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Abstract

The EU Green deal stipulates that effective policy measures are required to sig-
nificantly increase building renovation, which is one key area for achieving Eu-
rope’s decarbonisation target for 2050. The established cost-optimal method of the
2010 Energy Performance of Buildings Directive (EPBD) provides a harmonised
framework for EU Member States (MS) to define Energy Performance (EP) bench-
marks and energy efficiency measures that will best drive buildings to Nearly Zero
Energy Building (NZEB) status. However, despite the positive push, literature has
identified large EP gaps in the EPBD software and benchmark divergences between
MS that highlight the limitations of this tool in devising successful policy measures.
These shortcomings potentially stem from ’non-calibrated and deterministic’ Reference
Buildings (RBs) characterised using only single and non-calibrated parameter val-
ues and which do not take into consideration the building parameters’ uncertainties
and building stock diversities. This could result in a significant divergence between
the cost optimal calculations and the real financially feasible determinants, espe-
cially for heterogeneous building stocks. This would ultimately lead to ineffective
energy efficiency policy measures and a gradual loss of confidence in the method-
ology’s outcomes among prospective investors and energy consumers.

This thesis has focused on proposing solutions to these limitations, through an
innovative EPBD cost-optimal approach that integrates ’probabilistic Bayesian cali-
brated RBs’ into the current EPBD methodology. RB uncertain parameters are de-
fined as prior distributions, and metered consumption data is utilised to calibrate
the RBs model and reduce the uncertainties to narrower posterior distributions. The
resulting calibrated RBs and the cost-optimal plots are then employed in an objec-
tive approach to define NZEB EP benchmarks according to four distinct levels of
EP ambition. Ultimately, a probabilistic risk analysis that is propagated from the
posterior parameter distributions is used to quantify the robust financial risk to
reach each ambition level. The approach was optimised for heterogeneous building
stocks via an innovative methodology to define RBs and by developing the ’ref-
erence zone’ concept. This concept replaces full-space models with reduced space
energy models to improve the computational efficiency of calibration. The RB def-
inition methodology was applied to a 5-star hotel building stock, followed by the
validation of the proposed EPBD cost-optimal method using a derived hotel RB.
For this RB, the ’reference zone’ approach successfully calibrated the model in com-
pliance with ASHRAE [1, 2] Coefficient of the Variation of the Root Mean Square
Error (CVRMSE) and Normalised Mean Bias Error (NMBE) metrics for monthly
data and replicated the monthly electricity energy end-uses of the full model with a
4000 % improvement in simulation run time.

A comparison of the current EPBD cost-optimal approach with the innovative
approach for the hotel RB demonstrated that non-calibrated RBs can provide a large



x

EP gap exceeding 30 %, which have resulted in a highly unrealistic financial feasibil-
ity and misleading EP improvement projections. Furthermore, a probabilistic risk
analysis considering parameter uncertainty and diversity successfully uncovered
the full associated financial risk associated with each EP ambition level and the
required financial support to establish realistic benchmarks to trigger renovation.
Therefore, this research provides tangible findings and insight for the eventual up-
grading of the current EPBD cost-optimal approach to the proposed one to increase
the chances for devising robust policy measures to meet the 2050 carbon-neutrality
goals.

Keywords: EPBD cost-optimal method, reference buildings, heterogeneous build-
ings, uncertainty analysis, Bayesian calibration, energy renovation.
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Introduction

1.1 | Background to the research work
In the 2020 approved European Union (EU) Green Deal [3], the EU has set ambitious
goals to reach a minimum of 55 % Greenhouse Gas (GHG) emissions reduction by 2030
when compared to 1990 levels and eventually to be carbon neutral by 2050. Given that
the building sector is a key contributor to GHG emissions and is responsible for 36 % of
EU emissions and 40 % of its primary energy use [4, 5], it becomes critical to implement
effective measures to improve the Energy Performance (EP) of existing building stocks.
Prioritising the energy renovation of existing building stocks provides the best oppor-
tunity for energy savings [6], given that about 75 % of existing buildings in Europe are
not sufficiently efficient, and yet more than 85 % of the current buildings will still be
operational in 2050 [4, 7]. Despite this situation, the weighted average rate of energy
renovation is currently only 1% per year [4], which triggered the EU in 2020 to establish
the Renovation Wave Strategy [4], which defines actions such as doubling the annual
building renovation rate by 2030. Furthermore, the new 2021 Energy Performance of
Buildings Directive (EPBD) [8] has mandated EU–wide minimum EP standards for the
worst-performing buildings.

However, achieving EU renovation goals can only materialise in practice through
the establishment of appropriate policy measures at the EU Member States (MS) level
to improve the EP of their buildings but a solid understanding of the existing building
stock is a prerequisite to achieve this goal. This is supported by several requirements
as stipulated in the EPBD Recast 2010/31/EU [9], such as the need to define “Reference
Buildings (RBs)” for different building categories that would represent “the typical and
average building stock in a member state” [9].
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The application and analysis of different combinations of measures on RBs through
the National Calculation Methodology (NCM) approved simulation tools for the imple-
mentation of the EPBD cost-optimal method allows MS to establish “cost-optimal” and
“Nearly Zero Energy Building” (NZEB) EP benchmarks for which the new and existing
buildings that undergo major renovations had to comply with as of January 2021. One
of the useful outcomes of the cost-optimal method is a clear indication of the minimum
energy efficiency measures for the building envelope and building energy systems that
yield the cost-optimal EP range. In turn, policy makers would be empowered to set
minimum energy requirements and to devise policies and incentives to further push
the transition of buildings to NZEB.

Nevertheless, a review of recent research has established limitations to its potential
for enabling MS the formulation of the necessary policy measures and the definition of
realistic and effective benchmarks to improve the EP of building stock and to effectively
achieve carbon neutrality by 2050. In addition, shortcomings in the level of harmonisa-
tion between MS to derive EP benchmarks have also been highlighted.

This research reports an "Energy Performance (EP) gap" as defined in [10, 11] of more
than 30 % between the measured and simulated (Asset-rated1) EP derived from the
NCM software for both non-residential buildings and residential buildings. This per-
formance gap is identified in various studies including [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]2. Although this EP gap is critical to successful policy making [25], en-
ergy policy has not yet considered this gap [11]. Furthermore, the definition of RBs
among MS varied widely in detail [26, 27], and this was also noted among the different
end uses and system boundaries chosen for EP calculations [28, 29, 30]. Consequently,
the EU published revised EPB standards [31] and subsequently requested MS to de-
scribe their "NCM following the national annexes of the overarching EPB standards" [32] to
improve harmonisation. All these technical factors have contributed to substantial dis-
agreements between MS in the Energy Performance Indicators (EPIs) (kWh.m−2.year−1)
derived from the cost-optimal methodology with discrepancies of up to 100 % reported
in the review of [30, 33] for regions that fall under the same climatic zone.

The potential reasons for the above shortcomings stem from the application of ’non-
calibrated and deterministic’ RBs to the EPBD cost-optimal methodology. A deterministic

1The building Asset EP rating depends on the characteristics of a building and on standard occupancy,
operational schedules, and indoor–outdoor climate conditions. The Asset EP rating is generally calculated
from the NCM software tool. In contrast, a building’s operational rating is based on actual measured
amounts of delivered and exported energy [12].

2This EP gap has been demonstrated throughout Europe including Denmark [18, 19], France [14],
Switzerland [20, 21, 22, 23], Germany [16], UK [17], Italy [13] and Malta [24], and there is general consensus
that buildings with a high asset EP rating have a higher operational energy consumption than expected,
while buildings with a low asset EP rating have a lower metered energy consumption than expected [25].
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RB3 model is defined as a building energy model with a single set of input parameter
values for the envelope and technical building systems for a building stock category
under study. In addition, the calibration of RB energy models with building stock me-
tered operational EP data is not undertaken. Thus, using the current deterministic and
non-calibrated approach, the validation of RBs to be truly representing existing build-
ing stocks is not facilitated. Moreover, the effect of uncertainties or diversity in the
input parameters for calculating cost optimal and NZEB level benchmarks is not taken
into account. As a result, this approach does not provide sufficient confidence that the
proposed cost-optimal measures or the NZEB levels and the derived EPIs themselves
are economically feasible and ultimately achieve the desired energy savings and carbon
neutrality targets when implementing them in practice.

State-of-the-art Urban Building Energy Modelling (UBEM) techniques have applied
’probabilistic Bayesian calibrated RBs’ to replace ’non-calibrated deterministic RBs’ in order
to better handle parameter uncertainty and building stock diversity. In ’probabilistic
Bayesian calibrated RBs’ the uncertain parameters are defined as ’prior’ probabilistic dis-
tributions representing one’s initial beliefs about the true value of the parameters. The
building is then calibrated using metered operational energy performance data via a
Bayesian approach to reduce uncertainties by updating the ’priors’ to narrower ’poste-
rior’ parameter probability distributions. However, ’probabilistic Bayesian calibrated RBs’
to handle uncertainties in the EPBD cost-optimal method has not been adequately ad-
dressed in literature as detailed by the author of this thesis in [35, 36]. Therefore, no clear
framework exists to effectively integrate state-of-the-art UBEM techniques incorporat-
ing ’probabilistic Bayesian calibrated’ RBs into the current EPBD cost-optimal method.

The uncertainty of defining a few ’non-calibrated deterministic RBs’ to represent an
entire building stock is even more critical for the non-residential building stock, which
is largely diverse and comprises multiple activities and uses [27, 37, 38]. Furthermore,
the geometric and technical data required to derive RBs is limited, given that most liter-
ature publications on RBs and building stock modelling in the EU revolves around the
residential building stock [27, 38], given that they make up 75 % [27] of the EU building
stock and are responsible for 63 % [39] of the energy consumption of the final building
stock of the EU. The application of Bayesian calibration to such non-residential, het-
erogeneous, multi-functional building stocks has not been adequately covered in the
literature.

3In literature there is no standard methodology or a harmonised process for deriving deterministic RBs
[26, 34].
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1.2 | The aim and objectives of this research work
The aim of this research is to propose and validate an innovative approach to the EPBD
cost-optimal method to allow policy makers to optimally handle the diversity and un-
certainties of the building stock when deriving EP benchmarks for heterogeneous multi-
functional building stocks under different defined ambition levels of EP rating.

The objectives of this research to achieve the aim are as follows.

■ Establish a clear framework for integrating state-of-the-art Urban Building Energy
Modelling (UBEM) techniques employing ’probabilistic Bayesian calibrated RBs’ into
the current EPBD to address the diversity and uncertainties of the buildings’ dif-
ferent parameters.

■ Develop and apply a machine learning approach to define RBs for ’small’ (X ≫
N)4 multi-functional, heterogeneous building stocks and employ the novel cost-
optimal approach to a defined RB.

■ Investigate and statistically validate, in terms of accuracy, innovative techniques
to reduce the computational expense of the novel cost-optimal approach and fa-
cilitate its implementation.

■ Develop a harmonised and ordinal scale approach to define the NZEB EP ambition
levels and identify how to propagate the EP and financial uncertainty for each
defined ambition level for a RB under study, ultimately leading to robust energy
renovation support policies.

■ To compare the novel cost-optimal approach with the current deterministic ap-
proach and establish the strengths and limitations of each approach.

The 5-star hotel building stock in Malta, consisting of ten (10) hotels, will be used
as the case study multi-functional ’small’ heterogeneous building stock to demonstrate
the proposed cost-optimal methodology approach. Hotel building stocks present an
ideal case study to meet the objectives of this thesis given their multi-functional “comfort
or service-orientated accommodations” [40] with significant heterogeneity [27] in terms of
business size and other individual characteristics. This has been demonstrated in the
literature that “the idea of a typical hotel, as well as its respective performance remains vague”
[41], and the difficulty of identifying "typical" or "reference" hotel buildings, even for large
building stocks, is not straightforward.

4For the scope of this research, a ’small’ building stock is one where the number of explanatory variables
’X’ impacting energy performance is greater than the number of building observations ’N’in a population.
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1.3 | Research questions
Based on the background and purpose of this study, the research questions can be sum-
marised as follows:

■ What machine learning methodology can be developed to cluster a multi-functional
and heterogeneous ’small’(X ≫ N) building stock to define RBs?

■ How does the proposed EPBD cost-optimal approach developed in this research
better handle uncertainties when deriving cost-optimal NZEB measures and bench-
marks versus the current EPBD approach?

■ How can the proposed EPBD cost-optimal approach devise more robust energy
renovation support policies under different levels of ambition to meet the required
renovation targets?

■ How does the proposed ’probabilistic’ cost-optimal approach compare in terms
of computational expense with the current approach, and what innovative tech-
niques can be applied to optimise its computational time and to facilitate its im-
plementation?

1.4 | Significance of the study
This research has EU-wide significance by proposing an innovative EPBD cost-optimal
approach that has the potential to allow MS to define more robust policy measures to
trigger energy renovation to meet the goals of the Renovation Wave [4]. This is achieved
by looking to better handle the key technical and financial uncertainties, which have
been identified as the main sources of uncertainties for energy renovation [42, 43, 44]
and Energy Performance contracting [45]. Specifically, taking into consideration the un-
certainties of different parameters may lead to stronger long-term renovation strategies
in MS. This can potentially be established via a more realistic quantification of finan-
cial support measures and the definition of more realistic and achievable EPIs given
uncertainties.

Furthermore, the RB calibration process is more likely to derive EPIs between MS
that are more comparable by reflecting more closely the operational EP of the buildings,
thus increasing harmonisation, which is also one of the key objectives of the EPBD. Con-
sequently, this can also accelerate the rate of renovation of buildings because investors,
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including Energy service companies (ESCOs)5 and operators, can have a better assur-
ance that the outcome will truly produce the expected benefits and savings.

Beneficiaries of this research also include the construction industry and building
owners, who will be required to upscale their competence to meet the challenge of
achieving carbon neutrality by 2050. Also, policy makers will benefit from this work
as it will open new venues for matching calculated carbon reduction estimates to real
carbon reduction achieved targets, especially for renovation. Tackling the main barriers
to energy renovation can increase the renovation rate. However, it has to be ensured that
renovation will produce the expected outcomes while providing new opportunities for
jobs and investments, thus contributing to the much-needed stimulus to the economy
following the COVID-19 pandemic [4]. Furthermore, renovation can achieve healthier,
more productive and better indoor comfort levels for building occupants [4], reducing
operational energy costs and risk exposure to energy price fluctuations and weather
shocks [47]. In addition, building owners, such as hoteliers, can achieve economic value
through green marketing opportunities, since a green image has a significant positive
impact on the intention of the consumer to purchase a service [48, 49].

From an academic point of view, this research may also contribute to the field of
UBEM by aiming to establish a method to define RB energy models or archetypes for
multi-functional and heterogeneous ’small’(X ≫ N) building stocks. In addition, this
research also strives to facilitate the application of Bayesian calibration for these build-
ing stocks by analysing innovative approaches to optimise the computational efficiency
of Bayesian calibration.

1.5 | Organisation of the dissertation
The dissertation is organised as follows:

■ Chapter 2 reviews the limitations of the current EPBD cost-optimal methodology
and defines the link between UBEM and the EPBD cost-optimal method in terms
of process similarities and common uncertainties. Moreover, the chapter critically
reviews and investigates state-of-the-art UBEM studies that can address building
stock uncertainty and diversity using Bayesian probability. Based on the findings
from this review, a novel EPBD cost-optimal method is proposed to optimally han-
dle the diversity and uncertainties of the building stock and meet the aim and

5To avoid the financial risk, when Energy Conservation Measures (ECMs) are evaluated using deter-
ministic calibrated Building Energy Models (BEMs), Energy service companies (ESCOs) consider a rule of
thumb approach to consider only between 60 % and 70 % of the deterministic prediction of energy savings
[46].
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objectives of this research. The subsequent chapters aim to apply the proposed
novel approach to the hotel building stock and validate it by comparing its poten-
tial to the current approach in its ability to provide more robust policy measures
to facilitate building stocks transition to NZEB.

■ Chapter 3 tackles the first step in the novel cost-optimal approach by developing
a machine learning approach to define RBs for ’small’ (X ≫ N) heterogeneous
building stocks.

■ Chapter 4 addresses the steps to derive ’probabilistic Bayesian calibrated RBs’ for
the proposed cost-optimal approach. The approach is applied and validated for
a deterministic RB defined in Chapter 3, which represents an energy model for
a cluster of the 5-star hotel buildings under study. Innovative energy modelling
techniques are applied and validated to reduce the computational expense of de-
riving ’probabilistic Bayesian calibrated RBs’ and to facilitate the implementation of
the novel approach.

■ Chapter 5 addresses the final steps of the proposed cost-optimal approach to ob-
jectively derive EPIs or benchmarks for the different levels of ambition proposed,
while taking into consideration the propagation of EP uncertainty and financial
risk for each of them to establish robust energy renovation support policies. The
’probabilistic Bayesian calibrated RB’ developed in Chapter 4 is used as a case study
to demonstrate the process. The chapter will finally perform the current cost-
optimal approach using the same RB case study and the NCM software to allow
a critical comparison of its outcomes with that of the innovative approach devel-
oped in this study.

■ The thesis concludes by analysing the degree to which this research has met its
aim and objectives.
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1.6 | Important notes
■ A selected list of peer-reviewed publications, book chapters, and conference pro-

ceedings by the author of this thesis, many of which are referred to in this thesis,
are found in Appendix A.

■ All building energy model files, JEPlus [50] files, Microsoft Excel files, and Python
source code used to undertake this research are found in the following repository
link.
https://drive.google.com/drive/folders/1S2Y2-TIHlwabHnlzLHHUa8n06GByf_

Nd?usp=sharing.

Appendix B also provides a detailed description of all folders and files in this link,
highlighting the Chapter, Section, and Footnote where each folder, file and source
code is referred to in the thesis.
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2

Literature review

Chapter Abstract : Building stock energy models are tools that can be used to extract
valuable knowledge of the national building stock to assist in developing appropri-
ate policy measures to achieve decarbonisation. In this context, the 2010 EPBD recast
[9] has established a common EU approach, ’the EPBD cost-optimal methodology’,
for analysing building stocks to facilitate their transition to near-zero energy status.
The current Energy Performance of Buildings Directive (EPBD) cost-optimal method
and the different approaches to building stock modelling, such as the Urban Building
Energy Modelling (UBEM) found in literature, are reviewed to establish methodolog-
ical similarities and common uncertainties. The state-of-the-art UBEM literature pro-
vides multiple techniques to better handle uncertainties and building stock diversity.
Therefore, it was hypothesised, in line with the aim of this research, that the handling
of building stock uncertainties and diversities in the EPBD cost-optimal could be
better addressed by integrating state-of-the-art UBEM techniques employing ’proba-
bilistic Bayesian calibrated RBs’ to the current cost optimal approach. Following the
systematic review of the UBEM literature, a new cost-optimal method incorporating
these techniques is proposed and conceptualised. Other research gaps that need to
be addressed within the specific context of the EPBD and multi-functional buildings
to meet the aim and objectives of this research are also identified. The subsequent
chapters aim to validate the proposed cost-optimal method through its application to
a building stock case study to accept or reject the hypothesis presented in this chapter.
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2.1 | Introduction

Meeting the EU carbon reduction goals and energy renovation rate targets for build-
ings established in the Green Deal [3] and the renovation wave strategy [4] requires EU
Member States (MS) to devise successful policy measures to improve the Energy Per-
formance (EP) of their buildings. In this context, building stock energy models, whose
general purpose is to "quantify the energy-use as a function of different input parameters"
[51], can offer valuable knowledge of the national building stock [52], including the po-
tential to improve its EP. Therefore, these models are key for informing, devising, and
evaluating policy measures and to "assisting with the efficient and rational implementation
of policy" [53].

Although numerous building stock energy models in the literature serve different
purposes, all models should be able [51, 52] to estimate the baseline EP of a building
stock cluster under study and explore the technical and economic impacts of different
CO2 abatement strategies, including the potential of applying new technologies. Fur-
thermore, the models should also be able to evaluate potential non-energy related ben-
efits to emission reduction strategies such as indoor environmental performance.

Within this context, and to serve the specific purpose of the EPBD for establish-
ing ’cost-optimal’ and ’NZEB’ EP benchmarks, a common approach for MS to study the
building stock termed the ’EPBD cost-optimal methodology’ was established in the 2010
EPBD recast [9]. Based on the results from the cost-optimal method, MS are to devise
the required policy measures to facilitate the transition of buildings to the established
EP benchmarks.

