The BBQ spectra were converted to heat maps

by filtering out the 50 Hz harmonics and smoothing in time and frequency axes.

Moving averages (µ) and moving standard deviations (σ) of the tune estimates were

performed using a centered window of length 10. Subsequently, the corresponding µ

and 3σ were superimposed on the heat maps.

Figure 3.16 shows the BBQ spectral evolution from the start of INJPHYS to the end

of PRERAMP. Figure 3.17 shows the BBQ spectral evolution from the start of RAMP

to the end of FLATTOP. Figure 3.18 shows the BBQ spectral evolution from the start

of SQUEEZE to the end of ADJUST. A perfect tune estimate is assumed to coincide

with the peaks of the smoothed spectra and would appear to be centered within the

regions of the heatmap coloured white. Upon inspection of the tune estimates until

FLATTOP it is clear that ML-Refined obtained the most accurate tune estimates from

all approaches attempted. Beyond FLATTOP, the shapes of the spectra degrade, with

momentary instances of a peak forming. It can be observed, that only BQ and ML-

Refined always manage to obtain tune estimates coinciding with these momentary

peaks

Figure 3.12 shows that ML#5 performed well over simulated data, however, all the
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results on BBQ spectra show otherwise. ML#1 obtained a comparable performance

to the BQ algorithm, however, beyond FLATTOP ML#1 is not as successful as ML-

Refined. These results also prove that simply training with simulated data does not

obtain a robust tune estimation model to real data.

As mentioned in Section 2.3.2, the tune estimates are used in the QFB to control

the quadrupoles and correct the tune of the LHC. In order to ensure a stable operation,

the QFB measures the stability of the tune estimates with the following formulas:

∆qt = qt − qt−1

St = St−1 ∗ (1− α) + ∆qt ∗ α (3.15)

where qt is the tune estimate at time t, α is the time constant of the exponential

moving average and St is the stability measure at time t. The evaluation of both

the long and short term tune estimate stability is done via two independent stability

measures with a different α. Each α corresponds to a fast (2 s) and slow (10 s) time

constant. To ensure a stable tune estimate, both stabilities are required be below a

certain threshold, which is by default 0.005 (≈56Hz). It is important to note that the

tune estimates such as those shown in Figure 2.15, would obtain a relatively low value

of instability.

The stability metric shown in Equation (3.15) was used to quantitatively assess

the performance of the trained models with regard to the requirements of the QFB.

Figure 3.19 shows the stability probability distribution of each model and algorithm

used in this work. Tune estimates were obtained from the unseen BBQ spectra of

Fill 6768, beam 1, horizontal plane, from INJPHYS to FLATTOP and amounting to

a total of approximately 21000 real BBQ spectra. Note that the initial spectra in

INJPHYS (until t ≈ 180s in Figure 3.16), were discarded for the calculation of the

stability. This was done since the stability metric only makes sense in the presence

of well defined tune peaks. The blue and orange histograms correspond to the fast

and slow stability measurements, respectively. It is shown that the BQ algorithm is
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Figure 3.16: (Background) Heat map obtained by post-processing BBQ spectra from
LHC Fill 6768, Beam 1, Horizontal plane, in the transition from INJPHYS to PRE-
RAMP. (Foreground) mean, µ, and scaled standard deviation, 3σ, of the tune evolution
as estimated by different tune estimation algorithms and ML models: original algo-
rithm (BQ), Gaussian Process (GP) with RBF kernel length scale 25 (GP25), GP70,
GP130, Weighted Moving Average (WMA) with window length 5 (WMA5), WMA10,
WMA20, best ANN model from Simple approach (ML#1), best 1D CNN model from
Simple approach (ML#5) and ANN model trained using spectra refined by SimGAN.
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Figure 3.17: (Background) Heat map obtained by post-processing BBQ spectra from
LHC Fill 6768, Beam 1, Horizontal plane, in the transition from RAMP to FLATTOP.
(Foreground) mean, µ, and scaled standard deviation, 3σ, of the tune evolution as
estimated by different tune estimation algorithms and ML models: original algorithm
(BQ), Gaussian Process (GP) with RBF kernel length scale 25 (GP25), GP70, GP130,
Weighted Moving Average (WMA) with window length 5 (WMA5), WMA10, WMA20,
best ANN model from Simple approach (ML#1), best 1D CNN model from Simple
approach (ML#5) and ANN model trained using spectra refined by SimGAN.
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Figure 3.18: (Background) Heat map obtained by post-processing BBQ spectra from
LHC Fill 6768, Beam 1, Horizontal plane, in the transition from SQUEEZE to AD-
JUST. (Foreground) mean, µ, and scaled standard deviation, 3σ, of the tune evolution
as estimated by different tune estimation algorithms and ML models: original algo-
rithm (BQ), Gaussian Process (GP) with RBF kernel length scale 25 (GP25), GP70,
GP130, Weighted Moving Average (WMA) with window length 5 (WMA5), WMA10,
WMA20, best ANN model from Simple approach (ML#1), best 1D CNN model from
Simple approach (ML#5) and ANN model trained using spectra refined by SimGAN.
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marginally stable, while all alternative approach algorithms exhibit a wide distribution

of both fast and slow stabilities. This indicates a high risk that in real operation the

QFB switches off due to instability. ML#5 is shown to provide the most unstable

tune estimates from the simple approach while ML#1 is somewhat stabler. Upon

examination of the BQ tune estimates, it was observed that the effect of the 50 Hz

harmonics may improve stability due to the tune estimates being stuck to one noise

harmonic closest to the tune peak. Finally ML-Refined is shown to provide the most

stable tune estimate with a zero probability of the QFB switching off, at least for the

BBQ spectra used for evaluation.

3.6 Summary

Section 3.1 starts with an overview of the systems responsible for tune estimation as

existing the LHC by the start of LS2. Following this is the introduction of a new

simulation procedure in Section 3.2, which was extensively used during the develop-

ment of the new tune estimation algorithms. Section 3.3 provides more information

about the tools used during the development of the novel algorithmic approaches to

tune estimation. This section concludes with a Monte Carlo simulation to compare

the performance of the different algorithmic approaches. Section 3.4 goes through the

development cycle of the data-driven approach to tune estimation. Finally, results

from the original and the new tune estimation algorithms are collated and discussed

in Section 3.5.

Considering that this work was carried out during LS2, the results presented in

Section 3.5 were obtained using real data logged during the LHC Run 2. Specifically,

an unseen dataset was used to qualitatively compare the tune estimates obtained by

the various methods proposed. This dataset was also used to deduce the resultant

effect of the new tune estimation algorithms on the stability of the QFB within the

BBFS. It was found that the data-driven approach outperforms both the original and

the alternative algorithmic approaches to tune estimation.
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Figure 3.19: Probability distribution of the tune estimation stability. Obtained from
Fill 6768, beam 1, horizontal plane using spectra from INJPHYS to FLATTOP. Slow
and Fast correspond to stability measures having time constants of 10 s and 2 s respec-
tively (Equation (3.15)). Original algorithm (BQ), Gaussian Process (GP) with RBF
kernel length scale 25 (GP25), GP70, GP130, Weighted Moving Average (WMA) with
window length 5 (WMA5), WMA10, WMA20, best ANN model from Simple approach
(ML#1), best 1D CNN model from Simple approach (ML#5) and ANN model trained
using spectra refined by SimGAN. Threshold=0.005, chosen by LHC operators.
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Chapter 4

Application of Reinforcement

Learning in a beam-based feedback

controller

All beam-based feedback controllers until LS2 rely on a linear beam optics model in the

form of a n×m matrix. This matrix is also known as a Response Matrix (RM) where

n is the number of actuators and m is the number of sensors. Table 4.1 tabulates

the actuators and sensors used by the Orbit Feedback Controller (OFC) and Tune

Feedback (QFB). For simplicity, only the number of actuators and sensors for Beam 1

are listed. The inclusion of Beam 2 in the OFC would also include the Orbit Corrector

Dipoles (CODs) acting on both beams simultaneously in the Insertion Regions (IRs)

housing the 4 main experiments of the LHC. The number of actuators and sensors of

the OFC in Table 4.1 are listed for a controller acting on beam 1 on the horizontal

plane. On the other hand, the QFB was always split in two. The two beams do

not interact with one another with respect to the tune and therefore, the tunes on

different beams are controlled via two independent controllers. The influence of one

plane on another with respect to the tune is handled by a separate coupling feedback.

For simplicity, the number of actuators and sensors considered for the QFB as shown

in Table 4.1 are listed for a controller acting on beam 1, on the horizontal tune and

only using MQT type correctors.
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Feedback System Actuator Sensor
on Beam 1

OFC Orbit Corrector Dipole (COD) Beam Position Monitor (BPM)
n = 276 m = 544

QFB Tuning Quadrupole Base-Band Tune (BBQ)
n = 16 m = 2

Table 4.1: Actuators and Sensors of the beam-based feedback systems considered for
RL.

The RM assumes that the interface between the controller and the beam is ideal,

and that the currents sent to the actuators/magnets are always faithfully applied. This

assumption is incorrect when considering the boundary conditions set by the BBFS

until Run 2. In particular, the set of current corrections were scaled by a factor which

ensured that all the magnets can be supplied current by the power converters. E.g. if

the current rate limit for a magnet, M, is 0.5A s−1 and a correction is sent that requires

1A s−1 to apply, the currents of all the magnets would be scaled by a factor k ≤ 0.5, to

accommodate M. Moreover, the magnet which requires the smallest k, determines the

scaling of the current corrections that are sent to the magnets. This approach always

ensures convergence given that the model is representative of the LHC magnetic lattice.

Regardless, the scaling of the corrections results in sub-optimal behaviour.

Reinforcement Learning (RL) offers the possibility to train an agent by interacting

with the LHC and producing an optimal correction without access to the beam optics.

One major drawback of current vanilla RL algorithms is the large amount of inter-

actions needed with the environment for the agent to converge to an optimal policy.

In general, the larger the environment the more interactions are needed. The diffi-

culty of standard RL toy-problems in the same class of problems as the beam-based

controllers can be normally ranked by the number of continuous actions available to

the agent. As an example, the simple Humanoid environment in [77] contains 21

continuous actions and 67 observables and is considered a hard problem for current

state-of-the-art RL algorithms. Considering that the OFC has hundreds of observables

and hundreds of continuous actions, it is unlikely that present-day RL algorithms offer

a tractable solution. The standard control approach taken by the OFC is at worst
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O(min(m2n,mn2)) ≡ O(mn2), and this occurs when a change in beam optics due to

malfunctions is recomputed through Singular Value Decomposition (SVD). RL offers

the possibility to obtain a linear complexity given enough examples and/or exploration

of the agent itself. A change in the environment due to malfunctions can cause the

agent to adapt to a more optimised policy quicker than the standard approach. Ulti-

mately, when considering the relative large state and action spaces of the OFC, it is

expected that state-of-the-art RL algorithms will suffer from poor sample efficiency.

As shown in Table 4.1, the control problem present in the QFB acting on one

beam contains 2 sensors and 16 actuators. In RL nomenclature this results in an

environment with 2 observables and 16 continuous actions. Such an environment falls

within the bounds of current state-of-the-art RL algorithms. Due to the prospect of

the QFB being solvable using vanilla RL algorithms, the first part of this chapter will

formulate, train and examine the policies obtained for the QFB problem. The second

part will focus on the application of RL in the OFC problem.

4.1 QFB RL

The QFB on one beam relies on a Tune Response Matrix (QRM), which is a 16 × 2

matrix modelling the change in the vertical and horizontal tunes due to a change in the

deflections of 16 (de)focusing tuning quadrupoles of type MQT. Therefore, a vector

containing the delta quadrupole deflections, ∆
−→
δQ is multiplied by the QRM:

∆
−→
δQ ·QRM = ∆

−→
Q

where ∆
−→
Q is the modelled change in tune due to ∆

−→
δQ being applied to the quadrupoles.

The QFB uses two QRM per beam and each QRM is set up by default to contain

6 outputs: the horizontal and vertical tune, the horizontal and vertical chromaticity,

and the real and imaginary components of the coupling coefficient. To separate the

QFB from the coupling and chromaticity control, the QRM is truncated to have only

two outputs; the tunes. The tune control sequence occurs at 12.5Hz and a prede-
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fined sequence of steps is performed where: a) The tune error, ∆
−→
Q , is obtained by

subtracting the current tune estimate and the reference tune; b) A velocity form PI

controller is applied by using ∆
−→
Qt and ∆

−−→
Qt−1, where t denotes the time step; c) The

PI output is multiplied by the pseudo-inverse matrix of QRM (Tune Pseudo-Inverse

(QPI)) to obtain a set of quadrupole currents; d) The currents are multiplied by -1;

e) The currents are globally scaled down to accommodate the slowest quadrupole; f)

Finally the corrections are sent to the quadrupole power converters via UDP packets.

4.1.1 Environment setup

An OpenAI Gym environment [93] was set up to mimic the response of the LHC

to a varying quadrupolar magnetic field. This environment will hereon be referred

to as QFBEnv [94]. QFBEnv was used within the RL framework as illustrated in

Figure 2.26. QFBEnv has two continuous states as output and uses 16 bounded

continuous actions as input. Both the states and actions were normalised to the range

[−1, 1].

QFBEnv implemented two important functionalities: a) the reset function, which

initialised an episode with random initial tune error and; b) the step function, which

first converted the normalised actions to Amperes and then multiplied the resulting

vector to the QRM to obtain the resulting tune delta due to the action. The tune delta

was then added to the current tune error to obtain the new state. The new state is

then normalised to the range [-1,1]. The reward was chosen to be the negative average

quadratic of the state, as shown in Equation (4.1).

rt+1 = − 1

n

n∑
i

(
s
(i)
t+1

)2

(4.1)

Since the goal of any RL agent is to maximise the reward, a perfectly trained agent

would thus have a policy which reduces the tune error to zero. It is also important

to note that the gradient of quadratic reward increases, the farther the state is from

the optimal point. This reflects the importance of controlling a larger tune error with

respect to a smaller error in the QFB, e.g. if ∆QH >> ∆QV > Goal, the agent would
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put more importance on the correction of ∆QH . From trial and error, this shape of

reward was observed to produce more stable training.

In addition, the PI controller used by the QFB was also re-implemented as a sepa-

rate method within QFBEnv. This was done to provide a reference for the performance

of a trained agent. The PI controller was implemented with the global current rate

limiting as done in the QFB. This was done in order to better compare the change in

performance due to trained RL agents.

The proportional, Kp, and integral, Ki, gains were set to low values by default as

a conservative measure during initialisation of the QFB. To ensure a fair comparison,

the PI controller was tuned using the Ziegler-Nichols method [95]: a) Ki was set to

0; b) Kp was increased until state oscillations were observed; c) the latest value of

Kp was halved; d) Ki was increased until state oscillations were observed; e) Ki was

halved. The final gains obtained were Kp = 1000 and Ki = 2000.

