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1. Introduction

In this paper, we will consider the notions of irregular independence and irregular domination as counterparts of
the notions of regular independence and regular domination (also referred to as fair domination), which were recently
introduced in [3,4]. The formal definitions of these two parameters are as follows.

IfAis an independent set of a graph G such that the vertices in A have pairwise different degrees, then we call A an irregular
independent set of G. The size of a largest irregular independent set of G will be called the irregular independence number of
G and will be denoted by «;-(G). If A is an independent set of a graph G such that the vertices in A have the same degree, then
Ais called a regular independent set of G. The size of a largest regular independent set of G is called the regular independence
number of G and is denoted by o (G).

For a vertex v of a graph G, let N(v) denote the set of neighbours of v. If D is a dominating set of G such that [N(u) N D| #
IN(v) N D for every two distinct vertices u and v in V(G) \ D, then we call D an irregular dominating set of G. The size of a
smallest irregular dominating set of G will be called the irregular domination number of G and will be denoted by y;(G). If D
is a dominating set of G such that [N(u) N D| = |N(v) N D| for every two vertices u and v in V(G) \ D, then D is called a regular
dominating set of G. The size of a smallest regular dominating set of G is called the regular domination number of G and is
denoted by yr.(G). Observe that the notion of irregular domination is an extreme case of the well-studied notion of location-
domination [2]: a set D is called a locating-dominating set of G if D is a dominating set of G such that N(u) "D # N(v)N D for
every two distinct vertices u and v in V(G) \ D.

The regular independence number was first introduced by Albertson and Boutin in [1]. They proved lower bounds
for planar graphs, maximal planar graphs, bounded-degree graphs and trees. Recently, Caro, Hansberg and Pepper [4]
generalized the regular independence number by introducing the regular k-independence number o (G) of a graph G, and
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they generalized the results in [ 1] and found lower bounds for the regular k-independence numbers of trees, forests, planar
graphs, k-trees and k-degenerate graphs. Guo, Zhao, Lai and Mao [7] obtained the exact values of the regular k-independence
numbers of some special classes of graphs, and they established some lower bounds and upper bounds for line graphs and
trees with a given diameter. They also obtained results of Nordhaus-Gaddum [9] type.

The regular domination number was first introduced and studied by Caro, Hansberg and Henning [3]. They referred to the
regular domination number as the fair domination number. Das and Desormeaux [6] considered the problem of minimizing
the size of a regular dominating set that induces a connected subgraph. Further results on fair domination are obtained
in[5,8].

For standard definitions and notation in graph theory, we refer to [ 10]. For a graph G and a subset A of V(G), E(A, V(G)\ A)
denotes the set of edges of G which have one vertex in A and the other in V(G)\ A. Unless specified otherwise, we make use of
the following notation: n = |V(G)|, m = |E(G)|, d(v) = |N(v)|, §(G) = min{d(v) : v € V(G)}, A(G) = max{d(v) : v € V(G)},
e(A,V(G) \ A) = |E(A,V(G) \ A)| and B(G) = max{e(A, V(G) \ A) : A € V(G)}. The n-vertex complete graph and the
n-vertex empty graph are denoted by K, and E,, respectively. For a non-negative integer k, we denote theset {i : 1 < i <
k, iis an integer} by [k]. Note that [k] = @ if k = 0.

This paper is organized as follows. In Section 2, we prove several sharp upper bounds on «;(G). In Section 3, we
characterize the graphs G with «;(G) = 1, we determine those that are planar, and we determine those that are outerplanar.
In Section 4, we prove several sharp lower bounds for y;(G), we characterize the graphs G with y;:(G) € {n, n — 1}, and we
also provide some upper bounds for y;-(G). In Section 5, we provide sharp upper bounds relating «;,(G) to y;-(G) or ;+(G). In
Section 6, we provide sharp Nordhaus-Gaddum-type bounds for both «;(G) and y;-(G).

2. Irregular independence
In this section, we provide various bounds for «;(G). We start with bounds in terms of basic graph parameters.
For any graph G, we denote by span(G) the number of distinct values in the degree sequence of G. More formally,
span(G) = |{d(v) : v € V(G)}|. Clearly, span(G) < A — § + 1.
Theorem 2.1. If Gis a graph, n = |V(G)|, m = |E(G)|, § = 6(G) and A = A(G), then
n—8+1J 1+J2n2—2n—4m+1}

1§air(G)§min{A—8+1,{ 5 5

Moreover, the bounds are sharp.
Proof. We have «;,(G) > 1 as {v} is an irregular independent set for each v € V(G). Clearly, a;(G) < span(G) < A -5+ 1.

Let A be a largest irregular independent set. Let vy, ..., v; be the distinct vertices of A with § < d(v{) < --- < d(v;). Thus,
8+t —1<d(v)<|V(G)\ Al = n—t, from which we get t < | 2=0*! | Let B = V(G) \ A. We have

._u

|E(GIBD)| + ) _ d(v) 5n—t)(n—t—1+2:n—2t+l)
veA i=1

1 t
:E(n—t)(n—t—1)~|—5(2n—3t+1),

so 2t? — 2t 4+ (n + 2m — n?) < 0, and hence «;(G) < % (l +/2n%2 —2n — 4m + l). This establishes the bound in the
theorem.

The lower bound is attained if G is regular. We now show that the upper bound is sharp. Let r and t be positive integers.

