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a b s t r a c t

If A is an independent set of a graph G such that the vertices in A have pairwise different
degrees, then we call A an irregular independent set of G. If D is a dominating set of G such
that the vertices that are not in D have pairwise different numbers of neighbours in D, then
we call D an irregular dominating set of G. The size of a largest irregular independent set of
G and the size of a smallest irregular dominating set of G are denoted by αir (G) andγir (G),
respectively.We initiate the investigation of these two graph parameters. For each of them,
we obtain sharp bounds in terms of basic graph parameters such as the order, the size,
the minimum degree and the maximum degree, and we obtain Nordhaus–Gaddum-type
bounds. We also establish sharp bounds relating the two parameters. Furthermore, we
characterize the graphs G with αir (G) = 1, we determine those that are planar, and we
determine those that are outerplanar.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will consider the notions of irregular independence and irregular domination as counterparts of
the notions of regular independence and regular domination (also referred to as fair domination), which were recently
introduced in [3,4]. The formal definitions of these two parameters are as follows.

If A is an independent set of a graphG such that the vertices in A have pairwise different degrees, thenwe call A an irregular
independent set of G. The size of a largest irregular independent set of G will be called the irregular independence number of
G and will be denoted by αir (G). If A is an independent set of a graph G such that the vertices in A have the same degree, then
A is called a regular independent set of G. The size of a largest regular independent set of G is called the regular independence
number of G and is denoted by αreg (G).

For a vertex v of a graph G, let N(v) denote the set of neighbours of v. If D is a dominating set of G such that |N(u) ∩ D| ̸=

|N(v) ∩ D| for every two distinct vertices u and v in V (G) \ D, then we call D an irregular dominating set of G. The size of a
smallest irregular dominating set of G will be called the irregular domination number of G and will be denoted by γir (G). If D
is a dominating set of G such that |N(u)∩D| = |N(v)∩D| for every two vertices u and v in V (G) \D, then D is called a regular
dominating set of G. The size of a smallest regular dominating set of G is called the regular domination number of G and is
denoted by γreg (G). Observe that the notion of irregular domination is an extreme case of thewell-studied notion of location-
domination [2]: a set D is called a locating-dominating set of G if D is a dominating set of G such that N(u)∩D ̸= N(v)∩D for
every two distinct vertices u and v in V (G) \ D.

The regular independence number was first introduced by Albertson and Boutin in [1]. They proved lower bounds
for planar graphs, maximal planar graphs, bounded-degree graphs and trees. Recently, Caro, Hansberg and Pepper [4]
generalized the regular independence number by introducing the regular k-independence numberαk−reg (G) of a graphG, and
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they generalized the results in [1] and found lower bounds for the regular k-independence numbers of trees, forests, planar
graphs, k-trees and k-degenerate graphs. Guo, Zhao, Lai andMao [7] obtained the exact values of the regular k-independence
numbers of some special classes of graphs, and they established some lower bounds and upper bounds for line graphs and
trees with a given diameter. They also obtained results of Nordhaus–Gaddum [9] type.

The regular domination numberwas first introduced and studied by Caro, Hansberg and Henning [3]. They referred to the
regular domination number as the fair domination number. Das and Desormeaux [6] considered the problem of minimizing
the size of a regular dominating set that induces a connected subgraph. Further results on fair domination are obtained
in [5,8].

For standard definitions and notation in graph theory, we refer to [10]. For a graph G and a subset A of V (G), E(A, V (G)\A)
denotes the set of edges of Gwhich have one vertex in A and the other in V (G)\A. Unless specified otherwise, wemake use of
the following notation: n = |V (G)|, m = |E(G)|, d(v) = |N(v)|, δ(G) = min{d(v) : v ∈ V (G)}, ∆(G) = max{d(v) : v ∈ V (G)},
e(A, V (G) \ A) = |E(A, V (G) \ A)| and β(G) = max{e(A, V (G) \ A) : A ⊆ V (G)}. The n-vertex complete graph and the
n-vertex empty graph are denoted by Kn and En, respectively. For a non-negative integer k, we denote the set {i : 1 ≤ i ≤

k, i is an integer} by [k]. Note that [k] = ∅ if k = 0.
This paper is organized as follows. In Section 2, we prove several sharp upper bounds on αir (G). In Section 3, we

characterize the graphs Gwith αir (G) = 1, we determine those that are planar, andwe determine those that are outerplanar.
In Section 4, we prove several sharp lower bounds for γir (G), we characterize the graphs G with γir (G) ∈ {n, n − 1}, and we
also provide some upper bounds for γir (G). In Section 5, we provide sharp upper bounds relating αir (G) to γir (G) or γir (Ḡ). In
Section 6, we provide sharp Nordhaus–Gaddum-type bounds for both αir (G) and γir (G).

2. Irregular independence

In this section, we provide various bounds for αir (G). We start with bounds in terms of basic graph parameters.
For any graph G, we denote by span(G) the number of distinct values in the degree sequence of G. More formally,

span(G) = |{d(v) : v ∈ V (G)}|. Clearly, span(G) ≤ ∆ − δ + 1.

Theorem 2.1. If G is a graph, n = |V (G)|, m = |E(G)|, δ = δ(G) and ∆ = ∆(G), then

1 ≤ αir (G) ≤ min

{
∆ − δ + 1,

⌊
n − δ + 1

2

⌋
,
1 +

√
2n2 − 2n − 4m + 1

2

}
.

Moreover, the bounds are sharp.