A baseline episode length was obtained by running 1000 episodes using the PI con-

troller to choose the actions. The measured average episode length was approximately

28 steps with a standard deviation of 6 steps. Due to these results, the maximum

allowable episode length in QFBEnv was chosen to be 70 steps long, approximately

double of the maximum baseline episode length observed.

The normalised state space represented a range of [−25Hz, 25Hz] of tune error.

The goal of QFBEnv was to reduce the tune error of both planes below a threshold

of 1 Hz. The normalised action space represented the fraction of the total allowable

current rate in the magnets. Every step was also assumed to occur every 80ms, which

corresponds to the QFB controller frequency of 12.5Hz. Therefore, a normalised action

of 1 on a magnet with a maximum current rate of 0.5A s−1 is equivalent to a current

change of 0.5× 0.08 = 40mA.

Current rate limiting was thus implicitly implemented by QFBEnv when clipping

the actions to the range [-1,1]. The main difference from the QFB being that now each

magnet was scaled with respect to its own current rate. The global scaling scheme

used by the QFB was therefore not enforced by QFBEnv when training RL agents.

Instead, each magnet could be used to its full potential.
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An episode is defined as starting from the first state initialisation until a terminal

state is reached. The initial state is sampled from a uniform distribution where si ∼

U(−∞,∞). A terminal state could be reached either by a successful early termination

or after 70 steps were made without success. Successful early termination is defined

as the latest 5 rewards being above a threshold. Since the threshold was equivalent to

the states being equal to 1 Hz, or 1
25

= 0.04 in normalised space, the threshold reward

can be obtained from Equation (4.1):

rthresh = −1

2

(
0.042 + 0.042

)
= −0.0016

This early termination criterion was chosen in order to allow for more examples of the

state below the threshold. This ultimately leads to the agent learning a better policy

close to the threshold boundary.

4.1.2 Implementation details

State-of-the-art Deep RL algorithms are difficult to implement from scratch due to

their complexity. Normally, the code used to obtain the published results is provided

by the authors, however, the code might not always be guaranteed to work as expected.

RL algorithms started to become somewhat standardised with the introduction of

OpenAI Spinning Up [96]. However, the RL implementations found in Spinning Up are

designed for educational purposes. A more robust library is OpenAI Baselines, which

offers tested implementations of the main algorithms, with the main two purposes of

comparing their performance and improving the algorithms [97].

Stable Baselines is a fork of OpenAI Baselines, and it provides a RL library of

reliable algorithm implementations with an improved performance by using HA [98].

Stable baselines was initially used to train Proximal Policy Optimisation (PPO), Twin-

delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) agents

on QFBEnv. However, a more stable implementation of SAC from [99] was used to

obtain the best policy for the SAC algorithm and will hereon be called SAC-TFL.

Stable Baselines supports Tensorflow [100], which allows the use of Graphical Pro-
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cessing Units (GPUs) for faster training. Furthermore, Tensorflow provides a visuali-

sation toolkit called Tensorboard. This tool proved to be essential for logging purposes

during RL training. Considering that RL algorithms have many moving parts, Ten-

sorboard condensed training information and made it easier to compare different RL

agents.

Normalised Advantage Functions with Double-Q Learning (NAF2) and Anchored

Ensemble DYNA-style (AE-DYNA) were implemented using a fork of the original code

used in [72]. NAF2 was upgraded to Tensorflow 2 for a more efficient training and

logging, however, difficulties were found when using the original implementation of

AE-DYNA. With a code upgrade provided in [99], a newer version of AE-DYNA was

attempted and the results shown were obtained from this version.

4.1.3 Training

In summary, the five RL algorithms that were trained on QFBEnv were:

• SAC - off-policy and model-free

• TD3 - off-policy and model-free

• NAF2 - off-policy and model-free

• PPO - on-policy and model-free

• AE-DYNA - off-policy or on-policy and model-based

During training of the model-free agents, two callback functions were called: a)

every 1000 training steps to save the network parameters of the most recent agents to

disk and; b) every 100 training steps to evaluate and log the performance of the most

recent agent. Therefore, the evolution of the agent throughout the training process

could be analysed off-line, and the various policies trained by the RL algorithms could

be visualised. SAC and TD3 required the most hyperparameter tuning to obtain a

satisfactory result. NAF2 and PPO were less susceptible to hyperparameter tuning.

AE-DYNA was more complex to set up correctly and also required some network ad-

justments in order for it to learn a successful policy on QFBEnv. The performance
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of the most recent agent in b), was evaluated on a separate instance of QFBEnv.

20 episodes were played in sequence and the actions were chosen by the most recent

agent. Some of the training metrics were the average episode length, average undis-

counted episode return and the average success rate. These values were logged with

Tensorboard and are used in the remaining part of this section to describe the training

process of each algorithm.

All the agents used the same network architecture for their policies. The final

architecture was chosen through a grid-search to be an Artificial Neural Network

(ANN) with 2 hidden layers having 50 neurons each and using the ReLU activation

function. Owing to its successful training on NAF2 and PPO, all algorithms were set

up with the same policy architecture. This network architecture was used for the value

function networks of the off-policy agents as well.

Training off-line with QFBEnv is easier than training on the real QFB in the LHC.

At episode termination during off-line training, QFBEnv is simply reset to a zero

action and a random initial state. This allows up to 100 frames per second to be

played with the environment. In the real QFB, all interactions occur at 12.5 frames

per second which makes it inherently slower.

In on-line training on the QFB, the worst case episode length is 70 steps and every

step is taken at a rate of 12.5Hz. Therefore the maximum time of one episode on the

QFB is:
70 steps

12.5Hz
= 5.6 s

At episode termination, the actuators need to be re-adjusted to their initial current

settings. The worst case scenario is when an action is saturated and remains constant

throughout the entire maximum episode length of 70 steps. Therefore, the worst case

readjustment time for one episode is also 5.6 s. All time estimates for off-line training

shown in this work must be doubled to obtain the worst case training time.
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NAF2

Name Value

learning rate 0.001

γ 0.9999

batch size 100

buffer size 5000

qσ 0.02

qclip 0.05

τ 0.001

Table 4.2: Hyperparameters used for NAF2.

γ is the discount factor and τ is the time constant for the Polyak averaging done

between the target and main networks. qσ and qclip were chosen by trial and error,

and the other hyperparameters were left at their original values [72]. qσ set up the

standard deviation of the action smoothing noise applied at each step in QFBEnv

when acquiring data. qclip clipped the action smoothing noise to a range [−qclip, qclip].

In addition to the smoothing noise, a decaying action noise was also used during

training. The following noise function was used:

ai := ai + N (0, 1) × max
(
1 − epidx

40
, 0

)
where ai denotes the i

th action, N (0, 1) is a standard Gaussian, and epidx is the number

of the current episode. Therefore the action noise decayed to zero after 40 episodes.

Note that the choice to decay the action noise relative to the number of episodes was

arbitrary. The action noise can be made to decay relative to the number of steps taken

so far during training.

Figure 4.1 shows the performance statistics of the NAF2 agents. In Figure 4.1a

it can be seen that the episode length decreases below 20 after 20000 steps. In Fig-

ure 4.1c it can be seen that the success rate goes to 100% after 20000 steps as well.

From Figure 4.1b it can be seen that the highest average undiscounted return was
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Figure 4.1: Performance statistics of NAF2 during training. Five NAF2 agents were
initialised with different random seeds and set up with the hyperparameters shown in
Table 4.2.

−3.4 and occurred at the end of training at almost 100000 steps. This shows the

monotonic improvement in performance, regardless of the Min-Max bounds shown in

Figure 4.1a and Figure 4.1c. The large Min-Max boundaries are explained by partially

solved episodes. In these episodes, the policy manages to increase the reward until a

local minimum is reached, without satisfying the successful early termination criterion.

However, slight improvements in the policy push the states closer to the threshold,

subsequently increasing the return.

Successful policies using NAF2 were relatively sample efficient to train when com-

pared to other four algorithms attempted. The monotonic improvement shown in

Figure 4.1b implies that a successful agent can be expected relatively early in terms
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of training steps taken on the environment. Some agents during the training per-

formed well with an average episode length of 20 steps after approximately 20,000

steps. In real LHC operation on the QFB, the worst case training time of 20,000 steps

is calculated by:
20, 000 steps

12.5Hz
× 2 ≈ 53min

PPO

Name Value

learning rate 0.00025

γ 0.99

ϵ 0.2

Table 4.3: Hyperparameters used for PPO.

The hyperparameters shown in Table 4.3 are the default parameters of the PPO algo-

rithm as implemented in Stable Baselines. PPO proved to be the easiest algorithm to

apply to QFBEnv in terms of hyperparameter tuning and usage.

Figure 4.2 shows the performance statistics during training. As shown in Fig-

ure 4.2a, PPO converges below an episode length of 20 after around 20000 training

steps. A solution which drops the episode length to below 10 steps is found after

approximately 40000 steps. This remains stable until catastrophic forgetting of the

policy occurs after 80000 steps. Figure 4.2c also shows that some agents expected a

100% success rate between 20000 and 80000 steps. Figure 4.2b shows that at approx-

imately 86000 steps, the best median performance was reached, with an undiscounted

episode return of -4.
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Figure 4.2: Performance statistics of PPO during training. Five PPO agents were
initialised with different random seeds and set up with the hyperparameters shown in
Table 4.3.

The catastrophic forgetting of the policy, however, did not occur quickly. At around

90000 steps, the expected episode length had increased to 20 steps again. Therefore,

a callback function can easily halt training in the case that the policy starts forget-

ting, and freeze the network parameters to obtain the best performing agent. This

predictability is important if the agent training occurs in real LHC operation. Simi-

larly to NAF2, approximately 20000 steps are required to learn a good policy which

is equivalent to a worst case on-line training time of 53min.
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TD3

Name Value

learning rate 0.0003

γ 0.99

batch size 128

buffer size 50000

τ 0.005

Table 4.4: Original hyperparameters used for TD3.

The hyperparameters shown in Table 4.4 are the original parameters of the TD3

algorithm as introduced in [87]. γ is the discount factor and τ is the time constant for

the Polyak averaging done between the target and main networks.
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Figure 4.3: Performance statistics of TD3 during training. Five TD3 agents were
initialised with different random seeds and set up with the hyperparameters shown in
Table 4.4.
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Figure 4.3 shows the performance statistics during training. Figure 4.3a, Fig-

ure 4.3b and Figure 4.3c all show a failure by the algorithm to converge to a good

solution in under 100000 steps. Figure 4.3b shows that the episode return decreases

by two orders of magnitude after approximately 10000 steps. After 70000 steps the

expected episode return increased by one order of magnitude, however, this was un-

done in the remaining steps where the return decreased again. This shows the training

instability of TD3 when attempted on QFBEnv.

Learning Batch Buffer τ

rate size size

3× 10−4 32 1000 0.05

3× 10−4 64 10000 0.005

128 50000

512

Table 4.5: Hyperparameter search of TD3.

As a result of the unsuccessful first attempts using TD3, a hyperparameter grid-

search was performed. A permutation of the parameters shown in Table 4.5 was

attempted and the agents which obtained an average success rate of 100% at least

once during their training, were recorded. The different agents were sorted by the

best average episode length. 5 configurations out of a total of 48 obtained a 100%

success rate at least once and Table 4.6 shows the hyperparameters of the successful

agents.
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Index Learning

rate

Batch

size

Buffer

size

τ Best mean episode

length (@ training step)

TD3#0 3× 10−5 64 50000 0.005 41.3 (15k)

TD3#1 3× 10−4 512 50000 0.05 45.92 (7k)

TD3#2 3× 10−5 128 10000 0.05 46.4 (23k)

TD3#3 3× 10−5 64 10000 0.005 49.38 (15k)

TD3#4 3× 10−4 32 1000 0.005 64.96 (59k)

Table 4.6: Hyperparameters of the five successful agents and the corresponding best
mean episode length. The best agent, TD3#0, obtained an average episode length of
41.3 steps after 15000 training steps.
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Figure 4.4: Performance statistics of the best TD3 agents during the hyperparameter
search.

Figure 4.4 shows a similar training plot for the five best agents trained in the

hyperparameter search. It can be seen that TD3#4 obtained the highest return of -

0.9, however, upon inspection of the policy at steps 75000 and 76000, it was found that

both had failed to converge. This suggests that the 100% successful policy obtained

on step 75600 was forgotten after a few hundred steps.
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SAC

Name Value

learning rate 0.0003

γ 0.99

batch size 64

buffer size 50000

τ 0.005

Table 4.7: Original hyperparameters used for SAC.

The hyperparameters shown in Table 4.7 are the original parameters of the SAC

algorithm [88]. γ is the discount factor and τ is the time constant for the Polyak

averaging done between the target and main networks.

Figure 4.5 shows the performance statistics of SAC during training when using

the hyperparameters shown in Table 4.7. Figure 4.5a, Figure 4.5b and Figure 4.5c all

show the failure of the SAC algorithm to converge to a good policy in under 100000

steps. On the contrary to the episode returns of TD3, Figure 4.5b shows that the all

the agents obtained an episode return of the same order of magnitude as the initial

value. It can also be seen that at approximately 83000 steps, the best performing

agent obtained an undiscounted episode return of -15.7. This is significantly higher

than the best episode return of TD3, albeit SAC still did not produce a successful

policy.
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Figure 4.5: Performance statistics of SAC during training. Five SAC agents were
initialised with different random seeds and set up with the hyperparameters shown in
Table 4.7.

A hyperparameter search of SAC was performed. A permutation of the same

parameters used for TD3 in Table 4.5 was attempted to find a configuration which

produced a result with a success rate of 100% at least once. The hyperparameters

were also sorted by the average episode length. 11 configurations out of a total of 48

obtained a 100% success rate at least once. This shows that it is somewhat easier to

train SAC rather than TD3. Table 4.8 shows the hyperparameters of the 5 agents

with the lowest average episode length during training.
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Index Learning

rate

Batch

size

Buffer

size

τ Best mean episode

length (@ training step)

SAC#0 3× 10−5 32 50000 0.05 48 (50k)

SAC#1 3× 10−4 128 50000 0.005 19 (72k)

SAC#2 3× 10−4 64 50000 0.005 21 (65k)

SAC#3 3× 10−5 64 50000 0.005 21 (39k)

SAC#4 3× 10−5 128 50000 0.05 17 (67k)

Table 4.8: Hyperparameters of the five best performing agents.

Compared to the best agents obtained for NAF2 and PPO, the performance of SAC

is significantly worse. For this reason, another SAC implementation used in [99] was

attempted on QFBEnv. Since this implementation uses TensorLayer, an open-source

Deep Learning (DL) and RL library extended from TensorFlow, it will be denoted by

SAC-TFL.

Name Value

learning rate 0.001

γ 0.99

batch size 256

buffer size 500000

τ 0.005

Table 4.9: Hyperparameters used for SAC-TFL.

