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Abstract
A long-standing goal of Artificial Intelligence is to have agents capable of
understanding and interpreting the visual world using natural language.
Research at the intersection of Computer Vision and Natural Language
Processing is currently booming and the automatic generation of image
captions has gained significant popularity. Several ideas and architectures
have been proposed to machine generate human-like sentences that de-
scribe images, but all fall short of reaching human-level quality. In general,
the task of image caption generation involves the selection of salient ob-
jects, attributes and relations depicted in the image which are then com-
bined into a natural language sentence. While the state-of-the-art archi-
tectures attempt to do this task in one step, this PhD studies the gener-
ation of sentences out of a set of discrete keywords. The attentional be-
haviour of the human brain while processing the visual world inspired this
PhD study and has led to the hypothesis that captions can be generated
through a relevant set of keywords which are then connected through a
path traversal in a knowledge graph derived from a language dataset.
This novel combination acts as a gangboard between the vision and lan-
guage modalities, where keywords are represented as graph nodes, while
the sequence between keywords is reflected by directed edges. As op-
posed to the current popular end-to-end learning approach, the proposed
model reduces the dependency of large scale paired image-caption datasets
which are very laborious and expensive to collect. To test this hypothe-
sis, this study develops and studies KENGIC, a Keyword driven and N-
gram Graph-based Image Captioning framework which exploits n-gram
sequences as found in a given text corpus to construct sub-knowledge
graphs for query images. By having a set of predicted image keywords
considered as nodes, the proposed system is designed to probabilistically
connect these nodes to form a directed graph through overlapping n-
grams. The system infers the most likely captions by maximising the most
probable n-gram sequences constructed from the predicted keywords.
The study, investigates the generation of image captions under different
configuration setups based on (a) keywords extracted from gold standard
captions and (b) from automatically detected keywords. Both quantita-
tive and qualitative analyses demonstrated the effectiveness of KENGIC.
As spatial relations (SRs) are inherently more difficult to be predicted from
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whole images due to their highly polysemous, locative, explicit, and am-
biguous nature, this research also contributes to the problem of SR pre-
diction by investigating the problem from a multi-label perspective. How-
ever, the explicit use of SRs was not found to improve the quality of the
generated captions as evaluated on automatic metrics. The performance
achieved by KENGIC is very close to that of current state-of-the-art image
caption generators that are trained in the unpaired setting. The analysis of
this approach could also shed light on the generation process behind cur-
rent top performing caption generators trained in the paired setting and
in addition, provide insights on the limitations of the current most widely
used evaluation metrics in automatic image captioning.
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1 Introduction

Following the pioneering vision of the English computer scientist, Alan Turing (1912-
1954) in which “machines will eventually compete with men in all purely intellectual
fields” (Turing, 1950), the Artificial Intelligence (AI) research community is still exploring
ways of enabling machines to understand the intersection between vision and language.
Researchers from both Computer Vision (CV) and Natural Language Processing (NLP)
communities are currently narrowing the gap between the two domains in order to find
solutions for machines to understand the visual world and to describe it using natural
language. The long term goal is to enable human-to-machine interaction and to provide
assistance for the visually impaired through spoken feedback (Lu et al., 2018).

1.1 Language
The human language is one of the most mysterious and dynamic natural systems that
the human beings inherit naturally and which keeps evolving through each generation
to serve as a communication channel between them (Hauser et al., 2014). From a very
young age, infants unconsciously start formulating the building blocks and the linguistic
structure needed for a verbal communication system by means of a continuous and nat-
ural flow of linguistic information coming from their senses of hearing (sound) and sight
(vision). By parsing sequential utterances and associating parts of speech to the corre-
sponding visual domain, infants instinctively startmaking sense of their surroundingworld
through their visual and auditory perception, while gradually keep broadening and enrich-
ing their vocabulary. During this phase, infants can be compared to young statisticians,
fine-tuning a distributional and statistical model which maps co-occurrences as found be-
tween vision and language modalities. Infants continue developing their language skills
and eventually begin to interact with others and explain their thoughts and emotions by
fine granular sentences, such that others can contextually visualise and understand the
content of their spoken messages (Peters, 1983). This ability makes the human being
unique and distinct from all other species found on this planet (Dunbar, 2009). Although
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the neuroscience community provides both insights of how language is processed in the
human brain and clues about how humans acquire language (Kemmerer, 2014), language
acquisition still remains a mystery and so far only theories from psycho- and cognitive lin-
guistics shed some light on how this phenomenon occurs (Bowerman et al., 2001; Vetter
and Howell, 1971).

1.2 Language Acquisition
Although the nature versus nurture debate continues to dominate in the psycholinguistics
field, it still remains unclear how the first language originated and how languages continue
passing from one generation to another with limited supervision. Up till now, only theo-
ries and some supporting evidence shed light on how this complex biological process oc-
curs. The mentalist theorists hypothesise that language is acquired genetically, similar to
any other human cognitive ability (Chomsky, 1995; Lenneberg, 1967), while the environ-
mentalists argue that language is learned through an interactive process (Skinner, 1985).
Although, to date, no exact and complete evidence has been found of how this perplexing
process takes place, current neuroscience-based research is providing evidence that sup-
ports earlier proposed theories (Kuhl, 2010). One of the earliest theories was proposed
by Skinner (1985), who was one of the pioneers of Behaviorism. The behaviorists theo-
rise that infants acquire language based solely on behavioural reinforcement principles,
such that when infants correctly associate words with corresponding meanings, they are
positively reinforced by their caregivers. Through the eyes of the behaviorists, as infants
continue being rewarded for their correct associations, they will be naturally constructing
and adapting to the linguistic structure for their native language. This theory, however,
fails to adequately explain how the human language is perceived and comprehended by
the human brain. The nativist theorists seek to answer this by arguing that language is a
biological instinct which was created by a single chance mutation in one individual about
100,000 years ago. This triggered the language faculty in the human brain or the so-
called Language Acquisition Device (LAD), as proposed by one of the pioneers in the field
of psycholinguistics and the father of modern linguistics, Chomsky (1995). This theory
also hypothesises that humans are born with a universal grammar, consisting of struc-
tural rules and instinctive knowledge that serve as a backbone for language acquisition,
even in cases where infants have limited language exposure. For the nativists, this is the
primary reason why infants are in a position to acquire language at a very fast pace. The
mentalists see language as an innate phenomenon for all human beings, while the cogni-
tive theorists argue that language can be seen as another aspect of a child’s overall intel-
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lectual development and behavior that involves thinking and reasoning. Conversely, the
interactionists (Tomasello, 2003; Vygotsky, 1978) combine ideas from sociology and biol-
ogy, and emphasise the point that language emerges from the involved social interaction
between infants and the outside world in the form of communication. This environmen-
talist approach prioritise the social interaction over the reward-based approach of the
Behaviorists. In fact, Tomasello (2003), one of the critics of Chomsky’s universal gram-
mar, rejected the idea of an innate universal grammar and instead proposed a functional
theory of language development, which revolves around the importance of semantic and
communicative functions of language rather than the linguistic structure. Furthermore,
the social-pragmatic theory of language acquisition states that children in reality do not
need any specific linguistic constraints to learn words, but most importantly, they need
flexible and powerful social-cognitive skills which allow them to understand the commu-
nicative intentions of others in different interactive scenarios (Tomasello, 2000). These
opposing theories are merged together by the Emergentist theory which states that lan-
guage is a product of several sources combined by internal associations working together
simultaneously (MacWhinney, 1998). This theory bridges the disconnection between the
nature versus nurture debate which essentially divides the nativists and social interac-
tionist perspectives. The emergentist approach states that language acquisition cannot
be reduced to being the result of isolated and independent causes, but emerges from com-
plex and dynamic interactions between an infinite number of variables, which include but
are not limited to, our genetic, neurological wiring and social-psychological evolutionary
variables. Thelen and Smith (1996) argue that language is an evolution of a system which
starts from an initial unstable phase and moves to higher levels of organisation, each with
successive and better stability. To complement the Nativist theory, the psycholinguist El-
man (1995), suggested that innateness can also takes place on several levels and in an
emergent approach. Rather than being born with a pre-wired structure, ready to absorb
language, Elman (1995) suggested that innateness itself emerges from several constitut-
ing units, including but not limited to, the architecture of brain cells and the arrangements
of neurons in the cortical and subcortical areas of the brain. Also, Emergentism sees the
importance of the distributional and statistical extraction by infants as a key characteristic
for the comprehension of words and grammar. Research in this area confirms that lan-
guage learning is heavily dependent on the amount and quality of language input, while
highlighting the importance of engagement, processing and understanding of the same
language input. As suggested by this theory, the input in language development can-
not be simply viewed as passive speech bombardment addressed to infants, but on the
contrary, children must actively process the input speech. From the emergentist point
of view, children learn languages by continuously adjusting their learnt structure each
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time their speech output differs from the input. This perspective is the inspiration behind
Connectionism (Ellis, 1998).

1.3 Connectionism
The idea of having a system which automatically adjusts its structure and tunes its re-
sponse based on the input it receives and the output it generates, was the primary founda-
tion behind the connectionist approach. Connectionism is a subfield in cognitive science
that aims to understand and study the complexity of human cognitive abilities with com-
putational models that are inspired by the architecture of the human brain (McCloskey,
1991). These models are commonly referred to as Artificial Neural Networks (ANNs)
which are composed of connected nodes to represent nodes and synapyses of the human
brain. This is intended to emulate the signal propagation which occurs in brain synapses
during cognitive tasks. This architecture was proposed to automatically infer statistical
mappings between input and output training samples via a computational approach that
continuously minimises the difference between the generated and the actual output for a
given input sample. This approach has been used since the invention of the “Perceptron”
by Rosenblatt (1958), but it was not until recently that it mademajor breakthroughs. With
the sheer amount of data and high computational power available, learning complex non-
linear functions for non-trivial problems has become possible in the last decade through
the use of Deep Neural Networks (DNNs). This has marked the beginning of the Deep
Learning (DL) era which is currently dominating the field of AI with state-of-the-art re-
sults across many research areas and applications, including one of the current popular
and challenging problems of image caption generation (Wang and Chan, 2019).

1.4 Image Caption Generation
“Imagine, for example, a computer that could look at an arbitrary scene, anything from a sunset at a
fishing village to Grand Central Station at rush hour and produce a verbal description. This is a problem
of overwhelming difficulty, relying as it does to finding solutions to both vision and language and then
integrating them. I suspect that scene analysis will be one of the last cognitive tasks to be performed
well by computers”.

– David Stork, HAL’s Legacy (2001) on Azriel Rosenfeld’s vision (Stork, 1997).
This quote, which is attributed to Azriel Rosenfeld (1931-2004), who is one of the

pioneers in Computer Vision (CV), highlights how difficult it is to computationally model
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the human ability of seeing, understanding and describing the visual world using natural
language descriptions. The involved complex visual recognition and the way visual per-
ception is translated and communicated by natural language are intrinsic to most human
beings. Through an incremental learning experience, most individuals can effectively and
naturally describe any visual content using natural language. This process is the result
of accumulated knowledge which combines visual perception and human language orig-
inating from word learning ability during language acquisition. Children eventually learn
how to communicate with others and to provide meaningful representations of our world
we live in through a natural and endless learning experience that continuously matures,
improves and adapts. Although this is an effortless task for most human beings, automat-
ically generating descriptions for visual content, has been one of the long-standing ambi-
tions in Computer Vision (CV) since the late 1960s. At that time, it was believed that this
could be simply achieved in a summer project by engineering a system that can perform
automatic background and foreground segmentation, and extraction of non-overlapping
objects from real-world images (Papert, 1966). After more than 50 years, we are still far
from realising this dream.

Automatic visual understanding is performed on digital images which are encoded as
large matrices of numerical data representing colour intensities at each single point. From
these thousands or even millions of colour-coded pixels, computer vision algorithms are
designed to transfer patterns of pixel values into semantic meanings that effectively de-
scribe the content of images. The recognition of objects in images which plays a vital role
for visually analysing an image has seen major and rapid advancements in recent years.
In fact, current state-of-the-art object recognition models built on top of deep neural
architectures, are now capable of classifying thousands of object classes with human-
comparable accuracy (Wang et al., 2014). While object detectors can be portrayed as the
fundamental building blocks for automatic image captioning, such detectors can only pro-
duce descriptions as a laundry list of object categories which pale in comparison with the
linguistic structure and naturalness of human descriptions. In contrast, humans through
their active and exploratory eye gazing mechanism can select the main important as-
pects of scenes after recognising the objects (e.g., “person”, “boat”), their attributes (e.g.,
“wooden”) and how these objects relate to each other through verbs (e.g., “painting”) or
prepositions (e.g., “next to”). After these composing entities are selected, humans in-
stinctively use their high-level knowledge to transform these entities into well formed
sentences that follow a particular language grammar.
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1.5 Research Problem
The problem of automatic generation of concise natural language descriptions for im-
ages has gained huge popularity in both academia and industrial key players (Bernardi
et al., 2016). The conventional process of automatically describing an image fundamen-
tally involves the visual analysis of the image content such that a succinct natural language
statement, verbalising the most salient image aspects, can be generated. The generation
of image captions also depends extensively on natural language generation methods for
constructing linguistically and grammatically correct sentences. Describing image content
is very useful in applications for image retrieval based on detailed and specific image de-
scriptions, including caption generation for enhancing the accessibility of existing image
collections, for enabling human to robot interaction and more importantly, as an assistive
technology for the visually impaired (Kulkarni et al., 2013b).

Arguably, the most difficult aspect in image description generation is bridging the
gap between image visual analysis and its corresponding linguistic description. In fact,
this task is an emerging research initiative which attempts to provide more relevant and
human-like image descriptions (Yang et al., 2011). Numerous approaches have been ap-
plied in an attempt to tackle the complexity behind this problem but no single solution
has yet been identified that matches human quality. First generation systems caption im-
ages by either reusing sentences from collections of image and sentence pairs (Mason
and Charniak, 2014; Ordonez et al., 2011), or else by constructing sentences through
direct generation pipeline, where sentences are constructed by using templates, gram-
mars or hard-coded rules (Kulkarni et al., 2013a; Yang et al., 2011). With the help of
recent advancements made in computational power and with the sheer amount of mul-
timedia content available, Deep Learning (DL) paved the way for the second generation
systems (Vinyals et al., 2015; Xu et al., 2015). These models are developed to automat-
ically learn the mapping between images and corresponding sentences via deep neural
architectures. These are trained end-to-end on large scale paired image-caption datasets
which can be very expensive and laborious to collect. These neural-based models are
designed to learn sequential linguistic patterns as conditioned by corresponding visual
information. However, evidence shows that these models can be biased in the linguistic
domain (Hendricks et al., 2018) and hence limit the compositionality and naturalness for
less frequent scenarios (Nikolaus et al., 2019). This often results in syntactically correct
descriptions but with semantically irrelevant captions andwhich lack diversity. Suchmod-
els are also limited in terms of their explainability and their applicability across different
domains.

The encoder-decoder framework (Vinyals et al., 2015) is the core pillar underpinning
6
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(a) Boat on a lake with aChristmas tree (img). (b) Boat on a lake near a Christmastree (Meyering, 2020).
Figure 1.1: Two captions generated by KENGIC for the given keywords:“boat”, “lake”, “Christmas”, “tree”.

almost every deep learning based image caption generator. The encoder part is responsi-
ble for encoding the image into a fixed sized feature vector to represent the most salient
aspects of the image. This is normally carried out by the use of Convolutional Neural
Networks (CNNs). On the other other hand, recurrent-based neural networks, such as
Recurrent Neural Network (RNN) (Mikolov et al., 2010), Gated Recurrent Unit (GRU) (Cho
et al., 2014a) or Long-Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
are used to turn the image embeddings into sequences of words by learning sequence of
patters as conditioned by the visual domain. However, this conventional encoder-decoder
pipeline showed itself to be brittle in cases where images are composed of infrequent
combinations, such as a “boat on a lake with a Christmas tree” as shown in Fig. 1.1(a) which
happens to be a Greek tradition.

To mitigate this problem, attention mechanisms have been introduced in image cap-
tioningmodels to simulate the human attentive naturewhen describing visual content (An-
derson et al., 2018; Lu et al., 2017; Xu et al., 2015). This was initially carried out at the
decoding phase, where attention was given to the most informative image regions upon
generating each corresponding word. A two-staged attention mechanism was later pro-
posed to first detect the informative regions through object detectors (bottom-up) and
the second phase (top-down) attends the most relevant detected image regions upon
the generation of each word (Anderson et al., 2018). The more recent works handles
attention through the use of Transformers (Vaswani et al., 2017) which were first intro-
duced to generate machine translated text. Transformer-based models are designed to

7



CHAPTER 1. INTRODUCTION

perform end-to-end attention via dot-product to implicitly learn informative regions (Yu
et al., 2020; Zhang et al., 2021b). Scene graphs (Xu et al., 2019; Yang et al., 2020) have
recently been introduced to explicitly represent the relationship between the detected
image regions via visual and semantic relation embeddings or through Graph Convolu-
tional Networks (GCNs) trained to automatically encode the relationship between the
detected image regions. However, although improvements have been made with this ap-
proach when using high-quality scene graphs, the quality of captions based on publicly
available scene graph generator models is unsatisfactory due to the lack of quality in the
generated scene graphs (Milewski et al., 2020).

Recently, researchers started focusing on the long-term viability of image caption gen-
erators by reducing the dependency of large paired image-caption datasets. To achieve
this, models trained in an unpaired setting, where no association between images and cap-
tions is made during the training phase, were proposed (Ben et al., 2022; Cao et al., 2020).
In this PhD, a Keyword-driven and N-Gram Graph-based Image Captioning (KENGIC) ap-
proach was proposed. This was purposely developed to (a) reduce the dependency of
paired image and caption datasets and (b) to investigate the role of visual keywords in im-
age captioning. While this approach can be used to project insights on how captions can
be generated from a set of relevant image keywords, in the future it can also be exploited
for more explainability and traceability in image caption generation.

1.6 Keyword-driven andN-gramGraph-based ImageCap-
tioning (KENGIC)

TheKENGIC framework is designed to build graphs for images by linking keywords through
frequent and overlapping n-grams as found in a text corpus. These graphs are then tra-
versed to search for relevant captions. Salient keywords are generated explicitly from
images, whilst other words are inserted during the graph traversal.

To further improve the grounding of the generated captions, KENGIC makes use of
explicit spatial relations detected in images to validate any implicitly generated spatial
relations in the captions. For instance, when taking into consideration the given set of
keywords of Fig 1.1 (i.e., “boat”, “lake”, “Christmas”, “tree”), the framework generated two
possible captions which make use of two different spatial relations (i.e., “boat with tree”
and “boat near tree”). To better ground captions in images, KENGIC validates or corrects
the spatial relations that are generated implicitly after taking into consideration the tra-
jector and landmark objects mentioned in the captions.
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1.7 Hypotheses
Inspired by the emergent property of the human brain which structures the complexity of
cognition into finer interactions between neurons, and how the latter are excited when
humans interact with the visual world via connectionism, this research hypothesises that
(a) high quality image captions can be generated out of relevant image keywords. Out of
these keywords, this research hypothesises that (b) captions can be formulated through
an n-gram graph by connecting the neighbouring words commonly used with the ex-
tracted keywords. Finally, this research hypothesises that (c) captions can be generated
by traversing the graph which combines the extracted image keywords.

1.8 Research Questions
Based on the hypotheses of this PhD, this research aims to provide answers for the fol-
lowing questions:
1. Can image caption generation be cast as a graph search problem through a keyword-

based n-gram graph?
This question aims to investigate whether image descriptions can be grounded in
image keywords through the use of an n-gram graph-based data structure. This also
provides a novel framework to study the implicit and explicit generation of keywords
in image captions and how these effect their quality.

a) What is the role of image keywords in KENGIC?
This question aims to find out which keywords are most important for the gen-
eration of n-gram graphs as evaluated with automatic metrics. For example, are
graphs better generated with nouns only, or do graphs composed of nouns and
attributes lead to better results?

b) What visual detectors are required?
Since conventional DL basedmodels generate visual keywords implicitly, KENGIC
framework offers the possibility to study the interplay between the generation
of explicit and implicit keywords in a non end-to-end manner. As KENGIC con-
structs sentences based on keywords, this framework sheds light on what type
of keywords aremost important for the generation of graphs andwhat keywords
can be generated implicitly by KENGIC.
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c) What is the quality of the generated captions?
This question is set to find out the quality of the generated captions as evalu-
ated using automatic metrics and human evaluation.

2. How does the selection of keywords affect the evaluation performance in image caption
generation as measured by current automatic metrics?
Since image captions are generally evaluated by automatic metrics, this research
questions how keywords affect the evaluation performance based on such met-
rics. For instance, it seeks to answer whether the widely used metrics influence
the choice of keywords mentioned in the generated captions or whether captions
which make use of rich keywords are penalised over generic and less specific vocab-
ulary.

3. How does spatial relation detection contribute in automatic image captioning?
Given that the majority of current image caption generators produce captions with-
out the explicit use of spatial relation detectors, this study aims to investigate the
role of spatial relations in the context of image caption generation.

1.9 Objectives
To provide answers for the aforementioned questions, this research has the following
objectives:
1. Review the literature which covers models used in image captioning and how graphs

are used in image captioning to position KENGIC in the literature.
2. Review the literature on visual detectors used for the detection of objects, attributes,

verbs and spatial relations.
3. Develop KENGIC framework.
4. Perform a preliminary study on KENGIC based on human keywords.
5. Study the performance of KENGIC based on detected objects and predicted image

multi labels.
6. Perform both quantitative and qualitative analysis on KENGIC.
7. Handle the grounding of spatial relations in generated captions.
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1.10 Contributions
This research presents the following as contributions to knowledge in image caption gen-
eration and spatial relation detection for better grounding in captions:
1. KENGIC: A novel keyword and n-gram graph based image caption generation frame-

work. This was proposed to generate image captions from a set of detected image
keywords. This approach was also intended to reduce the dependency of large scale
paired image-caption datasets while paving the way for more explainable and trace-
able image caption generation. Both quantitative and qualitative analysis confirmed
the efficacy of this approach.

2. A study on what keywords benefit image evaluation metrics. This study confirmed
that nouns play the most important role in image captioning. Furthermore, it was
found that current popular metrics pay more attention to the mentioned keywords
rather than the structure of the sentences.

3. Spatial relation detection in images was studied to better handle the use of spatial
prepositions in image captioning. The quality of the captions based on single-label
based spatial relation detection confirmed that the quality of captions slightly re-
duces and therefore image captioning benefits from multi spatial relation detection.

1.11 Outline
The rest of this thesis is organised as follows. Chapter 2 provides the background related
to this topic and reviews the literature relevant to image captioning. Chapter 3 presents
the methodology based on KENGIC framework. Chapter 4 reports and discusses the
conducted experiments and results. Chapter 5 presents the integration of Spatial Relation
(SR) detection in KENGIC, while Chapter 6 presents a study onmulti SR detection. Finally,
the thesis ends by summing the conclusions and future work in Chapter 7.
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2 Background and Literature Review

It has been a long standing problem for Computer Vision (CV) researchers to automati-
cally understand and describe the visual content of images. Research on associating text
with images goes back at least to the 1960s with early works focusing on object and
region labelling (Rosenfeld, 1978). Image description proper, however, starts where a
summarising description of the whole image is aimed for. Image description aims to pro-
duce a summarising description of themost important aspects of an imagewhich typically
involves the prioritisation of the most salient objects and their relationships. This prob-
lem is difficult to model because image captions written by humans are conditioned by
language-specific uses and constraints (Herskovits, 1997) and on the cues humans pick
up from a perceived 3D world, whereas an image is a 2D projection. This chapter reviews
the main literature that contributed towards understanding image visual content, starting
from image understanding to image caption generation.

2.1 Image Recognition
Early research in CV started from the simple but yet challenging problem of image classi-
fication, where images were classified based on their most prominent single object found
in images (Vailaya et al., 2001). Since images can be classified under more than one cat-
egory (for example an image can have both a “person” and a “boat”), researchers also
contributed in multi-label image classification to assign multiple classes for a single im-
age (Li et al., 2004). Despite being an easy task for most human beings, this problem is
difficult for machines because of the various forms and sizes of object classes which can
be either occluded or visible under different viewpoints and even due to illuminations and
intraclass variations among others. Building up on that knowledge, researchers were then
able to localise the main single object in bounding boxes (Harzallah et al., 2009; Lampert
et al., 2008; Lowe, 2004). Later, the field moved to multi object detection and image seg-
mention (Hariharan et al., 2014, 2015; He et al., 2017a) where multiple objects were not
only detected in bounding boxes but also delineated from the rest of the image. Examples
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Classification + Localisation

Object Detection

Instance Segmentation

Single object Multiple objects

http://cocodataset.org/#explore?id=315324
http://cocodataset.org/#explore?id=23811

boat dog, person, boat

Classification

Figure 2.1: Computer Vision: From Single object classification to multipleinstance segmentation.
of these sub-tasks in image recognition are illustrated in Fig.2.1.

2.1.1 Traditional Detectors
Early researchers opted for a direct region proposal generation pipeline, whereby sliding
windowmechanismswere used to (a) select informative image regions, and then (b) recog-
nise the objects through handcrafted features like SIFT (Lowe, 2004), HOG (Dalal and
Triggs, 2005) and Haar-like (Lienhart and Maydt, 2002) features. These hand-engineered
features were used to learn discriminitive features from raw pixels throughmachine learn-
ing classifiers. Generally, this was handled by the use of SVM (Cortes and Vapnik, 1995),
AdaBoost (Freund and Schapire, 1997) and DPM (Felzenszwalb et al., 2010) which was
found to be the most effective model in the PASCAL1 Visual Object Classes (VOC) detec-
tion competitions (Everingham et al., 2010) at that time.

1PASCAL corresponds to pattern analysis, statistical modelling and computational learning.
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2.1.2 Deep Learning Approach
With the recent uptake of Deep Learning (DL) thanks to the availability of large-scale
annotated data and high-performance parallel computing infrastructures such as GPU
clusters, the use of Convolutional Neural Network (CNN) (LeCun et al., 1989) revolu-
tionised the field of Computer Vision. Nowadays, traditional handcrafted features have
been replaced by embeddings learned by networks while being trained to classify images
or detect objects. These neural based architectures achieved impressive performance
when compared to earlier works and have even surpassed human-level performance on
single-label image datasets such as the MNIST2 (Lecun et al., 1998) and ImageNet (Deng
et al., 2009).
2.1.2.1 Convolutional Neural Network
Inspired by the neocognitron (Fukushima and Miyake, 1982), LeCun et al. (1989) pro-
posed the first CNN framework to classify handwritten digits using the back-propagation
algorithm (Hecht-Nielsen, 1992). Numerous deep architectures followed, with the most
popular ones being AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman,
2015), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016). Generally, a CNN
is composed of three types of layers. These include the convolutional, pooling, and fully-
connected layers. The convolutional layer consists of multiple convolutional kernels that
are used to extract feature maps. This is handled by having each neuron within each
feature map connected with a neighborhood of neurons in the previous layer. A feature
map is obtained by convolving the input with an already learned kernel and by passing
each convolved result through a non-linear activation function. The kernel is shared by
all spatial locations of the input, while several kernels are used to obtain the complete set
of feature maps. More formally, the feature value zl

i,j,k located in position (i, j) of the kth
feature map found in the lth layer is computed by:

zl
i,j,k = wl>

k xl
i,j + bl

k, (2.1)
where wl

k and bl
k are the weight vector and bias term for the kth filter in the lth layer, re-

spectively. To detect non-linear features, CNNs make use of non-linear activations which
can include the sigmoid (σ), hyperbolic tangent (tanh) and Rectified Linear Unit (ReLu)
which are defined as follows:

σ(x) =
1

1 + e−x (2.2)
2MNIST stands for Modified National Institute of Standards and Technology.
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tanh(x) = ex − e−x

ex + e−x (2.3)

ReLu(x) = max(0, x), (2.4)
where x is the convolutional feature zl

i,j,k.
In order to reduce the resolution of feature maps while keeping them approximately

translation invariant (i.e., features should not be dependent on their location), pooling lay-
ers are used for the extraction of higher abstracted features (Goodfellow et al., 2016).
This layer is typically situated between two covolutional layers. The pooling operation
works by sliding a filter (generally of size 2× 2 with a stride of 2) over an output feature
map and this filter computes an output from the receptive field (i.e. feature map being
processed). The most commonly used pooling techniques includemax pooling, where the
filters simply select the maximum pixel value found in that receptive field; and average
pooling which instead calculates the average values. Having a number of convolutional
and pooling layers following each other makes the network deep (i.e., D-CNN). Following
these layers, fully-connected layers are used to connect neurons from previous layers to
single neurons of the following layers. The final layer is considered as the output layer as
it handles the final classification and is trained to output the class probabilities. Normally,
this layer uses either a sigmoid layer for multi-label classification or softmax activation
function for single-label classification as follows:

softmax(x)i =
exi

∑K
j=1 exj

, (2.5)
where x is the output scores of the K classes and softmax(x)i is the probability of the ith
class.

The optimal parameters (θ) of a CNN (i.e., weight matrices and biases) are obtained
by minimising a loss function L with an optimiser such as Stochastic Gradient Descent
(SGD) (Robbins and Monro, 1951), or the more popular Adam optimiser (Kingma and Ba,
2015). Generally, for a given set of input and output pairs {(xi, yi) | i ∈ {1, . . . , N}},
corresponding outputs ŷ, and loss ` for one pair, the total loss L, is defined by:

L(θ) = 1
N

N

∑
i=1

`(yi, ŷi; θ) (2.6)
Cross-entropy (CE) loss, which is used to measure the dissimilarity of two probability

distributions, is the widely used loss function when optimising models for classification
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since it leads to better generalisability and faster training (Bishop and Nasrabadi, 2006).
This is defined by:

`CE(yi, ŷi) = −
K

∑
k=1

yi,k log ŷi,k, (2.7)
where yi and ŷi are the probabilities of the ground-truth (gt) and predicted class labels

for the class label k of the ith training instance, respectively. The total cross-entropy loss
can therefore be computed by:

`totalCE = − 1
N

N

∑
i=1

K

∑
k=1

yi,k log ŷi,k

= − 1
N

N

∑
i=1

log ŷi,kgt (since only kgt is non zero in yk)
(2.8)

2.1.2.2 Deep Learning based Detectors
The second generation Deep Learning (DL) based models recognise objects by either (a)
following the traditional region proposal pipeline, or else (b) by casting the problem as
as regression or classification problem through one holistic framework designed to learn
both the categories and locations directly. Region proposal models mainly include the
R-CNN (Girshick et al., 2014), SPPNet (He et al., 2015), Fast R-CNN (Girshick, 2015),
Faster R-CNN (Ren et al., 2015), R-FCN (Dai et al., 2016), FPN (Lin et al., 2017a), andMask
R-CNN (He et al., 2017a). On the other hand, the classification-based models include the
MultiBox (Erhan et al., 2014), AttentionNet (Yoo et al., 2015), G-CNN (Najibi et al., 2016),
YOLO (Redmon et al., 2016), SSD (Liu et al., 2016) and RetinaNet (Lin et al., 2017b). More
recently, the Transformer (Vaswani et al., 2017) architecture which is currently dominat-
ing the NLP field, has been introduced for object detection due its long-range represen-
tation and high performance. Transformer-based architectures for detection include the
DETR (Carion et al., 2020), Deformable DETR (Zhu et al., 2021), the UP-DETR (Dai et al.,
2021) and the PVT (Wang et al., 2021).
2.1.2.3 Region Proposal based Architectures
The Region-based Convolutional Neural Network (R-CNN) works by extracting a set of
object proposals (over 2000 boxed from one image) through a selective search (Van de
Sande et al., 2011). Each object candidate box is then scaled to a fixed size image and
passed to a CNN model trained on ImageNet (Krizhevsky et al., 2012) for feature extrac-
tion. Detections are carried out by linear Support Vector Machine (SVM) classifiers. Due
to overhead computation of features for a large number of overlapping bounding boxes,
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SPPNet was introduced to generate fixed-length CNN features regardless of the image
and region sizes. Fast R-CNN was then proposed to simultaneously train the detector
and bounding box regressor under the same network setup unlike in R-CNN and Spatial
Pyramid Pooling Network (SPPNet) which required independent configurations. Faster
R-CNN was shortly after proposed as an end-to-end object detector which can handle
both the generation of object proposals as well as their classifications. This was achieved
by integratingmost of the used object detectionmodules (e.g., proposal detection, feature
extraction, bounding box regression, etc.) into one end-to-end framework. Feature Pyra-
mid Networks (FPNs) were later proposed to improve the problem of scale invariance.
In contrast to previous architectures which run detection only on the top layer of the
network, FPN is based on a top-down architecture with lateral connections for building
high-level semantics at all scales. The Mask R-CNN is an extension to the Faster R-CNN
which also performs instance segmentation by adding a branch for predicting segmenta-
tion masks on each Region of Interest (ROI) using a small Fully Connected Layer (FCL) in
a pixel-to-pixel manner.
2.1.2.4 Classification based Architectures
YouOnly LookOnce (YOLO)was the first detectorwhich performs object detection in one
phase (i.e., does not follow the paradigm of generating region proposals followed by clas-
sification). This networks works by dividing the image into regions and predicts bounding
boxes and likelihood of object classes simultaneously. Later modifications were proposed
in YOLOv2 (Redmon and Farhadi, 2017) and v3 (Redmon and Farhadi, 2018) to improve
detection performance while keeping its high efficiency. To enhance the recognition of
small objects, Liu et al. (2016) proposed the Single Shot MultiBox Detector (SSD) archi-
tecture which makes use of multi-reference and multi-resolution techniques. Despite the
efficiency of classification-based detectors, detection performance was not reaching the
performance of the two staged architectures. Lin et al. (2017b) found that the main rea-
son behind this problem was due to the extreme foreground-background class imbalance
found in the training data. For this reason, the authors introduced a focal loss function in
RetinaNet (Lin et al., 2017b) to focus the learning on hard negative examples.
2.1.2.5 Transformer based Architectures
The Transformer (Vaswani et al., 2017) architecture is an encoder-decoder model de-
signed for sequence-to-sequence learning based on attention. The visual transformer
typically splits the input image into small patches and makes use of input tokens which
include patch tokens, class tokens and position embeddings. The architecture is normally
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composed of a series of stacked transformer modules which includes normalization layer,
multi-head self-attention, skip attention layer, multilayer perception or feed-forward net-
work, and a post-processing module. Carion et al. (2020), were the first to exploit trans-
formers for object detection. The authors proposed the DEtection TRansformer (DETR)
where first they decomposed the output feature map of a CNN into patches and mapped
them into one-dimensional vectors. Thesewere passed into several transformer encoders
together with positional embeddings. The decoder receives two inputs, namely the ob-
ject query and the output of the encoder. Through the multi-head self-attention, this
process aims to find patterns in image features as queries for objects. The output of
the decoder is then passed on to the class and bounding box modules to predict the
category and position of the objects respectively. To mitigate the problem of slow con-
vergence and limited feature spatial resolution of DETR, Zhu et al. (2021) proposed the
Deformable DETR which does not consider all values to calculate the attention of one
query and attention scores are learned by a network instead of multiplying the queries
and keys. Dai et al. (2021) proposed the random query patch detection for DETR as an
unsupervised pretraining method while Wang et al. (2021) presented the Pyramid Vision
Transformer (PVT) for both detection and segmentation which performs spatial reduction
on the key K and value V while maintaining the spatial size of the queryQ (Xu et al., 2022).

2.2 Image Classification
The problem of image classification from images involves the prediction of labels that
are relevant to images (Lanchantin et al., 2021). Images can either be simply assigned
to one category (single label), or else to multiple classes (multi-label). Single label clas-
sification makes use of machine learning classifiers to learn to discriminate engineered
features or embeddings for each class. This can be cast either as a binary-classification
problem, where images can be classified into two classes (e.g., whether an image belongs
to a “person” category or not), or else as a multi-classification problem where images can
be categorised in more than two classes.

The most naïve approach to assign multi-labels for images is to train a binary classi-
fier for each label and all predictions which exceed a given threshold or which fall under
a specific ranking criteria are considered relevant to an image (Zhang and Zhou, 2014).
However, this approach does not exploit the interdependence relationship between la-
bels, something which could be leveraged in order to predict labels with better accuracy
and relevancy. For example, classes like “lake” and “nature” are more probable than “office”
and “computer” in context of Fig. 2.1. This is commonly known as the binary relevance
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problem (Zhang et al., 2018b) and the majority of the work conducted in this area aims
to provide solutions for this problem.

2.2.1 General Multi-label Classification
There is a series of works which cast the problem of multi-label classification as a condi-
tional prediction problem by estimating the true joint probability of output labels given
the input using the chain rule and by predicting one label at a time. For example, Dem-
bczyński et al. (2010) used probabilistic classifier chains to capture pairwise label corre-
lations, while Read et al. (2011) linked binary classifiers along a chain. Each classifier was
responsible for learning and predicting the binary association for each label based on the
feature space and all prior predictions. Ghamrawi and McCallum (2005) explored the use
of Conditional Random Field (CRF) models to directly parameterise label co-occurrences,
while Guo and Gu (2011) developed a conditional dependency network model to pro-
vide intuitive representation for the dependencies among labels. A different approach
in multi-label classification is to project the input features and the corresponding output
labels in one shared and latent embedding space. For example, Yeh et al. (2017) derived a
deep latent space through a deep neural network architecture which makes use of Deep
Canonical Correlation Analysis (DCCA) and autoencoder structures.

2.2.2 Multi-label Image Classification
Early works which addressed the problem of multi-label image classification viewed it
as multi-label image annotation problem and were inspired by machine translation tech-
niques. Barnard and Forsyth (2001) used a generative hierarchical model which is a com-
bination of the asymmetric clustering models that maps documents into clusters and the
symmetric clustering model which models the joint distribution of documents and fea-
tures. Duygulu et al. (2002) later proposed amachine translationmethodwhich annotates
image regions with words by organising region types using a variety of features through
Expectation-Maximisation (EM) algorithm. Later, image annotation was formulated as
a classification-based problem based on generative models3 that learn parametric func-
tions to model class distributions. Due to the complex distribution found in image tag-
ging, most works shifted to the discriminitive Multiple Instance Learning (MIL) paradigm.
For instance, Makadia et al. (2008) proposed a nonparametric nearest-neighbor-based

3In classification, generative models learn the distribution of classes whereas discriminitive models learnthe boundaries between classes
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tag transfer, while Guillaumin et al. (2009) proposed TagProp which is a discriminatively
trained nearest neighbor model.

Works which tackled multi-label classification directly in images include that of Xue
et al. (2011) who proposed a Correlative Multi-Label Multi-Instance image annotation
where the input image was segmented and viewed as a bag-of-regions. Inter-label corre-
lations were then captured via a co-occurrence matrix of concept pairs. Probably, Gong
et al. (2014) were the first who leveraged CNN features in multi-label image classification,
while making use of top-k ranking objectives.

Wang et al. (2016) proposed to jointly model full images and labels using a CNN-RNN
framework which predicts the multi-labels as an ordered prediction path. The CNN was
used to extract the semantic representations from images, while the RNN was employed
to model the image/label relationship and label dependencies. This design pattern be-
came popular and was further improved by other researchers. For instance, Liu et al.
(2017a) proposed to use a semantically regularised embedding layer as the interface be-
tween the CNN and RNN, while Zhu et al. (2017a) proposed a Spatial Regularisation Net-
work (SRN) to generate class-related attention maps to capture both spatial and semantic
label dependencies via simple learnable convolutions.

Since these works only consider the global representation of full images, they may
not be optimal for multi-label images containing objects of different categories, scales
and locations. Furthermore, this straightforward approach does not take into account
the relationship between the semantic labels and the local image regions and can also
be affected by noisy backgrounds. To this end, works were proposed to extract object
proposals as the the informative regions for multi-label classification.

Fang et al. (2015) made use of a Multiple Instance Learning (MIL) (Maron and Lozano-
Pérez, 1998) approach to predict relevant keywords for images by learning discriminative
visual features for each word. MIL takes positive and negative bags of bounding boxes
as input sets for each image. A bag is considered as positive if a keyword found in the
dictionary is found in the image description, and negative otherwise. The MIL paradigm
works by iteratively selecting instances found in the positive bags and re-training the de-
tector using the updated positive labels. The authors trained visual detectors to predict
words which commonly occur in image captions including nouns, attributes and verbs by
taking the CNN features extracted from image sub-regions. Wei et al. (2016) proposed
the Hypotheses-CNN-Pooling (HCP) approach which also considers images sub-regions
as hypothesis. These are taken as inputs and a shared CNN is connected with each
hypotheses to aggregate their outputs through category-wise max-pooling. Yang et al.
(2013) considered this problem as amulti-classmulti-instance problem, where each image
was treated as a bag and object proposals were treated as instances. Zhang et al. (2018a)
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also made use of CNN-based image proposals by proposing the Regional Latent Semantic
Dependencies model (RLSD) which, unlike traditional Region Proposal Networks (RPNs)
that try to predict the proposals with a single object, is designed to localise regions that
may contain multiple highly-dependent labels. These are then propagated to an RNN to
extract the latent semantic dependencies at the region level.

To eliminate the extraction of object proposals, Chen et al. (2018) used the advantage
of attention-basedmodels which were first proposed to automatically extract relevant re-
gions in visual tasks (Anderson et al., 2018; Ghosh et al., 2019; Xu et al., 2015; You et al.,
2016; Zhou et al., 2016). Attention based models generally employ RNNs to iteratively
search for important regions in conjunction with RL to optimise the model with a de-
layed reward. The authors proposed a recurrent attention reinforcement learning frame-
work to discover a sequence of informative regions related to different semantic objects
and to predict label scores conditioned on the same regions. From the perspective of Yu
et al. (2019), both global and local image information are important for classification and
therefore the authors proposed the deepDual-stream nEtwork for themulLTi-lAbel image
classification (DELTA) which is composed of a multi-instance and global priors network.
While the former network was intended to extract the multi-scale and class-related local
instance features, the latter was proposed to capture the global image priors.

The graph data structure provided a semi-superivised learning approach for multi-
label image classification. For instance, Wang et al. (2009) first proposed the multi-label
correlated Green’s function approach to label images over a graph which uses the prior
information of the training images. Later Wang et al. (2011), the same authors made use
of the labelled graph to calculate the similarities between images. To consider the com-
plimentary nature between multimodal features and correlated labels, Xu et al. (2014)
proposed a semi-supervised label diffusion process on a bi-relational graph. However,
since graphs do not always capture the information of individual features, Hamid Amiri
and Jamzad (2015) suggested the formation of a graph based on sub-graphs generated
for various types of visual features. Gao et al. (2015) and Song et al. (2016) proposed an
optimal graph structure according to label information on image parts and various visual
feature information. Ding et al. (2016) proposed a context-aware multi-instance multi-
label learning (MIML) model to integrate the instance context and label context into a
general framework, while Lei et al. (2016) presented a social diffusion analysis approach
which exploits the abundant social diffusion records about how images are shared in on-
line social networks. Recently, several studies have used graph neural networks to model
label dependencies. These models rely on knowledge-based graphs generated from label
co-occurrence statistics. For instance, Chen et al. (2019) proposed a model which builds
a directed graph over the object labels represented by word embeddings and a GCN then
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learns to project the label graph into a set of inter-dependent object classifiers. These
were then applied to the image descriptors extracted by another sub-network.

The built-in attention mechanism of the Transformer model (Vaswani et al., 2017),
which was first proposed for machine translation, has recently opened up another oppor-
tunity to adaptively extract the desired visual features for multi image labels. By taking
each label as query in the Transformer decoder, recent models (Lanchantin et al., 2021;
Liu et al., 2021; Ridnik et al., 2021c) pool related image features via cross-attention and
then classify these features via binary classification. Building on this approach, Lanchantin
et al. (2021) proposed the Classification Transformer (C-Tran) which consists of a Trans-
former encoder that is trained to predict a set of target labels given an input set of masked
label embeddings and visual features extracted from a CNN. On the other hand, Ridnik
et al. (2021c) proposed the ML-Decoder, an attention based classification head for the
transformer-decoder. This achieved top results while improving the efficiency and scala-
bility of the previous works (Lanchantin et al., 2021; Liu et al., 2021) with the elimination
of self-attention and the introduction of group decoding.

2.3 Spatial Relation Detection
As reviewed in Birmingham and Muscat (2022), studies on spatial relations in two dis-
jointed fields, namely cognitive linguistics and computer science, are briefly presented.
In the psycho- and cognitive-linguistics literature, the spatial recognition problem was
mainly addressed by manually developed spatial templates. Such works include that
of Herskovits (1980) which categorises spatial language into use cases based on object
and contextual features and typicality, while Logan and Sadler (1996) classify geomet-
ric scenes using spatial templates. These models require an exhaustive list of use cas-
es/templates, an approach for selecting the correct template and an account of what
modifications can bemade to fit an imperfect template to a scene. The Attentional Vector
Sum (AVS) computational model (Regier and Carlson, 2001) is able to produce human-like
results for several different prepositions. This computational model was further extended
by Terry et al. (2005) to account for functional information by focusing the attention on
the functional parts of the objects. This approach predicts the acceptability rate of spatial
terms in contrast to categorizing stimuli. Coventry et al. (2005) and Cangelosi et al. (2005)
developed a model that addresses the constraints of the functional geometric framework
developed by Coventry and Garrod (2004) for the set of prepositions that includes: over,
under, above, and below. This was consistent with the level of acceptability rated by hu-
man evaluators when it comes to describing scenes involving both geometric and func-
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tional information. Martinez et al. (2001) developed another model based on a neural
network which takes descriptions of visual scenes as input. In Kelleher and Kruijff (2005),
the choice for the “most" appropriate preposition was addressed by considering the min-
imum cognitive load (least effort). Such works were based on data gathered from con-
trolled experiments, using 2D and 3D synthetic diagrams, where humans were asked to
rate the acceptability of a given preposition depicted in a given configuration. Early mod-
els concentrated on the geometric features that predict prepositions. However, further
work emphasized the language and geometrical bias of prepositions (Carlson-Radvansky
and Radvansky, 1996; Coventry et al., 2001; Dobnik and Kelleher, 2014), and other work
studied how perceptual features, such as occlusion, modify the spatial templates (Kelleher
et al., 2011).