Proof. We have αir (G) ≥ 1 as {v} is an irregular independent set for each v ∈ V (G). Clearly, αir (G) ≤ span(G) ≤ ∆ − δ + 1.
Let A be a largest irregular independent set. Let v1, . . . , vt be the distinct vertices of A with δ ≤ d(v1) < · · · < d(vt ). Thus,
δ + t − 1 ≤ d(vt ) ≤ |V (G) \ A| = n − t , from which we get t ≤

⌊ n−δ+1
2

⌋
. Let B = V (G) \ A. We have

m = |E(G[B])| +

∑
v∈A

d(v) ≤
1
2
(n − t)(n − t − 1) +

t∑
i=1

(n − 2t + i)

=
1
2
(n − t)(n − t − 1) +

t
2
(2n − 3t + 1),

so 2t2 − 2t + (n + 2m − n2) ≤ 0, and hence αir (G) ≤
1
2

(
1 +

√
2n2 − 2n − 4m + 1

)
. This establishes the bound in the

theorem.
The lower bound is attained if G is regular. We now show that the upper bound is sharp. Let r and t be positive integers.
IfG is the union of t vertex-disjoint graphsG1, . . . ,Gt such thatGi is a copy ofKr+i−1 for each i ∈ [t], thenαir (G) = ∆−δ+1.
Let k = r + t − 1. Suppose that G is constructed as follows: let v1, . . . , vt , w1, . . . , wk be the distinct vertices of G, and,

for each i ∈ [t], form exactly r + i − 1 distinct edges of the form {vi, wj}. Let A = {v1, . . . , vt} and B = {w1, . . . , wk}. Since A
is an irregular independent set of G, αir (G) ≥ t . But αir (G) ≤ ⌊

n−δ+1
2 ⌋ = ⌊

(δ+2t−1)−δ+1
2 ⌋ = t . Thus, αir (G) = ⌊

n−δ+1
2 ⌋.

Let r ≥ t . Suppose thatG is constructed as follows: let v1, . . . , vt , w1, . . . , wr be the distinct vertices ofG, form a complete
graph on the vertices w1, . . . , wr , and, for each i ∈ [t], form exactly r − t + i distinct edges of the form {vi, wj}. Let
A = {v1, . . . , vt}. Since A is an irregular independent set of G, t ≤ αir (G). We have m =

1
2 r(r − 1) +

∑t
i=1(r − t + i) =

1
2 r(r − 1)+ 1

2 t(2r − t + 1). Since n = r + t , 2m = (n− t)(n− t − 1)+ t(2n− 3t + 1) = n2
− n− 2t2 + 2t . By the established

bound, αir (G) ≤
1
2

(
1 +

√
2n2 − 2n − 4m + 1

)
≤ t . Since αir (G) ≥ t , αir (G) =

1
2

(
1 +

√
2n2 − 2n − 4m + 1

)
. □

We also have

αir (G) ≤
−2δ + 1 +

√
(2δ − 1)2 + 8m
2

. (1)

This is immediate from our next result, the proof of which also shows that (1) is sharp.
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Theorem 2.2. If G is a graph, δ = δ(G) and β = β(G), then

αir (G) ≤
−2δ + 1 +

√
(2δ − 1)2 + 8β
2

.

Moreover, the bound is sharp.

Proof. Let t = αir (G). Let A be an irregular independent set of G of size t , and let v1, . . . , vt be the distinct vertices in A. We
have β ≥ e(A, V (G) \ A) =

∑t
i=1d(vi) ≥

∑t−1
i=0 (δ + i) =

1
2 t(2δ + t − 1), so 0 ≥ t2 + (2δ − 1)t − 2β . Solving the quadratic

inequality, we obtain t ≤
1
2

(
−2δ + 1 +

√
(2δ − 1)2 + 8β

)
.

We now prove that the bound is sharp. Let r and t be positive integers such that t(t −1) ≥ 2r(r −1). Let k = r + t −1. Let
mod∗ be the usual modulo operation with the exception that, for every two positive integers a and b, ba mod∗ a is a instead
of 0. Let s0 = 0, and let si =

∑i−1
j=0(r + j) for each i ∈ [t]. Suppose that G is constructed as follows: let v1, . . . , vt , w1, . . . , wk

be the distinct vertices of G, and, for each i ∈ [t], let vi be adjacent to the vertices in {wj mod∗ k : j ∈ [si−1 + 1, si]}. Thus,
v1 is adjacent to w1, . . . , wr , v2 is adjacent to wr+1, . . . , w2r+1, v3 is adjacent to w2r+2, . . . , w3r+3, and so on, where the
indices are taken mod∗ k. By construction, d(wk) = min{d(wj) : j ∈ [k]}. Let A = {v1, . . . , vt} and B = {w1, . . . , wk}.
Since G is a bipartite graph with partite sets A and B, we have β = m = e(A, B) =

∑t
i=1d(vt ) = st =

1
2 t(2r + t − 1).

We also have m =
∑k

j=1d(wj) ≥ d(wk)k, so 1
2 t(2r + t − 1) ≤ d(wk)k, and hence d(wk) ≥

t(2r+t−1)
2k =

t(2r+t−1)
2(r+t−1) . If we

assume that t(2r+t−1)
2(r+t−1) < r , then we get a contradiction to the condition t(t − 1) ≥ 2r(r − 1). Thus, d(wk) ≥ r . Since

min{d(vi) : i ∈ [t]} = d(v1) = r ≤ d(wk) = min{d(wj) : j ∈ [k]}, δ = d(v1) = r . Now A is an irregular independent set of G,
so αir (G) ≥ t . By the bound in the theorem,

αir (G) ≤
−2δ + 1 +

√
(2δ − 1)2 + 8β
2

=
−2r + 1 +

√
(2r − 1)2 + 4t(2r + t − 1)

2

=
−2r + 1 +

√
(2r + 2t − 1)2

2
= t.

Since αir (G) ≥ t , αir (G) =
1
2

(
−2δ + 1 +

√
(2δ − 1)2 + 8β

)
. □

Our next result provides inequalities relating αir (G) to αreg (G).

Theorem 2.3. For any graph G on n vertices,

(i) 2 ≤ αir (G) + αreg (G) ≤ n + 1,
(ii) α(G) ≤ αir (G)αreg (G) ≤ (α(G))2,
(iii) if n ≥ 4, then 1 ≤ αir (G)αreg (G) ≤ ⌊

n
2⌋⌈

n
2⌉.

Moreover, the following assertions hold:

(a) The bounds are sharp.
(b) The upper bound in (i) is attained if and only if G is empty. Also, for any integer k with 2 ≤ k ≤ n+ 1, αir (G)+ αreg (G) = k

if G = Ek−2 ∪ Kn−k+2.

Proof. Let A be an irregular independent set of G of size αir (G). Let B be a regular independent set of G of size αreg (G). Let I
be a largest independent set of G.

(i) Trivially, αir (G) ≥ 1, αreg (G) ≥ 1, and hence the lower bound is clear. Clearly, |A ∩ B| ≤ 1. We have n ≥ |A ∪ B| =

|A| + |B| − |A ∩ B| ≥ αir (G) + αreg (G) − 1, so αir (G) + αreg (G) ≤ n + 1.
(ii) Let d1, . . . , dr be the distinct degrees of the vertices in I . For each i ∈ [r], let Di be the set of vertices in I of degree di.