The hyperparameters shown in Table 4.9 are the parameters as implemented in

[99]. Figure 4.7 shows the performance statistics of five SAC-TFL agents initialised

with different random seeds. Figure 4.5a, Figure 4.5b and Figure 4.5c show that some

agents managed to obtain episode lengths smaller than 20 after approximately 45000

steps. A success rate of 100% was maintained for approximately 5000 steps, after

which the policy maintains an episode return on the same order of magnitude. The

highest episode return was -1.4 at 96000 training steps, however, at 45000 steps it was

almost as high. In real LHC operation on the QFB, the worst case training time of
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45,000 steps is calculated by:

45, 000 steps

12.5Hz
× 2 = 2 h
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Figure 4.6: Performance statistics of the best SAC agents during the hyperparameter
search.
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Figure 4.7: Performance statistics of SAC-TFL during training. Five SAC-TFL agents
were initialised with different random seeds and set up with the hyperparameters
shown in Table 4.9
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AE-DYNA

Training AE-DYNA on QFBEnv consists of performing a sequence of three tasks

iteratively. The tasks are: a) collecting a batch of data by interacting with the real

environment; b) training a set of models from the collected data independently, where

each model can accept a state-action pair and predict the next-state and reward;

c) train a standard Model-Free (MF) RL algorithm by interacting with the trained

models instead of the real environment.

The use of multiple models allow the sampling of the next-state, reward pair from

different, randomly initialised networks. This has been shown to approximate the

stochasticity observed in a real environment, while still capturing the dynamics of the

system. In this work, SAC-TFL was trained from scratch on every epoch. An epoch is

defined as the time between data collections from the real environment. The trained

agent is consecutively used to obtain new batches of data from the real environment,

in order to diversify the variety of trajectories in the buffer. Following this, the agent

is re-initialised, and the AE-DYNA training loop repeats.

An example of training AE-DYNA-SAC on QFBEnv is shown in Figure 4.8. Batch

denotes information about the data collected from the real environment. Sim and Test

denote information about the interactions of the RL agent with the models and the real

environment, respectively. An ideal training would consist of Sim behaving similarly

to Test (training = evaluation), however, a contrast between the bottom right plot

and the center right plot can be seen. Agent success is detected in Test while the

models predict no success as shown in Sim. Therefore, the models cannot be used to

guide training and constant testing on the real environment is required to successfully

train AE-DYNA.

A 100% successful policy was obtained around 155000 training steps with an av-

erage episode length of 35 steps. At this training step, a total of 6 batches of data,

equal to 4500 real steps in the environment are recorded. It is equivalent to 6min

of beam time and was the only data available for the models and subsequently for

the agent to successfully train a policy. The downside is the unsuccessful early ter-

mination when using models to train the agent. If one evaluation episode is done
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on the real environment every 1000 steps, 155000 steps would take approximately:(
155000
1000

∗ 70
)
∗ 1
12.5Hz

≈ 14.5min. The total worst case training time for AE-DYNA while

using these evaluation parameters becomes: (Batch time + Test time)× 2 ≈ 41min
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Figure 4.8: Snapshot of the training performance of AE-DYNA-SAC. Batch denotes
the information about the data collected from the real environment. Sim denotes
information about the agent performance over the models. Tests denotes information
about the agent performance over the real environment.

4.1.4 Evaluation

This section looks at the performance of the best policies obtained by each respective

RL algorithm. These evaluations were performed by loading the agent with the best

performance and playing multiple episodes in QFBEnv. For each episode trajectory

obtained, a reference episode is created by using the actions from the PI controller.

To ensure a fair comparison, the reference episode is also subjected to the test, e.g.

Gaussian noise is applied to the PI action in Figure 4.10.
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Effect of Gaussian noise

QFBEnv implements a deterministic model and an action is deterministic by default.

However, by adding Gaussian noise to the action chosen by the policy, stochasticity

can be introduced to QFBEnv. By subjecting each agent to a stochastic environment,

the general robustness of each agent can be empirically verified. During this test, the

initial state per episode was ensured to be sufficiently randomised to be able to show

more coverage of the state-action space.

The best RL agents trained in Section 4.1.3 were used to obtain the first set of

evaluation plots which show a set of three episodes each on QFBEnv. As an example

consider Figure 4.9 where the top plots (blues) correspond to the evolution of ∆QH and

∆QV in time, with markers denoting the start and end of each episode. A boundary

(dashed green) is also drawn to indicate the threshold state. The bottom plots (reds)

correspond to the evolution of the 16 actions of each respective episode until a terminal

state is reached. Each set is obtained by applying Gaussian action noise with a zero

mean and a standard deviation equal to 10%, 25% and 50% of half the action range

[0,1], respectively.

To aid with the analysis of the trained agents under the effect of Gaussian action

noise, the action noise was varied with a finer interval and more statistics were taken

on the performance of the trained agents and the PI controller e.g. Figure 4.13. For

each action noise value on the x-axis, 1000 episodes were executed and used to obtain

the statistics shown in the respective figures. These plots illustrate more information

on the distribution of key measurements linked with the performance of the agents (in

blue) and the PI controller (in red). In particular, the distributions of the following

measurements are presented: a) Episode length (one scalar per episode); b) Distance

of the terminal state from the optimal state of [∆QH = 0, ∆QV = 0], calculated

by Equation (4.2) and is referred to as Distance To Optimal (DTO) (one scalar per

episode);

DTO =
√
∆Q2

H + ∆Q2
V (4.2)

and c) Concatenated values of the last actions applied in the episode before termina-
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Figure 4.9: Best NAF2 agent. Action is deterministic.

tion, be it successful or otherwise (array of size 16 per episode).

Figure 4.9 shows three episodes obtained with the best NAF2 agent trained in

Section 4.1.3 and using deterministic actions. It is important to note that Episode

#2 of Figure 4.9 shows the agent to be only slightly worse than the PI controller.

Upon comparison with the other two episodes, it can be seen that the policy trained

by NAF2 has learned to converge to the optimal state.

Figures 4.10 to 4.12 show a set of three evaluation episodes each obtained from the

best NAF2 policy. It can be seen that the agent managed to satisfy the early termi-

nation criterion in each scenario. The longest episode can be observed in Figure 4.12

to be approximately 20 steps long. Moreover, Episode #3 of Figure 4.12 shows that

the PI controller failed to satisfy the successful early termination criterion.

Action noise 0% 10% 25% 50%

NAF2 9.06 ± 1.35 9.16 ± 1.41 9.82 ± 1.91 17.89 ± 9.24

PI controller 20.05 ± 3.78 20.41 ± 3.99 24.81 ± 7.47 53.32 ± 18.37

Table 4.10: The statistics (mean±std.) for the episode length obtained by the best
NAF2 agent and PI controller with respect to the amplitude of Gaussian action noise.

Table 4.10 tabulates the episode length statistics collected from 1000 episodes, for
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Figure 4.10: Best NAF2 agent. Action Gaussian noise with zero mean and standard
deviation 10% of action range.
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Figure 4.11: Best NAF2 agent. Action Gaussian noise with zero mean and standard
deviation 25% of action range.
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Figure 4.12: Best NAF2 agent. Action Gaussian noise with zero mean and standard
deviation 50% of action range.

the values of Gaussian action noise considered in the episode evaluation plots. Both the

mean and the standard deviation of the episode lengths obtained by the NAF2 agent

outperformed those of the PI controller. Furthermore, Figure 4.13 illustrates that the

upper bound of the PI controller episode lengths reaches 70 steps at 25% action noise;

this indicates that the PI controller starts to fail to successfully terminate episodes.

This corresponds with the results shown in Figure 4.14 where at approximately 25%

action noise, the upper bound of the DTO of the PI controller at the end of an episode

moves past the Goal threshold set in QFBEnv (green dashed line). The NAF2 agent

maintains an upper bound DTO below the threshold until approximately 45% action

noise.

Figure 4.15 illustrates the statistics of the last action chosen in each episode. This

is where the weakness of the NAF2 algorithm is exposed, where it can be observed that

the values of the last actions are unpredictable even without action noise, i.e. at 0%

action noise, the PI controller actions are below ±0.05 while the NAF2 action values

populate almost all the action range. These results signify that NAF2 has trained a

policy which outperforms the PI controller in a noisy environment, albeit the policy

is sub-optimal.
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Figure 4.13: Effect of action noise on the episode length due to varying action noise
on the best NAF2 agent and the PI controller.

Figure 4.14: Effect of action noise on the distance to the optimal point at the end of
the episode due to varying action noise on the best NAF2 agent and the PI controller.
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Figure 4.15: Effect of action noise on the last action used in the episode due to varying
action noise on the best NAF2 agent and the PI controller.

Figure 4.16 shows three episodes obtained by the best PPO agent trained in Sec-

tion 4.1.3 and using deterministic actions. Similarly to NAF2, PPO learned to opti-

mally converge to the optimal state. Furthermore, the actions of PPO start to converge

back to zero at the end of the episode. This does not occur in Figure 4.9, where the

actions spread out rather than converge.

Figures 4.17 to 4.19 show a set of three evaluation episodes each obtained from the

best PPO policy. It can be seen that the agent managed to satisfy the early termination

criterion in each scenario. PPO also shows a wider range of episode lengths as the

action noise is increased. During the 50% action noise tests in Figure 4.19, the episode

length varied more than for NAF2. Therefore, the policy obtained by NAF2 is slightly

more robust to action noise than PPO.
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Figure 4.16: Best PPO agent. Action is deterministic.
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Figure 4.17: Best PPO agent. Action Gaussian noise with zero mean and standard
deviation 10% of action range.
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Figure 4.18: Best PPO agent. Action Gaussian noise with zero mean and standard
deviation 25% of action range.
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Figure 4.19: Best PPO agent. Action Gaussian noise with zero mean and standard
deviation 50% of action range.
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Action noise 0% 10% 25% 50%

PPO 8.80 ± 1.28 8.89 ± 1.32 9.77 ± 2.11 20.69 ± 12.60

PI controller 20.09 ± 3.70 20.50 ± 3.92 24.91 ± 7.66 53.30 ± 18.26

Table 4.11: The statistics (mean±std.) for the episode length obtained by the best
PPO agent and PI controller with respect to the amplitude of Gaussian action noise.

Table 4.11 tabulates the episode length statistics collected from 1000 episodes, for

the values of Gaussian action noise considered in the episode evaluation plots. Both

the mean and the standard deviation of the episode lengths obtained by the PPO

agent outperformed those of the PI controller. Figures 4.20 and 4.21 show that the

policy trained by PPO performs similarly to that of the NAF2 agent with regards to

the episode length and the final distance to the optimal point.

Figure 4.22 shows the distribution of the values of the last action to be chosen at

the end of an evaluation episode. It can be observed that the the PPO policy chooses

actions which behave similarly to the PI controller in the presence of Gaussian action

noise. At 0% action noise, distribution of action values of the agent are slightly

larger than those of the PI controller. However, as the action noise is increased, the

distribution widths of both PPO and the PI controller increase at the same rate. This

consolidates what was observed in Figures 4.16 to 4.19, where the final values of the

actions are dispersed with respect to the amplitude of the action noise applied. This

concludes that PPO successfully trained a policy which is close to the optimal policy.
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Figure 4.20: Effect of action noise on the episode length due to varying action noise
on the best PPO agent and the PI controller.

Figure 4.21: Effect of action noise on the distance to the optimal point at the end of
the episode due to varying action noise on the best PPO agent and the PI controller.
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Figure 4.22: Effect of action noise on the last action used in the episode due to varying
action noise on the best PPO agent and the PI controller.

Figure 4.23 shows three episodes obtained by the best TD3 agent trained in Sec-

tion 4.1.3 and using deterministic actions. The top plots show that the policy does not

take the most optimal path to the terminal state. In particular, the state evolution

of Episode #1 shows that the agent takes smaller steps than the PI controller and

as a result the episode length approximately doubles. The bottom plots show that

similarly to PPO, the actions of TD3 start to converge back to zero towards the end

of the episode. It can also be observed hat the change in subsequent actions is gentler

than both NAF2 and PPO.

Figures 4.24 to 4.26 show a set of three evaluation episodes each obtained from

the best TD3 agent. It can be seen that the TD3 agent managed to satisfy the early

termination criterion until 10% action noise, beyond which the episode length increases

to 70 steps. The top plots of Figure 4.25 also show that the state excursions become

longer for the agent, especially in Episode #3. Meanwhile, the worst episode length

of the PI controller was approximately 40 steps.
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Figure 4.23: Best TD3 agent. Action is deterministic.
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Figure 4.24: Best TD3 agent. Action Gaussian noise with zero mean and standard
deviation 10% of action range.

138



0.0 0.2 0.4 0.6
QH (normalised)

0.4

0.2

0.0

Q
V
 (n

or
m

al
ise

d)
Episode #1

1.0 0.5 0.0
QH (normalised)

0.6

0.4

0.2

0.0

0.2

Q
V
 (n

or
m

al
ise

d)

Episode #2

0.2 0.0 0.2 0.4 0.6
QH (normalised)

1.0

0.8

0.6

0.4

0.2

0.0

Q
V
 (n

or
m

al
ise

d)

Episode #3

0 20 40 60
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
ise

d)

0 20 40 60
Steps

0

1

Ac
tio

n 
(n

or
m

al
ise

d)

0 20 40 60
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
ise

d)

TD3 Best Policy Evaluation

Agent states
PI states

Agent actions
PI actions

Episode Start
 Agent Episode End

PI Episode End State Threshold

Figure 4.25: Best TD3 agent. Action Gaussian noise with zero mean and standard
deviation 25% of action range.
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Figure 4.26: Best TD3 agent. Action Gaussian noise with zero mean and standard
deviation 50% of action range.
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Action noise 0% 10% 25% 50%

TD3 39.06 ± 12.08 40.34 ± 12.43 47.06 ± 15.24 63.36 ± 13.21

PI controller 20.32 ± 3.60 20.66 ± 3.82 25.20 ± 7.33 53.12 ± 18.92

Table 4.12: The statistics (mean±std.) for the episode length obtained by the best
TD3 agent and PI controller with respect to the amplitude of Gaussian action noise.

Table 4.12 tabulates the episode length statistics collected from 1000 episodes,

for the values of Gaussian action noise considered in the episode evaluation plots.

The mean episode length of the best TD3 agent is approximately double that of the

PI controller which corresponds to the results shows in Figure 4.29. It can also be

observed that the upper bound TD3 episode length is 70 steps also at 0% action

noise. These results correspond to the DTO results shown in Figure 4.28 where the

upper bound exceeds the Goal threshold for all action noise amplitudes. On the

other hand, Figure 4.29 shows that the distribution of the last actions chosen in the

episodes increases in width proportional to the action noise applied to the episodes.

This corresponds with the decaying action values observed in the deterministic episode

evaluations in Figure 4.23.
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Figure 4.27: Effect of action noise on the episode length due to varying action noise
on the best TD3 agent and the PI controller.

Figure 4.28: Effect of action noise on the distance to the optimal point at the end of
the episode due to varying action noise on the best TD3 agent and the PI controller.
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Figure 4.29: Effect of action noise on the last action used in the episode due to varying
action noise on the best TD3 agent and the PI controller.