If Gis the union of t vertex-disjoint graphs Gy, . . ., G¢ such that G; is a copy of K;;_1 foreachi € [t], theno;(G) = A—35+1.

Let k = r + t — 1. Suppose that G is constructed as follows: let vy, ..., v¢, wy, ..., wy be the distinct vertices of G, and,
for eachi € [t], form exactly r +i — 1 distinct edges of the form {v;, w;}. Let A = {vy, ..., v;} and B = {wq, ..., wy}. Since A
is an irregular independent set of G, & (G) > t. But ;x(G) < | =5+ | = [ SF2=D=341 | — ¢ Thus, o(G) = |25+ ).

Letr > t.Suppose that G is constructed as follows: let vy, ..., v¢, wq, ..., w, be the distinct vertices of G, form a complete
graph on the vertices ws, ..., w,, and, for each i e [t], form exactly r — t 4 i distinct edges of the form {v;, w;}. Let
A = {vq,...,v}. Since A is an irregular independent set of G, t < «;(G). We have m = %r(r - 1)+ Zle(r —t4+1i) =
ar(r—1)+ lt(2r —t+1).Sincen=r+t,2m=m—t)(n—t—1)+t(2n— 3t + 1) = n> — n — 2t> + 2t. By the established

1 (1 4+ 2m% —2n—4m + 1) < t.Since @;(G) > £,y (G) = 1 (1 427 —2n—4m + 1). 0

bound, «;(G) <

We also have

_ J(25 17 1 8m
(G < 26+ 1+ (228 17 +8m "

This is immediate from our next result, the proof of which also shows that (1) is sharp.
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Theorem 2.2. If Gis a graph, § = §(G) and 8 = B(G), then

0 (C) < —284+1+/(26 — 1) + 88
r — 2 .

Moreover, the bound is sharp.

Proof. Let t = «;;(G). Let A be an irregular independent set of G of size t, and let vy, ..., v; be the distinct vertices in A. We
have 8 > e(A, V(G) \ A) = Zl 1d(vi) > Z;}(S +1i) = %t(ZS +t—1),500 > t2 4 (286 — 1)t — 2. Solving the quadratic

inequality, we obtain t < 3 (—28 + 14+ /(28 =12+ Sﬂ).

We now prove that the bound is sharp. Let r and t be positive integers such that t(t — 1) > 2r(r —1).Letk = r+t — 1. Let
mod* be the usual modulo operatlon with the exception that, for every two positive integers a and b, ba mod* a is a instead

of 0. Letsp = 0,and lets; = Zj'fo(r +j) for eachi € [t]. Suppose that G is constructed as follows: let vy, ..., v, wq, ..., Wi
be the distinct vertices of G, and, for each i € [t], let v; be adjacent to the vertices in {wjmoa k : j € [s,,l + 1,5} Thus,
vy is adjacent to wy, ..., wy, v, is adjacent to wyy1, ..., Wary1, v3 is adjacent to wyr42, ..., wars3, and so on, where the
indices are taken mod* k. By construction, d(wx) = min{d(w;) : j € [k]} LetA = {vl,.. v} and B = {wl,...,wk}.
Since G is a bipartite graph with partite sets A and B, we have § = m = e(A, B) Z, 1d(v) = s = (2r +t—1)
We also have m = Z d(w;) > d(wik, so 3t(2r + ¢ — 1) < d(wyk, and hence d(wy) > =0 = 2((2::: 11)) If we

t(2r+t—1)

assume that e < then we get a contradiction to the condition t(t — 1) > 2r(r — 1). Thus, d(wy) > r. Since
min{d(v;) : i € [t]} = d(v1) =1 < d(wy) = min{d(w;) : j € [k]}, § = d(v;) = r. Now A is an irregular independent set of G,
so «j(G) > t. By the bound in the theorem,

—264+14 /(26 —1)2+388 —2r+1+\/(2r—1)2+4t(2r+t—1)
2
—2r+1+\/ 2r + 2t — 1)?

Since a;,(G) > t, 2y (G) = ( 26 +1+/(26 — 172 +8)

Our next result provides inequalities relating ;- (G) to atreg(G).

—~

a;ir(G) <

] N

\]

Theorem 2.3. For any graph G on n vertices,

(i) 2 < oir(G) + Olreg(G) <n+1,
(il) @(G) < air(G)areg(G) < (a(G))%,
(iii) if n > 4, then 1 < & (G)treg(G) < ng |—g-|

Moreover, the following assertions hold:

(a) The bounds are sharp.

(b) The upper bound in (i) is attained if and only if G is empty. Also, for any integer k with2 < k < n+ 1, a;;(G) + atreg(G) = k
if G = Ex—2 U Kp_gy2.

Proof. Let A be an irregular independent set of G of size «;(G). Let B be a regular independent set of G of size oeg(G). Let
be a largest independent set of G.

(i) Trivially, «;r(G) > 1, areg(G) > 1, and hence the lower bound is clear. Clearly, |[A N B| < 1. We haven > |[AUB| =
|Al + |B] — |ANB| > a;:(G) + Olreg(G) — 1,50 ;(G) + CVreg((;) <n+1.