Let s = max{|Di| : i ∈ [r]}. We have r ≤ αir (G), s ≤ αreg (G) and α(G) = |I| = |D1| + · · · + |Dr | ≤ rs ≤ αir (G)αreg (G). Trivially,
αir (G) ≤ α(G), αreg (G) ≤ α(G), and hence the upper bound.

(iii) As in (i), the lower bound is trivial. By (i), |A| + |B| ≤ n + 1. Suppose equality holds. Then G = En by (b), which is
proved below. Thus, |A||B| = n ≤ ⌈

n
2⌉⌊

n
2⌋ if n ≥ 4. Now suppose |A| + |B| ≤ n. Then |A||B| ≤ |A|(n − |A|). By differentiating

the function f (r) = r(n− r), we see that f increases as r increases from 0 to n
2 . Thus, |A||B| ≤ ⌊

n
2⌋(n−⌊

n
2⌋) = ⌊

n
2⌋⌈

n
2⌉. Hence

the upper bound.
(a) The lower bounds in (i)–(iii) and the upper bound in (ii) are attained if G = Kn. The upper bound in (i) is attained if

G = En.
We now show that the upper bound in (iii) is sharp. For each of Cases 1–4 below, we construct a graph that attains the

bound. Let v1, . . . , vn be its distinct vertices. If nmod 4 = 0, then let X = {v1, . . . , v n
2
}, let Y = {v n

2 +1, . . . , vn}, and, for
each j ∈ [n/4], let vj be adjacent to exactly j − 1 vertices in Y , and let v n

2 −j+1 be adjacent to the remaining vertices in Y .
If nmod 4 = 1, then let X = {v1, . . . , v n−1

2
}, let Y = {v n+1

2 +1, . . . , vn}, and, for each j ∈ [(n − 1)/4], let vj be adjacent to
exactly j vertices in Y , and let v n−1

2 −j+1 be adjacent to the remaining vertices in Y . If nmod 4 = 2, then let X = {v1, . . . , v n
2
},
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let Y = {v n
2 +1, . . . , vn}, let v n

2
be adjacent to each vertex in Y , and, for each j ∈ [(n − 2)/4], let vj be adjacent to exactly

j vertices in Y , and let v n
2 −j be adjacent to the remaining vertices in Y . If nmod 4 = 3, then let X = {v1, . . . , v n+1

2
}, let

Y = {v n+3
2

, . . . , vn}, and, for each j ∈ [(n+ 1)/4], let vj be adjacent to exactly j− 1 vertices in Y , and let v n+1
2 −j+1 be adjacent

to the remaining vertices in Y . Suppose that the resulting graph is G. Then X is an irregular independent set of G, Y is a regular
independent set of G, and |X ||Y | = ⌊

n
2⌋⌈

n
2⌉. By the bound in (iii), αir (G)αreg (G) = ⌊

n
2⌋⌈

n
2⌉.

(b) As stated in (a), the upper bound in (i) is attained in G = En. We now prove the converse. Thus, suppose αir (G) +

αreg (G) = n+ 1. Thus, |A|+ |B| = n+ 1. Recall that |A∩ B| ≤ 1. Thus, n ≤ |A|+ |B|− |A∩ B| = |A∪ B| ≤ n, giving |A∪ B| = n
and |A ∩ B| = 1. Thus, for some v ∈ V (G), A ∩ B = {v} and A = (V (G) \ B) ∪ {v}. If d(v) = 0, then since v ∈ B, all the vertices
of B must have degree 0. Since A and B are independent sets containing v, v has no neighbours in A ∪ B. Thus, d(v) = 0 as
A ∪ B = V (G). Hence d(w) = 0 for each w ∈ B. Now consider any x ∈ V (G) \ B. We have x ∈ A. Since A is independent,
N(x) ⊆ B. Since the vertices in B have no neighbours, N(x) = ∅. Thus, G is empty, as required.

It is easy to check that αir (G) + αreg (G) = k if G = Ek−2 ∪ Kn−k+2 with 2 ≤ k ≤ n + 1. □

Corollary 2.4. For any graph G on n ≥ 4 vertices,

αir (G)αreg (G) ≤ min{(α(G))2, ⌈
n
2
⌉⌊

n
2
⌋}.

3. Graphs with irregular independence number 1

We now investigate the particularly interesting case αir (G) = 1.

3.1. A general characterization

Let G be a graph. Let n = |V (G)| and δ = δ(G). Let D(G) denote the set of degrees of vertices of G. For any i ∈ D(G), let Ni
denote the set of vertices of G of degree i. Let ni = |Ni|. For any two disjoint subsets X and Y of V (G), let ⟨X, Y ⟩ denote the
subgraph of G given by (X ∪ Y , {{x, y} ∈ E(G) : x ∈ X, y ∈ Y }).

Lemma 3.1. If αir (G) = 1, then

(i) ⟨Ni,Nj⟩ is a complete bipartite graph for any i, j ∈ D(G) with i ̸= j,
(ii) the subgraph of G induced by Nk is (k + nk − n)-regular for any k ∈ D(G).

Proof. (i) Suppose {v, w} ̸∈ E(G) for some v ∈ Ni and some w ∈ Nj with i ̸= j. Then {v, w} is an irregular independent set of
G of size 2. This contradicts αir (G) = 1.

(ii) Let v ∈ Nk. By (i), for any j ∈ D(G) \ {k}, v is adjacent to each w ∈ Nj. Thus, v is adjacent to each vertex in V (G) \ Nk.
By definition of Nk, the degree of v in the subgraph of G induced by Nk is k − (n − nk). □

Theorem 3.2. If αir (G) = 1, then

(i) nk ≥ n − k for any k ∈ D(G),
(ii) span(G) ≤

1
2 (1 +

√
1 + 8δ).

Moreover, the bound in (ii) is sharp.