The spatial relation detection problem is even more difficult when considering images
of the physical world. Sadeghi and Farhadi (2011) were probably the first to deal directly
with relation detection in real-world images and treated the problem as object detection.
Due to the combinatorial nature of the problem, thismethod does not scale because of the
large number of unique relations that exist when adding new objects to the dataset. The
most obvious and natural way is to compute spatial features in addition to language and
visual properties of the objects under attention. Two approaches are considered when
dealing with spatial features obtained from images; (a) methods based on image features
learnt via deep neural networks, mainly CNNs (Dai et al., 2017b; Lu et al., 2016), and (b)
methods based onmanually defined geometrical or topological features (Belz et al., 2015;
Ramisa et al., 2015), or a mix of both (Ramisa et al., 2015; Yu et al., 2017). These geomet-
ric and visual features have also been used in other tasks, such as in term disambiguation
to improve spatial role labelling (Rahgooy et al., 2018). In most models, language features
are used to represent the object labels by using either indicator vectors (one-hot encod-
ings) or pre-computed word embeddings such as word2vec (Mikolov and Dean, 2013).
Conversely, when spatial relations are extracted from textual image captions, linguistic
features are also computed from natural language processing tools, which include among
others, dependency parsing and semantic role labelling (Kordjamshidi and Moens, 2015).

Machine learningmodels are trained to learn all the steps at one go by selecting one or
more plausible prepositions based on spatial or geometrical features, as modified by per-
ceptual properties and filtered by linguistic knowledge. In addition, these models are ex-
pected to select an appropriate frame of reference (Carlson-Radvansky and Logan, 1997;
Logan and Sadler, 1996) which, unless a set of rules are strictly followed, results in dataset
noise which in turn manifests itself in errors at the output.

In contrast to template models, machine learning based classifiers are trained from
crowd-sourced data, which is normally incomplete in terms of both the images depicting

23



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

all possible spatial configurations, as well as their corresponding human annotations. Due
to this limitation, thesemodels are normally trained in the single-label classificationmode,
i.e., the output is a softmax type that only ranks the output classes, without taking into
account that multiple relations may be equally suitable in a given configuration.

One of the earlyworkswhich tackled the problemof spatial relation detection as an in-
dependent sub-task is that of Elliott and Keller (2013). The authors proposed a framework
that combines the structure of an image with the corresponding description structure in
the form of Visual Dependency Representations (VDRs). As a complement to this struc-
ture, the authors introduced the hand-engineered Visual Dependency Grammar (VDG)
to recognise a limited set of spatial prepositions between image objects in the form of a
dependency graph. The grammar is defined in terms of three geometric properties con-
sisting of pixel overlap, angle and distance between image regions. The relation between
this dependency graph and the image syntactic tree provided a way of generating prepo-
sitions for image descriptions.

Muscat andBelz (2015) explored how spatial prepositions between twoobjects can be
predicted from language and visual information by using probabilistic approaches. Three
different models were used and combined. The prior modelwas used to capture the prob-
abilities of prepositions for ordered pairs of object labels Ls and Lo. This language model
was constructed as a probabilistic classifier which gives the preposition most likely to
occur vOL by:

VOL = arg max
v ∈ V

P(v|Ls, Lo), (2.9)
where v is a preposition found in set V containing all available prepositions, while Ls

and Lo are the two object labels from the language domain.
The likelihood model was constructed to predict prepositions based on a set of six ge-

ometric features, extracted from the image size and the bounding boxes of the respective
objects. These features include the area of the two bounding boxes, the ratio of the two
areas, the distance between them, the overlapping area between the two objects and the
position of the first object in relation to the second object. Based on these geometric
features, this model predicts preposition vML by:

VML = arg max
v ∈ V

6

∏
i=1

P(Fi|v), (2.10)
where Fi is the ith geometric feature.
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Finally, the Naive Bayes classifier which is derived from the maximum-a-posteriori
Bayesian model was employed to combine both language and visual information by the
following model:

VNB = arg max
v ∈ V

P(v|Ls, Lo)
6

∏
i=1

P(Fi|v) (2.11)
Belz et al. (2015) compared this Naive Bayes classifier with the hard-wired VDG pro-

posed by Elliott and Keller (2013) to predict English and French spatial prepositions. It
was verified that the combination of both language and geometrical features improves
the generation of spatial prepositions. In fact, the Naive Bayes classifier which takes both
language and vision information, achieved the greatest prediction accuracy.

Muscat et al. (2016) and Belz et al. (2016) investigated the generation of spatial rela-
tionships and how it is affected by varying the different aspects of the automatic gener-
ation method, including different preposition sets, models and feature sets. It was found
that optimising the preposition and feature sets improves the previous best accuracy of
the former work. This combination of language and visual features was also adopted
by Ramisa et al. (2015). In fact, they combined geometric relations from image objects as
well as encoded textual features from image annotations and visual information together
to predict spatial prepositions. Ramisa et al. (2015) defined an 11-dimensional vector of
geometric features, whilst textual image labels were encoded as an indicator vector and
with a word2vec (Mikolov and Dean, 2013) feature vector, respectively. In addition to the
aforementioned work, Ramisa et al. (2015) included high-level visual representations for
image objects extracted from the final layer of a CNN. Given geometric and textual fea-
tures, prepositions were predicted by using a multi-class logistic regressor, while a three-
node chain Conditional Random Field (CRF) model was used to predict prepositions when
having both visual and geometric features. Hürlimann andBos (2016) suggested the use of
an extension of first-ordermodels to represent images of realistic situations. In their work,
the authors concentrated particularly on predicting and integrating three spatial relations
namely, part-of, touching and supports into first-order models borrowed from logic. These
three relations were distinctly selected since they are well-defined and less fuzzy as op-
posed to the prepositions considered in previous studies (Muscat and Belz, 2015; Ramisa
et al., 2015). In this study, the authors considered the spatial relation prediction task as a
classification problem where each instance belongs to a set of six disjointed classes. The
classification was based on spatial, lexical and corpus features. As spatial features, they
exploited the overlap area between two bounding boxes, and examined whether the first
object is contained within the second object or vice versa. Moreover, the object sizes and
the occlusion present between images were part of the spatial feature set. To combine
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linguistic knowledge, the authors incorporated the meronymy (part-whole relation) and
hypernymy as two lexical features. Furthermore, prepositions and verbs occurring be-
tween the lemmas of the two objects were collected from large text collections and used
as corpus features. Word embeddings were exploited by calculating word2vec (Mikolov
and Dean, 2013) feature vectors for each synset as an average across all lemmas’ vectors.
This study proved that the combination of spatial and lexical feature groups significantly
outperforms predictions based on independent feature groups.

2.4 Visual Relationship Detection
Understanding the visual relationship adds further insight on how the subject and the ob-
ject of images are related to each other. This was formalised as a task by Lu et al. (2016),
where they proposed subjects to be linked with predicates which include not only spatial
relationships, but also verbs such as “running” or a combination of both such as “falling
off”. To tackle this problem, Lu et al. (2016) published the first Visual Relationship Detec-
tion (VRD) dataset and performed object and predicate prediction separately. The union
of the two objects was used as the visual input to predict the predicates, while language
priors and the likelihood of relationships were used to augment the visual module. Plum-
mer et al. (2017) fused multi visual features, including appearance, size, bounding boxes,
and linguistic cues such as adjectives. Liang et al. (2017) detected relationships and at-
tributes with a reinforcement learning framework, while Li et al. (2017) proposed the
Visual Phrase-guided Convolutional Neural Network (ViP-CNN) which leverages the vi-
sual feature level connection among the subject, predicate and object. Dai et al. (2017b)
predicted visual relationships based on a Deep Relational Network trained to exploit the
statistical dependencies between objects and their relationships. Their approach was to
first run an object detector and then apply a network to select promising pairs of in-
teracting object detections. Yu et al. (2017) proposed a linguistic knowledge distillation
framework which extracts linguistic knowledge from training captions and public textual
data to distill knowledge into an end-to-end deep neural network. Recently, researchers
have integrated attention mechanisms and graphs in visual relationship detection. For
instance, Kolesnikov et al. (2019) proposed a Box Attention mechanism which allows the
modelling of pairwise interaction using standard object detection pipelines and Tripathi
et al. (2021a) used spatially aware word embedding through scene graphs and joint fea-
ture representations that contain visual, spatial and semantic embeddings to better rep-
resent the semantic relationship between image objects. Li et al. (2021) proposed a rela-
tionship graph learning network (RGLN) to specifically learn correlations between objects’
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relationships. This was handled by considering every pair of detected objects as relation-
ship proposal and nodes in a graph. Graph attention subnetworks detected relationships
based on visual and semantic information.

2.5 Image Captioning
The task of automatic image caption generation not only involves the detection of the
most salient objects, relations and attributes in images but also the ability to formulate
well structured sentences. Early researchers viewed this task either as retrieval-based
problem where descriptions were reused from image and caption pairs (Mason and Char-
niak, 2014; Ordonez et al., 2011), or as a template-based problem where captions were
generated through grammars or rule-based approaches (Kulkarni et al., 2013a; Yang et al.,
2011). Nowadays, the majority of the research conducted in this area is inspired by the
work carried out in neural machine translation (Bahdanau et al., 2014), with most recent
contributions being based on the encoder-decoder model. Generally, these models are
trained tomaximise the probability of the ground-truth captionwords given the paired im-
age embeddings by using recurrent neural networks (RNNs). This approach was proposed
tomodel the sequential dependency betweenwords. Later, this has been improved by the
introduction of attentionmechanisms (Xu et al., 2015; Yang et al., 2016) to dynamically fo-
cus on different image regions during the decoding phase. This was proposed to simulate
the natural attentive behavior that humans perform instinctively when describing images.
More recently, novel objects (Huang et al., 2019) and semantic concepts have been intro-
duced in image captioning. For instance, models were developed to exploit objects (Lu
et al., 2018), attributes (Yao et al., 2017), and relationships (Yao et al., 2018). To fur-
ther exploit the structural representation of images, researchers proposed the graph data
structure to combine the semantic embeddings (Li and Jiang, 2019; Yang et al., 2019). Re-
inforcement Learning has been applied in image captioning due to the exposure bias (Ran-
zato et al., 2016) and loss-evaluation mismatch in sequence prediction (Ren et al., 2017)
and lately, researchers started taking advantage of the Transformer (Vaswani et al., 2017)
architecture by applying self-attention on words and cross-attention on the output of the
last encoder layer (Herdade et al., 2019; Huang et al., 2019; Li et al., 2019a). Recently, to
reduce the dependency of costly large scale datasets consisting of image and human au-
thored caption pairs to train current image caption generators, researchers started looking
into the problem of unpaired image captioning (Feng et al., 2019; Gu et al., 2018b, 2019).
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2.5.1 Overview
Generating automatic descriptions from images requires an in-depth understanding of
how humans describe images. An image can be analysed and described from different
perspectives (Jaimes and Chang, 1999; Shatford, 1986). However, most of the current
research follows Hodosh et al. (2013) viewpoint in such a way that descriptions are gener-
ated with respect to the visual information and ignore background details or components
that are not present in an image, with such details being the location of where the image
was taken or who took the picture. This section presents a detailed survey on existing
image caption generation models.

Automatic image captioning originally attempted to produce only simple descriptions
for images taken under extremely constrained conditions. As an example, Kojima et al.
(2002) used concept hierarchies of actions, case structures and verb patterns to describe
human activities in office environments, while Hède et al. (2004) used a dictionary of ob-
jects and language templates to describe unnatural images composed of just objects in
backgrounds. It was not until recently, that work intended to generate captions for natu-
ral and generic real life images started being proposed (Farhadi et al., 2010; Gupta et al.,
2012; Ordonez et al., 2011; Yang et al., 2011). Work in this area started off by following
two lines of research, i.e., template and retrieval based image captioning. The first group
of models generates textual descriptions by primarily analysing the composition of an im-
age in terms of image objects, attributes, scene types and event actions, extracted from
image visual features. These models subsequently exploit the extracted visual informa-
tion to derive an image description by driving a natural language generation model such
as n-grams, templates and grammar rules. On the other hand, the second group formu-
late descriptions by finding visually similar images to the query image from a collection of
already described images. The novel image is then described by reusing the description
of the most similar retrieved image, or by amalgamating the descriptions of the set of
retrieved descriptions of visually similar images. Retrieval-based models can be further
organised based on the technique used for representing and computing image similarity.
There are methods which either use a visual space for finding related images or else amul-
timodal space that combines both textual and visual information in one single space. Since
template and retrieval based methods perform captioning either by re-using existing de-
scriptions from the training set or by relying on preset language structures, these first
generation models are quite rigid and constrained, thus leading to limited expressiveness
in the generated descriptions. Despite the complexity involved in image captioning, re-
cent advances in deep neural architectures opened a new and effective way of how image
captions can be generated. In fact, deep learning in image captioning has demonstrated
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state of the art results. In the following sub-sections, a comprehensive overview of image
captioning methods organised in the aforementioned categories is presented.

2.5.2 Retrieval based Image Captioning
Image description models casting the generation as a retrieval- or ranking-based based
problem are designed to reuse textual descriptions of visually similar images taken from a
collection of already captioned images (Bernardi et al., 2016). This can either be a direct
transfer from one single caption describing an image or by linking a set of descriptions
retrieved from a pre-specified sentence pool. As opposed to direct generation models,
retrieval-based approaches require large and diverse datasets of pre-captioned images.

The approach taken by these models is to first extract visual features from the query
images. Based on a visual similarity measure dependent on the extracted features, a can-
didate set of related images is retrieved from a collection of previously captioned images.
Retrieved descriptions are then re-ranked based on visual and textual information ex-
tracted from the retrieved set.

One of the early works considering this approach is Im2Text proposed by Ordonez
et al. (2011). In this work, visually similar images were retrieved by computing a global
image similarity based on the GIST feature vector (Friedman, 1979). As a re-ranking step,
the authors used a set of detectors to detect objects, background stuff, people and actions
present in the retrieved images. This was mainly intended to better capture the visual
content of the retrieved images as well as to represent the images by these detectors.
The final re-ranking stage intended to select the most relevant image was carried out
using a classifier trained over the aforementioned semantic features together with the
evaluated description score.

Mason and Charniak (2014) considered the image captioning task as an extractive
summarisation problem. Final descriptions were selected by exclusively taking into con-
sideration the textual information in the final re-ranking step after representing images
with scene attributes proposed by Patterson et al. (2014). Image descriptions were gen-
erated by first estimating the conditional probabilities of observing a word in the query
description based on the set of retrieved images. Subsequently, the output was gener-
ated by exploiting two distinct extractive summarisation techniques, namely the Sum-
Basic model (Nenkova and Vanderwende, 2005) and the one based on Kullback-Leibler
divergence (Perez-Cruz, 2008) between the word distributions of the query image and
the retrieved descriptions.

From this unrealistic assumption of finding complete descriptions relevant to query
images, Kuznetsova et al. (2012) proposed a holistic data-driven approach that extends
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the previous work conducted by Ordonez et al. (2011). Kuznetsova et al. (2012) proposed
a framework that starts by running similar detectors and classifiers which were used in
the first re-ranking step of Im2Text. Similarly, this step was carried out for extracting and
representing the semantic meaning of a query image. Instead of performing a single re-
trieval process, as was performed by Ordonez et al. (2011), the designed approach was
intended to perform a separate retrieval process for each detected image entity to col-
lect additional descriptions. Specifically, this step aimed to retrieve four different types
of phrases. Noun and verb phrases were retrieved for each query object detection using
a visual similarity measure computed as a combination of histogram distances based on
colour, texton, HOG (Dalal and Triggs, 2005) and SIFT (Lowe, 2004) visual features. Sim-
ilarly, the authors retrieved region and stuff prepositional phrases (e.g., “in the street”) by
measuring appearance similarity and geometric arrangements. Additionally, scene prepo-
sitional phrases (e.g., “on a rainy day”) were collected based on global scene similarity
computed by the distance between scene classification score vectors. The final and com-
posite image description composed of the retrieved phrases was generated via Integer
Linear Programming (ILP) (Schrijver, 1998). With a similar concept, the authors proposed
a tree-based method for composing image descriptions by making use of already anno-
tated web images. After retrieving visually similar images and extracting their relevant
captions, the authors considered the extracted phrases as tree fragments and modeled
the description composition as a constraint optimisation problem, encoded by ILP and
solved by using CPLEX solver4. Ordonez et al. (2015) later constructed a large collection
of human-annotated images retrieved from the web-based Flickr5 photo collection. This
was the first attempt in using the Web as an intermediate source for obtaining human-
annotated image descriptions. As in previous studies, descriptions were formulated by
sythesising descriptions of visually similar images to the query image.

By prioritising linguistics over CV, Gupta et al. (2012) used a phrase-based approach
for retrieving and composing image descriptions. For retrieving visually similar images,
the authors used simple RGB and HSV colour histograms for extracting colour features,
while Gabor (Kamarainen et al., 2006) and Haar (Lienhart and Maydt, 2002) descriptors
were used to extract texture properties. Similar to previous works, GIST (Friedman, 1979)
features were used for the extraction of scene characteristics and SIFT (Lowe, 2004) were
used to capture shape properties. Rather than applying object detectors and scene classi-
fiers for extracting the semantic aspect of the input image, the authors relied completely
on retrieved descriptions of visually related images. These retrieved descriptions were
then parsed into specific phrase structure. Typical examples include: (subject, verb), (sub-

4https://www.ibm.com/analytics/cplex-optimizer5https://www.flickr.com

30

https://www.ibm.com/analytics/cplex-optimizer
https://www.flickr.com


CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ject, prep, object), (verb, prep, object). From these phrase-based descriptions, the best de-
scription was selected with a joint probability model, built on image similarity and Google
search counts. After representing images as triplets in the form of ((attribute1, object1),
verb), ((verb, prep),(attribute2, object2)), (object1, prep, object2), image descriptions were
generated from the top-scoring triplet based on a fixed template. Additional syntactic
and predicate grouping rules were applied for better quality.

Retrieval-based approaches can also retrieve captions from a learned common multi-
modal space, intended to combine visual and textual data from a collection of image-
description pairs. From this joint representation, models are capable of performing cross-
modal retrieval (Bernardi et al., 2016). One of the first studies which incorporates the
visual and textual domains was proposed by Farhadi et al. (2010). The authors suggested
a multimodal space of image meanings, consisting of triplets in the form (object, action
and scene). This intermediate representation was limited to a set of pre-defined discrete
values for each slot in the triplet. To eliminate this limitation, Hodosh et al. (2013) utilised
Kernel Canonical Correlation (KCC) (Bach and Jordan, 2002; Hardoon et al., 2004) to in-
duce a common space by finding linear projections from the two domains. This technique
proved particularly successful in combining images (Hardoon et al., 2004) or image re-
gions (Socher and Fei-Fei, 2010) with specific words or a list of tags.

Although retrieval based models generate grammatically sound and fluent descrip-
tions, these methods are constrained by already existing captions ready to be reused. Im-
ages having conceptswhich are not present in the available collection cannot be described
effectively with the most appropriate vocabulary. Under extreme conditions, such mod-
els can even go out of scope and thus render irrelevant image captions. To address this
problem, Birmingham and Muscat (2017) developed a web-retrieval framework to cap-
tion images by text found from the web. The proposed approach was to exploit Google
search by image to find visually similar images to the query ones. Descriptions were then
extracted from the web pages from where the visually similar images were retrieved. In
the next section, methods exploiting deep neural architectures are presented and organ-
ised according to how deep learning is applied.

2.5.3 Template based Image Captioning
The models that cast image captioning as a generation-based problem are constrained by
a syntactic and semantic process. Typically, these methods first predict the visual content
of the images by making use of different visual detectors. At this stage, different CV
techniques are applied to extract the scene type, detect the occurring event actions and
recognise the objects visible in an image, together with the attributes and relationships
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between them. Natural Language Generation (NLG) models are followed to turn visual
detectors’ outputs into a natural language descriptions.

Generation-based description models differ in two main aspects, namely in the way
that images are represented and in the linguistic approach adopted to generate textual de-
scriptions. Traditional language models turn triplets composed of objects, attributes and
relations (e.g., (wooden, boat) in (large, field)) to sentences like: “A wooden boat parked in
a large field” by adding functional words to the triplets. Another approach is to compose
captions by using templateswith linguistic constraints. In this case, visual detectors detect
triplets following a specified template, for example (attribute_1, object_1, preposition, at-
tribute_2, object_2) which can therefore generate captions such as “A [attribute_1] [ob-
ject_1] [preposition] [attribute_2][object_2]”. Since this method is very rigid, a “randomised
local search” (Chisholm, 2002) was proposed as an iterative method which repetitively
selects a position to edit (insert, delete or replace). An edit is kept the score is improved,
otherwise the next step is executed until convergence or a maximum number of iterations
is reached. Another approach is to train a language model on labelled images to obtain
word’s statistical information based on n-grams (Yang et al., 2011). This method works
by evaluating the probability of generating word ωi given the preceding words and the
remaining objects as defined in Equation 2.12

Pr(ωi|ωi−1, . . . , ω1, Vi−1) =
exp

[
∑K

k=1 λk fk(ωi, ωi−1, . . . , ω1,<s>, Vi−1)
]

∑v∈V∪</s> exp[∑K
k=1 λk fk(v, ωi−1, . . . , ω1,<s>, Vi−1)

] ,

(2.12)
where <s> and </s> are the start and end tokens of the caption respectively,
fk(ωi, ωi−1, . . . , ω1,<s>, Vi−1) calculates the maximum entropy of the k-th feature, while
and λk is the corresponding weight. The language model is trained by maximum log-
likelihood estimation as follows:

L(θ) =
S

∑
s=1

|(s)|

∑
i=1

log Pr
(
ω

(s)
i )|ωi−1(s), . . . , ω

(s)
1 ,<s>, V(s)

i−1

)
, (2.13)

where (s) is a sentence found in the training data, |(s)| is the length of the current sen-
tence s and θ represents the model parameters.

One of the works which follows a template-based approach is the work presented
by Yang et al. (2011), where the quadruplet composed of nouns, verbs, scenes and prepo-
sitions was used as a sentence template for generating descriptions. Images were first
described by using detection algorithms (Felzenszwalb et al., 2010; Oliva and Torralba,
2001) to extract the main image objects and to understand the scene type of an image.
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The authors opted to train a language model (Dunning, 1993) on the Gigaword corpus6
to predict verbs, scenes and prepositions. The probabibility for verb v was obtained by
Pr(v|n1, n2) given the two nouns based on the corpus. Similarly, scenes were predicted
according to the objects and verbs. Based on the probabilities computed for all the ele-
ments, the best quadruplet is chosen by Hidden Markov Model (HMM) inference which
is then transformed to the final image description by filling the full sentence structure.

Kulkarni et al. (2013b) generated descriptions by utilising a CRF to determine themain
image concepts to be mentioned in the generated caption. Graph nodes corresponded to
objects, object attributes and spatial relationships between objects, in which unary po-
tential functions of nodes were obtained by visual models. On the other hand, pairwise
potential functions were obtained statistically from a collection of existing descriptions.
Image content to be mentioned in the description is selected from the output generated
after performing CRF inference. This output is then used to generate the final descrip-
tion based on a sentence template. In a similar fashion, Li et al. (2011) and Mitchell et al.
(2012) represented images in the form of tuples to capture different image concepts, in-
cluding the scene type and the detected image objects together with their attributes and
spatial relationships. Specifically, Li et al. (2011) employed visual models for detecting
objects, attributes and spatial relationships from images. The output of the detectors
was then encoded in a triplet of the form ((adj1, obj1), prep, (adj2, obj2)). To capture such
triplets, the authors opted for web-scale n-gram data to provide frequency counts of pos-
sible valid sequences that match the triplet format. Phrase fusion subsequently ends this
process by finding the optimal compatible set of phrases via dynamic programming. Sim-
ilarly, Mitchell et al. (2012) employed detectors to represent images in triplets of the fol-
lowing structure: (objects, actions, spatial relationships). Based on the visual recognition
results, image descriptions are formulated as a tree-generating process. Starting from
clustering and ordering object nouns, the authors proposed to generate sub-trees for
each object noun. A trigram language model (Koehn, 2005) was then used to select the
final sequence from the generated trees as the description for the query image.

To explicitly combine the visual representation of an image with the linguistic sen-
tence structure, Elliott and Keller (2013) proposed the Visual Dependency Representa-
tion (VDR). The main idea is to conceptualise image descriptions by modeling the spatial
relationship between image objects in the form of a dependency graph relating to the
syntactic dependency tree of image descriptions. Descriptions were then generated by
traversing the VDRs to fill in sentence templates. Inspired by this cohesive image-textual
representation, Lin et al. (2015) described indoor images by representing visual content as

6https://catalog.ldc.upenn.edu/LDC2003T05
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scene graphs. Similar to VDRs, scene graphs were used to represent images based on the
depicted objects, their attributes and relations between them. Multi-sentence descrip-
tions were finally generated by parsing scene graphs with a semantic grammar. Inspired
by this work, Gilberto Mateos Ortiz et al. (2015), described abstract scenes by translating
VDRs to corresponding textual descriptions using a machine translation-based model.

Yatskar et al. (2014)managed to generate descriptions fromhumandensely-annotated
images describing the salient image regions. A maximum entropy language model was
then used to handle the output generated from word detectors. In contrast to this re-
gion labelling, Fang et al. (2015) used multi-instance learning to train visual detectors for
detectingwords that occur frequently in image captions, includingmany linguistic compo-
nents such as nouns, verbs and adjectives. The words predicted by the visual detectors
are then passed to a language model for generating image descriptions. These revised
methods are all based on detected image concepts described by singlewords that are con-
nected to formulate template based sentences. Instead of structuring image descriptions
based on single words, Ushiku et al. (2015) proposed to generate captions composed of
phrases. The authors presented the Common Subspace for Model and Similarity to learn
phrase classifiers directly for image captioning. This was achieved by extracting sequence
of words from training captions as phrases. Phrase features and corresponding image fea-
tures are mapped in one space, where similarity based and model based classification are
integrated to learn a classifier for each phrase. The description is then formulated by
connecting estimated phrases through multi-stack beam search. Another beam search
based approach that was applied for generating image captions is the Grid Beam Search
(GBS) (Hokamp and Liu, 2017). This algorithm was proposed to allow the inclusion of
pre-determined lexical constraints during sequence generation. Constraints can be single
or multi-word tokens and can be applied simultaneously. By using this approach, par-
ticular phrases determined by the visual detectors can be specified to be present in the
generated captions. Similarly, Anderson et al. (2017) proposed to enforce the inclusion of
selected tag words at test time by using a constrained beam search.

Template based image captioning is able to generate both well structured sentences
and relevant captions for images. However, such models suffer from constraints and lim-
itations imposed by design. Being highly dependent on visual models for capturing the
main image concept, template based descriptors tend to generate captions with limited
coverage. Furthermore, the compositional and structural rigidness make the sentences
generated far less natural when compared to human authored image captions.
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2.5.4 Deep Learning in Image Captioning
Inspired by the advances in the field of DL, hand-engineered feature extraction and shal-
low models used in early works, started being replaced by deep neural architectures.
Building on top of retrieval-based methods, several researchers explored deep models to
cast both retrieval and generation based techniques as a multi-modal embedding and re-
ranking problem. During this phase, new language models were proposed to mitigate the
problems of earlier models which were difficult to train and which occupied considerable
storage space in case of n-gram based models. Neural-based language models include
the RNN (Mikolov et al., 2010), LSTM (Hochreiter and Schmidhuber, 1997), GRU (Cho
et al., 2014a), and the Transformer model (Vaswani et al., 2017). In contrast to previ-
ous language models, these neural-based models are more flexible and can be trained to
generate diverse image captions in an end-to-end manner using image-caption pairs.
2.5.4.1 Recurrent Neural Network (RNN)
RNN-based models are types of neural networks which use predicted output as input
during training (Mikolov et al., 2010). These recurrent-based neural networks keep an
internal memory state, known as the hidden state vector, to keep track of previous inputs.
The RNN layer takes an input to remember (e.g., a word in a sentence) and the previous
hidden state and outputs a new state. This approach leads to a final hidden state which
represents the full sentence. Formally, an RNN can be represented with the following
recurrence formula with function fW with parameters W applied at each timestep t as
follows:

ht = fW(ht−1, xt), (2.14)
which receives a hidden state ht−1 at iteration timestep t− 1, current input vector xt

to generate current state ht and bias b.
The simplest RNN (commonly referred to as Vanilla RNN) is composed of a single

hidden state which uses a function that updates the state h as a function of the previous
state ht−1 and the current input xt. Weight matrices Whh and Wxh are used to project the
previous state and the current input. These are then summed and squashed with tanh
function so that state ht is updated at timestep t. This is formally defined as:

ht = tanh(Whh · ht−1 + Wxh · xt + b). (2.15)
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Due to the inherent vanishing and exploding gradient problems the RNN cannot cap-
ture long dependencies. This happens as gradients during back-propagation keeps dimin-
ishing during each timestepwhen using squashing functions or explodeswhen eliminating
such function. Hence, modeling long sequences of inputs gets impractical as it can get
extremely slow due to insignificant gradient updates or early inputs being ignored. To
mitigate these problems, ReLu activations were used and gradients were clipped up to a
certain value (Pascanu et al., 2013).
2.5.4.2 Long Short-Term Memory (LSTM)
To specifically address the vanishing and exploding gradient problems, the LSTM (Hochre-
iter and Schmidhuber, 1997) network, which is more sophisticated than the RNN was
proposed. In addition to the hidden state ht, an LSTM has an additional cell state ct to
store long-term information. Intuitively, this recurrent network learns to read, erase and
write information to and from the cell state. This is carried out via three gates, namely
the input (i), forget ( f ), and output (o) gates which their values vary between 0 (closed) to
1 (open) by a sigmoid function. These control how much information is passed to the cell
state. Similar to the cell state ct, these gates are vectors of size n. For a given input vector
xt, previous hidden state ht−1 and previous cell state ct−1 the LSTM during each timestep
t, the next hidden and cell states ht and ct, respectively as follows:

ft = σ(Wh f · ht−1 + Wx f · xt + b f )

it = σ(Whi · ht−1 + Wxi · xt + bi)

ot = σ(Who · ht−1 + Wxo · xt + bo)

gt = tanh(Whg · ht−1 + Wxg · xt + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct),

(2.16)

where � is the pointwise operator and gt is an intermediary cache used to calculate ct.
2.5.4.3 Gated Recurrent Unit (GRU)
The GRU is a variant of the LSTM network which combines the forget and input gates in
one gate, commonly referred to as the update gate. This architecture also combines the
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cell and hidden states as follows:
zt = σ(Wzh · ht−1 + Wzx · xt + bz)

rt = σ(Wrh · ht−1 + Wrx · xt + br)

h̃t = tanh(Wh̃h · (rt � ht−1) + Wh̃x · xt + bz)

ht = (1− zt)� h̃t + rt � ht−1

(2.17)

Apart from these two popular RNN-based variants, there is a plethora of LSTM-based
architectures in the literature. In fact, Jozefowicz et al. (2015) evaluatedmore than 10, 000
networks and found that none of these variants outperform the LSTM and GRU consis-
tently in all their experiments. Other LSTM-based recurrent neural networks are either
purely based on the LSTM architecture or else integrated-based LSTM networks. The
latter consist of LSTM networks and other components such external memory unit (e.g.,
in Neural Turing Machine (NTM) (Graves et al., 2014)) and CNNs (e.g., in C-LSTM (Zhou
et al., 2015)), while the former are other variants of the LSTM. These include the Stacked
LSTMNetworkwhich adds capacity and depth to the network and the Bidirectional LSTM
Network (Graves and Schmidhuber, 2005) which, like the Bidirectional Recurrent Neural
Network (BRNN) (Schuster and Paliwal, 1997), is trained in both directions simultaneously
with separate hidden layers.
2.5.4.4 Transformer
Recently, the Transformer (Vaswani et al., 2017) network has become the most popular
sequence-to-sequence model. As opposed to RNN, this network is not recurrent and
hence can be parallalised and trained much faster. This network is based on an encoder-
decoder architecture and relies completely on attention. The encoder maps the full in-
put sequence into higher abstracted representation by N blocks composed of multi-head
self-attention and a simple position-wise fully connected network. These are connected
by a residual connection (He et al., 2016) and followed by layer normalization (Ba et al.,
2016). Conversely, the decoder has a third sub-layer which performs multi-head atten-
tion over the output of the encoder in addition to the two sub-layers of the encoder. The
Transformer works by calculating attention weights between each and every token simul-
taneously. The network learns three matrices, namely the query (WQ), key (WK), and valueweights (WV ). For each token i that is encoded with word embedding xi and positional
information through sin and cos functions, the query (qi = xiWQ), key vector (ki = xiWK)and value vector (vi = xiWV) are computed and attentionweights are calculated by taking
the dot product between the query (qi) and key (k j) vectors for the respective two tokens
i and j, respectively. To stabilise the gradients during training the attention weights are
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normalised by the dimension of the key vectors (√dk) and passed through as softmax
function. The attention computation can be formally defined as:

Attention(Q, K, V) = softmax(QK>√
dk

)V (2.18)
This self-attention based mechanism attends to tokens that are relevant to each cor-

responding token. The transformer model leverages multiple attention heads to perform
attention based on different definitions of relevancy. A multi-head attention module is
therefore defined as follows:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i ),

(2.19)
where QWQ

i , KWK
i , and VWV

i are learnable projections matrices.
2.5.4.5 Deep Learning in Retrieval and Template based Models
Yagcioglu et al. (2015) proposed to retrieve descriptions fromvisually similar images through
an average query expansion approach dependent on distributional semantics. In this
work, the authors represented images by the activations of the seventh hidden layer of
the Caffe deep learning architecture (Jia et al., 2014) trained on ImageNet7. To select
the most ideal description, the authors used a query expansion as an average of the dis-
tributed semantics of the retrieved descriptions weighted by image similarity.

Socher et al. (2014) used neural networks as a representational model for images and
descriptions. More specifically, the authors used a Dependency Tree Recursive Neural
Network (DT-RNN) for generating language vectors and the end result of a nine-layer
neural network trained on ImageNet for representing images. These multimodal features
were then mapped into one common space by using a max-margin objective function.
Once the model is trained, correct image and sentence pairs in the common space end up
with larger inner products. Image descriptions were then retrieved based on similarities
between image representations and sentences as found in the projected common space.

Rather than exclusively mapping entire images and sentences in one space, Karpathy
et al. (2014) extended this multi-modal space by mapping image and sentence fragments
into one common space. They used dependency tree relations as sentence fragments
and the output result of a R-CNN as image fragments. By representing both image and
sentence fragments as feature vectors, the authors used a structured max-margin objec-

7https://image-net.org
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tive to map the two domains in one space. Similarity between images and sentences was
based on fragment similarities which makes sentence ranking more fine-grained.

To find similarities between images and sentences having different levels of interac-
tions between them, Ma et al. (2015) proposed a multimodal Convolutional Neural Net-
work (m-CNN). This architecture is based on three distinct components. It includes image
CNNs to encode visual data, matching CNNs to combine both visual and textual data, and
multi-layer perceptrons to evaluate the compatibility between vision and text. The final
matching score between images and captions was computed by an ensemble of m-CNNs.
To map images and sentences, Yan and Mikolajczyk (2015) proposed to use DCCA (An-
drew et al., 2013). Visual features were extracted via Deep Convolutional Neural Net-
work (D-CNN) while a stacked network was employed for textual feature extraction from
TF-IDF. Correlation analysis was used to combine both visual and textual features in a
joint latent space by maximizing the correlation between paired features.

Deep learning was also used for template based methods. In fact, Lebret et al. (2015)
leveraged soft templates to generate captions using deep neural models. The authors
used SENNA software8 to extract sentences from training data and to obtain statistics
from the extracted phrases. Phrases were encoded by high dimensional vectors and im-
ages by features extracted form D-CNNs. Query images were described by phrase infer-
ence using a bilinear model trained as a metric between image and phrase features.

Although the introduction of deep learning improved the performance in both retrieval
and template based methods, the main limitations of both models still make the methods
susceptible to generate constrained and less natural image captions.
2.5.4.6 Multimodal Learning
The limitations imposed by retrieval and template based methods were mitigated by ap-
proaches based on multimodal learning. Such methods were designed to generate cap-
tions by not relying on existing captions or assumptions about sentence structures. These
approaches tend to generate more expressive captions with better linguistic structure.
Generating image captions using multimodal neural networks is one of these approaches.

The general pipeline of multimodal learning is to first extract image features using
visual feature extractors, such as CNNs. These features are then passed to a neural lan-
guage model intended to map image features into a common space and perform sen-
tence generation. This is handled by predicting sequence of words conditioned on the
extracted image features and previous predicted words. Kiros et al. (2014) proposed to
use a log-bilinear neural language model conditioned on image visual features. In this

8https://ronan.collobert.com/senna
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method, image visual features were extracted via a D-CNN and joint image-text feature
learning was performed by back-propagating gradients from the loss function through the
multi-modal neural network model. Based on this principle, Mao et al. (2015), used RNN
language model to directly model the probability of generating words conditioned on a
given image and previously generated words. To better align image regions and sentence
segments, Karpathy and Fei-Fei (2015) presented an approach to learn a multimodal Re-
current Neural Network (m-RNN) model to specifically generate descriptions for image
regions. After performing the required encoding for both modalities, a structured objec-
tive function was used to map visual and textual data into a common shared space. Since
RNNs are not designed to learn long term dependencies, they can render themselves
limited in image captioning (Bengio et al., 1994; Mikolov et al., 2010). To address this
problem, Chen and Lawrence Zitnick (2015) proposed to dynamically build a visual rep-
resentation of the image for which a caption is being generated so that long term visual
concepts can be referred to during the entire captioning process.
2.5.4.7 Encoder-Decoder Framework
Inspired by neural machine translation (Cho et al., 2014b; Kalchbrenner and Blunsom,
2013), researchers view the generation of image captions as sequence-to-sequence prob-
lem and proposed the encoder-decoder framework (Vinyals et al., 2015; Xu et al., 2015).
It is argued that the process of image caption generation (G) can be cast as a translation
problem (Wu et al., 2016), where the input is an image (I) and the output is its correspond-
ing sentence (s) as follows:

G : I → s (2.20)
These models use CNNs to encode images by visual embeddings extracted from the out-
put of the last fully connected layer or from the last hidden layer of the network. These
visual embeddings are used to guide RNNswhile being trained onword embeddings com-
puted for corresponding ground-truth captions. A model M is designed to generate cap-
tions by maximising the probability P(s|I) by:

G(I) = argmax
s

P(s|I) (2.21)
In order to optimise the parameters for P(s|I) the model is trained to minimise the

cross-entropy loss by:
L = −

N

∑
i

W

∑
w

log P(si,w|si,0:w−1, Ii), (2.22)
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where i is the ith instance in training data, while W corresponds to the total number of
words found in sentence si.

As discussed in Tanti et al. (2018), an encoder-decoder model can integrate the im-
age and word embeddings either in (a) init-inject (b) pre-inject (c) par-inject, or (d) merge
approach. In init-inject, the initial hidden state of the RNN is initialised with the visual fea-
tures, while the pre-inject mechanism uses the image vector as the first input to the lan-
guage model. The par-inject models take both image and linguistic embeddings as input,
while the merge-based architectures leaves the visual embeddings out of the RNN and
combines both modalities before predicting each word. For instance, Kiros et al. (2015)
introduced an encoder-decoder pipeline intended for both image description generation
and phrase re-ranking. The model was designed to learn a multi-modal joint embed-
ding representational space from images and corresponding descriptions. The authors
encoded descriptions using a LSTM network and images by features extracted from a
CNN. The second phase of this model was intended to generate novel descriptions by
decoding the multi-modal space via their suggested neural language model. On a simi-
lar approach, Vinyals et al. (2015) also used a CNN-based encoder and LSTM to decode
the extracted visual features. This framework generates descriptions by predicting the
probability of a sentence conditioned on input images. Donahue et al. (2015) similarly
proposed a LSTM neural-based architecture. Rather than encoding the visual space into
the embedding space of hidden LSTM states, the proposed model passes a copy of the
static image and the previous words to a stack of four LSTMs. Another closely related
LSTM-based model was proposed by Jia et al. (2015), who included additional semantic
image features as input to the LSTM.

Given the fact that captioned images are far less accessible when compared to uncap-
tioned images, Pu et al. (2016) proposed a semi-supervised learning method that follows
the encoder-decoder framework. The method makes use of a CNN to encode images and
DeepGenerativeDeconvolutional Network (DGDN) to decode latent image features. This
encoder is proposed to provide an approximation to the distribution of the latent features
of the deep network and link the latent features to generative models for image caption-
ing. Once the training is performed, a query image can be described by an average across
the distribution of the latent features.
2.5.4.8 Attention-based Image Captioning
In image captioning it is important that the main salient image contents are described
clearly whilst possibly leaving out unnecessary details of less important aspects. Inspired
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by the human visual attention mechanism, image caption generators based on visual
attention mechanisms were recently proposed (Anderson et al., 2018; Lu et al., 2017;
Xu et al., 2015). In these approaches, attention mechanism was added to the encoder-
decoder framework so that captions are conditioned based on an attention criteria. In
such methods, attention can be directed to different image regions at each time step dur-
ing the generation process. As an example, Xu et al. (2015) proposed an attention-based
encoder-decoder framework to dynamically prioritise salient image regions. By arguing
that an attentive encoder-decoder models lacks global modeling abilities because of their
sequential information processing behavior, Yang et al. (2016) proposed a review network
to enhance the encoder-decoder framework. To address this limitation, the authors in-
troduced a reviewer module to perform review steps on the hidden states of the encoder
and to generate a thought vector at each step. During this process, attention mechanism
is applied to determine weights assigned to hidden states. Based on this approach, the
information encoded by the encoder can be reviewed and learned by the thought vectors
to capture global properties of the input and to be used for word prediction by the de-
coder. In this work, the authors used the VGGNet (Simonyan and Zisserman, 2014) CNN
to encode the image, while a LSTM neural network was used as a reviewer to generate
the thought vectors. Other attention-based methods are based on the Transformer archi-
tecture. For instance, the Object-Semantics Aligned Pre-Training (Oscar) (Li et al., 2020)
method first detects object labels to align corresponding visual features with semantic
information. The motivation is that textual labels generally relate to the most prominent
objects in the images and therefore, by explicitly adding image labels to the input, the
visual features can be better attended during the generation process. The Oscar method
was then extended by VinVL (Zhang et al., 2021a) to learn object instance-centered rela-
tionships between the visual and language domains using an adaptive pretraining scheme.
2.5.4.9 Image Captioning based on Reinforcement Learning
Recently, Reinforcement Learning (RL) (Sutton and Barto, 1998) has been introduced in
image captioning to mitigate the exposure-bias and loss-mismatch problems of RNN-
based models. RL aims to learn a policy that decides sequential actions by maximising
the cumulative future rewards. Several RL methods have been proposed to solve com-
puter vision related problems, such as visual tracking (Yun et al., 2017).

Encoder-decoder based image captioning models were mostly trained by Maximum
Likelihood Estimation (MLE) to maximise the probability of sequential words conditioned
by visual features. This limits such models to render captions by imitating word-by-word
patterns as found in the available training data. As a result, captions generated from these
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models tend to be templated and generic. RL with evaluation metrics (e.g., CIDEr (Vedan-
tam et al., 2015)) as a reward allows the captioning model to explore more possibilities in
the sample space and gives a better supervision signal compared to MLE.