(ii) Let d4, . . ., d, be the distinct degrees of the vertices in I. For each i € [r], let D; be the set of vertices in I of degree d;.
Lets = max{|D;| : i € [r]}. We haver < @;(G), s < areg(G)and a(G) = |I| = |Dy| + - - - 4+ [D;| <15 < 0tjp(G)otreg(G). Trivially,
2ir(G) < a(G), dreg(G) < @(G), and hence the upper bound.

(iii) As in (i), the lower bound is trivial. By (i), |A| 4+ |B| < n + 1. Suppose equality holds. Then G = E, by (b), which is
proved below. Thus, |A||B] = n < [ ]L ] if n > 4. Now suppose |A| + |B| < n. Then |A||B| < |A|(n — |A|). By differentiating
the function f(r) = r(n —r), we see thatf increases as r increases from 0 to 5. Thus, |A||B| < ng(n -3 = ng I'%'l. Hence
the upper bound.

(a) The lower bounds in (i)-(iii) and the upper bound in (ii) are attained if G = K. The upper bound in (i) is attained if
G =E,.

We now show that the upper bound in (iii) is sharp. For each of Cases 1-4 below, we construct a graph that attains the
bound. Let vy, ..., v, be its distinct vertices. f nmod4 = 0, then let X = {vq,... vn} letY = {vnﬂ,.. vy}, and, for
eachj € [n/4], let vj be adjacent to exactly j — 1 vertices in Y, and let U1t be adjacent to the remaining vertices in Y.
Ifnmod4 = 1, thenlet X = {vy,.. Unzl} letY = {va, <oy Un), and for eachj € [(n — 1)/4], let v; be adjacent to

exactly j vertices in Y, and let va—1_;, , be adjacent to the remammg verticesin Y.If nmod 4 = 2, thenlet X = {vq, ..., vn h
2
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letY = {U%+1, ..., U}, let vn be adjacent to each vertex in Y, and, for each j € [(n — 2)/4], let v; be adjacent to exactly
j vertices in Y, and let v be adjacent to the remaining vertices in Y. If nmod4 = 3, thenlet X = {vq,...,vns1}, let
Y = {vns3, ..., vs}, and, foreachj e [(n+ 1)/4], let v; be adjacent to exactly j — 1 vertices in Y, and let Ungl g be adjacent
to the remaining vertices in Y. Suppose that the resulting graph is G. Then X is an irregular independent set of G, Y is a regular
independent set of G, and [X||Y| = | 5 |[5]. By the bound in (iii), ctir(G)atreg (G) = L5751

(b) As stated in (a), the upper bound in (i) is attained in G = E,. We now prove the converse. Thus, suppose «;(G) +
Qreg(G) = n+ 1.Thus, |A| + |B] = n+ 1.Recall that [ANB| < 1.Thus,n < |A| +|B| —|ANB| = |JAUB| < n, giving [AUB| =n
and |A N B| = 1. Thus, for some v € V(G),ANB = {v}and A = (V(G) \ B) U {v}. If d(v) = 0, then since v € B, all the vertices
of B must have degree 0. Since A and B are independent sets containing v, v has no neighbours in A U B. Thus, d(v) = 0 as
A UB = V(G). Hence d(w) = 0 for each w € B. Now consider any x € V(G) \ B. We have x € A. Since A is independent,
N(x) C B. Since the vertices in B have no neighbours, N(x) = ¢J. Thus, G is empty, as required.

It is easy to check that o (G) + @reg(G) = kif G = Ex, UKo With2 <k <n+1. O

Corollary 2.4. For any graph G on n > 4 vertices,

ir(G)atreg(G) < min{(a(G))?, (%1 I-g“'

3. Graphs with irregular independence number 1
We now investigate the particularly interesting case «;;(G) = 1.
3.1. A general characterization

Let G be a graph. Let n = |V(G)| and § = §(G). Let D(G) denote the set of degrees of vertices of G. For any i € D(G), let N;
denote the set of vertices of G of degree i. Let n; = |N;|. For any two disjoint subsets X and Y of V(G), let (X, Y) denote the
subgraph of G givenby (X UY, {{x,y} € E(G): x € X,y € Y}).

Lemma 3.1. If «;(G) = 1, then

(i) (Ni, N;) is a complete bipartite graph for any i, j € D(G) withi # j,
(ii) the subgraph of G induced by Ny is (k 4+ n, — n)-regular for any k € D(G).

Proof. (i) Suppose {v, w} ¢ E(G) for some v € N; and some w € N; withi # j. Then {v, w} is an irregular independent set of
G of size 2. This contradicts «;(G) = 1.

(ii) Let v € Ni. By (i), for any j € D(G) \ {k}, v is adjacent to each w € N;. Thus, v is adjacent to each vertex in V(G) \ N.
By definition of Ny, the degree of v in the subgraph of G induced by Ny isk — (n — ny,). O

Theorem 3.2. If «;(G) = 1, then

(i) ny > n — k forany k € D(G),
(i) span(G) < (14 «/1+88).

Moreover, the bound in (ii) is sharp.

Proof. (i) By Lemma 3.1(ii), k +n, —n > 0.

(ii) Let t = span(G). If t = 1, then the result is immediate. Suppose t > 2. Then D(G) = {d4, ..., d;} for some integers
di,...,drwith0 <d; <--- <d; <n—1.Forie [t]\{1},wehaved; <d,—1<---<di—-(i—-1)<---<d—(t—1) <
n—1—(t—-1)=n—t,sodi<n—t+(i—1).By(i),ng >n—dforie [t]. We have

n=) ngz) (n—d)=(n—d)+)y (n—d)=n-8+) n-) d
i=1 i=1 i=2 i=2 i=2
>(n-8)+({—1n-) (n—t+i-1)=m—5—
i=2

(tgl)(Zn—t).