This chapter reviews the current EPBD cost-optimal method and the different ap-
proaches to building stock energy modelling found in the literature to define the link in
terms of methodological similarities, uncertainties, and limitations between the EPBD
cost-optimal method and these approaches. The review then focuses on techniques used
in state-of-the-art building stock energy modelling studies to better handle the uncer-
tainties and limitations of conventional modelling approaches for more robust policy
making. The reviewed building stock modelling studies employ building physics en-
ergy models and are termed Urban Building Energy Modelling (UBEM) studies in this
research. An analysis of such state-of-the-art techniques in UBEM, including an evalu-
ation of their limitations, and the identification of specific research gaps that need to be
addressed in the fields of uncertainty analysis and building energy modelling to serve
the specific requirements of EPBD cost-optimal framework, will follow. Finally, this
analysis guides the aim of this research in proposing an innovative approach to opti-
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mally handle the diversity and uncertainties of the building stock within the EPBD cost-
optimal method and its application to heterogeneous multi-functional building stocks.

2.2 | Relation between the EPBD cost-optimal method
and conventional UBEM

This section compares the EPBD cost-optimal method to conventional UBEM approaches.
The establishment of similarities between the two methods can identify whether the de-
veloped state-of-the-art UBEM mathematical techniques that address many of the lim-
itations in conventional UBEM studies have the potential for application in the EPBD
cost-optimal method to better handle building stock uncertainties and diversity.

2.2.1 | The EPBD cost-optimal method
The EPBD recast [9] cost-optimal methodology can be summarised in the following
steps :

■ Step 1: ’Deterministic RBs’ are defined for the different building categories defined
in the directive;

■ Step 2: Sets of packages (combinations) of energy efficiency measures (COMs) is
applied to the defined RBs. The energy efficiency measures constitute Energy Con-
servation Measures (ECMs) and/or measures using renewable energy systems.
ECMs include both building envelope (passive) measures and building energy
systems (active) measures.

■ Step 3: Primary energy consumption based on the EP1 rating of RBs for the cho-
sen COMs is calculated using a National Calculation Methodology (NCM) that is
compliant with the requirements of the EPBD recast [9];

■ Step 4: The global (life cycle)2 costs (Euro.m−2 of the building floor area) for any
package of measures are calculated according to the EPBD recast methodology

1The building EP rating depends on the characteristics of a building and on standard occupancy, oper-
ational schedules, and indoor outdoor climate conditions, while a building operational rating is based on
measured amounts of delivered and exported renewable energy [12].

2The term ’global’ or ’Life-cycle Costs (LCC)’ (refer to EN 15459-1 [54]) used in the cost-optimal level
calculations is the total combination of costs, such as capital cost, maintenance, and replacement costs,
as well as operational costs, all discounted to the present value over a period of time, as stipulated in
European Commission (EC) delegated regulation number 244/2012 supplementing the 2010 EPBD [55]. In
the 2018 EPBD cost-optimal studies for Malta [56] this period was taken to be 20 years (for non-residential
buildings) and 30 years (for residential buildings).
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[9]. The global cost must be carried out from both a macroeconomic3 and finan-
cial perspective, and a Sensitivity Analysis (SA) for different price development
scenarios and discount rates is mandatory;

■ Step 5: The results of the energy calculation are plotted against the global costs
(Euro.m−2 of the building floor area) for each sensitivity, as shown in Figure 2.1,
and the cost-optimal and NZEB EP ranges are determined.

The cost-optimal EP “leads to the lowest cost during the estimated economic life cycle of
the building” [9], while NZEB is a building that “has a very high EP with a low amount of
energy required covered to a very significant extent by energy from renewable sources, including
energy from renewable sources produced on-site or nearby" [9]. It must be noted that the red
curve represents the Pareto front4. The area to the left of the cost-optimal point in Figure
2.1, represents possible NZEB solutions [59].

3For the macroeconomic cost optimum, the financial global cost calculation needs to be expanded to in-
clude the cost of GHG emissions which is defined as the monetary value of environmental damage caused
by the emissions generated from the operational energy consumption of a building [55].

4The Pareto front is the set of optimal, non-dominated solutions where each objective is considered
equally good for multi-optimisation problems, and also provides superior solutions for the search space
[57, 58].
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Figure 2.1: Plot showing the EPBD cost optimal and NZEB ranges where each light blue
dot identifies a a package (combination) of energy efficiency measures (COM), while the
red curve represents the Pareto optimal solutions.

2.2.2 | Building stock andUrbanBuilding EnergyModelling (UBEM)
In general, building stock energy modelling has been classified in three distinct ap-
proaches, namely the ’bottom-up’, the ’top-down’ and the hybrid methods, as shown in
Figure 2.2, whereby the hybrid building stock energy model is a combination of the
bottom-up and top-down methods [60].

The ’bottom-up’ calculates and aggregates the EP or end uses of individual build-
ing to represent the entire building stock under study [65]. Furthermore, it is impor-
tant to distinguish between ’bottom-up’ statistical models and ’bottom-up’ engineering
(or physics) building stock modelling. ’Bottom-up’ physics models make use of building
energy simulation tools and are called UBEMs in this review5.

’Top-down models’ are data-driven models [38] that investigate a building sector’s

5This review adopts the classification schemes used by Swan et al. [53, 51], in which Urban Building
Energy Models (UBEMs) are bottom-up engineering or bottom-up building physics models, respectively
[66]. Thus, UBEMs, bottom-up engineering, and bottom-up building physics models are used interchange-
ably. UBEMs in this study also deal with RBs (typically archetypes) rather than distributions or samples
(refer to Figure 2.2).
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Figure 2.2: Overview of building stock modelling approaches as compiled from [61, 62,
63, 64, 53]

energy consumption or CO2 emissions through historical databases. They evaluate
the macroeconomic relationships between energy consumption and long-term changes
within the existing building sector under analysis [67]. The main advantage of top-
down techniques lies in their use of more easily accessible aggregate data that simplify
analysis. In addition, due to the decreased need to gather in-depth descriptive data
on buildings, this type of modeling is typically quicker and less expensive [62]. How-
ever, these models do not satisfy the requirements of the EPBD cost-optimal method, as
they do not analyse individual building energy models, different technology options, or
energy end uses.

In contrast to ’top-down models’, the UBEM methodology uses building physics en-
ergy simulation tools to predict EP in an approach similar to the EPBD cost-optimal
method, thus attaining more robust results and allowing for higher fine tuning to eval-
uate the potential of greenhouse gas avoidance in the simulation modelling, in line with
the requirements of the Green Deal [3]. This is made possible because UBEMs work at
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a disaggregated level and do not rely on historical data, while sharing many similari-
ties to the EPBD cost-optimal method, such as the evaluation of the impact of different
energy efficiency measures on the primary energy and CO2 emission reductions [51, 68]
and the identification of the corresponding cost-optimal levels.

2.2.3 | Amethodological comparison between the EPBDcost-optimal
method and UBEM

In a published paper by the author of this thesis (refer to Gatt et al. [36]), a detailed
comparison was carried out between the conventional UBEM studies6 and the EPBD
cost-optimal method and it was found that they share many methodological similarities
[36], given their common objective, as depicted in Figure 2.3. For example, both ap-
proaches first require the definition of ’deterministic RBs’ to represent the building stock
under study, predict the unit energy consumption of the RBs using building energy sim-
ulation tools, and model the improved EP when different energy efficiency measures are
applied to the RBs.

One important difference between the two approaches is that UBEM must acquire
the total EP of the building stock category by aggregating the predicted unit EP using
appropriate weighting factors (for example the floor area or the number of units) for
each RB before the application of measures. Aggregation enables policy makers to in-
vestigate the impact of various measures at the national or urban level.

However, in comparison to conventional UBEM and the EPBD cost-optimal method,
state-of-the-art UBEM approaches probabilistically calibrate the RB parameters using
metered building stock energy consumption data to enhance the confidence and valid-
ity of the defined RB energy models and realistically quantify the impact of various en-
ergy efficiency measures on the primary energy consumption. The sections that follow
explain these approaches in more detail.

2.2.3.1 | Definition of deterministic Reference Buildings (RBs)

To represent the building stock under study, ’deterministic RBs’ are first defined in both
conventional UBEM and the EPBD cost-optimal method. Such RBs should accurately
reflect the national building stock to ensure representative calculations and benchmark-
ing, given that the building stock division has a profound impact on the models’ abilities
to predict EP improvements of the proposed measures [72]. However, despite the im-

6Studies that explain the UBEM conventional approach process include [65, 53, 69]. Conventional
UBEM studies include Mata et al. [70] and Tuominen et al. [71].
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Figure 2.3: A Venn diagram showing the methodological similarities and differences
between the EPBD cost-optimal method and conventional UBEM approaches

portance of correctly defining RB, their current development remains one of the biggest
challenges to model building stocks [73]. First, statistically defining RBs is complex,
since the process requires the collection of a significant amount of geometric, opera-
tional, and technical information [65]. Furthermore, the definition of RBs is subjective,
given that the method to define them is not standardised or harmonised, as explained
in Schaefer and Ghisi [34] and Corgnati et al. [26].

Despite the numerous approaches proposed in the literature for defining RBs, it can
be identified that the majority of RBs have been developed conceptually using a similar
two-step approach, as seen in Figure 2.4. Buildings are first classified according to one
or more categories or indicators, such as usage [74] (for instance, offices, educational
buildings, hotels and hospitals), location, construction period and building size plus
shape [75]. Several studies of the building stock, including Aksoezen et al. [76] and
Famuyibo et al. [77], applied a top-down statistical analysis of the energy consumption
data of the measured building stock to verify the choice of the adopted RB classification
approach and improve confidence in the selected building categories.
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Figure 2.4: Approach generally adopted to define RBs in UBEM and the EPBD

After being classified, RBs are characterised according to all pertinent geometric and
non-geometric features, including operation, form, envelope, and system data [26], us-
ing a variety of sources of information including national or local building codes and
standards, national surveys results, energy audits, or other published literature. Re-
cently, O. Pasichnyi et al. [78] developed RBs by linking Energy Performance Certificates
(EPCs) and measured energy consumption data sets using statistical data techniques.
The most frequently utilised characterisation approach in the literature is ’archetypes’
[38], which are virtual RBs having ’a statistical composite of the features found within a
category of buildings in the stock’ [62]. When compared to the ’Example RB’ and the ’Real
(average) RB’ characterisation approaches, archetypes provide the most realistic and rep-
resentative method to characterise the analysed building stock sample. A downside of
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archetypes is that the availability of large statistical data sets is required for their success-
ful processing. An ’Example RB’ is developed based only on the expert’s assumptions
and judgement and can be a real building [75] or a virtual [79], fictional [26] building.
In contrast, the ’Real (average) RB’ represents the most typical existing building in the
analysed building stock sample [26], [75], [79].

Furthermore, approaches to developing RBs for ’small’ (X ≫ N) 7 multi-functional
building stocks where the number of explanatory variables ’X’ impacting energy per-
formance is greater than the number of building observations in a population ’N’ have
not been sufficiently considered in literature8.

In order to make the characterisation and classification stages for defining RBs easier
and less subjective, various data-driven techniques have been used in the literature.
Such techniques9 include the use of the following:

■ Descriptive statistics. The technique was used in a number of studies, such as
Bhatnagar et al. [80] to develop office RBs for India and Streicher et al. [82]
to characterise archetypes from the EPC data for a residential building stock in
Switzerland;

■ Clustering analysis. Numerous studies have employed this technique.

In Ballarini et al. [86], EPC data was used to undertake hierarchical clustering
for each age class of terraced houses in Piedmont (Italy). Farrou et al. [87] em-
ployed k-means clustering for deriving EP benchmarks to enable the classification
of Greek hotels. The k-means algorithm was also used by Heidarinejad et al. [81]
to cluster the EP of office buildings having LEED certification. Furthermore, for
Southern Brazil, Schaefer and Ghisi [34] combined hierarchical and k-means clus-
tering to derive RBs for the low-income housing stock. More recently, Yang et
al. [88] and Borges et al. [89] used k-means clustering to develop representative

7For the scope of this research, a ’small’ building stock is one where the number of explanatory variables
’X’ impacting EP is greater than the number of building observations ’N’ in a population or sample under
study.

8Studies to develop RBs have generally considered building stocks with large number of observations
when compared to the number of explanatory variables impacting operational energy performance. Such
studies to develop RBs include Bhatnagar et al. [80] : 230 office building observations and 23 explanatory
variables, Heidarinejad et al. [81] : 134 office building observations and 24 explanatory variables, Streicher
et al. [82] : 25,000 residential building observations and 23 explanatory variables, and Pieri et al. [83]: who
considered a sample of 35 hotels from a population of 192 hotels and 8 explanatory variables to divide the
building stock into 3 groups.

9State-of-the-art techniques for defining RBs in UBEM include the approach by Ghiassi and Mahdavi
[84], where clustering is combined with Geographic Information System (GIS) to identify representative
buildings, and Tardioli et al. [85], where a novel six-step approach is proposed that includes classification
and clustering to generate representative buildings.
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buildings in China and Andorra, respectively. In addition, Ali et al. [90] made
a comparison of different clustering techniques for an Irish EPC database when
developing archetypes;

■ Regression analysis. This technique was combined with descriptive statistics and
employed by Famuyibo et al. [77] to develop archetypes for domestic dwellings
in Ireland;

■ Principal Component Analysis (PCA). PCA was combined with K-means clus-
tering and used by Gaitani et al. [91] to identify typical school buildings in Greece
and to develop a tool for their EP rating. In a similar manner, Pieri et al. [83]
combined clustering and PCA for hotel buildings.

The primary constraint when defining RBs in both the conventional UBEM and the
EPBD cost-optimal method is that only single parameter values are defined for each
RB energy model software simulation input. Such single-parameter input values do not
permit consideration of inherent randomness or diversity in the RB representing a build-
ing stock under study. For instance, when a single-parameter value for the Coefficient
of Performance (COP) of a cooling system is input for a RB, one cannot propagate uncer-
tainty and building stock diversity resulting from different COP values in the building
stock for the cooling system under study. Therefore, given only single parameter val-
ues to characterise the RB, the RB model will always predict the same EP output, which
makes the RB models in the conventional UBEM and the EPBD cost-optimal method ’de-
terministic’. In other words, a Sensitivity Analysis (SA) is not performed for the assumed
values of the energy efficiency parameters.

Although the use of classification and other statistical data-driven techniques aids
in the selection and definition of ’deterministic RBs’ to better reflect the building stocks
diversity, in ’deterministic RBs’ there still exists what Booth et al. [92] describe as ’hetero-
geneity uncertainty’ resulting from a grouping of characteristics into subsets and ’chance
variability’ when single parameter values are assigned to define RBs. Consequently, even
if an archetype building statistically represents the mean of all buildings in its group,
each individual building will always have a different EP [74]. The following sections
will describe how the definition of RBs has developed in state-of-the-art UBEM to better
handle the diversity and uncertainties of the building stock.

2.2.3.2 | Predicting the EP of RBs

The EP of the derived RBs is predicted using the same approaches as those applied
for both the conventional UBEM and the EPBD cost-optimal method. Figure 2.5 pro-
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vides a first-hand description of the different modelling methods for predicting the EP
of buildings10 . In both approaches, the forward (engineering) approach is necessary to
physically interpret the results to understand how the application of ECMs impacts the
EP of RBs.

Figure 2.5: A first-hand depiction of energy estimating and modelling methods for in-
dividual buildings (RBs)

The EPBD allows MS to use forward-driven EP calculation methods for the EP anal-
ysis of RBs in the NCM. These calculation methods are to be quasi-steady-state or dy-
namic in compliance with ISO 52016 [108]. Most UBEM studies have also adopted these
two calculation methods. Quasi-steady-state methods employ simple algebraic equa-
tions [109], require less parameter inputs, and are computationally faster than dynamic
models. However, in contrast to dynamic simulation tools (which include EnergyPlus,
ESP-r, and TRNSYS software [110])11 that consider the transient behaviour of systems

10Recent reviews of building energy estimating and modelling methods between 2013 and 2022 in
chronological order can be found in [93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 73, 1, 106, 107].

11Dynamic software simulation tools have been assessed by Crawley et al. [111], and recently by Harish
et al. [102] and Chalal et al.[101]. The most widely used software simulation tools, that include EnergyPlus,
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and buildings, quasi-steady-state or monthly methods are not able to perform a thermal
comfort assessment, model demand-based controls, perform a smart readiness assess-
ment or track peak loads [99, 112].

Meta-models that combine (forward) engineering building simulation tools with
data-driven Artificial Intelligence (AI) or statistical models have become a fundamental
modelling approach in state-of-the-art UBEM studies. Meta-models are also known as
surrogate models, emulators, hybrid or grey-box models. Meta-models have the advan-
tage of reducing the simulation times of dynamic engineering models when undertak-
ing the computationally expensive process of probabilistically calibrating RB parame-
ters with individual building stock energy consumption data.

2.2.3.3 | Aggregating the EP of RBs

RBs in UBEM are modelled either as individual buildings, after which their EP levels
are aggregated to the entire building stock under study, or the RBs in the stock are mod-
elled collectively together [113]. The aggregation of EP and the collective modelling of
RBs has recently been made easier in UBEM through integration with GIS12. UBEM
incorporating GIS allows the acquisition of the outer shell geometry of buildings in a
stock but still requires one to divide the buildings into zones to comprehensively char-
acterise non-geometric properties of the buildings such as the zone activities and their
corresponding installed systems, and operational schedules. UBEM thermal models can
range in complexity from contextless, single-zone, steady-state models to multi-zone
dynamic models that take into account cross-shading between buildings. The impact
of the urban heat island effect has also been studied by some models [115]13. Recently,
Hong et al. [118] carried out a review of UBEM, evaluating aspects that include the
available urban modelling tools and the EP calculation methods employed by the dif-
ferent tools.

Given that the EPBD cost-optimal method does not specify the requirement to ag-
gregate the energy end-use (consumption) from the RBs to building stock level, the
potential of GIS has not been realised. Although the aggregation of RB energy end-
use (consumption) data has been a key component in conventional UBEM, only recent

ESP-r, and TRNSYS, use the multi-zone building physics model approach [94, 97]. This approach divides a
building under analysis into zones and uses uniform state variables, which variables include temperature,
to describe the properties defining the thermodynamic state of each thermal zone of the building [94, 97].

12GIS makes it easier to collect building data, facilitates the merging of data from several databases
needed for engineering models, allows spatial visualisation and differentiation of results, and supplies a
repository for storing and exchanging data [114, 101]. Common input variable data includes weather data,
building age, physical, thermal, and occupational schedule data from buildings.

13State-of-the-art UBEM GIS software including CitySim [116] and CityBES [117] that combine a custom
Graphical User Interface (GUI) with thermal simulation engines.
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state-of-the-art UBEM studies have attempted to probabilistically calibrate RB param-
eters with individual measured energy consumption stock data to reduce parameter
uncertainties, as discussed in the following sections.

2.3 | Uncertainties in the EPBD cost-optimal method
and conventional UBEM

The methodological similarities between the conventional UBEM and the EPBD cost-
optimal method result in many common uncertainties between the two processes. Un-
certainties will be defined from an EPBD policy perspective before explaining the tech-
nicalities leading to such policy uncertainties.

2.3.1 | Policy uncertainties in the EPBD cost-optimal method
From a policy perspective, the EPBD cost-optimal method uncertanties have been sum-
marised by the author of this thesis in [35, 36] as:

■ The extent to which the defined ’deterministic RBs’ used to derive EP benchmarks
adequately represents the diversity of the building stock under study.

■ The magnitude of the ’energy performance gap’, that is, the discrepancy between the
actual ’operational’ building stock (individual and aggregated) EP and the ’simu-
lated’ EP of RBs representing the building stock calculated using NCM software
tools in the EPBD cost-optimal methodology.

■ The extent to which the EN 15459 [54] global Life-cycle Costs (LCC) parameters,
such as the capital and maintenance costs for each defined COM14, accurately re-
flect the LCC parameter diversity for a building stock under study both as a re-
sult of capital costs and maintenance requirements variations between different
suppliers for components having a similar function and unforeseen circumstances
during the design or execution of the works.

■ The difference between the actual ’operational’ versus the calculated ’simulated’ pri-
mary energy savings achieved by retrofitting a specific category of buildings to de-
fined EP requirements. This diffence leads to uncertainty as to whether measures

14While MS are to undertake SA for different price development scenarios and discount rates in the
global LCC calculation for the packages of energy efficiency measure under study, other global LCC pa-
rameters are defined deterministically in the EPBD cost-optimal method.
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leading to a defined EP ambition level in the simulated environment are eligible
for promotion or incentive in practice.

■ A quantification of the technical and economic risks associated with the defined
EP benchmark for a given building stock under study.