Figure 4.30 shows three episodes obtained with deterministic actions chosen by

the best SAC agent trained in Section 4.1.3. Episode #3 of Figure 4.30 shows that

the agent failed to converge to the terminal state and the bottom plot shows that the

actions do not change after approximately 30 steps.

Similarly to the other agents, Figures 4.31 to 4.33 show a set of three evaluation

episodes each. Unsurprisingly SAC started to fail the early termination criterion at

10% action noise. However, at 25% there were no failures and the number of steps

required by the agent to reach the threshold boundary is on average, smaller than

the PI controller. This can be attested to a sub-optimal policy which deterministically

converges to a local minima. By introducing action noise, the performance of the policy

seemingly improves. However, the agent is not able to maintain the state within the

threshold and thus the final episode length is longer than that of the PI. At 50%, the

performance of the agent does not degrade and outperformed the PI. Regardless, the

best policy trained with SAC is shown to be sub-optimal when compared to the best

policies of PPO and NAF2.
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Figure 4.30: Best SAC agent. Action is deterministic.
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Figure 4.31: Best SAC agent. Action Gaussian noise with zero mean and standard
deviation 10% of action range.
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Figure 4.32: Best SAC agent. Action Gaussian noise with zero mean and standard
deviation 25% of action range.
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Figure 4.33: Best SAC agent. Action Gaussian noise with zero mean and standard
deviation 50% of action range.
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Action noise 0% 10% 25% 50%

SAC 43.09 ± 25.49 37.61 ± 21.99 33.35 ± 16.86 46.27 ± 18.41

PI controller 20.32 ± 3.60 20.72 ± 3.80 25.28 ± 7.90 52.56 ± 18.49

Table 4.13: The statistics (mean±std.) for the episode length obtained by the best
SAC agent and PI controller with respect to the amplitude of Gaussian action noise.

Table 4.13 tabulates the episode length statistics collected from 1000 episodes, for

the values of Gaussian action noise considered in the episode evaluation plots. Fig-

ure 4.34 clearly shows the improved performance of the SAC agent as the action noise

is increased, where beyond 35% action noise the median episode length of the SAC

agent goes below that of the PI controller. Figure 4.35 shows that the upper bound

DTO of the SAC agent never goes below the Goal threhold if QFBEnv, indicating that

for all action noise values there were episodes which did not terminate successfully.

Regardless, the lower bound DTO of the SAC agent is similar to the that of the PI

controller for all action values, while the distribution of DTO up to the third quadrant

of the SAC agent starts to match that of the PI controller after approximately 20%

action noise. Figure 4.36 clearly shows the wide distribution of last actions chosen by

the SAC agent for all action noise values, however, as the action noise increases the

distribution width decreases or remains constant. These results show a policy which

is sub-optimal, however, which behaves better under the effect of noise.
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Figure 4.34: Effect of action noise on the episode length due to varying action noise
on the best SAC agent and the PI controller.

Figure 4.35: Effect of action noise on the distance to the optimal point at the end of
the episode due to varying action noise on the best SAC agent and the PI controller.
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Figure 4.36: Effect of action noise on the last action used in the episode due to varying
action noise on the best SAC agent and the PI controller.

Figure 4.37 shows three episodes obtained with deterministic actions chosen by the

best SAC-TFL agent trained in Section 4.1.3. It can be seen that the episode length

of the agent is approximately half that of the PI controller and is less than 15 steps

long. However, it can be observed from the bottom plots that the deterministic actions

selected by SAC-TFL are the most chaotic of all the agents discussed so far in this

section.

Similarly to the other agents, Figures 4.38 to 4.40 show a set of three evaluation

episodes each using different action noise. Until 25%, the agent obtains a shortest

episode length than the PI controller, at approximately 20 steps. At 50% action

noise, SAC-TFL fails to satisfy the early termination criterion in Episode #2, how-

ever, obtained an episode length below 10 steps in Episode #3. Considering that in

each episode the agent managed to converge close to the threshold boundary in ap-

proximately 10 steps, the agent has successfully learned a policy that converges on

QFBEnv.
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Figure 4.37: Best SAC-TFL agent. Action is deterministic.
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Figure 4.38: Best SAC-TFL agent. Action Gaussian noise with zero mean and stan-
dard deviation 10% of action range.
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Figure 4.39: Best SAC-TFL agent. Action Gaussian noise with zero mean and stan-
dard deviation 25% of action range.
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Figure 4.40: Best SAC-TFL agent. Action Gaussian noise with zero mean and stan-
dard deviation 50% of action range.
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Figure 4.41: Effect of action noise on the episode length due to varying action noise
on the best SAC-TFL agent and the PI controller.

Action noise 0% 10% 25% 50%

SAC-TFL 13.34 ± 3.19 13.64 ± 3.43 15.60 ± 4.53 24.81 ± 12.27

PI controller 20.29 ± 3.62 20.58 ± 3.91 25.15 ± 7.86 51.95 ± 18.56

Table 4.14: The statistics (mean±std.) for the episode length obtained by the best
SAC-TFL agent and PI controller with respect to the amplitude of Gaussian action
noise.

Table 4.14 tabulates the episode length statistics collected from 1000 episodes, for

the values of Gaussian action noise considered in the episode evaluation plots. It can

be seen that the best policy trained by SAC-TFL outperformed the PI controller.

This can also be observed in Figures 4.41 and 4.42, where the performance of the

best SAC-TFL agent is comparable to that of NAF2. Similarly to the best SAC

agent, Figure 4.43 shows that the width of the action value distribution of the best

SAC-TFL agent decreases as the action noise increases.
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Figure 4.42: Effect of action noise on the distance to the optimal point at the end
of the episode due to varying action noise on the best SAC-TFL agent and the PI
controller.
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Figure 4.43: Effect of action noise on the last action used in the episode due to varying
action noise on the best SAC-TFL agent and the PI controller.

Figure 4.44 shows three episodes obtained with deterministic actions chosen by

the best AE-DYNA-SAC agent trained in Section 4.1.3. Similarly to the other agents,

Figures 4.45 to 4.47 correspond to an action noise of 10%, 25% and 50%. In the

deterministic case, the policy sometimes fails to converge under the threshold boundary

through the most optimal route. At 10% action noise, the performance of the agent

is almost the same as the PI controller, however, at 25% the performance degrades

to around double the PI episode length. When the noise is increased to 50%, some

episodes diverge from the optimal point, while the PI controller always succeeds.

Action noise 0% 10% 25% 50%

AE-DYNA-SAC 36.25 ± 17.50 37.22 ± 17.78 41.98 ± 18.24 54.51 ± 17.84

PI controller 20.20 ± 3.79 20.50 ± 4.03 25.36 ± 8.28 53.35 ± 18.41

Table 4.15: The statistics (mean±std.) for the episode length obtained by the best
AE-DYNA-SAC agent and PI controller with respect to the amplitude of Gaussian
action noise.
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Figure 4.44: Best AE-DYNA-SAC agent. Action is deterministic.
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Figure 4.45: Best AE-DYNA-SAC agent. Action Gaussian noise with zero mean and
standard deviation 10% of action range.
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Figure 4.46: Best AE-DYNA-SAC agent. Action Gaussian noise with zero mean and
standard deviation 25% of action range.
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Figure 4.47: Best AE-DYNA-SAC agent. Action Gaussian noise with zero mean and
standard deviation 50% of action range.
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Figure 4.48: Effect of action noise on the episode length due to varying action noise
on the best AE-DYNA-SAC agent and the PI controller.

Table 4.15 tabulates the episode length statistics collected from 1000 episodes,

for the values of Gaussian action noise considered in the episode evaluation plots.

Figure 4.48 illustrates the same information for more values of action noise. Figure 4.49

shows that the DTO of the best AE-DYNA-SAC agent is above the Goal threshold

for all action values which implies that there were failed episodes even when using

deterministic actions. Similarly to the best SAC and SAC-TFL agents, Figure 4.50

shows that the width of the action value distribution of the best AE-DYNA-SAC agent

decreases as the action noise increases.
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Figure 4.49: Effect of action noise on the distance to the optimal point at the end of
the episode due to varying action noise on the best AE-DYNA-SAC agent and the PI
controller.
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Figure 4.50: Effect of action noise on the last action used in the episode due to varying
action noise on the best AE-DYNA-SAC agent and the PI controller.

In summary, NAF2 and PPO trained the best two agents, however, AE-DYNA-

SAC was the most sample efficient and also obtained a policy which is stable in low

action noise. The policies trained by TD3 and SAC were sometimes successful, how-

ever, their performance was significantly worse than NAF2 and PPO. On the other

hand, the best SAC-TFL agent trained an adequate policy which works well on QF-

BEnv.

Effect of incorrect tune estimation

This test subjects the best agents trained in Section 4.1.3 to the effects of 50Hz

noise harmonics explored in Section 2.3.2. A similar procedure to the previous test

is followed, where the best agent trained by each respective RL algorithm is loaded

and is used to produce evaluation episodes. The only difference in this test is that

after each step in the environment, the state is intercepted and a perturbation is

added which simulates the effect of 50Hz noise harmonic-induced perturbations. These
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perturbations were obtained by the following steps: a) The state returned by the

environment after applying an action, ∆Q, was added to a random frequency, fr;

b) The realistic spectrum simulation procedure in Section 3.2 was performed for a

spectrum with a resonance frequency, f true
res = fr +∆Q and ζ = 10U(−2.5,−1.8).; c) The

BQ algorithm is used to obtain perturbed tune estimates. All the plots shown in this

section also show black dashed lines which mark the locations of the horizontal and

vertical 50Hz harmonics in normalised state space.

The best two polices so far were trained with NAF2 and PPO. Figure 4.51a and

Figure 4.51b show three episodes, obtained by each respective policy. It can be ob-

served that the states of the polices (dark blue) appear to be concentrated around

an intersection of the horizontal and vertical 50Hz harmonics. Similarly, the PI con-

troller state (cyan) are concentrated around the same, or other intersections of the

noise harmonics. It can be observed that the state of the two best policies remain on

the closest intersection to the optimal point of the state space, while the PI controller

states can sometimes extend up to two horizontal, or two vertical 50Hz harmonics

from the optimal point. This observation suggests that even without the tune estima-

tion renovation discussed in Chapter 3, trained NAF2 and PPO agents can maintain

the tune error as close as possible to the optimal point.

Figure 4.51c shows the best TD3 policy under the effect of 50Hz harmonics. It

can be observed that the policy behaves similarly to the response of the PI controller

and extends up to the second harmonic away from the optimal point. Figure 4.52a

shows the best SAC policy in this test and it can be observed that the PI controller

maintains a similar parformance to the other examples previously shown, while the

SAC policy extends up to the fourth 50Hz harmonics from the optimal point; this is

a difference of more than 200Hz from the optimal point.

Figure 4.52b shows the results for the best SAC-TFL policy. It can be seen that the

state was maintained around the closest 50Hz harmonic intersection to the optimal

point. This performance is similar to the best-performing agents, NAF2 and PPO.

Figure 4.52c are the results corresponding to the best AE-DYNA-SAC policy and show

that the policy obtained a performance similar to the PI controller.
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(a) Best NAF2 agent.
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(b) Best PPO agent.
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Figure 4.51: Effect of 50Hz harmonics on the best NAF2, PPO and TD3 agents, and
PI controller.
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(a) Best SAC agent.
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(b) Best SAC-TFL agent.
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(c) Best AE-DYNA-SAC agent.

Figure 4.52: Effect of 50Hz harmonics on the best SAC, SAC-TFL and AE-DYNA-
SAC agents, and PI controller.
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Effect of actuator failure

In Section 2.4.1, the possibility of magnet failures was discussed. In this test, the

performance of best policies trained in Section 4.1.3 was analysed in the presence of

such magnet failures. For each episode shown in this section, an action was chosen

at random at a predetermined step in the episode. For the remaining steps until a

terminal state, the action chosen was set to -1, to simulate a cool-down of the magnet

after a circuit failure. The corresponding action obtained by the PI controller was set

to the same value. While this test is not a perfect representation of magnet failures in

the LHC, it is a worst case scenario which tests the performance of the policies and

PI controller in unseen and unideal conditions.

For each policy, three scenarios with five episodes each are shown. In the first

scenario, one actuator fails on step 1; in the second scenario, three actuators fail on

steps 1, 2 and 3, respectively; in the third scenario five actuators fail in a similar

sequence to the other scenarios. All the plots shown in this test also show an episode

trajectory obtained by repeating the episode with the same initial conditions and with

all actions functioning. The episode trajectories affected by the actuator failures use

× as a marker, while the episodes using all actions use ▲ as a marker. It was also

found that for certain scenarios, a maximum episode length of 70 obtained large state

deviations. To aid the analysis of the results, the maximum episode length was set to

30.

Figure 4.53 shows the effect of actuator failures on the best NAF2 agent. At one

actuator failure in Figure 4.53a, the PI controller already diverges from the threshold

boundary and fails on all episodes. However, NAF2 still manages to satisfy the early

episode termination criterion in 4
5
of the episodes and all in under 10 steps. At three

actuator failures in Figure 4.53b, both NAF2 and the PI controller fail to converge,

however, NAF2 remained closer to the optimal point. This trend continues at five

actuator failures in Figure 4.53c.
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(a) Best NAF2 agent with 1 actuator failure.
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(b) Best NAF2 agent with 3 actuator failures.
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(c) Best NAF2 agent with 5 actuator failures.

Figure 4.53: Effect of different number of actuator failures occurring at different
episode steps. The best NAF2 policy is compared with the PI controller.

Figure 4.54 shows the effect of actuator failures on the best PPO policy. Similarly

to NAF2, PPO performs better than the PI controller in all scenarios. However, unlike
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NAF2, PPO still converges in 1
5
of the episodes during five actuator failures, and also

converges the closest to the threshold boundary in another 2
5
of the episodes. The effect

of the number of actuator failures on the best PPO policy is also evident in the action

evolution plots (red and magenta) of Figure 4.54. These figures along with bottom

plots of Figure 4.16, show that when all actions are used, the actions decay the closest

to zero at the end of the episode. They also show that the actions still decay during

actuator failures, however, the actions remain separated by a range proportional to

the number of actuators which failed during the episode. This observation suggests

that the PPO policy has successfully generalised the optimal policy trained on one

environment, to another environment with slightly different model dynamics.

Figure 4.55 shows the results for this test when attempted with the best TD3

policy. It can be seen from Figure 4.55a, that with one actuator failure, TD3 already

starts to fail to converge to the optimal point. The trend worsens as the number of

actuator failures increase, as can be seen in Figure 4.55b and Figure 4.55c.

Figure 4.56 and Figure 4.57 show the results for the best SAC and SAC-TFL

policies, respectively. Both policies appear to have similar performances with one

actuator failure in Figure 4.56a and Figure 4.57a. However, at three actuator failures,

SAC-TFL converges closer to the optimal point on average, whereas SAC diverges

significantly, e.g. Figure 4.57b Episode #4. The performance of SAC-TFL degrades

at five actuator failures, as shown in Figure 4.57c, however, at a much lower rate than

the SAC policy. This observation suggests that the SAC-TFL implementation is able

to generalise better over small model variations.