Therefore, 0 > t? — t — 2§, and the bound follows. The bound is attained if, for example, G is the complete k-partite graph

1+ 148k (k+10)-8k 14 /ako1)2 141485
3 = 3 = k,sospan(G) = —=5—. O
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3.2. Planar graphs and outerplanar graphs

We now determine the planar graphs and outerplanar graphs whose irregular independence number is 1.

Suppose that G and H are vertex-disjoint graphs. The join of G and H, denoted by G + H, is the graph with V(G + H) =
V(G)U V(H)and E(G + H) = E(G)UEH)U {{x,y} : x € V(G),y € V(H)}.Ifk > 2,r > 2,G = Kj, and H is the union
of r vertex-disjoint copies of Kj_1, then G + H is called a k-windmill graph and is denoted by Wd(k, r). Note that Wd(k, r) is
merely the union of r copies of K} that have exactly one common vertex.

Theorem 3.3. A graph G is planar and «;;(G) = 1if and only if G is a regular planar graph or a copy of one of the graphs K; 1,
Ko n—2. Ko + En_2, Kz + "52K5, E3 + "52K5, E3 + Coz, Wd(3, %51) and K + H, where H is a union of vertex-disjoint cycles.

Before giving the proof of the theorem above, we need the following lemmas.
Lemma 3.4. If a planar graph G has a vertex v that is adjacent to all the other vertices of G, then G — v is outerplanar.

Proof. Indeed, by deleting v (and all edges incident to it) from a plane drawing of G, we obtain a plane drawing of G — v
that has all the vertices on the same face. This means that G — v is outerplanar because, for any face F of a plane drawing
¢ of a planar graph, ¢ can be transformed to another plane drawing of the same graph in such a way that F becomes the
unbounded face, for example, by using stereographic projection (see [ 10, Remark 6.1.27]). O

Lemma 3.5. If ¢ is a plane drawing of E; + C, (k > 3), then a vertex v of E; is mapped by ¢ into the interior I of the drawing of
Cy, and the other vertex w of E, is mapped by ¢ into the exterior E of the drawing of C.

Proof. Let G = E; + Cy. Let F € {I, E} such that v is mapped by ¢ into F. Since v is adjacent to each vertex of Cy, each face
of F in the drawing of G — w has exactly 3 vertices on its boundary, one of which is v. Thus, if we assume that w is mapped
into F, then we obtain that w lies in the interior of one of these faces, and hence that w is adjacent to at most two vertices of
Cy, a contradiction. O

Proof of Theorem 3.3. It is easy to check that if G is one of the explicit graphs in Theorem 3.3, then G is planar and «;-(G) = 1.
We now prove the converse.

Let G be a planar graph with «;(G) = 1. Since K5 and K3 3 are non-planar, G does not contain any copies of these. It is
well known that having G planar implies that m < 3n — 6. Suppose that G is not regular. Setting t = span(G), we then have
t > 2 (and n > 3). We have D(G) = {d4, ..., d;} for some integers dy,...,d; with0 < d; < --- < d;. We will often use
Lemma 3.1(i), which tells us that, for any i, j € D(G) with i # j, each vertex of Ny, is adjacent to each vertex of Ng;. The first
immediate deduction from this is thatd; > 1ast > 2.

Suppose t > 3. Let {a;,...,a;} = {di,...,d:} such thatn,, < --- < ng. If we assume that n,, = ns, = 1, then
Lemma 3.1(i) gives us a; = a; = n — 1, a contradiction (as ay, ..., a, are distinct). Thus, n,, > 2 for eachi € [2, t]. If we
assume that 21;3 ng, > 3, then, by Lemma 3.1(i), we obtain that (Ng, U N, , Uf:3Na,-> contains a copy of K3 3, a contradiction.
Thus, t = 3 and ng, = ng; = 2. Let {uy, u} = Ng, and {v1, v} = N,g;. We cannot have {uy, u}, {vq, v2} € E(G), because
otherwise Lemma 3.1(i) gives us a; = ng, + ng; + 1 =1y, + 3 = ng, +ng, + 1 = as, a contradiction. Similarly, we cannot
have {uq, uz}, {v1, v2} & E(G). Thus, for some i € {2, 3}, a; = ng; + 2 and as_; = ng, + 3. We cannot have n,, = 1, because
otherwise a; = ng, +1g, = 4 = as_;. Thus, ng, = 2.Let {wy, wy} = N,,. We cannot have {w;, w,} € E(G), because otherwise
a; = 5 = as_;. Thus, we have {w1, w,} ¢ E(G), which gives us a; = 4 = q;, a contradiction.

Therefore, t = 2.1f we assume that ng, > 3 and ng, > 3, then, by Lemma 3.1(i), we obtain that G contains a copy of K3 3, a
contradiction. Thus, ng, < 2 for somei € {1, 2}. Letj = 3 —i. By Lemma 3.1(i), G = G[Ng,] + G[Ng;]. By Lemma 3.1(ii), G[Ng]
is k-regular, where k = d; + ng —n.