Such uncertainties are also made evident given that an ’energy performance gap’ of
more than 30 % was recorded throughout Europe, including Denmark [18, 19], France
[14], Switzerland [20, 21, 22, 23], Germany [16], UK [17], Italy [13] and Malta [24]. More-
over, energy policy has not yet fully considered this critical gap [11], which impacts
the success rate of energy policymaking [25]. These uncertainties and other factors led
to substantial differences between MS in the EPIs (kWh.m−2.year−1) derived from the
cost-optimal methodology with discrepancies of up to 100 % reported in the review of
[30, 33] for regions that fall under the same climatic zone. Other factors, in addition to
the above uncertainties, that can lead to these discrepancies include a lack of harmoni-
sation in the methodology of the NCM calculation approach15 and a lack of objectivity
in deriving the NZEB benchmarks between MS, as detailed in Section 2.5.5.

15RBs have been defined by MS with a significantly divergent level of detail for EPBD cost-optimal
analysis [26, 27], and important discrepancies between the different end uses and the system boundaries
considered for EP calculations, have been identified in [28, 30]. To counteract this harmonisation issue, the
EU has published revised EPB standards [31] and requested MS in the 2018 EPBD [32] to describe their
"NCM following the national annexes of the overarching EPB standards."
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2.3.2 | Factors leading to policy uncertainties in the EPBD
The different types of uncertainties in conventional UBEM are described in detail by
Booth et al. [92], Lim and Zhai [65], Naber et al. [45], Tian et al. [119] and Prataviera
et al. [120]. Given the methodological similarities between the conventional UBEM and
the EPBD cost-optimal method, these uncertainty factors also lead to the EPBD policy
uncertainties described above. For the purpose of this research, a simplified breakdown
of uncertainties in conventional UBEM can be as follows:

1. RB energy models input parameters uncertainty

2. RB energy models technical and structural uncertainty

,as discussed in the following sections.

2.3.2.1 | RB energy models input parameters uncertainty

Building engineering simulation models are complicated even when applied to individ-
ual buildings because they require many input parameters that are variable / stochastic
(aleatory uncertainty) or unknown, given a lack of knowledge (epistemic uncertainty)
[119]. The problem is more pronounced in the EPBD and UBEM, since only a small
number of ’deterministic RBs’ are employed to represent the whole and wide distribu-
tion of individual buildings [45]. In addition, there are also uncertainties in any mea-
surements used or taken to define parameter input values, including the manufacturer
system specifications themselves.

Furthermore, there is also an aleatory and epistemic uncertainty in the input param-
eters of the adopted economic model in UBEM and the LCC calculation in the EPBD
cost-optimal method. These input parameters include the capital and maintenance costs
of the retrofit measures under study.

2.3.2.2 | RB energy models technical and structural uncertainty

Given that it represents a simplification of the real physical process, the engineering
or meta-model itself is a potential source of uncertainty and error [121]. The model
will provide a difference in the outputs under study between measured and simulated
results, even for exact measurements and perfectly known parameters.
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2.4 | Handling of uncertainties in theEPBD-cost-optimal
method

Even though the handling of uncertainties is critical for informed policy making, few at-
tempts have been made to devise techniques to tackle the uncertainties described above
for the EPBD-cost optimal approach. EPBD guidelines only require MS to perform a
risk analysis on EN15459-1 [54] global life costing parameters by performing a SA to
identify the impact of multiple price development scenarios and discount rates on the
resulting EP benchmarks for the defined RBs.

In the literature relating to the EPBD, the Simulation-based Large-scale uncertainty/sensitivity
Analysis of Building Energy performance (SLABE) approach put forward by Mauro et
al. [64] enables the diversity and uncertainty of the building stock to be better tackled
by replacing ’deterministic RBs’ with a representative building sample. This approach al-
lows a simulation based uncertainty/SA in EP from the representative building sample
and in life-cycle financial feasibility when ECMs are introduced and simulated. How-
ever, the SLABE process cannot aggregate and probabilistically calibrate the energy per-
formance of the engineering model (s) with the measured energy consumption data of
the building. This calibration is critical to provide confidence in the chosen representa-
tive building sample and to fully address the input parameters and structural uncertain-
ties of the model to study the building stock16. This absence of calibration also limits the
ability of SLABE to consider the ’energy performance gap’ between the simulated Energy
Use Intensity (EUI) performance and the EUI operational performance.

In contrast, the literature on techniques to better handle the uncertainties and di-
versities of building stocks in UBEM to tackle the limitations of conventional UBEM is
more comprehensive, as will be systematically reviewed in the following sections. In
general, and as detailed in the following sections, state-of-the-art UBEM studies have
handled uncertainties and risks by addressing the limitations of uncalibrated ’determin-
istic RBs’ in conventional UBEM using an approach of inverse uncertainty analysis [121].
This approach replaces ’deterministic RBs’ with ’probabilistic RBs’ and performs Bayesian
inference, or more specifically, Bayesian calibration to tune the most significant input

16More recently Scarpa et al. [122] for residential buildings in Italy, not within the specific context of the
EPBD cost-optimal method, used a similar approach to SLABE [64] by defining archetypes as probability
distributions to consider the joint impact of uncertainty on both technical and financial aspects. However,
calibration with metered energy consumption data was also not considered. Other recent studies that con-
sider a ’probabilistic non-calibrated’ approach to the EP improvement studies in buildings include Copiello et
al. [123] propagating LCC uncertainty for a housing block, Giuseppe et al [124] developing an approach to
propagate EN 15459 [54] LCC uncertainty, and Togaschi [125] who performed a joint technical and financial
risk analysis for a standard seven-storey tenant office building located in Tokyo.
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parameters of defined RBs with individual building stock energy consumption data17.
Given the methodological similarities and the resulting uncertainties between con-

ventional UBEM and the EPBD cost-optimal method established in Section 2.2.3 and
visualised in Figure 2.3, in line with the aim of this research, a hypothesis can be made
as follows. It can be hypothesised (see Gatt [36]) that handling the uncertainties and di-
versities of the building stock in the EPBD cost-optimal method can be better addressed
by applying state-of-the-art UBEM techniques employing ’Bayesian calibrated RBs’ to the
current approach. However, to accept or reject this hypothesis, one first needs to tackle
the research gap of establishing a conceptual framework to comprehensively integrate
the UBEM techniques built upon ’probabilistic Bayesian calibrated RBs’ to the current cost-
optimal method, given that this conceptual framework does not exist. The choice of con-
sidering ’Bayesian calibrated RBs’ versus non-calibrated probabilistic RBs and calibrated
deterministic RBs using a ’frequentist’ optimisation approach are detailed in Section 2.5
and Section 2.6.1 via a review of the literature.

To address this research gap, a systematic review of the literature on how Building
Energy Modelling (BEM) studies have handled the uncertainties and diversities of build-
ing stocks was carried out, as detailed in the following paragraph, and a conceptual up-
date of the cost-optimal method is proposed to establish this framework. The proposed
update to the cost-optimal method is shown in Figure 2.6 and is detailed in Section 2.5. It
should be noted that the proposed update is derived on the basis of what the researcher
believes is the most suitable approach to address the above hypothesis after a careful
review of the literature. To answer this hypothesis, subsequent chapters will aim to val-
idate the conceptual EPBD cost-optimal approach shown in Figure 2.6 by applying it to
an actual case study of a building stock.

Furthermore, in the following chapters, each step in the proposed method will be
further analysed to address the limitations of ’Bayesian calibrated RBs’ discussed below
and to address the specific methodological needs of the EPBD cost-optimal method,
including its application to multi-functional heterogeneous building stocks.

17’Bayesian inference’ is “the process of fitting a probability model to a set of data and summarising the results by
a probability distribution on the parameters of the model and unobserved quantities such as predictions for new obser-
vations” [126]. More specifically, for the scope of this research, Bayesian calibration starts by assigning prior
probability distributions of model parameters, which defines prior expertise or knowledge independent of
observations. The prior distributions of parameters are then used to characterise the building energy sim-
ulation model, for which the uncertainty in the prior distributions can be decreased to iteratively obtain
posterior distributions given field observations and using Bayes rule [127].
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Figure 2.6: The EPBD cost-optimal method coupled with state-of-the-art UBEM tech-
niques to handle uncertainty and allow a comprehensive risk analysis of derived EP
benchmarks and (policy) measures
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The literature review methodology to derive the proposed update of the EPBD cost-
optimal method consisted of the following three steps:

■ Step 1: Keyword search for publications in Google Scholar and the Scopus database.
The search included the keywords ’Bayesian calibration’, ’Bayesian inference’, ’uncer-
tainty quantification’, ’inverse problems’ related to Building Energy Modelling (BEM)
with a focus on UBEM. Only research journals or conference papers written in En-
glish and peer-reviewed were considered relevant.

■ Step 2: A review of all relevant publications. The relevant publications were
reviewed in terms of the following aspects: parameter uncertainty distribution,
parameter screening, parameter uncertainty propagation, Bayesian calibration of
significant parameters, Bayesian model diagnostics, calibration validation, prob-
abilistic risk analysis in the application of energy conservation measures (ECMs),
strengths and limitations of Bayesian calibration, tackling the limitations of Bayesian
calibration in building energy modelling.

■ Step 3: A conceptual update of the proposed EPBD cost-optimal method is de-
fined. All relevant publications were reviewed, and a conceptual update of the
EPBD cost-optimal method was proposed. Methodological research gaps that are
relevant to the specific needs of the EPBD cost-optimal method, and its application
to multi-functional heterogeneous building stocks and so far not addressed in the
UBEM literature are identified.

The next section will detail each step of the proposed update to the cost-optimal ap-
proach and, based on the reviewed UBEM literature, will attempt to justify each step in
terms of allowing policy makers to better handle building stock uncertainties and diver-
sities in the EPBD cost-optimal method. The subsequent chapters will aim to validate
the proposed approach.
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2.5 | Proposed EPBD cost-optimal method update
The proposed update to the cost-optimal approach is shown in Figure 2.6 and is ex-
plained in the following six steps:

■ Step 1: Assignment of probabilistic RB models

■ Step 2: SA for the identification of the most significant parameters of the RB mod-
els

■ Step 3: Probabilistic calibration of the significant uncertainty parameters of the RB
models

■ Step 4: Bayesian model diagnostics, posterior analysis and calibration validation

■ Step 5: Derivation of EP benchmarks via a global LCC cost-optimal analysis

■ Step 6: Risk Analysis for the derived EP Benchmarks

2.5.1 | Step 1: Assignment of probabilistic RB models
Assigning ’probabilistic RBs’ is the first step in the proposed EPBD cost-optimal method
depicted in Figure 2.6. ’Deterministic RBs’ used in conventional UBEM and the EPBD
cost-optimal method cannot replicate the inherent diversity of buildings within a cluster
of buildings under analysis. This results because each input parameter in the RB energy
model is defined as a single value to predict EP [74, 128]. Therefore, to better handle the
diversity and uncertainty of the parameters of the building stock that define a group of
buildings, ’probabilistic RBs’ have replaced ’deterministic RBs’ in state-of-the-art UBEM
studies. In ’probabilistic RBs’, an N-vector of uncertain (input) parameters θ are defined
as probability distributions p(θ), representing the prior knowledge of the true values
of the calibration parameters. To generate a random or near-random sample of input
parameter values from the defined probability distributions statistical techniques that
include Markov chain Monte Carlo (MCMC) or Latin Hypercube Sampling (LHS) are
employed. This sampling allows policy makers to propagate uncertainty through vari-
ations and correlations between the input of the RB parameters and the output(s) of the
RB energy model.

The drawback of ’probabilistic’ versus ’deterministic’ RBs primarily lies in the increase
in the simulation time of the analysis and the need to use audit / survey data to char-
acterise the selected RB parameters probabilistically when compared to the use of data
from more readily available literature sources to define ’deterministic RBs’ [74].
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2.5.1.1 | Probabilistic RBs versus deterministic RBs approach validation

Recent residential building stock UBEM studies by Cerezo et al. [74] and Sokol et al.
[128] have compared the performance of the simulated Energy Use Intensity (EUI) dis-
tribution performance of both non-calibrated ’probabilistic’ archetypes and ’determin-
istic’ archetypes against actual measured Energy Use Intensity (EUI) distributions18.
Both studies statistically proved through Kolmogorov–Smirnov test (KS) test values and
maximum or mean percentile error tests that the simulated EUI distributions resulting
from ’probabilistic RB’ matched more closely the annual measured EUI distributions. Ya-
maguchi et al. [129] for Japan’s retail facilities and Tian and Choudhary [69] for campus
school buildings also acknowledge the importance of using probabilistic versus deter-
ministic energy models to capture the EUI distribution for a group of buildings.

In Bayesian UBEM calibration studies, envelope and equipment parameters were
probabilistically assigned by Booth et al. [92, 130] and Booth and Choudhary [131] to
a building housing stock. Operational parameters and plug loads were defined proba-
bilistically in Cerezo et al. [72] for urban residential buildings in Kuwait. Furthermore,
occupancy and envelope parameters were selected for Bayesian inference in Hedegaard
et al. [132] for an urban residential neighbourhood in Denmark, while studies including
Tian and Choudhary [69] for a set of campus school buildings, Cerezo et al. [74] for
urban residential buildings in Kuwait, Sokol et al. [128] for residential houses in Cam-
bridge, Kristensen et al. [113] for Danish detached single-family houses, and Prieto et
al. [133] for a residential building block case study in Switzerland, defined envelope,
equipment, and operational parameters as probability distributions.

While ’probabilistic RBs’ can intrinsically allow the diversity of building stocks to be
represented, it does not eliminate the need to divide the building stock under study
into multiple RBs using a suitable classification approach. The use of multiple ’proba-
bilistic’ archetypes versus single ’probabilistic’ archetypes in UBEM allows policy makers
to reduce the wide parameter uncertainty distributions resulting from a whole building
stock. Cerezo et al. [74] and Sokol et al. [128] statistically proved, through the result-
ing analysis of the EUI distribution, the requirement to correctly classify the building
stock and the use of multiple ’probabilistic’ archetypes to represent residential buildings
in UBEM. Furthermore, Tian and Choudhary [69] also acknowledge the importance of

18Applying uncalibrated probabilistic archetypes versus deterministic archetypes, Cerezo et al. [74]
showed a reduction in Percentile Error (PE) (for the 90 percentile) from 0.16 to 0.04 and an improvement in
the Kolmogorov–Smirnov test (KS) test from 0.24 to 0.12 for the simulated EUI distributions compared to
annual measured EUI distributions. Similarly, Sokol et al. [128] showed that the application of uncalibrated
probabilistic archetypes versus deterministic archetypes achieves a reduction in the mean Percentile Error
(PE) from 69 to 47 %, a decrease in CVRMSE from 78 to 69 %, and an improvement in the KS test values
from 0.57 to 0.41 for the simulated EUI distributions compared to the annual measured EUI distributions.
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using multiple ’probabilistic RBs’ to represent a schools’ building stock. Once the build-
ing stock is divided into more than one RB, each ’probabilistic RB’ can then handle the
remaining parameters (and EUI) ’natural’ variability within each cluster of buildings.

2.5.2 | Step 2: Sensitivity analysis (SA) for the identification of the
most significant parameters of the RB models

Once ’probabilistic RBs’ are defined, the RB parameters must be probabilistically cali-
brated using individual measured energy consumption data from the building stock to
improve confidence in the predictions of UBEMs and reduce the uncertainty of the RB
parameters. Reduction in RB parameters uncertainty is achieved by obtaining narrower
probability distributions that define the uncertainty of the parameters. Most UBEMs
that employ probabilistic calibration perform a SA process to identify the S-vector of
significant parameters ϕ (ϕ ⊂ θ) from the unknown parameters θ to be employed in
the calibration process. Therefore, since probabilistic calibration is a computationally
expensive process, SA aims to reduce the computational burden of probabilistic cali-
bration by reducing the calibration parameters from N to S, as shown in Figure 2.6.
Furthermore, calibrating a large number of parameters, which number of parameters
is case-specific, can lead to identifiability problems and less precise calibrated parame-
ters due to overparameterization [134], and this occurs because more combinations of
parameters are likely to agree with the measured data.

Bayesian calibrated building energy models generally apply global versus local SA.
Global SA, unlike local SA, explores the impact of uncertain parameters throughout the
defined parameter range [135]. Despite being more computationally intensive than local
SA, global SA can be considered a more reliable method [136]. The one-step-at-a-time
(Morris) method [137] is a popular global SA method for Bayesian calibrated building
energy models and has been successfully applied in various studies both for individual
buildings in Heo et al. [138, 139, 140, 141] and for UBEM in Booth et al. [92, 130], Booth
and Choudhary [131], and M.H. Kristensen et al. [113]. The principal advantage of
the Morris method, as reviewed by Yang et al. [142] and Tian [143], is the need for less
computation than the other global SA methods. The Morris method, therefore, provides
a good compromise between accuracy and computational effort in BEM [134].
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2.5.3 | Step 3: Probabilistic calibration of the significant uncertainty
parameters of the RB models

The uncalibrated probability distributions of the S significant RB uncertain parameters t
depicted in Figure 2.6 are known as ’prior distributions’ or simply ’priors’ [131]. Bayesian
calibration uses Bayes’ theorem, shown in Equation 2.1 [126]19, to obtain plausible distri-
butions of the uncertain parameters referred to as ’posterior distributions’ p(t | y) derived
from the ’prior distributions’ p(t) and the likelihood function. Given that Bayes’ theo-
rem stipulates that the posterior probability p(t | y) is proportional to the likelihood
function p(y | t) and the prior probability, the likelihood function drives the process
of updating ’prior’ distributions by evaluating how closely the model results match the
measured data, y. The Markov chain Monte Carlo (MCMC) algorithms draw from the
joint posterior distribution to create approximate “posterior distributions” to calibrate all
uncertain parameters20.

p(ϕ | y) ∝ p(ϕ)× p(y | t) (2.1)

The generic approach proposed by Kennedy and O’Hagan [146] for the Bayesian
calibration of computer models, as defined in Equation 2.2, has been applied both for
the calibration of individual buildings and in UBEM studies to model the relationship
between computer simulation η and measured data, y incorporating uncertainty of pa-
rameters, model inadequacy, and observation errors. Studies of individual buildings
that employ the Kennedy and O’Hagan (KOH)[146] approach include office buildings
in Heo et al. [139] and Chong and Menberg [134] and a single-family house in Denmark
in Kristensen, Choudhary and Petersen [71]. RB studies in UBEM applying the Kennedy
and O’Hagan [146] approach include a building housing stock in Booth et al. [92] and
Danish single-family dwellings in Kristensen, Choudhary, Pedersen, et al. [147].

19Bayesian calibration was first applied to UBEM by Booth at al. [92].
20While MCMC is the most widely approach to approximate the posterior distributions, ’Variational

Inference’, a machine learning optimisation method, has been applied for high dimensional problems in
BEM by Li et al.[144] and Cartens et al. [145].
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The uncertainty in the parameters is usually explained by a meta-model (emula-
tor) η(x, t), which is a GPE in many studies that replaces the computationally intensive
physical model [128] and fits the simulation results of the energy model through runs of
the stochastic model under known conditions x and uncertain (calibration) parameters
t. The (structural) inadequacy of the model is included in the bias correcting term δ(x),
while ε(x) accounts for observation errors.

y(x) = η(x, t) + δ(x) + ε(x) (2.2)

In UBEM studies employing Bayesian calibration, the heterogeneity of the archetypes
was considered according to different degrees within a cluster of buildings [113]. Booth
et al. [92] calibrated ’probabilistic’ archetypes to average data on building stock energy
consumption, thus not accounting for archetype diversity. However, in the studies by
Cerezo et al. [74] and Sokol et al. [128], Bayesian inference was considered for each
building energy model individually with respect to its measured energy consumption
data before the data were compiled, thus accounting for archetype heterogeneity. Kris-
tensen et al. [113] proposed an optimal solution between these two approaches to ad-
equately account for the heterogeneity of the archetype. The solution considers a hier-
archical (multilevel) Bayesian calibration approach that partially combines information
from training buildings to infer uncertain parameters that are less prone to outliers.

2.5.4 | Step 4: Bayesian model diagnostics, posterior analysis and
calibration validation

Once the calibration process is complete, it is crucial to assess how well the applied
model fits the data to avoid misleading inferences. This will improve confidence in the
resulting posterior parameter distributions. Bayesian model verification and compari-
son requirements are detailed in several publications, including Gelman et al. [126] and
Kruschke [148]. Software packages such as ShinyStan [149], Bayesplot [150], and Arviz
[151] facilitate model checking in Bayesian statistics by providing interactive plots and
tables to help analyse a posterior sample.

An assessment of the representativeness, accuracy and efficiency of the MCMC sam-
ple generated from the posterior distribution is vital. This assessment should be per-
formed by evaluating the convergence of the model, the autocorrelation in the sample
chain, and the effective sample size. Statistical methods to assess model convergence
include the Gelman-Rubin statistic [126], which has been used to assess convergence in
Bayesian calibration of building energy models in several UBEM studies. UBEM studies
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that have applied the Gelman-Rubin statistic include Kristensen, Choudhary, Pedersen
et al. [113] and Kristensen et al. [147]. Furthermore, Chong and Menberg [134] applied
the Gelman-Rubin statistic in an individual building study.