Existing RL-based image captioning methods mostly rely on a single policy network
and a reward function. Ren et al. (2017) proposed a policy network and a value network
to collaboratively generate captions with a reward defined by visual-semantic embed-
ding. Rennie et al. (2017) and Liu et al. (2017b) directly optimised image captioning sys-
tems by test rewards. The key problem of RL lies in correlating the policy and the reward
parts for joint learning. To tackle this problem, Liu et al. (2018) co-train both parts in the
traditional RL framework and introduced a guidance term. The latter being intended to
minimise the distance between the vision-language reward and the sentence-level pol-
icy by calculating the mean squared loss. Since the vision-language reward is pre-trained
with ground truth, it can be considered as the expert to measure the correlation between
images and sentences.
2.5.4.10 Graph-based Image Captioning
To enhance the quality of conventional encoder-decoder models, researchers recently in-
tegrated graphs in image captioning. Rather than just encoding images using high level CNN
features, researchers started encoding the structural information of images using scene
graphs. This type of graph is an abstraction of objects and their complex relationships
which provides rich semantic information about images. To extract this structural repre-
sentation, researchers attempted to build scene graphs either (a) directly from scratch by
capturing the objects, their semantic and spatial pairwise relationships using learnt de-
tectors (Aditya et al., 2017; Xu et al., 2019; Yao et al., 2018), or (b) by extracting syntac-
tic dependency trees and transforming them into scene graphs using rule-based meth-
ods (Gao et al., 2018; Gu et al., 2019; Yang et al., 2019), or (c) by scene graph parsers
which are normally trained end-to-end through context propagation (Lee et al., 2019; Li
and Jiang, 2019; Milewski et al., 2020; Wang et al., 2019; Zhong et al., 2020). Alongside
the CNN extracted image features, these generated scene graphs are generally encoded
to condition the caption prediction in two different ways. The simpler and less computa-
tionally demanding approach is applied by encoding the semantic relation triplets using
a combination of word embeddings. For example, (i) by applying mean pooling over the
word2vec (Mikolov and Dean, 2013) feature vectors of the relationship triplets (Li and
Jiang, 2019); (ii) by concatenating the objects, attributes and relationships embeddings
into one feature vector (Xu et al., 2019); (iii) or simply by projecting the detected visual
relations of the scene graph parser into a lower dimensional feature vector (Lee et al.,
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2019). The second approach is to apply Graph Neural Networks (GNNs) like GCN or
Graph Attention Network (GAT) as seen in Gu et al. (2019); Milewski et al. (2020); Wang
et al. (2019); Yang et al. (2019); Yang et al. (2020); Yao et al. (2018); Zhong et al. (2020).
These neural networks are designed to encode the graph-internal context by encoding
nodes with the information of their neighboring nodes. Apart from conditioning the se-
quence of image captions based on detected information, researchers are now exploiting
terms that are semantically related to the objects depicted in images from external knowl-
edge graphs, such as ConceptNet (Liu and Singh, 2004), to also condition the sequence of
words on non-visible entities as performed in Huang et al. (2020); Zhou et al. (2019). Se-
mantically related words are also being used to broaden the vocabulary set of the trained
image captioning models by being injected directly during sequence prediction (Huang
et al., 2020), while in Zhang et al. (2021b), a knowledge graph for every word in the vo-
cabulary set was built to connect its semantically relatedwords. This was used to enhance
a Transformer based image captioning framework that rather than encoding words with
their embeddings only, it represented them also by their neighboring embeddings. Both
scene and knowledge graphs were used in Aditya et al. (2017) to generate captions based
on scene description graphs generated using trained visual detectors while applying com-
mon sense reasoning from a constructed knowledge base.

Apart from directly introducing the structural information of images and the semanti-
cally relevant terms for better sequencemodeling, graph-based image captioning systems
increase the interpretability and explainability of the generation process, while enabling
the possibility for error back-tracking and the support of VQA (Aditya et al., 2017). The
combination of both scene and knowledge graphs opens the opportunity for image cap-
tioning systems to internally support logical and common sense reasoning. For example,
questions involving object counting and visual relations can be handled through knowl-
edge inferred from scene graphs, while themore complex and logically-oriented questions
involving commonsense reasoning can be resolved using the interplay between scene and
knowledge graphs as proposed byAditya et al. (2017). The introduction of graphs in image
captioning has not yet shown any major improvements over the performance of current
state-of-the-art image captioning systems, except in controllable image captioning with
the recently proposed Abstract Scene Graph (ASG)-based framework (Chen et al., 2020a).
In fact, Milewski et al. (2020) found no significant enhancements between models that
use scene graphs over models which use object detection features only. This was partic-
ularly noticed since the quality produced by the scene graph generation process was very
low and therefore introduced considerable noise in the overall captioning process. When
compared to the Bottom-Up Top-Down (Up-Down) (Anderson et al., 2018) attention-
basedmodel, which is one of the current benchmark and state-of-the-art attention-based
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models, the authors report that the quality of the image captions when generated based
on high quality scene graphs improved by up to 3.3 CIDEr points. This confirms the find-
ings of Wang et al. (2019) which show that state-of-the-art scene graph parsers when
trained on good quality graphs can boost performance almost as much as the ground-
truth graphs. This was further confirmed by Tripathi et al. (2021b) who showed that an
encoder-decoder framework conditioned solely on repurposed scene graphs can reach
the state-of-the-art models which use image visual features as well, indicating that scene
graphs are very promising to represent images for image caption generation. These stud-
ies point out that the main bottleneck of the image captioning process depends more on
the overall approach rather than the encoding process.

The captioning models are reaching a performance plateau possibly because they are
generally being built on the contemporary encoder-decoder framework and consequently
are inheriting its major limitations. Although the conventional approach has been im-
proved in several ways, ranging from the inclusion of attention mechanisms and graphs
to the application of RL and Generative Adversarial Networks (GANs), these systems are
still heavily dependent on the current neural-based sequence models that are trained
to map the extracted features using a maximimisation-based decoding approach such as
beam search, whichmost often produce generic and bland sequences of words (Holtzman
et al., 2020). Since these models are generally trained to learn the distributional charac-
teristics of the captions found in the training data by maximising the likelihood of each
consecutive word, generally they end up producing syntactically plausible captions but at
the same time tend to assign low probabilities to less frequent and unseen combinations
of image visual concepts, for example in scenes including, a “man wearing a horse mask”,
or “person standing on the wing of a plane”. In such cases, the trained models need to
go far beyond just “remembering” and reusing sequence of words as were encountered
during training. In complex circumstances or environments that are out of the training
context, models that are only trained using this approach find it difficult to apply com-
mon sense reasoning, and hence most of the time end up producing syntactically correct
but semantically irrelevant captions with hallucinated content (Rohrbach et al., 2018) and
with poor compositional generalisation (Nikolaus et al., 2019).

These issues so far were addressed by leveraging unpaired out-of-domain data (Chen
et al., 2020b), by the detection of novel objects using external datasets (Agrawal et al.,
2019), and through the use of both RL and GANs. Although, knowledge graphs have also
been used to extend current captioning systems with commonsense knowledge (Aditya
et al., 2017; Huang et al., 2020; Zhou et al., 2019), nomajor improvements were noted. To
better encode the structural representation of images while broadening the vocabulary
set used in end-to-end models, researchers recently started exploiting the graph data
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structure in image captioning.
Scene-graphs (Johnson et al., 2015) were proposed as a graph structure to model the

relationship between objects, attributes and relations. A scene graph is a data structure of
interconnected nodes representing objects grounded in images with corresponding visual
attributes connected as other nodes. Related objects are linked via pairwise relationships
represented by directed edges connected between graph vertices. More formally, for a
given set of object classes C , set of attribute types A, and a set of relationships R, a
scene graph G is a directed graph defined by tuple G = (O, E), where O = {O1, . . . , On}
is the set of all object instances which can include people (“man”), places (“lake”), things
(“boat”), or parts of other objects (“arm”), and E ⊆ O× R×O is the set of directed edges
that reflect the relationship between objects. Examples of relationships include geometry
(“person on boat”), actions (“man driving boat”), and object parts (“boat has engine”). Each
constituent object is defined as oi = (ci, Ai), where ci ∈ C denotes the object class, while
Ai ⊆ A are the attributes of that specific object which can describe its color (“boat is
white”), shape (“hull is round”), and pose (“man is bent”). This representation for encoding
semantic features has been widely used in visual tasks, which include, but not limited to,
image retrieval (Johnson et al., 2015; Wang et al., 2020), image generation (Herzig et al.,
2019; Johnson et al., 2018), Visual Question Answering (VQA) (Ben-Younes et al., 2019;
Ghosh et al., 2019), and image captioning (Li and Jiang, 2019).

Another type of graphical structure proposed in image captioning is the general knowl-
edge graph. This was proposed as an intermediary representation to infer both direct and
indirect image concepts which cannot be simply detected by object recognition mod-
ules. By exploiting relational information retrieved from connected semantic concepts,
researchers suggested the use of general knowledge graphs to better automate visual
reasoning as well as to infer commonsense facts about visual scenes by leveraging readily
available background knowledge. This data representation consists of graph nodes that
represent general concepts for semantic labels that are linked by directed or undirected
edges to encode relational facts between pairs of concepts from unstructured data.
2.5.4.11 Scene Description Graph
The first attempt where the graph data structure was used in automatic image captioning
was in the work proposed by Aditya et al. (2017). To enhance the flexibility of image cap-
tioning, the authors suggested the extraction of Scene Description Graph (SDG) through
visual image understanding and commonsense reasoning applied over an automatically
constructed knowledge base. Common sense reasoning related to natural activities was
particularly applied on (a) detections retrieved from existing visual perceptionmodules, (b)
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a “commonsense” knowledge base which was constructed from image annotations using
natural language processing, and on (c) lexical ontological knowledge bases such asWord-
Net (Miller, 1998), that links words into semantic relations including synonyms (e.g., car is
a synonym of automobile), hyponyms (e.g., sparrow and eagle are hyponyms of the hyper-
nym bird), and meronyms (e.g., finger is a meronym of hand because a finger forms part of
a hand). Inspired by the fact that the human visual processes continuously interact with
high-level knowledge during understanding, the authors proposed to decompose their
captioning framework in three interacting modules, namely the (1) visual detection, (2)
knowledge base, and (3) logical reasoning modules. To model the early stages of human
understanding, the authors integrated deep learning-based vision and state-of-the-art
concept modeling from the constructed commonsense knowledge base. Specifically, the
deep learning based visual module was responsible for (a) the detection of objects and
regions (e.g., man, wooden floor), scenes (e.g., beach, stadium), visual relations including
verbs and spatial prepositions between two objects or an object and a scene (e.g., a man
holding a ball; a man standing on the floor), attributes and (b) visual attention.

Visual information was extracted by deep object and scene recognition modules and
scene constituent recognition. The latter was trained on constituent annotations col-
lected using Amazon Mechanical Turks (AMT) in free-text format, including not only the
detected objects within images, but also what each object is doing and its properties. A
multi-label SVM (Boser et al., 1992) was trained on deep visual features extracted from
images using a pre-trained CNN model (Krizhevsky et al., 2012). Based on these visual
detections, the authors proposed to generate a SDG, which is a directed labelled graph
that represents the semantics of a scene through the interaction between Entities (ob-
jects, regions), Events (actions, linking verbs), Traits (attributes of objects and regions),
and inferred scene constituents. This graph-based structure was also intended to repre-
sent the semantic relations (from KM-Ontology (Clark et al., 2004)) between Entity-Event
and -Trait pairs, and the spatial orientation between entities as was suggested by Elliott
and Keller (2013). This intermediate representation was introduced to move beyond vi-
sual analysis and tackle Event-Entity based analysis, enhance the generation of image
captions, perform visual question answering, and reason beyond what can be seen in im-
ages. Image captions were generated using a template-based approach by applying the
SimpleNLG (Gatt and Reiter, 2009) package to produce captions from the SDG.
2.5.4.12 Knowledge Graphs in Image Captioning
To extend image captioningwith general and commonsense knowledge, Zhou et al. (2019)
proposed to integrate knowledge graphs alongside the visual features extracted from im-
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ages. The authors in this work hypothesised that if background knowledge is integrated in
image captioning, such models can produce captions with information that is not explicit
in the image and therefore makes the generated captions more effective. For example,
when considering a photograph of a boat near a slipway, it could be effectively described
by “A boat ready to be loaded on a trailer”, even if the trailer is not present in the image.
Generating these type of captions requires not just visual recognition but also the need
for external knowledge to embed additional information. To take advantage of readily
available background knowledge, the authors leveraged information encoded in knowl-
edge graphs and integrated it with an already existing neural image captioning method
introduced in Vinyals et al. (2015); You et al. (2016). The standard approach of first hav-
ing a CNN trained to encode images into a fixed length vector space representation and
then used as an initial state vector to train an RNN to produce corresponding sequences
of words was extended with knowledge graphs in two aspects. Rather than just encod-
ing images with CNN features, the authors also detected a set of objects from images
using the YOLO9000 (Redmon and Farhadi, 2017) object detection framework. Concept-
Net (Liu and Singh, 2004; Speer et al., 2017), a labelled knowledge graph that represents
the commonsense relationship between words and phrases of natural language, was used
to infer both direct and indirect terms related to the detected objects based on a cosine
distance similarity score between their semantic vector representations as generated by
retrofitting (Faruqui et al., 2015) on ConceptNet.

Direct terms were retrieved based on the individual objects, while indirect terms were
collected based on the whole set of detected objects. The related terms, the detected
objects and the image features were used to pre-train an RNN network based on corre-
sponding ground-truth captions. The output from this intermediate caption generation
along the two terms, the detected objects and the visual embeddings, were then used as
an initial state of an LSTM-based RNN language module intended to decode these em-
beddings into corresponding image captions. The evaluation of this proposed framework
revealed that the introduction of external concepts gathered from a semantic knowledge
graph to a neural image captioner, in some metrics achieves better performance when
compared to state-of-the-art captioning models (Donahue et al., 2017; Vinyals et al.,
2015; Xu et al., 2015; Yao et al., 2017; You et al., 2016; Zhou et al., 2016) which do
not make explicit use of external background knowledge.

In contrast, Huang et al. (2020) used the ConceptNet (Liu and Singh, 2004) knowl-
edge graph to inject semantically related information related to the detected objects into
the output stage of the caption generator by augmenting the probability of some latent
meaningful words at each decoding step. This allows the system to generate more novel
and meaningful captions. In this work, a new text dependent word attention was added
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to the uniform visual attention model. Its calculation depends only on the internal anno-
tation knowledge as found in the training data which provides rich semantic information
to guide the generation of visual attention to handle the common discordant matching
problem between regions in image and words in captions. To guide the model on the vi-
sual domain, the authors used the region proposal network proposed by Ren et al. (2015)
to generate the region proposals which were then fed to the ROI pooling layer and 3 fully
connected layers to obtain a vector representation of each image region. From the quali-
tative results, it was found that the use of knowledge graph can bring more benefits than
word attention. This showed that by the incorporation of external knowledge, the model
can discover more important cues to describe a given image. Furthermore, from the qual-
itative analysis it was shown that this proposed model can generate more fine-grained
captions that reveals more implicit aspects of images which are normally difficult to be
discovered by machines. However, it was confirmed that like to most existing models
which are limited by the captioning length, this model does not perform well on complex
images having multiple objects.

Instead of using the conventional RNN-based models for sequence modeling, Zhang
et al. (2021b) proposed to use the Transformer (Vaswani et al., 2017), a model architecture
which eschews recurrence and instead relies on an attention mechanism to draw global
dependencies between input and output which makes it highly parallelisable and faster
to train. To be able to use the Transformer model for image caption generation, the au-
thors used the pre-trained bottom-up attention features (Anderson et al., 2018) as input
after it was reshaped through a linear layer. To further improve the performance of the
Transformer-based model, the authors proposed to leverage a knowledge graph. Rather
than using only the embeddings of each single word found in the vocabulary as the input,
the authors also exploited the neighbouring words as embeddings so that the model can
leverage the information of the related words during training. For each word, a knowl-
edge graph was constructed with nodes corresponding to the word’s top most related
words as measured by cosine similarity. The embedding of each word was then replaced
by the combined embedding composed from the embedding of the word itself and the
embeddings of its neighbours which were then projected into a single joint fixed-length
vector using a fully connected layer.
2.5.4.13 Scene Graphs in Image Captioning
Numereous works have recently proposed the scene graph data structure as an interme-
diate representation between images and corresponding natural language descriptions.
The visually grounded scene graphs are generally generated by following a RNN-based
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approach which predicts image objects and their corresponding relationships. Normally,
the first step towards generating the scene graph is to generate a set of initial bounding
boxes for the image. For each object proposal, the object category as well as its bounding
box offsets are predicted and the pairwise relationships are considered to construct the
scene graph. As pointed out in the literature (Li and Jiang, 2019), relationship triplets (i.e.,
< object >< relationship >< subject >) are used since (a) a triplet corresponds to two
entities and an edge is generally treated as the basic element; (b) a triplet can be con-
sidered as a small subgraph of an entire scene graph which provides discriminitive and
informative cues for the generation of captions; and (c) individual predicates of relation-
ships are ambiguous while a triplet conveys more representative visual content.

For instance, Gao et al. (2018) proposed a framework that is split in two separate
phases, namely the concept cognition and sentence construction, where the former was
intended to build a vocabulary of 267 semantic concepts extracted from the vocabulary
of Fang et al. (2015) which includes nouns, verbs, adjectives and several prepositions.
A subset of the words which were collected from image annotations were mapped to
the extracted vocabulary set (e.g., “baby” was mapped to “children”), while a collection of
words were left unmapped to limit the number of semantic concepts and to reduce noise
during the generation of scene graphs, since on average, each image was estimated to
approximately have nine semantic concepts. The first phase was also intended to gener-
ate the high-level semantic representation in the form of a scene-graph-based sequence
through the use of a novel CNN-RNN-SVM framework.

Sequences were generated in three steps. In the first step, captions were parsed in
scene-graph tuples using SPICE (Anderson et al., 2016). Afterwards, these tuples were
combined with corresponding semantic concepts to build reference scene graph tuples
via a rule-based approach such that the following conditions are met: (a) all words in tu-
ples which have a corresponding semantic concept in the vocabulary must be mapped
(e.g., “man” is replaced by “people”), otherwise they are not considered to be part in the
final scene graph; (b) scene graph must conform to a tree-based structure to eliminate the
possibility of havingmultiple relationships between two objects; and (c) limits the subjects
of all objects to not have any relationship with other objects. Since it is difficult to train
images with scenes directly (Anderson et al., 2016), the authors proposed to transform
the generated scene graphs into sequences. The sequence that gave best results was
composed of: “the subject, attributes of the subject, relationship between the subject and
object1, object1, attributes of object2, relationship between the subject and object2, object2,
attributes of object2, . . . ”. The graph-based sequences together with corresponding im-
ages were then passed to their proposed novel framework to extract visual features from
the CNN module and model concept relationship and dependency by an LSTM module.
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By taking the embedding of the predicted concept at each time step and maintaining a
hidden state, this module was responsible for recognising concept co-occurrence infor-
mation. The a-priori probability of a semantic concept given the previously predicted
labels were computed according to their dot product in relation to the sum of image and
recurrent embeddings. Path prediction was performed by obtaining the product of the
prior probability of each label given the previous concepts in the predicted path.

Both vision and language embeddings were projected to the same low-dimensional
space as concept embedding through a data fusion layer. The authors introduced the
SVM classifier to detect and filter out semantic concepts which were not considered suit-
able for the scene-graph based sequence. Such concepts include those adjectives which
are weak-dependent on others. These concepts were automatically classified based on
their CNN features and semantic concepts were predicted by the CNN-RNNmodule. The
output of the SVM was integrated into the graph based sequence to generate a bit vec-
tor with a length equal to the vocabulary size. The second phase was responsible for the
sentence reconstruction based on low-level CNN visual features and high-level semantic
representation through the use of an LSTM. The effectiveness of having a rich and diverse
vocabulary was confirmed by the authors when evaluated the system using current pop-
ular evaluation metrics on two vocabularies, one containing nouns only, and another with
the full set of concepts, including verbs, adjectives and prepositions. The authors con-
firmed that the RNN module was exploiting statistical frequency between phrases and
therefore common words like “people” and “play” had a greater chance of being included
in the prediction irrespective of the extracted image features. To mitigate this problem
and to enforce attention on visual features, the authors trained the framework on random
semantic sequences which led to an improved performance.

Xu et al. (2019) have also proposed the scene graph as intermediate representation in
their image captioning framework. The training was fully supervised in such a way that
all images had corresponding scene graphs and bounding boxes reflecting the objects, at-
tribute and relationships found in images. Scene prediction was handled by training two
models based on CNN (VGG-16 (Simonyan and Zisserman, 2014)) to predict attributes
and relationships for objects. At test time, the Faster-RCNN (Ren et al., 2015) was em-
ployed to detect objects, while two fine-tuned 16-layer VGG network models (Simonyan
and Zisserman, 2014) were used to predict attributes and object pair-wise relationships
to construct scene-graphs. The top-1/5 accuracy reported on the intersection between
Visual Genome (Krishna et al., 2017) and COCO (Lin et al., 2014) for the attribute and
relationship modules were 13.5%/33.25% and 11.75%/29% respectively. This shows the
difficulty in predicting the two concepts as both can be humanly subjective and can there-
fore lead to a high degree of inaccuracy in scene graph generation. To embed constructed
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scene-graphs in an image caption generator, the authors proposed the Scene Graph Cap-
tioner (SGC), amodule responsible for the integration of semantic concepts, the toplogical
structure and the attention region of scene graphs. The SGC was split in three phases.

The first phase was responsible for capturing both the semantic and structural infor-
mation of images and model it in two individual graph embeddings, namely the concept
and topology vectors. The second phase of the pipeline was dedicated to attending the
most important regions within images, whilst the third module was the language model
designed to decode the extracted semantic concepts, topological structure and the at-
tention region into textual descriptions. During the first phase, a semantic vocabulary
that is not tense or plural sensitive (e.g., ride and riding are considered as one concept)
was constructed from the available scene graphs. The concepts were then divided into
three components, namely objects, attributes and relationships. A total of 4096 were se-
lected as the most common words which included 2000 objects, 1000 attributes and 1096
relationships. The prediction probabilities from all concepts were then aggregated to con-
struct a multi-label concept representation. To embed the scene graph, the authors also
extracted a topological fixed-vector to represent the structure of the scene graph.

This was handled by first generating an adjacent matrix where the objects and rela-
tionships of the graph are used as vertices and edges respectively. For consistency across
all images, the authors proposed to construct a matrix size of m×m, where m = 2000 to
reflect the number of all possible objects. The prediction probabilities of relationships be-
tween two objects was reflected as a weight value in the adjacent matrix. The matrix was
then transformed into a pseudo-colour map having the corresponding colour intensities
for the adjacent matrix. Its toplology representation was then extracted from the output
of the last fully-connected layer (conv8) after feeding the extended adjacent matrix to a
shallow convolutional neural network CNN-M-128 (Chatfield et al., 2014).

The second phase of the pipeline was dedicated to attend the most important re-
gions within images. In this phase, an attention mechanism module was employed to
extract high internal homogeneity and external inhomogeneity among the nodes of the
constructed scene graph which corresponds to the region where the nodes tend to dense
cluster together in a graph. The proposed attention extraction model was meant to ex-
tract attention graphs by taking into consideration the edge structure of the scene graph.
Based on the dominant clustering approach, a cluster is generalised for the entire vertex
set of an input graph. All the related visual regions are absorbed to compose the attention
bounding box from the image to guide the caption generator with the most salient image
features as extracted from a CNN network (VGG-16 (Simonyan and Zisserman, 2014)).

The third module was finally trained to maximise the probability of correct captions
conditioned by the images. In contrast to previous models of this type, this model, apart
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from the CNN features extracted from the whole image and the attention region; se-
mantic concepts and topological structure representations were additionally used. These
were employed to condition the sequences of words by an LSTM-based languagemodule.

The results based on standard captioning metrics showed that the larger the concept
vector is, the higher the quality of the generated captions. A comparison between the
generation of captions based solely on the nonextended and extended adjacent topolog-
ical matrices revealed that the latter slightly improves the quality of the former but still
does not reach the accuracy obtained when using the concept feature vector by a high
margin, confirming that the topological vector is not very effective. When combined to-
gether, both concept and topological vectors did not outperform the model trained on
a 4096 concept feature vector. The overall SGC showed incremental improvements over
the baseline model which generated captions conditioned only on extracted image visual
features. The visual features combined with the attention mechanism slightly improved
the baseline results, whilewhen the image featureswere combinedwith both concept and
topological feature vectors the results continued improving. This confirms that informa-
tion extracted from concept and topological features of scene graphs is more important
than the visual information extracted from the visual attention region. Furthermore, when
using the attention region features together with the topological and concept features,
the performance went down which surprisingly showed the importance of the whole im-
age features over the attention region. When including all vectors, which consist of the
CNN features for the whole image and the attention region, the concept vector and the
topological feature vector, the SGC improved its generated captions by an overall average
increase of 2.32% over all computed metrics.

Yang et al. (2019) proposed incorporating the inductive bias of language generation
into the conventional encoder-decoder framework to leverage the strengths of both sym-
bolic reasoning and end-to-end multi-modal feature mapping. This framework was pro-
posed to generate more human-like captions by reducing any dataset bias through the ex-
ploitation of language inductive bias. Specifically, the authors proposed the Scene Graph
Auto-Encoder (SGAE) which is based on a sentence self-reconstruction network to learn
the feature representation of the language inductive bias. This was carried out by trans-
forming sentences (S ) into corresponding sentence graphs (G) using the SPICE (Anderson
et al., 2016) metric. After transforming the graph node embeddings into a new set of
context-aware features through the use of spatial graph convolution, the authors pro-
posed to embed the language inductive bias in language composition using a trainable
dictionary (D). Motivated by the use of working memory to preserve a dynamic knowl-
edge base for run-time inference which is widely used in textual QA (Sukhbaatar et al.,
2015), VQA (Xiong et al., 2016), and one-shot classification (Vinyals et al., 2016), a dic-
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tionary was proposed in the sentence self-reconstruction network.
Sentences were reconstructed by decoding this dictionary using a trainable RNN-

based language decoder (Anderson et al., 2018) with RL-based training strategy (Rennie
et al., 2017) with the following overall pipeline: S → G → D → S . By having this
trainable dictionary also shared in the encoder-decoder pipeline (I → G → D → S ),
the language prior was also integrated to guide the end-to-end image captioning dur-
ing language decoding. The I → G step was handled by a visual scene graph detector
composed of a Faster-RCNN (Ren et al., 2015) to detect the objects, MOTIFS relationship
detector (Zellers et al., 2018) to classify the relationships and their own attribute classifier
based on a single hidden layer network with ReLu activations (i.e., fc-ReLu-fc-Softmax).
The G → D denotes a multi-modal GCN which is added to integrate necessary visual
cues not detected by the visual detection module. This step was included to modulate
scene graphs into visual representations by fusing detected label embeddings with visual
features extracted from ROI extracted from Faster R-CNN.

The same authors later extended this work and in Yang et al. (2020) presented their
proposed framework with a more fine grained dictionary. Specifically, it was partitioned
into three distinct dictionaries, where each dictionary was responsible for handling the
object, attribute and relation inductive bias. Furthermore, to transfer the inductive bias
from the pure language domain to the vision-language domain, the authors proposed to
use the concept of Knowledge Distillation (KD) (Hinton et al., 2015) through a Kullback-
Leibler divergence (Kullback and Leibler, 1951) objective. This was computed between
the word probability distributions generated by the RNN decoder of the sentence auto-
encoder and the overall image captioning decoder. Also, to continue improving the scene
graph encoding, both GCNs were replaced with attention-based graph convolution net-
works to generate better scene graph representations.

Li and Jiang (2019) fused visual and semantic features extracted from scene graphs by
mean pooling to obtain the integral representation. Once these features were obtained, a
hierarchical-attention-based module was used to discriminate features for word genera-
tion at each time step. The first level attention was used to selectively attend to different
visual and semantic features to form the weighted visual and semantic context vectors.
Instead of simply pooling these two vectors into a single one and without taking into ac-
count their inherent structures and differences between them, the attention module was
proposed to learn relevance scores for these two modalities in order to obtain the final
integrated context vector with the second-level attention.

In contrast to all previous works, Zhong et al. (2020) rather than using the full scene
graphs as an intermediate layer between images and corresponding sentences, they pro-
posed to perform image captioning by decomposing the generated scene graphs of im-
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ages extracted by the MotifNet (Zellers et al., 2018) neural network into a set of sub-
graphs to capture the different semantic components of images. The backbone of this
method selects important sub-graphs and decodes a single caption from the chosen sub-
graph. The presented deep learning based model was trained to choose the important
sub-graphs using a sub-Graph Proposal Network (sGPN) and decode them in their target
sentences in order to attend to different image regions. After sampling the sub-graphs,
meaningful graphs were identified by first combining the visual and textual features on
the scene graph nodes and edges respectively, followed by an integration of contextual
information using a GCN. The GCN was used to combine information from the neigh-
borhood within the graph and update node and edge features. With this updated scene
graph and a set of sampled sub-graphs, the model was designed to learn a score function
to select and rank sub-graphs for image captioning based on ground-truth captions to
guide the learning process. The decoding process incorporates an attention mechanism
on the sub-graph nodes during the generation of each caption word. This approach lead
to the generation of accurate, diverse, grounded and controllable captions simultaneously
for the first time. This means that controlling the number of sub-graphs results in a more
diversified image captioning.

For better user intention controllability, Chen et al. (2020a) proposed the novel ASG
as a fine-grained control signal to condition controllable caption generation. The ASG is a
directed graph which consists of three abstract nodes grounded in images, including the
object, attribute and relationship without having any actual semantic labels. The chosen
ASG is transformed to an image caption by their proposed ASG2Caption model which is
based on an encoder-decoder framework. This model was designed to (a) capture both
intentions and semantics from the graph through a proposed role-aware graph encoder
used to differentiate fine-grained intention roles of nodes and includes graph context in
nodes to improve the semantic representation. Apart from controlling the content to de-
scribe via graph nodes, the ASG was also responsible to (b) implicitly decide the order
of description through the way nodes are connected without omitting and repeating any
content during the process. In this work, instead of using a fully detected scene graph,
the ASG was adopted as a control signal for the generation of intention-aware and di-
verse image captions. ASGs are convenient for user intractability and controllability, while
they are easier to generate automatically when compared to full scene graphs. Since the
ASG is a graph layout without any semantic labels it can be easily generated manually
or automatically by having an off-the-shelf object proposal network and a binary rela-
tionship classifier trained to detect whether two objects are related or not. Therefore,
to generate diverse captions users can simply select sub-graphs from full ASGs or else
an automatic sampling strategy can be used to automate the generation of different cap-
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tions involving varied image aspects. In order to generate image captions based on the
encoded ASG, a language decoder was specifically designed. This includes a graph-based
attention mechanism which attends both the graph semantics through graph content at-
tention, and structures via their proposed graph flow attention. Moreover, in contrast
to previous attention-based models (Lu et al., 2017; Xu et al., 2015), this graph-based
decoder was also designed to keep track of what has been attended to during the de-
coding process via an ‘erase’ followed by ‘add’ operations inspired by the Neural Turing
Machine (NTM) (Graves et al., 2014) to prevent content omission and duplication during
the decoding process.

Yao et al. (2018) explored the explicit use of visual relationships via scene graphs for
the generation of image captions. By connecting the extracted visual embeddings of the
main image objects with both semantic and spatial relations, GCNs were used to produce
relation-aware region-level representations. In this work, the authors used the Faster-
RCNN (Ren et al., 2015) to detect objects within images to encode the images into a set
of salient regions containing objects. Both semantic and spatial relation graphs were then
constructed over all the detected image regions based on the corresponding semantic
and spatial relationships in the form of subject-predicate-object, where the latter describes
the geometric orientation between the subject and object, and the former describes the
action or interaction between pairs of objects. The spatial graph was constructed by
classifying the geometrical orientation between each pair of detected objects by exploit-
ing the Intersection Over Union (IOU) of the two objects, the relative Euclidean distance
as measured from the two bounding boxes’ centroids and the relative angle between the
two centroids. These extracted features were used to categorise the spatial linkagewithin
the spatial graph into 11 spatial categories. Furthermore, the semantic relations were pre-
dicted by using a simple deep classification model based on the union of two bounding
boxes which covers the two respective objects. The regions as well as their relation-
ships were encoded using a GCN to produce relation-aware region representations. The
standard GCN was modified to preserve graph directions and labels, while an additional
edge-wise gate unit was added to automatically focus on important edges. The relation-
aware region representations were then passed to a two-layer LSTM-based captioning
framework which enables region-level attention in image captioning. The semantic and
spatial graphs were linked using a late fusion scheme by linearly fusing the predictedword
distributions from the two separate decoders.

Similarly, Lee et al. (2019) extended the top-down image captioner (Anderson et al.,
2018) by adding relation features extracted from a neural scene graph generator. In this
work, the StackedMotif Network (Zellers et al., 2018) was used to predict graph elements
by specifically staging bounding box predictions, object classifications, and relationships
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in such a way that the global contextual encoding of all previous stages provides rich
context for predicting the following stages. The top-down captioner was modified so
that the input vector of the attention-based LSTM at each time step is replaced by the
concatenation of the mean-pooled relation feature, the mean-pooled region feature, the
previous output of the language LSTM, and an encoding of the previously generatedword.

To specifically study to what degree scene graphs have on the performance of image
caption generation, Wang et al. (2019) incorporated scene graphs generated by Factoriz-
able Net (Li et al., 2018) into the bottom-up top-down attention based image captioning
architecture (Anderson et al., 2018). This effectiveness was analysed in the context of
both the predicted and ground-truth scene graphs. From this work, similar to other re-
viewedworks, it was re-confirmed that scene graphs can improve the generation of image
captions. Furthermore, it was found out that although scene graphs generated by current
state-of-the-art models are still limited in the number of objects and relations categories,
the results produced are not way off from those produced when using the ground-truth
scene graphs. This shows that the main bottleneck in current scene-graph-based image
captioners is not owing to inaccurate scene graph generation but it is more related to the
overall process used in captioning models. To come to this conclusion, the authors in-
tegrated the off-the-shelf scene graph parser with the attention-based image captioning
framework proposed by Anderson et al. (2018) while including information from the orig-
inal image through a set of region features obtained by an object detection module to im-
prove performance. The scene graphs were encoded into contextual hidden vectors using
the GCN proposed by Marcheggiani and Titov (2017) which incorporates directions and
edge labels in the encoding, while also allowing edge-wise gating to let the network learn
to prune invalid connections found in the generated scene graph. The used architecture
was composed of an attention-based LSTM that is responsible for tracking contextual in-
formation from the inputs and which incorporates information from the decoder. Specif-
ically, the used attention-based LSTM takes contextual information after concatenating
the previous hidden state of the decoder, the mean-pooled region-level image features
which include bounding box coordinates obtained from the Faster-R-CNN (Ren et al.,
2015), the mean pooling of the scene-graph node features from the GCN, and the previ-
ous generatedword. Words were decoded from the inputs of the previous hidden state of
the attention-based LSTM, attention weighted scene graph node embeddings and atten-
tion weighted image features. When evaluating this work on standard evaluation metrics,
the introduction of scene graph features with visual information it was shown to improve
the captioning results when compared to the results generated based on image features
only or graph features only. The authors also evaluated this model with ground-truth
scene graphs and showed that the most notable improvement of 2.1% was noted on the
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SPICE (Anderson et al., 2016) evaluation metric since the ground-truth scene graphs have
a larger vocabulary.

Furthermore, as an attempt to study whether scene graphs are currently good enough
to be used in image captioning andwhether they can improve the quality of the generated
captions, Milewski et al. (2020) explored the use of different graph-based architectures
to fuse both object and relation information from images. In this work, the authors pre-
sented an extension for GAT (Veličković et al., 2018) by presenting a novel Conditional
Graph Attention Network (C-GAT), which in contrast to a standard graph attention layer,
is designed to condition scene graph updates on the current state of the image caption-
ing decoder. The overall pipeline for the image captioning process was to first predict the
scene graphs for images by making use of the pretrained scene graph generator through
iterative message passing as proposed in Xu et al. (2017) with a relation proposal net-
work (Yang et al., 2018) to obtain and inject relational information into the image cap-
tioning framework. Scene graphs were encoded by using both GAT and C-GAT, while flat
versus hierarchical attention mechanisms were used. The authors found that most scene
graphs had extremely low quality and because of their noise resulted in a reduction in the
performance of the captioning process. For this main reason, models that leverage scene
graphs had no significant difference in the reported performance than those which are
not based on scene graphs. However, when the quality of the generated captions was
analysed according to the quality of the generated scene graphs, it was confirmed that
the quality of captions was improved with high quality scene graphs.

To address the ambiguity of whether scene graphs are generally useful (Wang et al.,
2019; Yang et al., 2020) or not (Li and Jiang, 2019; Milewski et al., 2020) in image cap-
tioning, (Tripathi et al., 2021b) suggested to repurpose the visual scene graphs for cap-
tion generation and proposed the SG2Caps architecture which is based on an encoder-
decoder framework that is conditioned on scene graphs only and which does not make
use of any extracted image features. To enhance the effectiveness of the visual scene
graphs that were generated using MotifNet (Zellers et al., 2018) after being trained on
Visual Genome (Krishna et al., 2017), the authors proposed to extend these graphs with
Human Object Interaction (HOI) information. This extension was primarily introduced to
highlight the main regions concerned with human-to-object interactions, since humans
normally tend to describe images involving persons by focusing only on the involved
human-to-object interaction and excluding any other background information (Tripathi
et al., 2021b). Furthermore, in contrast to all previous works, the authors extended the
visual scene graphs with the spatial information of the nodes extracted from the corre-
sponding object bounding boxes and post-processed the predicted scene graphs to re-
duce their noise to make them more suitable for image caption generation. This was
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achieved by eliminating less confident graph nodes predictions, applying non-maximum
suppression in object detection, and by manually mapping the detected object categories
to the closest word string in the captioning dataset. Furthermore, in contrast to all pre-
vious models, no image or object-level visual features were used to train the proposed
SG2Caps model. This framework encodes the visual scene graph to generate a context-
aware embedding using five spatial graph convolutions for the object, bounding box, re-
lationship, and attribute embeddings as was performed in Yang et al. (2019). This was
then passed to an LSTM-based language decoder followed by reinforcement learning op-
timisation. From their evaluation, it was confirmed that a repurposed visual scene graph
can provide enough information for generating high-quality image captions while sub-
stantially reducing the trainable parameters needed for image caption generation.
2.5.4.14 Unpaired Image Captioning
Most of the reviewed contributions in image captioning assume datasets composed of im-
age and caption pairs. For instance, retrieval-basedmechanisms reuse captions of visually
similar images, while deep learning based models are trained on image and caption pairs.
The same applies to the traditional encoder-decoder frameworks which make use of both
image and caption pairs as inputs during training. Given the difficulty of collecting such
data to train scalable image caption generators, recently researchers started addressing
the problem of Unpaired Image Captioning (UIC) which assumes to have both image and
caption pairs coming from the same domain.

The first contribution which addressed UIC was the pivot-based approach presented
in Gu et al. (2018b). Despite not having the image-sentence pairs in their target language,
this framework used a paired image-caption dataset in the pivot language (Chinese) and
a machine translation dataset to translate the pivot-language and the target-language
(Chinese-English). The pivot-language sentences were connected in different domains by
shared word embeddings. Recently, scene graphs have also been proposed in UIC (Cao
et al., 2020; Gu et al., 2019; Liu et al., 2019a). For instance, Gu et al. (2019) proposed
a framework that is composed of an off-the-shelf image and sentence scene graph gen-
erators, a scene graph encoder, an attention-based sentence decoder composed of two
LSTM layers, and a feature alignment module which maps graphs encoded in the im-
age domain to the textual domain. The first step was to extract scene graphs from the
sentence corpus and train the scene graph encoder and the sentence decoder based on
textual information. The encoding was performed by minimising the cross-entropy loss
and fine-tuning by RL based on the CIDEr metric (Vedantam et al., 2015) as the reward.
Furthermore, the encoding was optimised by minimising the negative expected rewards
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as proposed in (Anderson et al., 2018; Rennie et al., 2017).
To align both image and sentence scene graphs, the authors included CycleGAN (Zhu

et al., 2017b), a cycle-consistent feature alignment module used to generate the data cor-
respondence between the two domains. This was achieved by having two mapping func-
tions that map image to sentence embeddings and vice-versa for objects, relations and
attributes. Thesewere implemented as fully connected layers with leaky ReLu activations.
Furthermore, two discriminators were trained to distinguish the real features of the orig-
inal modality from the fake features that were mapped by the respective functions which
were trained to fool the corresponding discriminators though adversarial training. Given
the unpaired image and scene graphs, this was accomplished by first encoding the two
graphs using the scene graph encoder trained on the textual domain. The two encoded
graphs were then mapped through feature alignment by an unsupervised cross-modal
feature mapping. By this mapping mechanism, the encoded image scene graphs based on
text corpora end up being close to the corresponding sentence modality which is conse-
quently used as input to the sentence decoder for the generation of image captions. Both
image and sentence scene graphs were generated in the exact way as performed previ-
ously in Yang et al. (2019), where the image scene graph was generated by the Faster
R-CNN (Ren et al., 2015) and MOTIFS (Zellers et al., 2018) object and relationship detec-
tors respectively, while object attributes were identified by the same module proposed
in Yang et al. (2019).

The sentence scene graphs were generated by first transforming sentences into syn-
tactic trees using (Anderson et al., 2016) which internally uses a syntactic dependency
tree built by Klein and Manning (2003). The tree was then transformed into a scene
graph by using a rule-based method (Schuster et al., 2015). Again, both graphs were en-
coded in a similar fashion to how the scene graphs were encoded in Yang et al. (2019)
by exploiting three different spatial graph convolutional encoders to encode the three
types of graph nodes by taking into account their neighbouring information. Since these
three embeddings differ in their size and represent different information, their impor-
tance for decoding varies. For this reason, three independent attention modules were
used to extract the most relevant context from each embedding. The attention vectors
were then combined in a triplet embedding by a neural network which was then fed to an
RNN-based decoder. Liu et al. made use of semantic concepts and their relationships to
combine the vision and language modalities. Their proposed approach first extracts visual
concepts, including nouns, attributes and relations from both images and captions. Con-
cepts from images were extracted via a weakly-supervised method of MIL, while words
used in the ground-truth captions and a pre-defined set of concepts were used as seman-
tic concepts for captions. A semantic relationship explorer module was then proposed to
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explore the relationship between the two sets of concepts. An attention-based LSTM
decoder was used to decode the embeddings of the semantic relationships extracted
via multi-head attention (Vaswani et al., 2017). Ben et al. (2022) recently proposed the
Semantic-Constrained Self-Learning (SCS) framework which iteratively generates pseudo
captions via a pre-trained captioner and re-trains the captioner which makes use of ad-
versarial training (Goodfellow et al., 2014). Objects detected in images guide both stages
of the framework and hence strengthen the alignment between the images and the out-
put captions. The authors proposed to use an object inclusion and adverserial rewards
to favour captions with predicted objects and the generation of human-like captions by
using generative networks.
2.5.4.15 Unsupervised Image Captioning
To further reduce the problem of image-caption pairs, recently researchers proposed
models for unsupervised image captioning. In contrast to the unpaired setting (discussed
in Section 2.5.4.14), unsupervised image captioning assumes to have the image and cap-
tions coming from different domains. Feng et al. (2019) were the first to propose a fully-
unsupervised frameworkwhich generates pseudo image-sentence pairs by training amodel
that maps visual concepts of images to sentences collected from the Web through image
and sentence feature alignment using adversarial text generation (Fedus et al., 2018). Laina
et al. (2019) built a joint embedded space composed of image and sentence features based
on visual concepts. A language model was first trained to encode captions into seman-
tically structured embeddings. Image features that are mapped to this embedding space
were decoded into captions using the same language model. Cao et al. (2020) after en-
coding the images using their proposed Residual Network (ResNet)-based architecture,
they extracted relations between objects using their proposed Mutual Attention Net-
work (MAN). These features were used to align images and captions crawled from Shut-
terstock9 in an adversarial way.
2.5.5 Datasets
Current image caption generatorsmainly use theCOCO (CommonObjects in Context) (Lin
et al., 2014) dataset which was created by Microsoft in 2014. This large-scale dataset is
not only used for image captioning but can also be used for tasks including image recog-
nition, object detection and semantic segmentation. The dataset features 80 main ob-
ject categories found in everyday life images. COCO comprises of 82, 783 training im-

9Shutterstock is a stock photography website hosting millions of images with corresponding human au-thored descriptions
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ages, 40, 504 images for validation and 40, 775 test images which are not publicly available.
Each image has five or in some cases, six human authored captions collected via Amazon
Mechanical Turk (AMT). Other commonly used datasets found in the literature are the
Flickr8K (Hodosh et al., 2013) and Flickr30K (Plummer et al., 2015) datasets which are
based on images collected from the photo sharing Flickr10 website. Flickr8K consists of
8, 000 images which mainly feature humans and animals. Five corresponding descriptions
were also collected via crowdsourcing using AMT. On the other hand, Flick30K extends
Flickr8K and consists of 31, 783 images with five corresponding captions per image. Other
datasets which are used in image captioning include the Visual Genome Dataset (Krishna
et al., 2017) which is composed of 108, 077 images, where each image contains an average
of 35 objects, 26 attributes, and more than 5.4 million descriptions for image regions. Less
commonly used datasets include, the Pascal1K dataset (Rashtchian et al., 2010) which is a
small-scale dataset that consists of images that were selected from the Pascal 2008 object
recognition dataset (Everingham et al., 2010). Each image is described with five human
authored descriptions collected using AMT. The SBU1M web-scale dataset (Ordonez
et al., 2011) has one million images collected from Flickr together with its user-provided
descriptions. Furthemore, IAPR-TC12 (Grubinger et al., 2006) is a collection of 20, 000
images which have to five descriptions in multiple languages, including English, German
and Spanish.

2.5.6 Evaluation Metrics
Evaluating the quality of the generated captions is a critical and difficult problem in image
caption generation. Assessing the quality of captions can be carried out by human evalu-
ation; however, this is expensive and can take considerable time and effort. Furthermore,
human judgments may vary and can lead to inconsistent evaluation. Therefore, in recent
years, automatic metrics have been proposed to evaluate the generation of text. These in-
clude BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and METEOR (Banerjee and Lavie,
2005) metrics which were adopted from machine translation and document summarari-
sation, whilst CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016) were later
proposed specifically for image captioning. The BLEU metric measures the n-gram preci-
sion, ROUGE considers the n-gram recall, and METEOR takes into account the precision,
recall and synonyms. On the other hand, CIDEr makes use of TF-IDF to weight n-grams
and calculates cosine similarity between captions. In order to measure the semantic re-
latedness which n-gram based metrics do not consider, SPICE constructs scene graphs

10flickr.com
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of reference and candidate captions and compares them based on an F-score computed
over triplets composed of objects, attributes and relationships.
2.5.6.1 BLEU
The Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) metric computes the
similarity between the generated and ground-truth captions by computing the precision
p of the overlapping n-grams, where n usually varies between 1 and 4. The precision
between a candidate (c) and a reference (r) caption is computed by:

p =
count(n-gram)

len(r) , (2.23)
where count(n-gram) is the number of matched n-grams and len(r) is the length of the
reference caption.