Finally, Figure 4.58 shows the results of the best AE-DYNA-SAC policy. Fig-

ure 4.58a shows that the policy can, at times, converge close to the optimal point,

however, not enough to terminate the episode, e.g. Episode #4. The performance

continues to degrade as more actuator failures are introduced, however, unlike SAC,

the policy degradation is comparable to the performance of the PI controller.

In summary, the best two agents found for QFBEnv were the on-policy, model-

free PPO agent, and the off-policy, model-free NAF2 agent. Both obtained a high

performance in each test, however, the policy trained by PPO showed the desirable
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property of the actions decaying to zero, proportional to the reward and the slightly

better generalisation observed during the actuator failure test. It was concluded that

it was too difficult to tune the hyperparameters of stable-baselines SAC and TD3 and

both their best policies suffered from sub-optimal performance even in the simplest,

deterministic case. On the other hand, SAC-TFL improved over the training instability

of stable-baselines SAC, and obtained a good policy overall. Finally, AE-DYNA-SAC

was the most sample efficient agent attempted and the performance of the best policy

trained, was comparable to that of the PI controller.
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(a) Best PPO agent with 1 actuator failure.
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(b) Best PPO agent with 3 actuator failures.
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(c) Best PPO agent with 5 actuator failures.

Figure 4.54: Effect of different number of actuator failures occurring at different
episode steps. The best PPO policy is compared with the PI controller.
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(a) Best TD3 agent with 1 actuator failure.
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(b) Best TD3 agent with 3 actuator failures.
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(c) Best TD3 agent with 5 actuator failures.

Figure 4.55: Effect of different number of actuator failures occurring at different
episode steps. The best TD3 policy is compared with the PI controller.
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(a) Best SAC agent with 1 actuator failure.
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(b) Best SAC agent with 3 actuator failures.
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(c) Best SAC agent with 5 actuator failures.

Figure 4.56: Effect of different number of actuator failures occurring at different
episode steps. The best SAC policy is compared with the PI controller.
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(a) Best SAC-TFL agent with 1 actuator failure.
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(b) Best SAC-TFL agent with 3 actuator failures.
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(c) Best SAC-TFL agent with 5 actuator failures.

Figure 4.57: Effect of different number of actuator failures occurring at different
episode steps. The best SAC-TFL policy is compared with the PI controller.
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(a) Best AE-DYNA-SAC agent with 1 actuator failure.

0.2 0.0 0.2 0.4
QH (normalised)

1.0

0.8

0.6

0.4

0.2

0.0

Q
V
 (n

or
m

al
is

ed
)

Episode #1
Act. Fail index: [2, 15, 8], step: [0 1 2]

0.0 0.5 1.0
QH (normalised)

1.0

0.8

0.6

0.4

0.2

0.0

Q
V
 (n

or
m

al
is

ed
)

Episode #2
Act. Fail index: [13, 14, 1], step: [0 1 2]

0.8 0.6 0.4 0.2 0.0
QH (normalised)

0.75

0.50

0.25

0.00

0.25

0.50

Q
V
 (n

or
m

al
is

ed
)

Episode #3
Act. Fail index: [4, 8, 7], step: [0 1 2]

0.25 0.00 0.25 0.50
QH (normalised)

0.25

0.00

0.25

0.50

0.75

1.00

Q
V
 (n

or
m

al
is

ed
)

Episode #4
Act. Fail index: [8, 5, 11], step: [0 1 2]

1.00 0.75 0.50 0.25 0.00
QH (normalised)

1.0

0.8

0.6

0.4

0.2

0.0

Q
V
 (n

or
m

al
is

ed
)

Episode #5
Act. Fail index: [4, 3, 14], step: [0 1 2]

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

AE-DYNA Best Policy Evaluation - Actuator failure

Agent states (Before)
Agent states (After)

PI states (Before)
PI states (After)

Agent actions
Agent failure

PI actions
PI failure

Episode Start
 Agent Episode End

PI Episode End
State Threshold

(b) Best AE-DYNA-SAC agent with 3 actuator failures.

0.6 0.4 0.2 0.0
QH (normalised)

1.0

0.5

0.0

0.5

Q
V
 (n

or
m

al
is

ed
)

Episode #1
Act. Fail index: [6, 6, 12, 5, 1], step: [0 1 2 3 4]

1.5 1.0 0.5 0.0
QH (normalised)

0.8

0.6

0.4

0.2

0.0

Q
V
 (n

or
m

al
is

ed
)

Episode #2
Act. Fail index: [8, 5, 10, 5, 9], step: [0 1 2 3 4]

0.25 0.00 0.25 0.50 0.75
QH (normalised)

1.0

0.5

0.0

0.5

Q
V
 (n

or
m

al
is

ed
)

Episode #3
Act. Fail index: [6, 1, 4, 13, 8], step: [0 1 2 3 4]

0.5 0.0 0.5 1.0
QH (normalised)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Q
V
 (n

or
m

al
is

ed
)

Episode #4
Act. Fail index: [13, 5, 12, 8, 6], step: [0 1 2 3 4]

0.00 0.25 0.50 0.75 1.00
QH (normalised)

2.0

1.5

1.0

0.5

0.0

Q
V
 (n

or
m

al
is

ed
)

Episode #5
Act. Fail index: [7, 14, 4, 0, 0], step: [0 1 2 3 4]

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

0 10 20 30
Steps

1

0

1

Ac
tio

n 
(n

or
m

al
is

ed
)

AE-DYNA Best Policy Evaluation - Actuator failure

Agent states (Before)
Agent states (After)

PI states (Before)
PI states (After)

Agent actions
Agent failure

PI actions
PI failure

Episode Start
 Agent Episode End

PI Episode End
State Threshold

(c) Best AE-DYNA-SAC agent with 5 actuator failures.

Figure 4.58: Effect of different number of actuator failures occurring at different
episode steps. The best AE-DYNA-SAC policy is compared with the PI controller.

The same procedure used to create the evaluation plots discussed above was used

to obtain more statistics on the performance of the trained RL agents and the PI

controller in the presence of actuator failures. The maximum episode length was set
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Table 4.16: Episode length statistics (mean±std) under the effect of actuator failures.

Algorithm
Nb. of actuator failures

0 1 3 5
NAF2 9.10 ± 1.39 33.01 ± 29.24 69.14 ± 7.01 70.00 ± 0.00
PPO 8.80 ± 1.28 9.14 ±1.50 41.60 ± 29.85 70.00 ± 0.00
TD3 39.06 ± 12.08 69.05 ± 6.21 70.00 ± 0.00 70.00 ± 0.00
SAC 43.09 ± 25.49 62.97 ± 17.77 69.72 ± 3.93 70.00 ± 0.00

SAC-TFL 12.97 ± 3.03 29.44 ± 24.69 63.45 ± 17.40 69.90 ± 2.21
AE-DYNA-SAC 36.79 ± 17.55 61.58 ± 15.97 69.82 ± 2.72 70.00 ± 0.00
PI controller 20.09 ± 3.70 70.00 ± 0.00 70.00 ± 0.00 70.00 ± 0.00

back to 70 steps. The episode length and the final distance to the optimal point (DTO

in Equation (4.2)) were used as performance metrics. The same three scenarios with

one, two and three actuator failures were attempted, with a total of 1000 episodes per

scenario per algorithm used to obtain the performance statistics.

Tables 4.16 and 4.17 tabulate the statistics for the episode length and DTO under

the effect of actuator failures for all algorithms attempted in Section 4.1.3. The best

PPO agent manages to maintain the smallest average episode length and a DTO which

is close to the Goal threshold of QFBEnv at up to three actuator failures. NAF2 and

SAC-TFL show a similar performance up to one actuator failure, however, it can be

seen that SAC-TFL was the only agent which obtained successful termination at five

actuator failures. The performances of TD3, SAC and AE-DYNA-SAC with respect

to the average episode length are similar, however, AE-DYNA-SAC obtained slightly

lower DTO. Ultimately, all the RL agents behaved better than the PI controller, which

obtained no successful termination during actuator failures.
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Table 4.17: Distance to Optimal point (DTO) statistics (mean±std) under the effect
of actuator failures. Underlined cells show where it is likely to observe successful
termination.

Algorithm
Nb. of actuator failures

0 1 3 5

NAF2 0.02 ± 0.00 0.05 ± 0.02 0.13 ± 0.05 0.56 ± 0.87

PPO 0.01 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.52 ± 1.02

TD3 0.03 ± 0.00 0.84 ± 0.76 1.96 ± 1.78 3.43 ± 2.03

SAC 0.04 ± 0.02 0.25 ± 0.16 1.92 ± 1.04 5.02 ± 1.82

SAC-TFL 0.02 ± 0.01 0.07 ± 0.07 0.26 ± 0.17 0.94 ±0.75

AE-DYNA-SAC 0.04 ± 0.04 0.18 ± 0.14 1.03 ± 0.87 2.18 ± 1.46

PI controller 0.02 ± 0.00 0.17 ± 0.01 0.98 ± 0.97 3.10 ± 1.34

Goal threshold 0.057

4.2 OFC RL

The control of the orbit is more critical due to the larger number of actuators and

sensors. In this section, the RL algorithm that obtained the best performance on

QFBEnv was attempted on an OpenAI Gym environment called OFCEnv. Its training

is used to demonstrate some shortcomings of applying state-of-the-art RL algorithms

directly on large continuous action spaces.

The OFC on one beam and one plane relies on a RM, which is a 276× 544 matrix

modelling the change in the horizontal or vertical beam orbit due to change in the

CODs deflections [µrad]. Therefore, a vector containing the delta COD deflections,

∆
−→
δz is multiplied by the RM:

∆
−→
δz ·RM = ∆−→z

where ∆−→z is the modelled change in beam orbit due to ∆
−→
δz being applied to the

CODs. Note that z denotes either the horizontal or vertical planes.

The OFC uses two RM per beam and each matrix is obtained from the linear
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beam optics of the LHC. The orbit control sequence occurs at 25Hz and a predefined

sequence of steps is performed where: a) The orbit error, ∆−→z , is obtained by sub-

tracting the latest beam measurements from the reference orbit; b) A velocity form PI

controller is applied by using ∆−→zt and ∆−−→zt−1, where t denotes the time step; c) The

PI output is multiplied by the pseudo-inverse matrix of RM (Pseudo-Inverse (PInv))

to obtain a set of COD deflections; d) The deflections are converted to current in

Amperes; e) The currents are globally scaled down to accommodate the slowest act-

ing COD; f) The current corrections are sent to the COD power converters via UDP

packets.

Ultimately, the problem complexity increases linearly with every plane and beam

added to the OFC. For this reason, any RL agent which can converge to an optimal

policy on one beam and one plane, can cover the entire functionality of the OFC.

4.2.1 Environment Setup

The successful implementation of the smaller environment QFBEnv proved useful dur-

ing the development of the OFCEnv. Both environments use the OpenAI Gym frame-

work with the basic implementation of OFCEnv following that of QFBEnv closely

[101]. The RM used by OFCEnv is a 276 × 544 matrix, corresponding to the 276

horizontal orbit correctors and the 544 Beam Position Monitors (BPMs) available on

beam 1.

The normalised state space represented a range of [−1.5mm, 1.5mm] of beam

orbit error from the reference orbit. The initial state of each episode was sampled

from U(−1mm, 1mm). The goal of OFCEnv was to reduce the beam orbit error on

a simulated beam response in the horizontal plane below an absolute threshold of

0.3mm, which corresponds to the threshold orbit during injection [1]. Following the

suggestions in [102], the state was also standardised by dividing by a running standard

deviation of every state value.

The normalised action space represented the fraction of the total allowable current

rate in the magnets. Similarly to QFBEnv, considering that the OFC operated at

25Hz, the time between each step in the environment is 40ms. Therefore, a normalised
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action of 1 on a magnet with a maximum current rate of 0.5A s−1 is equivalent to a

current change of 0.5× 0.04 = 20mA.

The reward function used for OFCEnv was the same as QFBEnv, Equation (4.1).

The early successful termination criterion was limited to one reward above the thresh-

old reward, in order to make a success more likely to occur. The PI controller function-

ality implemented on QFBEnv was also re-implemented in OFCEnv. In this work, it

was primarily used to obtain an adequate episode length to use during training. Con-

sequently, it was decided to set the maximum episode length to 500 steps.

4.2.2 Training

Due to the limited computing resources available during this work, a small number

of agents were trained with a relatively large number of environment steps (> 1 ×

106). A lecture by Schulman [102] highlighted the difficulties that can be faced when

attempting new RL on new problems. In particular, when using any Stochastic Policy

Gradient (PG) method such as PPO, varying, ϵ, and the number of steps used for

every policy update, greatly affects the training performance of the agent.

Name PPO#0 PPO#1 PPO#2 PPO#3

Learning rate 2.5× 10−4

γ 0.99

ϵ 0.4 0.4 0.2 0.2

Batch size 1000 1000 2000 500

Table 4.18: Hyperparameters used for different PPO agents on OFCEnv.
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Figure 4.59: Undiscounted episode returns for four PPO agents trained on OFCEnv,
using the hyperparameters tabulated in Table 4.18.

Table 4.18 tabulates the hyperparameters of four PPO agents attempted and their

episode returns during training is shown in Figure 4.59. It can be observed that the

maximum return was obtained by PPO#2 at 670,000 training steps. However, this

policy is quickly forgotten and PPO#2 retains a poor performance throughout the

next approximately 3 million training steps. PPO#2 and PPO#3 suggest that PPO

is more susceptible to a change in ϵ, and that varying the batch size at ϵ = 0.2, did

not improve the training performance. The highest performance agent was PPO#0,

which exceeded PPO#1 by almost two orders of magnitude at 4 million time steps.

Regardless, no policy was ever successful in satisfying the early termination criterion.

The training shown in this section illustrates the degradation of the sample effi-

ciency of state-of-the-art RL algorithms in large state-action spaces. Other types of

RL algorithms, e.g. NAF2 and SAC were also attempted on OFCenv, but similar

results were obtained. It was also observed that training OFCEnv requires substantial

computing resources and therefore, any future studies must be conducted on more

powerful machines, e.g. cloud clusters.
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4.3 Summary

This chapter presents a feasibility study on the application of Reinforcement Learning

(RL) in the Beam-Based Feedback System (BBFS). The control problem present in

the Tune Feedback (QFB) was converted into an RL environment called QFBEnv as

presented in Section 4.1.1. The linear beam optics matrix (Tune Response Matrix

(QRM)) used in the QFB controller was used to implement the forward dynamics of

QFBEnv. The standard Proportional-Integral (PI) controller using the pseudo-inverse

of the linear dynamics (Tune Pseudo-Inverse (QPI)) was re-implemented and re-tuned

on QFBEnv to serve as a reference. A total of five types of RL algorithms were chosen

and trained on QFBEnv as documented in Section 4.1.3.