Proof. (i) By Lemma 3.1(ii), k + nk − n ≥ 0.
(ii) Let t = span(G). If t = 1, then the result is immediate. Suppose t ≥ 2. Then D(G) = {d1, . . . , dt} for some integers

d1, . . . , dt with 0 ≤ d1 < · · · < dt ≤ n− 1. For i ∈ [t] \ {1}, we have d1 ≤ d2 − 1 ≤ · · · ≤ di − (i− 1) ≤ · · · ≤ dt − (t − 1) ≤

n − 1 − (t − 1) = n − t , so di ≤ n − t + (i − 1). By (i), ndi ≥ n − di for i ∈ [t]. We have

n =

t∑
i=1

ndi ≥

t∑
i=1

(n − di) = (n − d1) +

t∑
i=2

(n − di) = (n − δ) +

t∑
i=2

n −

t∑
i=2

di

≥ (n − δ) + (t − 1)n −

t∑
i=2

(n − t + i − 1) = tn − δ −
(t − 1)

2
(2n − t).

Therefore, 0 ≥ t2 − t − 2δ, and the bound follows. The bound is attained if, for example, G is the complete k-partite graph
K1,...,k. Indeed, we then have αir (G) = 1, δ = n− k, n = 1+ · · · + k =

k
2 (k+ 1) and k = span(G) ≤

1+
√
1+8δ
2 =

1+
√
1+8(n−k)
2 =

1+
√
1+8( k2 (k+1))−8k

2 =
1+

√
(2k−1)2

2 = k, so span(G) =
1+

√
1+8δ
2 . □
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3.2. Planar graphs and outerplanar graphs

We now determine the planar graphs and outerplanar graphs whose irregular independence number is 1.
Suppose that G and H are vertex-disjoint graphs. The join of G and H , denoted by G + H , is the graph with V (G + H) =

V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {{x, y} : x ∈ V (G), y ∈ V (H)}. If k ≥ 2, r ≥ 2, G = K1, and H is the union
of r vertex-disjoint copies of Kk−1, then G + H is called a k-windmill graph and is denoted by Wd(k, r). Note that Wd(k, r) is
merely the union of r copies of Kk that have exactly one common vertex.

Theorem 3.3. A graph G is planar and αir (G) = 1 if and only if G is a regular planar graph or a copy of one of the graphs K1,n−1,
K2,n−2, K2 + En−2, K2 +

n−2
2 K2, E2 +

n−2
2 K2, E2 + Cn−2, Wd(3, n−1

2 ) and K1 + H, where H is a union of vertex-disjoint cycles.

Before giving the proof of the theorem above, we need the following lemmas.

Lemma 3.4. If a planar graph G has a vertex v that is adjacent to all the other vertices of G, then G − v is outerplanar.

Proof. Indeed, by deleting v (and all edges incident to it) from a plane drawing of G, we obtain a plane drawing of G − v

that has all the vertices on the same face. This means that G − v is outerplanar because, for any face F of a plane drawing
ϕ of a planar graph, ϕ can be transformed to another plane drawing of the same graph in such a way that F becomes the
unbounded face, for example, by using stereographic projection (see [10, Remark 6.1.27]). □

Lemma 3.5. If ϕ is a plane drawing of E2 + Ck (k ≥ 3), then a vertex v of E2 is mapped by ϕ into the interior I of the drawing of
Ck, and the other vertex w of E2 is mapped by ϕ into the exterior E of the drawing of Ck.

Proof. Let G = E2 + Ck. Let F ∈ {I, E} such that v is mapped by ϕ into F . Since v is adjacent to each vertex of Ck, each face
of F in the drawing of G − w has exactly 3 vertices on its boundary, one of which is v. Thus, if we assume that w is mapped
into F , then we obtain that w lies in the interior of one of these faces, and hence that w is adjacent to at most two vertices of
Ck, a contradiction. □

Proof of Theorem3.3. It is easy to check that ifG is one of the explicit graphs in Theorem 3.3, thenG is planar and αir (G) = 1.
We now prove the converse.

Let G be a planar graph with αir (G) = 1. Since K5 and K3,3 are non-planar, G does not contain any copies of these. It is
well known that having G planar implies that m ≤ 3n − 6. Suppose that G is not regular. Setting t = span(G), we then have
t ≥ 2 (and n ≥ 3). We have D(G) = {d1, . . . , dt} for some integers d1, . . . , dt with 0 ≤ d1 < · · · < dt . We will often use
Lemma 3.1(i), which tells us that, for any i, j ∈ D(G) with i ̸= j, each vertex of Ndi is adjacent to each vertex of Ndj . The first
immediate deduction from this is that d1 ≥ 1 as t ≥ 2.

Suppose t ≥ 3. Let {a1, . . . , at} = {d1, . . . , dt} such that na1 ≤ · · · ≤ nat . If we assume that na1 = na2 = 1, then
Lemma 3.1(i) gives us a1 = a2 = n − 1, a contradiction (as a1, . . . , at are distinct). Thus, nai ≥ 2 for each i ∈ [2, t]. If we
assume that

∑t
i=3nai ≥ 3, then, by Lemma 3.1(i), we obtain that ⟨Na1 ∪Na2 ,

⋃t
i=3Nai⟩ contains a copy of K3,3, a contradiction.

Thus, t = 3 and na2 = na3 = 2. Let {u1, u2} = Na2 and {v1, v2} = Na3 . We cannot have {u1, u2}, {v1, v2} ∈ E(G), because
otherwise Lemma 3.1(i) gives us a2 = na1 + na3 + 1 = na1 + 3 = na1 + na2 + 1 = a3, a contradiction. Similarly, we cannot
have {u1, u2}, {v1, v2} ̸∈ E(G). Thus, for some i ∈ {2, 3}, ai = na1 + 2 and a5−i = na1 + 3. We cannot have na1 = 1, because
otherwise a1 = na2 +na3 = 4 = a5−i. Thus, na1 = 2. Let {w1, w2} = Na1 . We cannot have {w1, w2} ∈ E(G), because otherwise
a1 = 5 = a5−i. Thus, we have {w1, w2} ̸∈ E(G), which gives us a1 = 4 = ai, a contradiction.