If the initial diagnostic inspection of convergence is satisfactory, the suitability of
the applied model must be checked. Important aspects of model checking include the
’within sample’ predictive checks termed Posterior Predictive Checks (PPCs) [126] and
the ’out of sample’ predictive accuracy. PPCs assess the fit of the replicated data from
the model to the observed data by simulating samples from the posterior predictive
distribution. They include graphical checks, such as distributions and scatter plots,
or facilitate the use of test statistics that include the posterior predictive p-value [126].
Out-of-sample predictive accuracy is carried out by splitting a data set into a training
set and a cross-validation (testing) test without the use of model data. The model is
fitted to the training set, which is then assessed by evaluating its performance on an
independent testing set through graphical checks or statistical tests. These checks have
been carried out both graphically and with test statistics in the calibration of building
energy models in Chong and Menberg [134] for individual buildings and in Sokol et
al. [128] and Kristensen, Choudhary, Pedersen et al. [113] in UBEM. The most pop-
ular test statistics for assessing predictive precision in Bayesian calibrated of building
energy models are the Normalised Mean Bias Error (NMBE) and Coefficient of the Vari-
ation of the Root Mean Square Error (CVRMSE) criteria detailed in The American So-
ciety of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline
14 [152]. Out-of-sample tests ’without waiting’ [126], that is, ’using in sample data’ [153]
which include Widely Applicable Information Criterion (WAIC), and Leave-One-Out
Cross-Validation (LOO-CV), have not been applied in studies using Bayesian calibra-
tion of building energy models to the best knowledge of the researcher.

Furthermore, since multiple models may be plausible and fit the data well, verifying
that the preferred model performs favourably relative to other alternatives is desirable.
For this purpose, SA assesses the change in posterior inference when other reasonable
probability models are used instead of the present model [126].

SA in the Bayesian calibration of building energy models has assessed the sensitivity
of:

■ The use of a different number of archetypes assessed in various studies, including
Cerezo et al. [74] and Sokol et al. [128] for UBEM residential buildings;

■ Different number of calibration parameters in Chong and Menberg [134] for an
office building study;
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■ The extent of consideration of archetype heterogeneity in Kristensen et al. [113]
for Danish detached single-family houses;

■ The use of different priors, that is, different levels of parameters uncertainty in
Heo, Graziano, et al. [140] and Chong and Menberg [134] for individual building
studies,

■ The application of different meta-models in Lim and Zhai for a medium sized
office building [154] and Prieto et al. [133] for a UBEM residential building block
case study in Switzerland;

■ Different training set sizes to develop the emulator in Kang and Krarti [155] for an
office building;

■ Different data temporal resolutions analysed in various studies, including Yam-
aguchi et al. [129] for a UBEM supermarket study, Sokol et al. [128] for UBEM
residential buildings, and Kristensen, Choudhary, and Petersen [147] for a single-
family dwelling and

■ The influence of error terms on the posterior predictions of calibrated model in-
puts in Menberg et al. [121] for a heat pump model.

2.5.4.1 | Bayesian calibration approach validation

Bayesian calibration of probabilistic RBs has been statistically proven21 for the UBEM
of residential buildings in Cerezo et al. [74] and Sokol et al. [128] to provide closer
EUI simulation predictions with measured data than EUI simulation predictions from
uncalibrated probabilistic RBs, especially when RBs are calibrated with monthly ver-
sus annual energy consumption data [128]. On the downside, calibration increased the
computational expense by a factor of more than six [128].

21By calibrating probabilistic RBs with annual measured data, Cerezo et al. [74] showed a reduc-
tion in the Percentile Error (PE) (for the 90 percentile) from 0.04 to 0.02 and an improvement in Kol-
mogorov–Smirnov test (KS) from 0.12 to 0.05, compared to the annual measured EUI distributions. Simi-
larly, Sokol et al. [128] showed that when probabilistic RBs were calibrated using annual measured energy
consumption data, mean PE decreased from 69 to 47 %, CVRMSE decreased from 87 to 66 %, while the
KS test values improved from 0.41 to 0.21. Furthermore, probabilistic RBs calibrated with monthly energy
consumption data versus annual measured data gave even closer EUI simulation predictions. The monthly
calibrated probabilistic RB achieved a mean PE of 44 %, a CVRMSE of 58 %, and a KS test of 0.10.
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2.5.5 | Step 5: Derivation of EP benchmarks via a global LCC cost-
optimal analysis

Once the RB models are calibrated, they can better support policy decision making at
the urban level. Drawing from the calibrated parameters of the resulting RB models
’posterior distributions’ in Bayesian calibration naturally allows the propagation of uncer-
tainty and SA in the simulation output when different packages of energy conservation
measures are applied to the calibrated ’probabilistic RB’ models under study [156]. This
propagation of uncertainty allows for a probabilistic uncertainty analysis in predicted
energy savings and associated financial risk when different ECMs are considered and
applied to a building or building stock, as shown in the following studies. An energy
savings probabilistic risk analysis using different retrofit measures has been performed
in Booth and Choudhary [131] for a Bayesian calibrated UBEM housing stock, in Tian
and Choudhary [69] for a school building stock, and in Heo et al. [157], for a case study
university building. Furthermore, in UBEM studies, both Booth and Choudhary [131]
and Heo et al. [157] propagated uncertainty in both the predicted energy savings of the
ECMs and their capital costs to allow more accurate and reliable retrofit decision mak-
ing under uncertainty. This probabilistic uncertainty and risk analysis that can lead to
more reliable decision making when applying different energy efficiency measures to
a building stock under study cannot be carried out by using ’deterministic RBs’ in the
current EPBD cost-optimal method and in conventional UBEM.

Therefore, a more comprehensive analysis of uncertainty and financial risk would
have to be carried out for the proposed EPBD cost-optimal method, that not only con-
siders the capital costs of implementing energy efficiency measures as done in the above
studies, but according to the global life-cycle cost-optimal analysis requirements stipu-
lated by the EC [55], to enable the shift towards a probabilistic approach for deriving
and analysing NZEB benchmarks. More specifically, a set of energy efficiency measures
would need to be applied to ’Bayesian calibrated RBs’ to calculate primary energy con-
sumption and global LCC for each package of energy efficiency measures (COM) and
construct cost-optimal plots for determining the cost-optimal and NZEB benchmarks.

However, defining NZEB benchmarks is not straightforward even for the current
’deterministic’ EPBD cost-optimal method that uses an ’Asset rated’ approach to calcu-
late the EP rating. This difficulty results because the EPBD does not provide objective
criteria for defining NZEB benchmarks following the determination of the cost-optimal
levels for different discount rates and price development scenarios. A state-of-the-art re-
view of different NZEB definitions by Gatt [158] has concluded that while "cost-optimal
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EP levels provide a maximum threshold for MS to define NZEB EP requirements, a clear relation
and distinction between cost-optimal and NZEB EP levels has not been established at EU level".
Furthermore, recent guidance from the EC in [159], only makes a generic recommen-
dation on NZEB EP benchmark ranges for offices and single-family households under
different climates.

Therefore, a methodological research gap exists in the literature for an objective and
harmonised approach to enable MS to define NZEB EP benchmarks for RBs according
to different defined ordinal levels of ambition. Furthermore, a gap exists in the current
EPBD cost-optimal approach to account for uncertainties in predicted energy savings
and life cycle financial feasibility propagated from ’probabilistic RBs’ for different ECMs.

2.5.6 | Step 6: Risk analysis for derived EP benchmarks

The last step of the proposed cost-optimal approach requires the visualisation and objec-
tive quantification of the uncertainty in predicted energy savings and the corresponding
risk in life cycle financial feasibility for a RB model undergoing a major renovation.

In BEM studies that consider probabilistic approaches, operational uncertainties and
financial sensitivities, a number of visualisation and statistical techniques have been
used. Visualisations approaches include side-by-side univariate (box) plots for global
cost uncertainty distributions comparing different ECMs in [64], Internal Rate of Re-
turn (IRR) distribution plots for ECMs in [125] and Net Present Value (NPV) impact as
a function of the LCC calculation period for a NPV financial parameter under study in
[122]. Furthermore, statistical risk quantification approaches include the optimal invest-
ment ratio derived based on the variance and covariance matrix of the IRR in [125] and
by defining the safe and risk zones of a financial metric probability distribution in [122].

However, a probabilistic approach to risk and uncertainty analysis that considers
the joint impact of technical and financial uncertainties on NZEB EP benchmarks has
not been specifically developed so far. Such a framework requires the consideration of
both financial and macroeconomic perspectives to LCC in order to be able to perform
a SA on the impact of different price development scenarios and discount rates on the
resulting EP benchmarks for a defined RB. Furthermore, the propagated uncertainty
in EP improvements and LCC risks for a defined NZEB benchmark level as generated
from the ’Bayesian calibrated RBs’ requires to be visualized, statistically quantified, and
interpreted to produce a meaningful output that can meet the aim and objectives of this
research.

37



Chapter 2. Literature review 2.6. Bayesian Calibration positive attributes and limitations

2.6 | Positive attributes and limitations of Bayesian cal-
ibration in UBEM

This section discusses the potential positive attributes and limitations of applying Bayesian
calibration to reduce uncertainty for BEM studies with a focus on UBEM, as explained
in the literature. Furthermore, different approaches in which Bayesian calibration limi-
tations have been counteracted in BEM studies are also reviewed, and specific literature
gaps are identified to further tackle the limitations of Bayesian calibration to facilitate
its implementation in the proposed EPBD cost-optimal method. The current research
focus for the Bayesian calibration of building energy models is also summarised.

2.6.1 | Positive attributes to Bayesian calibration versus ’frequen-
tist’ calibration approaches

The positive attributes of applying probabilistic “Bayesian” calibration versus the ’fre-
quentist’ calibration [119] approach stem naturally from the requirements of the RB
models to handle the diversity of the building stock by defining and obtaining prob-
abilistic distributions of the input parameters of the RB suitable for risk propagation.
This contrasts the ’frequentist’ optimisation approach to calibration that simply aims at
finding the ’best’ value of input parameters [130] by minimising the difference between
observed data and the output of the model22.

More important to policy making is that prior probabilistic distributions of RB pa-
rameters allow the consideration of parameter uncertainty and evaluation of its impact
via Bayesian inference in an iterative manner. Therefore, a continuous learning process
can be established using the posterior parameter distribution derived as prior and infer-
ring these distributions in light of new data or as more reliable sources of information
become available [130].

Such an approach has been amply demonstrated in the literature to yield mean-
ingful outputs. For example, Heo et al. [140] showed that Bayesian calibration for all
audit levels of an individual building yielded posterior distributions that corresponded
well to true values, with much reduced uncertainty compared to uncalibrated models.
Furthermore, Chong and Menberg [161] also recommended the use of ’weak informative
priors’ versus ’specific priors’ in case of previous knowledge, to ensure the inclusion of
all sensible parameter values. Although the studies by Heo et al. [140] and Chong and

22In [160] a state-of-the-art study employs optimisation combined with surrogate models to auto-
calibrate UBEM.
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Menberg [161] have not been validated in an urban context, they indicate that expensive
and detailed energy audits may not be critical in defining prior distributions for RBs un-
dertaking Bayesian calibration. Therefore, a proper SA must identify prior sensitivity
before undertaking expensive data collection.

From a mathematical and EPBD policy making perspective, ’Bayesian’ versus deter-
ministic ’frequentist’ calibration offers other advantages. Apart from the possibility of
considering multiple sources of uncertainties including, model inadequacy, Bayesian
calibration, unlike optimisation, aims to reduce uncertainty from all parameters to be
calibrated instead of simply minimising the discrepancy between the observed data
and model output. Furthermore, Bayesian calibration allows policy makers to establish
quantitative confidence levels in the accuracy of calibrated models and to propagate
risk via sampling from posterior distributions. The ability to probabilistically quantify
parameter uncertainty and to allow for the accounting of multiple sources of uncertain-
ties allows the ’Bayesian’ approach to providing a better framework to counteract the
over-fitting and parameter identifiability issues of conventional ’frequentist’ calibration
[156]23.

2.6.2 | Meeting themain objectives of the 2018EPBDand theGreen
Deal

In Gatt et al. [36], the author of this thesis explained how the proposed update of the
EPBD cost-optimal method depicted in Figure 2.6 has the potential of facilite the process
for MS to meet three primary objectives of the 2018 EPBD directive (2018/844/EU) [32].
These objectives are shown in Figure 2.7. Figure 2.7 depicts a process mind map illus-
trating how the proposed EPBD cost-optimal method can allow MS to express compa-
rable cross-national EP benchmarks in accordance with the EU NZEB recommendations
[159], establish stronger long-term renovation strategies, and facilitate building compli-
ance with the ’smartness indicator’ criteria introduced in the 2018 EPBD. The potential of
the proposed approach to meet these objectives will be further discussed once the ’novel’
proposed EPBD cost-optimal method is validated via its application to a building stock
case study in subsequent chapters.

23Various studies have statistically, in terms of different error metrics, proven the benefits of Bayesian
calibration versus conventional calibration approaches [127] including Kim et al. [162] who compared
constrained optimisation versus stochastic Bayesian calibration for an existing building, Pavlak et al. [163]
who compared least the squares approach to Bayesian inference for a retail building grey-box model, and
more recently in Rouchier et al. [164] who compared the indoor temperatures forecast performance of an
experimental test-cell using Kalman filter and Bayesian Inference.
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Figure 2.7: Process mind map depicting how the proposed EPBD cost-optimal method
can enable MS to meet three of the main aims of the 2018 EPBD directive.

2.6.2.1 | Expressing comparable cross-national EP benchmarks

The proposed approach can make the expression of comparable benchmarks between
MS easier in more than one way. First, using individual measured energy consumption
data can facilitate the verification of the choice of classification of RBs and the number of
RBs required to adequately represent a building stock category under study. Second, the
application of the approach makes it possible to specify statistical indicators to quantify
the largest variability of Energy Use Intensity (EUI) in a group of buildings that each
RB should represent. Such indicators can make the RB definition process less subjective
and more coherent between MS. In addition, the potential ’energy performance gap’ re-
duction between the EUI simulated performance and EUI operational performance via
the Bayesian calibration of RBs enhances confidence that the derived cost-optimal and
NZEB EPIs of RBs will match more closely the improved operational EP of the building
stocks under study when upgrading these stocks to comply with the cost-optimalNZEB
EPI requirements. Third, calibration of benchmarks with actual measured energy use
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can facilitate the comparison of benchmarks between MS, if the energy end uses and
system boundaries for the NCM are harmonised "following the national annexes of the over-
arching EPB standards" [32] and a more objective approach to define NZEB benchmarks
from the resulting cost-optimal plots as detailed in Section 2.5.5 is defined.

2.6.2.2 | Enabling stronger long-term renovation strategies

The comprehensive probabilistic risk analysis framework proposed in this research can
also facilitate the development of stronger long-term renovation strategies with a solid
financial component aimed at "decarbonising the national building stocks by 2050" [3]. This
framework can have a better potential to allow the definition and quantification of more
robust policy and support measures to stimulate energy renovation and meet the Reno-
vation Wave [4] goals through a better handling of uncertainties24. Furthermore, quan-
tification of uncertainties in operational energy savings and financial risks associated
with different energy efficiency measured can facilitate decision-making for Energy ser-
vice companies (ESCOs) [127]. This results from greater assurance that the outcome
of energy efficiency measures will truly produce the anticipated benefits and savings
when applied to a building stock under study. Both Deng et al. [165] and more recently
Lee et al. [166] demonstrated the importance of undertaking a probabilistic approach to
address uncertainty for energy performance contracting.25

Such a probabilistic risk analysis framework combined with the use of measured
data to verify and limit EUI variability in the selection of RBs can also lead to a less
generic approach to EP benchmarking and the derivation of more ambitious but achiev-
able benchmarks. This risks quantification can prevent the establishment of unrealistic
EP benchmarks. As Galvin [168] demonstrated, unrealistic benchmarks can be counter-
active to building energy renovation. Additionally, the EPBD directive (2018/844/EU)
[32] also stipulates requirements that MS must have knowledge of their building stock
for renovation strategies to be successful. Incorporating Bayesian calibration in the pro-
posed approach provides the ideal framework for policy makers to incorporate knowl-
edge, learn, and account for new information. Perfoming SA on building model param-
eters is also part of this learning process and has the potential to facilitate more targeted

24This is achieved by better handling of key technical and financial uncertainties when defining EPIs
and drafting policy measures, which uncertainties of which are the main barriers to energy renovation
[42, 43, 44]

25To avoid the financial risk, when energy efficiency measures are evaluated using deterministic cali-
brated building energy models (BEMs), ESCOs consider a rule of thumb approach to consider only between
60 % and 70 % of the deterministic prediction of energy savings [46]. Furthermore, given financial uncer-
tainties, ESCOs have a problem of ’cream skimming’ [167] by funding only the “guaranteed energy savings”
and leaving the "shared savings" portion to be funded by the building owner.
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policy making for renovation by defining and enforcing technical requirements only for
the most influential system and envelope parameters.

2.6.2.3 | Facilitating smartness indicator compliance

According to the EPBD (2018/844/EU) [32], the "energy performance of a building shall be
determined on the basis of calculated or actual energy use. . . " . The (asset) rating calcula-
tion approach predicts the EP of a building based on fixed schedules and set points and
is independent of user behaviour, wheras operational ratings depend on actual (mea-
sured) energy consumption. Defining comfort set-point parameters for RBs probabilis-
tically and inferring them can, in the absence of identifiability issues, allow policy mak-
ers to potentially learn about the actual operational energy use of buildings within a
stock. Therefore, Bayesian calibration can better probabilistically quantify energy sav-
ings through the use of energy-efficient comfort set points and set up benchmarks that
encourage energy-efficient occupant behaviour. Furthermore, an operation-dependent
approach to EP can also help promote smart building energy management systems by
MS to ensure better management of user behaviour in buildings. This understanding
of the significance of building energy management systems can make it easier for EU
buildings to comply with the ’smartness indicator’ criteria introduced in the 2018 EPBD
(2018/844/EU) [32].

2.6.3 | Limitations of Bayesian calibration in UBEM
Despite its potential benfits, Bayesian calibration is highly computationally expensive.
The Bayesian process becomes more computationally demanding with the addition of
more input data or an increase in the number of parameters to be calibrated [169]. Fur-
thermore, choosing poor prior distributions necessitates more iterations before reaching
convergence [170]. In addition, like other calibration methods, Bayesian calibration re-
quires measured energy consumption data from the individual buildings under study
to compare model simulation outputs to. This collection of individual energy consump-
tion data is itself a time-consuming process [170] that is not always easy to obtain [128].

Recent research on Bayesian calibration for Building Energy Models (BEMs) focuses
on reducing the computational expense of Bayesian calibration by employing one or
more of the following techniques:

■ Use of reduced-order models (also called simplified or grey-box models [171])
given they are more computationally efficient than dynamic (white-box) mod-
els. This has been done in multiple studies. Heo [138] and Heo et al. [139] employ
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a Quasi-steady heat balance model compliant with the CEN-ISO standards for a
university building. Booth et al. [92, 130] and Booth and Choudhary [131] use an
EPC quasi-steady tool compliant with CEN-ISO standards for a UBEM housing
stock. Zhao et al. [172] conduct a UBEM study of offices using a physics-based
reduced order normative energy model. Furthermore, Hedegaard et al. [132] ap-
ply the simple hourly method of ISO 13790 [173] to a Danish urban residential
neighborhood;

■ Use of simpler and more computationally efficient meta-models including Multiple
Linear Regression (MLR) to replace the GPE. This was carried out in various
studies. Tian and Choudhary [69] develop a statistical model to analyse school
buildings in London using the Standardised Regression Coefficient (SRC) and
Multivariate Adaptive Regression Lines (MARS). Zhao and Magoulès [93] ex-
amined various BEM meta-models. MLR was used as a meta-model for a campus
building by Li, Gu, et al. [156] and Li et al. [174]. Tian et al. [175] used a retail
building to combine SA, correlation, cluster analysis, and linear regression. Zhao
et al. [172] used MLR as a meta-model for an office UBEM study. Lim and Zhai
[154] compared the accuracy and computational time of various meta-models, in-
cluding MLR, SVR, ANN and GPE, for an office building. Prieto et al. [133] also
compared different emulators for a UBEM residential building block case study in
Switzerland;

■ Use of information theory to select a representative subset of the entire data set
for calibration. This approach was demonstrated for a cooling system of a 10-
story office building in Chong et al. [176] and for a medium-sized office building
in Lim and Zhai [177];

■ Utilising the No-U-Turn sampler (NUTS) Markov chain Monte Carlo (MCMC)
algorithm [178] or an improved Metropolis- Hastings (M-H) algorithm in [179].
These algorithms allow for a more efficient exploration of the posterior distribu-
tion when compared to the M-H algorithm. This was demonstrated in numerous
studies, including Chong et al. [176], for the cooling system of an office building
cooling system. In addition, Chong and Menberg [134] and Menberg et al. [121]
utilised Stan software [180] that employs the NUTS MCMC algorithm for an office
building and a heat pump, respectively;

■ Proposal of a GPE to "simultaneously calibrate and rank input parameters for building
energy simulation models" as shown in Yuan et al. [181] for a office building having
multiple storeys and
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■ Use of only a sample of the entire building stock to generate posterior distribu-
tions. This is demonstrated in UBEM studies, including Sokol et al. [128] for res-
idential houses in Cambridge and Kristensen et al. [113] for single and detached
family houses in Denmark.