Suppose ng, = 1. Let {v} = Ng,. Thus, G = ({v}, ¥) + G[Ng]. By Lemma 3.4, G[Ng;] is outerplanar. Since the minimum
degree of an outerplanar graph is at most 2 (see [ 10, Proposition 6.1.20]), k < 2.If k = 0, then Gis a copy of K1 ,_1. If k = 1,
then G[Ng;] is a copy of ”T‘le, so G is a copy of Wd(3, "2;1 ).1If k = 2, then G[Ng;lisa cycle or a union of vertex-disjoint cycles.

Now suppose ng, = 2. Let {v, w} = Ny, and let {uy, ..., U2} = Ng;. By the handshaking lemma, |E(G[Ndj])| = k(”z’z).
By Lemma 3.1(i), |[E({(Ng;, Ndj))| = 2(n — 2). Now m = |E(G[Ng,])| + |E(G[Nd].])| + |E((Ndi,Ndj))| > @ 4+ 2(n — 2). Since
m < 3n — 6, we obtain k < 2.

Ifk = 0and {v, w} € E(G), then Gis acopy of K; + E,_,.Ifk = 0 and {v, w} & E(G), then Gisa copy of E; +E,_5 = K3 5.
Ifk = 1and {v, w} € E(G), then Gis a copy of K; + "Z;ZKZ. Ifk = 1and {v, w} & E(G), then G is a copy of E; + %Kz.

Finally, suppose k = 2. We cannot have v adjacent to w, because otherwise m = 1+ # +2(n — 2) > 3n — 6. Since
k = 2, G[Ng] is a union of vertex-disjoint cycles Gy, ..., G;. Suppose r > 2. Let 0 be a plane drawing of G. Let ¢ be the
drawing obtained by restricting 6 to the subgraph G' = ({v, w}, #) + G; of G. By Lemma 3.5, no face of ¢ has both v and w
on its boundary. Since G’ and G, are vertex-disjoint, the drawing of G, in 6 lies in the interior of one of the faces of ¢. Thus,
no vertex of G, is adjacent to both v and w. This contradicts G = G[Ny,] + G[Ndj]. Therefore, r = 1. Thus, G is G[Ng,] + G,
which is a copy of E; + G,—5. O
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Corollary 3.6. A graph G is outerplanar and «;(G) = 1if and only if G is a union of vertex-disjoint cycles or a copy of one of the
graphs En, 3K3, Ky n—1, K> + E3 and Wd(3, %51).

Proof. It is trivial that if G is one of the explicit graphs in the statement of Corollary 3.6, then G is outerplanar and «;(G) = 1.

We now prove the converse. Let G be an outerplanar graph with «;(G) = 1. This means that § < 2, as mentioned in the
proof of Theorem 3.3.1f G is k-regular, then k < 2, and hence G is a copy of E; (if k = 0) or a copy of JK; (if k = 1) or a union
of vertex-disjoint cycles (if k = 2). Suppose that G is not regular. Since § < 2, it follows by Theorem 3.3 that G is a copy
of one of Ky n_1, Ka.n—2, Ko + En—2, E» + 52K, and Wd(3, 51). It is well known that K> 3 is not outerplanar. Thus, K5 »_5 is
outerplanar only if n < 4; note that K, ,,_; is the cycle C4 if n = 4. Also, for n > 5, K; + E,_5 is not outerplanar as it contains
K3. Similarly, E; + ">2K; is planar only if 52 < 1. O

4. Irregular domination

In this section, we provide bounds for the irregular domination number, y;(G), and investigate cases of particular
importance, primarily cases where a bound is attained.

We will start with lower bounds for y;:(G).
Theorem 4.1. If Gis a graph,n = |V(G)| and A = A(G), then

n
Yir(G) > maxwﬂ ,n— A} .

Moreover, the bound is sharp.
Proof. Let t = y;:(G). Let D be an irregular dominating set of G of size t. Let vy, ..., v,_¢ be the vertices in V(G) \ D. For

eachi € [n — t], let w; = |N(v;) N D|; since D is a dominating set, w; > 1. We may assume that w; < --- < wy_;. We have
t=|D| > wpe > n—t,andhencet > [4].Sincen —t <w,_¢ < At >n— A

We now show that the bound is sharp. Let k = |—g-| and n" = n — k. Suppose that G is constructed as follows: let
ui, ..., U, vy, ..., vy be the distinct vertices of G, and, for each i € [n’], let v; be adjacent to exactly i of the vertices
ui, ..., U Since max{d(y;) : i € [k]} < n = d(vy) = max{d(v;) : i € [n']}, A = n'. Clearly, {uy, ..., u} is an irregular

dominating setof Gof size [3] =n—n'=n—A. O

Theorem 4.2. If Gis a graph,n = |V(G)| and 8 = B(G), then

1-J1+88
vir(G) > n + —

Moreover, the bound is sharp.

Proof. Lett,D, vy,..., Vp_, W1, ..., Wy be as in the proof of Theorem 4.1. We have 8 > e(D, V(G) \ D) = Z?;{wi >
Yii=3in—t(n—t+1),500>t2—(2n+ 1)t + (n* +n—2p),and hence t > n+ 3(1— /T+8p).