Therefore, t = 2. If we assume that nd1 ≥ 3 and nd2 ≥ 3, then, by Lemma 3.1(i), we obtain that G contains a copy of K3,3, a
contradiction. Thus, ndi ≤ 2 for some i ∈ {1, 2}. Let j = 3 − i. By Lemma 3.1(i), G = G[Ndi ] + G[Ndj ]. By Lemma 3.1(ii), G[Ndj ]

is k-regular, where k = dj + ndj − n.
Suppose ndi = 1. Let {v} = Ndi . Thus, G = ({v}, ∅) + G[Ndj ]. By Lemma 3.4, G[Ndj ] is outerplanar. Since the minimum

degree of an outerplanar graph is at most 2 (see [10, Proposition 6.1.20]), k ≤ 2. If k = 0, then G is a copy of K1,n−1. If k = 1,
then G[Ndj ] is a copy of n−1

2 K2, so G is a copy ofWd(3, n−1
2 ). If k = 2, then G[Ndj ] is a cycle or a union of vertex-disjoint cycles.

Now suppose ndi = 2. Let {v, w} = Ndi and let {u1, . . . , un−2} = Ndj . By the handshaking lemma, |E(G[Ndj ])| =
k(n−2)

2 .
By Lemma 3.1(i), |E(⟨Ndi ,Ndj⟩)| = 2(n − 2). Now m = |E(G[Ndi ])| + |E(G[Ndj ])| + |E(⟨Ndi ,Ndj⟩)| ≥

k(n−2)
2 + 2(n − 2). Since

m ≤ 3n − 6, we obtain k ≤ 2.
If k = 0 and {v, w} ∈ E(G), then G is a copy of K2 +En−2. If k = 0 and {v, w} ̸∈ E(G), then G is a copy of E2 +En−2 = K2,n−2.

If k = 1 and {v, w} ∈ E(G), then G is a copy of K2 +
n−2
2 K2. If k = 1 and {v, w} ̸∈ E(G), then G is a copy of E2 +

n−2
2 K2.

Finally, suppose k = 2. We cannot have v adjacent to w, because otherwise m = 1 +
2(n−2)

2 + 2(n − 2) > 3n − 6. Since
k = 2, G[Ndj ] is a union of vertex-disjoint cycles G1, . . . ,Gr . Suppose r ≥ 2. Let θ be a plane drawing of G. Let ϕ be the
drawing obtained by restricting θ to the subgraph G′

= ({v, w}, ∅) + G1 of G. By Lemma 3.5, no face of ϕ has both v and w

on its boundary. Since G′ and G2 are vertex-disjoint, the drawing of G2 in θ lies in the interior of one of the faces of ϕ. Thus,
no vertex of G2 is adjacent to both v and w. This contradicts G = G[Ndi ] + G[Ndj ]. Therefore, r = 1. Thus, G is G[Ndi ] + G1,
which is a copy of E2 + Cn−2. □
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Corollary 3.6. A graph G is outerplanar and αir (G) = 1 if and only if G is a union of vertex-disjoint cycles or a copy of one of the
graphs En, n

2K2, K1,n−1, K2 + E2 and Wd(3, n−1
2 ).

Proof. It is trivial that if G is one of the explicit graphs in the statement of Corollary 3.6, then G is outerplanar and αir (G) = 1.
We now prove the converse. Let G be an outerplanar graph with αir (G) = 1. This means that δ ≤ 2, as mentioned in the

proof of Theorem 3.3. If G is k-regular, then k ≤ 2, and hence G is a copy of En (if k = 0) or a copy of n
2K2 (if k = 1) or a union

of vertex-disjoint cycles (if k = 2). Suppose that G is not regular. Since δ ≤ 2, it follows by Theorem 3.3 that G is a copy
of one of K1,n−1, K2,n−2, K2 + En−2, E2 +

n−2
2 K2 and Wd(3, n−1

2 ). It is well known that K2,3 is not outerplanar. Thus, K2,n−2 is
outerplanar only if n ≤ 4; note that K2,n−2 is the cycle C4 if n = 4. Also, for n ≥ 5, K2 + En−2 is not outerplanar as it contains
K2,3. Similarly, E2 +

n−2
2 K2 is planar only if n−2

2 ≤ 1. □

4. Irregular domination

In this section, we provide bounds for the irregular domination number, γir (G), and investigate cases of particular
importance, primarily cases where a bound is attained.

We will start with lower bounds for γir (G).

Theorem 4.1. If G is a graph, n = |V (G)| and ∆ = ∆(G), then

γir (G) ≥ max
{⌈n

2

⌉
, n − ∆

}
.

Moreover, the bound is sharp.

Proof. Let t = γir (G). Let D be an irregular dominating set of G of size t . Let v1, . . . , vn−t be the vertices in V (G) \ D. For
each i ∈ [n − t], let wi = |N(vi) ∩ D|; since D is a dominating set, wi ≥ 1. We may assume that w1 < · · · < wn−t . We have
t = |D| ≥ wn−t ≥ n − t , and hence t ≥

⌈ n
2

⌉
. Since n − t ≤ wn−t ≤ ∆, t ≥ n − ∆.

We now show that the bound is sharp. Let k =
⌈ n

2

⌉
and n′

= n − k. Suppose that G is constructed as follows: let
u1, . . . , uk, v1, . . . , vn′ be the distinct vertices of G, and, for each i ∈ [n′

], let vi be adjacent to exactly i of the vertices
u1, . . . , uk. Since max{d(ui) : i ∈ [k]} ≤ n′

= d(vn′ ) = max{d(vi) : i ∈ [n′
]}, ∆ = n′. Clearly, {u1, . . . , uk} is an irregular

dominating set of G of size
⌈ n

2

⌉
= n − n′

= n − ∆. □

Theorem 4.2. If G is a graph, n = |V (G)| and β = β(G), then

γir (G) ≥ n +
1 −

√
1 + 8β
2

.

Moreover, the bound is sharp.

Proof. Let t , D, v1, . . . , vn−t , w1, . . . , wn−t be as in the proof of Theorem 4.1. We have β ≥ e(D, V (G) \ D) =
∑n−t

i=1wi ≥∑n−t
i=1 i =

1
2 (n − t)(n − t + 1), so 0 ≥ t2 − (2n + 1)t + (n2

+ n − 2β), and hence t ≥ n +
1
2 (1 −

√
1 + 8β).