■ Combining Approximate Bayesian Computation methods with machine learning
techniques without computing likelihood functions to calibrate BEMs [182]

Higher computational speeds for the Bayesian BEM calibration process enable cal-
ibration at lower temporal resolutions, that is monthly, weekly, or hourly versus an-
nually. This approach which was demonstrated in multiple studies can enhance the
accuracy of both the calibrated parameters and the predictive model. Yamaguchi et al.
[129] compared the weekly versus annual energy consumption calibration results for an
urban-scale model of a food supermarket. Kristensen, Choudhary and Petersen [147]
contrasted the calibration results for a single family home from six-hour, daily, weekly
and monthly district heating temporal resolution data. In addition, Sokol et al. [128]
compared monthly versus annual energy use data to calibrate residential buildings in
UBEM.

The research on the Bayesian calibration of BEMs has also concentrated on the bar-
rier to collecting observed (measured) data using the following techniques.

■ Using only a sample of the whole building stock for calibration at lower temporal
resolutions because fewer data are likely to be available at these temporal resolu-
tions. Yamaguchi et al. [129] demonstrated this approach for a UBEM supermar-
ket study;

■ Combining correlation and hierarchical clustering to identify informative data to
check the possibility of obtaining reliable outcomes in the event of missing data.
Additionally, computational time can also be improved using informative data.
Tian et al. [175] applied this approach for a retail building;

■ Use of a "hierarchical Bayesian framework for calibrating micro-level models with macro-
level data" as shown in Booth et al. [130];

■ Replicating energy data of the building stock using data from energy surveys as
demonstrated by Zhao et al. [172] for office buildings and

■ Geometrically representing archetypes of detached single family houses as single
rectangular boxes. This approach was applied in Kristensen, Choudhary, Peder-
sen et al. [147] and Kristensen et al. [113].
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More recently, the research on Bayesian calibration has also focused on:

■ Deeper analysis of model discrepancies within the Bayesian calibration frame-
work and the identification of methods to improve model accuracy. This analysis
was done in Menberg et al. [121] and Monari [183];

■ Parameter identifiability concerns when undertaking Bayesian inference in BEM
as analysed in Chong and Menberg [134] for an individual office building and Yi
et al. [184] for a DOE RB;

■ Bridging engineering simulation with demand regression using Bayesian infer-
ence to allow forecasting the energy demand of cities in Yu [185] and for residen-
tial scale space heating demand in Hedegaard et al. [132].

As detailed above, the literature has attempted to address many limitations of Bayesian
calibration for BEM in terms of computational expense. However, procedures for re-
placing a computationally intensive building physics (RB) energy model with a more
computationally efficient building physics model that retains the same dynamic nature
and provides a statistically acceptable difference in simulation output have not been
adequately addressed for multi-functional buildings, as explained in Gatt et al. [35].
Accurately modelling such multi-functional RBs made up of multiple activities requires
thermal zones to be defined as a minimum according to the function of the space and
the method used to condition the zone. This approach contrasts with more simplistic
approaches to define thermal zones in UBEM, including the single zone models, one
zone per floor models or multi-zone per floor models that distinguish only between
perimeter and core zones [186]. These approaches do not consider or only consider in a
simplified way the function diversity of the spaces. Such approaches for defining zones
in BEM can be found and compared in [187, 188, 189, 190, 191, 192, 186, 1]. Acceler-
ating simulation runs from the building physics model will reduce the computational
expense of fitting the meta-model in the Bayesian calibration framework explained in
Section 2.5.3.

An approach to improve the computational speed of multi-functional RB energy
models to fit within the Bayesian calibration framework explained in Section 2.5.3 is
conceptualised by the author of this thesis in Gatt et al. [35] and is termed the ’refer-
ence zone’ approach26. In this approach, it is proposed that a full-space physical whole-

26A similar but simpler concept to the ’reference zone approach’ to model school buildings in Malta was
first applied by the author of this thesis in Gatt [193]. The proposed hierarchical modelling approach in this
research allows policy makers to define customisable energy performance benchmarks within the frame-
work of the EPBD cost-optimal method for school buildings having different orientations and percentage
distributions of functional spaces.
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building energy model composed of multiple thermal zones, with the thermal zones
defined as a minimum according to the function of the space and the method used to
condition the zone, is divided into a number of simplified geometric representations or
building blocks, each assigned a multiplier. The building blocks are termed ’reference
zones’, where each ’reference zone’ is a representative functional unit of a sub-activity. A
sub-activity, a subset of an activity, must be defined for a space that offers the same ser-
vice (activity) but has a different defining condition impacting EP, such as a different
space conditioning system, schedule, or orientation. The ’reference zone approach’, which
is detailed in Section 4.3, has been hypothesised in Gatt [35] to allow a simple and flex-
ible aggregation of EP from the ’reference zones’, to individual buildings and even up to
the urban level. This flexibility makes the approach especially suitable for modelling
multi-functional heterogeneous buildings stocks to represent building stock diversity,
while allowing faster computational times. However, this approach has yet to be val-
idated in terms of simulation results accuracy for a multi-functional RB case study. It
should be noted that representing the various building functions more accurately, the
disadvantage of defining detailed zoning approaches, as opposed to simpler zoning
approaches, such as the perimeter and core zone approach, is more detailed building
information, increased user intervention to create zones, and a larger number of model
parameters [1].

46



Chapter 2. Literature review 2.7. Conclusion

2.7 | Conclusion
This chapter described the current EPBD cost-optimal method and compared it method-
ologically to conventional urban energy modelling (UBEM) studies. Based on the sim-
ilarities and differences identified between the two approaches, a link between the two
methods was established, and the common uncertainties that impact policy making
were defined. Although few attempts have been made to address building stock un-
certainties specifically for the EPBD cost-optimal approach, the state-of-the-art UBEM
literature has provided multiple techniques to better handle uncertainties and consider
building stock diversity when compared to conventional UBEM studies.

Based on the link and methodological similarities between conventional UBEM and
the EPBD cost-optimal method, in line with the aim of this research, a hypothesis was
made as follows. It was hypothesised that the handling of the uncertainties and diver-
sities of the building stock in the EPBD cost-optimal method can be better addressed
by applying state-of-the-art UBEM techniques employing ’Bayesian calibrated RBs’ to
the current approach. Based on the established link between UBEM and the EPBD
cost-optimal method and a systematic literature review of UBEM studies, a novel cost-
optimal method was proposed to address what the researcher believes is the best ap-
proach to address the research gap of establishing a comprehensive and conceptual
framework to integrate such techniques built upon ’probabilistic Bayesian calibrated RBs’
to the current cost-optimal method to better handle building stock uncertainties and di-
versity and therefore to meet the aim of this research. Subsequent chapters will validate
the proposed cost-optimal method through its application to a building stock case study
to enable the hypothesis presented in this thesis to be accepted or rejected.

Furthermore, to address the specific methodological needs of the proposed EPBD
cost-optimal method within the EC framework, including its application to ’small’ (X ≫
N), multi-functional and heterogeneous building stocks, the other research gaps that
need to be addressed to meet the specific aim and objectives of this research are sum-
marised below.

■ A machine learning methodology to define RB energy models for ’small’ (X ≫
N), multi-functional and heterogeneous building stocks has not been developed
sufficiently.

■ Methodologies replacing a computationally intensive (RB) physics energy model
with a more computationally efficient building physics model that retains the
same dynamic nature and provides a statistically acceptable difference in simu-
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lation output to reduce the computational expense of performing multiple simu-
lation runs when employing Bayesian calibration have not been adequately ad-
dressed in the literature for multi-functional buildings.

■ A harmonised and ordinal scale approach has not been established for policy mak-
ers to objectively define NZEB EP benchmarks having different levels of ambition
within the EPBD cost-optimal method framework.

■ A probabilistic approach to risk and uncertainty analysis that considers the joint
impact of technical and financial uncertainties on NZEB EP benchmarks has not
been specifically developed to comply with the EPBD framework required for the
proposed approach. Such a framework requires MS to consider both a financial
and macroeconomic perspective to LCC and to perform a SA on the impact of dif-
ferent price development scenarios and discount rates on the resulting EP bench-
marks for a defined RB. Furthermore, the propagated uncertainty in EP improve-
ments and LCC risks for a defined NZEB benchmark level as generated from the
’Bayesian calibrated RBs’ requires to be visualized, statistically quantified, and in-
terpreted to meet the aim and objectives of this research.
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Defining reference buildings for small
multi-functional building stocks - a

machine learning approach

Chapter Abstract : Defining deterministic RBs that represent the building stock un-
der study is the preparatory stage to execute the proposed EPBD cost-optimal method.
There is, however, no standard methodology to define RBs. An approach was there-
fore developed to define RBs for ’small’, multi-functional and heterogeneous build-
ing stocks, given that the heterogeneity and data-processing challenges to defining
RBs for such buildings have not been adequately addressed in the literature. The
approach uses unsupervised and supervised machine learning techniques to system-
atically combine building feature data with individual metered energy consumption
data to address the high-dimensional data processing challenges inherent in such
building stocks. The approach also ensures that the resulting RBs are fully charac-
terised for bottom-up modelling and the EPBD cost-optimal method. Furthermore, a
specific ’functionality feature’ is also introduced, and its data are processed to allow
the RB clustering solution to better represent the diversity of the services offered by
the individual buildings in a stock. The approach was successfully applied to a 5-star
hotel building stock which derived statistically significant feature explanatory vari-
ables to group 10 hotel building observations under study into 6 clusters, for which
a RB must be defined for each cluster. Furthermore, the RB clustering solution was
shown to provide a more comprehensive approach to defining RBs when compared
to clustering only on easily obtainable bench-marking variables or directly on the
operational metered energy consumption. This is because the developed method can
uncover building characteristics and functionalities required to successfully charac-
terise a heterogeneous building physics RB energy model.
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3.1 | Introduction
Defining deterministic RBs that are representative of the building stock under study is
the first step in the current EPBD cost-optimal method, as described in Section 2.2.1.
The definition of deterministic RBs is also the preparatory stage for the proposed EPBD
cost-optimal method described in Figure 2.5 and forms the basis on which probabilis-
tic RBs are developed. Furthermore, the choice of RBs has a critical impact on build-
ing stock energy modelling accuracy and the predicted EP improvement potential of
a building stock resulting from implementing different energy efficiency measures for
policy making [72]. Despite the importance of the correct choice of RBs to study the en-
ergy performance (EP) of a building stock, Chapter 2 identified that there is no standard
methodology to define RB energy models, and their development remains a significant
challenge to model building stocks [73]. To facilitate the RB definition process and make
it more objective, approaches employing data-driven machine learning techniques in
building stock studies have been developed [194, 195] as discussed in Section 2.2.3.1.
However, the main focus of these studies was developing RBs for large population resi-
dential building stocks rather than smaller population, non-residential, multi-functional
and heterogeneous building stocks. The development of RBs for these building stocks
has not been appropriately addressed in the literature, as concluded in Chapter 2, and
this will be further elaborated on in Section 3.1.2.

3.1.1 | Chapter Objective
The objective of this chapter is to develop a machine learning methodology to define
RBs for ’small’ multi-functional, heterogeneous building stocks. For the scope of this
research, a ’small’ building stock is one where the number of explanatory variables ’X’
impacting EP is greater than the number of building observations ’N’ in a population or
sample under study.

3.1.2 | Background on studying the EP of multi-functional building
stocks

Finding robust approaches to better study the EP of non-residential building stocks is
critical given that most of the current knowledge on RBs and building stock modelling
in the EU is on residential buildings [27, 38]. This results from the fact that residential
buildings constitute to 75 % [196] of the EU building stock, but also due to the chal-
lenges faced when modelling the more diverse non-residential building stock, compris-
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ing multiple activities and uses [27, 37, 38]. Studies of the EU building stock, including
[197, 198], have recognised the vast heterogeneity of the non-residential building sector
in the EU in terms of typologies, functionality, form, and size. This diversity in the build-
ing stock is also observed within a group of buildings that serve the same main function,
including hotels, as detailed in [41, 27, 199] and shopping centres, as explained in [200].

Furthermore, the different services offered are an important factor that explains the
diversity in energy demand, consumption, and EP of individual buildings in a non-
residential building stock that serve the same main function. Given the multitude of
services offered, most non-residential buildings, including hotels [27, 199] and shop-
ping centres [200], are defined as multi-functional buildings where the space to serve
the main function of the building is coupled with spaces to accommodate other func-
tional activities [196]. For example, for a hotel, guest rooms that serve the main func-
tion of accommodation can be coupled with spaces that serve other activities, including
restaurant(s), laundry, conference hall(s) and swimming pool(s). Although these activ-
ities complement the core function, they account for a significant proportion of the en-
ergy use of these buildings and often characterise the marketing differentiation strategy
and business success of a commercial building. This makes the diversity of a multi-
functional building stock with a large number of potential activities an unavoidable
characteristic, making the process of defining a few RBs to study or derive EPIs to be
representative of a whole building stock difficult, as explained by Buso et al. [27] and
by the author of this thesis in Gatt et al. [35].

3.1.2.1 | Challenges in studying multi-functional building stocks

The challenges to study multi-functional building stocks can be divided into two types:

1. Building physics RB energy modelling approach challenges

2. Machine learning data processing challenges

as detailed in the following sections.

3.1.2.1.1 Building physics RB energy modelling approach challenges

The first challenge in studying multi-functional buildings lies in the RB modelling ap-
proach and the corresponding intensive data collection process required to characterise
and simulate the EP of multi-functional buildings. To consider the diverse activities of
such building stocks, RBs must be modelled with thermal zones defined according to
the function of the space, given different schedules and internal loads, and the method
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used to condition them. To develop RBs for this modelling approach requires informa-
tion on the functions served by each or a sample of individual buildings in a stock to
be collected. This functional information is not easy to obtain and extract, but possible
sources include planning applications, energy audits, or Energy Performance Certifi-
cates (EPCs). Once collected, the data for each building must be further processed to
objectively define each functional activity in terms of parameters such as floor area or
volume to allow RBs to be developed and characterised.

The above modelling approach for multi-functional buildings contrasts with the
simpler modelling approaches employed in the various GIS tools reviewed in [201] and
the simplified Building Energy Modelling (BEM) zoning approaches explained in Chap-
ter 2. These simpler approaches, which are more suitable for residential buildings and
less diverse buildings stocks, generally consider each building observation as having
only a single primary function and do not or only partly distinguish between space
functionalities in the building.

3.1.2.1.2 Machine learning data processing challenges

The high-dimensional data set to define functional activity information, coupled with
a large amount of data on operational and physical factors that affect the EP of such
buildings, results in a high-dimensional characterisation design matrix (model) with
multiple potential classification or clustering solutions to define RBs. Furthermore, us-
ing an unweighted clustering approach will give similar importance to each explanatory
variable in the design matrix that shapes the clustering solution, which can dilute the
impact of the most important explanatory variables that explain energy consumption
or EP when defining RBs. This issue is inherent to the national typology methodologies
employed, for example, by Mata et al. [202] and the TABULA project [75, 203]. These
methodologies classify RBs according to standard feature classifiers and characterise
them using only building feature data without considering the relative importance of
different building characteristics on metered energy consumption.

One possible approach to reduce subjectivity and provide a more transparent and
stable approach to defining RBs is to cluster on only the statistically significant vari-
ables that explain the operational EP of building observations in a stock [195]. This
explanatory variables dimension reduction process may also facilitate the probabilistic
calibration process of the proposed EPBD cost-optimal method by screening the number
of parameters that need to be considered for sensitivity analysis and calibration. How-
ever, to enable the EP of RBs to be studied using a bottom-up approach, it is important
that the design matrix of the retained explanatory variables or principal components
that shape the clustering solution to derive and characterise RBs adequately describe
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the data categories of form, envelope, equipment, and operation presented in Torcellini
et al. [204]. These data categories are also called subsets of features in Corgnati et al.
[26]. Therefore, retaining only one or two dominant explanatory variables that satisfac-
torily explain EP but only partially cover these data categories is insufficient to derive
and characterise RBs. Similarly, clustering directly on individual energy consumption
data will provide the best segregation of the building stock in terms of EP. However, it
will fail to directly diversify the clustering solution in terms of the above data categories
to characterise each RB. This characterisation is essential to define, calibrate model pa-
rameters, and apply potential energy efficiency measures to the building physics RB
energy models.

A mathematical approach to identify the most important and significant explanatory
variables that explain EP for the dimension reduction process is through a top-down
and supervised learning regression method that uses individual metered energy con-
sumption data as the dependent variable. Regression has been used to obtain RBs both
to validate the classification of the building stock in Aksoezen et al. [76] or to identify
significant variables that explain the metered energy consumption on which to apply
clustering to define RBs for a large residential building stock in Ireland [77] and for
office buildings in New York [205].

However, compared to residential and office buildings, heterogeneous multi-functional
buildings have a larger number of potential explanatory variables explaining EP. Thus,
establishing a relationship between these large number of variables and individual op-
erational EP is challenging given that regression is more prone to multi-collinearity and
over-fitting issues [206]. These issues makes it more difficult to comprehensively iden-
tify all statistically significant variables that impact EP to comprehensively define build-
ing physics RB models.

These high-dimensionality challenges become even more pronounced for a build-
ing stock having a ’small’ number of observations, where the number of explanatory
variables ’X’ impacting EP is greater than the number of building observations ’N’ in a
population or sample under study. These ’small’ building stocks are synonymous with a
specific group of unique buildings that deserve special attention or when a ’small’ build-
ing stock sample size is chosen to represent the whole building stock from a much larger
population. Choosing a ’small’ building sample size may be triggered by data collection
constraints including the lack of availability of metered energy consumption data.
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3.1.3 | Tackling the challenges in studying ’small’ multi-functional
building stocks

This chapter develops a systematic, robust, and more objective approach based on mul-
tiple machine learning techniques to tackle the above challenges in studying ’small’
multi-functional building stocks. The following sections will apply and validate the
approach using the 5-star hotel building stock on the island of Malta.

It must be noted that the approach developed to define RBs in this chapter is com-
plementary to the two-stage building stock classification and characterisation approach
shown in Figure 2.4, which is generally adopted to develop RBs for the EPBD cost-
optimal method and UBEM studies. More specifically, the approach in this chapter
details a RB characterisation stage approach for a ’small’ multi-functional building stock
cluster identified from the building stock classification stage of the RB definition process
depicted in Figure 2.4.

3.2 | Method
The approach to develop RBs for a ’small’, multi-functional building stock is shown
graphically in Figure 3.1 and consists of three (3) main phases:

1. Data Collection and Classification

2. Data Processing

3. Data Post-Processing.
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Figure 3.1: Flow chart depicting the method to define RBs for ’small’ multi-functional
heterogeneous building stocks
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3.2.1 | Data Collection and Classification phase
This phase first involves data collection for ’N’ building observations of a building stock
under study on all relevant geometric and non-geometric features, including operation,
form, envelope, and system data [26]. This data can be collected from numerous sources,
including EPCs and energy audits. Once the data are collected, each variable in the
collected data set is classified according to ’p’ features, F1 to Fp.

To specifically cater for the requirements of diversity in the space functionalities of
multi-functional and heterogeneous building stocks, the proposed approach introduces
two additional features that complement the "operation", "form", "envelope", and "systems"
presented by Torcellini et al. [204] and Corgnati et al. [26] (refer to Figure 2.4 to charac-
terise the building stock as follows:

1. A functionality feature : The functionality feature is comprised of variables that
define and quantify the functionality, including the services offered by each indi-
vidual building. Segregating these variables into a specific feature ensures that the
diversity of services offered by individual buildings in a multi-functional building
is well represented when deriving and characterising RBs. Furthermore, this fea-
ture may contain a large number of explanatory variables and therefore requires a
specific and objective data reduction processing approach.