The best agents trained by each RL algorithm along with the PI controller, were

subjected to series of tests in Section 4.1.4. The first test in Section 4.1.4 tests the

robustness of each agent to the effect of additive Gaussian action noise with zero

mean. The second test in Section 4.1.4 looks at the effect of a systematic source

of state perturbation, obtained by simulating the effect of 50Hz noise harmonics as

introduced in Section 3.2. The last test in Section 4.1.4 simulates a worst-case scenario

to mimic malfunctioning magnets in the BBFS. Therefore, the last test subjects each

agent to a QFBEnv with slightly different dynamics from the one used to train the

agents themselves.

The best policy was trained by a Proximal Policy Optimisation (PPO) agent,

which is a Model-Free (MF) and an on-policy algorithm. It was shown that a learned

policy on QFBEnv is robust to action noise as well as to systematic perturbations to

the state space. The results tabulated in Tables 4.16 and 4.17 also show that PPO

can successfully terminate episodes until at least three actuator failures. This is in

contrast to the standard PI controller, which never successfully terminates when the

environment dynamics are changed. This concludes that it is possible to outperform

the state-of-the-art beam-based controllers using RL.

Finally, Section 4.2 takes a preliminary look at the difficulties that arise when

training with larger environments of the same type of QFBEnv. The control prob-
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lem in the Orbit Feedback Controller (OFC) was implemented by OFCEnv, which is

essentially a scaled up version of QFBEnv with a state-action space an order of mag-

nitude larger. It was shown that the number of training steps required to converge

using state-of-the-art RL algorithms would increase by at least two orders of magni-

tude. This is infeasible in a real-time scenario on the LHC, hence, more research into

sample-efficient RL algorithms is required.
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Chapter 5

Renovation of the beam-based

feedback systems

In this chapter, the renovation of the new Beam Feedback Controller LHC (BFCLHC)

is introduced. The BFCLHC solves many of the problems encountered during the op-

eration of the Beam-Based Feedback System (BBFS) until Run 2. In particular, the

hardware, software and operational side of the BBFS were renovated. This renovation

also saw the development of a hardware agnostic testing framework done in collabora-

tion with BE-OP-LHC, which can be used to perform both static and dynamic tests.

The first expected operation of the BFCLHC is in Run 3, however, tests are already

being conducted on the on-line machines themselves.

5.1 Original BBFS design

The original implementation of the BBFS was comprised of two components, the Orbit

Feedback Controller (OFC) and the Orbit Feedback Service Unit (OFSU). Figure 2.18

shows an overview of the internal structure of the original BBFS. The principal de-

sign objective during the implementation of the BBFS was to achieve a deterministic

behaviour of the OFC. This was a problem at the time since the hardware posed a lim-

itation. Consequently it was decided that in order to ensure a deterministic behaviour

of the BBFS, the OFC and the OFSU would execute on two different machines. The
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settings of the feedbacks were communicated between the OFSU to the OFC via a

private Ethernet cable over a Transmission Control Protocol (TCP) connection while

the acquisition data concentrated by the OFC was streamed to the OFSU using a

User Datagram Protocol (UDP) connection. The OFC was the foremost concentrator

for all beam position data coming from the Beam Position Monitor (BPM) systems

and the measured tunes from the Base-Band Q (tune) (BBQ) systems. In addition,

the OFC computed and drove the necessary corrections to the currents flowing in the

Orbit Corrector Dipoles (CODs) and quadrupoles implemented in 2 independent feed-

back loops. All other tasks, such as data logging and access to the OFC settings, were

performed via the OFSU.

The OFC was written in the C++ object-oriented programming language, and re-

lied heavily on ROOT libraries. ROOT was developed and is still maintained by CERN

and was originally intended for efficient calculations on very large data accumulated

by high-energy physics experiments [103]. The programming paradigm of ROOT is

object-oriented where all objects derive from what is called a TObject. All TObjects

can use the various functionalities implemented in ROOT, such as I/O handling, mem-

ory management and error handling. The OFC consists of several TObject-derived

classes, which implement all the required functionality. The core of the OFC was

a loop-based program, where every iteration was one simultaneous pass through the

control loops of the OFC and the QFB. The latest version of the OFC used ROOT

Release 5.34/20 [104].

Figure 5.1 shows the flowchart of the OFC main program. GLOBAL RUN was the

variable which controlled the control loop. The INIT block is expanded in Figure 5.2

where it can be seen that several initialisation files were required to set up the OFC.

The configuration file set up the thread parameters such as their priority and affinity

and also contained two important parameters related to testing the OFC; SIM MODE and

BASE PORT. SIM MODE were used extensively throughout all the OFC code to change

its behaviour during testing. Functionalities such as sending the UDP packets to

the Function Generator/Controllers (FGCs) and Radio-Frequency (RF) cavities were

suppressed when SIM MODE was set in order to confine the output of the OFC to the
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Figure 5.1: Flowchart of the main program of the Orbit Feedback Controller (OFC).
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Figure 5.2: Flowchart of the INIT block in Figure 5.1.
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testing framework. BASE PORT served as an offset port number for all the network

sockets used by the OFC. It was only changed during testing, when data was supplied

by the testing framework. The configuration file contained other parameters, however,

their use had become deprecated throughout the OFC lifetime.

The OFC also required a ROOT file upon initialisation which contained default

optics stored in a ROOT object. This file existed since the first version of the OFC and

due to its age, it proved difficult to verify its contents. Its removal was also deemed

dangerous due to its ubiquitous use throughout the initialisation code and therefore

it was left up to the next major renovation to be removed. Several other text files

were also required upon initialisation which provided: a) the hostnames of all the

Front-End Computers (FECs) that the OFC communicated with; b) the parameters

of the magnets, e.g. maximum current rate; c) network routing information for all the

BPMs, CODs, and quadrupoles required to create the network packets.

true

false

LISTEN OT

LISTEN OT

Blocking listen on OT 
UDP port for 1000 ms

OT packet 
received

Display error 
message

Log timestamp

Figure 5.3: Flowchart of the LISTEN OT block in Figure 5.1, which waits for the
reception of the Orbit Trigger (OT) TCP packet from the OFSU.

After a successful initialisation the control loop took over. The first task at the

start of every loop was LISTEN OT. Figure 5.3 expands LISTEN OT which shows that
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the control loop is blocked until the Orbit Trigger (OT) Beam Synchronous Timing

(BST) signal is received (at a rate of 25Hz). The blocking listen had a timeout of 1 s

as a fail-safe measure. Therefore, in the event that the OT was not received the BBFS

operated at 1Hz.
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Figure 5.4: Flowchart of the CONC block in Figure 5.1, which concentrates the incoming
data from the BPMs, BBQ and CODs.

The second task of the control loop was the data concentration in the CONC block.

Figure 5.4 expands CONC and illustrates that the reception of any data depends whether

a grace time has elapsed. The grace time is an amount of time dedicated to listening

for new data. The grace time is set to be shorter than the OT period of 1
25Hz

= 40ms.

Normally the grace time is set to 10ms [1], which means that all the BPM, BBQ and
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μ

Figure 5.5: Left flowchart shows the COMP block in Figure 5.1, middle flowchart shows
the energy (RF frequency) correction and the right flowchart shows the orbit correc-
tion.

magnet UDP packets are concentrated only during this time.

Following the data concentration during the grace time, some packet statistics

are logged and the BPMs and CODs are masked according to the status bit contained

within the UDP packets. For example, in the event that a BPM is marked as faulty, its

position measurement is not taken into consideration. Instead the reference position

is assumed at its longitudinal location in the LHC. Section 2.4.1 expanded on the

operation of the BBFS during malfunctions of BPMs and CODs.

On the left of Figure 5.5, the COMP block is expanded which is responsible for

calculating the required corrections to the magnets.. The first task is to update the

internal memory with the latest measurements obtained from the CONC block. Follow-

ing this, the energy corrections are calculated and the delta RF frequency is obtained

and prepared in a UDP packet.
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Figure 5.6: Continuation of Figure 5.5 showing the flowchart of the tune and coupling
correction.
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An overview of the process of orbit correction was given in Section 2.4. It is impor-

tant to note that the required corrections to the COD deflections [µrad] are calculated

by multiplying the orbit error with the Pseudo-Inverse (PInv). Equation (5.1) is used

to convert the calculated deflections to current:

I[A] =
3 · θ[rad] · p[GeV/c] · Inom[A]

B · Lmag[Tm]
(5.1)

where p is the longitudinal momentum of the beam; Inom, B and Lmag are the nominal

current, nominal magnetic field strength and the length of the dipole magnet, respec-

tively; and θ is the deflection. In the case that the calculated current corrections

violate the maximum slew rate of the magnets, all the currents are scaled by a factor

depending on the slowest magnet to act. Finally, the current corrections are prepared

in UDP packets.

Finally, the Tune Feedback (QFB) follows in the COMP block, which calculates the

corrections to the tuning quadrupole correctors. Figure 5.6 expands on the QFB. It

can be seen that the QFB depends on the coupling and the tune estimate stability to

be below a certain threshold to operate. The latter arose due to feedback instabilities

incurred by the unstable tune estimates from the BQ algorithm. A similar procedure

to the orbit corrections follows, where the current corrections to the quadrupoles are

obtained by the Tune Pseudo-Inverse (QPI). The quadrupole currents are also slew

rate limited and prepared in UDP packets.

After the COMP block, all the UDP packets prepared during the energy (RF fre-

quency), orbit and tune feedbacks are sent through the LHC technical network. It is

important to note that since the execution of the program is deterministic, all the UDP

packets are synchronised with the OT BST signal as well, at 25Hz. If the feedbacks

are still left on at the end of a control loop, the next loop starts when the next OT

signal is received in the LISTEN OT block.
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5.2 Feasibility of Hardware Acceleration

5.2.1 Problem Definition

The BBFS was not internally equipped to detect failures in its sensors and actuators

for the purpose of adjusting the beam optic Response Matrix (RM) models. As was

previously mentioned, the failures were detected from the UDP packet status bits

associated with a particular device. A failure in one of the magnets was more serious

and the BBFS relied on the LHC operators on shift to detect that a magnet failure

occurred. Then the operators calculated the new models off-line and uploaded them

manually to the OFC through the OFSU.

One of the reasons why this functionality was not automated during the design of

the BBFS had to do with the limited computing power available at the time. One

Singular Value Decomposition (SVD) operation took in the order of 1 × 101 seconds

to execute. Considering that the controller operates at 25Hz (40ms) and that the

OFC was designed for a deterministic execution, a full optics update would have been

incompatible with the control loop if done sequentially.

Along the LHC cycle the optics change significantly and RM must be regularly

updated to account for these changes. In practice up to 10 different RM matrices are

used during a typical cycle. During ramp down or in preparation for injection, the

SVD decomposition is applied to all RM matrices taking into account the known mal-

functioning BPMs (typically 10-20 per beam and plane) and CODs (typically none).

During the machine filling at injection all SVD decompositions are recomputed taking

into account new malfunctioning elements. For 10 matrices the calculations required

2 to 3 minutes in the BBFS. Thus, the recalculation of the new PInv matrix through

the SVD algorithm has proven to be a computational and operational bottleneck.

5.2.2 Proposed Solution

For the case when the COD is not in a critical location in the LHC, it was proposed that

one of the heaviest computational elements in the OFC, the SVD optics inversion, could
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be made faster by using Hardware Acceleration (HA). By calculating PInv from RM

faster, optics model corrections can potentially be done on-line and help the operators

save the beam in the event of a small corrector magnet malfunction. As discussed

in Section 2.5, HA libraries allow the use of multi-core devices, such as modern-day

conventional Central Processing Units (CPUs), much more efficiently through a careful

and optimised use of the CPU cache memory. Moreover, such libraries facilitate the

use of other devices such as Graphical Processing Units (GPUs), which have a massive

number of computational units.

Techlab [47] provided access to machines equipped with GPUs as well as multi-

threaded CPUs. Several machine configurations could be used to test the feasibility of

using HA on the SVD. In particular, Table 5.1 lists the machines that were available

to test SVD acceleration by HA libraries.

Table 5.1 clearly shows the difference between CPUs and GPUs. The number

of cores and the amount of operations per second (GFLOPS) in GPUs is orders of

magnitude higher than standard <10 core CPUs. The Intel Xeon Phi 7120P was a

coprocessor board, designed to work within supercomputer clusters and was connected

to the main board via PCIe. Intel Core i7-4790 and Intel Xeon E5-4650 had Hyper-

threading and therefore 8 and 16 threads, respectively, could be executed at once.

Intel Xeon Phi 7120P could execute 244 threads simultaneously

5.2.3 Benchmarking Tests

Benchmarking tests were done on each device, where the ArrayFire and the original

implementation using ROOT objects of the SVD algorithm were tested. Specifically

these tests focused on measuring the time it takes the device to compute the PInv of

the RM, and finding the average execution time over many executions.

The benchmarking tests provided a good insight into the effect of hardware accel-

erated libraries on the computation time of the SVD algorithm. Figure 5.7 shows the

average execution time of the SVD algorithm for different libraries, running on differ-

1From [105].
2From [106].
3From [107].
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Processor name Cores GFLOPS
(FP32)

Intel Xeon E5-2640 2.5GHz 6 9.31

Intel Core i7-4790 3.6GHz 4 13.11

Intel Xeon E5-4650 2.7GHz 8 12.91

Intel Xeon Silver 4110 2.1GHz 8 21.11

Intel Xeon Phi 7120P 1.3GHz 61 1,2082

Processor name Cores GFLOPS
(FP32)

GFLOPS
(FP64)

NVIDIA GTX1080Ti 3584 11,3403 354.43

NVIDIA V100 5120 14,1303 7,0663

Table 5.1: Specifications of the Techlab machines available. Giga FLoating-point
OPerations per Second (GFLOPS) quantify the processor performance in the order of
1× 109 32-bit floating point operations per second (FP32). The two GPUs also show
the performance on 64-bit double floating point (FP64) precision.

ent machines. Note that it was not possible to use some libraries on specific machines,

e.g. the ArrayFire CUDA library could not be used where there was no NVIDIA de-

vice. The ROOT and ArrayFire CPU libraries were executed on all machines. During

their execution there is no GPU utilisation and instead their respective host CPUs are

used. Table 5.2 shows the two GPUs used in this test and their respective host CPUs.

GPU Host CPU

NVIDIA GTX1080Ti Intel Xeon E5-2640 @ 2.5GHz

NVIDIA Tesla V100 Intel Xeon Silver 4110 C@ 2.1GHz

Table 5.2: Host CPUs of the two GPUs used for the benchmarking tests.

From the results shown on Figure 5.7, it is clear that the fastest libraries were the

ArrayFire CPU and ArrayFire OpenCL which on average outperformed the traditional

ROOT implementation by two orders of magnitude. The execution time on Intel Core

i7-4790 was similar for both the ArrayFire CPU and OpenCL implementations however

the small difference between the two execution times could not attest which one of the

two libraries performs better. The execution times for both Intel Xeon Co-processors

were also very similar to one another, however it is clear that the Xeon Phi 7120

outperformed the Xeon E5-4650 on all occasions. From the results below it can also
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Figure 5.7: SVD execution time on different devices

be concluded that the ArrayFire CUDA implementation on both NVIDIA devices

was slower than ArrayFire OpenCL and on average, approximately half an order of

magnitude slower than the ArrayFire CPU implementation.