We now show that the bound is sharp. Let n/2 ≤ k ≤ n − 1 and n′
= n − k. Suppose that G is constructed as follows:

let u1, . . . , uk, v1, . . . , vn′ be the distinct vertices of G, and, for each i ∈ [n′
], let vi be adjacent to exactly i of the vertices

u1, . . . , uk. Let D = {u1, . . . , uk}. Since D is an irregular dominating set of G, γir (G) ≤ k. Since m = e(D, V (G) \ D), we have
β = e(D, V (G) \ D) =

1
2 (n

′)(n′
+ 1). By the established bound,

γir (G) ≥ n +
1 −

√
1 + 8β
2

= n +
1 −

√
1 + 4(n′)(n′ + 1)

2
= n +

1 −

√
(2n − 2k + 1)2

2
= k.

Since γir (G) ≤ k, γir (G) = n +
1−

√
1+8β
2 . □

Corollary 4.3. If G is an n-vertex graph with average degree d, then

γir (G) ≥ n −
√
dn.

Moreover, equality holds if and only if G is empty.

Proof. Since β ≤ m, γir (G) ≥ n +
1
2 (1 −

√
1 + 8m) by Theorem 4.2. Now dn =

∑
v∈V (G)d(v) = 2m (by the handshaking

lemma), so 4dn = 8m. Thus, γir (G) ≥ n+
1
2 (1−

√
1 + 4dn) ≥ n+

1
2 (−

√
4dn) = n−

√
dn. Note that equality holds throughout

only if d = 0, in which case G is empty.
If G is empty, then d = 0 and γir (G) = n = n −

√
dn. □

Next, we give a full characterization of the cases γir (G) = n and γir (G) = n − 1. For two graphs G and H , we write G ≃ H
if G is a copy of H .
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Theorem 4.4. For any graph G on n vertices, the following assertions hold:

(i) γir (G) = n if and only if G ≃ En.
(ii) γir (G) = n − 1 if and only if, for some t ≥ 0 and some r ≥ 1, G ≃ tK1 ∪ K1,r or G ≃ tK1 ∪ H for some r-regular graph H.

Proof. (i) If G has an edge {v, w}, then V (G) \ {v} is an irregular dominating set of G, so γir (G) ≤ n− 1. Therefore, γir (G) = n
only if G ≃ En. If G ≃ En, then V (G) is the only dominating set of G, so γir (G) = n.

(ii) It is easy to see that γir (G) = n − 1 if G ≃ tK1 ∪ K1,r or G ≃ tK1 ∪ H for some r-regular graph H . We now prove the
converse. Thus, suppose γir (G) = n − 1. By (i), E(G) ̸= ∅.

Suppose that G has two vertices u and v such that 2 ≤ d(u) < d(v). Then V (G) \ {u, v} is an irregular dominating set of G
(independently of whether u and v are adjacent or not). Thus, we have γir (G) ≤ n − 2, a contradiction. Therefore,

d(u) ≤ 1 for any u, v ∈ V (G) with d(u) < d(v). (2)

Suppose span(G) ≥ 4. Then there exist v1, v2, v3, v4 ∈ V (G) such that d(v1) < d(v2) < d(v3) < d(v4). Thus, we have
2 ≤ d(v3) < d(v4), which contradicts (2). Therefore, span(G) ≤ 3.

If span(G) = 1, then G is an r-regular graph for some r ≥ 1 (r ̸= 0 as E(G) ̸= ∅), and we are done.
Suppose span(G) = 2. Then {d(v) : v ∈ V (G)} = {p, r} with 0 ≤ p < r . By (2), p ≤ 1. If p = 0, then G ≃ tK1 ∪ H for some

t ≥ 1 and some r-regular graph H . Suppose p = 1. Then r ≥ 2. If we assume that there exists a pair of non-adjacent vertices
u and v of degrees 1 and r , respectively, then we obtain that V (G) \ {u, v} is an irregular dominating set of G of size n − 2,
which contradicts γir (G) = n − 1. Thus, each vertex x of degree 1 is adjacent to each vertex of degree r . Since x has only one
neighbour, there is only one vertex of degree r . Consequently, G = K1,r .

Finally, suppose span(G) = 3. Then there exist v1, v2, v3 ∈ V (G) such that d(v1) < d(v2) < d(v3). If we assume that G
has no vertex of degree 0 or no vertex of degree 1, then we obtain 2 ≤ d(v2) < d(v3), which contradicts (2). Thus, since
span(G) = 3, {d(v) : v ∈ V (G)} = {0, 1, r} for some r ≥ 2. Let G′ be the graph obtained by removing from G the set I
of vertices of G of degree 0. Then {d(v) : v ∈ V (G′)} = {1, r}. As in the case span(G) = 2 above, this yields G′

≃ K1,r , so
G = tK1 ∪ K1,r , where t = |I|. □

The Ramsey number R(p, q) is the smallest number n such that every graph on n vertices contains a clique of order p or an
independent set of order q.

Theorem 4.5. For any graph G on n vertices, the following assertions hold:

(i) If span(G) ≥ R(k, k) and δ(G) ≥ k, then γir (G) ≤ n − k.
(ii) If span(G) ≥ 5 and δ(G) ≥ 3, then γir (G) ≤ n − 3.

Proof. (i) Suppose span(G) ≥ R(k, k) and δ ≥ k. Let B be a set of R(k, k) vertices of G of distinct degrees. Then G[B] has an
independent set of size k or a clique of size k. If G[B] has an independent set I of size k, then V (G)\ I is an irregular dominating
set of G of size n−k. If G[B] has a clique K of size k, then, since δ ≥ k, V (G)\K is an irregular dominating set of G of size n−k.

(ii) Suppose span(G) ≥ 5 and δ ≥ 3. Let B be a set of 5 vertices of G of distinct degrees. It is easy to see that if a 5-vertex
graph does not have an independent set of size 3, then it is a copy of C5 or has a clique of size 3. If G[B] is a copy of C5, then
each vertex in B has a distinct number of neighbours in V (G) \ B, and hence, since δ ≥ 3, V (G) \ B is an irregular dominating
set of G of size n − 5. As in the proof of (i), γir (G) ≤ n − 3 if G[B] has an independent set of size 3 or a clique of size 3. □

5. Relations between irregular independence and irregular domination

We now establish a set of inequalities relating the irregular independence number to the irregular domination number.
These are gathered in the theorem below. In the proof, we need to use the following more precise notation. For a vertex
v of a graph G, we will denote the set of neighbours of v in G by NG(v), and the degree of v in G by dG(v). Formally,
NG(v) = {w ∈ V (G) : vw ∈ E(G)} and dG(v) = |NG(v)|. The complement of G (that is, (V (G),

( V (G)
2

)
\ E(G))) is denoted

by Ḡ.