However, as this can lead to overvalued precision when over-generating commonly
used words (e.g., “the” in caption: “the the the the the the the”); the precision is modified
by first counting the number of overlapping n-grams by count(n-gram). Secondly, the
maximum number of times a given n-gram is found in any given reference caption is found
so that each candidate n-gram count is clipped to that maximum count. These counts are
added and divided by the total number of unclipped candidate n-grams. This is formally
defined as:

pn =
∑c∈C ∑n-gram∈c countclip(n-gram)

∑c∈C ∑n-gram∈c count(n-gram)
(2.24)

Since precision does not cater for short sentences which do not capture the most
relevant aspects of captions, BLEU uses a brevity penalty (BP) to penalise short captions
that lack completeness by:

BP =

1 if len(c) > len(r)
e(1−len(r)/len(c)) if len(c) ≤ len(r) , (2.25)

The BLEU score is then computed by:
BLEU = BP · exp

( N

∑
n=1

wn log pn
) (2.26)

where N is normally set to 4 and wn to 1/N.
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Given that image captioning datasets normally consist of images with corresponding
reference captions (R), where the latter are generally sets of five captions per image, the
precision pn for the generated captions C is calculated as follows:

pn(C, R) =
∑i ∑k min[hk(ci),maxj≤mhk(rij)]

∑i ∑k hk(ci)
, (2.27)

where i is the ith image and j is the jth out of m reference captions of image i. hk(ci)is how many times n-gram ωk is found in the generated caption ci, while hk(rij) is thenumber of n-grams found in the reference caption rij. The BP and final BLEU score can
then be computed by Equations 2.25 and 2.26 respectively.
2.5.6.2 METEOR
In contrast to the BLEU score, the Metric for Evaluation of Translation with Explicit Or-
dering (METEOR) (Denkowski and Lavie, 2014) takes ordering into consideration when
computing the similarity between matching words. Apart from the precision, METEOR
computes also the recall and harmonic average. For instance, if the reference captions
has wr words and the candidate caption has wc and m is the number of common words
between the two captions, then precision P is calculated by P =

m
wc

and recall R =
m
wr

.
Therefore the harmonic mean is calculated by Fmean =

PR
αP + (1− αR)

between the best
candidate and reference caption. Since this considers only the matching of single words,
this score introduced a penalty factor (pen) to give weight for longer matched chunks:

METEOR = (1− pen)× Fmean, (2.28)
where the penalty pen equates to γ(

ch
m
)θ given that m and ch is the number of matched

unigrams and chunks, respectively; while α, γ and θ are default parameters which are
normally set to 3, 0.5, and 3, respectively.
2.5.6.3 ROUGE-L
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) is a collection of
metrics proposed to assess the quality of text summarisation. The most popular metric
of ROUGE is ROUGE-L. This considers the longest common subsequence (LCS) without
a pre-defined length of n-gram between the candidate (c) and reference (r) captions as
follows:

ROUGE− L =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
, (2.29)
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where RLCS =
LCS(c, r)
|r| ,PLCS =

LCS(c, r)
|c| and β =

PLCS

RLCS
.

2.5.6.4 CIDEr
In contrast to the previous metrics which were first proposed for machine translation,
the Consensus-based Image Description Evaluation (CIDEr) (Vedantam et al., 2015) met-
ric was the first metric which was specifically intended to evaluate the quality of image
caption generation. This metric first converts words into their stem or root form and
considers each sentence as a set of n-grams, where n ranges from one to four. The in-
tuition behind CIDEr is to quantify the number of important overlapping n-grams found
between the candidate ci and reference rij captions for image i, while giving less priority
to common n-grams found in the dataset. This is achieved by weighting each n-gram ωkfound in the jth reference caption of image i (rij) by a Term Frequency-Inverse Document
Frequency (TF-IDF) score gk(rij) as follows:

gk(rij) =
hk(rij)

∑ωl∈Ω hl(rij)
log
(

|I|
∑Ip∈I min(1, ∑q hk(rpq))

)
, (2.30)

where hk(rij) is how many times an n-gram ωk is found in the jth reference caption of
image i, Ω is the set of all n-grams, while I is the total number of images.

The first term of Equation 2.30 computes the TF of ωk to give weight on n-grams
which occur frequently in the reference captions, while the second logarithmic term eval-
uates the IDF to give less weight to n-grams commonly found in the dataset. The CIDErn

for n-grams of size n is calculated by the average cosine similarity between the candidate
and reference captions as follows:

CIDERn(ci, Ri) =
1
m ∑

j

gn(ci) · gn(rij)

||gn(ci)|| ||gn(rij)||
, (2.31)

where gn(ci) is the vector composed of gk(ci) for all n-grams of size n and ||gn(ci)|| is themagnitude of gn(ci). The same applies for gn(rij).Variable n-grams (i.e., 1 < n ≤ 4) are used to capture the grammatical correctness of
the generated captions. These are combined as one CIDEr metric by:

CIDER(ci, Ri) =
N

∑
n=1

wnCIDERn(ci, Ri), (2.32)
where empirically, it was found that N = 4 and wn = 1/N give best results.
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2.5.6.5 SPICE
The Semantic Propositional ImageCaption Evaluation (SPICE) (Anderson et al., 2016)met-
ric is another metric which was proposed to specifically assess the quality of candidate
caption c against a set of reference captions R. This metric prioritises the semantic propo-
sitional context of images by first transforming captions into a scene graph by using a syn-
tactic dependency parser. The scene graph of a candidate caption is expressed by G(c),
while the scene graph of the set of reference captions is denoted by G(R) after taking
the union of scene graphs G(si) ∀ si ∈ S. Captions are parsed into scene graphs as:

G(c) = 〈O(c), E(c), K(c)〉, (2.33)
where O(c) is the set of mentioned objects in caption c, E(c) is the set of relations be-
tween objects, and K is the set of attributes related to the objects. The similarity between
the candidate and reference scene graphs is handled by considering the scene graphs
as conjunction of logical propositions or tuples by using the definition of: T(G(c)) ,

O(c) ∪ E(c) ∪ K(c). Based on a binary matching operator (⊗) which gives the number
of tuples matched between two scene graphs,SPICE is computed based on F1 score as
follows:

P(c, R) =
|T(G(c))⊗ T(G(R))|

|T(G(c))| (2.34)

R(c, R) =
|T(G(c))⊗ T(G(R))|

|T(G(R))| (2.35)

SPICE = F1(c, R) =
2 · P(c, R) · R(c, R)
P(c, R) + R(c, R)

(2.36)

2.5.7 Discussion and Results
This section presents and discusses the performance of the reviewed image caption gen-
erators which are most relevant to the work carried out in this thesis, i.e., Keyword-driven
and N-Gram Graph-based Image Captioning (KENGIC) framework. Since KENGIC de-
couples the generation of image captions into two phases which first proposes visual
concepts/keywords related to images and the other phase translates the keywords into
captions using an n-gram graph based approach, it positions itself with both unpaired
and graph-based image caption generators. Given the fact that the keywords generation
module can be trained independently from any image-caption pairs (as they can be col-
lected either from human-labelled keywords or from readily available scene graphs) and
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connected via a graph-based approach, KENGIC can be juxtaposed with models trained
in unpaired setting and with models that make use of graphs. The reviewed models were
evaluated on the current most widely used metrics including BLEU-4 (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014), CIDEr (Vedantam et al., 2015), ROUGE-
L (Lin, 2004) and SPICE (Anderson et al., 2016) as illustrated in Table 2.1. The models
are categorised in two (i.e., paired (X) and unpaired (×) as found in the “Paired” column).
The presented table illustrates whether a Knowledge Graph (KG), Scene Graph (SG), or a
combination of both (KG/SG) was used in each respective graph-based image captioning
framework and each model is accompanied with a comment which briefly describes the
method. As depicted in the table, image caption generators trained in the paired setting
generally outperform those trained in the unpaired setting. However, recently proposed
UIC generators are reaching competitive performance with early models. As tabulated in
Table 2.1, the graph-based image captioning models are compared to three state-of-the-
art and benchmark models. These include one of the pioneering works based on the con-
ventional encoder-decoder model built on top of a CNN and a bidirectional BRNN (Karpa-
thy and Fei-Fei, 2017) and the Bottom-Up Top-Down (Up-Down) (Anderson et al., 2018)
attention-based model which is optimised on the non-differentiable CIDEr evaluation
metric through RL. This model uses region-based bottom-up attention features extracted
from a pre-trained object detector instead of the conventional CNN features. Further-
more, the graph-based models are compared to the Multimodal Transformer (MT)-based
image captioning framework (Yu et al., 2020). This is one of the current state-of-the-art
image caption generators which replaces the LSTM-based language model by using an
extension of the Transformer (Vaswani et al., 2017).
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Table 2.1: Results metrics of graph based models when trained on cross-entropy loss, or a combination of both (+RL) as evaluated on COCOdataset
Model Paired BLEU-4 METEOR ROUGLE-L CIDEr ↓ SPICE Graph Type Comment
SDGAditya et al. (2017) X 5.0 10.0 - - - SG/KG Scene description graphs constructed fromdeep visual detection and knowledge base modules

Language-PivotingGu et al. (2018b) × 5.4 13.2 - - - - Unpaired image captioning using language pivoting
Adversarial+ReconstructionFeng et al. (2019) × 18.6 17.9 43.1 54.9 11.1 - Unpaired image captioning using adversarial training

USGAEYang et al. (2020) × 17.1 19.1 43.8 55.1 12.8 SG Unpaired Scene Graph Auto-Encoder
Multimodal EmbeddingsLaina et al. (2019) × 19.3 20.2 45.0 61.8 12.9 - Unpaired image captioning using multimodal embeddings

IGGANCao et al. (2020) × 21.9 21.1 46.5 64.0 14.5 SG Unpaired image captioning using Interactions Guide acGAN
BRNNKarpathy and Fei-Fei (2017) X 23 19.5 - 66 - - Image captioning based onBidirectional Recurrent Neural Network

Graph-AlignGu et al. (2019) × 21.5 20.9 47.2 69.5 15.0 SG Unpaired image captioning via scene graphalignments through adversarial training
SGCXu et al. (2019) X 23.9 21.8 48.8 73.3 - SG Scene graphs generatedby detecting object, attributes and relationships
SCSBen et al. (2022) × 22.8 21.4 47.7 74.7 15.1 - Unpaired image captioning withSemantic-Constrained Self-learning

CNN-RNN-SVMGao et al. (2018) X 26.1 22.3 - 76.0 - SG A framework which generates a scene-graph-basedsequence in the form of a bit sequence
CNet-NICZhou et al. (2019) X 29.9 25.6 53.9 107.2 - KG ConceptNet used to infer direct and indirectrelated terms to condition sequence prediction

RSGWang et al. (2019) X 34.5 26.8 55.9 108.6 20.3 SG Graph Convolution Network-basedimage captioning with edge-wise gating on graphs
SG2CapsTripathi et al. (2021b) X 32.8 26.0 55.5 109.7 19.2 SG Encoder decoder conditioned on repurposed scene graphswithout using any image visual features

HA-SG+C-GATMilewski et al. (2020) X 35.5 - 56.0 109.9 19.8 SG Hierarchical attention with scene graph generatortrained with conditional graph attention
KMSL (+RL)Li and Jiang (2019) X 33.8 (36.3) 26.2 (27.6) 54.9 (56.8) 110.3 (120.2) 19.8 (21.4) SG Know More Say Less: Image captioning using apre-trained graph generator

Trans[D2GPO+MLE]+KGZhang et al. (2021b) X 34.39 27.1 - 112.6 - KG Transformer enchanced with Data-DependentGaussian prior objective and KG
Up-Down (+RL)Anderson et al. (2018) X 36.2 (36.3) 27.0 (27.7) 56.4 (56.9) 113.5 (120.1) 20.3 (21.4) - The benchmark Bottom-Up Top-Down attentionmodel trained by Reinforcement Learning
WA-KG (RL)Huang et al. (2020) X (37.3) (27.3) (57.4) (121.2) - KG Knowledge graph used to inject semanticallyrelated words in captions
Sub-GCZhong et al. (2020) X 36.2 27.7 56.3 115.3 20.7 SG Sub Graph Captioning

SGAE (+RL)Yang et al. (2019) X 36.9 (38.4) 27.7 (28.4) 57.2 (58.6) 116.7 (127.8) 20.9 (22.1) SG Scene Graph Auto-Encoder that incorporatesthe language inductive bias framework
GCN-LSTM (+RL)Yao et al. (2018) X 37.1 (38.3) 28.1 (28.6) 57.2 (58.5) 117.1 (128.7) 21.1 (22.1) SG Uses Graph Convolutional Networksfor semantic and spatial relationship graphs
SGAE-KD (+RL)Yang et al. (2020) X 37.3 (38.8) 28.1 (28.8) 57.4 (58.8) 117.1 (129.6) 21.3 (22.4) SG Scene Graph Auto-Encoder that incorporates thelanguage inductive bias through knowledge distillation

MT (+RL)Yu et al. (2020) X 37.4 (40.7) 28.7 (29.5) 57.4 (59.7) 119.6 (134.1) - - Multimodal Transformer based image captioning
HA-SG

Milewski et al. (2020) X 38.1 - 57.6 129.8 20.9 HQ SG Hierarchical Attention with scene graph generator
trained on high quality graphs

ASGChen et al. (2020a) X 23.0 24.5 50.1 204.2 42.1 SG Abstact Scene Graph based controlled image captioning
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The table of results clearly shows that the exposure bias can be mitigated by training
models through the minimisation of the cross-entropy loss followed by the optimisation
on the CIDEr metric. Although Aditya et al. (2017) took advantage of both scene and
knowledge graphs when building SDGs for images, the applied SimpleNLG (Gatt and Re-
iter, 2009) language generator was not good enough to transform the generated graph
into high quality captions. In fact, overall it was the least effective method among all the
presented models and performed worse than the BRNN model. Interestingly, although
the Graph-Align framework (Gu et al., 2019) was the only model which was trained in an
unsupervised way using adversarial training on scene graphs extracted from unpaired im-
age caption pairs, outperformed the benchmark BRNNmodel. In linewith this work, (Yang
et al., 2019) proposed the SGAEmodel to incorporate the language inductive bias into the
conventional encoder-decoder image captioning framework by learning a trainable shared
dictionary between image and sentence scene graphs. This frameworkwas later extended
in Yang et al. (2020) through a three-partition based dictionary, where each partition was
responsible for separately handling the object, attribute and relations inductive bias. Also,
the SGAE model was extended with the introduction of Knowledge Distillation (KD) to
better transfer the extracted inductive bias from the sentence self reconstruction network
decoder to the image captioning decoder (Scene Graph Auto-Encoder with Knowledge
Distillation (SGAE-KD)). By being trained in a supervised way, the SGAE-based approach
improved over theGraph-Align framework and surpassed theUp-Downmethod by awide
margin. This model slightly outperforms the Sub-GC model which is designed to caption
images by automatically selecting the optimal sub-graph that best describes the main
salient regions but slightly underperforms the GCN-LSTM model which employs Graph
Convolutional Networks to integrate both the semantic and spatial relationship graphs in
an image encoder. However, the extended version (i.e., SGAE-KD), despite being trained
with a batch size of 100 (i.e., smaller than the 1024 batch size used by GCN-LSTM), it out-
performed the GCN-LSTM model. Also, it is worth noticing that the SGAE-KD achieved
comparable performance to the Multimodal Transformer-based model (MT), with the ex-
ception of when being evaluated using CIDEr metric. It is interesting to note that despite
having a Transformer-based language model, the Trans[D2GPO+MLE]+KG method per-
forms worse than SGAE-KD and the benchmark Up-Down method. Furthermore, the
table lists (in italics) the performance of the HA-SG framework when being evaluated on
the intersection between high quality Visual Genome scene graphs and their correspond-
ing MSCOCO image captions. This model overall ends up improving slightly over the MT
benchmark framework but at the same time exceeding the same benchmark with a wide
margin of 10.2 CIDEr points. Further improvements in CIDEr score was achieved when
the ASGwas introduced for controlling image captioning. Although themodel scores very
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low in BLEU-4 (23.0), METEOR (24.5) and ROUGE-L (50.1), the controlled image captioner
performed best in CIDEr (204.2) and SPICE (42.1) with 57.3% and 101.4% improvement
respectively over the HA-SG model. The high CIDEr score achieved when training the
latter model on high quality scene graphs confirms that with the help of better scene
graph parsers that can accurately extract image structures, image captioning can improve
a lot but still not enough to address the compositionality generalisation issue faced by
current systems.

2.5.8 Summary
The previous sections reviewed the research in image captioning while outlining the main
strengths and weaknesses of each respective technique. Models that cast image cap-
tioning as a generation based problem have the main advantage of generating novel de-
scriptions. However, these heavily depend on accurate visual detectors and restricted to
complex grammars. Since visual analysis is highly dependent on computer vision detec-
tors, such models can be prone to generate irrelevant descriptions due to inconsistent
visual content analysis. Another main problem of such models is the requirement of so-
phisticated natural language generation models for generating fluent and grammatically
correct sentences. In contrast, retrieval-based models from visual space generate gram-
matically sound and humanlike image descriptions, as images are described by reusing
captions of other visually related images. The main drawback of these methods is that
they are dependent on a large and diverse collection of human-annotated image descrip-
tions which might not be very accessible or too time-consuming for collection. Similarly,
models that cast image description as a retrieval problem from multi-modal space are
also capable of generating humanlike image captions. This is guaranteed as they are also
designed to retrieve descriptions from a large collection of already annotated images.

State-of-the-art image captioning generators follow an encoder-decoder framework
trained on image and caption pairs. Conventional encoder-decoder based models are
trained to translate image CNN features into a sequence of words using RNN-based lan-
guage models without leveraging the structural information about the images (Xu et al.,
2017). Such background knowledge has been shown to be quite useful in multiple ap-
plications ranging from information retrieval to question answering (Zhou et al., 2019).
Besides applying attention mechanism (Anderson et al., 2018; Gu et al., 2018a; Xu et al.,
2015) to allow sentence decoders to dynamically focus on specific regions during the
caption generation process, other works have applied different architectures to model
the language generation process. For example, Gu et al. (2017) used a CNN-based lan-
guage model to predict the sequence of words. Another theme of improvements was
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to apply RL and GANs to address the exposure bias (Ranzato et al., 2016) and the loss-
evaluation mismatch (Li et al., 2019b) problems in sequence prediction. The exposure
bias occurs when sequence-based models are trained to maximise the likelihood of the
next ground-truth word given the previous words using back-propagation, an approach
which has been referred to as the “Teacher-Forcing” (Bengio et al., 2015). Consequently,
at inference time, such image captioning models tend to accumulate prediction errors as
they end up generating words based on their previous predicted words which they have
never been exposed to during training. In RL, a recurrent model can be viewed as an
“agent” that interacts with an external “environment” (words and image features). By its
network parameters, it defines a policy that results in an “action” which leads to the the
prediction of word sequences. After each action, the agent updates its internal “state”
(cells and hidden states of the LSTM, attention weights, etc.). Once the model gener-
ates the end-of-sequence (EOS) token, the agent observes a “reward” which normally is
the CIDEr score. The goal of the training is therefore to minimise the negative expected
reward (Rennie et al., 2017). On the other hand, GANs generate captions by consid-
ering the production of each word as an “action”, for which a reward is given from an
evaluator (Dai et al., 2017a). Researchers have recently proposed the use of Transform-
ers (Vaswani et al., 2017) in image captioning for its powerful and scalable attention-based
architecture which currently is the state-of-the-art approach.

2.5.9 Outlook
Current state-of-the-art image caption generators attempt to learn the relationship be-
tween image and captions in an end-to-endmanner at the expense of large-scale datasets
consisting of image and caption pairs. In this PhD, KENGIC, a Keyword and N-Gram
Graph-based Image Captioning approach, is proposed and developed to study the in-
terplay between the explicit and implicit use of keywords in automatic image captioning.
In contrast to current popular Deep Learning (DL) based architectures, KENGIC, casts
image captioning as a search problem in an n-gram graph-based data structure by using
keywords relevant to query images. Given a set of keywords and a text corpus, this ap-
proach constructs a knowledge-graph that features the visual keywords and traverses the
graph to search for the best candidate caption which mentions the given set of keywords.
Since this approach decouples the vision and language domains, it is comparable to direct
generation-based approaches which use visual keywords as input to language modules.
It also compares well to retrieval-based mechanisms as captions are being retrieved from
a corpus of text but distinguishes itself from traditional-retrieval models as it does not
retrieve captions from image-caption pairs. KENGIC, therefore, provides a framework for
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both unsupervised image caption generation when the corpus and images are from dif-
ferent domains and for unpaired image captioning when both images and the corpus are
of the same domain.
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3 Methodology

3.1 Introduction
This chapter presents KENGIC, a Keyword-driven and N-Gram Graph based Image Cap-
tioning framework. This was purposely proposed to investigate the role of visual key-
words in image captioning, while projecting insights on their importance in automatic
evaluation and how these can be used to generate captions.

Inspired by how neurons are fired to activate neural pathways when humans inter-
act with the visual world and by how mental images are constructed in the human brain
(Kreiman et al., 2000), an image caption generator is proposed under the hypothesis that
given a set of keywords, a caption can be constructed through an n-gram graph search
based approach. When humans try to construct amental image, with for example the key-
word “boat”, the mental image could vary with boats of various sizes and contexts such as
“speed boat in a race”, a “luxury boat at a dock”, or maybe even a “fishing boat parked in a
field near the mountains”. With the introduction of further keywords, the mental image is
further refined and adjusted to the original context of the subject. In this sense, the richer
and relevant the keywords set is, the more accurate the mental images are constructed
in the human mind. Based on this idea, a model designed to automatically connect key-
words relevant to images in an n-gram graph based approach would offer an alternative
research avenue in automatic image captioning. This system therefore was developed to
provide answers for the following research questions:
1. Canwe cast the generation of image captions based on keywords through an n-gram

graph search problem?
2. What is the role of image keywords in KENGIC?
3. What quality can be obtained from such generator?
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3.2 Architecture
The main objective behind this hypothesis is to develop an automated system that gener-
ates captions through the use of relevant keywords, such that the same keywords can be
probabilistically linked together to form a directed graph through overlapping n-grams.
The architecture is designed to first connect the main keywords by generating a knowl-
edge graph through other intermediary n-grams. This graph is then traversed to search
for paths which visit the given keywords. Nodes visited during graph walks are consid-
ered as phrases for candidate captions. Relevant captions are then selected based on a
cost function which takes the following into consideration: (a) the fluency of captions by
measuring how probable the sequences of words are, (b) the length of the captions, (c)
the number of keywords found in the generated captions, and (d) the number of nouns
which have been mentioned but not found in the given keywords set. The high-level
architecture of KENGIC is split into two modules:

Vision: This module is responsible for the extraction of a set of keywords (K) that are
relevant to the query image (I). This set serves the basis for the generation of a knowledge
graph (GI ,K) which corresponds to image I based on keywords K. Keywords that are
grounded in images can be detected by either individually trained visual detectors, by
scene graph generators trained to predict grounded scene graphs in images, or by multi-
label models designed to predict image labels including nouns, attributes and verbs.

Language: This module, which is the core contribution of this work, handles the gen-
eration of knowledge graphs by probabilistically linking keywords K of image I through
n-grams as found in a text corpus T. This module is designed to traverse the graph to find
the most relevant caption that best describes the image based on the given keywords. A
high-level architecture of KENGIC is illustrated in Fig. 3.1. The following section details
the caption generation process.

3.2.1 N-Gram Graph
The proposed KENGIC approach is based on an n-gram graph data structure. In NLP, an
n-gram refers to sequences of words (or characters) containing n elements as found in
a given sentence. N-grams have been used extensively in various NLP applications, in-
cluding sentiment analysis (Dey et al., 2018; Kouloumpis et al., 2011), text summarisation
evaluation (Denkowski and Lavie, 2014; Lin, 2004; Papineni et al., 2002; Vedantam et al.,
2015) and in probabilistic language models (Bickel et al., 2005; Pauls and Klein, 2011).
For example, the word unigrams (i.e., 1-grams) of the phrase “a person on a boat” are {“a”,
“person”, “on”, “a”, “boat”}, while the word bigrams (i.e., 2-grams) are {“a person”, “person on”,
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“on a”, and “a boat”}. The extraction of n-grams Nn from text T is carried out as indicated
in Algorithm 1:
Algorithm 1 N-Grams Extraction
Require: T . Text
Require: n > 0 . n-gram size
1: Nn ← ∅ . Initialise n-grams set
2: for all i ∈ {0, |T| − n + 1} do
3: Nn ← Nn ∪ Ti:i+n

4: end for
5: return Nn

The N-gram graph was initially proposed in Giannakopoulos et al. (2008) as an au-
tomatic summarisation evaluation method. This was intended to associate pairs of n-
grams with edges to denote how closely each pair is related. This data-structure was
then applied in sentiment analysis (Aisopos et al., 2011), language identification (Tromp
and Pechenizkiy, 2011) and even in molecular representation (Liu et al., 2019b), while to
date no attempts were made in image caption generation. Formally, the n-gram graph is
a graph Gn = {V, E, L}, where V is the set of vertices consisting of phrases extracted
from n-grams, E is the set of directed edges which connect phrases represented by ver-
tices (v1, v2), and L is a function that assigns a label to each vertex vi after combining and
filtering out overlapping n-grams. The vertices are connected based on whether the last
token of each vertex (v−1) overlaps with the first token (v0) of the remaining vertices in
V. For instance, Gn=1 for the phrase “a person on a boat” is illustrated in Fig 3.2(a) and
defined as follows:

V = {“a”, “person”, “on”, “boat”},
E = {{“a”, “person”}, {“person”, “on”}, {“on”, “a”}, {“a”, “boat”}}

Similarly, G2 is illustrated in Fig 3.2(b) and is defined as follows:

V = {“a person”, “on a”, “boat”},
E = {{“a person”, “on a”}, {“on a”, “boat”}

More formally, given that Nn is the set of n-grams extracted from text T, vertices V
is equal to L(Nn), where L combines and filters the n-grams as outlined in Algorithm 2.
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Figure 3.2: N-gram graph construction for the phrase “a person on a boat”for n = {1, 2}.

3.2.2 Graph Generator
The language module based on an N-Gram Graph (N-GG) is designed to construct graphs
in a bottom-up and top-down approach given a set of query image keywords. For each
keyword that is not considered as a stop word1, the top k frequent n-grams that end with
the word w are considered as parents for keyword w, in such a way that n-gram0:n−1 is

1A stop word is a commonly used word in a language which is not considered important for text-retrievalbased applications. Examples of stop words include determiners which are used to mark nouns (e.g., “a”,“the”), coordinating conjunctions which connect words, phrases and clauses (e.g., “for”, “but”), and preposi-tions which are used for temporal (e.g., “before”) or spatial relations (e.g., “in”).
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Algorithm 2 L : Nn → L

Require: Nn . Set of n-grams
1: l ← |Nn|2: V ← ∅
3: for all i ∈ {0 . . . l} do
4: if i % 2 = 0 then
5: V ← N i

n . ith n-gram
6: else if i = l then
7: V ← N (1:n)

n . n-gram without first token
8: end if
9: end for

10: return V

connected to keyword w. This is repeated for h hops, where each parent which does not
start with a start token 〈t〉 (i.e., p ∈ P | p0 6= 〈t〉) is connected to its ph+1 ancestors in a
bottom-up approach.

For instance, the corresponding five topmost 4-gram parents at h = 0 for the keyword
“boat” (i.e., Ph=0

w=“boat′′) can be found in Table 3.1. These five 4-gram sequences are then
connected with the most probable n-gram parents which have their nth word identical to
the first word in the n-grams found in set Ph

w. This is repeated for each keyword in set
K up to a specified number of hops (h). As an example, the next hop (h = 1) for the first
4-gram sequence found in Ph=0

w=“boat′′ that does not start with a start token 〈t〉 (i.e., “sitting
on a boat”) is generated through the extraction of the most probable 4-grams that end
with the word “sitting” as shown in Table 3.2 and in the illustration of Fig. 3.3.

Table 3.1: The top five 4-gram parents (Ph=0
k=“boat′′ ) for the keyword “boat”at hop=0.

n-grams
token index

0 1 2 3
<t> <t> a <boat>
<t> a small <boat>
<t> a large <boat>
sitting on a <boat>
next to a <boat>

Once the top-level parents are reached at hop=h, the graph nodes are connected in
a top-down approach. All unconnected nodes that form relevant phrases are connected
by a directed and unweighted edge. This is handled by taking into consideration the fre-
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Table 3.2: The top five grandparents (h = 1) for the first non-root parentof Ph=0
k=“boat′′ .

h = 1 h = 0

n-grams
token index

0 1 2 {3,0} 1 2 3
<t> a man <sitting> on a <boat>
<t> a woman <sitting> on a <boat>
<t> a cat <sitting> on a <boat>
group of people <sitting> on a <boat>
<t> a person <sitting> on a <boat>

quency count of such connections and if they are found more than e f times in the text
corpus, the corresponding vertices are connected. For instance, both vertices with labels:
“boat” and “group of people” can be linked to the vertex having the phrase “next to a”, given
that both combined phrases “boat next to a” and “group of people next to a” occur at least
e f times in the text corpus. This constraint is added to reduce rarely occurring connec-
tions in the graph generation, as well as to limit the graph complexity. Formally, GK is
generated as outlined in Algorithm 3.

3.2.3 Graph Traversal
Image captions are retrieved from the generated graph (GK) by traversing the graph to
search for the most relevant caption that best mentions the set of given keywords. The
process is formally outlined in Algorithm 4. The search is carried out in breadth-first ap-
proach by keeping a list of paths Q which can be considered as relevant captions. The
search starts by initialising the list of paths with the set of keywordsK (i.e.,Q = K). Each
child c of the last vertex of q ∈ Q is appended with q to form path q+ c. Path q is removed
from set Q while all appended paths are added to the set for future concatenation. To
reduce the time complexity of the graph traversal, the search process considers a total
of qn paths, while Q is always kept with the top op optimal paths based on one of the
following cost functions (fni | 1 ≤ i ≤ 4):
1. F=∑

i=1
log P(n2-grami): This is used to compute the fluency (F) by calculating the total

log probability based on each ith n2-gram according to the text corpus T in order to
favour frequently used phrases.
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Figure 3.3: Constructed 4-gram graph for the query keyword “boat” with
p = 5 and h = 2. The graph illustrates two examples which were con-nected in a top-down approach marked with dotted edges.

2. F +M = ∑
i=1

log P(n2-grami)

m
: This takes into consideration both the fluency and key-

words matching (M) by considering the number of mentioned keywords m in a given
caption. This is to penalise captions that do not mention the query keywords.

3. F +M + L = ∑
i=1

log P(n2-grami)

m× l
: This is used to favour fluent and long captions with

the maximum number of mentioned keywords. Long captions were favoured since
fluent captions tend to be short captions.

4. F + M + L + N = ∑
i=1

log P(n2-grami))× N
m× l

: This favours captions with the highest
fluency, number of matched keywords m, caption length l and captions which have
the lowest number of extra nouns N mentioned which are not found in the given
keywords set.
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Algorithm 3 Graph Generation
Require: T . Text Corpus
Require: K . Set of image keywords
Require: S . Set of stop words
Require: n > 0 . n-gram size
Require: p > 0 . Number of parents
Require: h > 0 . Number of hops
1: GK ← ∅ . Initialise graph G based on keywords K
2: Q ← K . Initialise queue Q with K
3: h′ ← 0 . Initialise current hop h′

4: while h′ < h and |Q| > 0 do
5: gn← Q0 . First graph node in Q
6: Q ← Q1:|Q| . Removing first element from Q
7: if gn /∈ S then . If gn is not a stop word
8: P ← getP(T , gn0, n, p) . Gets p n-grams for the 1st token of gn from T
9: Gh′

k=gn ← P . Sets P as parents of gn in G at hop=h′

10: Q ← Q∪P . Add parents P to Q
11: end if
12: h′ ← h′ + 1
13: end while
14: return GK

If we consider for example Fig. 3.4(a) as query image and the keywords dog, skateboard
and leash relevant to the image, the caption is generated in the trace listed in Algorithm 5
with respect to the constructed 3-gram graph that is illustrated in Fig. 3.4(b).

Figure 3.4: A query image with its corresponding 3-gram graph based onthe keywords dog, skateboard and leash.
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Algorithm 4 Graph Traversal
Require: GK . Graph G based on keywords K
Require: qn > 0 . Maximum paths to traverse
Require: op > 0 . Top op ranked paths to consider
Require: fni . Cost function
1: S ← ∅ . Set of captions
2: Q ← K . Set of paths considered as captions
3: qi ← 0 . Current total paths considered
4: while |Q| > 0 and qi < qn do5: Q ← rank(Q, fni, op) . Top n ranked paths found in Q based on f n
6: q← Q(0) . First path found in set Q
7: t← q(|q|) . Last token found in path q
8: C ← Gt

K . Children nodes of token t
9: if |C ∩ q| 6= |C| then . If not all children C are in q

10: for c ∈ C do
11: if c /∈ q then
12: if |K ∩ q| = |K| then . If all keywords K are in path q
13: S ← S ∪ {q} . Add path q to set of captions S
14: else
15: Q ← Q∪ {q + c} . Concatenating child c with current path q
16: end if
17: end if
18: end for
19: end if
20: Q ← Q \ {q} . Remove current path q from set Q
21: qi ← qi + 1
22: end while
23: S ← rank(S , fni, op) . Rank op captions based on cost function fni24: return S

3.3 Dataset
In this study, the large-scale and most widely used COCO dataset (Lin et al., 2014), re-
leased in 2014, was used. This contains a total of 164, 062 images each captioned with
five or six human authored captions. This dataset was officially split into training (82, 783),
validation (40, 504) and testing (40, 775) sets. However, since the captions of the test im-
ages are not publicly available and for consistency with previous studies, the common
third-party split of Karpathy and Fei-Fei (2017) was adopted, where the original valida-
tion set was further split into validation (5, 000) and testing (5, 000) set. The remaining
images were added to the original training set which led to a total of 113, 287 images. The
human captions found in the training set were used as text corpus for the extraction of
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Algorithm 5 Example of a graph traversal based on the keywords dog, skateboard, and
leash with respect to the query image and its corresponding 3-gram graph as shown inFig. 3.4.
1: S ← ∅
2: Q ← {dog, skateboard, leash}
3: q0/t0 ← dog . Connecting dog
4: C ← {riding a, on a, with a, wearing a, putting a} . Children nodes of dog
5: Q ← {[dog riding a, dog on a, dog with a, dog wearing a, putting a], skateboard, leash}
6: q1/t1 ← skateboard
7: Q ← {[dog riding a, dog on a, dog with a, dog wearing a, dog putting a],

[skateboard on a, skateboard with a, skateboard on his], leash}
8: q2/t2 ← leash
9: Q ← {[dog riding a, dog on a, dog with a, dog wearing a, dog putting a],

[skateboard on a, skateboard with a, skateboard on his],
[leash on a, leash with a, leash on his]}

10: Q ← {dog riding a, dog on a, dog wearing a, skateboard with a} . Top 4 phrases
11: q3 ← dog riding a . First phrase in queue Q
12: t3 ← riding a . Last node of first phrase
13: Q ← {[dog riding a skatebord], dog on a, dog wearing a, skateboard with a}

. The process continues by concatenating each phrase with its children.
14: q4 ← dog on a
15: t4 ← on a
16: Q ← {[dog riding a skatebord], [dog on a leash, dog on a skateboard],dog wearing a, skateboard with a}
17: q5 ← dog wearing a
18: t5 ← wearing a
19: Q ← {[dog riding a skatebord], [dog on a leash, dog on a skateboard],[dog wearing a leash], skateboard with a}
20: q6 ← skateboard with a
21: t6 ← with a
22: Q ← {[dog riding a skatebord], [dog on a leash, dog on a skateboard],[dog wearing a leash], [skateboard with a leash]}
23: qn ← dog wearing a leash
24: tn ← leash
25: Q ← {[. . . ], [. . . ], [dog wearing a leash on a, . . . ], [. . . ]}
26: qn+1 ← dog wearing a leash on a
27: tn+1 ← on a
28: Q ← {[. . . ], [. . . ], [dog wearing a leash on a skateboard, . . . ], [. . . ]}
29: S ← {dog wearing a leash on a skateboard, . . . } . Top ranked captions
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n-grams needed to generate each n-gram graph per query image. On the other hand, the
testing images and their corresponding ground-truth captions were used for the analyses
of this study.

3.4 Metrics
To quantitatively measure the quality of the generated captions, the standard and most
popular evaluation metrics were used. The BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004) and METEOR (Banerjee and Lavie, 2005) metrics had been adopted from ma-
chine translation and document summararisation, while CIDEr (Vedantam et al., 2015)
and SPICE (Anderson et al., 2016) metrics were later proposed specifically for image cap-
tioning. All metrics, except SPICE, measure the n-gram overlap between the generated
and ground-truth captions. While BLEUmeasures the n-gram precision and ROUGE con-
siders the n-gram recall, METEOR takes into account the precision, recall and synonyms.
CIDEr makes use of TF-IDF to weight n-grams and calculates cosine similarity between
captions. On the other hand, to measure the semantic relatedness which n-gram based
metrics do not consider, SPICE constructs scene graphs of reference and candidate cap-
tions and compares them based on an F-score computed over triplets composed of ob-
jects, attributes and relationships.

3.5 Experiments
This section describes the experiments which were carried out during this study. Two
types of keyword sets were used for the generation of captions for images found in the
testing set. The first type of keywords is based on human extracted words from gold cap-
tions which were used for preliminary studies. This set includes (a) human keywords (HK)
extracted from the first caption (HC-0) as found in the set of ground-truth captions and
(b) the most frequently used human keywords (HK- f ) as found in all human captions per
image. On the other hand, the second type of keywords are based on machine detected
words, which include (c) automatically detected image objects (Objs) by an off-the-shelf
object detector, and (d) image keywords detected by a multi-label model (ML-keys).

3.5.1 Human Keywords (HK)
The motivation behind these experiments was to analyse the quality of the captions
that are generated based on keywords used by humans. To project a sufficient upper
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bound, while simultaneously assessing the quality of the five human-authored captions,
this study evaluated the quality of the five human authored captions (HC-i) on the most
widely used evaluation metrics. Each human authored caption was compared against the
remaining four captions and a test for any statistical significance between the evaluated
captions was conducted. Given that no significant difference was noted in the evaluated
ground-truth captions, the first set of experiments was based on human-authored key-
words extracted from the first set of ground-truth captions (i.e., HC-0). When considering
both CIDEr and SPICE scores no significant difference was noted when using one-way
Analysis of Variance (ANOVA) (Girden, 1992) (CIDEr: F(4, 4995) = 1.09, p > 0.05); SPICE:
F(4, 4995) = 0.54, p > 0.05). Keyword sets were extracted by using the POS tagger based
on the Penn Treebank tagset (Marcus et al., 1993) of theNatural Language Toolkit (NLTK)2
library after tokenizing the captions. The generated captions were evaluated based on the
remaining ground-truth captions (i.e., HC-{1− 4}). The human keyword sets which were
composed of nouns, attributes, prepositions and verbs were used in a composite and non-
composite way. The composite sets included phrases composed of grouped keywords
such as an attribute (“large”) followed by a noun (“boat”) or a noun followed by a verb
such as (“boat navigating”). Composite keywords were used to restrict the model by con-
straining it to mention such keywords in that specified order without leaving any room for
discontinuity between keywords during the graph generation and path traversal. Further-
more, this experiment also sheds light on whether the generation of composite keywords
would improve the quality of the generated captions. These experiments were split into
the following six categories to reflect the combinations of nouns, attributes, prepositions,
and verbs:
1. HK-n: Human keywords consisting of nouns only (e.g., “boat”, “person”).
2. HK-na: Human keywords consisting of nouns and attributes (e.g., “large”, “boat”).
3. HK-nap: Human keywords consisting of nouns, attributes and prepositions (e.g.,

“large”, “boat”, “ near”).
4. HK-napv: Human keywords consisting of nouns, attributes, prepositions and verbs

(e.g., “large”, “boat”, “ near”, “navigating”).
5. HK-(na): Composite human keywords composed of an attribute followed by a noun

(e.g., “large boat”).
6. HK-(nv): Composite human keywords composed of a noun followed by a verb (e.g.,

“boat navigating”).
2https://www.nltk.org/
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3.5.2 Frequency-based Human Keywords (HK-fi)
Rather than using human extracted keywords from one single caption, this experiment
was set to examine the quality of the generated captions based on the most salient key-
words that humans choose when describing images. This was carried out by selecting the
most commonly used keywords found in the set of corresponding ground-truth captions
per image. This was performed by taking into consideration keyword sets with cumulative
frequency count per word. Each set was denoted by HK-fi, where i corresponds to the
minimum frequency count of each word. For example, HK-f2 consists of keywords which
occur at least twice in the set of ground truth captions. Similarly, HK- f 4 includes key-
words with a frequency count of four and five, while HK-f5 consists of keywords which
are common in all five ground-truth captions. For consistencywithHK, the generated cap-
tions were compared against HC-{1− 4}. In this analysis, no POS tagging filtering was
performed, which means that keywords were not restricted to nouns, attributes, prepo-
sitions and verbs. Captions simply composed from frequent keywords (HK-fi(kw)) were
also evaluated to assess their effect on the evaluation metrics.

3.5.3 Detected Objects (Objs)
The third experiment was conducted to investigate the role of detected objects as key-
words within the proposed image caption generator. For this purpose, objects were de-
tected using a pre-trained Mask R-CNN (He et al., 2017b) which was trained to detect up
to 80 COCO object classes. The average number of detected objects per image was 3.4.
Since the human-authored captions were compared against four captions, in this exper-
iment, the generated captions were evaluated on both four and five reference captions.
Given that 15 out of the 80 detectable objects consisted of two words (e.g., “dining ta-
ble”), an additional experiment was performed to analyse whether splitting (+sp) these
keywords improves the quality of the generated captions. Multiples (+multi) were also
taken into consideration when multiple objects of the same class were detected.

3.5.4 Multi-label Keywords (ML-keys)
The fourth experiment was set to generate captions based on the output of a multi-label
model trained to predict multi labels that are relevant to query images. Having a model
trained to predict labels that can include nouns, attributes and verbs can provide richer
keywords for images. For this reason, the ML-Decoder (Ridnik et al., 2021c) model which
follows a Transformer-based encoder-decoder pipelinewas used for this experiment. This
model predicts multi labels by first encoding images using a TResNet (Ridnik et al., 2021b)
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backbone which offers higher performance when compared to the plain ResNet (He et al.,
2016) architecture. Image embeddings are then transformed into prediction logits for
each label through a Transformer architecturewith an attention-based classification head.
A pre-trained ML-Decoder trained to detect the 80 COCO object labels was used for the
generation of multi label objects to be compared with the experiment of Section 3.5.3
(i.e., Objs). The model was trained on images with a resolution of 224 × 224 and with
RGB channels scaled between 0 and 1 and encoded with the ResNet-M (i.e., the medium
sized architecture in terms of depth and number of channels) backbone with pre-trained
weights based onOpen Images dataset (Kuznetsova et al., 2020) as was performed in Rid-
nik et al. (2021a).

Furthemore, theML-Decodermodel was fine-tuned using the same hyper-parameters
used in Ridnik et al. (2021c) on vocabularies extracted from COCO image captions. The
fine-tuned model was trained for 40 epochs using Adam optimizer and 1 cycle policy with
maximal learning rate of 2e-4. A cutout factor of 0.5 and a true-weight decay of 1e-4
and auto-augmentation were used. The model was trained with full decoding and the
number of token embeddingswas set to 768 by adjusting the backbone embedding output
via a 1× 1 depth-wise convolution. The asymmetric loss function (ASL) for multi-label
classification proposed in Ridnik et al. (2021a) was used to dynamically downweight and
hard-threshold easy negative samples by using γ− = 4, γ+ = 0 and m = 0.05. The
fine-tuning was performed for the following sets of vocabularies V :
1. Cleaned-w (C-w): The top w frequent words which are not considered as stop words

and which do not contain any numbers in the human captions.
2. Cleaned + Lemmatised-w (CL-w): The top w frequent cleaned and lemmatised (L)

words found in the human captions. This is used to reduce the complexity of the
used vocabulary set by using base words which are commonly referred to as lemmas.

3. Cleaned + Lemmatised + POS Filtering (CLP-w): The top w cleaned, lemmatised
and Part-of-Speech (POS) filtered words found in the human captions. This is used
to further reduce the vocabulary set by words consisting of nouns, attributes, and
verbs.

These three sets of vocabularies v ∈ V for w ∈ {1000, 2000, 3000} were used as
sets for the extraction of keywords K for each query image. To predict the salient im-
age keywords, the ML-Decoder was explicitly trained to predict keywords according to
their frequency as found in the corresponding ground-truth image captions. In the same
way HK-fi based keywords were extracted (refer to Section 3.5.2), the ML-Decoder was
trained to predict labels based on their cumulative frequency ( fML | 1 ≤ fML ≥ 5). For
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Indicator vector with size N and f2=3.