We now show that the bound is sharp. Let n/2 < k < n— 1and n’ = n — k. Suppose that G is constructed as follows:
let uy, ..., u, vy, ..., vy be the distinct vertices of G, and, for each i € [n'], let v; be adjacent to exactly i of the vertices
Uy, ..., U Let D = {uq, ..., ug}. Since D is an irregular dominating set of G, y;;(G) < k. Since m = e(D, V(G) \ D), we have
B =eD,V(G)\D)= %(n’)(n’ + 1). By the established bound,

1—-J1+8 1—JV1+4n)(n +1 1—./(2n—2k+ 1)?
Vir(G)Zn‘i‘%:nﬁ- 2( X )=Tl+ ( > ) =k.

Since le(G) = k! Vzr(G) =n-+4+ @' 0

Corollary 4.3. If G is an n-vertex graph with average degree d, then
Yir(G) = n — dn.
Moreover, equality holds if and only if G is empty.

Proof. Since § < m, y;+(G) > n + %(1 — «/1+ 8m) by Theorem 4.2. Now dn = ZveV(G)d(v) = 2m (by the handshaking
lemma), so 4dn = 8m. Thus, ;+(G) > n+ %(1 —+/1+4dn) > n+ %(—«/4dn) = n—+/dn. Note that equality holds throughout
only if d = 0, in which case G is empty.

If Gis empty, thend = 0and y;(G) =n=n— +/dn. O

Next, we give a full characterization of the cases y;(G) = n and y;(G) = n — 1. For two graphs G and H, we write G ~ H
if G is a copy of H.
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Theorem 4.4. For any graph G on n vertices, the following assertions hold:

) vir(G) = nifand only if G > E,.
(ii) y#(G) =n — 1ifand only if, for some t > 0 and somer > 1, G >~ tK; U K; , or G ~ tK; U H for some r-regular graph H.

Proof. (i) If G has an edge {v, w}, then V(G) \ {v} is an irregular dominating set of G, so y;:(G) < n — 1. Therefore, y;(G) = n
only if G >~ E,,. If G >~ E,, then V(G) is the only dominating set of G, so y;;(G) = n.

(ii) It is easy to see that y;,(G) = n — 1if G >~ tK; UKy, or G =~ tK; U H for some r-regular graph H. We now prove the
converse. Thus, suppose y;(G) = n — 1. By (i), E(G) # @.

Suppose that G has two vertices u and v such that 2 < d(u) < d(v). Then V(G) \ {u, v} is an irregular dominating set of G
(independently of whether u and v are adjacent or not). Thus, we have y;(G) < n — 2, a contradiction. Therefore,

d(u) < 1forany u, v € V(G) with d(u) < d(v). (2)

Suppose span(G) > 4. Then there exist vy, v, v3, v4 € V(G) such that d(vi) < d(v;) < d(v3) < d(vs). Thus, we have
2 < d(v3) < d(v4), which contradicts (2). Therefore, span(G) < 3.

If span(G) = 1, then G is an r-regular graph for somer > 1 (r # 0 as E(G) # 0), and we are done.

Suppose span(G) = 2. Then {d(v) : v € V(G)} = {p, r} withO < p <r.By(2),p < 1.If p = 0, then G >~ tK; U H for some
t > 1and some r-regular graph H. Suppose p = 1. Thenr > 2.If we assume that there exists a pair of non-adjacent vertices
u and v of degrees 1 and r, respectively, then we obtain that V(G) \ {u, v} is an irregular dominating set of G of size n — 2,
which contradicts y;(G) = n — 1. Thus, each vertex x of degree 1 is adjacent to each vertex of degree r. Since x has only one
neighbour, there is only one vertex of degree r. Consequently, G = K .

Finally, suppose span(G) = 3. Then there exist vy, v, v3 € V(G) such that d(vq) < d(v;) < d(v3). If we assume that G
has no vertex of degree 0 or no vertex of degree 1, then we obtain 2 < d(v,) < d(vs), which contradicts (2). Thus, since
span(G) = 3, {d(v) : v € V(G)} = {0, 1,r} for some r > 2. Let G’ be the graph obtained by removing from G the set |
of vertices of G of degree 0. Then {d(v) : v € V(G')} = {1, r}. As in the case span(G) = 2 above, this yields G >~ K; ,, so
G=tKy UKy, wheret =|I|. O

The Ramsey number R(p, q) is the smallest number n such that every graph on n vertices contains a clique of order p or an
independent set of order g.

Theorem 4.5. For any graph G on n vertices, the following assertions hold:

(i) If span(G) > R(k, k) and 8(G) > k, then y;;(G) <n — k.
(ii) If span(G) > 5 and 8(G) > 3, then y;+(G) < n — 3.

Proof. (i) Suppose span(G) > R(k, k) and § > k. Let B be a set of R(k, k) vertices of G of distinct degrees. Then G[B] has an
independent set of size k or a clique of size k. If G[B] has an independent set I of size k, then V(G)\I is an irregular dominating
set of G of size n — k. If G[B] has a clique K of size k, then, since § > k, V(G)\ K is an irregular dominating set of G of size n — k.
(ii) Suppose span(G) > 5 and § > 3. Let B be a set of 5 vertices of G of distinct degrees. It is easy to see that if a 5-vertex
graph does not have an independent set of size 3, then it is a copy of Cs or has a clique of size 3. If G[B] is a copy of Cs, then
each vertex in B has a distinct number of neighbours in V(G) \ B, and hence, since § > 3, V(G) \ Bis an irregular dominating
set of G of size n — 5. As in the proof of (i), y4+(G) < n — 3 if G[B] has an independent set of size 3 or a clique of size 3. O

5. Relations between irregular independence and irregular domination

We now establish a set of inequalities relating the irregular independence number to the irregular domination number.
These are gathered in the theorem below. In the proof, we need to use the following more precise notation. For a vertex
v of a graph G, we will denote the set of neighbours of v in G by N¢(v), and the degree of v in G by dg(v). Formally,
Ne(v) = {w € V(G) : vw € E(G)} and dg(v) = [Ng(v)|. The complement of G (that is, (V(G), (V) \ E(G))) is denoted
by G.