Theorem 5.1. For any graph G on n vertices, the following assertions hold:

(i) αir (G) + γir (G) ≤ n + 1 if δ(G) = 0, and αir (G) + γir (G) ≤ n if δ(G) ≥ 1.
(ii) αir (G)γir (G) ≤ ⌊

n+1
2 ⌋⌈

n+1
2 ⌉ if δ(G) = 0, and αir (G)γir (G) ≤ ⌊

n
2⌋⌈

n
2⌉ if δ(G) ≥ 1.

(iii) αir (G) + γir (Ḡ) ≤ n + 1.
(iv) αir (G)γir (Ḡ) ≤ ⌊

n+1
2 ⌋⌈

n+1
2 ⌉.

Moreover, the bounds are sharp.
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Proof. Let A be an irregular independent set of G of size αir (G), and let D = V (G) \ A. Let δ = δ(G).
Suppose δ ≥ 1. Then D is an irregular dominating set of G, so αir (G) + γir (G) ≤ |A| + |D| ≤ n and αir (G)γir (G) ≤

|A||D| = |A|(n − |A|) ≤ ⌊
n
2⌋(n − ⌊

n
2⌋) = ⌊

n
2⌋⌈

n
2⌉ (as in the proof of Theorem 2.3(iii)). Now suppose δ = 0. Let V0 be the

set of vertices of G of degree 0, and let V1 be the set of vertices of G of degree at least 1. Clearly, A has exactly one element
x of V0, and D ∪ {x} is an irregular dominating set of G. As in the case δ ≥ 1, αir (G[V1]) + γir (G[V1]) ≤ |V1|. We have
αir (G) + γir (G) = (αir (G[V1]) + 1) + (γir (G[V1]) + |V0|) ≤ |V0| + |V1| + 1 = n + 1 and αir (G)γir (G) ≤ |A|(|D| + 1) ≤

|A|(n + 1 − |A|) ≤ ⌊
n+1
2 ⌋(n + 1 − ⌊

n+1
2 ⌋) = ⌊

n+1
2 ⌋⌈

n+1
2 ⌉. Hence (i) and (ii).

Let v1, . . . , vt be the distinct vertices in A, where dG(v1) < · · · < dG(vt ). We have dG(vt ) ≤ |V (G) \ A| = n − t . For each
i ∈ [t], let ai = |NḠ(vi) ∩ D|. For each i ∈ [t], ai = n − t − dG(vi) ≥ n − t − dG(vt ). Thus, if dG(vt ) ≤ n − t − 1, then
D is an irregular dominating set of Ḡ, and hence αir (G) + γir (Ḡ) ≤ |A| + |D| = t + (n − t) = n. Suppose dG(vt ) = n − t .
We have ai ≥ 1 for each i ∈ [t − 1]. Let A′

= A \ {vt}. Let D′
= D ∪ {vt}. For each i ∈ [t − 1], let bi = |NḠ(vi) ∩ D′

|.
For each i ∈ [t − 1], we have NḠ(vi) ∩ D′

= (NḠ(vi) ∩ D) ∪ {vt}, so bi = ai + 1 = n − t − dG(vi) + 1. Thus,
D′ is an irregular dominating set of Ḡ. Consequently, αir (G) + γir (Ḡ) ≤ |A| + |D′

| = t + (n − t + 1) = n + 1 and
αir (G)γir (Ḡ) ≤ |A||D′

| = t(n + 1 − t) ≤ ⌊
n+1
2 ⌋(n + 1 − ⌊

n+1
2 ⌋) = ⌊

n+1
2 ⌋⌈

n+1
2 ⌉. Hence (iii) and (iv).

We now show that the bounds are sharp. We use constructions similar to that in the proof of Theorem 4.1.
Let k =

⌈ n
2

⌉
and n′

= n− k. Suppose that G is constructed as follows: let u1, . . . , uk, v1, . . . , vn′ be the distinct vertices of
G, and, for each i ∈ [n′

], let vi be adjacent to exactly k − i + 1 of the vertices u1, . . . , uk. Clearly, δ ≥ 1. Also, {v1, . . . , vn′} is
an irregular independent set, and, by Theorem 2.1, it is of maximum size. Moreover, {u1, . . . , uk} is an irregular dominating
set of G, and, by Theorem 4.1, it is of minimum size. Thus, αir (G) + γir (G) = n′

+ k = n and αir (G)γir (G) = n′k = ⌊
n
2⌋⌈

n
2⌉.

Now suppose that we instead have that k =
⌈ n−1

2

⌉
, n′

= n − k, and, for each i ∈ [n′
], vi is adjacent to exactly i − 1 of

u1, . . . , uk. Since d(v1) = 0, δ = 0. Similarly to the above, {u1, . . . , uk, v1} is an irregular dominating set of G of minimum
size as {u1, . . . , uk} is an irregular dominating set of G − v1 of minimum size. Also, {v1, . . . , vn′} is an irregular independent
set of maximum size. Thus, αir (G) + γir (G) = n′

+ k + 1 = n + 1 and αir (G)γir (G) = n′(k + 1) = ⌊
n+1
2 ⌋⌈

n+1
2 ⌉. We have

established that (i) and (ii) are sharp.
Let k =

⌈ n−1
2

⌉
and n′

= n− k. Suppose that G is constructed as follows: let u1, . . . , uk, v1, . . . , vn′ be the distinct vertices
of G, and, for each i ∈ [n′

], let vi be adjacent to exactly k − i + 1 of the vertices u1, . . . , uk. Thus, {v1, . . . , vn′} is an irregular
independent set, and, by Theorem2.1, it is ofmaximum size (note that δ is d(vn′ ), which is 0 if n is odd, and 1 if n is even). Also,
we clearly have that {u1, . . . , uk, v1} is an irregular dominating set of Ḡ, and it is of minimum size because dḠ(v1) = 0 and, by
Theorem 4.1, {u1, . . . , uk} is an irregular dominating set of Ḡ−v1 of minimum size. Thus, αir (G)+γir (Ḡ) = n′

+k+1 = n+1
and αir (G)γir (Ḡ) = n′(k + 1) = ⌊

n+1
2 ⌋⌈

n+1
2 ⌉. □

6. Nordhaus–Gaddum-type results

In this section, we provide results of Nordhaus–Gaddum type [9] for both the irregular independence number and the
irregular domination number. We shall use the notation introduced in the preceding section.