HC-0: A boat that is out on top of the grass.
HC-1: A small wooden sailboat sits in an alpine field.
HC-2: There is a white boat set on top of some grass in 
the mountain. 
HC-3: A wooden fishing boat in the middle of a grass field 
with snow capped mountains in the background.
HC-4: This old wooden fishing boat appears to be 
permanently dry docked.

histogram= {
                     w0 “a”: 5
                     w1 “boat”: 4
                     w2 “the”: 4
                     w3 “in”: 4
                     w4 “of”: 3
                     w5 “grass”: 3
                     w6 “wooden”: 3
                     w7 “field”: 2
                     w8 “fishing”: 2
                     …

   wn  wordn: x
                   }

Training Image (I)

0

1

1

1

1

1

1

1

0

0

Word histogram ranked according to word frequency.

…
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w2
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w7

w8

wN

Figure 3.5: Multi-label training with vocabulary size n = N and f2 = 3

instance if fML = n, theML-Decoder was trained to predict wordsW which occur at least
fML times across all corresponding captions. The training setup is illustrated in Fig. 3.5.
3.5.4.1 Metrics
The quality of the multi-label output was evaluated by both example- and label-based
metrics. The training of the multi-label output was validated on the conservative label-
basedmean average precision@i (mAP@i) metric which takes into consideration the rank-
ing order of the multi-label output. This means that true positives are penalised according
to their predicted ranking order. This metric is computed over each class as follows:

Let Y be the vector consisting of n ground-truth values of a given label j ∈ J,
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Ŷ the corresponding predicted labels with values ranging between 0 and 1 and,
Ŷs, Ys = sort(Ŷ, Y) be the sorted pair of vectors based on Ŷ in descending order;

then,
AP@ij =

(
∑n

i=0 Yi
s × rank ([Ŷs ×Ys] > 0, Ŷi

))
/(i + 1)

[|Ŷs ×Ys] > 0|+ ε

mAP@i =
1
|J|

|J|

∑
j=0

AP@ij,
(3.1)

where j is the jth label in set J, rank(l, v) is a function which gives the rank order of a value
v found in list l starting from 1, otherwise 0 if not found, and ε is a constant set to 1e-8 to
eliminate dividing by 0.

For example, if Y = [0, 1, 0, 1] and Ŷ = [0.75, 0.3, 0.2, 0.8], then
Ŷs, Ys = [0.8, 0.75, 0.3, 0.2], [1, 0, 1, 0].

Therefore,

[Ŷs ×Ys] = [0.8(1), 0.75(0), 0.3(1), 0.2(0)]

= [0.8, 0, 0.3, 0]

[Ŷs ×Ys] > 0 = [0.8, 0.3];

AP@i =

1(1)
1

+
0(0)

2
+

1(2)
3

+
0(0)

4
2 + 1e-8

=
1 +

2
3

2 + 1e-8

= 0.83

On the other hand, to test the multi-label output at testing time, the example-based
metrics which include the accuracy (Acc), precision (P), recall (R) and F-score (F) (Zhang
and Zhou, 2014) were used. These metrics were computed between the ground-truth Y
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and predicted labels Ŷ = {h(xi), ∀xi ∈ X}, over each test instance as follows:
Acc =

1
n

n

∑
i=1

|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

; (3.2)

P =
1
n

n

∑
i=1

|Yi ∩ h(xi)|
|h(xi)|

; (3.3)

R =
1
n

n

∑
i=1

|Yi ∩ h(xi)|
|Yi|

; (3.4)

F =
1
n

n

∑
i=1

(2× Pi × Ri

Pi + Ri

)
, (3.5)

where n is the number of test instances, Yi is the ground-truth keyword set for the ith

instance, xi is the ith image feature, and h(xi) is the predicted keyword set for image i.
Furthermore, precision and recall per label were computed to analyse the testing per-

formance per label. When considering the following quantifications for each label yj:

TPj = |{xi | yj ∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ n}|;

FPj = |{xi | yj /∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ n}|;

TNj = |{xi | yj /∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ n}|;

FNj = |{xi | yj ∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ n}|,

then, the macro average precision and recall per label were computed by:
Precision per label = ∑

j∈J

TPj

TPj + FPj
(3.6)

Recall per label = ∑
j∈J

TPj

TPj + FNj
(3.7)

3.5.4.2 Validation Results
The ML-Decoder was validated on the validation set using the mAP@i score (Eqn. 3.1).
The validation results for the different vocabulary sets (V), their number of words (w) and
the word frequency fML used while training the ML-Decoder are reported in Table 3.3.
It was evident that the mAP@i decreases when the number of labels in the vocabulary is
increased. This provides an indication of the complexity and ambiguity behind suchmulti-
label learning. This was confirmed across all vocabularies and fML thresholds used. It was
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Table 3.3: Maximum mAP@i recorded on the validation set while trainingthe ML-Decoder on different vocabularies, fML and number of words (w).
Max Val mAP@i
Num. of words (w)

Vocabulary fML 1000 2000 3000

Cleaned 1 30.49 23.11 19.13Cleaned 2 27.40 20.05 15.53Cleaned 3 22.88 15.11 11.16Cleaned 4 17.21 10.44 7.58Cleaned 5 10.72 6.05 4.16
Cleaned + Lemmatised 1 38.21 28.25 23.44Cleaned + Lemmatised 2 34.47 23.88 17.57Cleaned + Lemmatised 3 27.18 17.19 12.04Cleaned + Lemmatised 4 19.48 11.54 7.80Cleaned + Lemmatised 5 11.82 6.46 4.36
Cleaned + Lemmatised + POS 1 37.96 28.52 23.35Cleaned + Lemmatised + POS 2 34.25 23.46 17.35Cleaned + Lemmatised + POS 3 26.97 16.97 11.73Cleaned + Lemmatised + POS 4 19.57 11.37 7.96Cleaned + Lemmatised + POS 5 11.68 6.18 4.31

also clear that when increasing the threshold fML (i.e., restricting the number of output
labels), the mAP@i decreases. This confirmed the difficulty of constraining the multi-label
output according to the actual set of keywords used in the ground-truth captions.
3.5.4.3 Test Results
The test results are presented in tables 3.4 to 3.6. The results are split according to the
size of the vocabulary v used (i.e., w ∈ {1000, 2000, 3000}). For validation purposes, the
ML-Decoder was trained and tested to predict object labels found in the COCO dataset
as was performed in Ridnik et al. (2021c) (Refer to COCO Objs (trained) in the tables).
This was carried out in order to provide confidence in the generated results. As tabu-
lated in the results tables, the scores obtained for the ML-Decoder when trained on the
COCO objects were highly comparable to those obtained when using the pre-trained
model. When considering both the precision and recall via the F-score measure, it was
found that the performance of the ML-Decoder peaks at fML = 3 followed closely by
fML = 2 as shown in bold and italics respectively. The general F-score trend across all
tested scenarios follows a hill-climb trend between 1 ≤ FML ≤ 3 and a downward trend
between 3 ≤ FML ≤ 5. Although no significant decrease in performance was noted when
increasing the number of words in the vocabulary sets, the F-score recorded a slight de-
crease between sets consisting of larger vocabularies. For instance, the top F-score when
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using the cleaned vocabulary set of size 1000 (i.e., 57.59 at fML = 3) dropped to 57.01
after increasing the same set with 2000 words. Performance reduction was less noted
between sets consisting of 1000 and 3000 words. The results also confirm that the ML-
Decoder performed slightly better on the Cleaned + Lemmatised + POS vocabulary set
most probably because it is less ambiguous. However, this was not pronounced since the
best F-score of the cleaned set at w = 1000 (i.e., 57.59) just reached a maximum of 57.92
when using the former set. Similar minor improvements were achieved on the vocabulary
consisting of 2000 and 3000 words, respectively. All vocabulary sets with fML = {2, 3}
were considered for KENGIC experiments.
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Table 3.4: ML-Decoder test results metrics based on the top 1000 frequentwords (w) found in the different vocabulary sets (V ) with varying frequencycount ( fML) and COCO Objs labels.
Vocabulary w fML Acc P R F P/label R/label
COCO Objs (pretrained) (Ridnik et al., 2021c) 80 N/A 75.98 86.82 83.68 83.41 51.77 46.51COCO Objs (trained) 80 N/A 75.61 85.18 84.93 83.21 42.25 47.31
Cleaned 1000 1 35.49 59.26 46.74 51.10 51.91 35.92Cleaned 1000 2 42.33 62.31 56.09 56.63 50.35 31.88Cleaned 1000 3 45.69 62.76 59.55 57.59 47.35 31.00Cleaned 1000 4 48.21 59.08 57.83 53.83 46.33 27.96Cleaned 1000 5 51.43 38.56 54.39 36.47 44.45 23.41
Cleaned + Lemmatised 1000 1 34.33 58.07 45.39 49.88 48.66 30.74Cleaned + Lemmatised 1000 2 41.63 60.74 56.02 56.07 46.33 28.10Cleaned + Lemmatised 1000 3 45.10 62.35 59.63 57.36 45.93 26.94Cleaned + Lemmatised 1000 4 47.89 58.73 57.31 53.41 50.72 23.93Cleaned + Lemmatised 1000 5 51.46 38.65 55.34 36.90 43.11 22.22
Cleaned + Lemmatised + POS 1000 1 35.39 59.31 46.48 50.98 50.10 30.96Cleaned + Lemmatised + POS 1000 2 42.49 62.99 55.75 56.86 50.31 26.81Cleaned + Lemmatised + POS 1000 3 45.99 64.05 59.49 57.92 50.95 25.94Cleaned + Lemmatised + POS 1000 4 48.56 58.54 58.16 53.65 46.72 25.70Cleaned + Lemmatised + POS 1000 5 53.23 38.36 55.79 36.04 44.50 21.52



Table 3.5: ML-Decoder test results metrics based on the top 2000 frequentwords (w) found in the different vocabulary sets (V ) with varying frequencycount ( fML) and COCO Objs labels.
Vocabulary w fML Acc P R F P/label R/label
COCO Objs (pretrained) (Ridnik et al., 2021c) 80 N/A 75.98 86.82 83.68 83.41 51.77 46.51COCO Objs (trained) 80 N/A 75.61 85.18 84.93 83.21 42.25 47.31
Cleaned 2000 1 33.61 57.71 44.36 49.15 46.50 25.51Cleaned 2000 2 41.33 59.72 56.39 55.84 43.49 25.77Cleaned 2000 3 45.03 64.82 57.15 57.01 49.69 23.52Cleaned 2000 4 48.04 59.18 57.23 53.50 48.78 23.09Cleaned 2000 5 51.54 38.61 54.78 36.37 50.26 21.89
Cleaned + Lemmatised 2000 1 32.68 58.87 42.08 48.04 46.19 19.75Cleaned + Lemmatised 2000 2 40.91 63.62 52.54 55.29 48.45 19.83Cleaned + Lemmatised 2000 3 44.94 64.85 57.01 57.03 50.13 21.17Cleaned + Lemmatised 2000 4 47.10 58.36 58.34 53.65 45.89 23.85Cleaned + Lemmatised 2000 5 51.45 36.36 53.86 33.82 45.12 18.33
Cleaned + Lemmatised + POS 2000 1 33.64 58.03 44.27 49.11 43.77 20.35Cleaned + Lemmatised + POS 2000 2 41.65 62.08 55.07 56.08 46.25 20.91Cleaned + Lemmatised + POS 2000 3 45.34 63.32 58.69 57.30 47.44 22.61Cleaned + Lemmatised + POS 2000 4 48.42 59.65 56.46 53.55 48.63 20.99Cleaned + Lemmatised + POS 2000 5 51.84 37.07 55.07 35.15 49.42 20.29



Table 3.6: ML-Decoder test results metrics based on the top 3000 frequentwords (w) found in the different vocabulary sets (V ) with varying frequencycount ( fML) and COCO Objs labels.
Vocabulary w fML Acc P R F P/label R/label
COCO Objs (pretrained) (Ridnik et al., 2021c) 80 N/A 75.98 86.82 83.68 83.41 51.77 46.51COCO Objs (trained) 80 N/A 75.61 85.18 84.93 83.21 42.25 47.31
Cleaned 3000 1 32.81 58.37 42.57 48.22 46.33 18.90Cleaned 3000 2 41.09 61.71 54.28 55.58 46.87 21.03Cleaned 3000 3 45.07 63.33 58.06 57.05 49.26 22.33Cleaned 3000 4 47.46 58.90 56.51 53.01 47.12 23.11Cleaned 3000 5 51.27 37.84 55.28 36.02 37.76 21.88
Cleaned + Lemmatised 3000 1 32.34 57.49 42.28 47.71 44.10 15.63Cleaned + Lemmatised 3000 2 40.46 61.65 53.21 54.96 44.37 19.67Cleaned + Lemmatised 3000 3 44.93 64.88 57.23 57.14 46.05 20.48Cleaned + Lemmatised 3000 4 46.74 57.46 58.27 53.22 42.40 23.12Cleaned + Lemmatised 3000 5 50.45 36.76 53.66 34.51 40.53 18.85
Cleaned + Lemmatised + POS 3000 1 33.30 57.58 43.79 48.73 42.07 16.34Cleaned + Lemmatised + POS 3000 2 41.19 62.00 54.24 55.59 47.13 18.52Cleaned + Lemmatised + POS 3000 3 45.09 61.68 59.85 57.26 39.82 22.22Cleaned + Lemmatised + POS 3000 4 47.45 58.03 57.88 53.36 42.81 22.60Cleaned + Lemmatised + POS 3000 5 52.71 37.49 54.92 34.80 47.30 17.93



CHAPTER 3. METHODOLOGY

3.6 Summary
This chapter presented the methodology adopted to study the role of keywords in image
captioning via the the proposed KENGIC framework. This chapter also details the experi-
ments and reports results of a purposely developed multi-label model used for predicting
keywords relevant to images. The following chapter presents the results of this study and
discusses the main outcomes.
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4 Results and Discussion

This chapter reports and discusses the quantitative results of this study. A qualitative
analysis was also conducted to get deeper insights into how KENGIC generates captions
when using different keyword sets and how these affect the evaluation metrics. To com-
plement with this analyses, this chapter also presents insights from human evaluation.

4.1 Optimisation
Hyper-parameter optimisation (HPO) was carried out to find the optimal set of hyper-
parameters. The optimisation was carried out using human defined keywords to provide
the ideal parameters for the system. Since no statistical significance was noted when
evaluating the quality of the five human ground-truth captions as discussed in Section 4.3,
the optimisation was carried out by a grid search on HK-n keywords set extracted from
HC-0 by varying the following parameters as follows: n ∈ {3, 4} (n-gramused to construct
knowledge graphs), n2 ∈ {3, 4} (n2-gram size used to calculate the probability of the
generated captions), h ∈ {1, 2} (number of hops), fni | 1 ≤ i ≤ 4 (cost function), while
the values of k (number of parents), e f (minimum edge frequency count between n-grams
in graphs) and op (optimal paths considered during path traversal) were manually set to 5
and qn (maximum number of paths considered during path traversal) was set to 150.

4.2 Validation
KENGIC was optimised on the HK-n keywords extracted from HC-0 as reported in Sec-
tion 4.1. This results in a total of 32 configurations as tabulated in Table 4.1. Due to the
time complexity of high-ordered graphs, the optimisation was carried out on a random
sample chosen from the validation set. Based on a population size of 5000, a sample size
of 357 estimates the population results with a 95% confidence level and 5% margin of
error. Therefore, a sample size of 500 images was chosen for the validation process. Since
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CHAPTER 4. RESULTS AND DISCUSSION

image caption generators are generally optimised on the CIDEr metric (Anderson et al.,
2018; Li and Jiang, 2019; Yang et al., 2020; Yao et al., 2017; Yu et al., 2020), the hyperpa-
rameters (n = 3, h = 1, n2 = 3, fni = 4) which maximised the CIDEr score were selected.
This configuration led to a CIDEr and SPICE scores of 72.3 and 16.5, respectively. Apart
from CIDEr, this configuration maximised ROUGE-L, whilst the other metrics scored best
when using larger graphs (h = 2) and n2 = {3, 4}.

4.3 Testing
When analysing the level of statistical significance between the evaluated human captions
using the one-way ANOVA (Girden, 1992), no significant difference was observed when
considering both CIDEr (F(4, 4995) = 1.09, p > 0.05) and SPICE (F(4, 4995) = 0.54, p >

0.05). The quality of the human captions reached a maximum CIDEr and SPICE scores of
89.3 and 21.2 respectively, which are lower than those obtained by current state-of-the-
art image caption generators when evaluated on five captions, with the exception of the
SPICE metric which is very comparable. Two conventional benchmark encoder-decoder
based models (Mind’s Eye (Chen and Lawrence Zitnick, 2015) and NeuralTalk (Karpa-
thy and Fei-Fei, 2017)) have been included in Table 4.2 for comparison purposes along-
side three other state-of-the-art models, namely the attention-based Up-Down (Ander-
son et al., 2018) model, the scene-graph based auto-encoder with knowledge distillation
(SGAE-KD (Yang et al., 2020)) and the Multimodal Transformer (MT)-based generator (Yu
et al., 2020). As illustrated in Fig. 4.1, a relatively high variation was found when analysing
the score distributions of HC-0. This was most particularly observed in CIDEr score as its
mean and standard deviation were 89.3 and 66.6 respectively. This confirms the high de-
gree of linguistic variation and the difficulty in assessing captions, especially in caseswhen
humans can take different perspectives in describing images.

98



Table 4.1: Evaluation metrics computed for different hyper-parametersbased on the HK-n keywords extracted for 500 images from the validationset. Metrics are sorted according to CIDEr score in descending order.
Rank n h n2 fni BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr ↓ SPICE
1 3 1 3 4 50.6 34.5 22.5 13.7 18.9 38.2 72.3 16.52 3 1 3 3 52.4 35.7 23.1 14.1 19.3 38.1 71.7 16.83 4 2 3 3 54.3 35.9 23.9 15.4 19.7 37.3 66.5 16.94 3 1 3 2 43.1 29.1 18.8 11.9 17.8 36.8 65.7 15.45 3 2 3 2 51.7 34.3 21.9 13.8 18.5 36.7 65.2 16.26 3 1 4 3 40.2 28.4 19.1 12.7 17.1 36 64.8 15.17 4 2 3 4 47.4 32.1 21.3 13.5 18.4 36.6 64.2 15.58 3 2 3 4 57.6 38.8 24.6 15 20.3 37.3 63.9 17.79 3 2 4 4 55.5 37.9 24.8 15.7 19.5 37 63.8 16.910 3 1 4 4 37.9 26.9 18.1 12.1 16.9 36 63.5 14.811 3 2 4 2 52.7 35.5 22.9 14.3 18.5 36.3 62.5 16.412 4 2 4 3 48.1 33.2 22.5 14.9 18.6 36.8 62.2 15.613 4 2 4 4 43 29.7 19.9 12.8 17.7 35.7 61.3 14.714 3 1 3 1 41.4 27.7 17.6 10.7 17.1 35.3 60.9 14.515 3 1 4 2 35 24.7 16.6 11 16.4 35.3 60.5 14.416 4 2 3 2 38.3 25.9 17.6 11.3 16.9 34.9 59.2 14.417 4 2 4 2 38.6 26.8 18.5 12.3 16.8 34.7 57.9 14.318 3 2 4 3 52.1 34.7 22 13.7 19.9 36.2 56.4 1719 3 1 4 1 31.5 22 14.8 10.1 15.6 34.1 56.2 13.420 4 1 3 4 28.9 20 13.7 8.9 15.6 32.6 53.6 13.321 4 1 3 3 28.9 20 13.6 8.8 15.5 32.3 53.2 13.722 3 2 4 1 49.7 33.1 21 13 17.7 34.2 51.8 14.723 4 2 3 1 33.3 21.9 14.4 9.1 15.5 31.9 51 12.724 4 1 4 3 25.8 18.2 12.6 8.1 14.9 31.7 50.5 12.925 4 2 4 1 32.9 22.3 14.8 9.7 15.3 32 50.1 12.726 4 1 3 2 23.1 16.1 11 7.2 14.7 31.4 49.9 12.927 4 1 4 4 24.2 17.1 11.7 7.5 14.8 31.5 49.6 12.728 4 1 4 2 21.5 15.1 10.7 7.1 14.3 31 48 12.429 3 2 3 1 49.8 31.9 19.3 11.3 17.8 33.2 47.8 14.630 4 1 4 1 17.2 12.1 8.5 5.7 13.2 29 43.2 11.231 3 2 3 3 39.7 25.8 15.8 9.5 20.2 32.9 41.7 16.832 4 1 3 1 16 11 7.4 4.8 12.9 28 41.2 10.9



Table 4.2: Baselinemetrics in percentage of benchmark state-of-the art im-age caption generators when evaluated on five ground-truth captions andthe metrics computed for each human ground-truth caption (HC) whencompared with the other four human captions as found in the test set.
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
Mind’s Eye (Chen and Lawrence Zitnick, 2015) - - - 18.8 19.6 - - -NeuralTalk (Karpathy and Fei-Fei, 2017) 62.5 45.0 32.1 23.0 19.5 - 66.0 -Up-Down (Anderson et al., 2018) 77.2 - - 36.2 27.0 54.9 113.5 20.3SGAE-KD (Yang et al., 2020) 78.2 - - 37.3 28.1 57.4 117.1 21.3MT (Yu et al., 2020) 77.3 - - 37.4 28.7 57.4 119.6 -
HC-0 63.6 44.1 29.7 19.9 24.4 47.3 89.3 21.2HC-1 62.9 43.4 29 19.2 24.1 46.6 87.9 21HC-2 63.1 43.7 29.5 19.7 24.1 46.5 87.8 21.1HC-3 62.4 43 28.9 19.3 24.1 46.6 86.6 20.9HC-4 62.7 43.1 28.8 19.2 24 46.4 87.4 21
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Figure 4.1: Frequency distributions of the results metrics of captions HC-0when evaluated against the other four human ground-truth captions.



CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3: POS analysis of HK-f keywords sets.
Averages (Average % w.r.t to # of keywords)

Keywords Num. of keywords Nouns Attributes Prepositions Verbs
HK-f1 18.09 8.83 (48.84) 3.84 (21.26) 0.56 (3.07) 4.03 (22.32)HK-f2 5.46 3.24 (61.17) 0.87 (15.15) 0.09 (1.58) 1.04 (18.26)HK-f3 2.77 1.95 (74.88) 0.28 (8.3) 0.02 (0.62) 0.4 (12.51)HK-f4 1.78 1.41 (83.91) 0.1 (4.15) 0.01 (0.31) 0.18 (8.12)HK-f5 1.29 1.15 (91.33) 0.03 (1.63) 0 (0.12) 0.07 (4.42)

4.3.1 Human Keywords
The evaluation of the captions generated by KENGIC based on human extracted key-
words is presented in Table 4.5. The first section of the table consists of captions which
were generated based on keywords extracted from one human authored caption (i.e., HC-
0), while the second section presents the evaluation of the captions generated based on
the salient words found across all ground-truth captions (i.e., HK-fi). It was clear that the
captions generated based on the non-composite keywords set are highly comparable and
significantly better than those produced by the composite keywords. Although not very
significant, HK-napv obtained the highest scores, except on ROUGE-L, CIDEr and SPICE
which peaked when using HK-na. On the other hand, the composite keyword sets (i.e.,
HK-(na), HK-(nv)) were found to restrict the generation process and lead to the lowest
scored captions.

Table 4.5 also shows the metrics of the captions generated when using frequency-
based human keywords (HK-fi). When considering the best performing set of salient key-
words (i.e., HK-f2), the metrics improved substantially over HK across all metrics, espe-
cially CIDEr score which increased from 68.3 to 112.3 when compared to HK-na. Surpris-
ingly, HK-f1 obtained the highest SPICE score of 33.7 despite using an average of 18.09
keywords which makes it harder to construct sentences as noted in the other metrics.
The evaluation metrics revealed that captions composed of just frequent keywords (kw)
obtained considerably high scores. In fact, HK-f2(kw) even exceeded the quality of HC-
0 in terms of CIDEr. These results confirm that metrics give an important weight to the
mentioned keywords and pay less attention to the sentence structure and the order of the
used words. This observation raises important questions on how captions are currently
being evaluated. To get deeper insights about the extracted frequency-based keywords, a
POS tag analysis was carried out to analyse the type of keywords which were commonly
used for the captioning process. This analyis is tabulated in Table 4.3.

When considering the best salient keyword set (i.e., HK-f2), it was found that the av-
erage number of used keywords was 3.24 and these were predominantly nouns (61.17%),
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Table 4.4: POS tag distribution of HK-f2 keyword set according to low,medium and high CIDEr metrics. The table tabulates the average (µ) num-ber of keywords per each POS tag as well as the percentage of each POStag with respect to the total number of keywords in brackets.
CIDEr Scores

Low Medium High
µ (% w.r.t # of keywords)of HK-f2

Num. of keywords 4.18 5.53 6.62Nouns (“boat”) 2.75 (68.29) 3.33 (61.06) 3.56 (54.32)Attributes (“wooden”) 0.55 (12.56) 0.84 (14.8) 1.23 (18.44)Prepositions (“on”) 0.07 (1.52) 0.09 (1.53) 0.12 (1.73)Verbs (“standing”) 0.66 (14.45) 1.05 (18.86) 1.39 (20.84)

followed by verbs (18.26%), attributes (15.15%), and prepositions (1.58%). This conforms
to the analysis of HK given that HK-n provided a good supporting baseline when com-
pared to the other keyword sets. Adding attributes and verbs with nouns in the keyword
set incrementally improved the metrics, while no effect was observed when introducing
prepositions. A clear indication of why the latter had no effect is due to their infrequent
usage (1.58% in HK-f2 keywords). The POS tags were further analysed according to the
CIDEr metric as evaluated based on HK-f2 keywords as tabulated in Table 4.4. Captions
were organised in three categories (low, medium high) in accordance with the three quar-
tiles. It was confirmed that captions with high CIDEr scores had more keywords (µ=6.62),
especially nouns (µ = 3.56), followed by verbs (µ = 1.39) and attributes (µ = 1.23). This
analysis confirmed that better captions can be generated through richer and diverse vo-
cabularies. This is evident as 68.29% of the keywords used in low category consisted of
nouns, while the high category decreased to 54.32%, as attributes and verbs were in-
creased from 12.56% to 18.44% and 14.45% to 20.84%, respectively. On the other hand,
less pronounced increase was noted in prepositions which therefore confirms their in-
significant effect owing to their infrequent usage.
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Table 4.5: Metrics computed based on human keywords (HK) extractedfrom HC-0 and compared against HC-{1− 4}.
Keywords BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
HK-n 50 33.8 21.7 13.4 18.4 37.6 66.4 16.3HK-na 54.3 36.7 23.4 14.4 19.3 38 68.3 16.8HK-nap 54.6 36.7 23.3 14.3 19.4 38 67.6 16.8HK-napv 55.5 38 24.7 15.5 20.3 37.7 65.2 16.3
HK-(na) 26.1 17.7 11.3 7 12.2 25 42.1 10.3HK-(nv) 18.2 12.3 7.9 4.9 10.4 20.7 35.3 8.3
HK-f1(kw) 85.6 14.7 2.3 0 24.8 23.7 53 17.6HK-f1 59.3 44.1 29.8 19.2 30.8 38.9 25.6 33.7

HK-f2(kw) 55.4 15.3 3.6 0.9 24.2 32.8 91 16.1HK-f2 76.1 57.9 41.4 28.6 28.2 47.6 112.3 25.8
HK-f3(kw) 10.8 3.7 1 0.3 16.9 27.4 56 11.7HK-f3 35.2 27.4 20.3 14.9 20.4 39.8 91.9 18
HK-f4(kw) 0.6 0.2 0.1 0 9.7 18.7 34.8 8HK-f4 4 3.2 2.4 1.8 11.3 24.5 50.7 10.8
HK-f5(kw) 0 0 0 0 4 9.5 17.5 4.5HK-f5 0 0 0 0 4.4 10.7 20.6 5.1
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4.3.2 Predicted Keywords
The quality of the generated captions based on the predicted keyword sets is presented in
Table 4.6. These results were compared against four captions to provide fair comparison
with results generated based on human extracted keywords as well as with five captions.

When compared to HK-f2, the quality of the generated captions when using the pre-
dicted Objs keywords set (i.e., objects detected using Faster R-CNN (Ren et al., 2015))
decreased substantially. For instance, B-4 decreased from 19.9 to 1.8, while CIDEr and
SPICE dropped from 89.3 and 21.2 to 22.9 and 6.5, respectively. Apart from the detec-
tion quality, one major reason behind the low scores when compared to both HC and HK
based captions is the limited vocabulary set size of the used detector (i.e., 80 objects).
This is much smaller when compared to the 3034 unique nouns found in the five human
authored captions of the testing images. Out of these nouns, only 64 (2.1%) were found in
the vocabulary set of the detector’s output. Considerable improvements were recorded
with the introduction of the two-word splitting (Objs+sp). In fact, improvements of more
than 250% were recorded on the BLEU scores. On the other hand, an improvement of
73% was observed on METEOR, 60% on ROUGE-L, while CIDEr and SPICE recorded an
increase of 59% and 63%, respectively. This conforms to the previous finding that com-
posite human defined words (i.e., HK-(na), HK-(nv)) constrain KENGIC with limited and
less commonly used keywords. Objs+sp+multi which was intended to handle multiple
same objects by grouping them into their corresponding plural form ended up being less
effective in all metrics, except in SPICE score where no changes were recorded.

The quality of the generated captions based on theML-objs keywords set (i.e., the out-
put of the ML-Decoder when trained to predict COCO objects) was found to be highly
comparable with that obtained when using the Objs keyword set. The highest absolute
difference was noted on the CIDEr metric (1.4), while the mean absolute difference was
equal to 0.5. This confirmed the level of comparability between the outputs of the Faster
R-CNN (Ren et al., 2015) andML-Decoder (Ridnik et al., 2021c). Overall, it was found that
ML-C-2K-f21 scored best on all BLEU, METEOR and SPICE scores, while ML-CL-1K-f2
and ML-C-1K-f2 recorded a slight improvement on ROUGE-L and CIDEr, respectively. As
was revealed in Section 4.3.1, keywords with a frequency of 2 recorded the highest met-
rics. This was found to be consistent with the results of the ML-Decoder as the highest
metrics were recorded based on ML-C-1K-f2 (CIDEr), ML-CL-1K-f2 (BLEU-4, ROUGE-
L) and ML-C-2K-f2 (BLEU-{1-4}, SPICE). No significant difference was noted between
the different types of keyword used (i.e., C: Cleaned, L: Lemmatised, P: POS). Although

1ML-C-2K-f2: Keyword set generated by themulti-label (ML)model based on 2000 (2K) cleaned (C) wordswhich occur at least twice (f2) in corresponding human captions.
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the difference is not significant, the cleaned set achieved the highest scores except for
ROUGE-L. Since the ML-Decoder was found to predict the different sets with similar ac-
curacy, the cleaned keyword set turns out to be a better fit for image captioning as it is
less restrictive and therefore provides more diversity. Similar observations were noted
when evaluating the captions against the full set of ground-truth captions. These results
are found in brackets in Table 4.6. Overall, there was a slight improvement when com-
paring the generated captions with five human captions, except for SPICE score, where a
slight decrease was noted in all configurations.

4.4 Comparison with State-of-the-Art Methods
The results generated by KENGIC based on ML-C-1K-f2 and ML-C-2K-f2 were juxta-
posed with current state-of-the-art and benchmark image caption generators as shown
in Table 4.7. The results are grouped in two sections to distinguish betweenmodels which
are trained in the paired and unpaired setting. As expected, KENGIC falls shortwhen com-
pared with paired image caption generators since it does not make use of any end-to-end
training on image-caption pairs. Therefore, for a fair assessment, KENGIC was compared
with unpaired image caption generators. It was found that KENGIC performance is very
close to that of current state-of-the-art unpaired generators, and in some metrics it even
surpasses current benchmark models. Overall, the model was found to be on par with
the current top two best performing unpaired captioning models (i.e., Graph-Align (Gu
et al., 2019) and SCS (Ben et al., 2022)). Despite its simplicity, KENGIC based on the ML-
C-2K-f2 keywords set achieved the highest METEOR and SPICE scores of 22.6 and 18.5
respectively. On the other hand, the use of ML-C-1K-f2 keywords ranked the model sec-
ond in terms of CIDEr (69.8) when compared to the more complex SCS (Ben et al., 2022)
model that is based on adversarial training.
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Table 4.6: Caption metrics based on predicted keywords as evaluated onthe testing set. Metrics in brackets were generated based on five ground-truth captions, while the others were computed against HC-{0 − 4} forcomparison purposes with previous results.
Keywords BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
Objs 10.7 (11.6) 6.7 (7.5) 3.6 (4.1) 1.8 (2.1) 7.8 (8.2) 17.9 (18.6) 22.9 (23.7) 6.5 (5.8)Objs+sp 38.1 (40.3) 24.1 (26.3) 13.3 (14.8) 7 (7.9) 13.5 (14.2) 28.7 (29.8) 36.4 (37.5) 10.6 (9.6)Objs+sp+multi 34.8 (37) 21.4 (23.4) 11.6 (13) 5.9 (6.6) 12.6 (13.2) 27.2 (28.4) 34.7 (35.6) 10.6 (9.7)
ML-objs 10.2 (11.2) 6.5 (7.3) 3.5 (4.1) 1.7 (2) 8.2 (8.7) 18.6 (19.4) 24.3 (25.2) 7.2 (6.4)
ML-C-1K-f2 60.1 (63.6) 40.8 (44.7) 25.7 (28.9) 15.7 (18) 21 (22) 38.7 (40.3) 68.1 (69.8) 19.6 (18.3)ML-C-1K-f3 32.6 (34.7) 22.8 (25.2) 14.9 (17) 9.3 (10.9) 16 (16.9) 32.9 (34.4) 56.5 (58) 15.7 (14.1)ML-CL-1K-f2 61.3 (64.8) 41.7 (45.7) 26.5 (29.7) 16.1 (18.4) 21.2 (22.3) 38.8 (40.5) 67.3 (68.8) 19.7 (18.4)ML-CL-1K-f3 33.6 (35.9) 23.3 (25.7) 15 (17.1) 9.2 (10.8) 16.2 (17.1) 33.1 (34.7) 55.7 (57.2) 15.7 (14.1)ML-CLP-1K-f2 58.9 (62.2) 40.1 (43.9) 25.4 (28.6) 15.4 (17.7) 20.6 (21.6) 38.3 (40.1) 67.4 (69.1) 19.4 (18)ML-CLP-1K-f3 30.8 (32.8) 21.6 (23.8) 14.2 (16.2) 8.9 (10.4) 15.7 (16.5) 32.3 (33.8) 54.7 (56.1) 15.5 (13.9)
ML-C-2K-f2 62.7 (66.3) 42.4 (46.5) 26.7 (30.1) 16.1 (18.6) 21.5 (22.6) 38.7 (40.4) 66.2 (67.8) 19.8 (18.5)ML-C-2K-f3 29.2 (31.2) 20.6 (22.8) 13.6 (15.5) 8.5 (10) 15.5 (16.4) 32.1 (33.6) 55.1 (56.4) 15.4 (13.8)ML-CL-2K-f2 58.2 (61.6) 39.7 (43.4) 25.2 (28.4) 15.3 (17.6) 20.6 (21.7) 38.3 (40) 67.1 (68.9) 19.1 (17.7)ML-CL-2K-f3 30.3 (32.4) 21.2 (23.5) 13.9 (16) 8.6 (10.2) 15.8 (16.6) 32.8 (34.3) 54.8 (56.3) 15.4 (13.8)ML-CLP-2K-f2 59.6 (63) 40.7 (44.6) 25.9 (29) 15.8 (18.1) 20.8 (21.9) 38.3 (40) 67.8 (69.2) 19.5 (18.3)ML-CLP-2K-f3 31.4 (33.5) 21.9 (24.2) 14.3 (16.3) 8.9 (10.3) 15.8 (16.6) 32.6 (34.1) 55.1 (56.4) 15.5 (13.9)
ML-C-3K-f2 60.7 (64.3) 41.2 (45.3) 26 (29.4) 15.8 (18.3) 21.1 (22.2) 38.7 (40.5) 67.7 (69.4) 19.7 (18.4)ML-C-3K-f3 31.6 (33.8) 22.1 (24.5) 14.4 (16.5) 9 (10.5) 15.9 (16.7) 32.8 (34.2) 55.9 (57.4) 15.8 (14.2)ML-CL-3K-f2 60 (63.4) 41 (44.9) 26 (29.3) 15.9 (18.3) 21 (22.1) 38.6 (40.3) 67.6 (69.2) 19.3 (18)ML-CL-3K-f3 29.9 (32) 20.7 (23) 13.5 (15.3) 8.3 (9.6) 15.6 (16.4) 32.4 (33.8) 54.4 (55.8) 15.4 (13.8)ML-CLP-3K-f2 58.4 (61.9) 39.8 (43.7) 25.2 (28.5) 15.4 (17.8) 20.6 (21.6) 38.2 (39.8) 67.4 (69) 19.3 (18)ML-CLP-3K-f3 34.4 (36.7) 23.8 (26.4) 15.5 (17.8) 9.7 (11.3) 16.2 (17.1) 33.6 (35.1) 56.7 (58.4) 15.9 (14.3)



Table 4.7: KENGIC results metrics in percentages compared with pairedand unpaired state-of-the-art benchmark models sorted by CIDEr in de-scending order per each group. First ranked metrics are listed in bold whilesecond ranked metrics are italicised.
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr ↓ SPICE
PairedMind’s Eye (Chen and Lawrence Zitnick, 2015) - - - 18.8 19.6 - - -NeuralTalk (Karpathy and Fei-Fei, 2017) 62.5 45.0 32.1 23.0 19.5 - 66.0 -Up-Down (Anderson et al., 2018) 77.2 - - 36.2 27.0 54.9 113.5 20.3SGAE-KD (Yang et al., 2020) 78.2 - - 37.3 28.1 57.4 117.1 21.3MT (Yu et al., 2020) 77.3 - - 37.4 28.7 57.4 119.6 -
UnpairedLanguage-Pivoting (Gu et al., 2018b) 46.2 24.0 11.2 5.4 13.2 - 17.7 -Adverserial+Reconstruction (Feng et al., 2019) 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1USGAE (Yang et al., 2020) 60.8 - - 17.1 19.1 43.8 55.1 12.8Multimodal Embeddings (Laina et al., 2019) - - - 19.3 20.2 45.0 61.8 12.9IGGAN (Cao et al., 2020) - - - 21.9 46.5 21.1 64.0 14.5
KENGIC (ML-C-2K-f2) 66.3 46.5 30.1 18.6 22.6 40.4 67.8 18.5Graph-Align (Gu et al., 2019) 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0
KENGIC (ML-C-1K-f2) 63.6 44.7 28.9 18 22.0 40.3 69.8 18.3SCS (Ben et al., 2022) 67.1 47.9 33.4 22.8 21.4 47.7 74.7 15.1



CHAPTER 4. RESULTS AND DISCUSSION

4.5 Qualitative Analysis
To complement the quantitative analysis, a qualitative analysis was conducted to get
deeper insights into the presented metrics. This was performed on 200 randomly sam-
pled images from the 495 images which were captioned by all keyword setups, including
the human extracted keywords (HK), the predicted objects by the Faster R-CNN, and by
the ML-Decoder (ML-objs, ML-C-1K-f2 and ML-C-2K-f2). The low intersection is due
to empty keyword sets, especially in HK-f4 and HK-f5 which had 1252 and 1963 images
without corresponding keywords, respectively.

When conditioning KENGIC on human extracted keywords (HK) it was found that in
simple scenarios it was unable to construct meaningful and relevant captions. For exam-
ple, for Fig. 4.2(a), the model found it hard to combine the “player” and “woman” as one
entity and ended up generating the captions by mentioning both entities independently.
Themodelwas found to hallucinatewhen using extracted keywords. This is shown, for ex-
ample, in Fig. 4.2(b) when using HK-{n,na,nap}. However, with the introduction of further
keywords (HK-napv, HK-f2) captions were more relevant, as confirmed by the captions
based on HK-napv and HK-f2 of the same example (i.e., Fig. 4.2(b)). Incorrect captions
were also generated due to incorrectly used words found in the ground-truth captions.
For example, the ocean waves found in Fig. 4.2(c) were incorrectly perceived as “snow”
and therefore lead to inconsistent captions. This analysis also revealed that specific and
more restrictive keywords were not always mentioned in the generated captions as no
paths were found to connect the set of keywords. For this reason, captions ended up be-
ing incomplete as shown for example in Figure 4.2(d). Considering the lack of fluency of
the captions generated based on HK-f1, their corresponding SPICE metrics were found
to be considerably high and in most cases they exceeded captions with better structure
like in Fig. 4.2(e) and (f) that were generated based on HK-f2. However, despite the large
number of keywords of HK-f1, surprisingly, this set still was effective in some cases as
illustrated in Fig 4.2(g) and (h).

Fig. 4.3 presents examples of good quality captions which were generated based on
human extracted keywords. For instance, Fig. 4.3(c) and (d) shows how both images were
correctly described using HK-na and HK-napv respectively. Interestingly, in spite of the
increased precision, it was found that by the introduction of human extracted keywords
from one reference caption, the generated captions can lack the generalisation aspect
when compared to the remaining four captions. In such cases, the candidate captions
were considerably penalised as shown in Fig. 4.3(a). In this case, HK-napv scored the least
CIDEr score when compared to other keyword sets, despite its accuracy. This is further
noted in Fig. 4.3(b), where HK-f2 achieved better scores, in spite of its lack of detail when
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compared to HK-na/napv. This confirms that current evaluation metrics prioritise generic
captions over precise and better quality captions. In some occasions, the introduction of
further keywords was found to produce more generic captions as no direct paths were
found during the construction of sentences as illustrated in Fig. 4.3(e), while in others it
increased the specificity as shown in Fig. 4.3(f).

Similar trends were observed when analysing the captions which where generated
based on the predicted keywords. Incorrectly captioned images are illustrated in Fig. 4.4,
while good quality captioned images are found in Fig 4.5. Overall, it was found that the
Objs and ML-Objs keyword sets were very similar, while the ML-C-1K-f2 keywords were
found to be very relevant and accurate for the captions. Similar results were observed for
the ML-C-2K-f2. From this analysis, it was found that in some cases, captions mentioned
keywords more than once, while verbs were not used in their correct form as shown
in Fig. 4.4(a). Furthermore, the synonymous nature of the predicted keywords proved to
be a problem for the overall generation process. As shown in Fig. 4.4(b), the keywords
of ML-C-1K-f2 are: {“blue”, fly”, “airplane”, “sky”, “plane”}. This resulted in a caption which
mention neither the “plane” nor the “airplane”. Presumably, this problem is due to the
conflicting keywords. Since KENGIC attempts to generate long captions, this was found
to hinder the captioning processes in some occasions. For example, the caption gener-
ated for Fig. 4.4(c) based onML-C-1K-f2 hallucinated after correctly linking the predicted
keyword set by a “dog jumping up to catch a frisbee in his mouth”. Some captions also
lacked important details. For example, all the captions for Fig. 4.4(d) failed to mention the
girl that is sitting under the man who is riding the skateboard. Caption quality was also
found to be affected due to incorrectly predicted keywords as found in Fig. 4.4(e). Finally,
captions were generated incorrectly due to the complexity of such images and the degree
of reasoning they require as shown, for example, in Fig. 4.4(f).

On the other hand, KENGIC was also found to be very effective in captioning images
using the predicted keywords as illustrated in Fig 4.5. Generic images like for example,
Fig 4.5(a) and (b) were captioned with fluent and accurate descriptions. Less common im-
ages were also found to be described with relevant captions. For instance, Fig 4.5(c),
given the predicted keyword set: {“skiing”, “walk”, “snow”, “woman”, “street”, “people”,
“ski”}, KENGICwas able to combine the keywords and generate the caption: “People walk
down a snow covered street and a woman skiing in the snow on a ski”. However, despite
the relevancy of this caption, CIDEr score was found to be relatively low. This confirms
again the misalignment between caption quality and the evaluated metrics. Another un-
common combination is Fig 4.5(d). In this case, KENGIC correctly linked “leash”, “dog”,
and “skateboard” with the caption: “dog wearing a leash on a skateboard”. Surprisingly,
this analysis also revealed that the ML-Decoder was able to guess the quantity of objects
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in images. This is shown in Fig 4.5(e), where the model correctly counted “three” buses
but used the word “bus” instead of “buses” in the captions. Most probably, this is because
“buses” is less popular in the vocabulary. Finally, KENGIC was also found to be effective
in complex scenarios, like in Fig 4.5(f), where with the help of the predicted keywords (i.e.,
“school”, “mirror”, “bus”, “view”), managed to construct the sentence of a “view of a mirror
in a school bus”. Less precise captions were generated due to the implicit use of spatial
prepositions. As can be found in Fig. 4.6, the used spatial prepositions were not applied in
accordance with the corresponding images. Therefore, this led to captions with preposi-
tions that were not grounded in images. For instance, Fig 4.6(a) was captioned by a “large
blue truck pulling a trailer on a log”. In this case, the spatial preposition “with” would have
been a better fit instead of the preposition “on”. Moreover, the preposition “in front of” is
more suitable than “with” in the caption “black dog with a book shelf” for Fig 4.6(b); whilst
the preposition “behind” is better than “on” when describing Fig. 4.6(c) by a “black bear on
a log”. Furthermore, the prepositions “in front of” or “near” would make the caption “small
boat in the ocean with a sail on the island” more relevant to Fig. 4.6(d). This confirms the
usefulness of explicit spatial relation detection in image caption generation which is going
to be addressed in the following chapter.
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HC-0: A woman tennis player is about to return the 
ball.