Unlike the majority of variables comprising the features presented by Torcellini
et al. [204] and Corgnati et al. [26], the variables representing the ’functionality’
feature of a building are not a building physics model parameter that can be easily
defined probabilistically, but are represented and fixed by the geometry of the
RB whole-building physics model and its zoning configuration. Therefore, the
functionality feature as an additional feature to those presented by Torcellini et al.
[204] and Corgnati et al. [26] allows the variability in functionality to be optimised
when deriving RBs in the following data-processing phases1.

2. A Benchmarking feature : This feature includes normalisation variables that de-
rive Energy Performance Indicators (EPIs) to be used for comparison of EP rating
of the individual buildings according to the main service they cater for. This fea-
ture is usually characterised by one or more variables that explains a major portion

1Defining a RB model using the hierarchical and reduced space modelling ’reference zone’ approach
conceptualised by the author in Gatt et al. [35], introduced in Chapter 2 and detailed in Chapter 4, can po-
tentially provide more flexibility to accommodate the diversity of functionality within a group of buildings
under study as detailed in Chapter 4. However, this chapter will consider the more established and val-
idated approach to BEM that defines whole-building (full-space) and multi-functional RB energy models
divided according to different zones to distinguish between the various functional activities of the building.

56



Chapter 3. Defining reference buildings for small multi-functional building stocks - a machine
learning approach 3.2. Method

of the building’s energy consumption. Given the low data dimensionality of this
feature, no or minimal further data reduction processing is required. Furthermore,
given the potential dominance of the EPI normalisation variables over other ex-
planatory variables in supervised learning machine approaches, their segregation
into a specific feature allows variables from other data categories to be indepen-
dently reduced and therefore better statistically represented in the RB definition
process for a more comprehensive RB energy modelling characterisation.

One must note, given that RBs require to be defined probabilistically in the pro-
posed EPBD cost-optimal method, each ’p’ feature must prioritise the inclusion of vari-
ables critical to driving the segregation of individual buildings into different clusters.
Then a separate RB energy model must be defined for each cluster. More specifically,
less priority should be given to parameter variables that can be easily defined prob-
abilistically. As an example, for Heating, Ventilation, and Air Conditioning (HVAC)
equipment, an important system feature variable required to cluster the building stock
is the type of HVAC system equipment installed for each building observation, such as
water-cooled chillers or an air-cooled Variable Refrigerant Flow (VRF) system for space
cooling. Therefore, to derive RBs, the type of HVAC system for each observation must
be included in the feature variables data set as input to the data processing stages in the
next phases, and its variability must be fully considered to drive the final RB clustering
solution. For each derived RB energy model having a specific HVAC system, the diver-
sity of HVAC parameters such as Coefficient of Performance (COP) can then be defined
probabilistically.

3.2.2 | Data processing phase
The step uses multiple machine learning techniques to reduce each feature’s high-dimensional
explanatory variable data set to a minimum number of regressors to perform regression
with metered energy consumption data, the dependent variable. A minimum of one
regressor must be retained from each defined feature to allow RB energy models to be
comprehensively characterised. This step is an iterative process, and data reduction
is carried out until a significant statistical relation between each regressor and the de-
pendent variable can be defined. These significant regressors explaining the metered
energy consumption make up the data set for input in the data post-processing stage.
The data post-processing stage then applies additional machine learning approaches to
the data set to divide the building observations into clusters, where each cluster is used
to develop a RB energy model to study the building stock.
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The iterative data processing stage consists of five sequential sub-stages as depicted
in Figure 3.1:

1. Stage A : Explanatory variables dimension reduction stage for each feature sepa-
rately;

2. Stage B : Generation of multiple potential clustering solutions on the Stage A re-
duced data set for each feature separately;

3. Stage C: Identification of an optimal clustering solution for each feature separately
from the multiple clustering solutions generated in stage B;

4. Stage D: Regression of the clustering solution explanatory variables resulting for
each feature with individual metered energy consumption data;

5. Stage E: Regression model reduction and regressors significance analysis;

Stage A to stage C are individual feature processing stages, and not all of these stages
may be required to be performed for each feature depending on the dimensionality and
the specific data processing requirements of the feature under study. This concept is
shown in the case study demonstrating this approach in Section 3.4.

3.2.2.1 | Stage A : Feature explanatory variables dimension reduction stage

In this stage, various machine learning techniques and combinations of techniques are
used to reduce the high dimensional data set for each feature separately. These tech-
niques include:

■ Classification of a feature data set into sub-features to group the data into defined
classes and reduce its dimensions. Reviewing the literature and energy audits
of the building typology for the building stock under study facilitates such data
classification and makes it more objective, as demonstrated in the case study in
Section 3.4.

■ The transformation of variables to fewer uncorrelated variables termed prin-
cipal components. The available techniques to transform the data into smaller
components depend on the type of variables in the data set to be analysed are
discussed in [207] and include:

1. Principal Component Analysis (PCA) for continuous variables applied and
reviewed in various building stock EP literature including [91, 83, 103, 1];
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2. Multiple Correspondence Analysis (MCA) for categorical variables, as ex-
plained in [208];

3. Factor Analysis of Mixed Data (FAMD) when the data set contains both con-
tinuous and categorical variables, as explained in [207];

3.2.2.2 | Stage B : Generation of multiple clustering solutions for each feature

Following the explanatory variables dimension reduction process, the reduced data sets
for each feature can be processed to further reduce their dimensionality and minimise
the number of regressors in the post-data processing stage. For this stage, unsupervised
machine learning algorithms such as clustering can be applied on each reduced feature
data set, to divide it into a categorical variable defining a clustering solution. Potential
clustering algorithms include K-means, Agglomerative Hierarchical Clustering (AHC)
and k-prototypes. Various building stock EP studies have applied K-means, such as
[87, 81, 88, 89]. Agglomerative Hierarchical Clustering (AHC) was applied in [86, 34],
while k-prototypes is used to cluster mixed data as conceptualised in [209].

Clustering is subjective and the resulting clustering solution, amongst others, de-
pends on various clustering process factors. These factors include the chosen clustering
algorithm, the defined clustering parameters for the chosen algorithm, the number of
clusters, and other factors such as the variables included in the clustering analysis and
the way the variables are defined (continuous, categorical, ordinal, etc.). Therefore, it is
vital to make the clustering method less sensitive to the clustering process used. Objec-
tivity is improved by identifying and investigating multiple clustering solutions via the
sequential variation of different cluster process factors to generate multiple, C in num-
ber, potential clustering solutions for each feature comprised of the reduced data set.
This approach results in a multi-dimensional matrix data set of categorical data having
C columns and N (number of building observations) rows.

3.2.2.3 | Stage C : Identification of an optimal clustering solution for each feature

The final clustering solution for each feature is then achieved through the identification
of the most recurrent groupings among the multiple generated clustering solutions. The
process can be aided using categorical data clustering algorithms that include k-modes
conceptualised in [210] or AHC on the resulting MCA principal components explained
in [207]. The final clustering solutions for each feature F1 to Fp are then combined to
form data set {xci, ...., xcip}N

i=1.
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3.2.2.4 | Stage D : Regression of the clustering solutions with energy consump-
tion data

In this step, regression is performed for data set {yi, xci, ...., xcip}N
i=1, where {yi}N

i=1is the
metered energy consumption data for each building observation, making up the de-
pendent variable vector Y , and {xci, ...., xcip}N

i=1 is the data set of the final clustering
solutions that make up the matrix of regressors, X.

3.2.2.5 | Stage E: Model reduction and regressors significance analysis

In this step, model reduction techniques such as stepwise regression, applied in many
building stock studies EP studies including [211, 212, 213, 214], are used to find a reduced-
order model that best explains the data and retains all significant regressors that explain
the dependent variable.

This step is iterative, and if not all regressors that explain the features are retained as
significant, the data-processing phase needs to be refined, or a larger data set containing
more hotel observations will need to be employed. This process must be repeated until
all regressors are statistically retained in the reduced model.

3.2.3 | Data post-processing phase

In this step, the statistically significant regressor data set is further processed using ma-
chine learning approaches such as clustering to divide the building stock observations
into clusters. Multiple clustering solutions must be identified, compared, and analysed
to increase objectivity before deriving the final RB clustering solution XCRB. For each
cluster in XCRB, a RB building physics energy model based on an ’archetype’ solution or
’Real (average) RB’ as explained in Chapter 2, Section 2.2.3.1 must be developed to study
the building stock.

The clustering solution is then validated using a train-test set approach that includes
the use of test sets with the same building observations but with occupancy and energy
consumption data generated from a different period or year. This validation assesses the
robustness and stability of the final RB clustering solution XCRB. For a building stock
with a sufficiently large number of observations, a cross-validation approach, such as
k-fold, detailed in [215], can also be applied by splitting the observations into a training
and test set to validate the regression model.
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3.3 | Hotel building stock case study

The above clustering process is applied to the 5-star hotel building stock on the island of
Malta, consisting of ten (10) hotels and representing more than 90 % of the 5-star hotel
population in 2017. Improving the EP of hotels is an especially important area of focus
for Malta, as tourism on the island contributed to 26.7% of the Gross Domestic Product
(GDP) in comparison to the 10.2 % of the world GDP in 2016 and is expected to rise to
34.6 % by 2027 [216]. This increased demand intensifies the need for energy-efficient
and sustainable hotel accommodations. Furthermore, such building stocks provide an
ideal area of focus to meet the 2050 carbon neutrality targets stipulated in the Green
Deal [3]. This is because hotels in Southern Europe and the Mediterranean have been
shown in various EU projects2 such as in HES [220] and NeZeH [221], to have a high
potential for energy savings, with a 63 % in average primary energy savings reported in
NeZeH [222, 223].

The 5-star hotel building stock under study can be depicted as an identified building
stock cluster derived from the classification stage approach of the RB definition process
in Figure 2.4, which must be separately characterised when defining RBs. The require-
ment to characterise 5-star hotels separately in Malta stems directly from the prescrip-
tion of the Maltese accommodation legislation [224], which ranks hotels in the different
star categories based on their achievement of a minimum number of points for a differ-
ent pre-defined set of criteria and services. Furthermore, the requirement to consider
the star rating as a benchmarking criterion for hotels in Malta has also been statistically
established in the BEST project [225] commissioned by the Malta Hotels and Restaurants
Association (MHRA). The project applied descriptive statistics to compare between the
operational EP of hotels with different star ratings. This hotel classification according
to star rating is also consistent with other hotel studies in literature, including Pieri et
al. [83] to energy classify hotels in Athens, Bianco et al. [226] to study the EP of the Ital-
ian hotel building stock, and Oluseyi et al. [227] to assess hotel energy consumption in
Nigeria. Furthermore, once classified according to star rating, no further classification
of the hotel building stock according to location and age is required since Malta falls un-
der a single Köppen climate classification [228], and all hotel observations under study
were built before the establishment of minimum EP requirements for the envelope and
technical building systems [229, 230].

2Various EU projects were implemented during the last twenty years aiming to improve the operational
energy performance of the hotel sector. Such projects include XENIOX (2002-2003) [217], HOTRES [218]
(2001-2003), RELACS (2010-2013) [219], HES (2008-2011) [220] and NeZEH (2013- 2016) [221].
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Tourism accounts for 8 % [231] of total global CO2 emissions3. The hotel industry
is characterised by high energy intensity [199], with significant emissions reaching up
to 21 % [233] of the the total CO2 emissions of the tourism sector. This energy intensity
is more than ten times higher per floor area than in residential buildings [234], which
is primarily attributed to the presence of specific features that include 24-hour opera-
tion and an overall high level of comfort provision, which are not associated with the
buildings’ typical use [235, 236, 237, 238, 239]. Such non-hosting facilities that include
kitchens, laundry, pools, and spas can contribute up to 35 % of the total energy con-
sumption [238].

Given the multitude and potential diversity of such additional services found mainly
in 5-star hotels, make this building stock an ideal case study of a ’multi-functional and het-
erogeneous’ building category to demonstrate the proposed clustering method. In fact,
hotels have been described as “comfort or service-orientated accommodations” [40] having
a high degree of heterogeneity [27] when considering individual characteristics such
as business size leading to the conclusion that the “the idea of a typical hotel, as well as
its respective performance remains vague” [41]. To counteract this heterogeneity, hotel as-
set rating benchmarking studies have recognised the importance of differentiating be-
tween "hosting and non-hosting functions" in Tsoutsos et al. [223] or between "typical and
extra energy uses" in Buso et al. [27], when establishing suitable EP benchmarks for the
EPBD. Thus, hotel buildings further justify the methodology in the development of
multi-functional RB energy models to statistically account for the diversity in function-
ality between the individual buildings in a stock.

The heterogeneity of the hotel building stock is reflected not only in the building
characteristics but also in the variation in the EP indicators themselves. For example,
Lu et al. [240], Oluseyi et al. [227], Wang et al. [239], Pieri et al. [83] and Boemi et al.
[241] reviewed average consumption indicators, primarily based on kWh.m−2..yr−1, for
hotel buildings worldwide and reported a great variation in intensity of energy use not
only between countries4, but also for regions within the same country and over different
time periods [241, 83]. The reason for this variation is that the EP of the hotel varies
depending on many factors, which can be grouped in terms of geographical location,
type (tower or resort), use, and category [199].

Furthermore, the ’small’ building stock addressed in this thesis provides an ideal
case study for the challenges that this method aims to address. The large number

3In Malta, in 2013 the hotel and accommodation sector alone contributed to 10.96 % of the final elec-
tricity consumption, while the sector was also the main consumer of liquid and gas fossil fuels for space
heating in the non-industrial services sector [232].

4In Europe, the normalised average energy consumption of hotels lies between 240 and 300
kWh.m−2.year−1 [199]
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of factors that potentially affect operational EP, as evidenced by hotel building stock
studies employing a top-down approach5, makes them susceptible to high-dimensional
machine learning challenges detailed in Section 3.1.2.1. The multiple factors consid-
ered when studying the EP of hotel building stocks include location/weather [235, 262,
239, 261], size [254, 239, 260], construction year/number of years after the last retrofit
[263, 264, 254], types of energy carriers/systems [254, 265], occupancy (occupancy rate,
guestroom, guest night and revenue) [40, 262, 264, 265, 260, 239, 266], types of services,
amenities and activities made available to guests [263], and the star rating of hotels
[264, 265, 254, 255].

3.4 | Application of the developed method to the hotel
building stock case study

This section applies the methodology described in Section 3.2 to the 5-star hotel building
stock case study to segregate the building stock observations into clusters to define RBs.
Figure 3.2 depicts the specific features, variables and data processing steps as applied to
the actual hotel building stock when executing the developed approach.

5Top-down building stock studies include [242, 243, 244, 235, 87, 245, 246, 247, 248, 240, 249, 250, 227,
251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261]
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Figure 3.2: Flow chart showing method used to define RBs for the hotel building stock
case study
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3.4.1 | Data collection and preparation
Data for the case study were collected from individual hotel energy audits, planning ap-
plication documentation, and actual site visits in collaboration with hotel management
and engineers. The following data and documentation were collected for each hotel
observation:

■ Building Envelope comprised the U-values of the building elements, the Solar
Heat Gain Coefficient (SHGC) of the glazing and the glazing shading configura-
tion of the guest rooms.

■ Hotel 2D floor plan and elevation layouts for each floor provided in DXF and
other bitmap-type formats. The plans show floor spaces labelled and divided ac-
cording to the functional activities of the building. For each functional activity
zone, the respective space condition classification distinguished between zones
that are only cooled heated, zones that are only mechanically ventilated, and
zones that are both cooled & heated with mechanical ventilation. This informa-
tion was gathered through the feedback of the hotel management and the actual
site visits.

■ Building Equipment in terms of the main HVAC system and the Domestic Hot
Water (DHW) system required to satisfy the demands of the building’s HVAC and
DHW. The main parameters describing the EP of the HVAC system, such as the
COP for heating and cooling, were also collected from the equipment nameplate
or the manufacturer’s literature.

■ Building occupancy with monthly resolution defined based on the number of oc-
cupied rooms and the number of guest nights for the years 2017 to 2019. This data
was also converted to an annual resolution.

■ Metered energy consumption data with monthly resolution for site electricity,
fuel oil and liquid fuel were also collected for the years 2017 to 2019. The data was
converted to operational primary energy consumption and kg of CO2 emissions
both on monthly and annual resolutions using local conversion factors for each
fuel to normalise its impact on primary energy and kg of CO2 emissions equiva-
lent, as required in the EPBD cost-optimal approach [55].6

6The following conversion factors were used. Site electricity (kWh) to kg of CO2 emissions equivalent:
0.452, site LPG in litres to kg of CO2 emissions: 0.215, site liquid fuel oil in litres to kg of CO2 emissions:
0.252, site electricity in kWh to Primary energy in kWh: 2, site LPG in litres to Primary energy in kWh: 7.39,
site liquid fuel oil in litres to Primary energy in kWh: 11.39. These electricity conversion factors data were
provided by local policy makers and also reflect the conversion factors applied in the the BEST study [225].

65



Chapter 3. Defining reference buildings for small multi-functional building stocks - a machine
learning approach 3.4. Application of approach to the case study to define RBs

For each separate hotel building, the 2D floor plan and elevation layouts were im-
ported into DesignBuilder [267], a software that provides a Graphical User Interface
(GUI) to EnergyPlus [268], offering whole building energy simulation capabilities. These
layouts enabled tracing the perimeters of the blocks, the partitions, and the facades to
build the geometry of the virtual 3D model of the ten (10) hotel buildings. The De-
signBuilder models are depicted in Figure 3.3. The collected technical and operational
data parameters served as inputs to each building energy model. Each hotel model was
divided into multiple thermal zones, combining spaces having comparable functions,
operational schedules, and properties into one zone [269, 270].

Once 3D energy models were developed in DesignBuilder, CSV files containing ge-
ometric and non-geometric information of each configured model data were generated
by the DesignBuilder software [267] using the inbuilt EnergyPlus IDF ASCII files. A
Microsoft Excel workbook was programmed and validated to automatically extract and
process the desired geometry, including form and functionality information for each
building model. The information generated after this processing exercise for each hotel
included the total internal floor area, the space cooled and heated floor area, the me-
chanically ventilated floor area, and the floor area allocated for each functional activity
within the building.

A subset of variables from the above-collected data for each hotel observation were
classified according to the following features:

■ Benchmarking EP feature, which is composed of a data set that quantifies the
annual number of occupied rooms, the annual number of guest nights, and the
total internal floor area. These are common normalisation variables used in the
literature [271, 272, 273] to derive EPIs or benchmark hotel buildings’ operational
EP.

■ Equipment (or technical building energy services) feature is made up of three
(3) variables explaining building’s main space cooling, space heating, and DHW
systems.

■ Percentage Conditioned space feature is made up of variables that give promi-
nence to comfort and indoor air quality (IAQ) when determining EP levels of a
building stock in line with the new EPBD [32]. These two variables are the air-
conditioned and the mechanically ventilated floor areas each expressed as a per-
centage of the total internal floor area of the building. This feature is required
because the level of space conditioning varies between the hotel observations; for
example, not all the hotels have air-conditioned circulation zones.
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Figure 3.3: Visual depiction of the individual hotel building models making up the
building stock under study

■ Functionality feature comprises twenty-one (21) variables to define and quantify
the activities or services performed at each hotel. The explanatory variables for
this feature are shown in Figure 3.4.
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Figure 3.4: The twenty-one (21) explanatory variables considered for the Functionality
feature

The building envelope and geometry feature variables to characterise RBs put for-
ward in Torecellini et al. [204] and Corgnati et al. [26] were not included in the analy-
sis to obtain RBs. Malta has a temperate Mediterranean climate described in terms of
monthly degree days and solar radiation in Gatt and Yousif [228], and therefore the im-
pact of the building envelope components U-value and form on the energy performance
of a building is minimal when compared to other features such as equipment efficiency
parameters. This minimal impact of building envelope and form on the total EP of the
building is demonstrated specifically for a hotel BEM study in Malta in Gatt and Yousif
[274], in the 2018 cost-optimal studies for non-residential building in Malta in Gatt et al.
[56] and in various other literature including Caruana and Yousif [275] and Gatt et al.
[158]. Furthermore, the hotel roofs for the observations under study were not insulated
with U-values ranging between 1.7 and 2 W.m−2K−1, while the walls’ U-value variation
ranged between between 2.1 and 1.5 W.m−2K−1. The variability of these component
U-values can be easily incorporated within a probabilistic RB model. Concerning fen-
estration, all hotels have similar overhang shading patterns thanks to the protruded
balconies that protect the glazing of guest rooms from direct solar radiation.

It should also be noted that the variables defining the equipment feature were lim-
ited to the space heating, space cooling, and DHW systems type. Variability and uncer-
tainty of the parameters that impact EP for these systems can be handled probabilisti-
cally within the defined RB themselves, as explained in Section 3.2.1.