Theorem 5.1. For any graph G on n vertices, the following assertions hold:
(1) a@ir(G) + yir(G) = n+ 1if 6(G) = 0, and a;r(G) + y4r(G) < nif §(G) = 1
(i) air(G)yir(G) < L™ 11" if 8(G) = 0, and ;e (G)yir(G) < L5157 if 8(G) = 1
(iiil) @ir(G)+ ir(G) < n+1.
(iv) @ir(G)yir(G) < [T

Qjr

Qir

Moreover, the bounds are sharp.
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Proof. Let A be an irregular independent set of G of size «;;(G), and let D = V(G) \ A. Let § = §(G).

Suppose § > 1. Then D is an irregular dominating set of G, so «;(G) + yi(G) < |A| + |ID] < n and o;(G)y(G) <
|A|ID| = |A|(n — |A]) < [5](n — [5]) = L5151 (as in the proof of Theorem 2.3(iii)). Now suppose § = 0. Let V be the
set of vertices of G of degree 0, and let V; be the set of vertices of G of degree at least 1. Clearly, A has exactly one element
x of Vo, and D U {x} is an irregular dominating set of G. As in the case § > 1, «;:(G[V4]) + yi+(G[V1]) < |Vi]. We have
ir(G) + 7ir(G) = (ip(GIVA]) + 1) + (yir(GIV4]) + [Vol) < Vol + Vil + 1 = n + 1 and s (G)yir(G) < IAI(D| + 1) <
Al(n+1—JAD) < |51 )(n+1— [251]) = | 5 ]["51]. Hence (i) and (ii).

Let vy, ..., v, be the distinct vertices in A, where dG(v1) -+ < dg(ve). We have dg(v¢) < |V(G) \ A] = n — t. For each
i e [t],let a, INz(vi) N D|. For eachi € [t],a; = n —t — dg(vi) = n — t — dg(v;). Thus, if dg(v;) < n—t — 1, then
D is an irregular dominating set of G, and hence o;-(G) + y,r(G) < |A| 4+ |D| = t 4+ (n — t) = n. Suppose dc(v[) =n-—t.
We have g; > 1foreachi € [t — 1]. Let A" = A\ {v}. Let D' = DU {v}. Foreachi € [t — 1], let b; = |Ngz(vi) N D'|.
For eachi e [t — 1], we have Ng(v;) N D' = (Ng(vi) N D) U {v},so by = a;+1 = n —t — dg(v;) + 1. Thus,
D' is an irregular dominating set of G. Consequently, o;-(G) + yi(G) < |A|+ [D'| = t+(n—t+1) = n+ 1and
oir(Gyir(G) < IAIID'| = t(n +1— 1) < [ J(n+ 1~ [ ]) = [ =1 [ 1], Hence (iii) and (iv).

We now show that the bounds are sharp. We use constructions similar to that in the proof of Theorem 4.1.

Letk = [g—| and n’ = n — k. Suppose that G is constructed as follows: let uq, ..., uy, vq, ..., vy be the distinct vertices of
G, and, for each i € [n'], let v; be adjacent to exactly k — i + 1 of the vertices u, ..., uy. Clearly, § > 1. Also, {vq, ..., vy} is
an irregular independent set, and, by Theorem 2.1, it is of maximum size. Moreover, {u, ..., u,} is an irregular dominating

set of G, and, by Theorem 4.1, it is of minimum size. Thus, ;(G) + yir(G) = n’ + k = nand o;(G)y(G) = n'k = [5][57.
Now suppose that we instead have that k = [“;—1] n" = n — k, and, for each i € [n], v; is adjacent to exactly i — 1 of
uq, ..., Uy Since d(v{) = 0,8 = 0. Similarly to the above, {u, ..., U, v{} is an irregular dominating set of G of minimum
size as {uy, ..., Uy} is an irregular dominating set of G — v of minimum size. Also, {v1, ..., vy} is an irregular independent
set of maximum size. Thus, @;r(G) + yi#+(G) = 0’ + k+ 1 = n+ 1 and a;r(G)y;(G) = n'(k + 1) = [ ][] We have
established that (i) and (ii) are sharp.