Another important conclusion drawn from this test was that the use of GPUs,

namely the NVIDIA GeForce family: GTX1080Ti and the NVIDIA Tesla family:

V100, is not suitable for the SVD calculation of the PInv of the LHC response matrix

as all of the CPU machines outperformed them. The reason for the poor performance

of the GPUs is that the speedup obtained from a massively parallel architecture is

overshadowed by the time it takes to transfer data, to and from such devices. Should

it have been the case where the SVD had to be performed on a much larger matrix,

e.g. a high-definition image, the use of GPUs would have proved to be ideal. It is

important to note that GPUs are mounted on the motherboard via a PCI port, which

is inherently slower than the connection between the CPU and main memory. In

addition, ArrayFire optimises the SVD algorithm through the use of the CPU cache,

which is orders of magnitude faster than main memory [108].
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5.2.4 SVD Accuracy statistics

This test addressed the hypothesis that different device architectures (namely in

GPUs) would provide different results due to different optimisation techniques when

applying HA the SVD algorithm. The different results might be caused by float-

ing point rounding errors or different cut-off values used within the SVD algorithms

themselves as they are implemented in each respective library.

A sample of the OFC beam optics used in LHC operation, containing a RM and

its corresponding PInv, were obtained from the OFSU. The number of singular values

used to create the PInv was also obtained. A test was devised which compared the

PInvs computed by the combination of libraries and devices available. In this test, the

PInv matrices were multiplied with the original RM. Each multiplication obtained a

Pseudo-Identity (PId) matrix, where if the PInv was computed with all the singular

values, PId would be an identity matrix, I; a zero matrix with diagonal values of one.

Finally, the following calculation was performed:

PId ≜ PInv · RM

E = |PId− I| (5.2)

where E is the error analysed in this test. This calculation was also performed with

the original PInv, and the results are annotated by OFSU.

Figure 5.8 shows that the average error obtained from each respective libraries is

the same when executed on different machines. This suggests that the computation

result of the PInv through the SVD algorithm is not hardware dependent. Figure 5.8

also shows a discrepancy in the error obtained from the OFSU and the ROOT libraries,

however this should not be taken into consideration in this test. This discrepancy was

due to calculation parameters which could not be perfectly matched from one library

to the other. Such parameters include the number of singular values to be used in the

calculation of the PInv as well as the cut-off value for such singular values, below which

the singular value is zeroed out. In the BBFS, the SVD calculation was performed by

user code built with ROOT libraries. Other custom changes in the SVD were made
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Figure 5.8: Average absolute error obtained from the different configurations of HA
libraries and devices using Equation (5.2).

during the development of the BBFS to ensure singular values in descending order and

to zero out singular values below a certain threshold. This created a truncated PInv,

which could not be perfectly replicated with ArrayFire libraries.

The standard deviation of the error is shown on Figure 5.9 where it can be seen that

this value is independent of the hardware where the computation is running on, as was

the case for the average error. It can also be seen that the standard deviation of the

error is approximately the same for all the libraries with which the PInv is calculated.

This implies that the accuracy of the calculations is similar across libraries.

5.2.5 Memory and CPU usage

The final test performed focused on measuring the resource usage of the best libraries

and machine illustrated in Figure 5.7; namely the ArrayFire OpenCL and ArrayFire

CPU libraries executed on the Intel Core i7-4790 CPU. This was done by running the

benchmarking test with one iteration of the PInv calculation and measuring the CPU

usage as well as the memory consumption of the process. Then a python script was

used to visualise the measured data from the running process.

The tests in Section 5.2.3 showed that CPUs are preferable to GPUs in terms of

execution time. The use of ArrayFire OpenCL libraries is also not considered ideal.
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Figure 5.9: Standard deviation of the absolute error obtained from the different con-
figurations of HA libraries and devices using Equation (5.2).

Figure 5.10: CPU usage percentage during SVD calculation using different libraries.
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Figure 5.11: Details from Figure 5.10.

There were difficulties during the installation of OpenCL libraries on Intel Xeon E5-

2640, which implies a risk of using OpenCL on operational machines. The simplest

library to implement was ArrayFire CPU and coincidentally also obtained the best

execution time on Intel Core i7-4790 CPU @ 3.60GHz.

The Intel Core i7-4790 CPU @ 3.60GHz and all the libraries except ArrayFire

CUDA were chosen for this test. First was the implementation using the ROOT

libraries, in the top plot of Figure 5.10. Multiple cores are being used throughout

the execution of the program, however, they are not being used simultaneously at any

point in execution.

The other plots in Figure 5.10 show the CPU usage of the ArraFire OpenCL and

CPU libraries and Figure 5.11 shows an enlarged section. It can be seen that multiple

threads are alive for approximately 80ms, which is in accordance to the results shown

in Figure 5.7.

Apart from the CPU utilisation, the machine’s main memory (RAM) usage was

also analysed. Figure 5.12 shows the memory usage for ROOT libraries (orange plot);

ArrayFire using CPUs; and ArrayFire using OpenCL implementations respectively.

The original implementation is quite standard, where after approximately 2 seconds,

the response matrix is loaded and enough memory is allocated to hold the PInv after
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Figure 5.12: Memory consumption during SVD calculation using different libraries.

it is calculated. This memory consumption remains constant up until the end of the

execution.

For ArrayFire CPU in Figure 5.12 (green plot), a different scenario can be seen,

where after 1.2 seconds, the memory consumption increased by approximately 500MB.

This was due to ArrayFire copying the input response matrix over many threads, in

order to parallelise the SVD. A similar approach can be seen for ArrayFire OpenCL

(blue plot) which uses three times more memory.

This difference in memory consumption between ArrayFire’s CPU and OpenCL

libraries can be attested to the specific programming paradigm used when opting to

use OpenCL. However the latter was not further analysed due to it being proven to

have a similar performance to the ArrayFire CPU implementation, yet consuming

close to three times more memory.

5.2.6 Discussion

Three tests were performed which: a) compared the execution times of various libraries

on different devices; b) checked the properties of the respective results; c) and analysed

the hardware usage of various libraries on the best performing device in a). Both

CUDA and OpenCL implementations were shown to be inadequate for the use on

BFCLHC.

The use of GPUs was also shown to not be required. Since the hardware upgrade in
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Long Shutdown 2 (LS2) introduced a 64-core CPU with 200GB RAM, CPU paralleli-

sation can be applied effectively to calculate multiple SVD calculations simultaneously.

The time required to calculate 10 PInvs matrices is thus significantly reduced from

1× 102 seconds to the order of 1× 100 seconds.

5.3 Code renovation

The OFSU was the interface that the operators used during real operation in order

to monitor the present status of the OFC, and changing parameters needed for op-

eration. Two of the main problems with the OFSU were that it was bloated with

unused functionality and black-box procedures which were required to change certain

settings, e.g. fetching optics. The early design of the BBFS allowed access to more

dedicated settings in the OFC, however, operator experience throughout the years has

dictated which functionality to keep and improve, and which would become obsolete.

Ultimately, the OFC had somewhat changed and became in discord with the OFSU.

To avoid changing the major release of the BBFS during Run 2, any code renovations

were delayed until LS2.

During LS2 it was decided to condense all the code in the BBFS, into one FESA-

based application called BFCLHC. The hardware requirements were no longer an issue

following a hardware upgrade of the OFC and OFSU machines. The hardware upgrade

was from a 24-core, 32 GB RAM, 15 MB cache machine to a 64-core, 200 GB and 22MB

cache machine [109]. This upgrade meant that the conservative measures taken in the

initial design of the OFC could be relaxed. During LHC operation, the OFC never

crashed due to insufficient hardware requirements, therefore, the hardware upgrade

meant that it was safe to implement more advanced code and retain a deterministic

execution.

At the same time, the FESA framework was undergoing development. With the

introduction of new features, most of the basic operations done by the BBFS until

Run 2 could be replaced by simple FESA commands. Some of the code used in the

OFC and QFB was left intact: a) concentration of the COD, BPM and BBQ data;
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Figure 5.13: Function Player states (encircled) and events (connections) as imple-
mented in BFCLHC.

b) computation of the corrections required on the CODs and the tuning quadrupoles;

c) Sending of the corrections to the respective gateways. The main program shown

in Figure 5.1 and the OFSU FESA class, contained the majority of the code which

was replaced. The FESA framework was used to re-implement the logic of the main

program. One example is the relay of BPM orbit data from the OFC to the OFSU,

which: a) underwent serialisation through ROOT TInterlink objects; b) sent via UDP

to the OFSU; c) and finally set to the appropriate FESA property for orbit data.

To improve maintainability, the BFCLHC was designed to have minimal overhead

user code by relying more on the FESA framework to implement the basic logic of the

BFCLHC. For example, the data concentration is performed in a Real-Time Action

(RTA), which updates the FESA device shared memory with the latest BPM orbit

data. A standard FESA interface property is then set up for providing the most

recent BPM orbit measurements directly from shared memory. Following this design

approach, trivial tasks were easier to debug during implementation and to maintain in

the future. Considering that back-compatibility is ensured by FESA, future versions

of BFCLHC will be easier to maintain [110]. It is important to note that the design of

the BFCLHC Application Programming Interface (API) was based on the API of the

OFSU, however, it was adapted significantly to better fit the needs of the operators.
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Function Players (FPs) was a new feature that was added to the BFCLHC, at

the request of the LHC operators. Using FPs for automated settings control was

introduced in [111]. In the BFCLHC, the FPs are used to automate the change of:

a) reference values, e.g. reference orbit; b) control loop gains; and c) optic models.

This will make it easier for the LHC operators to use more advanced optics in LHC

operation. Presently, the BFCLHC can accept a list of reference values along with

a list of time offsets when the references should be applied. Linear interpolation of

reference values was also implemented, e.g. for the reference orbit. Each FP is used

depending on its current state. Figure 5.13 shows the state machine of the FP as

implemented in the BFCLHC. The state is stored in the FESA shared memory, and

can be changed by a FESA command. To change the state of the FP, the operators

must either manually send events, or synchronise them with the LHC timing. Some

events are only available in specific states and a FESA exception is thrown when the

user violates the state machine rules; e.g. when the FP is in the ARMED state, only a

TRIGGER or RESET event can change the state. A function can only be set when the

respective FP is in IDLE state.

The optics calculation procedures are now delegated to the BFCLHC FESA class.

The approach to initialising and loading new optics to the feedbacks has therefore

been changed. Any optics model must now be added to the BFCLHC memory via a

FESA API set command. Subsequently, a FP must be used to instruct the feedbacks

when to change to new optics. The operators rely on their own sub-routines which can

obtain a set of optic models from LHC Software Architecture (LSA) settings database

[112], and forward it to the BFCLHC.

Following the HA feasibility study in Section 5.2, it was determined that the use

of GPUs did not improve computation times when calculating the PInv of the RMs

when compared to multi-core CPU approach [113]. As a result, the multi-core CPU

installed after the hardware upgrade was used for all calculations. In the new design,

after an optics model is added, a new thread is spawned which calculates the RM and

PInv. In the event of a sensor or magnet malfunction, a thread per optic model can be

spawned to re-calculate the adjusted models without blocking the control loop. The
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time to perform a full optics recalculation took in the order of minutes to complete

on the BBFS. The BFCLHC reduces this time to the order of seconds, which makes

it possible to attempt in real-time in the LHC Run 3.

5.4 BFCLHC Testing framework

The first formal testing of the OFC occurred at the start of the LHC Run 2 in 2014/15.

A code renovation saw to the porting of the OFC and OFSU code from a 32-bit to

a 64-bit architecture. Considering the maintenance and correct porting of more than

90,000 lines of code, BE-OP-LHC decided to build a separate testing framework, which

mimicked the input signals of the OFC and OFSU by sending UDP packets disguised as

coming from the BPMs. The original design of the OFC made this operation complex

due to its global control loop architecture. A series of code changes had to be made

to the BBFS simply to be able to test it. In particular, a global variable controlled

key mechanisms within the OFC which determined whether the code was being used

operationally or within a simulation. In addition, the output network ports were also

tweaked in order to allow for a different base port to be used during testing. This was

done as a protective measure against UDP packets actually being sent to the magnets

during testing.

One of the main goals of the first testing framework was to verify that the renovated

code respects all operational boundaries of the OFC. An identical hardware setup

which was set up as a back-up to the operational hardware had to be used to run the

tests. The tests were written in a Java-embedded Domain Specific Language (eDSL)

and the JUnit framework was used to create the tests and generate reports. These

design choices were prompted by need for non-programmer operators to easily write

tests in a functional and intuitive approach. However, due to the inherent complexity

of this testing framework it was quickly realised that it was difficult to maintain and

to use efficiently. Despite these limitations, this testing framework was successful in

detecting bugs which aided the code renovation of the BBFS prior to the LHC Run 2.

The new BFCLHC testing framework is still undergoing development, and will
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Figure 5.14: Testing framework schematic, showing the use of Docker containers in
the GitLab Continuous Integration (CI) framework.

continue at least until the start of Run 3. Figure 5.14 shows the basic structure of the

latest design. It was decided to make the testing framework hardware agnostic with

the use of Docker containers [114]. This new design allowed tests to be performed on

the BFCLHC during active development through the use of Continuous Integration

(CI) tools in Gitlab [115]. As an example, Algorithm 1 shows the pseudo-code for a

test that checks the limit on the number of optics that can be loaded to the BFCLHC.

Figure 5.15 is a screenshot from GitLab CI which shows the results of the tests that

were performed automatically after successful compilation and Docker image creation.

5.5 Summary

This chapter starts by providing more details on the design of the Beam-Based Feed-

back System (BBFS) in operation until the LHC Run 2. Section 5.1 uses flowcharts

that capture the salient mechanisms of the BBFS, in particular, the concentration of

beam-based measurement data and the calculation of the corrections to the corrector

magnets currents.

199



Figure 5.15: Screenshot of the BFCLHC testing framework test results using CI on
GitLab.

Algorithm 1 Test which asserts that only 30 optics can be loaded to BFCLHC.

optics set ▷ Contains set of 30 optics
bfc ▷ Running instance of BFCLHC
extra optics ▷ 1 extra optics
res ▷ Test result
for optics in optics set do

bfc.loadOptics(optics)
if Allowable time expired then

res← Fail
Exit

else if not bfc.opticsLoadedSuccessfully() then
res← Fail
Exit

end if
end for
bfc.loadOptics(extra optics)
if bfc.opticsLoadedSuccessfully() then

res← Fail
else

res← Success
end if
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Section 5.2 defines and goes through the feasibility study of the application of

Hardware Acceleration (HA) to mitigate a computational bottleneck in the BBFS due

to the Singular Value Decomposition (SVD) of the Response Matrix (RM) matrices

used in the Orbit Feedback Controller (OFC) to obtain the inverse dynamics. It

was concluded that HA in the form of Graphical Processing Units (GPUs) would

not improve the performance and thus, the hardware upgrade of the BBFS could be

concluded in Long Shutdown 2 (LS2). A library called ArrayFire implements SVD

with a more optimised use of the Central Processing Unit (CPU) cache memory was

shown to reduce the computation time by two orders of magnitude.