HK-n/na/nap: player, woman, ball, tennis
Caption: Woman holding a tennis player with a 
ball.
B-1: 87.5, B-2: 35.36, B-3: 0, B-4: 0, M: 23.63, R-L: 
43.57, C: 90.89, S:19.05

HK-napv: player, woman, ball, tennis, return
Caption: Woman holding a tennis player about to 
hit a ball up to return.
B-1: 46.15, B-2: 19.61, B-3: 0, B-4: 0, M: 20.61, 
R-L: 35.62, C: 45.32, S:30

HK-f2: ball, tennis, player, playing, woman
Caption: Woman playing tennis at a ball player.
B-1: 74.30, B-2: 46.34, B-3: 33.39, B-4: 0.01, M: 
28.34, R-L: 39.52, C: 129.20, S:28.57

HC-0: A man that is holding a surfboard in 
the snow.

HK-n/na/nap: surfboard, snow, man
Caption: Man on a surfboard in the snow.
B-1: 53.68, B-2: 25.93, B-3: 0, B-4: 0, M: 
21.15, R-L: 48.90, C: 116.14, S:11.76

HK-napv: surfboard, snow, man, holding
Caption: Man holding a surfboard in the 
snow on a tennis court holding.
B-1: 58.33, B-2:32.57, B-3: 21.97, B-4: 0, M: 
29.21, R-L: 48.88, C: 110.50, S:9.09

HK-f2: holding, standing, man, surfboard, 
beach
Caption: Man holding a surfboard on the 
beach standing on a tennis court holding.
B-1: 69.23, B-2:53.71, B-3: 37.43, B-4: 0, M: 
36.98, R-L: 56.39, C: 156.83, S:17.39

HC-0: Students wait for a bus to come pick them up.

HK-n/na/nap: bus, students
Caption: Bus full of students.
B-1: 18.39, B-2: 0, B-3: 0, B-4: 0, M: 7.03, R-L: 15.72, C: 23.59, 
S:10.53

HK-napv: bus, students, wait, come, pick
Caption: Bus stopped to pick.
B-1: 9.20, B-2:0, B-3: 0, B-4: 0, M: 6.8, R-L: 15.72, C: 23.92 S:10.53 
(id: 7386)

HK-f2: outside, kits, school, standing, young, bus
Caption: Young kids standing.
B-1: 18.89, B-2:18.89, B-3: 18.89 B-4: 0.60, M: 20.64, R-L: 38.85, C: 
58.71 S:30.00 

b (id:7386) c (id:20178)a (id:11035)

HC-0: The dog is playing catch with his 
master.

HK-n/na/nap: dog, master
Caption: Dog with a.
B-1: 9.02, B-2: 0, B-3: 0, B-4: 0, M: 9.97, R-L: 
30.58, C: 28.88, S:11.76

HK-napv: playing, master, dog, catch
Caption: Dog playing with a.
B-1: 14.33, B-2: 0, B-3: 0, B-4: 0, M: 9.70, 
R-L: 28.77, C: 26.40, S: 0

HK-f2: frisbee, dog, moth, cath, brown
Caption: Dog with a frisbee in its mouth.
B-1: 64.41, B-2:56.81, B-3: 45.95, B-4: 0.01, 
M: 23.91, R-L: 57.01, C: 127.32, S:36.36

d (id:30202)

HC-0: A small white rusted boat floating across a body of 
water.

HK-f1: rusted, floating, across, ocean, boat, body, middle, 
older, trees, background, rusty, open, large, water, old, 
white, small
Caption: Small white boat floating in the middle of a 
large body of water.
B-1: 84.62, B-2: 75.11, B-3: 63.53, B-4: 52.66, M: 33.83, 
R-L: 53.43, C: 154.68, S: 51.61

HK-f2: white, ocean, small, boat, body, water
Caption: Small white boat in the ocean on a body of water 
near a body.
B-1: 85.71, B-2: 62.90, B-3: 32.06, B-4: 0, M: 32.41, R-L: 
51.55, C: 103.06, S: 50

HC-0: A group of people flying kites over a beach.

HK-f1: kite, bikes, kites, wind, bikers, people, lower, 
beach, attached, sky, group, red, flying, assortment, 
lobster, shaped
Caption: People are flying a kite in the sky on a 
beach with a group of people on bikes and a red 
kite that is on the beach flying kites shaped.
B-1: 50, B-2: 29.36, B-3: 14.55, B-4: 0, M: 27.16, 
R-L: 28.40, C: 0.22, S: 34.48

HK-f2: people, kites, flying
Caption: People flying kites.
B-1: 13.53, B-2: 13.53, B-3: 13.53, B-4: 0.43, M: 
23.41, R-L: 45.86, C: 101.35, S: 25

HC-0: A giraffe walks on the tundra tree-lined park.

HK-f1: scanty, grassy, walking, lined, making, single, 
trees, tundra, walks, giraffe, way, area, brown, field, 
tree, park, ground, juvenile, standing, grass
Caption: Brown grass near a tree lined area of a 
field with a single giraffe standing next to trees 
in the park on a grassy ground and a walking in 
a field with a large.
B-1: 50, B-2: 36.93, B-3: 23.38, B-4: 0, M: 31.27, 
R-L: 34.27, C: 0.05, S: 35.90

HK-f2: grass, giraffe, trees, walking
Caption: Giraffe walking in the grass next to trees.
B-1: 75, B-2: 46.29, B-3: 32.93, B-4: 0.01, M: 22.01, 
R-L: 50, C: 136.53, S: 17.39

g (id:28500) h (id:8696)e (id:40062)

HC-0: A bird on a branch in a tree.

HK-f1: ruffling, feathers, photo, perched, close, 
black, top, branch, bird, brown, tree, sitting, small
Caption: Black and white photo of a small bird 
sitting on a tree branch with its feathers on a 
brown and green bird perched on the top in a 
small bird is sitting close to a.
B-1: 54.29, B-2: 47.28, B-3: 37.84, B-4: 26.7, M: 
37.77, R-L: 40.53, C: 0.08, S: 55.56

HK-f2: tree, branch, perched, bird
Caption: Bird perched on a tree branch.
B-1: 71.65, B-2: 71.65, B-3: 71.65, B-4: 71.65, M: 
36.13, R-L: 71.76, C: 311.2, S: 40

f (id:14574)

Figure 4.2: Incorrect captions based on human extracted keywords (toprow) and good quality captions based on HK-f1 (bottom row).



HC-0: A cat in between two cars in a parking lot.

HK-na/napv: parking, cat, lot, cars
Caption: Cars in a parking lot with a cat.
B-1: 87.5, B-2: 70.71, B-3: 55.03, B-4: 42.73, M: 
22.61, R-L: 36.53, C: 112.29, S:25.81

HK-f2: cars, two, white, cat, parked, parking, lot, 
grey
Caption: Two white black and grey cat with a lot of a 
parked cars next to a black and white on a parking.
B-1: 54.55, B-2: 32.23, B-3: 0, B-4: 0, M: 27.64, 
R-L: 32.24, C: 26.19, S:29.41

HC-0: A cat that is standing on a laptop

HK-na: laptop, cat
Caption: Cat using a laptop.
B-1: 27.59, B-2: 18.39, B-3: 0, B-4: 0, M: 18.61, R-L: 
47.16, C: 101.70, S:25.00

HK-napv: laptop, cat, standing
Caption: Cat standing on a laptop.
B-1: 54.88, B-2:54.88, B-3: 54.88, B-4: 54.88, M: 
34.92, R-L: 67.93, C: 254.34, S:33.33

HK-f2: white, cat, standing, laptop, black, top
Caption: Black and white cat sitting on top of a 
laptop that is standing in a black and white
B-1: 72.22, B-2:65.18, B-3: 57.07, B-4: 47.18, M: 
43.52, R-L: 55.17, C: 90.67, S:57.14

HC-0: A giraffe grazing in pen next to a tree trunk.

HK-na/napv: next, tree, giraffe, pen, trunk, grazing
Caption: Giraffe grazing in a pen next to a tree 
trunk.
B-1: 70, B-2: 55.78, B-3: 42.69, B-4: 32.47, M: 19.90, 
R-L: 40.45, C: 100.41, S:14.81

HK-f2: tree, grass, giraffe, next, grazing
Caption: Giraffe grazing in the grass next to a tree.
B-1: 88.89, B-2:66.67, B-3: 50.26, B-4: 38.14, M: 
23.12, R-L: 48.41, C: 144.11, S:30.77 

d (id:38049)

c (id:13383)

f (id:23942)

b (id:39655)

HC-0: A cake with icing and cartoon cake toppers.

HK-na/napv: cartoon, icing, cake, toppers
Caption: Cake decorated with icing.
B-1: 16.73, B-2: 11.16, B-3: 0, B-4: 0, M: 14.86, R-L: 
36.90, C: 24.12, S:8.33

HK-f2: table, birthday
Caption: Table at a birthday.
B-1: 16.73, B-2:11.16, B-3: 0, B-4: 0, M: 15.07, R-L: 
26.52, C: 66.10, S:15.38 

a (id:28106)

HC-0: A beach crowded with people and many different 
colored umbrellas.

HK-n: people, umbrellas, beach
Caption: People on the beach while holding umbrellas.
B-1: 53.68, B-2: 36.67, B-3: 27.24, B-4: 0, M: 18.73, R-L: 
45.61, C: 107.01, S: 28.57 

HK-na/nap: many, umbrellas, different, people, beach
Caption: People on a beach filled with many different.
B-1: 55.16, B-2: 26.37, B-3: 0, B-4: 0, M: 17.23, R-L: 32.68, 
C: 48.77, S: 22.22 

HK-napv: different, umbrellas, beach, colored, people, 
crowded, many
Caption: People in a crowded beach filled with many 
different colored umbrellas.
B-1: 45.45, B-2: 0, B-3: 0, B-4: 0, M: 24.77, R-L: 30.55, C: 
64.86, S: 25.00

HK-f2: umbrellas, people, colorful, beach
Caption: People on a beach on the colorful umbrellas.
B-1: 77.22, B-2:54.04, B-3: 0, B-4: 0, M: 26.20, R-L: 45.56, 
C: 146.65, S:38.10 

HC-0: A boy with glasses playing a game with a Nintendo 
Wii controller.

HK-n/na/nap: game, glasses, controller, wii, boy
Caption: Boy with a nintendo wii game controller.
B-1: 74.30, B-2: 56.75, B-3: 38.22, B-4: 0.01, M: 30.84, 
R-L: 65.87, C: 128.36, S: 38.10

HK-napv: controller, nintendo, glasses, playing, game, boy, 
wii
Caption: Boy playing  a game.
B-1: 36.79, B-2: 30.04, B-3: 25.51, B-4: 0, M: 27.06, R-L: 
57.55, C: 125.22, S: 23.53

HK-f2: video, controller, boy, glasses, young, playing, wii, 
game
Caption: Young boy holding a video game controller 
playing a wii video game.
B-1: 75.0, B-2: 58.39, B-3: 40.85, B-4: 29.50, M: 41.74, 
R-L: 62.24, C: 167.17, S:16.0 

e (id:23367)

Figure 4.3: Correct captions based on human extracted keywords.



HC-0: The dog is playing catch with his master.

Objs/ML-objs: dog, frisbee
Caption: Dog catching a frisbee.
B-1: 21.49, B-2: 14.33, B-3: 0, B-4: 0, M: 23.20, 
R-L: 43.16, C: 39.32/39.42, S: 22.22

ML-C-1K-f2: mouth, catch, dog, frisbee, jumping
Caption: Dog jumping up to catch a frisbee in his 
mouth and a man is trying to catch.
B-1: 58.82, B-2: 46.97, B-3: 38.89, B-4: 30.28, M: 
34.82, R-L: 56.89, C: 115.08, S: 36.36

HC-0: The airplane is flying near a cloud in the sky.

Objs/ML-objs: airplane
Caption: Airplane.
B-1: 0.09, B-2: 0, B-3: 0, B-4: 0, M: 8.54, R-L: 19.49, 
C: 17.16, S: 22.22

ML-C-1K-f2: blue, fly, airplane, sky, plane
Caption: Blue sky in the.
B-1: 27.59, B-2: 18.39, B-3: 0, B-4: 0, M: 13.54, R-L: 
31.44, C: 55.72, S: 16.67

HC-0: A girl hitching a ride with her Dad on a 
skateboard.

Objs: person, handbag, skateboard
Caption: Person on a skateboard.
B-1: 27.59, B-2: 26.01, B-3: 23.18, B-4: 0, M: 15.27, 
R-L: 39.78, C: 88.53, S:  9.09

ML-Objs: handbag, person, skateboard, backpack
Caption: Person on a skateboard.
B-1: 27.59, B-2: 26.01, B-3: 23.18, B-4: 0, M: 15.27, 
R-L: 39.78, C: 88.53, S:  9.09

ML-C-1K-f2: man, skateboard
Caption: Man riding a skateboard.
B-1: 36.79, B-2: 36.79, B-3: 36.79, B-4: 36.79, M: 
30.89, R-L: 57.55, C: 171.75, S: 19.05 

f (id:29756)

HC-0: A group of men on bikes hitching a ride on the 
back of a bus.

Objs: person, bus, bicycle
Caption: Person riding a bicycle with a bus.
B-1: 37.15, B-2: 23.17, B-3: 0, B-4: 0, M: 11.6, R-L: 
39.52, C: 41.87, S: 17.39 

ML-Objs: bus, person, bicycle, backpack
Caption: Person with a backpack and a bus on a 
bicycle.
B-1: 50, B-2: 23.57, B-3: 0, B-4: 0, M: 14.49, R-L: 
34.01, C: 38.89, S: 14.81

ML-C-1K-f2: bike, bicycle, pink, people, bus, group
Caption: People in a pink bus with a bicycle on a 
bike at a group.
B-1: 53.33, B-2: 27.60, B-3: 0, B-4: 0, M: 22.83, R-L: 
31.65, C: 46.44, S: 34.48

a (id:8607)

HC-0: A cat playing with a toy on a sofa.

Objs: couch, cat
Caption: Cat on a couch.
B-1: 22.31, B-2: 18.22, B-3: 15.47, B-4: 0, M: 21, R-L: 
53.04, C: 71.30, S: 21.05 

ML-Objs: cat, couch, banana
Caption: Cat on a couch holding a banana
B-1: 55.84, B-2: 34.82, B-3: 25.09, B-4: 0, M: 27.85, R-L: 
45.61, C: 104.21, S: 30

ML-C-1K-f2: white, cat, banana, play, couch, toy, black
Caption: Black and white cat on a couch with a toy 
banana and a black and white play.
B-1: 52.94, B-2: 40.67, B-3: 32.10, B-4: 22.05, M: 33.58, 
R-L: 44.58, C: 89.99, S: 35.71

HC-0: A shot of a tennis play in mid shot.

Objs/ML-Objs: person, tennis racket
Caption: Person swinging a tennis.
B-1: 14.33, B-2: 11.70, B-3: 0, B-4: 0, M: 16.24, R-L: 
28.77, C: 45.58/45.57, S: 0

Objs+sp: tennis, racket, person
Caption: Person holding a tennis racket.
B-1: 17.97, B-2: 14.21, B-3: 0, B-4: 0, M: 15.8, R-L: 
27.17, C: 57.11, S: 11.76

ML-C-1K-f2: ball, tennis, woman, player, serve
Caption: Woman holding a tennis player about to 
serve a tennis ball.
B-1: 72.73, B-2: 66.06, B-3: 62.35, B-4: 54.91, M: 
38.07, R-L: 71.29, C: 244.85, S: 42.11

c (id:30202)

e (id:30609)

d (id:22093)

b (id:30864)

Figure 4.4: Incorrect captions based on predicted keywords.



HC-0: A group of people riding skis down a snow covered 
street.

Objs: skis, person, car, backpack
Caption: Person in a car with a backpack and a person on 
skis.
B-1: 41.67, B-2: 19.46, B-3: 0, B-4: 0, M: 13.37, R-L: 19.55, 
C: 48.32, S: 14.29

Objs+sp+multi: skis, cars, backpack, people
Caption: People ski in a backpack on a cars.
B-1: 66.19, B-2: 28.89, B-3: 0, B-4: 0, M: 14.56, R-L: 40.94, 
C: 17.55, S: 23.08

ML-Objs: truck, skis, car, backpack, person
Caption: Person with a backpack and a truck in a car of a 
person on skis.
B-1: 40, B-2: 16.9, B-3: 0, B-4: 0, M: 12.88, R-L: 26.18, C: 
35.23, S: 13.33

ML-C-1K-f2: skiing, walk, snow, woman, street, people, ski
Caption: People walk down a snow covered street and a 
woman skiing in the snow on a ski.
B-1: 58.82, B-2: 42.87, B-3: 33.25, B-4: 26.92, M: 30.32, 
R-L: 44.97, C: 51.71, S: 26.67

HC-0: The picture of three buses on a lot.

Objs/ML-objs: bus
Caption: Bus.
B-1: 0.9, B-2: 0, B-3: 0, B-4: 0, M: 6.09, R-L: 11.53, C: 
1.9, S: 11.11

Objs+sp+multi: buses
Caption: Buses.
B-1: 0.9, B-2: 0, B-3: 0, B-4: 0, M: 6.88, R-L: 19.49, C: 
36.06, S: 11.11

ML-C-1K-f2: three, decker, double, park, bus, green
Caption: Three double decker bus.
B-1: 36.79, B-2: 36.79, B-3: 29.2, B-4: 0.01, M: 31.75, 
R-L: 34.4, C: 102.82, S: 30

HC-0: The top of a building with a clock on it.

Objs/Objs+sp+multi/ML-Objs: clock
Caption: Clock.
B-1: 0.09, B-2: 0, B-3: 0, B-4: 0, M: 7.62, R-L: 19.49, 
C: 29.61/29.73/29.54, S:  8.7

ML-C-1K-f2: tower, top, clock, building
Caption: Clock tower at the top of a building.
B-1: 62.5, B-2: 42.26, B-3: 30.99, B-4: 0, M: 27.18, 
R-L: 30.70, C: 90.2, S: 14.29 

b (id:28074)

HC-0: A group of people at the beach with umbrellas.

Objs: person, backpack, umbrella
Caption: Person holding an umbrella with a backpack. 
B-1: 32.21, B-2: 0, B-3: 0, B-4: 0, M: 17.92, R-L: 20.1, 
C: 14.1, S: 8.7 

Objs+sp+multi: people, backpack, umbrella
Caption: People with an umbrella with a backpack.
B-1: 32.21, B-2: 0, B-3: 0, B-4: 0, M: 10.72, R-L: 24.45, 
C: 24.59, S: 17.39 

ML-Objs: umbrella, handbag, person, backpack
Caption: Person in a.
B-1: 13.53, B-2: 0, B-3: 0, B-4: 0, M: 9.01, R-L: 24.06, 
C: 5.13, S: 10.53

ML-C-1K-f2: people, beach, umbrella
Caption: People on a beach under an umbrella.
B-1: 53.68, B-2: 36.67, B-3: 27.24, B-4: 0, M: 21.76, 
R-L: 52.59, C: 67.19, S: 34.78

HC-0:A dog that is on a black skateboard.

Objs/ML-Objs: dog, person, skateboard
Caption: Person with a dog on a skateboard.
B-1: 74.30, B-2: 46.34, B-3: 33.39, B-4: 0.01, M: 21.76, 
R-L: 45.61, C: 120.41/119.81, S: 30

Objs+sp+multi: people, skateboard, dog
Caption: People on a skateboard with a dog.
B-1: 61.92, B-2: 42.30, B-3: 31.42, B-4: 0.01, M: 18.86, 
R-L: 34.21, C: 113.74, S: 20

ML-C-1K-f2: leash, dog, skateboard
Caption: Dog wearing a leash on a skateboard.
B-1: 61.92, B-2: 42.30, B-3: 31.42, B-4: 0.01, M: 21.20, 
R-L: 45.61, C: 73.34, S: 22.22

HC-0: The reflection of a bus in a vehicle.

Objs/Objs+sp+multi: person, bus
Caption: Person at a bus.
B-1: 18.39, B-2: 15.02, B-3: 0, B-4: 0, M: 12.91, R-L: 31.44, 
C: 57.79/57.95, S: 13.33

ML-Objs: bus
Caption: Bus.
B-1: 0.09, B-2: 0, B-3: 0, B-4: 0, M: 8.54, R-L: 19.49, C: 
32.33, S: 15.38

ML-C-1K-f2: school, mirror, bus, view
Caption: View of a mirror in a school bus.
B-1: 87.5, B-2: 79.06, B-3: 47.05, B-4: 0.01, M: 32.48, R-L: 
58.21, C: 187.16, S: 33.33

d (id:13910)

c (id:20078)

a (id:7121)

e (id:21711)

f (id: 36003)

Figure 4.5: Correct captions based on predicted keywords.



HC-0: A bear that is laying* down in the dirt.

Objs/ML-objs: bear
Caption: Bear.
B-1: 0.09, B-2: 0, B-3: 0, B-4: 0, M: 7.23, R-L: 
19.49, C: 31.14/31.59, S: 0

Objs/ML-objs: bears
Caption: Bears.
B-1: 0, B-2: 0, B-3: 0, B-4: 0, M: 0, R-L: 0, C:0, S: 
11.1

ML-C-1K-f2: log, bear, black
Caption: Black bear on a log.
B-1: 43.90, B-2: 24.54, B-3: 0, B-4: 0, M: 13.21, 
R-L: 40.76, C: 57.01, S: 19.05

HC-0: A dog is laying* in a chair in front of a 
book shelf.

Objs: book, dog
Caption: Book with a dog.
B-1: 28.65, B-2: 16.54, B-3: 0, B-4: 0, M: 
11.62, R-L: 28.77, C: 38.89, S: 21.05

Objs+sp+multi: books, dog
Caption: Books and a dog.
B-1: 21.49, B-2: 14.33, B-3: 0, B-4: 0, M: 
11.58, R-L: 28.77, C: 38.01, S: 22.22

ML-Objs: book, bed, dog
Caption: Dog on a bed reading a book.
B-1: 53.68, B-2: 36.67, B-3: 0, B-4: 0, M: 
14.82, R-L: 45.61, C: 41.23, S: 20

ML-C-1K-f2: dog, shelf, black, book
Caption: Black dog with a book shelf.
B-1: 60.65, B-2: 46.98, B-3: 32.23, B-4: 0.01, 
M: 23.51, R-L: 49.35, C: 80.49, S: 38.10

HC-0: A blue and silver truck with logs trees 
and wires.

Objs/Objs+sp+multi: car, truck
Caption: Truck and a car.
B-1: 18.39, B-2: 0, B-3: 0, B-4: 0, M: 9.7, 
R-L: 15.72, C: 46.92/47.04 S: 11.11 

ML-Objs: truck
Caption: Truck.
B-1: 0.09, B-2: 0, B-3: 0, B-4: 0, M: 7.62, 
R-L: 19.49, C: 39.28, S: 11.76

ML-C-1K-f2: trailer, log, blue, large, truck
Caption: Large blue truck pulling a trailer 
on a log.
B-1: 55.56, B-2: 37.27, B-3: 27.07, B-4: 0, 
M: 21.86, R-L: 35.67, C: 67.23, S: 38.10

a (id:4414) c (id:26160)b (id:4564) d (id:35170)

HC-0: A white sail boat sailing towards 
island.

Objs/Objs+sp+multi: boat/boats
Caption: Boat./Boats.
B-1: 0, B-2: 0, B-3: 0, B-4: 0, M: 0, R-L: 0, 
C: 0, S: 0

ML-objs: person, boat
Caption: Person on a boat.
B-1: 11.16, B-2: 0, B-3: 0, B-4: 0, M: 3.43, 
R-L: 13.26, C: 0.04, S: 0

ML-C-1K-f2: sail, ocean, boat, island, small
Caption: Small boat in the ocean with a 
sail on the island.
B-1: 63.64, B-2: 35.68, B-3: 0, B-4: 0, M: 
14.21, R-L: 39.15, C: 60.12, S: 6.67

* “laying” was incorrectly used instead of  “lying” in the human caption.

Figure 4.6: Captions generated based on predicted keywords with incor-rect use of spatial relations.
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4.6 Human Evaluation
A human evaluation was carried out to analyse the quality of the generated captions. For
this analysis, 500 captioned test images were chosen randomly. Inspired by the evalua-
tion strategy of Mitchell et al. (2012) and Tanti (2019), the evaluators were instructed to
assess the accuracy and fluency of the generated captions. The accuracy of the caption
refers to how relevant the caption is to the image content, while fluency corresponds to
how well the caption is written, irrespective of its accuracy. In this study, ten Maltese
graduate evaluators with English bilingual proficiency were given 55 images at a time and
were first trained over a few examples and then asked to rate both the accuracy and flu-
ency of image captions on a five-point Likert scale which includes (1) Strongly Disagree,
(2) Disagree, (3) Neutral, (4) Agree, and (5) Strongly Agree, as illustrated in Fig. 4.7. The
evaluators were given captions that were generated from HK-f2, Objs+sp, ML-C-1K-f2,
ML-C-2K-f2 keyword sets, and a human written caption (HC-0) to provide a sufficient
upper bound. This results in a total of 2750 captions (55 images × 5 captions × 10 evalu-
ators). These captions were non-identifiable and shuffled each time they were presented
to the evaluators. Each set of 55 images was composed of 70% (35) unique images per
evaluator, 20% (10) images common to all evaluators, to compute the inter-rate agree-
ment, and 10% (5) images which an evaluator would have already seen, to calculate the
intra-rater agreement.

The intra- and inter-rater agreements were calculated over all captions to evaluate the
reliability of the collected evaluations. This was carried out by calculating both the per-
centage agreement and Cohen’s kappa statistic (κ) (Cohen, 1960). The latter was specif-
ically computed to also take into account the random chance agreement between the
specified ratings. The overall mean intra-rater percentage agreements for the correctness
and fluency were 59.6% and 64.4% respectively, while the mean kappa scores were 0.45
for correctness and 0.49 for fluency. According to Cohen (1960), this reflects a moderate
intra-agreement and therefore confirms that the evaluators were generally not consis-
tent in their own evaluations. The overall intra-rater agreements are listed in Table 4.8,
whilst the intra-agreements per each configuration are tabulated in Table 4.9. Interest-
ingly, the evaluators were least consistent when rating the accuracy of Objs-sp (κ = 0.26)
and the fluency of ML-C-1K-f2 (κ = 0.28). On the other hand, the highest recorded intra-
agreement was on ML-C-2K-f2’s accuracy (κ = 0.49) and HC-0’s fluency (κ = 0.61).

Unsurprisingly, the inter-rater agreements were much lower. The overall inter-rater
percentage agreements, when computed on the rated accuracy and fluency were 40.6%
and 44.2% respectively, while the kappa scores were 0.21 and 0.19, respectively which
confirms a slight agreement between the evaluators. This shows that assessing image
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Figure 4.7: Screenshot of the human evaluation interfacewith correspond-ing annotations per each caption.
Table 4.8: Evaluator’s percentage and Cohen’s kappa intra-rater agree-ments for both accuracy and fluency.

Accuracy Fluency
Evaluator PercentageAgreement Cohen’s kappaCoeffiencient PercentageAgreement Cohen’s kappaCoefficient

1 0.72 0.58 0.80 0.682 0.64 0.53 0.52 0.323 0.52 0.33 0.60 0.374 0.60 0.51 0.56 0.415 0.60 0.45 0.52 0.376 0.52 0.37 0.60 0.407 0.32 0.06 0.72 0.628 0.76 0.67 0.68 0.569 0.64 0.48 0.72 0.6110 0.64 0.53 0.72 0.60
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Table 4.9: Evaluator’s percentage and Cohen’s kappa intra- and inter- (inbrackets) rater agreements per each configuration.
Accuracy Fluency

Model PercentageAgreement Cohen’s kappaCoeffiencient PercentageAgreement Cohen’s kappaCoefficient
HC-0 0.64 (0.48) 0.37 (0.16) 0.82 (0.51) 0.61 (0.04)
HK-f2 0.64 (0.35) 0.48 (0.17) 0.62 (0.40) 0.43 (0.23)Objs-sp 0.50 (0.51) 0.26 (0.34) 0.64 (0.53) 0.44 (0.27)ML-C-1K-f2 0.56 (0.37) 0.30 (0.20) 0.54 (0.40) 0.28 (0.24)ML-C-2K-f2 0.64 (0.32) 0.49 (0.16) 0.64 (0.36) 0.38 (0.18)

Table 4.10: Human Evaluation results for each configuration as comparedto the CIDEr metric on 550 images. Results include the median and (mean,standard deviation) in brackets for the human rated accuracy and fluency,and the CIDEr metric.
Model Accuracy Fluency CIDEr
HC-0 5 (4.47, 0.91) 5 (4.58, 0.89) 0.71 (0.86, 0.64)
HK-f2 3 (3.14, 1.38) 2 (2.77, 1.56) 0.94 (1.07, 0.67)Objs-sp 2 (2.82, 1.59) 4 (3.44, 1.63) 0.26 (0.34, 0.38)ML-C-1K-f2 3 (2.95, 1.40) 2 (2.84, 1.60) 0.54 (0.66, 0.53)ML-C-2K-f2 3 (2.94, 1.38) 2.5 (2.86, 1.60) 0.56 (0.64, 0.44)

captions is very subjective. The inter-rater agreements per each model are listed in brack-
ets in Table 4.9.

The human evaluation results are presented alongside the CIDEr metric for each key-
word set in Table 4.10. The human ratings show consistent findings with those found
from the automatic metrics. This is also evident from the comparison between the hu-
man ratings and the CIDEr score. Captions which were generated based on human ex-
tracted keywords (i.e., HK-f2) were rated with better accuracy (µ = 3.14) when compared
to captions based on predicted keywords. This is not surprising as these captions are
composed of keywords extracted from human captions and therefore benefit from high
accuracy. However, it was found that HK-f2 ranked last in terms of fluency (µ = 2.77),
while Objs+sp was found to be the most fluent (µ = 3.44) most probably due to its simple
and generic keyword set. It was also confirmed that ML-C-1K-f2 and ML-C-2K-f2 gen-
erate similar quality captions both in terms of accuracy (µ = {2.95, 2.94}) and fluency
(µ = {2.84, 2.86}) and both are not far off from the overall accuracy of HK-f2 (µ = 3.14).
In contrast to the CIDEr metric, the human evaluated ratings recorded higher standard
deviations especially in the rated fluency.

To study the level of statistical significance between the evaluated models, a one-
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way ANOVA (Girden, 1992) on the 550 ratings (for both accuracy and fluency) was con-
ducted. This analysis confirmed that there is a statistical significant difference between
the evaluated captions (accuracy: F(5, 544) = 141.32, p < 0.001; fluency: F(5, 544) =

146.55.06, p < 0.001). Due to this statistical significance, the post hoc Tukey’s Honest
Significant Difference (HSD) test (Tukey, 1949), was used to calculate the level of signifi-
cance between each pairwise combination. As reported in Table 4.11, when considering
the human rated accuracy and taking p < 0.05, a significant differencewas noted between
HC-0 and the remaining sets, and between HK-f2 and Objs-sp. On the other hand, when
considering the rated fluency, it was observed that there was no statistical significance
between HK-f2 and ML-C-1K-f2, HK-f2 and ML-C-2K-f2, and between ML-C-1K-f2 and
ML-C-2K-f2. In contrast, as tabulated in Table 4.11, all caption sets were found to differ
significantly when being evaluated on CIDEr score, except ML-C-1K-f2 and ML-C-2K-f2.

Given this inconsistency between the analysedmetrics, a correlation analysis between
the human assigned ratings and CIDEr was performed. Pearson’s correlation coefficients
were computed over the human evaluated captions. The Person’s correlation (r) between
the human rated accuracy and fluency was 0.61 (p < 0.0001). This confirms that there is
moderate positive correlation between the two human ratings. In contrast, the Pearson’s
correlation between the human rated accuracy and CIDEr was 0.20 (p < 0.0001) (weak
correlation), and between fluency and CIDEr was 0.06 (p < 0.05) (negligible correlation).

It was found that captions rated with high accuracy and fluency, can score low in the
automatic metrics. This is particularly shown in the captions generated by ML-C-1K-f2 in
Fig. 4.8 . For example, although the caption produced by ML-C-1K-f2 describes correctly
the content of Fig. 4.8(a), it was rated with a low CIDEr score of 14.82. On the other hand,
although the caption of ML-C-1K-f2 describes accurately Fig. 4.8(b), it did not benefit
from high scores. This is particularly noted in CIDEr score, which is close to that of the
hallucinated caption generated by ML-C-2K-f2. Conversely, it was found that, in some
occasions, the human ratings were overly generous when assessing captions that lack
details. For example, the one-word captions generated byObj-sp in Fig 4.8(a) and (b) were
rated high in both accuracy and fluency, despite their lack of quality. This analysis, not
only revealed the lack of correlation there is between automatic evaluation metrics and
human ratings, but it also confirmed the difficulty in obtaining reliable human evaluation
assessments.
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HC-0: A person is standing on a snowy hill overlooking a valley.
Accuracy: 5, Fluency: 5

HK-f2: man, mountain, lift, ski
Caption: Man standing on a snowy mountain with a person that is in a ski lift.
Accuracy: 5, Fluency: 5
B-1: 87.67, B-2: 70.37, B-3: 53.41, B-4: 39.92, M: 36.03, R-L: 46, C: 115.14, S: 
35.71

Objs-sp: person
Caption: Person.
Accuracy: 4, Fluency: 4
B-1: 0, B-2: 0, B-3: 0, B-4: 0, M: 6.56, R-L: 17.48, C: 8, S: 10

ML-C-1K-f2: lift, ski, snow, man, stand, person, slope, skier, mountain
Caption: Man on a snow covered ski slope.
Accuracy: 5, Fluency: 5
B-1: 61.92, B-2: 29.91 B-3: 0, B-4: 0, M: 21.47, R-L: 52.70, C: 40.76, S: 16

ML-C-2K-f2: snow, mountain, person, motorcycle, man
Caption: Man on a motorcycle down a snow covered mountain.
Accuracy: 1, Fluency: 5
B-1: 55.56, B-2: 26.35 B-3: 0, B-4: 0, M: 21.37, R-L: 41.71, C: 33.91, S: 16

HC-0: A group of people riding skis on a snowy slope.
Accuracy: 5, Fluency: 5

HK-f2: on, snowy, skiers, riding
Caption: People riding skis down a.
Accuracy: 4, Fluency: 2
B-1: 54.88, B-2: 38.80, B-3: 30.20, B-4: 0, M: 25.06, R-L: 59.08, C: 107.22 S: 
23.53 

Obj-sp: person
Caption: Person.
Accuracy: 5, Fluency: 5
B-1: 0, B-2: 0, B-3: 0, B-4: 0, M: 1.75, R-L: 0, C: 0, S: 0

ML-C-1K-f2: snow, people, cross, country, ski, mountain.
Caption: People on a snow covered mountain at a cross country ski in 
the snow.
Accuracy: 5, Fluency: 5
B-1: 50, B-2: 27.74, B-3: 0, B-4: 0, M: 16.40, R-L: 28.68, C: 14.82, S: 32

ML-C-2K-f2: mountain, snow, skier, people, skiing, cross, snowy, country
Caption: People cross country skiing.
Accuracy: 5, Fluency: 5
B-1: 9.19, B-2: 0, B-3: 0, B-4: 0, M: 9.67, R-L: 15.72, C: 7.6, S: 21

a (id:26222) b (id:5797)

Figure 4.8: Human evaluated captions for two testing images with theircorresponding evaluation metrics.
4.7 Summary
Both quantitative and qualitative analysis confirmed the efficacy of KENGIC for image
caption generation. Good quality benchmark results were obtained when using human
extracted nouns from single ground-truth captions as can be found in Figure 4.3. How-
ever, generally it was found that the overall performance degrades as prepositions and
verbs were added. Presumably, the performance was reduced as more constraints ex-
tracted from single captions restricted the searchwhile traversing the constructed graphs.
This assumptionwas confirmedwhen using the extracted human salient keywords. When
having generic and frequently used keywords, the proposed model was found robust in
combining salient keywords. This led to the generation of high-quality captions. This
chapter also presented a human evaluation study on the quality of the generated cap-
tions. Despite the low intra- and inter-rater agreement, the human analysis confirmed
that captions generated based on human extracted keywords were marginally more ac-
curate than those based on predicted keywords. On the other hand, the captions based
solely on object labels were rated with the highest fluency.
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Table 4.11: Tukey’s HSD (p < 0.05) for pairwise comparison between thehuman evaluated accuracy and fluency, and CIDEr score based on 550 cap-tions.
Mean Difference p-Adjusted Reject

Model 1 Model 2 Accuracy Fluency CIDEr Accuracy Fluency CIDEr Accuracy Fluency CIDEr
HC-0 HK-f2 -1.34 -1.81 0.21 0 0 0 T T THC-0 ML-C-1K-f2 -1.52 -1.75 -0.20 0 0 0 T T THC-0 ML-C-2K-f2 -1.53 -1.73 -0.22 0 0 0 T T THC-0 Objs-sp -1.65 -1.44 -0.52 0 0 0 T T THK-f2 ML-C-1K-f2 -0.19 0.06 -0.41 0.15 0.96 0 F F THK-f2 ML-C-2K-f2 -0.19 0.08 -0.43 0.13 0.89 0 F F THK-f2 Objs-sp -0.32 0.66 -0.73 0 0 0 T T TML-C-1K-f2 ML-C-2K-f2 -0.01 0.02 -0.02 1 1 0.98 F F FML-C-1K-f2 Objs-sp -0.13 0.60 -0.32 0.501 0 0 T F TML-C-2K-f2 Objs-sp -0.12 0.58 -0.31 0.57 0 0 T F F



5 Spatial Relation Detection in
KENGIC

As discussed in the previous chapter (refer to 4.3), KENGIC made use of prepositions
implicitly and without being able to ground such prepositions in images. Apart from the
limited use of spatial relations in the text corpus1, learning to infer spatial relations from
images needs to consider the corresponding trajector and landmark objects. Therefore,
predicting spatial relations between two objects directly from images in a multi-label way
is difficult. To better handle the use of spatial relations in the generated captions, KENGIC
was extended by a post-processing module designed to validate any spatial prepositions
used in the generated captions. Captions were first processed to extract triplets in the
form of (trajector, relation, landmark). These objects were then grounded in images by
localising the objects in bounding boxes using the off-the-shelf Faster R-CNN (Ren et al.,
2015) object detector. According to the literature, the Random Forest (RF) classifier was
found to be the best single label model in spatial relation detection (Muscat and Belz,
2017b). Therefore, a Random Forest (RF) classifier was trained to predict prepositions
between objects using corresponding labels and geometric features extracted from the
two detected bounding boxes. Relations found in the extracted triplets which did not
match with the detected prepositions were replaced by the output of the implemented
spatial relation detector.

5.1 Spatial Role Labelling
To validate and correct the used spatial prepositions in the generated captions, triplets in
the form of (trajector, relation, landmark) were extracted. This task, which is commonly
referred to as Spatial Role Labelling (SpRL), is a sub-task in NLP which aims to extract spa-
tial relations from natural language (Kordjamshidi et al., 2011). Based on the assumption

1The overall percentage of prepositions used in the optimal human extracted keywords (i.e., HK-f2) was
1.58.
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that the generated captions are not produced with complex dependencies, spatial triplets
were extracted by a simple developed SpRL tool which assumes captions with ordered
triplets and prepositions that are always found between two objects. For instance, for
a caption like “a person is on a boat that is parked in a field”, the following triplets are
extracted: (“person”, “on”, “boat”) and (“boat”, “in”, “field”). This process was evaluated on
ViSen Prepositions (Ramisa et al., 2015) and SpRL-2013 (Kolomiyets et al., 2013) datasets,
and by human evaluation.

5.1.1 Visen Prepositions Dataset
The ViSen Prepositions dataset (Ramisa et al., 2015) was specifically proposed for spatial
relation detection. It consists of triplets extracted from COCO and Flickr30k captions
together with their object bounding boxes. The COCO subset which is split into training
(8029) and test (3431) was used in this study since it is compatible with the previous work.
This dataset contains triplets with both the original labels as found in COCO captions as
well as their highlevel object labels. Spatial triplets were automatically extracted using
the transition-based dependency parser of Chen and Manning (2014) as implemented in
Stanford CoreNLP (Manning et al., 2014). Dependencies reflecting prepositional depen-
dencies were extracted given both the governor and the dependent entities overlap with
the objects mentioned in the descriptions and given both objects have corresponding
bounding boxes in COCO dataset. When evaluating the extraction of triplets from the
ViSen test dataset having original object labels, the calculated precision and recall were
equal to 28% and 49% respectively, which resulted in an F-score of 36%.

5.1.2 SpRL-2013 Dataset
The SpRL-2013 dataset (Kolomiyets et al., 2013) is a dataset which is specifically used in
spatial role labelling. This XML based dataset contains text with annotated tags which
locate trajectors, landmarks and spatial prepositions in the text. Compared to the image
captions featured in the ViSen dataset, the sentences found in this dataset are more com-
plex in terms of dependencies between their mentioned objects. The text was parsed and
triplets were extracted according to the XML tags. This resulted in a total of 876 triplets.
As expected, when compared to the evaluation conducted on Visen Dataset, the preci-
sion and recall dropped to 7% and 22% respectively, while the F-score decreased from
36% to 11%.
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5.1.3 Human Evaluation
To further assess the quality of the developed spatial role labelling approach, four hu-
man evaluators were recruited to evaluate the extracted spatial triplets. The evaluators
were given 50 randomly sampled captions with corresponding extracted spatial triplets
from the ViSen test split. The evaluators were asked to specify whether each extracted
triplet complies with the caption (i.e., the evaluators had to ask the question of whether
the given trajector t is related to the landmark l with the spatial relation r for the given
caption). A value of 1 had to be given for correct triplets, whilst incorrect triplets had to
be assigned a value of 0. The given captions were distributed into: 70% (35) unique for
each evaluator, 20% (10) were evaluated by each evaluator, and 10% (5) of the captions
were duplicates for each evaluator. This was intended to calculate both inter- and intra-
rater agreements. The mean precision was equal to 52% with a 95% intra-agreement and
85% inter-rater agreement. The corresponding Cohen’s kappa coefficients were 0.89 and
0.71 for the intra- and inter-rater agreements respectively. With such level of agreement,
this evaluation confirmed once again that the spatial role labelling task is a complex task
which requires a much more sophisticated approach.

5.2 Detection
After the extraction of spatial triplets, object labels were grounded in images. Tomaximise
the number of detectable objects, a Faster R-CNN trained onOpen ImagesV4 (Kuznetsova
et al., 2020) with a pre-trained Inception Resnet V2 (Szegedy et al., 2017) was used. In
cases when multiple objects were present for a given extracted object label, the closest
pair in terms of the distance between the two bounding box edges was considered. In
contrast to the 80 detectable objects of the COCO dataset, Open Images has a total of
601 detectable entities. Out of these, 404 (67%) labels are found in COCO vocabulary. On
the other hand, the ViSen COCO split (with original labels) was used to train the spatial
relation detector. This dataset was chosen primarily because it is based on COCO dataset
and owing to its diversified object vocabulary set. The dataset has a total of 328 distinct
objects which are all part of the Open Images detectable entities. To reduce the ambigu-
ity in the training data, (a) synonym prepositions were mapped according to Cambridge
dictionary2 as follows: {“by”: “near”, “beside”:“next to”, “inside of”: “inside”, “onto”: “on”,
“underneath”: “under”, “beneath”: “under”, “outside”: “outside of”, “out of”:“outside of”},
(b) non spatial relations including: “with”, “of”, “at”, “as”, “for”, “from”, “to”, “about”, “off”,
“past”, “across”, “down”, and “before” were eliminated, and (c) prepositions which occur

2https://dictionary.cambridge.org/
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Table 5.1: Distribution of spatial relations found in ViSen (COCO split) afterpre-processing.
# Spatial Relation Count Ratio (%)
1 on 4333 70.492 in 1062 17.283 near 335 5.455 next to 146 2.385 under 117 1.906 over 39 0.637 behind 36 0.598 inside 27 0.449 above 17 0.2810 in front of 15 0.2411 between 11 0.1812 around 9 0.15

less than five times were not considered. This resulted in a total of 12 spatial relations
distributed across 6147 instances and 259 object labels, as tabulated in Table 5.1. As can
be noted from the table, the distribution of the dataset is highly skewed with prepositions
“on” and “in” dominating the entire dataset. The dataset was split into development (80%)
and test (20%) sets. The former split was further divided with the same ratio into train and
validation splits. Splitting was performed through stratified sampling to keep consistent
distributions between each split.

5.3 Features
The spatial tripletswere representedwith both linguistic and geometric features extracted
from corresponding bounding boxes. Labels of the two objects were represented using
the pre-trained 50-dimensional global vectors (GloVe) (Pennington et al., 2014) (F0, F1),while the spatial orientation between the two objects was encoded by a set of 13 geo-
metric features (refer to Fig. 5.1, as proposed in Muscat and Belz (2017b), as follows:

• F{2,3}: The areas of the two bounding boxes enclosing objects obj{0,1} and normalised
by the total area of the image.

• F4: Ratio of obj0 area with respect to the area of object obj1.
• F5: Euclidean distance as computed between the two centroids of the bounding
boxes normalised by the image diagonal.

• F6: The overlapping area over the two bounding boxes normalised by the area of the
smaller bounding box.
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• F7: Euclidean distance between the two centroids divided by half the sum of square
root of the two areas (an approximate average width/height of the two bounding
boxes). This feature accounts for the space between bounding boxes.

• F8: The cardinal position of obj0 in relation to obj1 dependent on the angle between
the two centroids which is represented by one of the four cardinal directions: north,
south, east and west.