Theorem 6.1. If G is a graph on n ≥ 2 vertices, then

(i) 2 ≤ αir (G) + αir (Ḡ) ≤ n,
(ii) 1 ≤ αir (G)αir (Ḡ) ≤ ⌊

n
2⌋⌊

n+1
2 ⌋.

Moreover, the bounds are sharp.

Proof. By Theorem 2.1, 1 ≤ αir (G) ≤ ⌊
n−δ(G)+1

2 ⌋ and 1 ≤ αir (Ḡ) ≤ ⌊
n−δ(Ḡ)+1

2 ⌋. The lower bounds follow immediately, and
they are attained if G is regular. If δ(G) = 0, then G has a vertex v with no neighbours, so δ(Ḡ) ≥ 1 (as v ∈ NḠ(u) for each
u ∈ V (Ḡ) \ {v}). Thus, δ(G) ≥ 1 or δ(Ḡ) ≥ 1. Hence αir (G) + αir (Ḡ) ≤ ⌊

n
2⌋ + ⌊

n+1
2 ⌋ ≤ n and αir (G)αir (Ḡ) ≤ ⌊

n
2⌋⌊

n+1
2 ⌋.

We now show that the upper bounds are sharp. Let k = ⌈
n
2⌉ and l = ⌊

n
2⌋. Suppose that G is constructed as follows: let

u1, . . . , uk, v1, . . . , vl be the distinct vertices of G, let every two distinct vertices in {v1, . . . , vl} be adjacent, and, for each
i ∈ [k], let ui be adjacent to the vertices in {vj : j ∈ [i − 1]}. Clearly, {u1, . . . , uk} is an irregular independent set of G, and
{v1, . . . , vl} is an irregular independent set of Ḡ. Therefore, αir (G) + αir (Ḡ) ≥ k + l = n and αir (G)αir (Ḡ) ≥ kl. By (i) and (ii),
we actually have αir (G) + αir (Ḡ) = n and αir (G)αir (Ḡ) = kl. Finally, note that k = ⌊

n+1
2 ⌋. □

Theorem 6.2. If G is a graph on n ≥ 2 vertices, then

(i) 2⌈ n
2⌉ ≤ γir (G) + γir (Ḡ) ≤ 2n − 1,

(ii) (⌈ n
2⌉)

2
≤ γir (G)γir (Ḡ) ≤ n(n − 1).

Moreover, the following assertions hold:

(a) The bounds are attainable for any n ≥ 3.
(b) For each of (i) and (ii), the upper bound is attained if and only if G is empty or complete.
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Proof. By Theorem 4.1, γir (G) ≥
⌈ n

2

⌉
and γir (Ḡ) ≥

⌈ n
2

⌉
. The lower bounds in (i) and (ii) follow immediately. If G is empty,

then Ḡ is complete, so γir (G)+ γir (Ḡ) = n+ n− 1 = 2n− 1 and γir (G)γir (Ḡ) = n(n− 1). If G is complete, then Ḡ is empty, so
γir (G)+ γir (Ḡ) = 2n− 1 and γir (G)γir (Ḡ) = (n− 1)n. If G is neither empty nor complete, then Ḡ is non-empty, and hence, by
Theorem 4.4, γir (G) + γir (Ḡ) ≤ 2(n − 1) < 2n − 1 and γir (G)γir (Ḡ) ≤ (n − 1)2 < n(n − 1).

It remains to show that the lower bounds in (i) and (ii) are attainable for any n ≥ 3.
Suppose first that n is odd. Let k =

n−1
2 . Suppose that G is constructed as follows: let u1, . . . , uk, v1, . . . , vk+1 be the

distinct vertices of G, and, for each i ∈ [k], let ui be adjacent to v1, . . . , vi. Clearly, {v1, . . . , vk+1} is an irregular dominating
set of G and of Ḡ. Thus, γir (G)+ γir (Ḡ) ≥ 2(k+ 1) = 2⌈ n

2⌉ and γir (G)γir (Ḡ) ≥ (k+ 1)2 = ⌈
n
2⌉

2. By (i) and (ii), we actually have
γir (G) + γir (Ḡ) = 2⌈ n

2⌉ and γir (G)γir (Ḡ) = ⌈
n
2⌉

2.
Now suppose that n is even and n ≥ 8. Let k =

n
2 . Suppose that V (G) = {u1, . . . , uk, v1, . . . , vk} and that, for each

i ∈ [k] \ {2}, ui is adjacent to v1, . . . , vi, u2 is adjacent to v2 and v3, v2 is adjacent to v4, . . . , vk, v3 is adjacent to v4, . . . , vk,
and there are no other adjacencies. Let A = {v1, . . . , vk} and B = {u1, uk, v1, v4, . . . , vk}. Clearly, A is an irregular dominating
set ofG. Letw1 = v3,w2 = v2,w3 = uk−1, w4 = uk−2, . . . , wk = u2. Thus, V (G)\B = {w1, . . . , wk}. Note that |NḠ(wi)∩B| = i
for each i ∈ [k]. Thus, B is an irregular dominating set of Ḡ. Therefore, we have γir (G) ≥ |A| = k and γir (Ḡ) ≥ |B| = k, and
hence the lower bounds in (i) and (ii) are attained.

Suppose that n = 6, u1, u2, u3, v1, v2, v3 are the vertices of G, and {u1, v1}, {u2, v2}, {u2, v3}, {u3, v1}, {u3, v2}, {u3, v3} are
the edges of G. Clearly, {v1, v2, v3} is an irregular dominating set of G, and {u1, v1, v3} is an irregular dominating set of Ḡ.
Thus, the lower bounds in (i) and (ii) are attained.

Finally, suppose that n = 4 and G is the path P4 = ([4], {{1, 2}, {2, 3}, {3, 4}}). Then {1, 3} is an irregular dominating set
of G, and {1, 2} is an irregular dominating set of Ḡ = ([4], {{2, 4}, {4, 1}, {1, 3}}). Thus, the lower bounds in (i) and (ii) are
attained. □
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