Furthermore, the variables that explain the power densities of the lighting and plug
loads for each functional activity were not considered in the analysis for the following
reasons. All hotel observations have been upgraded to LEDs for lighting with compa-
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rable EP in terms of power density (W.m−2 of floor area per 100 lux). For plug loads,
based on the information collected from hotel energy audits, the two most important
variables that impact plug load EP for a hotel have been addressed within the func-
tionality feature variables. These two variables are the food preparation floor area and
whether the hotel has a laundry, as further explained in Section 3.4.2.4. Nevertheless,
the variation between observations and uncertainties in plug-load power density pa-
rameters for specific functions can be probabilistically catered for within the defined RB
parameters themselves for the proposed EPBD cost-optimal method.

3.4.2 | Data Processing
The data processing phase is an iterative process consisting of the five sub-stages that
were amply described in Section 3.2.2 that aims at reducing the variables, known as the
significant regressors, in preparation for further processing in the post-processing stage
to cluster the building observation and define RBs.

Sections 3.4.2.1, 3.4.2.2, 3.4.2.3 and 3.4.2.4 describe Stages A to C of the data process-
ing phase detailed in Section 3.2.2 to reduce data for each of the four features separately
as graphically depicted for the case study building in Figure 3.2. Section 3.4.2.5 then
describes Stage D of the data processing phase, which is the regression analysis of the
reduced data with a dependent variable derived directly from individual metered en-
ergy consumption data. Finally, Section 3.4.2.6 describes Stage E of the data processing
phase, which is the regression model reduction stage identifying statistically significant
regressors. The data processing phase needs to be optimised until all the regressors in
the reduced order model are both statistically significant and adequately represent all
the defined four (4) features required to characterise a RB energy model for this building
stock under study.

The results in this section are presented for the annual occupancy and operational
metered energy consumption data for the year 2017 for each hotel observation. The
method was then validated for its clustering solution stability using both 2018 and 2019
occupancy and operational energy consumption data.

3.4.2.1 | EP Benchmarking Feature data reduction

Only three (3) variables characterise this feature for the case study. Given that these
variables are generally used for normalisation to benchmark the EP of hotels, they are
expected to explain a major portion of the energy consumption of the buildings. Me-
tered energy consumption was therefore used to perform only stage A of the data reduc-
tion stages shown in Figure 3.2, using descriptive statistics and a multivariate analysis
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approach. Given the low data dimensionality of this feature, performing data reduction
using only stage A of stages A to C shown in Figure 3.2 was sufficient for data reduction.

The multivariate analysis analysed the strength of the relationship between all ex-
planatory variables in this feature and the dependent variables derived from metered
energy consumption data. The dependent variables are the operational primary energy
consumption in kWh and the annual tonnes of CO2 emissions equivalent. The strength
of the relation between the variables was quantified using Pearson’s r (correlation coef-
ficient) as all variables are continuous. This statistical analysis was performed in Python
using the Pandas package [276]. Furthermore, the significance of the relationships was
also quantified in terms of p-value using the Pingouin package [277]. Figure 3.5 shows
the resulting Pearson correlation heat map for the variables under study.

Figure 3.5: 2017 data Pearson correlation heat map depicting the strengths of the rela-
tionship between the Benchmarking EP feature explanatory variables and the depen-
dent variables derived from metered energy consumption

One can observe a very strong relationship (r = 0.96, p-value < 0.001) between the
two dependent variables derived from metered energy consumption data. Given this
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strong relationship, the method to develop RBs needs to consider only one dependent
variable derived from the metered consumption data for analysis. To be more consistent
with the EPBD cost-optimal guidelines [55] and the EPBD cost-optimal studies for Malta
[56], the annual primary energy in kWh was chosen as the dependent variable for this
case study.

When analysing the strength of the relationship between the explanatory variables, a
very strong relationship is obtained between all variables (r > 0.8, p-value < 0.01). Thus,
to avoid multi-collinearity issues, only one variable should be retained for the data pro-
cessing regression stage and chosen upon a valid statistical justification. The annual
number of occupied bedrooms has the strongest relationship with the annual primary
energy consumption (r = 0.94, p-value < 0.001) and is, therefore, the regressor chosen for
this feature. Furthermore, it explains 88 % of the variability in annual primary energy
consumption.

3.4.2.2 | Equipment (or technical building energy services) feature data reduction

This feature considers the HVAC and DHW systems installed for each hotel observa-
tion. For space cooling, three (3) different systems are used in the building stock, which
are seawater-cooled chillers, air-cooled chillers, and air-cooled VRF systems. Hotels that
make use of VRF for space cooling also use the same system for space heating but em-
ploy a separate dedicated fuel boiler system for DHW generation. In contrast, hotels
that make use of chillers for space cooling make use of fuel boilers or DHW heat pumps
for both space heating and DHW. The main HVAC and DHW systems found for each
hotel observation are depicted in Table 3.1.

Table 3.1: The main HVAC and DHW systems for each hotel observation

Main space
cooling system

Main space
heating system

Main
DHW system

Hotel 1
Sea water cooled

chiller
Fuel boiler Fuel boiler

Hotel 2
Sea water

cooled chiller
Electric heat pump Electric heat pump

Hotel 3 VRF VRF Fuel boiler

Hotel 4
Sea water cooled

chiller
Fuel boiler Fuel boiler

Hotel 5 Air cooled chiller Fuel boiler Fuel boiler
Hotel 6 Air cooled chiller Fuel boiler Fuel boiler
Hotel 7 VRF VRF Fuel boiler
Hotel 8 Air cooled chiller Fuel boiler Fuel boiler
Hotel 9 VRF VRF Fuel boiler

Hotel 10
Sea water cooled

chiller
Fuel boiler Fuel boiler
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As explained in section 3.4.1, observations with different HVAC and DHW sys-
tems cannot be comprehensively modelled within the same RB building physics energy
model, given the different components and corresponding parameters that describe
each system. Thus, a rule-based approach was used to perform clustering to ensure
that the whole variability for the three (3) systems is represented for the categorical
HVAC/DHW variable.

Thus, using a rule-based approach for the data reduction process, categorical regres-
sor XC2 can be defined by dividing the observations into four groups, with the allocated
group number established in order of ascending annual primary energy consumption
(kWh) corresponding to each observation.

■ Group 1: Hotel 5, Hotel 6 and Hotel 8

■ Group 2: Hotel 3, Hotel 7 and Hotel 9

■ Group 3: Hotel 2

■ Group 4: Hotel 1, Hotel 4 and Hotel 10

Therefore, for this feature, data reduction was performed using stage B of the feature
reduction stages A to C described in Section 3.2.2, as shown in Figure 3.2.
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3.4.2.3 | Conditioned space feature data reduction

The conditioned space feature consists of only two variables, the air-conditioned floor
area (column vector F3X1) and the mechanically ventilated floor area (column vector
F3X2) as a percentage of the total internal floor area. These variables are depicted in
Figure 3.2. An analysis using the Pearson correlation coefficient between these two
variables shows a strong positive relationship (r= 0.75, p-value = 0.01). Given the low
dimensionality of this feature, both variables are retained as regressors, given that there
is no sufficient justification to eliminate one variable over another.

3.4.2.4 | Functionality feature data reduction

The functionality feature is highly dimensional, composed of the twenty-one (21) vari-
ables depicted in Figure 3.4. Thus, unlike the other lower-dimensional features, all the
feature reduction data processing stages A to C described in section 3.2.2 were employed
as depicted in Figure 3.2 and detailed below.

3.4.2.4.1 Stage A: The functionality feature explanatory variables dimension reduc-
tion stage

This stage classified the functionality feature’s twenty (21) variables into five categories
to reduce the data set to five (5) variables. The categories chosen for classification are:

■ Bedroom floor area expressed as a percentage of total internal floor area. This
category is an indicator of whether the building is a (tower) hotel or resort (hotel)
[278], as the smaller the ratio of the bedroom floor area to the total floor area, the
more area is available for amenities, which makes the location (building) more
inclined towards being a resort.

■ Food preparation area expressed as a percentage of total internal floor area.

■ In-house Laundry categorical variable taking 3 possible values as to whether the
laundry in the hotel is ’liquid or gas fuel operated’, ’electricity operated’ or the hotel
has ’no’ laundry.
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■ Other Front of House (FOH) areas expressed as a percentage of the total area of
the internal floor. The % other FOH area is the sum of the following functions all
expressed as a percentage of total internal floor area :

1. Sport facilities floor area

2. Shops floor area

3. Fitness/gym floor area

4. Shower facilities floor area

5. Eating and drinking floor area

6. Meeting and conference rooms area

7. Indoor Pool and sauna floor area

8. Reception and pre-function floor area

9. Circulation floor area

10. Public toilets floor area

11. Massage rooms/physio floor area

■ Other Back of House (BOH) areas as a percentage of total internal floor area. The
% BOH area is made up of the following functions :

1. Offices floor area

2. Car-park floor area

3. Plant rooms floor area

4. Workshops floor area

5. IT server rooms floor area

6. Non-kitchen stores floor area

■ Outdoor pool surface area given that pools require pumping and filtration equip-
ment and are therefore energy intensive [279]. Given that outdoor pool energy
consumption is not directly considered in the EnergyPlus building energy mod-
elling parameters, data-processing stages considered both options with and with-
out the outdoor pool surface area variable to identify its sensitivity to the outcome.
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The functionality data set of the five (5) variables are shown in Table 3.2. This func-
tionality classification was chosen and adapted based on multiple sources, including:

1. ASHRAE [280] and Oluseyi et al. [227] distinguish between three zones in terms
of public areas, guest-rooms and back of the house or service areas that are usually
diverse in energy trend and intensity.

2. The BEST study [225] for Malta that established statistically using descriptive
statistics based on EP data that ’tower’ and ’resort’ hotels should have a different
EP benchmark. This is consistent with [199], who identify this as an important
factor impacting EP of individual hotel buildings.

3. Local energy audits that identify food preparation and laundry activities as major
energy consumers in a hotel. These findings are consistent with hotel EP studies
and benchmarking criteria inlcuding [281, 282, 199, 273]. Therefore, these vari-
ables are better included directly as classifiers to have a more direct impact on the
data processing solutions.

Table 3.2: The functional data set classified according to the five categories for each
observation

Bedroom
area
(%)

Food
preparation

area
(%)

Laundry
type

Outdoor
pools
area
(m2)

FOH
(%)

BOH
(%)

Hotel 1 33 3
LFO

operated
497 39 24

Hotel 2 27 4
Electricity
operated

1399 46 24

Hotel 3 49 3 none 889 32 17
Hotel 4 31 4 none 109 38 27
Hotel 5 33 3 none 561 38 27
Hotel 6 35 4 none 240 43 18
Hotel 7 33 8 none 271 52 9
Hotel 8 32 3 none 110 30 34
Hotel 9 24 5 none 420 57 15
Hotel 10 24 2 none 410 44 31
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3.4.2.4.2 Stage B : Multiple clustering solutions identification

The reduced data set consisting of the five explanatory variables shown in Table 3.2 was
further processed by first identifying sixteen (16) clustering approaches and generating
a unique clustering solution for each approach.

The sixteen (16) approaches were achieved by identifying four (4) clustering char-
acterisation groups in terms of clustering parameters and explanatory variables consid-
ered for the analysis and defining four (4) different clustering algorithms to be executed
for each characterisation group.

The following four (4) characterisation groups were established:

■ Clustering group 1: The clustering data set consists of four (4) explanatory vari-
ables, given that the pool surface area is excluded. The number of clusters (K) for
each algorithm is optimally established to maximise dissimilarity between clusters
for AHC algorithms or to minimise the cost function for K-prototypes algorithms.

■ Clustering group 2: The same clustering data set applied for Clustering group 1 is
used. However, the number of clusters considered for each algorithm is increased
to K+1, given that the optimal number of clusters was not always easy to identify
statistically.

■ Clustering group 3: The clustering data set consists of all five (5) explanatory
variables, and the number of clusters (K) is optimally established using the same
approach as explained in Clustering group 1.

■ Clustering group 4: The same clustering data set applied for Clustering group 3 is
used. However, the number of clusters considered for each algorithm is increased
to K+1, given that the optimal number of clusters was not always easy to identify
statistically.
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The following four (4) clustering algorithms were defined:

■ Algorithm a : FAMD using the Prince package [283] in Python followed by AHC
on the resulting principal factors. The adopted linkage criterion used for AHC is
Ward’s method [284].7

■ Algorithm b : FAMD using the PCAmix algorithm [286] in XLSTAT [287] followed
by AHC on the resulting principal factors.

■ Algorithm c : K-Prototype Huang approach [209] using the k-modes package [288]
in Python.

■ Algorithm d : K-Prototype Cao approach [289] using the k-modes package [288]
in Python.

Combining the four characterisation groups with the four algorithms provides the
sixteen (16) clustering solutions depicted in Table 3.3. It must be noted that the clus-
tering approaches are labelled according to the cluster characterisation group and the
applied algorithm. For example, clustering approach 1A uses the clustering character-
istics in group 1 and algorithm A to derive the clustering solution. The cluster group
numbers for all clustering solutions are sorted consistently in order of ascending annual
primary energy consumption corresponding to each observation.

7AHC is chosen over K-means clustering given that the low number of hotel observations makes com-
putational speed not a criterion of choice. Furthermore, compared to K-means, the AHC result is more
informative, making the optimal number of clusters generally easier to determine from the dendrogram
[285]
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Table 3.3: The clustering results obtained for the sixteen clustering approaches

Clustering approach
1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d

Hotel 1 3 2 2 2 4 3 3 3 3 2 3 3 4 3 2 2
Hotel 2 2 2 2 2 3 2 3 2 2 1 2 2 3 2 1 1
Hotel 3 1 2 2 1 2 1 2 1 1 2 2 2 2 3 1 1
Hotel 4 1 2 2 1 2 1 3 3 1 2 1 1 2 3 2 2
Hotel 5 1 2 2 1 2 1 3 3 1 2 3 3 2 3 2 2
Hotel 6 1 2 2 1 2 1 2 1 1 2 1 1 2 3 2 2
Hotel 7 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2
Hotel 8 1 2 2 1 2 1 3 3 1 2 1 1 2 3 2 2
Hotel 9 1 1 1 1 1 1 1 2 1 1 3 3 1 1 2 2

Hotel 10 1 2 2 1 2 1 3 3 1 2 3 3 2 3 2 2

3.4.2.4.3 Stage C : Identification of optimal clustering solution

From the sixteen (16) potential solutions, the final clustering solution needs to be op-
timally chosen using an objective approach by identifying the most recurrent groups
among the identified solutions. This process can be statistically aided using categorical
data clustering algorithms.

For this analysis, multiple categorical data clustering algorithms were applied. The
three algorithms considered were the k-modes, using both Cao [289] and Huang [209]
approaches, and AHC on MCA principal components algorithms. For each algorithm,
different numbers of cluster solutions were determined, aiming to minimise the cost
function in the k-modes algorithms and to maximise dissimilarity for the AHC algo-
rithm applied on the resulting MCA principal components. The results of the categori-
cal data clustering algorithms are shown in Table 3.4.

Table 3.4: The results from the multiple categorical data clustering algorithms applied
to compare the 16 hotel clustering solutions to identify the most recurrent groups

Clustering algorithm
k-modes

Huang (K=2)
k-modes

Huang (K=3)
k-modes

Cao (K=2)
k-modes

Cao (K=3)
k-modes

Cao (K=4)
MCA + AHC

(K=3)
MCA + AHC

(K=4)
Hotel 1 2 3 2 3 4 3 4
Hotel 2 1 2 2 2 3 2 3
Hotel 3 1 2 2 3 2 3 2
Hotel 4 1 3 2 3 2 3 2
Hotel 5 2 3 2 3 2 3 2
Hotel 6 1 3 2 3 2 3 2
Hotel 7 1 1 1 1 1 1 1
Hotel 8 1 3 2 3 2 3 2
Hotel 9 2 1 1 1 1 1 1

Hotel 10 2 3 2 3 2 3 2
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The clustering solution common to both the k-modes Cao and the MCA AHC ap-
proach consisting of four (4) clusters is the solution chosen for the functionality feature,
given that it is the most recurrent and, therefore, the least subjective solution. It also
represents the optimal number of clusters for the AHC on the MCA principal compo-
nents approach to maximise dissimilarity between the clusters. This clustering solution,
defined as categorical variable XC4 , divides the hotel observations as follows.

■ Group 1: Hotel 7 and Hotel 9

■ Group 2: Hotel 3, Hotel 4, Hotel 5, Hotel 6, Hotel 8 and Hotel 10

■ Group 3: Hotel 2

■ Group 4: Hotel 1

From the above-resulting clustering solution for the functionality feature, one can
notice that the hotels that have a laundry, that is hotel 1 and hotel 2, have been grouped
into separate clusters and segregated from the other hotels that have no laundry. In
addition, hotel 2 has a larger outdoor pool and % FOH areas than hotel 1 which explains
why the two hotels were clustered separately.

Furthermore, the hotels that have no laundry, that is hotel 3 to hotel 10, were divided
into two clusters. Hotel 7 and hotel 9 have a larger % FOH and food preparation areas
than the other hotels and were therefore grouped separately.

3.4.2.5 | Stage D : Regression analysis

Following the data reduction process, stage A to stage C in Section 3.2.2, the supervised
learning regression analysis, stage D, is carried out as shown in Figure 3.1. This step
aims to establish the relationship between the regressor matrix X, composed of the re-
duced feature variables, and the dependent variable vector denoted by y, the annual
primary energy consumption. The data set for the regression composed of matrix X
and vector y is shown in Table 3.5. For this purpose, MLR is applied in XLSTAT [287].
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Table 3.5: The data set for regression composed of the regressor matrix X and the de-
pendent vector, y

Matrix or
row

vector notation
XC1 XC2 XC3 XC4 y

Regressor
type

Benchmarking
Feature

regressor

Equipment
Feature

regressor

Conditioned Space
feature regressor

Functionality
feature

regressor

Dependent
variable

Physical
Interpretation

Annual no. of
occupied rooms

(F1X1)

HVAC & DHW
system
types

% cooled
& heated

floor
area

(F3X1)

% Mech.
vent.
floor
area

(F3X2)

Clustering
solution

from
zone

functions

Annual
Primary
energy

consumption
(kWh)

Hotel 1 111183 4 0.76 0.93 4 23637901
Hotel 2 122154 3 0.83 0.9 3 22499792
Hotel 3 92832 2 0.68 0.81 2 15653405
Hotel 4 75703 4 0.74 0.71 2 11320761
Hotel 5 73369 1 0.48 0.36 2 11149908
Hotel 6 70978 1 0.64 0.26 2 7916273
Hotel 7 39380 2 0.69 0.69 1 6521984
Hotel 8 50096 1 0.47 0.51 2 6003832
Hotel 9 40364 2 0.86 0.91 1 3547070
Hotel 10 114346 4 0.71 0.98 2 15924467

The annual number of occupied rooms, the benchmark feature variable, is a dom-
inant regressor that explains 88 % of the variability in operational EP, as shown in the
correlation analysis performed in Section 3.4.2.1. Thus, including this variable and the
other four (4) variables of matrix X to define a full linear regression model resulted in
an over-fitted solution with a coefficient of determination (R2) of 1. Therefore, the di-
mensionality of matrix X needs to be further reduced to define a reduced order model
to significantly represent all four (4) feature variables.

3.4.2.6 | Stage E : Regression model reduction

In the reduced regression model solution, the dominant benchmarking feature variable,
the annual number of occupied bedrooms, is fully retained, as it explains the major por-
tion of the variability in operational EP. Furthermore, the equipment feature categorical
variable also needs to be fully included in the model to ensure that the variability of
this feature is fully considered in the data post-processing stage for defining the final
RB clustering solution.

Therefore, further data reduction on the matrix X in Table 3.5 was performed on the
functionality and space conditioning features variables to identify a single categorical
variable that best represents these features. The machine learning solution to identify
this variable was again performed by identifying and evaluating multiple clustering so-

80



Chapter 3. Defining reference buildings for small multi-functional building stocks - a machine
learning approach 3.4. Application of approach to the case study to define RBs

lutions for these two variables followed by the choice of the optimal clustering solution
using categorical variable clustering algorithms. Following this further data reduction,
the regression data set composed of reduced matrix X and vector y is shown in Table
3.6.