• F9−12: Given the distance of the left margin between the image and obj0’s left edge
is a0 and to the right edge is b0, and for obj1 same measures are represented by a1and b1 respectively, F9 = (a1 − a0)/(b0 − a0); F10 = (b1 − a0)/(b0 − a0). Similarly,
F11 and F12 are computed with respect to the image’s bottom edge and the bounding
boxes’ horizontal edges respectively. F9−12 provide information on (a) the amount
of bounding box overlap in x and y directions, (b) extent of free space in between
the trajector and landmark, and (c) whether the trajector is to the right, left, top or
bottom of the landmark. As such they are correlated with some other features. In
addition, an earlier study of Muscat and Belz (2017b) shows that F12 partly acts as aproxy to depth and is useful in predicting behind/in front of relations.

• F{13,14}: Aspect ratio of width to height of each bounding box, obj0 and obj1.

F2 = Ao / AI 

F3 = A1 / AI  

F4 = A0 / A1 

F5 = dobj / di 

F6 = Area(OVLP) / smallest(A0, A1)

F7 = dobj /  0.5 [(A0+A1)]
0.5

  

F8 = 

F9,11 = (a1- a0) / (b0- a0)

F10,12 = (b1- a0) / (b0- a0)

F13, 14 = w / h di

＋

obj0

＋

obj1OVLP

I

A0= Area(obj0)

A1= Area(obj1)

AI= Area(I)

dobj
a0
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w
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Figure 5.1: Geometric features as proposed in Muscat and Belz (2017a).
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Table 5.2: Spatial relation prediction results metrics on Visen (COCO) split.
Split Accuracy Precision Recall F-Score
Validation 0.85 0.27 0.26 0.26Testing 0.83 0.26 0.23 0.24Testing (bal) 0.64 0.26 0.25 0.25

5.4 Model and Results
In a previous study (Muscat and Belz, 2017b), the RF (Breiman, 2001) classifier which is
an ensemble classifier composed of multiple decision trees, was found to be the best per-
forming single-label model for predicting spatial relations based on the features discussed
in Section 5.3. Therefore, a RF classifier was optimised on the validation set by varying
the number of estimators (1− 200), maximum tree depth (1− 50), maximum number of
features (1− 113), minimum number of samples to split (2− 40), and theminimum number
of samples required to output a leaf node (1− 40) on a logarithmic scale. This resulted
in a total of 81000 combinations. The best performing configuration in terms of F-score
reached a score of 0.36 and an accuracy of 0.79 with a maximum depth of 9, maximum
of 40 features, minimum of 15 samples to split and a minimum of 3 samples to output as
leaf nodes. The full results on the validation and test sets are tabulated in Table 5.2. It
was found that when training and testing the spatial relation detector on balanced sets
no significant difference was noted in the metrics when compared to the non-balanced
configuration. A confusion matrix based on the non-balanced configuration is depicted in
Fig. 5.2. This analysis confirmed that less popular and more spatially constrained preposi-
tions, such as “above”, ‘around” and “between” were incorrectly classifiedwith generic and
near synonym prepositions. For example, instances with the prepositions “above” were
classified with “on”, while “around” was confused with “near”. As expected, the spatial
relation detector was most notably accurate in predicting the prepositions “in” and “on”
given their generic aspect and their popularity in the dataset. On the other hand, despite
being infrequent, the preposition “under” was predicted correctly 58% of the time. On
the other hand, the detector struggled to find the distinction between “near” and other
more spatially constrained relations such as “next to”. This points out the need for (1)
more representative and less skewed spatial relation dataset to better understand the
distinction between spatial relations, (2) more features to encode the spatial triplets, and
(3) multi-label models that can address the polysemous nature of spatial relations.
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5.5 Model Integration
Following the generation of image captions, the spatial relation detection module was
used to post-process the captions to validate or correct any used prepositions as dis-
cussed in the previous sections. The effect of this module was analysed on the captions
which were generated based on ML-C-1K-f2 (since it recorded the highest CIDEr score).
The corresponding results metrics are reported in Table 5.3. The results are organised in
two groups. The first group reports only the metrics for the captions which were changed
after the post-processing, while the second group reports the overall computed metrics
on the full testing set with the changed captions. Captions were modified using the spa-
tial relation (SR) detection model as described in Section 5.4 when trained on the full and
balanced training data. Metrics computed on the pre-processed captions and percentage
differences are tabulated for comparison purposes. When using the SR detection module
trained on the full training set, 131 out of the 5000 test captions were modified, while the
balanced version altered 145 captions. Overall, it was found that with the introduction of
the SR modification, caption quality decreased marginally across all metrics. The largest
decrease was noted when using the balanced SR model on BLEU and CIDEr scores. For
instance, BLEU-4 decreased from 20 to 16.7 (i.e., -16.5%) and CIDEr dropped from 81.8
to 76.2 (i.e., -8%). Metrics were less decreased when using the SR model trained on the
full training set (non-balanced). Given the small percentage of captions that were mod-
ified (2.62% by the non-balanced SR model and 2.9% by the balanced model), a slight
decrease was noted in the overall metrics, while no changes were observed in METEOR
and ROUGE-L when using the non-balanced SR model. This confirmed that the devel-
oped SR model was not effective for enhancing the quality of the generated captions. To
understand the main cause of this outcome, a qualitative analysis was conducted. This
analysis was performed on 50 random sampled captions which were modified using the
non-balanced SR model. As illustrated in Fig. 5.3, all the modified captions scored lower
values in all metrics, except in Fig. 5.3(d), where ROUGE-L increased from 50.41 to 57.55,
despite introducing correct spatial relations as shown in Fig. 5.3(d-f). This confirmed the
fact that captions with spatial relations that are not grounded in images can score better
metrics than captions which are grounded. This was also observed in SPICE score which
takes into consideration the relations between entities as shown in Fig. 5.3(e) where SPICE
dropped from 46.67 to 40 after changing the relation (man, in, dog) to (man, near, dog).
A possible reason why this is happening is because the swapped prepositions are com-
monly used in the ground-truth captions but used in different contexts. For example,
when modifying the caption from a “cat in a chair” to “cat on a chair” in Fig. 5.3(d), the
metrics got lower (except ROUGE-L), despite the fact that both prepositions can be used.
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In this case, this happened as the preposition “in” was frequently used with “sleeping/lay-
ing in” in the five ground-truth captions. The five corresponding human captions are as
follows: (1) “A calico kitty sleeping in an orange chair”, (2) “A calico cat sleeps on a red desk
chair”, (3) “A fluffy cat laying3 in an orange chair”, (4) “A calico cat sleeping on an orange
office chair”, and (5) “A cat laying3 down and resting in a chair on a hardwood floor.” On
the other hand, from this analysis it was found that the SR module in some cases modi-
fied non-spatial prepositions with incorrect spatial relations, as shown in Fig. 5.3(a,c). The
incorrect prediction of prepositions shows the limitations of the features used and the
dataset. For instance, the relationship between the “man” and “dog” as found in Fig. 5.3(c)
could possibly be resolved better with the introduction of depth features. In that case,
depth estimates of objects can give higher weight to the preposition “behind” instead of
“on” when bounding boxes overlap with each other. Furthermore, this analysis showed
that multiple prepositions can be applicable for a given context as illustrated in Fig. 5.3(b).
Although the preposition “near” ranked second with a probability of 0.3 it was replaced by
the preposition “behind” which ranked first with a probability of 0.31. In such case, linking
the “zebra” with “tree” using both “near” and “behind” would enhance the precision of
the caption. This analysis therefore confirms that more accurate captions can be gener-
ated by using multi spatial relation detection and with the introduction of added features,
such as depth estimates. A study which focuses solely on multi spatial relation detection
in images using depth estimates is presented in the following Chapter.

3“laying” was used incorrectly instead of “lying” in the human caption.
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Table 5.3: Evaluation metrics computed on the testing set for the changedcaptions and for all captions in COCO dataset. Results for the original gen-erated captions (pre) are included for comparison together with their cor-responding percentage difference. The results for the changed captionsare presented based on an SR model which was trained on both balanced(bal) and non-balanced training sets.
Num. of captions BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

changed-pre (bal) 131 (145) 69.2 (69) 49.7 (49.9) 31.8 (32.5) 18.7 (20) 26.8 (26.8) 43.4 (44) 81.8 (82.5) 23.0 (23.2)changed-post (bal) 131 (145) 66.7 (64.6) 46.7 (45.1) 28.1 (27.9) 15.8 (16.7) 26.3 (26) 42.5 (42.2) 76.2 (75.9) 22.7 (22.7)
% difference - -3.6 (-6.4) -6 (-9.6) -11.6 (-14.2) -15.5 (-16.5) -1.9 (-3) -2.1 (-4.1) -6.8 (-8) -1.3 (-2.2)
all-pre (bal) 5000 63.6 (63.6) 44.7 (44.7) 28.9 (28.9) 18.0 (18.0) 22.0 (22.0) 40.3 (40.3) 69.8 (69.8) 18.3 (18.3)all-post (bal) 5000 63.5 (63.1) 44.6 (44.2) 28.8 (28.5) 17.9 (17.7) 22.0 (21.9) 40.3 (40.2) 69.6 (69.0) 18.3 (18.0)
% difference - -0.2 (-0.8) -0.2 (-1.1) -0.3 (-1.4) -0.6 (-1.7) 0 (-0.5) 0 (-0.2) -0.3 (-1.1) 0 (-1.6)



HK-C-1K-f2: brick, building, window, large, clock
Caption: Large clock on a brick building with a 
window.

SR triplets: (clock, on, brick), (building, with, 
window)
SR detection: (building, {on (0.97), in (0.01),  next to 
(0.01)}, window)
Caption+SR: Large clock on a brick building on a 
window.

Pre (Post): B-1: 89.48 (79.57), B-2: 83.70 (73.06), 
B-3: 71.02 (58.94), B-4: 57.18 (49.71), M: 37.10 
(37.10), R-L: 64.99 (64.99), C: 226.70 (213.43), S: 
27.78 (27.78)

a (id:14224) b (id:28174)

HK-C-1K-f2: zebra, stand, two, tree, zoo
Caption: Two zebra stand near a tree in a zoo.

SR triplets: (zebra, near, tree), (tree, in, zoo)
SR detection: (zebra, {behind (0.31), near (0.3), in (0.27)}, 
tree)
Caption+SR: Two zebra stand behind a tree in a zoo.

Pre (Post): B-1: 66.67 (55.56), B-2: 50 (37.27), B-3 32.93 
(27.07), B-4: 0 (0), M:19.67 (18.11), R-L: 37.14 (37.14), C: 
94.76 (90.84), S:16 (16)

c (id:32013)

HK-C-1K-f2: man, dog, woman, next, sit, 
grass
Caption: Man with a dog on a grass and a 
woman sit next.
SR triplets: (man, with, dog), (man, on, 
grass), (man, on, woman), (man, on, sit)
SR detection: (man, {on (0.47), near (0.31), 
next to (0.1)}, tree)
Caption+SR: Man on a dog on a grass and a 
woman sit next.

Pre (Post): B-1: 83.33 (75), B-2: 55.05 
(45.23), B-3: 39.28 (27.35), B-4: 0.01 (0), M: 
37.05 (33.38), R-L: 43.26 (43.26), C: 88.16 
(76.59), S: 38.46 (30.77)

HK-C-1K-f2: chair, cat
Caption: Cat in a chair.

SR triplets: (cat, in, chair)
SR detection: (cat, {on (0.74), in (0.19),  near (0.03)}, 
chair)
Caption+SR: Cat on a chair.

Pre (Post): B-1: 36.79 (36.79), B-2: 30.04 (30.04), 
B-3: 25.51 (0), B-4: 0 (0), M: 19.39 (18.21), R-L: 
50.41 (57.55), C: 100.74 (97.41), S: 19.05 (19.05)

d (id:7560)

e (id:21762)

HK-C-1K-f2: man, dog, tree, christmas, hat, small
Caption: Man in a small dog wearing a hat and a 
christmas tree.

SR triplets: (man, in, dog), (hat, wearing, christmas)
SR detection: (man, {near (0.31), on (0.3),  in 
(0.18)},dog)
Caption+SR: Man near a small dog wearing a hat 
and a christmas tree.

Pre (Post): B-1: 100 (91.67), B-2: 90.45 (76.38) , 
B-3: 68.91 (55.93), B-4: 0.01 (0.01), M: 31.97 (28.36), 
R-L: 53.51 (46.82), C: 174.45 (156.88), S: 46.67 (40)

f (id:15066)

HK-C-1K-f2: boy, ball, young, field, soccer, play
Caption: Young boy in a field play soccer on a ball.

SR triplets: (boy, in, field), (boy, on, play), (boy, on 
soccer), (boy, on, ball)
SR detection: (boy, {near (0.52), in (0.33),  next to 
(0.06)}, ball)
Caption+SR: Young boy in a field play soccer near 
a ball.

Pre (Post): B-1: 100 (90), B-2: 57.74 (54.77), B-3: 
0 (0), B-4: 0 (0), M: 31.49 (31.10), R-L: 50 (50), C: 
116.84 (114.17), S: 24.24 (24.24)

Figure 5.3: A sample of captions which were modified based on SR de-tection together with their corresponding extracted SR triplets and detec-tions. The top three prepositions for each detection are listed with theirprobabilities in brackets. Evaluation metrics for pre/post processed cap-tions are also listed.



6 Multi Spatial Relation Detection

This chapter presents content published in the following journal article:
Birmingham, B. and Muscat, A. Multi spatial relation detection in images. Spatial Cog-

nition & Computation, 1-35, 2021.

6.1 Overview
Detecting the spatial relationship between objects plays a very important role in vision
and language understanding. In fact, it was evident that captions generated by KENGIC
can benefit from the explicit use of spatial relation detection. However, as shown in the
qualitative analyses of the previous chapter, prediction of spatial relations is not straight-
forward when considering the multi-label nature and ambiguity of the problem. For this
reason, this chapter describes research carried out in Birmingham and Muscat (2022) to
study the spatial relation prediction from a multi-label perspective. This was specifically
intended to provide insights on how prediction of prepositions can be improved in image
caption generation. Several models, including a k-Nearest Neighbour multi-label model
which was also published in:

Birmingham, B. and Muscat A. Clustering-based model for predicting multi-spatial re-
lations in images. In Proceedings of the 16th International Conference on Informatics in Con-
trol, Automation and Robotics, ICINCO2019 - Volume 2, Prague, Czech Republic, pages 147-
156, 2019,

were used and developed to investigate the problem of multi-spatial relation detec-
tion based on (a) label embeddings, (b) geometric features extracted from object bounding
boxes, and (c) depth features. The addition of ‘depth’ was originally proposed and studied
in single-label spatial relation detection in the following publication:
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Birmingham, B., Muscat, A., and Belz, A. Adding the third dimension to spatial relation
detection in 2D images. In Proceedings of the 11th International Conference on Natural
Language Generation, Tilburg University, The Netherlands, pages 146-151, 2018.

6.2 Motivation
Spatial language plays an important role in instruction based natural language communi-
cation, for example when instructing a robot in a household environment to accomplish a
specific task (e.g., “put the clothes in the laundry bin”, “stack the books on top of the desk
in the right corner”, etc.) (Fasola and Matarić, 2012). The use of spatial language is also
important when interacting with autonomous vehicles, especially when instructing them
to perform a particular task, for example to park either in front of or inside a garage. It is
also useful when self-driving cars are designed to provide textual explanations for their
actions (e.g., “the car is going to move to the right lane because the car in front is slowing
down”) (Kim et al., 2018), and also when their control systems can accept short-term hu-
man textual advice to influence their vehicle controller during navigation (e.g., “if you see
a child on the sidewalk, slow down.”) (Kim et al., 2019).

(a) Instructing an autonomous vehicle topark “behind” and “close to” the streetpost (Chesterton, 2017).
(b) A visually impaired personcrossing a busy road while twovehicles are coming “in front of”and “close” to him from his “left”direction (Uwamariya, 2019).

Figure 6.1: The use of multiple prepositions in two different scenarios.
Assistive technology for the visually impaired needs to be highly verbose and descrip-

tive to portray their visual surrounding with audible natural language descriptions, espe-
cially in circumstances where a good level of spatial knowledge and cognition is required.
One such example is in cases where navigational assistance is required to help the visually
impaired navigate from one place to another. In this context, the use of spatial relations
is essential to describe how the objects are related to each other (allocentric), as well as
to how the same person is spatially related to the surrounding objects (egocentric) (Ball
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et al., 2009). To accurately describe the relationship between objects and to simultane-
ously construct a detailed cognitive map (Tversky, 1993) for the visually impaired and for
autonomous robots (Thrun, 2008), the use of multiple spatial relations is crucial to help
them both understand and navigate in unfamiliar environments with a high degree of co-
ordination. As an example, if an autonomous vehicle needs to be parked as shown in
Fig. 6.1(a), prepositions “behind” and “close to” should be equally understood and inter-
preted by its navigational system. Also, as shown in Fig. 6.1(b), an assistive technology in
the depicted scenario should not only detect that the visually impaired person is going to
cross a busy road, but most importantly, it should alert that person not to cross the road
as there are two vehicles coming “in front of” and “close” to him from his “left” direction.

The examples demonstrate the importance of using either a specific preposition or
multiple prepositions in contexts that require precision. As discussed in the previous
chapter, the explicit use of spatial prepositions is very useful in automatic image caption-
ing, especially in cases involving unusual setups where spatial descriptions are necessary
to provide exact and relevant captions. For example, it is unusual to encounter scenarios
like boat “in” a tree, or ship “in” a bottle as illustrated in Fig 6.2 in common training im-
age captioning datasets. Therefore, image caption generators should be trained to reason
about the spatial setup of the main image entities.

(a) boat “in” tree (Chesterton,2017). (b) ship “in” a bottle (Scott, 2013).

Figure 6.2: Unusual scenarios which require precise spatial descriptions.
Moreover, to effectively describe the visual content where the use of multi spatial

relations is useful to provide rich descriptions as shown in Fig 6.1, this chapter addresses
the problem of detecting multiple spatial relations using pattern recognition methods.
Although the selection of spatial prepositions is typically a straightforward task for human
beings, the machine interpretation of spatial relationships is known to be a difficult and
complex problem in NLP (Tellex et al., 2020). Detecting spatial relations between objects
is difficult for two primary reasons. On one hand, there is the data collection problem
since annotators are not always consistent when choosing prepositions (Muscat and Belz,
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2017b), possibly because of near-synonym prepositions that are semantically equivalent
(e.g., “by” and “close”) and on the other hand spatial relations overlap, sometimes even
if they are antonyms, as when the frame of reference changes. Some examples where
multi spatial relations are used to describe the spatial relationship between two objects
enclosed in bounding boxes (BBs) are given in Figure 6.3.

(a) A person (in blue BB) standing “in frontof” and “near” a cow (in red BB) - image2008_007586.jpg from Pascal VOC 2008dataset (Everingham et al., 2010).

(b) An aeroplane (in blue BB) flying “above”,“behind”, and “far from” the aeroplane (in redBB) - image 2008_007096.jpg from PascalVOC 2008 dataset (Everingham et al., 2010).
Figure 6.3: Multi spatial relations in images.

6.3 Problem Definition
The standard way to detect spatial relations is to combine extracted feature vectors with
single class labels by learning a function f : X → Y, where X and Y represent the in-
stances by their corresponding feature vectors, and label spaces respectively. By assum-
ing that each feature vector xi ∈ X belongs to one class label yi ∈ Y, the training feature
vectors combined with their corresponding class labels found in set D = {(xi, yi) | 1 ≤
i ≤ m} are used to automatically learn the semantic relationship between each xi ∈ X
and yi ∈ Y, ∀ m instances (Zhang and Zhou, 2014). A typical feature vector xi includesmultiple features fi ∈ xi to describe that given instance xi. Spatial relations can thereforebe represented using a combination of linguistic and geometric featureswhich can include
for example the object class labels, the areas of the two bounding boxes normalised by
the image size and the distance between the two centroids of the two bounding boxes.
Based on these spatial features, the function f : X → Y is trained to predict the sets of
spatial relations {“in front of” ,“near”} and {“above” ,“behind”, “far from”} when given the
object labels and the bounding boxes of Figures 6.3(a) and (b) respectively.

137



CHAPTER 6. MULTI SPATIAL RELATION DETECTION

To address the multi-label nature of preposition selection, the spatial relation detec-
tion can be cast as a multi-label classification problem (Tsoumakas and Katakis, 2007), by
assigning a set of appropriate labels (prepositions) for each instance. For a given space
X = <d denoting each d-dimensional feature vector per instance, and Y = {y1, y2, . . . yq}
which represents the label space with q distinct class labels for each and every xi ∈ X,
multi-label learning aims to infer a function h : X → 2q from the multi-label training
data D which is represented by (xi, yi), where xi is a d-dimensional feature vector, while
yi ⊆ Y is the corresponding set of associated labels. Finally, to predict the set of class
labels h(xi) ⊆ Y for a given unseen xi ∈ X, the learned multi-label model h(·) is applied.

The simplest way to handle multi-label classification problems is by decomposing the
same problem into several classification problems. This means that one binary classifier
is trained for each class label and therefore used to predict whether a given instance is
attributed to that label or not. This approach is known as binary relevance (BR) learning.
This kind of approach has been criticized for not taking into account the hidden informa-
tion that can be found in the label space, i.e., information about the interdependencies
between the labels. Given that the presence or absence of the different class labels has
to be predicted simultaneously, the exploitation of the dependency between classes can
be crucial in multi-label learning (Dembczyński et al., 2012). In fact, a good multi-label
model internally models the dependency between classes.

In this chapter, several multi-label models are developed. The models are evaluated
with automatic metrics, as well as with human evaluations. A quantitative analysis is
carried out to compare the performance of the various multi-label models and to assess
the collected human evaluations. In addition, to get an insight into the rankings of a single-
label classifier, the standard way of predicting prepositions, the multi-label annotations
are compared to the output of a single-label Random Forest classifier (RF). Furthermore,
the human evaluations, which are independent of the ground truth labels inform on the
quality of the original dataset human annotations. Finally, a qualitative analysis is carried
out to highlight errors in the predictions and discuss possible causes, informing directions
for future work.

6.4 Dataset
The French SpatialVOC2K dataset (Belz et al., 2018) was used in this study. Objects in this
dataset are annotated with textual labels and corresponding bounding boxes, while the
relationship between objects is encoded as sets of prepositions (multi-label). This dataset
was collected by instructing French native speakers to specify the single preposition (in-
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putted as a free text entry) that best describes the spatial relationship between a given
pair of objects. In a second step, the annotators had to select all relevant prepositions
from a list of prepositions, such that each preposition fits in the given context. The labels
in this dataset can therefore be considered complete, and hence are suitable to conduct
the multi-label experiments. The dataset has a total of 21 unique prepositions which are
distributed across a total of 5320 object pair annotations out of which 80 annotations are
duplicates. These duplicates, which were used to measure the intra- and inter-annotator
agreements in Belz et al. (2018) were then grouped by taking the union of all spatial rela-
tions that were selected for a given object pair. This leads to a total of 5240 unique object
pair combinations from a total of 20 object categories in 1554 images. The dataset has an
average label cardinality (the average number of prepositions per object pair) of 2.16 and
follows the distribution tabulated in Table 6.1. The total number of prepositions used in
the experiments was reduced to 17 after eliminating prepositions: à côté (“beside”), au-
dessous de (“below”) and en travers de (“across”) which were recorded once and replacing
près (“near”), which was also recorded once, by près de (“near”)1. The dataset was split into
development (80%) and test set (20%), while the development set was further sub-divided
into training and validation sets in the same ratio. Each dataset split was assured to have
a similar class distribution to that tabulated in Table 6.1.

Table 6.1: Distribution of preposition set sizes.
Spatial Relations

Set Size Frequency
1 1117
2 2351
3 1597
4 166
5 8
6 1

6.5 Features
Following previous works (Muscat and Belz, 2017b; Ramisa et al., 2015), this study con-
sidered both linguistic and geometric features as input to the models, as in Section 5.3.
To address the limitations of this feature set as discussed in Section 5.3, additional ob-

1Note that près de (“near”) was recorded 2856 times.
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ject depth estimations were included. For the purpose of the reported experiments, the
following six discrete sets of features: (a) Language Label Encodings (LE), (b) Language
Indicator Vector (IV), (c) Word Embeddings (GloVe), (d) Word Embeddings (Word2vec), (e)
Geometric Features (GF), and (f) Depth Features (DF) are defined. In the experiments,
combinations of the above features were used to train the models. For example, {IV, GF}
or {GloVe, GF, DF}. The following section details the used depth features.

6.5.1 Depth Features (DF)
This section contains content from the following publication:

Birmingham, B., Muscat, A., and Belz, A. Adding the third dimension to spatial relation
detection in 2D images. In Proceedings of the 11th International Conference on Natural
Language Generation, Tilburg University, The Netherlands, pages 146-151, 2018.
6.5.1.1 MonoDepth Features
In order to automatically infer the depth for image objects, monoDepth2 (Godard et al.,
2017), which is a CNN-based method trained on stereo image pairs was used. This model
maps images to depth maps consisting of pixels having values that represent the esti-
mated distance from the viewer. More specifically, the monodepth-cityscapes model
trained on the Cityscapes dataset (Cordts et al., 2016) was used. Figure 6.4 shows an
image from the dataset alongside the depth map generated for it by the monodepth-
cityscapes model. The more towards the dark blue end of the colour spectrum an area
is, the further away it is from the viewer, and the more towards the bright yellow end,
the closer. The model produces an impressively accurate rendering of the depths of the
two trees, car, person, and road. Once a depth map is generated for a given image, depth
values were obtained for the pixel grids in the bounding boxes of the pair of objects under
consideration. The following features were computed for each bounding box:

• Average (AVG) depth: simply the average depth value within each object bounding
box.

• Radially weighted average (RWA) depth: starting from the central pixel(s), each pixel
is weighted by the inverse proportion to its distance from the centre and a weighted
average is computed.

2https://github.com/mrharicot/monodepth
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Figure 6.4: Example of SpatialVOC2K image and depth map generated bymonoDepth.
Looking at the example in Figure 6.4, the average depth value is much less in the

red person bounding box (BB) than in the blue car BB, making “person in front of car” a
possibility. The RWA is also less for the person BB, but the difference is less pronounced
than would be the case if all of the car was further away than the person, thus making
“person next to car” an alternative possibility.
6.5.1.2 Manually Estimated Depth Feature
Human depth estimates of BB level for 1, 554 images and 3, 642 objects were collected
as follows. Participants were shown an image with all relevant objects surrounded by
BBs. Their task was to assign a number out of 100 to each bounding box, indicating the
average depth of (just) the object, where 100 is the maximum distance. The annotators
were trained and mentored for some time before starting annotations proper. Three par-
ticipants in total contributed to the annotations. Depth values were normalised to range
from 0 to 1 for each image.

Pearson’s correlation coefficients were computed over all object BBs between the
human estimated object depths and the corresponding AVG and RWA figures. Pearson’s
correlation (r) between human and AVG depth values was 0.535 (p < 0.0001), and be-
tween human and RWA was 0.523 (p < 0.0001). The correlation between AVG and RWA
was 0.995 (p < 0.0001). MonoDepth and human-estimated average object depths were
converted to categorical values (foreground, background, neutral), and the percentage
agreements were 60.8% for the average depth and 60.3% for RWA. When both auto-
matic and manual depth estimations were used alongside the linguistic and geometric
features in the experiments published in Birmingham et al. (2018), it was confirmed that
depth enhances the prediction accuracy in all single-label scenarios tested. However,
it was confirmed that automatically computed depth is still some way off manually an-
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notated toplines, and for this reason only manual depth estimations were used for the
multi-spatial relation detection study. Therefore, estimated depth for each object in the
interval between 0 (foreground) and 100 (background) was used. For this study, these
values were normalised between 0 and 1 and represented by {Fd | 15 ≤ d ≤ 16}3.
Furthermore, the depth difference F17 between the two objects was used to reflect the
depth order between the two objects obj0 and obj1.

6.5.2 Preprocessing
Features vary in magnitude (e.g., in the training set, the label encoded object value varies
between 0 and 19, while the depth of an object varies between 0 and 1). This impacts
the model performance as features with high magnitude can dominate the models during
training, as well as slow down the machine learning process. Therefore, as part of the
data pre-processing stage, each feature was normalised to zero mean and unit standard
deviation.

6.6 Evaluation Metrics
Label cardinality is used to calculate the average number of predicted prepositions per
instance and is a global metric useful to determine whether the model is under or over
generating output labels (i.e., prepositions). It is compared to the training set’s cardinality,
which is 2.16. The label cardinality (LCard) for dataset D is computed as follows:

LCard(D) =
1
n

n

∑
i=1
|Yi|, (6.1)

where Yi is the set of spatial relations for the ith instance and n is the total number of
instances in the pertaining set D.

In addition to the Label Cardinality, example-based metrics including accuracy (Acc)
(Refer to Eqn. 3.2), precision (P) (Refer to Eqn. 3.3), recall (R) (Refer to Eqn. 3.4) and F-
score (F) (Refer to Eqn. 3.4) (Zhang and Zhou, 2014), were used to evaluate themulti-label
prediction problem as described in Section 3.5.4.1.

3The full feature set can be found in Section 5.3
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6.7 Models
This section describes the various multi-label models developed for predicting multi-
spatial relations between pairs of objects which take as input combinations of linguis-
tic, geometric and depth features. The models implemented are the k-Means (kM-C) and
the Agglomerative Hierarchical (A-HC) based clustering models, the Nearest Neighbour
(NN) model, which is a distance-based classification method, and the Multi-Label Neural
network (ML-NN). A Random Forest (RF) single-label classifier was also implemented to
compare results to the single-label classification problem. The following sections describe
each model and its development.

6.7.1 Nearest Neighbour (NN)
This method uses the normalised training data as discussed in Section 6.5 to predict
prepositions by finding the closest instance xj in set X. As the training data is consid-
ered exhaustive, this approach permits the selection of the most similar instance based
on Euclidean distance, so that the corresponding spatial relations are taken as the pre-
dicted prepositions h(xi). Formally, the predicted prepositions for the unseen instance
xu are the prepositions belonging to the spatial relation instance xj such that:

xj = arg min
xi
|xu − xi| (6.2)

From the results generated on the validation set, which are presented in Table 6.2, it
can be noted that when the spatial relations are only represented by the linguistic fea-
tures, the highest average accuracy rate obtained is 0.216 when using the GloVe feature
vector, even though the label cardinality exceeds the value of 10. The accuracy rate in-
creased to 0.377 when using the geometric features only, and when the geometric fea-
tures were combined with the GloVe feature vector, the accuracy increased to 0.438.
When combining the full feature set (i.e., GloVe+GF+DF), the accuracy increased further
to 0.442 and the label cardinality dropped to 2.153.

6.7.2 k-Means Clustering (kM-C)
This subsection presents the k-Means Clustering (kM-C) based method which was pub-
lished in Birmingham and Muscat (2019). In this model, disjointed clusters composed
of features characterised by low intra-variability and high inter-variance in comparison
to other cluster members are formed. Unseen instances are then assigned to the clos-
est clusters based on euclidean distance. The probability distribution of the prepositions
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Table 6.2: Evaluation metrics computed on the validation set for each fea-ture vector for the NN model.
Features LCard(Val) Acc P R F

LE 10.293 0.215 0.219 0.954 0.356
IV 10.335 0.215 0.219 0.957 0.357

W2V 10.317 0.215 0.220 0.956 0.357
GloVe 10.285 0.216 0.220 0.954 0.358
GF 2.163 0.377 0.483 0.485 0.484

GloVe+GF 2.167 0.438 0.560 0.554 0.557
GloVe+GF+DF 2.153 0.442 0.566 0.558 0.562

linked with the corresponding training instances found within the assigned clusters is
computed. The spatial relations that exceed a predefined threshold are then considered
as part of the predicted set for a given unseen instance. The approach is designed to
group similarly oriented spatial relations based on their linguistic and visual properties.
By making use of the k-means clustering algorithm (Pedregosa et al., 2011) and without
taking into consideration the ground-truth preposition sets, the scaled feature vectors
having zero mean and unit variance were grouped into k distinct clusters. The probability
distribution of prepositions across each cluster was exploited for both the classification
of unseen instances as well as for preposition similarity.
6.7.2.1 Model
The developed model is based on k-means clustering which aims to partition the instance
space X into k disjointed and non-hierarchical clusters represented by set C (Jain et al.,
1999). The method is designed to iteratively assign each xi ∈ X into one of the available
clusters defined in set C in a 2-stepped approach until a terminating condition is met.
Starting from an initial set of k centroids represented by the randomly initialised means
M(t) = {m(t)

1 , m(t)
2 , . . . , m(t)

k } at time-step t, each having a dimension |xi|, the first step
requires the assignment of each instance xi to the closest cluster centroid based on Eu-
clidean distance. This is calculated between xi ∈ X and mi ∈ M, such that each cluster
c(t) ∈ {C(t)

c | 1 ≤ c ≤ k} is composed of:
{xi : ||xi −m(t)

c ||2 ≤ ||xi −m(t)
j ||

2 ∀j, 1 ≤ j ≤ k}, (6.3)
where each xi is assigned to only one cluster c(t) irrespective of any instances whichmight
fit in multiple clusters. The algorithm continues by updating each cluster mean found in
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set M by:
m(t+1)

c =
1
|c(t)| ∑

xi ∈ c(t)
xi. (6.4)

These two steps are repeated until either the centroids and instances stabilise (i.e.,
centroids stop changing their position and instances keep consistent cluster member-
ship), or until a number of iterations are performed. Given the non-deterministic nature
of this method and since it does not guarantee a global optimum, initial centroid seeds are
initialised via the k-means++ algorithm (Arthur and Vassilvitskii, 2007) to speed up con-
vergence. Furthermore, the method was executed for 1000 consecutive runs and each
run was allowed to perform 300 iterations. This was performed to increase the likelihood
of finding the centroids that best minimise the within-cluster variance.

Once the set of data points X are clustered into the final k clusters, multi spatial rela-
tion detection is implemented by first computing the preposition likelihoods P(P |C) for
each spatial preposition pi ∈ P over each cluster ci ∈ C. Preposition likelihoods are then
normalised with respect to the maximum likelihood found per each cluster ci, such that
the dominant prepositions found in each cluster have a likelihood equal to 1 given that:

P(pi | cj) =
P(pi | cj)

arg maxpi P(pi | cj)
. (6.5)

6.7.2.2 Classification
The multi spatial relation set for a given unseen object pair represented by xi is predictedby a two-stepped approach. The first step is to find the closest cluster Cm represented
by its mean m that minimises the L2 norm distance among all cluster means by:

m = arg min
m∈M

{||xi −m||2}. (6.6)
The second step is to extract the prepositions belonging to the closest cluster Cm

which have a likelihood ratio that exceeds a specified threshold t. Mathematically, the
predicted spatial relations h(xi) are denoted by:

h(xi) = {pi : P(pi |Cm) ≥ t}. (6.7)
The training phase and the details for optimising the hyper-parameters k and t of the

presented model are discussed in subsection 6.7.2.4.
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Figure 6.5: Accuracies computed on the validation set for varying clusters(k) and thresholds (t) based on linguistic features including Label Encoding(LE), Indicator Vector (IV), GloVe and Word2Vec (W2V) word embeddings.
6.7.2.3 Distance Metric
To get deeper insights into how prepositions are related to each other, the clustering-
based model offers a way to compute the similarity between each preposition pi ∈ P. By
representing how each preposition pi is clustered through its distribution over each clus-
ter ci ∈ C, spatial prepositions can be compared via a distribution distance metric. Given
that the prepositions p{i,j} are represented by the probability distributions P(C | p{i,j}),prepositions were compared via the histogram intersection method which computes the
distance metric d(pi, pj) as follows:

d(pi, pj) = ∑
ck ∈C

min(P(ck | pi), P(ck |pj)) (6.8)

6.7.2.4 Optimisation
The above metrics were computed under various k and t values to gain insight into how
the clustering-based model performs when using both linguistic and visual features. The
first experiment was carried out to evaluate the model based solely on linguistic prop-
erties. This was intended to identify the language feature set that best represents the
object labels whilst also maximising the discussed evaluation metrics. Figure 6.5, shows
the accuracies obtained when predicting spatial relations for the instances found in the
validation set based on each linguistic feature set. The plots show how the accuracy
varies with the different number of clusters (k) and thresholds (t). The accuracy peaks
when approaching the 100th cluster for all varied thresholds, and the top two performing
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thresholds were 0.5 and 0.6 for each configuration. Furthermore, it was evident that the
Indicator Vector (IV) feature set marginally improves on the Label Encoding (LE), while the
GloVe and Word2Vec (W2V) slightly outperform the IV. The overall accuracies for each
feature set computed across all k and t values (i.e., total of 342 per each feature set) were
analysed. Table 6.3 shows that the highest accuracy recorded was 0.273 for both GloVe
and W2V embeddings, while the highest accuracy mean (0.195) and median (0.198) were
obtained when using GloVe features. For this reason, the GloVe feature set was used for
the following experiments in conjunction with both geometric and depth features.

Table 6.3: Overall statistics per each linguistic feature set.
Features Mean Median Min Max

LE 0.172 0.166 0.042 0.250IV 0.180 0.180 0.132 0.270W2V 0.187 0.196 0.153 0.273
GloVe 0.195 0.198 0.164 0.273
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Figure 6.6: Average predicted preposition set sizes generated for the val-idation set for varying clusters (k) and thresholds (t) based on a combina-tion of linguistic and visual features. The plots show the dataset’s averageprepositions set size (i.e., 2.16) and the region where cluster stabalise (i.e.,
@k = 150) with the horizontal and vertical dashed lines respectively.

The hyper-parameters k and t were both optimised with respect to the corresponding
average predicted preposition set size as obtained on the validation set. As illustrated
in Figure 6.6, the model was assessed in terms of how many prepositions are generated
for a given unseen instance when represented by a combination of linguistic and visual
features. This was performed for varying values of k and t. The plots show that when the
model was parameterisedwith thresholds of 0.5 and 0.6, it gave an average preposition set
size that is very comparable to the overall dataset’s label cardinality (i.e., 2.16 and which
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Table 6.4: Evaluation metrics computed on the validation set for each fea-ture vector.
Features k,t LCard(Val) Acc P R F
GloVe 150, 0.6 2.265 0.273 0.356 0.385 0.343GF 150, 0.6 2.079 0.211 0.276 0.307 0.269GloVe+GF 150, 0.6 2.004 0.270 0.367 0.353 0.336

GloVe+GF+DF 150, 0.5 2.167 0.283 0.370 0.388 0.353

is marked by the horizontal dashed line in the respective plots), given that the number of
clusters (k) falls within the stable region (i.e., within the elbow curve which is represented
by the vertical dashed line in the plots). Therefore, the number of optimal clusters for
each configuration was set to 150, while a threshold t = 0.6 was used when the model
was based on: {GloVe, GF, GloVe+GF} sets, and t was set to 0.5 when the model used the
combined feature set composed of: {Glove+GF+DF}.

The remaining evaluationmetrics associatedwith the respective chosen hyper-parameters
are tabulated in Table 6.4. The table shows that the linguistic features highly influence
the spatial relation detection. The accuracy obtained when using linguistic features only
was 0.273. The accuracy decreased to 0.211 when spatial relations were predicted based
on their geometric features. When both feature sets were combined (i.e, GloVe+GF), the
average precision (AP) increased by 3.1%, over that obtained when using GloVe features
alone, while the average recall (AR) decreased by 8.3% which resulted in a loss of 1.1%
in accuracy. However, when adding the depth features together with the linguistic and
geometric properties (i.e., GloVe+GF+DF), the average accuracy (Acc) increased by 3.7%
and reached the highest recorded accuracy of 0.283, thus confirming the effectiveness of
the added depth features.

The final model was trained on the full development set with k = 150 for all feature
sets. The likelihood threshold t was set to 0.5 when trained on the complete feature set,
otherwise t was set to 0.6. The model was evaluated on the testing set for 50 times to
compute the average metrics which are reported in Table 6.7.

6.7.3 Agglomerative Hierarchical Clustering (A-HC)
Hierarchical Clustering is a method which organises the training data into a hierarchy of
clusters (Johnson, 1967). The agglomerative hierarchical clustering approach (Day and
Edelsbrunner, 1984) is designed to merge instances in a bottom-up approach. The algo-
rithm starts by treating each instance as a singleton cluster. The process continues by
merging the two closest clusters iteratively to form one single cluster until all clusters
are merged together into one composite cluster containing all instances. Throughout the
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whole process, a distance matrix containing all distances between clusters is maintained.
After each merge, the distance matrix is updated to reflect the distances between the
newly created cluster in relation to all other remaining clusters and instances. Clusters
can be merged via different linkage methods which include the Single-link, Average-link,
Complete-link, Weighted-link, Centroid-link, Median-link and Ward-link:

In the Single-link (S) approach, the distance between the newly formed cluster com-
posed of u and v is the minimum distance for all points in clusters u and v computed by:

d(u, v) = min(dist(u[i], v[j])), (6.9)
for all points i and j in clusters u and v respectively.

In Complete-link (C), the distance between two clusters is the largest distance be-
tween clusters u and v which is computed as follows:

d(u, v) = max(dist(u[i], v[j])), (6.10)
for all points i in cluster u and j in cluster v.

The distance in Average-link (A) is specified by the average distance found between
the two clusters computed by:

∑
ij

d(u[i], v[j])
|u||v| , (6.11)

for all points i and j where |u| and |v| are the cardinality of clusters u and v respectively.
When using the weighted-linkage (W) method, the distance between the resultant

cluster and the other remaining clusters is found by computing the arithmetic mean of
the distances between each cluster as follows:

d(u, v) = (dist(s, v) + dist(t, v))/2, (6.12)
where cluster u is formed with clusters s and t, and v is a remaining cluster in the forest.

The centroid (C) linkage calculates the distance between two clusters by calculating
the Euclidean distance between the cluster centroids as follows:

dist(s, t) = ||cs − ct||2, (6.13)
where cs and ct are the centroids of clusters s and t respectively.
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Like the centroid linkage, the Median (Med) link takes into account the average of the
two cluster centroids as a distance measure.

Finally, the Ward (W) linkage method uses the Ward variance minimization algorithm
to calculate the distance between the two centroids u and v by the following equation:

dist(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2, (6.14)
where u is the newly joined cluster consisting of clusters s and t, and v is an unused

cluster in the forest T = |v|+ |s|+ |t|.
The result of this merging process is a tree-based representation, i.e., a dendrogram of

varying height (h) which depends on the instance’s scaled vector space, as well as the link-
age (l) method that is used. Once the dendrogram is created based on the feature vector
of spatial relations, the classification of unseen instances is carried out by first cutting the
tree at the most appropriate cut-off point (c). Once the tree is cut, the closest instance
based on Euclidean distance is found from the dendrogram. The corresponding cluster is
found from the dendrogram so that the probability distribution of the prepositions found
in that cluster P(pi) can be calculated. The prepositions that exceed a specified threshold(th) are considered as the predicted ones.

The experiments carried out on the validation set for this model considered all linkage
methods and analysed the predicted accuracy for varying threshold values in the interval
between 0 and 1 in steps of 0.1. The model was also evaluated using different feature
setups, linkage methods and 10 varying dendrogram cut-off points in relation to each
corresponding depth (d). From the results tabulated in Table 6.5, it can be seen that the
GloVe feature vector, which obtained an accuracy of 0.216, again outperformed the other
linguistic features by 0.5%, given that all other linguistic features obtained an accuracy of
0.215. In this case, when using the geometric features only, the best accuracy was 0.263
and when combined with the GloVe feature vector it improved by 34.2% to an accuracy
of 0.353. The highest accuracy achieved on the validation set was 0.377 when using the
combination of linguistic, geometric and depth features. In the latter case, the average
cardinality was equal to 4.5. All hyper-parameters are tabulated in the same table.
6.7.4 Multi-label Neural Network (ML-NN)
A Multi-label Neural Network (ML-NN) (Bishop, 1995) is a network of inter-connected
neurons designed to output the probabilities of multi-labels from an output neuron layer.
Specifically, this model is based on an input layer of size equal to the number of features
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Table 6.5: Evaluation metrics computed on the validation set for each fea-ture vector after hyper-parameter optimisation for the A-HCmodel. Head-ers l, d, c and th are the linkage type, tree depth, tree cut-off point andthreshold values respectively.
Features l d c th Clusters LCard(Val) Acc P R F

LE S 0.451 0.1 0 156* 10.293 0.215 0.219 0.954 0.356
IV S 9.664 1 0 156* 10.335 0.215 0.219 0.957 0.357

W2V S 37.500 3.8 0 156* 10.317 0.215 0.220 0.956 0.357
GloVe S 13.071 1.4 0 156* 10.285 0.216 0.220 0.954 0.358
GF A 17.885 1.8 0 629 7.626 0.263 0.281 0.865 0.425

GloVe+GF A 22.678 2.3 0 1179 5.253 0.353 0.391 0.807 0.526
GloVe+GF+DF A 22.745 2.3 0 1516 4.500 0.377 0.433 0.763 0.553

* All linguistic features were best clustered into singleton clusters where each cluster corresponds toindividual object pair. This shows that clustering based solely on linguistic features was ineffective.

plus an additional neuron for the bias, and a set of hidden layers that can be of varying
height (h : 5− 500) and depth (d : 1− 40). In this implementation, both the input and hid-
den layers are composed of ReLU activation units. The model has an output layer which
is composed of sigmoid activation units to reflect the probability of each preposition. The
number of output neurons is equal to the number of spatial relations which in these ex-
periments was set to 17. The Adam optimisation algorithm (Kingma and Ba, 2015), which
is an extension to the stochastic gradient descent (Robbins and Monro, 1951), was used
to iteratively update the network weights. The learning phase of the model was left to
execute for 1000 epochs; however, early stopping with patience 20 was used to make
sure that the model is trained without overfitting, by stopping at the optimal epoch (e)
and by using the optimal batch size (b : 32, 64, 128). This was carried out by minimising
the validation loss on the validation set for 5 consecutive times so that the results are
averaged over multiple runs. Furthermore, since the output layer is composed of sigmoid
units which output values that vary between 0 and 1, the binary cross entropy loss was
used as the loss function to train the network, as shown below:

Hp(q) = −
1
N

N

∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)), (6.15)
where y is whether the corresponding preposition is 1 or 0 when represented by the hot-
encoding vector and p(y) is the predicted probability of that instance being 1, for all N
points.