Section 5.3 follows the code renovation done on BBFS and its redesign to the Beam

Feedback Controller LHC (BFCLHC). The BFCLHC is a stand-alone FESA applica-

tion which incorporates all the required features of the BBFS and the addition of new

features requested by the LHC operators. In particular these are Function Players

(FPs) which will be used during the LHC Run 3 to automate the change of specific

settings in the beam-based controllers within the BFCLHC. Section 5.4 describes the

hardware agnostic testing framework developed by BE-OP-LHC specifically to test

BFCLHC during development. Trial runs performed during the LHC hardware com-

missioning in October 2021 show that the BFCLHC was successfully validated and

performs as expected.
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Conclusions

The Beam-Based Feedback System (BBFS) was responsible for collecting real-time

Beam Position Monitor (BPM) and Base-Band Q (tune) (BBQ) data, in order for

the Orbit Feedback Controller (OFC) and the Tune Feedback (QFB) to calculate the

required current correction to send to the magnets. This work was prompted by the

need for better and improved functionality of the BBFS and took place during the

LHC Long Shutdown 2 (LS2). Various aspects of the feedback systems were consid-

erably upgraded and other studies were carried out which offer potential solutions to

other problems within the BBFS during Run 2, e.g. alternative algorithms for tune

estimation.

Achieved Aims and Objectives

Various new techniques were developed to estimate the tune of the LHC more ac-

curately, in the presence of 50Hz harmonics. The methods developed in Section 3.3

provide a new algorithmic approach towards estimating the tune. This was done by

first removing the frequency bins in the immediate vicinity of 50Hz harmonics, and

then interpolating over the spectrum with gaps. The best model trained in Section 3.4,

ML-Refined, was trained by using a mixture of real BBQ and simulated spectra. It

was demonstrated how a variant of Generative Adversarial Networks (GANs) called

SimGAN, could be used to solve the problem of unlabelled datasets in an adversarial

manner. Results in Section 3.5 show that ML-Refined can potentially obtain the best

tune estimates.

A feasibility study was performed on the use of Hardware Acceleration (HA) in
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the optics calculations. It was shown that Graphical Processing Units (GPUs) were

not beneficial and that a modern Central Processing Unit (CPU) performs better on

the matrix sized used in the BFCLHC. This ultimately lead to the final hardware

architecture of the BFCLHC to be determined.

The feasibility study of the use of RL in the QFBEnv proved useful in determining

the robustness of trained policies under various realistic scenarios. It was shown that

RL has the potential to train policies which are more robust than the current feedback

controller scheme present in BFCLHC. Preliminary tests have also shown state-of-

the-art RL algorithms suffer from a lack of sample efficiency in the presence of large

state-action spaces, e.g. in OFCEnv.

The new BFCLHC testing framework by BE-OP-LHC and the BFCLHC by SY-

BI-SW were developed simultaneously. Initial tests and trial runs on the real machines

provide successful preliminary results, where the BFCLHC behaved as expected, thus

virtually the same as BBFS. BFCLHC also implemented new functionalities requested

by the LHC operators, e.g. Function players which can automate setting changes. The

handling of the optics calculations were delegated to the BFCLHC, allowing for paral-

lelised calculation of the optics upon initialisation or request from a FESA command.

The FESA API of BFCLHC was also significantly simplified, which meant that the

BFCLHC can potentially be used by more operators if necessary, without the risk of

black-box behaviour.

Critique and Limitations

There were other potential solutions to improve the quality of the BBQ spectra. One

was to increase the hardware acquisition rate of BBQ system, by which the BBQ

spectra would have a higher frequency resolution. However, currently there are no

plans to further analyse this change in the BBQ system settings until the end of beam

commissioning in the LHC Run 3. The same effect can be achieved by performing the

Fast Fourier Transform (FFT) on longer time signals to obtain BBQ spectra with a a

lower ∆f between frequency bins.
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The lack of variation in the refined spectra obtained by one trained SimGAN can

be attributed to the relatively small amount of real BBQ data used in the Real dataset.

It is possible that by using more examples of real BBQ spectra, one SimGAN would

learn to add more types of artefacts in the refined spectra. Ultimately less SimGANs

would have been required to build a robust dataset of refined spectra.

One major shortcoming of this work is the lack of testing and validation of the pro-

posed upgrades on the LHC. In particular is the validation of the new tune estimation

methods. Section 3.5 was limited to visual inspection to assess the accuracy of the

tune estimates. It was also explained that the tune estimate stability plots could also

be affected by 50Hz harmonics. Therefore, the ultimate test can only be performed

on-line.

The work in Chapter 4 was constricted to simulated environments, since the end

of LS2 was delayed beyond the time available to perform the work on the LHC itself

[116]. Previous work had already started to explore RL in the context of control

in particle accelerators. However, experience has shown it to be difficult to deploy

operationally beyond training and testing; e.g. the work of Kain et al. [91] on training

RL for AWAKE (a plasma wake-field particle accelerator at CERN), required the

development of a specialised FESA class which is capable of communicating with the

Python scripts training the agent.

The Techlab machines used in Section 5.2.2 were also planned to be used to train

RL on OFCEnv. However, when the work on RL started, the services offered by Tech-

lab were no longer available. Therefore, the training was restricted by less powerful

machines and obtained inconclusive results. The use of highly parallelised comput-

ing resources would have allowed for different types of RL to be attempted as well,

e.g. multi-agent RL. Such algorithms are rather computationally expensive to train

successfully, however, their effectiveness could not be analysed.

The last remark about the tests performed on the best policies trained on QFBEnv

is that the actuator failure tests did not perfectly model magnet failures. It was ex-

plained that the purpose was to explore a worst case scenario and assess the behaviour

of the policies under different environment conditions.
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The code renovation in Chapter 5 mainly focused on the integration of all the

functionality of the BBFS within one FESA class. The core code of the feedback

systems was not changed in order to reduce the amount of new code that will be

introduced at the start of Run 3. In order to make the BFCLHC more maintainable,

it is proposed that a future version focuses on removing the dependence on ROOT

libraries. The simpler architecture of the BFCLHC allows for an optimisation of the

core code which uses faster linear algebra libraries.

During Run 2, a set of real-time COD, MQT, BPM and BBQ data were logged.

However, it was found that some of the data was corrupted due to problems in the

custom logging service. It is suggested that long-term real-time data is stored in LHC

Run 3, to ensure a continuous development during technical stops. Previously, UDP

packets were directly dumped to binary files since the hardware limitations posed a

risk of any post-processing creating a bottle-neck. It was later found that some binary

files were corrupted and that the logging service crashed often due to insufficient disk

space on the machine running the logging service. Therefore, future real-time data

logging systems should ideally prepare the data better prior to logging.

Future Work

The attempts to design a better algorithmic approach for tune estimation in Section 3.3

will be tested in the LHC Run 3. In addition, it is proposed that the noise harmonic

removal in the alternative approaches in Section 3.3 should have adjustable 50Hz

frequency rejection windows. In the presence of drifts in certain 50Hz harmonics,

expert operators can potentially obtain more stable tune estimates by fine tuning the

position of individual harmonics.

Following the work done off-line in training RL agents on QFBEnv, is the imple-

mentation of a FESA class which can train an agent on-line. This can either be imple-

mented alongside QFB within BFCLHC or in a separate FESA class which subscribes

to the BFCLHC. The use of off-policy, or Model-Based (MB) RL normally allows the

use of replay buffers which can be filled with real trajectories. Significant fail-safe

205



measures have to be taken within the FESA class responsible for training on-policy

agents. The experiments performed on AWAKE consisted of an easier environment

than QFBEnv, since AWAKE is tolerant to larger state excursions when acquiring

new episode trajectories. A future implementation of any RL algorithm within the

BFCLHC (developed in Section 5.3), needs to be equipped with proper fail-safe mea-

sures, e.g. automated early detection of large state excursions by using the linear beam

optics model to predict the expected state excursion. The entire process of state and

action sanitisation should be meant to avoid other machine protection systems from

triggering. This can be achieved by playing episodes within a safe margin of operation

and terminating any episode that obtains large state excursions. This implementation

would also benefit from the experience and success achieved in applying RL in a par-

ticle accelerator setting, e.g. the work of Kain et.al [91] and Hirlaender et al. [99].

The magnet cool-down periods also have to be respected as explained in the start of

Section 4.1.3.

A more rigorous study will be conducted during Run 3 to improve the sample ef-

ficiency in RL in large continuous action spaces. The use of dimensionality reduction

techniques, e.g. the latent space in VAEs, alongside the use of the attention mecha-

nism in transformers [117], could solve some of the issues observed when training RL

agents on OFCEnv. An RL algorithm which can train a policy that performs well on

OFCEnv and which is trained with acceptable sample efficiency, can prove useful to

other systems within the CERN complex which contain a large number of inputs and

outputs. Considering that the main purpose of RL is behavioural training, by learning

the behaviours of specific systems, an effective model is obtained simultaneously.

In theory, Model-Based (MB) RL promises better sample efficiency than Model-

Free (MF) RL. Therefore, future work should also attempt other types of MBRL

algorithms, e.g. ME-TRPO.

It is proposed that future work focuses as well on acquiring real-time COD, BPM

and BBQ data. Information about the state visitation frequency can be obtained and

might help the development of better RL algorithms for OFCEnv. Another use of the

real-time data could be the modelling of beam orbit perturbation sources, that could
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prove useful to making OFCEnv more realistic.

As mentioned in the previous section, the BFCLHC still relies on ROOT libraries.

Future work should see the replacement of ROOT with standard linear algebra li-

braries. This would also be a major renovation task, however, it was planned that

first, a series of unit tests should be written on the new BFCLHC testing framework

and then the replacement code is written within a test.
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Glossary

3D Direct Diode Detection. vii, 20, 21

AE-DYNA Anchored Ensemble DYNA-style. 55, 64, 65, 110

ALICE A Large Ion Collider Experiment. 13

AM Amplitude Modulation. 20

ANN Artificial Neural Network. 42, 56, 57, 61, 68, 70, 111

ATLAS A Toroidal LHC ApparatuS. 13

BBFS Beam-Based Feedback System. iv, v, viii, 2, 3, 5–7, 10, 15, 29–31, 65, 69, 102,
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BFCLHC Beam Feedback Controller LHC. xvii, 177, 194–199, 201
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CERN European Organization for Nuclear Research. iv, 1, 30, 31
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CNN Convolutional Neural Network. 48, 88
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CPU Central Processing Unit. 38, 39, 187, 191, 201, 203

DDPG Deep Deterministic Policy Gradient. 55, 58, 61, 62

DDQN Double Deep Q-Network. 56, 57

DL Deep Learning. 122

DPG Deterministic Policy Gradient. 60

DQN Deep Q-Network. 55–57, 61

DRL Deep Reinforcement Learning. 55

DS Dispersion Suppressor. 12, 13

EMA Exponential Moving Average. 22, 38

FEC Front-End Computer. 30, 181

FESA Front-End Software Architecture. 31

FFT Fast Fourier Transform. 22, 203

FGC Function Generator/Controller. 30, 37, 178

FP Function Player. 197, 201

GAN Generative Adversarial Network. ix, 4, 7, 50, 68, 202

GDL Generative Deep Learning. 50

GP Gaussian Process. x–xii, 79, 81, 82, 84, 97, 99–101, 103

GPGPU General-Purpose Graphical Processing Unit. 39

GPU Graphical Processing Unit. iv, 38, 40, 109, 187, 191, 201, 203

GUI Graphical User Interface. 31
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HA Hardware Acceleration. iv, xvii, 5–7, 38, 39, 65, 66, 109, 187, 190–192, 197, 201,
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IP Interaction Point. 2, 13, 14

IR Insertion Region. 13, 14, 63, 104

LHC Large Hadron Collider. iv, 1–3, 7, 12, 18, 19, 29, 31, 33, 35–38, 63, 65

LHCb Large Hadron Collider beauty. 13

LOF Local Outlier Factor. 64

LS2 Long Shutdown 2. v, 5, 67, 68, 75, 102, 104, 195, 201, 202

LSS Long Straight Section. 12, 13

MAD-X Methodical Accelerator Design. 3, 12

MB Model-Based. 54, 205, 206

MC Monte Carlo. 74

MF Model-Free. 54, 125, 175, 206

MICADO MINimisation des Carrés des Distortions d’Orbite. 32

ML Machine Learning. 4, 6, 7, 39, 63, 65, 85

NAF Normalised Advantage Functions. 58, 59

NAF2 Normalised Advantage Functions with Double-Q Learning. 110

NFQ Neural Fitted Q Iteration. 55, 56

OFC Orbit Feedback Controller. xvi, 2, 3, 5, 18, 29–32, 34–38, 104, 171, 172, 176,

177, 179, 186, 190, 195, 198, 201, 202

OFSU Orbit Feedback Service Unit. 5, 29, 31, 177, 186, 190
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OT Orbit Trigger. 182, 185

PCA Principal Component Analysis. 63

PER Prioritised Experience Replay. 64

PG Stochastic Policy Gradient. 57–59, 173

PI Proportional-Integral. v, xvi, 32, 34, 36, 69, 107, 108, 126, 159, 160, 172, 175

PId Pseudo-Identity. 33, 190

PInv Pseudo-Inverse. 32–37, 172, 185–187, 189–191, 193, 195, 197

PPO Proximal Policy Optimisation. 55, 60, 109, 110, 114, 173, 175

QFB Tune Feedback. v, 2, 5, 6, 30, 31, 37, 68, 69, 102, 104, 106, 111, 114, 122, 175,

185, 195, 202

QPI Tune Pseudo-Inverse. 185

QPI Tune Pseudo-Inverse. 107, 175

QRM Tune Response Matrix. 106, 107, 175

ReLU Rectified Linear Unit. 86, 88, 111

RF Radio-Frequency. 12, 13, 178

RL Reinforcement Learning. v, 4–7, 52–57, 64, 65, 105–107, 110, 122, 125, 171, 175

RM Response Matrix. 3, 32–37, 104, 105, 171, 172, 186, 187, 190, 197, 201

RMS Root Mean Square. 32, 37

RTA Real-Time Action. 196

SAC Soft Actor-Critic. 62, 109, 110, 120

SARSA State-Action-Reward-State-Action. 53, 55, 56
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SIS Software Interlock System. 37

SL Supervised Learning. 4, 40, 85

SNR Signal-to-Noise Ratio. 21

SSS Short Straight Section. 13

SVD Singular Value Decomposition. 7, 32, 33, 35, 37, 39, 106, 186, 190, 194, 201

TCP Transmission Control Protocol. 30, 178

TD Temporal Difference. 53, 55

TD3 Twin-delayed Deep Deterministic Policy Gradient. 62, 109, 110, 116

TRPO Trust Region Policy Optimisation. 59

UAT Universal Approximation Theorem. 44

UDP User Datagram Protocol. 30, 36, 37, 178, 183
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