Letk = [%1] and n’ = n — k. Suppose that G is constructed as follows: let uy, ..., U, vy, . . ., vy be the distinct vertices
of G, and, for each i € [n'], let v; be adjacent to exactly k — i + 1 of the vertices uq, ..., ug. Thus, {vy, ..., vy} is an irregular
independent set, and, by Theorem 2.1, it is of maximum size (note that § is d(v,/ ), which is 0 if n is odd, and 1if n is even). Also,
we clearly have that {uy, ..., u, v1} is anirregular dominating set of G, and it is of minimum size because dG(v1) = 0and, by
Theorem 4.1, {uy, .. uk} is an irregular dominating set of G — v; of minimum size. Thus, «;;(G)+ yir(G) = W’ +k+1=n+1

and a, (C)yir(C) = n'(k + 1) = |2 re4y. o

6. Nordhaus-Gaddum-type results

In this section, we provide results of Nordhaus-Gaddum type [9] for both the irregular independence number and the
irregular domination number. We shall use the notation introduced in the preceding section.

Theorem 6.1. If G is a graph on n > 2 vertices, then
(i) 2 < air(G) + ir(G) < 1,
(i) 1< ai(Gair(G) < L3I

Moreover, the bounds are sharp.

Proof. By Theorem 2.1, 1 < a;r(G) < [™22*!|and 1 < &(G) < [*=**! |. The lower bounds follow immediately, and
they are attained if G is regular. If §(G) = 0, then G has a vertex v with no neighbours, so 8(G) > 1(as v € Ng(u) for each
1€ V(G)\ {v}). Thus, 5(G) > 10r 8(G) > 1. Hence o;r(G) + er(G) < [ ] + [ "] < nand or(Gxir(G) < | &) "1 .

We now show that the upper bounds are sharp. Let k = [%] and | = L%J. Suppose that G is constructed as follows: let
uy, ..., U, v, ..., v be the distinct vertices of G, let every two distinct vertices in {vq, ..., v;} be adjacent, and, for each
i € [k], let u; be adjacent to the vertices in {v; : j € [i — 1]}. Clearly, {uy, ..., w} is an irregular independent set of G, and
{v1, ..., v} is anirregular independent set of G. Therefore, o;r(G) + ;r(G) > k + I = n and «;(G);r(G) > kl. By (i) and (ii),
we actually have «;-(G) + «;-(G) = n and «;-(G)e;r(G) = ki Finally, note that k = L%lj. O

Theorem 6.2. If G is a graph on n > 2 vertices, then
(i) 2751 < y(G) +yr(G) <2n—1,
(ii) (151 < % (Q)yir(G) < n(n — 1),
Moreover, the following assertions hold:

(a) The bounds are attainable for any n > 3.
(b) For each of (i) and (ii), the upper bound is attained if and only if G is empty or complete.
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Proof. By Theorem 4.1, yi-(G) > [_%-| and ;-(G) > [%]. The lower bounds in (i) and (ii) follow immediately. If G is empty,
then G is complete, so y;-(G) + yi(G) =n+n—1=2n—1and y,-r(G)yir(é) =n(n — 1).If Gis complete, then G is empty, so
Yir(G) + vir(G) = 2n — 1 and y;+(G)yir(G) = (n — 1)n.If G is neither empty nor complete, then G is non-empty, and hence, by
Theorem 4.4, y;+(G) + ¥:(G) < 2(n — 1) < 2n — 1 and ¥;;(G)y;r(G) < (n — 1)*> < n(n — 1).

It remains to show that the lower bounds in (i) and (ii) are attainable for any n > 3.

Suppose first that n is odd. Let k = % Suppose that G is constructed as follows: let uq, ..., u, v1, ..., vkrq be the
distinct vertices of G, and, for each i € [k], let u; be adjacent to vy, ..., v;. Clearly, {v1, ..., vk+1} is an irregular dominating
set of G and of G. Thus, +(G) + i+(G) = 2(k+ 1) = 2727 and y4+(G)yir(G) > (k+ 1)* = [21%. By (i) and (ii), we actually have
yir(G) + vir(G) = 2757 and yir(Glyir(G) = T51%.

Now suppose that n is even and n > 8. Let k = 7. Suppose that V(G) = {us,..., U, v1,..., v} and that, for each
i € [k]\ {2}, u; is adjacent to vy, ..., v;, Uy is adjacent to v, and vs3, vy is adjacent to vy, .. ., Vg, U3 is adjacent to vy, .. ., vy,
and there are no other adjacencies. LetA = {vq, ..., vx} and B = {uy, uy, vq, vg, . .., vg}. Clearly, A is an irregular dominating
setof G. Let wy = v3, Wy = V2, w3 = Up_1, Wg = U2, ..., W = Up. Thus, V(G)\B = {wy, ..., wi}. Note that |[Ng(w;)NB| =i

for each i € [k]. Thus, B is an irregular dominating set of G. Therefore, we have y;:(G) > |A| = k and y;:(G) > |B| = k, and
hence the lower bounds in (i) and (ii) are attained.

Suppose that n = 6, uy, uy, us3, vq, v, v3 are the vertices of G, and {uy, v{}, {uz, v2}, {uz, vs}, {u3, v1}, {us, v2}, {u3, v3} are
the edges of G. Clearly, {v, vy, vs3} is an irregular dominating set of G, and {uy, vy, v3} is an irregular dominating set of G.
Thus, the lower bounds in (i) and (ii) are attained.

Finally, suppose that n = 4 and G is the path P4 = ([4], {{1, 2}, {2, 3}, {3, 4}}). Then {1, 3} is an irregular dominating set
of G, and {1, 2} is an irregular dominating set of G = ([4], {{2, 4}, {4, 1}, {1, 3}}). Thus, the lower bounds in (i) and (ii) are
attained. O
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