The average results generated by ML-NN when computed over 50 repetitions on the
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Table 6.6: The average evaluation metrics of the ML-NN when computedon the validation set after hyper-parameter optimisation for each featurevector. The labels d and h correspond to the depth and height of the neuralnetwork, while labels b and e refer to the batch size and number of epochsrespectively.

Features d h b e LCard(Val) Acc P R F
LE 5 500 128 63 1.149 0.294 0.492 0.318 0.386

GloVe 10 40 128 55 1.242 0.336 0.519 0.365 0.429
IV 10 150 64 26 1.264 0.340 0.518 0.372 0.433

W2V 1 150 64 12 1.479 0.355 0.524 0.404 0.456
GF 5 200 32 13 1.651 0.461 0.626 0.521 0.569

GF+LE 5 500 128 13 1.717 0.479 0.631 0.545 0.585
GF+W2V 5 150 64 16 1.784 0.516 0.677 0.592 0.632
GF+IV 5 500 64 6 1.809 0.525 0.687 0.609 0.645

GF+GloVe 5 200 64 10 1.793 0.531 0.692 0.608 0.647
GF+LE+DF 5 500 64 8 1.832 0.537 0.682 0.616 0.648

GF+W2V+DF 5 300 128 16 1.829 0.564 0.726 0.641 0.681
GF+IV+DF 5 150 64 10 1.874 0.571 0.722 0.655 0.687

GF+GloVe+DF 5 300 32 8 1.853 0.573 0.732 0.653 0.690

validation set are tabulated in Table 6.6. It shows that the W2V linguistic feature set
obtained the highest accuracy of 0.355, when compared to the other linguistic features:
LE (0.294), GloVe (0.336) and IV (0.340). When using geometric features only, the accu-
racy increased to 0.461 and when combined to linguistic features, it reached the highest
accuracy when paired with the GloVe feature vector (i.e., 0.531). The highest accuracy
achieved among all models was that of 0.573 when adding the depth features to linguis-
tic (GloVe) and geometric features. All hyper-parameters are tabulated in the same table.
From the table, it can also be seen that, compared to the other models, the multi-label
neural network generates fewer prepositions. In fact, in the best configuration setup, the
average label cardinality was 1.853 when having a network composed of 5 hidden layers,
each with 300 neurons, and trained with a batch size of 32 for 8 epochs.

6.7.5 Single-Label Random Forest (RF) Classifier
To get an insight into how the rankings of a single-label classifier relate to the multi-labels,
the results from a single-label Random Forest (RF) classifier, which was found to be the
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best classifier in a comparative study (Muscat and Belz, 2017b), are analysed. For the
purpose of the analysis, the k top-ranked prepositions generated by the RF model are
considered as the set of “multi-labels”, and since the dataset’s cardinality is 2.16, k = 2
and k = 3 are expected to yield the relevant multi-label output. In the results section, the
results for k = 1 to 4 are tabulated to justify this assumption. Since k is a constant, it is
expected, that in some cases, the RF will either under- or over-generate.

The Random Forest (Breiman, 2001) is an ensemble classifier composed of multiple
decision trees (Quinlan, 1986), where each decision tree is used to fit each training sub-
sample, through replacement, using an averaging mechanism to enhance the predictive
accuracy, as well as to avoid over-fitting. To train the RF model, the multi-label instances
in each split were expanded into separate single-label instances and the feature vector, F,
was set to the concatenation of {GF, GloVE, DF}. The model was fine tuned by varying
the number of estimators (1-200), maximum tree depth (1-50), maximum number of fea-
tures (1-116) from features F, minimum number of samples to split (2-40) and theminimum
number of samples required to output a leaf node (1-40) on a logarithmic scale, resulting
in a total number of 65,610 combinations. The best performing configuration on the vali-
dation set achieved an accuracy rate of 0.386 with 61 estimators, a maximum depth of 13,
maximum number of features equal to 23, minimum of 11 samples to split and a minimum
of one sample to output a leaf node.

6.8 Results and Discussion
The results presented in this section are generated from training all models on the de-
velopment set and evaluated on the test set. This process is repeated 50 times and the
computed average metrics are tabulated in Table 6.7.

From the table, it can be noted that although the k-means clustering approach was
trained to generate an average number of prepositions close to the dataset’s label car-
dinality (i.e., 2.16), it ended up being the least accurate when predicting multiple spatial
relations. The computed average accuracy and F-score recorded were 0.288 and 0.35 re-
spectively. The agglomorative hierarchical clustering predicted spatial relations with an
average label cardinality of 4.6 and achieved an average accuracy of 0.377. It is clear that
the A-HC is over generating prepositions.

With an average label cardinality equal to the dataset’s overall cardinality (i.e., 2.16),
the Nearest Neighbour obtained an average accuracy of 0.47. Furthermore, the Multi-
label Neural Network performed better (accuracy of 0.56) than all the other multi-label
models, despite obtaining an average label cardinality of 1.85 which reflects its under
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generation and scoring less in recall (0.638) when compared to the recall rate obtained
by the A-HC model (0.767). The ML-NN; however, enjoys the highest precision (0.715),
followed by NN (0.587), which turns out to be a good overall simple baseline model.

The RF model is a single-label classifier that ranks the prepositions in order of pref-
erence, and as such it is not a multi-label model. However, it gives some insights into its
relative merits. Table 6.7 gives results for recall@k, for k = 1 to 4. The accuracy increases
as k increases till k = 3 and then decreases, reflecting under and over generation of labels.
At k = 3 the accuracy is 0.585 and recall 0.804, higher than ML-NN; however, precision
(0.646) is less than in ML-NN. On the other hand, selecting k = 3 is like fitting the RF
model to the dataset and strictly speaking requires another evaluation.

Table 6.7: Average metrics computed on the testing set when trained onthe full development set based on the full feature vector: GloVe+GF+DF.
Model LCard(Test) Acc P R F
kM-C 2.322 0.288 0.356 0.396 0.350
A-HC 4.626 0.377 0.427 0.767 0.548
NN 2.157 0.472 0.587 0.582 0.584

ML-NN 1.847 0.560 0.715 0.638 0.674

RF-1 1.000 0.380 0.848 0.380 0.509
RF-2 2.000 0.569 0.755 0.646 0.678
RF-3 3.000 0.585 0.646 0.804 0.699
RF-4 4.000 0.514 0.537 0.882 0.653

6.8.1 Human Evaluation
Human evaluations (HE) were also collected to assess both the correctness of the pre-
dicted preposition set by eachmodel, and also to investigate the reliability of the dataset’s
ground truth labels. In this data collection exercise, eight French native speaking individ-
uals were instructed to describe the spatial relationship between a given pair of objects
depicted in an image by selecting all relevant prepositions out of all distinct spatial re-
lations that were predicted by all models (PM) and the corresponding dataset’s ground
truth (PGT). In other words, the evaluators had to select all applicable prepositions from
the union of all preposition sets (Punion = {Pm |m ∈ M} ∪ PGT). Each union set was listedtogether with the corresponding image containing the two objects enclosed in bounding
boxes marked in blue and red to match the corresponding object labels. The evaluators
were instructed to choose all prepositions (PHE) that can be used to describe the spatial
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Figure 6.7: Human evaluation exercise: In this case, the French evaluatorselected the prepositions devant (“in front of”), près de (“near”) and sous(“under”) as relevant spatial relations for the relationship between the twobirds as found in image 2008_008268.jpg, Pascal VOC 2008 dataset (Ev-eringham et al., 2010).
relationship between the two depicted objects by ticking all checkboxes found on the
right of each preposition, as illustrated in Fig. 6.7, to simultaneously assess the quality
of each model and the corresponding ground truth. The metrics described in Section 6.6
for the predicted and ground truth sets were computed with respect to the evaluated set
(i.e., PHE) rather than the actual dataset’s ground truth labels Y. In this evaluation exer-
cise, evaluators had to rate 40multi-label predictions, in which 28 (70%) were unique for all
evaluators, 8 (20%) duplicate across all evaluators which were used to compute the inter-
rater agreement, and 4 (10%) duplicates for the same evaluator to compute the intra-rater
agreement. From this evaluation, 5 out of 8 evaluators completed the full exercise and a
total of 275 evaluations were collected as listed in Table 6.9. The mean and standard de-
viation of the label cardinality of the collected human evaluated set of prepositions were
found to be equal to 2.244 and 1.129 respectively.

The average intra- and inter-rater percentage agreements were computed to assess
the reliability and quality of the evaluations. The percentage intra-rater agreement was
computed by calculating the average agreement over each pair of evaluations (total of
4 pairs per evaluator). This was carried out by first translating each Punion into one-hot
encoding vector Pv, where each bit reflects whether each preposition was selected (1) or
not (0) in accordance with PHE. The disagreement between each pair (Pv1, Pv2) was ob-
tained by identifying the non-matching bits as Pd = Pv1⊕ Pv2. The percentage agreement
between the pair of evaluations was then calculated as:

Agg = 1− 1
|Pd|

|Pd|

∑
i=1

Pd[i], (6.16)
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The mean of each evaluator’s set of duplicate pairs were averaged to report the per-
centage intra-rater agreement which was found to be equal to 94%. Similarly, the average
inter-rater agreement was calculated by computing the overall average pairwise agree-
ment between the five evaluations that were collected for eight different images. The
inter-rater agreement was found to be equal to 74%.

Since these calculated percentage agreements do not take into account the random
chance agreement, they are prone to overestimate the level of reliability (McHugh, 2012).
Hence, Cohen’s kappa statistic (κ) (Cohen, 1960) which is one of the most widespread
measures for inter-rater reliability (Delgado and Tibau, 2019) is computed. Given that
this coefficient is not applicable to multi-label classification, the kappa agreement was
calculated for each evaluated label as conducted by Bobicev and Sokolova (2017). This
means that a one-hot indicator vector of size equal to the number of evaluations was used
per label to denote in which evaluation that same label was used. For example, if the spa-
tial relations between three different object pairs were described by {[dans (“in”), près de
(“near”)]; [dans (“in”)]; [derrière (“behind”), près de (“near”)]} by Evaluator A and {[dans (“in”)];
[près de (“near”)]; [derrière (“behind”)]} by Evaluator B respectively, the following vectors
are created:

Evaluator A: { dans: [1, 1, 0], près de: [1, 0, 1], derrière: [0, 0, 1] }
Evaluator B: { dans: [1, 0, 0], près de: [0, 1, 0], derrière: [0, 0, 1] }
The above vectors indicate that the preposition dans (“in”) was used in the first two

evaluations by Evaluator A ([1,1, 0]), while Evaluator B used it only in the first evaluation
([1, 0, 0]). Based on these occurrences, a confusion matrix was then created for each label
to reflect the agreement count between the two evaluations as shown in Table 6.8. For
example, since the preposition dans (“in”) was used by both evaluators in the first evalua-
tion, cell (A = 1, B = 1) for column dans (“in”) is set to 1. Similarly, since derrière (“behind”)
was only used in the third evaluation by both evaluators, cell (A = 1, B = 1) for column
derrière (“behind”) is set to 1, cell (A = 0, B = 0) is set to 2 and the rest with zeros.

The observed (po) and expected (pe) probabilities are then calculated for each label. For
example, the observed probability for the preposition dans (“in”) is calculated by adding
the number of times there is an agreement between the two evaluations i.e., count(0, 0)+
count(1, 1) = 2 and divided by the total number of evaluations, which in this case is 3.
Therefore, po = 2

3 = 0.67. On the other hand, the hypothetical probability of chance
agreement pe is computed by calculating the probability of not having the preposition
dans (“in”) by p0 = [(count(0, 0) + count(0, 1))/3] × [(count(0, 0) + count(1, 0))/3] =
1
3 ×

2
3 = 0.22. Similarly, p1 is calculated by 2

3 ×
1
3 = 0.22. The overall expected probability
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Table 6.8: Agreement count between the two evaluations (A, B) for theprepositions dans (“in”), près de (“near”), and derrière (“behind”).
A

dans près de derrière

0 1 0 1 0 1

B
0 1 1 0 2 2 0
1 0 1 1 0 0 1

is then calculated by: pe = p0 + p1 = 0.44. The kappa score (κ) for the preposition dans
(“in”) is then computed by:

κ =
po − pe
1− pe

=
0.67− 0.44

1− 0.44
= 0.4 (6.17)

This approachwas applied to calculate the average intra- and inter-rater agreement by
averaging over the number of selected labels. The intra-rater agreement was calculated
per label for each duplicate evaluation and averaged over each label and five evaluators.
Furthermore, the inter-rater agreement was computed by averaging the pairwise inter-
rater agreement for each label across eight evaluations over five evaluators. The average
intra-rater agreement was equal to 0.82, which according to Landis and Koch (1977), re-
flects an almost perfect agreement. On the other hand, the average inter-rater agreement
was equal to 0.52 which indicates a moderate agreement and thus confirming the incon-
sistency between evaluators when it comes to choosing spatial relations. Both the per-
centage and the kappa values were taken as an indication that the human evaluations are
of good quality given that the selection of spatial prepositions is an ambigous task (Retz-
Schmidt, 1988) and the kappa score is an overly conservative measure (Gottschall, 2008;
Murphy and Ciszewska-Carr, 2005; Muscat and Belz, 2017b). A summary of intra- and
inter-rater agreements is tabulated in Tables 6.9 and 6.10 respectively.

As reported in Table 6.11, the human evaluation confirmed again that the kM-C ap-
proach is the least accurate method, followed by A-HC, NN and ML-NN. On the other
hand, in contrast to the previous results, the human evaluations showed that the ML-NN
achieved an accuracy of 0.502 and hence slightly better than the RF-3 (0.490) and RF-2
(0.485) by a margin of 2.45% and 3.51% respectively. It is interesting to note that both
ML-NN and RF-3 were rated less by the evaluators than the ground truth. This observa-
tion was also noted when humans were asked to evaluate machine generated single-label
spatial prepositions by Muscat and Belz (2017b) and Dobnik (2009). On the other hand,
the evaluators in Dobnik (2009) often rated higher machine generated motion related
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Table 6.9: Evaluators’ percent and Cohen’s kappa intra-rater agreementstogether with the corresponding number of evaluations per evaluator. Theintra-rater agreement for evaluators 2, 3 and 7 was not computed sincethey did not complete the full evaluation exercise.
Evaluator No.

of evaluations
Percentage
Agreement

Cohen’s Kappa
Statistic

1 41 0.97 0.88
2 14 - -
3 12 - -
4 80 1.00 1.00
5 40 0.93 0.67
6 40 0.84 0.64
7 8 - -
8 40 0.98 0.93

Average (Total=275) 34.38 0.94 0.82

Table 6.10: Inter-rater agreements for each evaluation using percentageagreement (a) and for each pair of evaluators using Cohen’s kappa score(b). Note that evaluators 2, 3 and 7 are not included since they did notcomplete the full evaluation exercise.
Evaluation Percentage

Agreement Evaluator Pairs Cohen’s Kappa
Statistic

1 0.82 1,4 0.54
2 0.67 1,5 0.56
3 0.95 1,6 0.51
4 0.68 1,8 0.76
5 0.68 4,5 0.62
6 0.68 4,6 0.50
7 0.60 4,8 0.47
8 0.83 5,6 0.41

Average 0.74 5,8 0.55
6,8 0.32

Average 0.52

(a) (b)
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Table 6.11: Metrics (Mean, Std) computed over 275 French human evalua-tions for the multi-label models. Results are compared to the the RFmodeland to the evaluated dataset’s ground truth (GT) which was considered asan additional model during the human evaluation process.
Model LCard Acc P R F
GT 2.222, 0.832 0.572, 0.289 0.715, 0.310 0.729, 0.315 0.681, 0.266

kM-C 2.105, 1.323 0.299, 0.340 0.387, 0.398 0.404, 0.323 0.367, 0.368
A-HC 4.509, 2.812 0.379, 0.268 0.439, 0.314 0.753, 0.356 0.497, 0.279
NN 2.160, 0.785 0.431, 0.324 0.571, 0.374 0.558, 0.372 0.530, 0.331

ML-NN 1.964, 0.931 0.502, 0.346 0.652, 0.460 0.600, 0.379 0.590, 0.346

RF-1 1.000, 0.000 0.352, 0.323 0.698, 0.460 0.352, 0.323 0.442, 0.342
RF-2 2.000, 0.000 0.485, 0.300 0.645, 0.343 0.618, 0.344 0.596, 0.294
RF-3 3.000, 0.000 0.490, 0.267 0.559, 0.296 0.766, 0.315 0.612, 0.264
RF-4 4.000, 0.000 0.462, 0.228 0.490, 0.242 0.878, 0.246 0.598, 0.225

terms (movement in the four cardinal directions in mobile robot communications). These
differences may be due to whether the task is strict, as in the multi-label case where all
plausible prepositions are desired, or whether the detection of just one single preposition
out of a set of equally acceptable ones is enough.

The human evaluations also revealed that the ground truth is not complete in terms
of multi-label as its computed recall was found to be equal to 0.729. Also, the evaluation
confirms human inconsistencies or disagreements when choosing spatial relations, as the
precision of the ground truth preposition sets, was found to be equal to 0.715, and thus
resulting in an overall accuracy of 0.572. The high standard deviation recorded across all
measures for each evaluated model is probably related to the missing labels in the ground
truth. Furthermore, on the basis of the human evaluation, the ML-NN and RF predict
prepositions with an accuracy rate and F-score that are close to the evaluated ground
truth. This result shows that despite the fact that theoretically the RF is not taking into
consideration the dependency between classes, when predicting the top k prepositions,
the RF compares well to theML-NNmodel. This also raises the question about howmuch
of the label dependency the ML-NN is making use of. Furthermore, Table 6.12 presents
the recall per spatial relation as recorded by each model based on the full feature set.
The results are presented together with the number and ratio of training, validation and
testing instances that were used in these experiments.

The table shows that six prepositions: au dessus de (“above”), le long de (“along”), autour
de (“around”), par delà (“beyond”), aucun (“none”), and à l’exterieur de (“outside of”) were
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best recalled using the k-means clustering approach despite its lowest average recall rate
as presented in Table 6.7. The preposition en face de (“opposite”) was best recalled (40%)
by the Hierarchical Clustering approach. The greatest margin achieved by the kM-C was
noted during the prediction of the preposition le long de (“along”). The model predicted
the preposition with a recall rate of 0.81 and thus outperforms the second best multi-label
model (i.e, A-HC) with a gain of 200%. Overall, the A-HC achieved a mean average recall
of 0.57 followed by kM-C (0.52), NN (0.42) and ML-NN (0.41). As noted earlier, the ML-
NN under generates and therefore does not do so well in recall. On the other hand, the
mean weighted average recall results reveal that the A-HC predicts prepositions with a
weighted average recall of 0.77, followed by theML-NN (0.62), NN (0.58), and kM-C (0.39).
For comparison, the RF-{2, 3} achieved an average recall rate of 0.45 and 0.57 respectively
and a weighted average recall of 0.64 and 0.81.

To study the level of significance between the developed models, a one-way ANOVA
(Girden, 1992) on the 275 accuracy rates that where computed on the French human
evaluations for each model (i.e., 8 models) and for the dataset’s ground truth was first car-
ried out. The analysis confirmed a significant difference among the predictive models and
ground truth set (GT), F(8, 266) = 21.89, p < 0.001. Due to this statistical significance, the
Tukey’s HSD test (Tukey, 1949), was used to calculate the level of significance between
each pairwise combination. When taking p < 0.05, as shown in Table 6.13, there was
no significant difference between the accuracies obtained from the A-HC to those calcu-
lated on the NN and RF-1. Also, the analysis showed that the k-means clustering is not
significantly different from the RF-1, while the ML-NN does not statistically differ from
NN and RF-{2− 4}. Furthermore, the Tukey’s test confirmed that there was no significant
difference between the NN and all Random Forest models (i.e., RF-{1− 4}). The reported
analysis also points out that there was a statistical difference between RF-1 model and
all other RF models (i.e., RF-{2− 4}) but no significant difference between the pairwise
combinations of RF-2, RF-3 and RF-4. When comparing the evaluated dataset’s ground
truth with all models it was found that the accuracies of the ground truth significantly
differ from all models except the ML-NN.

160



Table 6.12: Average recall per spatial relation (SR) when trained on the fullfeature set and computed on the testing set’s ground-truth. Models areorganised in Multi-Label and Single-Label categories. Each preposition iscombined with the corresponding number and probabilities (Prob) of in-stances which were used during training, validation and testing.
Average RecallMulti-Label Single-Label

French SR(English SR)
Traininginstances(Prob)

Validationinstances(Prob)
Testinginstances(Prob) ML-NN NN kM-C A-HC RF-1 RF-2 RF-3 RF-4

au dessus de(“above”) 88(0.01) 30(0.02) 30(0.01) 0.03 0.23 0.44 0.30 0.03 0.07 0.16 0.20
contre(“against”) 462(0.06) 126(0.07) 142(0.06) 0.31 0.43 0.27 0.87 0.11 0.57 0.69 0.89

le long de(“along”) 59(0.01) 15(0.008) 11(0.005) 0.03 0.09 0.81 0.27 0.00 0.00 0.00 0.10
autour de(“around”) 34(0.005) 2(0.001) 6(0.003) 0.55 0.50 1.00 0.50 0.79 0.89 0.91 0.94

au niveau de(“at the level of”) 725(0.10) 183(0.10) 247(0.11) 0.56 0.54 0.59 0.78 0.07 0.31 0.63 0.83
derrière(“behind”) 858(0.12) 217(0.12) 251(0.11) 0.64 0.61 0.19 0.80 0.49 0.71 0.82 0.87
par delà(“beyond”) 29(0.005) 8(0.004) 10(0.004) 0.00 0.20 0.29 0.20 0.00 0.00 0.16 0.29
loin de(“far from”) 306(0.04) 74(0.04) 96(0.04) 0.66 0.49 0.37 0.57 0.15 0.79 0.90 0.94
dans(“in”) 50(0.007) 9(0.005) 15(0.007) 0.36 0.47 0.69 0.67 0.25 0.45 0.76 0.87
devant(“in front of”) 880(0.12) 210(0.11) 282(0.12) 0.61 0.47 0.20 0.72 0.47 0.73 0.82 0.89
près de(“near”) 1840(0.25) 447(0.24) 570(0.25) 0.82 0.72 0.30 0.87 0.64 0.89 0.98 1.00
à côté de(“next to”) 1124(0.15) 280(0.15) 369(0.16) 0.60 0.59 0.49 0.78 0.15 0.52 0.88 0.95
aucun(“none”) 16(0.002) 5(0.003) 7(0.003) 0.00 0.00 0.34 0.17 0.00 0.00 0.01 0.02
sur(“on”) 292(0.04) 86(0.04) 69(0.04) 0.82 0.72 0.83 0.87 0.77 0.83 0.86 0.88

en face de(“opposite”) 219(0.03) 52(0.03) 62(0.03) 0.14 0.23 0.39 0.40 0.07 0.11 0.22 0.37
à l’exterieur de(“outside of”) 31(0.004) 12(0.007) 8(0.004) 0.20 0.13 0.84 0.13 0.00 0.10 0.17 0.37

sous(“under”) 336(0.05) 95(0.05) 102(0.05) 0.69 0.68 0.75 0.76 0.69 0.70 0.74 0.81
Mean Average Recall 0.41 0.42 0.52 0.57 0.28 0.45 0.57 0.66Mean Weighted Average Recall 0.62 0.58 0.39 0.77 0.38 0.64 0.81 0.88
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6.8.2 Qualitative Analysis
A qualitative analysis was conducted to gain further insight into where and why the mod-
els were failing. For this study, 100 distinct object pairs were randomly sampled from the
275 French evaluated instances. The predicted prepositions per model, the ground truth
annotations and the evaluators’ selections were compared to observe salient patterns.
Fig. 6.8 depicts nine of the 100 instances representative of the observed patterns.

As anticipated, humans do not always agree when selecting spatial relations. This is
mostly seen in the selection of near synonyms (Fig. 6.8(d) and (f)) and when choosing the
frame of reference (Fig. 6.8(a) and (b)). In the case of near synonyms it is also likely that
humans differ in the definition of spatial bounds (related to acceptability levels in template
models), for example in the case of près de (“near”) and à côté de (“next to”), as shown in
Fig. 6.8(g) and (i).

In general, as also noted in the quantitative analysis, the ML-NN performed better
than the NN, kM-C and A-HC models, at the cost of fine-grained and more spatially
constrained relations. The ML-NN can be thought of as a conservative model with a
higher tendency towards generating less spatially constrained prepositions, while opting
for the more fine-grained spatial relations when absolutely necessary. This observation is
in conformity with the highest recorded multi-label precision reported in the quantitative
analysis. Surprisingly, despite being the overall least accurate, the kM-C model correctly
predicts some of the less frequent spatial relations that other models struggle with, in-
cluding for example, the relations autour de (“around”), en face de (“opposite”), and le long
de (“along”) as seen in Fig. 6.8(e) and (f), indicating that clustering models merit further
investigation.

As expected, the models fail to select a more appropriate frame of reference (other
than the camera view point) probably because there are no features that indicate the
position or orientation of the objects (Fig. 6.8(a) and (b)) and possibly also because of the
presence of “person” as one of the objects.

It was also evident that the models lacked accuracy because of near-synonym am-
biguity. For example in some configurations humans were selective when dealing with
prepositions sets like {à côté de (“next to”), près de (“near”), le long de (“along”)} and {loin
de (“far from”), par delà (“beyond”)}, while the models find it hard to comprehend the
subtle differences among such prepositions. Likewise, the models found it difficult to dis-
criminate between the prepositions en face de (“opposite”) and devant (“in front of”) as
shown in Fig. 6.8(d), where object pose may also help in these situations. When dealing
with antonyms, most of the time, the A-HC model chooses both devant (“in front of”)
and derrière (“behind”). The RF-3 (single-label model) sometimes chooses both in the first
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The person is _____ the tv monitor.
GT: {opposite, next to, near}
HE: {in front of}
kM-C: {opposite, in}
A-HC: {opposite, near, in front of}
NN: {opposite, near, in front of}
ML-NN: {near, opposite}
RF-3: {near, in front of, next to}

The horse is _____ the person.
GT: {opposite, next to, at the level of, near}
HE: {opposite, next to, near, at the level of}
kM-C: {under}
A-HC: {opposite, at the level of, near}
NN: {opposite, at the level of, near}
ML-NN: {near, next, at the level of}
RF-3: {near, next to, at the level of}

The person is _____ the car.
GT: {in front of, beyond, near}
HE: {beyond, behind, outside of, far from}
kM-C: {outside of, in}
A-HC: {behind, beyond, outside of}
NN: {behind, beyond, outside of}
ML-NN: {behind}
RF-3: {behind, outside of, far from}

The person is _____ the horse.
GT: {on, against}
HE: {on}
kM-C: {on}
A-HC: {on, against, near, at the level of, in front of, next to}
NN: {on}
ML-NN: {on}
RF-3: {on, near, against}

The cat is _____ the cat.
GT: {behind, next to, near}
HE: {behind, near}
kM-C: {along, above, next to, near, at 
the level of}
A-HC: {behind, near, next to, against, 
in front of}
NN: {behind, near}
ML-NN: {near, next to, at the level of}
RF-3: {near, next to, at the level of}

The person is ___ the horse.
GT: {next to, near, under}
HE: {next to, under, at the level of}
kM-C: {on}
A-HC: {near, at the level of, next to, 
behind}
NN: {near, at the level of, next to}
ML-NN: {on}
RF-3: {on, against, near}

The person is __ the person.
GT: {above, near}
HE: {above, near, behind, next to}
kM-C: {at the level of, next to, near}
A-HC: {behind, near, next to}
NN: {behind}
ML-NN: {near}
RF-3: {near,behind, next to}

The car is _____ the dog.
GT: {none}
HE: {none}
kM-C: {around, beyond}
A-HC: {behind}
NN: {behind}
ML-NN: {near}
RF-3: {near, in front of, next to}

The car is _____ the person.
GT: {under}
HE: {under, at the level of}
kM-C: {around}
A-HC: {near, behind, next to, at the level of, under, against}
NN: {behind, near}
ML-NN: {in front of, near}
RF-3: {in front of, near, next to}

(b)

The horse is _____ the horse.
GT: {along, next to, behind, near}
HE: {next to}
kM-C: {along}
A-HC: {near, next to, behind, in front of, 
above, along}
NN: {behind, near, next to}
ML-NN: {near, next to, behind}
RF-3: {near, next to, behind}

(a) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 6.8: A subset from the 100 human evaluations (HE) that were usedfor the qualitative analysis. Each sub-figure shows the pair of objects en-closed in bounding boxes. The ground-truth (GT) and the human eval-uated (HE) prepositions are listed in the top part, the predictions of themulti-label models (kM-C, A-HC, NN, ML-NN) in the middle part, and thesingle-label (RF-3) model in the bottom part. Note that the prepositionsare shown translated in English. The original French terms are included inthe referring text.
three rankings. One would expect a single-label model to separate antonyms by a large
distance in the rankings list. Spatial relations dans (“in”) and à l’exterieur de (“outside of”)
are confused by the ML-NN and k-MC when the visible part of the object inside is par-
tially outside and the bounding box only encloses the outside part; however, in the case of
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the RF model it seems that language features help. The ML-NN and RF output dans (“in”)
and sur (“on”) simultaneously (sur (“on”) is the correct one) when the subject is smaller
than the object. Probably sur (“on”) is learnt from the language and dans (“in”) is learnt
from the geometric features. When multiple spatial relations are required to accurately
describe configurations in perspective and oblique views, mostly by (à côté de (“next to”)
and derrière (“behind”)) all models fail to predict derrière (“behind”). An example is given in
Fig. 6.8(g). This omission is possibly due to the close proximity and the marginal overlap
between the two bounding boxes.

Results show that all models were prone to the dataset’s linguistic bias. In uncommon
contexts, as shown for example in Fig. 6.8(h), the models were influenced by how nor-
mally a “person” is depicted in the presence of a “horse” (as in the majority of images in
the training data). For another example, no model predicted au dessus de (“above”) in the
context of Fig. 6.8(i), due to the bias problem and the lack of reasoning on spatial config-
urations. The lack of reasoning was further shown in Fig. 6.8(j), since for obvious reasons,
all models owing to their limited features and lack of commonsense and world knowledge
reasoning, were unable to correctly understand that the actual “car” is being reflected in
the mirror, which in turn depicts a completely different geometric setup of that context.

Finally, the RF-3model, which is inherently a single-labelmodel, fails in contextswhere
fewer than three prepositions are suitable, a situation that this model cannot handle by
design. In Fig. 6.8(c), the RF-3 over generates prepositions that are not suitable.

In summary, the analysis sheds light on promising directions this research could take.
In particular, such directions include what other features are needed to discriminate be-
tween near synonyms and resolving the appropriate frame of reference, as well as meth-
ods to integrate common sense and world knowledge models.

6.9 Multi Spatial Relations in KENGIC
Given the availability of a compatible multi-label Spatial Relation (SR) dataset, the detec-
tion of multi SRs can be potentially used to further improve the quality of the generated
captions by KENGIC. Multiple SRs can provide finer and more spatially descriptive cap-
tions. This can be achieved either by (a) using the most likely SRs instead of the implicitly
generated relations generated by the n-gram graph, or (b) by using the set of predicted
prepositions to validate the implicitly generated SRs. While the former could be used to
provide rich and more spatially descriptive captions, the latter approach could provide a
broader set to validate and correct SRs in KENGIC.
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6.10 Summary
In this chapter, the usefulness of predicting multi and overlapping spatial relations in im-
ages was explored and a number of multi-label classification models were developed and
analysed quantitatively and qualitatively. The results were also compared and contrasted
with a single-label classifier which outputs a preposition list of constant length. Finally,
the findings in the analysis serve to inform future work.

The accuracy, precision, recall and F-score were used in the quantitative analysis. The
accuracy was computed as the intersection over union which penalises both over and
under generation of labels. Overall, the multi-label neural network (ML-NN) performed
better than all other multi-label models in terms of accuracy, precision and F-score. The
Nearest Neighbour model provided a good baseline, while the clustering methods dis-
criminated better in favour of the less common and difficult cases. The single-label Ran-
dom Forest Classifiers (RF-2,3) scored better than theML-NNwhen evaluated in terms of
accuracy, recall and F-score on dataset’s ground-truth, but the ML-NN outperformed the
RF classifiers in terms of accuracy on the independent French evaluations. In addition, the
ML-NN enjoys higher precision than the RF models, throughout. This is an indication that
the ML-NN generalises better whilst the RF tends to overfit more to the ground truth,
not least to the dataset’s cardinality, since the latter is chosen manually. Furthermore, the
qualitative analysis reveals examples, where the RF over-generates prepositions that are
not correct (as evaluated by humans). When considering the human evaluation accuracy
of all models and the ground truth, no significant difference was found between the ML-
NN and RF and between the ML-NN and the GT, but the RF and GT were significantly
different. Coupled with the results from the qualitative analysis, it can be concluded that
the ML-NN has an advantage over the single-label RF model. This study also shows that
the multi-preposition labels in the SpatialVOC2K dataset (Belz et al., 2018) used in the
experiments are probably not always complete, which makes both training and evalua-
tion of such machine learning models even harder. For these cases, the use of outlier
detection and data imputation mechanisms may be appropriate. The qualitative analysis
indicates that the inclusion of other features, in particular object position and orientation,
and extrinsic knowledge models would potentially help in providing better discrimination
between near synonyms and in addition resolve issues related to the frame of reference
selection problem. Finally, this chapter concludes by projecting how multi spatial relation
detection can be used in KENGIC to improve the quality of the generated captions.
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Table 6.13: Tukey’s HSD (p < 0.05) for pairwise comparison between theaccuracies computed on each model and the dataset’s ground truth basedon the 275 evaluated instances by French native speaking individuals.
Model 1 Model 2 Mean Difference P-Adjusted Reject
A-HC GT 0.193 0.001 T
A-HC kM-C -0.080 0.050 T
A-HC ML-NN 0.123 0.001 T
A-HC NN 0.052 0.520 F

A-HC RF-1 -0.027 0.900 F

A-HC RF-2 0.106 0.001 T
A-HC RF-3 0.111 0.001 T
A-HC RF-4 0.083 0.035 T
GT kM-C -0.273 0.001 T
GT ML-NN -0.071 0.129 F

GT NN -0.141 0.001 T
GT RF-1 -0.220 0.001 T
GT RF-2 -0.087 0.019 T
GT RF-3 -0.082 0.036 T
GT RF-4 -0.110 0.001 T

kM-C ML-NN 0.202 0.001 T
kM-C NN 0.131 0.001 T
kM-C RF-1 0.053 0.506 F

kM-C RF-2 0.185 0.001 T
kM-C RF-3 0.190 0.001 T
kM-C RF-4 0.162 0.001 T
ML-NN NN -0.071 0.130 F

ML-NN RF-1 -0.150 0.001 T
ML-NN RF-2 -0.017 0.900 F

ML-NN RF-3 -0.012 0.900 F

ML-NN RF-4 -0.040 0.808 F

NN RF-1 -0.079 0.054 F

NN RF-2 0.054 0.474 F

NN RF-3 0.059 0.346 F

NN RF-4 0.031 0.900 F

RF-1 RF-2 0.1328 0.001 T
RF-1 RF-3 0.1378 0.001 T
RF-1 RF-4 0.1097 0.001 T
RF-2 RF-3 0.005 0.900 F

RF-2 RF-4 -0.023 0.900 F

RF-3 RF-4 -0.028 0.900 F



7 Conclusions and Future Work

The use of keywords in a novel Keyword-driven and N-Gram Graph-based Image Cap-
tioning (KENGIC) framework was studied in this PhD programme. Inspired by the way
how the human brain fires neurons while processing and interpreting the visual world,
this PhD hypothesised that images can be automatically described given a set of visual
keywords and linked through other intermediary words using an n-gram graph-based ap-
proach. This was proposed (a) as an alternative approach to models in image caption
generation, (b) to reduce the dependency on large-scale paired image-caption datasets,
and (c) to provide answers for the following research questions:
1. Can image caption generation be cast as a graph search problem through a keyword-

based n-gram graph?
This question was set to investigate whether image descriptions can be grounded
in image keywords by using an n-gram graph-based data structure. This research
confirmed that n-gram graphs can serve as intermediary representations that can
efficaciously combine the vision and language domains in image captioning. This
approach showed how the task of image captioning can be modularised in a two-
step approach. The first step is to detect visual keywords from images to construct
n-gram graphs that link the detected keywords through other intermediary words.
The second step is to traverse the graph in a breadth-first approach to search for the
best captions that describe the given query images based on a given set of criteria.
This approach led to the generation of quality captions and hence confirmed that
image captioning can be cast as a graph search problem through keyword-based n-
gram graphs.
a) What is the role of image keywords in KENGIC?

This question was set to examine which type of keywords are most important
for the generation of n-gram graphs. When constructing n-gram graphs based
on human defined words, it was confirmed that nouns were the most impor-
tant keywords for constructing n-gram graphs, as evaluated on automatic met-
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rics. Adding attributes with nouns was found to slightly enhance the quality of
the generated captions, but the use of finer keywords such as prepositions and
verbs led to inferior captions as these impose further complexity in the graph
generation and traversal. This was exacerbated when constructing graphs using
composite keywords composed of nouns and attributes, or nouns and verbs due
to their added constraint while traversing the graphs.

b) What visual detectors are required?
This research investigated both object detection and the prediction of visual
keywords in a multi-label approach as detectors for KENGIC. Keywords con-
sisting of detected objects led to accurate and fluent captions for images hav-
ing few objects. However, more complex images were often described with
high verbosity and non fluent captions due to larger keyword sets consisting
of background objects. For this reason, a multi-label model was trained to pre-
dict the most visually relevant keywords including nouns, attributes and verbs.
This keyword set provided less ambiguity and images were generally captioned
better. Therefore, this research confirmed that multi-label visual detectors that
are trained to detect salient visual keywords can provide pertinent keywords for
KENGIC. Furthermore, given that spatial relations are difficult to be predicted
from images, spatial relation detection was applied to enhance the use of spatial
prepositions.

c) What is the quality of the generated captions?
Both quantitative and qualitative analysis showed that KENGIC generates qual-
ity image captions. As expected, given that KENGIC is not trained end-to-end
on image caption pairs, it fell short when compared with models trained in the
paired setting. On the other hand, KENGIC reached similar performance with
current leading state-of-the-art image caption generators that are trained in the
unpaired setting. Despite this performance, the qualitative analysis unveiled
that (a) spatial prepositions were not always grounded in images, and (b) cap-
tions are generally penalised when they lack mentioning the frequently used
human words, despite being relevant and accurate captions. The latter was not
surprising since evaluation metrics generally measure the maximum overlapping
n-gram sequences found between the candidate and reference captions (BLEU,
METEOR, ROUGE), while CIDEr and SPICE consider all captions in their final
metric and therefore, benefit from commonly used words across captions. De-
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spite the lack of reliable human evaluation, the generated captions, were in gen-
eral, rated well above average both in terms of accuracy and fluency.

2. How does the selection of keywords affect the evaluation performance in image caption
generation as measured by current automatic metrics?
Since image captions are generally evaluated by automatic metrics, this research
questioned how keywords affect the evaluation performance based on suchmetrics.
The preliminary work based on human extracted keywords confirmed that metrics
influence the choice of words in image captions, in such a way that rich keywords are
penalised over generic and less specific words. This was particularly evident when
high quality captions composed of keywords extracted from human authored cap-
tions did not overlap with the remaining set of human captions. On the contrary,
when using frequently used human keywords extracted from all ground-truth cap-
tions, the computed scores of the generated captions exceeded the human base-
line. This concludes that the current popular evaluation metrics are highly biased
in choosing frequent keywords and pay less attention to the structure of the gen-
erated captions. This claim was further substantiated given the fact that captions
composed solely of frequent keywords were rated higher than the corresponding
human authored captions. Both findings supported the crucial need for more robust
automatic evaluation metrics.

3. How does spatial relation detection contribute in automatic image captioning?
Given that the majority of current image captioning models generate captions with-
out the explicit use of spatial relation detectors, this study aimed to investigate the
role of spatial relations in image captioning. For this purpose, a spatial relation de-
tector was developed and integrated in KENGIC framework. It was found that gen-
erally, the explicit detection of spatial relations based on geometric and linguistic
features was not enough to enhance the quality of the relations generated by the n-
gram graph. Apart from the limitations of the used spatial role labelling and relation
detector which were later addressed in Chapter 6, captions mentioning frequently
used prepositions benefited from higher scores, irrespective of their spatial ground-
ing. Furthermore, it was also confirmed that generic prepositions were preferred
over more spatially constrained prepositions. This led to the study of multi-spatial
relation detection for image captioning to further increase the specificity of the gen-
erated captions.
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7.1 Limitations
Despite the promising results obtained by the proposed approach, the implementedKENGIC
framework has the following limitations which affected the overall caption quality:
1. Visual Keywords: Since the multi-label model was trained to predict visual keywords

relevant to images, synonymwordswere found to considerably affect the generation
process. In such cases, KENGIC ended up, either mentioning synonym words in
same captions, or else lacking from including important image aspects which were
detected by synonymous words. A more robust multi-label model could therefore,
provide better quality image captions.

2. Visual Relationship Detection (VRD): The semantic relationship between objects
was limited only to Spatial Relation (SR) detection. However, this could be further ex-
tended to the more general VRD problem (Lu et al., 2016) that includes actions (e.g.,
“kick”), prepositions (e.g., “with” ), verbs (e.g., “contain”), comparatives (e.g., “larger
than”), and prepositional phrases (e.g., “stand on”). Furthermore, the employed SR
detection model was based on simple and naïve spatial role labelling approach which
in turn, affected the accuracy of the extraction of SRs from the generated captions.
More sophisticated techniques can be introduced for better extraction and to en-
hance the spatial relation integration in KENGIC. The integrated SR detection model
was found to reduce the quality of the generated captions due to its limited fea-
ture set as, well as, its highly skewed training data. Although these limitations were
specifically studied with the introduction of depth features and the use of better
quality dataset for multi spatial relation detection, the aforementioned limitations
were not integrated in KENGIC due to the disparity between the two datasets.

3. Hyper-parameter Tuning: KENGIC was fine-tuned for the generation of captions
based on human extracted keywords. Due to time and hardware availability con-
straints, the same hyper-parameters were used for the experiments based on pre-
dicted keywords. These hyper-parameters could possibly not be the optimal param-
eters for all the tested models.

4. Evaluation: Given that this research showedmajor limitations in the current standard
automatic evaluation metrics, it weakens its quantitative analysis. Furthermore, the
human evaluation was not found to be very reliable and the reported analysis is not
very conclusive, given the low intra- and inter- annotator agreements. This calls for a
possible revision of the human evaluation exercise. In particular two suggestions are
put forward; (a) evaluators are recruited from a pool of linguists who are native lan-
guage speakers and (b) to further increase the reliability of the evaluation exercise,
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rather than using a Likert-scale that spans over five ratings to assess the correctness
and fluency of captions, a binary decision is used to assess different criteria such as
whether captions have (i) hallucinations, (ii) major and (iii) minor grammatical mis-
takes. This would better control the evaluation process, provide consistent quality
and reliable assessments whilst reducing the subjectivity of the human evaluators.

7.2 Future Work
The proposed KENGIC framework paved the way for an alternative research direction
in image caption generation. In contrast to current state-of-the-art image caption gen-
erators, this has provided a mechanism where each sub-module can be extended and
improved independently. Furthermore, this research opened the door for the following
research questions:
1. How can image captions be automatically better evaluated?

This research confirmed that most of the current dominating evaluation metrics are
not going to help the research community in the long-term. The n-gram based met-
rics (i.e., BLEU, METEOR, ROUGE and CIDEr) are not reliable and they are even
showing that the generated image captions exceed human level quality, despite their
lack of accuracy and fluency. This calls for robust and well developed metrics which
go beyond calculating the n-gram overlap between the generated and correspond-
ing human captions. For example, SPICE makes use of scene graphs to assess the
quality of image captions.

2. What is the quality of an unsupervised KENGIC?
This research investigated KENGICwhen having images and corresponding text cor-
pus from the same domain. It would be worth studying the quality of the generated
captions given that the two modalities are not from the same domain. This would
further help in reducing the dependency of datasets consisting of images and cor-
responding textual data. KENGIC could be further extended by the web-retrieval
framework described in Birmingham and Muscat (2017) to fetch for visually related
keywords from theWeb. In addition, this would further reduce the need for labelled
visual keywords relevant to query images in KENGIC, while opening the opportunity
for a life-long learning paradigm in image captioning.

3. Can KENGIC be used in Visual Question Answering (VQA)?
Given that KENGIC is modularised and based on n-gram graphs, this framework
could also be explored in VQA to provide answers for visual questions.
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7.3 Final Remarks
This PhD studied how image captions can be generated from a set of visual keywords
using a novel graph-based approach. The experiments of this study confirmed the poten-
tial of this method and how this research field can benefit from the findings of this work.
The encouraging results and the new insights that have been presented to narrow the
research gaps in this field, could further help the AI research community moving towards
Alan Turing’s vision who hoped that one day, “machines will eventually compete with men
in all purely intellectual fields” (Turing, 1950).
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