Table 3.6: The data set for regression composed of the regressor matrix X and the de-
pendent vector, y

Matrix or
row

vector notation
XC1 XC2 XC34 y

Regressor
type

Benchmarking
Feature

regressor

Equipment
Feature

regressor

Conditioned Space
and functionality

feature
regressor

Dependent
variable

Physical
Interpretation

Annual no. of
occupied rooms

(F1X1)

HVAC & DHW
system types

Clustering
solution

from zone
functions and

space conditioned
floor area

Annual
Primary
energy

consumption
(kWh)

Hotel 1 111183 4 4 23637901
Hotel 2 122154 3 3 22499792
Hotel 3 92832 2 2 15653405
Hotel 4 75703 4 2 11320761
Hotel 5 73369 1 2 11149908
Hotel 6 70978 1 2 7916273
Hotel 7 39380 2 1 6521984
Hotel 8 50096 1 2 6003832
Hotel 9 40364 2 1 3547070

Hotel 10 114346 4 2 15924467

Multiple Linear Regression (MLR) was then performed using a backward step-wise
regression [290]8 approach on the data set shown in Table 3.6 using the Python step-
wiseSelection package [291]. This regression was carried out to check and ensure the
significance of each variable in the reduced regressors matrix in explaining operational
primary energy consumption. The three explanatory variables in the matrix X were re-
tained as significant (p<0.01) with an adjusted R2 of 93.4 %, which means that more than
5 % of the variability in annual primary energy is statistically represented by the equip-
ment, space-conditioned and functionality variables. Thus, all variables in the reduced
regressors matrix X can be retained for the post-processing stage.

8Backward step-wise regression begins with a full regression model incorporating all explanatory vari-
ables and gradually removes variables from the model to find a reduced model that best explains the data.
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3.4.3 | Data post-processing stage
In this section, multiple clustering solutions were identified and evaluated on the sig-
nificant regressor data set depicted in Table 3.6 to establish the final clustering solution
of dividing the hotel observations into clusters for which a RB energy model will need
to be defined for each cluster.

For this case study, this stage consisted of a two-stage approach as follows:

1. Data reduction of the Benchmarking feature variable vector XC1 and the Condi-
tioned space and functionality feature variable vector XC34 to one variable vec-
tor denoted by XC134 that best represents these variables. Similar to the previous
steps involving clustering, the solution to identify this variable was again carried
out by investigating multiple clustering approaches, followed by the choice of the
optimal clustering solution using categorical variable clustering algorithms.

2. Identification of the final clustering solution XCRB for the data set composed of
XC134 and the equipment feature XC2 using a rule-based approach to ensure that
the variability of XC2 is fully represented in the final clustering solution to define
RBs.

Based on the most-recurrent groupings from the multiple solutions, potential solu-
tions with four (4) and six (6) clusters could be established for XC134, as shown in Table
3.7. However, to minimise the number of clusters that reflect the number of RB energy
models, the solution with four (4) clusters was chosen for XC134 to reduce the time and
computational expense of modelling the building stock. The final clustering solution is
justified in Section 3.4.4.

Combining the four cluster solution of XC134 with the equipment feature variable
XC2 using a rule-based approach to retain all variability in the equipment feature XC2,
splits the hotel observations into the six (6) clusters (KRB = 6) shown in Figure 3.6. A
RB must be defined for each cluster based on an archetype solution. The whole process
of deriving this final RB clustering solution for the case study building is graphically
shown in Figure 3.2.
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Table 3.7: The data set to derive the final clustering solutions showing the four and six
cluster options for XC134

Matrix or
row

vector notation

XC134
(4 clusters
solution)

XC134
(6 clusters
solution)

XC2

Regressor
type

Benchmarking, conditioned
space and

functionality feature
regressor

Equipment Feature
regressor

Physical
Interpretation

Clustering solution
from benchmarking

feature
variables

HVAC & DHW
system types

Hotel 1 4 6 4
Hotel 2 4 6 3
Hotel 3 3 4 2
Hotel 4 3 4 4
Hotel 5 2 3 1
Hotel 6 2 3 1
Hotel 7 1 2 2
Hotel 8 2 1 1
Hotel 9 1 2 2

Hotel 10 3 5 4

Figure 3.6: Hotel building stock cluster map for which an archetype must be defined for
each of the resulting six (6) clusters
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The stability of the clustering solution was validated by repeating the method for
the same hotel observations but using the annual occupancy and operational energy
consumption for the years 2018 and 2019 separately as test data9. For both the years 2018
and 2019, the same clustering solution as shown in Figure 3.6 was obtained, confirming
the robustness and stability of the approach.

3.4.4 | Discussion on the final RB clustering solution

This section justifies the final RB clustering solution, XCRB, for the case study building
stock resulting from the method to develop RBs proposed in this chapter. To facilitate
the discussion, Table 3.8 is presented, where the annual primary energy consumption
is the dependent variable y, while the annual number of occupied rooms, XC1, is the
dominant explanatory variable. Variable y was converted to a discrete ordinal variable
using the Univariate clustering algorithm proposed by Fisher [292] in XLSTAT [287].
This algorithm generates a solution that has a maximum of three (3) clusters. Further-
more, to enable direct comparison, variable XC1 has also been converted to a discrete
ordinal variable with three (3) cluster classes using the same algorithm10. In addition,
the table shows regressors XC134 and XC2 representing the benchmarking, functional-
ity & space conditioning and equipment features, respectively. The final RB clustering
solution, XCRB , is also depicted.

Hotel 1, hotel 2, and hotel 10 belong to the same cluster for variable XC1. However,
hotel 10 has a lower cluster class for the dependent variable y, which is explained by
the different cluster class for XC134 given that hotel 1 and hotel 2 both have a laundry
on site, in contrast to hotel 10. Furthermore, although hotel 1, hotel 2, and hotel 10 fall
within the same cluster class for variables XC1, XC134, and y, hotel 1 and hotel 2 do not
share the same cluster for XC2 and therefore these two observations must also be clus-
tered separately. This split ensures that observations having different HVAC and DHW
systems fall under different clusters, which is essential to fully characterise and define
RBs. This segregation of hotel 1, hotel 2, and hotel 10 into three (3) different cluster
classes is missed if the clustering solution of variable XC1 or the dependent variable y
is adapted to define the RBs for the building stock.

9The Python Jupyter notebooks to perform the methodology to define RBs for the hotel-building stock
case study for the years 2017 to 2019 are found in the GitHub Repository. Refer to GitHub Repository folder
’Ch 3 5 star hotels RB definition methodology’. Refer to Appendix B for a detailed description of all files and
folders found in the GitHub Repository.

10The three (3) cluster solution for variable XC1 is also the median between a four (4) cluster solution
generated using the Fisher [292] Univariate clustering algorithm and a two cluster solution that maximises
dissimilarity between clusters in AHC.
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Table 3.8: Data set to facilitate the RB buildings stock clustering solution validation

Annual no. of
occ. rooms

ordinal
variable

(K=3)

XC134 XC2

RB final
clustering
solution
(XCRB)

Operational
primary energy

consumption
ordinal
variable

(K=3)
Hotel 1 3 4 4 6 3
Hotel 2 3 4 3 5 3
Hotel 3 2 3 2 4 2
Hotel 4 2 3 4 3 1
Hotel 5 2 2 1 2 1
Hotel 6 2 2 1 2 1
Hotel 7 1 1 2 1 1
Hotel 8 1 2 1 2 1
Hotel 9 1 1 2 1 1
Hotel 10 3 3 4 3 2

Similarly, suppose that one performs clustering directly on variable XC1. In that
case, the four hotels made up of hotel 3 to hotel 6 are clustered together, which does
not reflect the higher operational energy consumption of hotel 3 reflected by the higher
cluster class of variable y. The final clustering solution, XCRB, provides a more compre-
hensive segregation of these hotels into three (3) separate groups, with hotels 5 and 6
clustered together, and hotels 3 and 4 clustered separately. Hotel 5 and hotel 6 share the
same cluster class for XC134 and XC2 and fall within the same cluster class for variable y,
which further justifies grouping these two observations together. However, hotel 3 and
hotel 4 are not clustered with hotel 5 and hotel 6 because they fall into a different cluster
class for XC134 due to a higher percentage of the internal floor area that is mechanically
ventilated and space heated & cooled. Furthermore, hotel 3 and hotel 4, fall into a differ-
ent cluster class for the variable XC2 and therefore need to be clustered separately. The
variable XC2 can therefore explain why hotel 3 and hotel 4 fall into a different cluster
class for the dependent variable y.

Hotel 7, hotel 8, and hotel 9 fall into the cluster having the lowest values for y. For
these hotels, the classification prediction accuracy between y and XC1 is perfect. How-
ever, while hotel 7 and hotel 9 fall within the same cluster for both XC134 and the XC2

and can be grouped, hotel 8 is best studied separately as it falls into a different clus-
ter for both these variables11. The need to separate these three hotels into two separate

11The different cluster class for hotel 8 for variableXC134 compared to hotels 7 and hotel 9 is explained
by a different cluster for the functionality variable (XC4), and a lower mechanically ventilated and space
cooled & heated internal floor area described by variables (F3X1) and (F3X2).
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clusters is not evident if one directly considers the clustering classes of variable XC1 or
variable y.

Furthermore, although hotel 4 falls into a lower cluster class than hotel 10 for vari-
able XC1, they fall within the same cluster for variables XC134 and XC2. They can there-
fore be grouped to minimise the number of RBs and make building stock energy mod-
elling less computationally expensive. The number of occupied bedrooms, XC1, can
then be statistically defined and input into the RB energy model to best represent the
building stock cluster under the study.

The same concept applies in combining hotel 5, hotel 6, and hotel 8, despite hotel
5 and hotel 6 having a higher XC1 cluster class. It should be noted that these hotels
would have been automatically further segregated to reflect this diversity in XC1 if the
six (6) versus four (4) cluster solution was chosen for XC134. However, given only (ten)
10 hotel observations (N = 10) in this case study, the number of clusters in the final RB
clustering KRB solution will become close to the number of observations N. This large
number of clusters will reduce the feasibility of this approach and unjustifiably increase
the modelling effort and computational resources to study the building stock using the
proposed EPBD cost-optimal method detailed in Chapter 2.

The discussion justifies the method in the need to systematically apply multiple ma-
chine learning techniques to high-dimensional explanatory variable data sets from all
features to derive significant regressors that define and characterise RBs for a ’small’
multi-functional building stock. This approach contrasts clustering based only on eas-
ily obtainable benchmarking variables or directly uses the operational metered energy
consumption dependent variables, which will not allow RBs to be characterised and
comprehensively defined to study the building stock.
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3.5 | Conclusion

Defining RBs that are representative of the building stock under study is the first step in
the proposed EPBD cost-optimal method described in Chapter 2, Section 2.5 and UBEM.
However, there is no standard methodology to define RBs. Therefore, in line with the
objectives of this research, an approach was developed to define RB for multi-functional
and heterogeneous building stocks ’small’ (X ≫ N) as the challenges of heterogene-
ity and data processing to define RBs for such buildings have not been adequately ad-
dressed in the literature. The developed approach uses unsupervised and supervised
machine learning techniques to systematically combine the data from the building fea-
tures data with individual metered energy consumption data. These techniques address
the high-dimensional data processing challenges of such building stocks, while ensur-
ing that they are fully characterised for bottom-up energy modelling. In addition, a
specific ’functionality feature’ is also introduced as a data collection classifier for charac-
terisation, complementary to the four building features of form, envelope, equipment,
and operation proposed by Torcellini et al. [204] and Corgnati et al. [26]. This feature
ensures that the diversity of the services offered by the individual buildings in a multi-
functional building stock is better represented when deriving the final RB clustering
solution.

The approach was successfully applied to a ’small’ (X ≫ N) and heterogeneous 5-
star hotel building stock that has a ratio of more than three (3) explanatory variables X
for each observation of the building stock N. The approach grouped the ten (10) hotel
buildings into six (6) clusters, for which an RB in the form of an archetype must be de-
fined for each cluster. The stability of the resulting clustering solution was validated
using test data with occupancy and metered energy consumption for different annual
periods. Furthermore, the RB clustering solution provided a more comprehensive ap-
proach to defining RBs in contrast to clustering only on easily obtainable benchmarking
variables or directly on operational metered energy consumption. This results from the
ability of the developed method to uncover building characteristics that need to be con-
sidered when developing a building physics RB energy model.

In addition, performing the proposed probabilistic EPBD cost-optimal methodology
on six (6) RBs rather than the entire building stock provides a significant reduction in
the energy modelling time effort and computational resources to generate multiple sim-
ulation runs from computationally expensive multiple zone building physics models
required to perform Bayesian calibration with metered energy consumption data for
the proposed EPBD cost-optimal method, as explained in Chapter 2. However, the pro-
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posed RBs definition approach needs further testing through application to other build-
ing stocks to better understand how the resulting cluster-to-observation ratio varies as
the number of building observations and the diversity of the building stock change.
Such testing is required to better validate the practicality of the proposed approach
compared to RB definition approaches explained in Section 3.1.2.1. These RB definition
approaches, unlike the proposed approach, generally do not consider functionality as
a characterisation feature to develop RBs, use less elaborate data-processing techniques
that apply single clustering algorithms/solutions, or do not check the significance of the
clustering variables on metered energy consumption data.

In the following chapters, and in order to demonstrate the EPBD cost-optimal method
proposed in Chapter 2, an archetype will be developed for a chosen cluster of hotel ob-
servations resulting from the final clustering solution XCRB of the hotel building stock
case study. The archetype will be defined having parameters for system efficiency and
operation defined probabilistically to develop a ’probabilistic RB’ and calibrate it using
monthly metered energy consumption data. ’Probabilistic Bayesian calibrated RBs’ will be
evaluated in their potential to better handle building stock uncertainty and allow fur-
ther heterogeneity to be investigated within buildings that fall into the same cluster in
the final RB clustering solution XCRB.
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Bayesian calibration of a
multi-functional Reference Building

for the EPBD cost-optimal method - a
computationally efficient approach

Chapter Abstract : This chapter demonstrates the first four steps of the proposed
EPBD cost-optimal method on a hotel RB identified from Chapter 3. These steps up-
date ’non-calibrated and deterministic RBs’ to ’probabilistic Bayesian calibrated RBs’.
To execute these steps, this research, validated a computationally efficient approach
to performing Bayesian calibration of RBs, by replacing full-space, heterogeneous
RB EnergyPlus models, termed ’detailed’ models, with reduced-space RB (’simpli-
fied’) EnergyPlus models constructed using the modular and scalable ’reference zone’
approach concept, conceptualised by Gatt et al. [35]. RB EnergyPlus models are re-
quired in Bayesian Calibration to run multiple simulation runs for SA and to train
the meta-model emulating the EnergyPlus simulator. The ’simplified’ model showed
a 4,000 % improvement in computational run-time efficiency over the ’detailed’ model
and perfectly replicated its parameter ranking SA results. The ’simplified’ model also
successfully reproduced the monthly energy end-use outputs of the ’detailed’ model
with a NMBE of 0.38 % and CVRMSE of 3.78 % for simulation runs that trained
the GP meta-model. Furthermore, the GP meta-model, trained from the ’simplified’
model, statistically calibrated the meta-model and both the ’simplified’ and ’detailed’
EnergyPlus models with monthly energy consumption, while satisfactorily reducing
uncertainty in the calibration parameters. Based on these results, the modular and
scalable ’reference zone’ approach provides good potential in bottom-up modelling
to replace detailed BEMs for improved computational efficiency, while allowing the
variability in the functionality of a building stock to be better represented.

89



Chapter 4. Bayesian calibration of a multi-functional Reference Building - a computationally
efficient approach 4.1. Introduction

4.1 | Introduction
Reference Buildings (RBs) defined by classifying and characterising the building stock
should represent “the typical and average building stock in a member state” [9] and therefore
provide the basis for MS to study the EP of their building stock using the EPBD [9] cost-
optimal approach. Chapter 3 focused on developing a machine learning approach to
specifically define RBs for small, multi-functional and heterogeneous building stocks.
Once RBs are defined, the cost-optimal approach provides MS with a common tool to
establish NZEB benchmarks and devise policies and incentives to facilitate the transition
of buildings to NZEB for the EU to facilitate meeting its 2050 carbon neutrality targets.

Despite the positive push enabled by the EPBD cost-optimal method to improve the
EP of buildings in the EU, Chapter 2, established limitations in the ability of the current
cost-optimal approach to derive realistic benchmarks and effective policies given the
resulting policy uncertainties described in Section 2.3.1. It was also discussed that such
uncertainties primarily stem from the use of ’non-calibrated and deterministic’ RBs. There-
fore, to address these limitations, a new EPBD cost-optimal method was proposed and
conceptualised in Figure 2.6, with the objective of establishing a clear framework for
integrating state-of-the-art UBEM techniques employing ’probabilistic Bayesian calibrated
RBs’ into the current EPBD to construct a novel cost-optimal approach that replaces ’non-
calibrated and deterministic’ RBs with ’probabilistic Bayesian calibrated RBs’. To meet the ob-
jective of this investigation, the proposed cost-optimal method graphically depicted in
Figure 2.6 will test the hypothesis put forward in Chapter 2 of whether state-of-the-art
UBEM techniques employing ’probabilistic Bayesian calibrated RBs’ can better address the
handling of the uncertainties and diversities of a building stock for a more robust and
effective policy making.

4.1.1 | Chapter objective
This chapter aims to demonstrate and validate steps 1 to 4 of the 6 steps of the proposed
EPBD cost-optimal method detailed in Chapter 2, Section 2.5, of updating ’non-calibrated
and deterministic RBs’ to ’probabilistic Bayesian calibrated RBs’. A cluster of the 5-star hotel
building stock in Malta described in Chapter 3, for which an RB energy model must be
defined, is used as a case study to demonstrate the steps of the proposed EPBD cost-
optimal method.

Furthermore, as detailed in Chapter 2, a limitation of Bayesian calibration is that
the iterative calibration process is highly computationally expensive when applied to
Building Energy Modelling (BEM), given the need to generate multiple simulation runs
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from the RB building physics models. Computationally expensive RB building physics
models are synonymous with heterogeneous, multi-functional building stocks that have
large floor areas with complex geometries and must be modelled with multiple thermal
zones grouped at least according to their operational functions and their air condition-
ing systems [293, 294] . Given such limitations, the literature has not adequately covered
Bayesian calibration for these building stocks. Therefore, this chapter addresses the re-
search objective identified in Chapter 1 for investigating and statistically validating, in
terms of simulation output accuracy, innovative techniques to reduce the computational
expense of the novel cost-optimal approach and facilitate its implementation. Once cal-
ibration is statistically validated, the probabilistic RB energy model with posterior cal-
ibration parameter distributions, termed ’probabilistically calibrated RB’, becomes the RB
model input for steps 5 and 6 of the proposed EPBD cost-optimal described in Chapter 5,
Section 2.5. In these steps, energy efficiency measures are applied to the probabilistic RB
model to derive EPIs and to propagate uncertainty and financial risk for each defined
NZEB ambition level to establish robust energy renovation policies. The outcomes of
Chapters 4 and 5 will allow the hypothesis presented in Chapter 2 and reproduced in
this section to be accepted or rejected.

4.2 | Computational expenseofBayesian calibration for
the proposed EPBD cost-optimal method

In the proposed EPBD cost-optimal approach shown in Figure 2.6, Step 1 involves the
assignment of probabilistic RB energy models, for which the defined deterministic RBs
are updated to probabilistic RBs by defining an N-vector uncertain parameter θ as a
probability distribution p(θ).

Step 2 then requires performing a Sensitivity Analysis (SA) to identify the S-vector
of significant parameters t, (t ⊂ θ) from the unknown parameters θ to be employed in
the calibration process. For this purpose, both local SA and global SA have been applied
in BEM, as discussed in Section 2.5.2. Global SA methods include screening, regression
methods, variance-based SA and meta-modelling [142, 295]. Global SA, unlike local SA,
provide a better overall picture of the importance of different input parameters and their
interactions over the entire design space and are therefore more suitable for assessors to
make general conclusions for ranking the importance of different parameters [296, 295].
To perform global SA, screening methods are the most popular as they are the least
computationally demanding, making them suitable for building physics energy models
that have a large number of uncertain parameters to rank [295]. For this purpose, the

91



Chapter 4. Bayesian calibration of a multi-functional Reference Building - a computationally
efficient approach 4.2. Bayesian calibration

Morris method [137], also known as the elementary effect method [297], is a One-step
At a Time (OAT) screening method and is the most popular approach for screening
and performing global SA in BEM [136, 295] as it achieves a suitable balance between
accuracy and the number of simulation runs [136, 135, 161] and is model independent
[298]. Furthermore, Menberg et al. [135] also showed that the Morris method can rank
the importance of parameters as well as the more computationally expensive regression
and variance-based methods.

For a k dimension vector of uncertain parameters θ, the Morris method divides the
input space of dimensions k into a grid of p levels [297], where the k-dimensional, p-
level grid is called the experimentation region. The sampling is carried out along a
number of r trajectories, where each trajectory consists of a sample of (k + 1) points.
For the sample points, the incremental ratios1 are calculated to output the elementary
effect (EE) for each input parameter after each trajectory [135]. This calculation pro-
duces two statistical measures per input parameter, the µ∗ and σ. The µ∗ quantifies the
overall influence of the input parameter on the output and is the absolute mean of the
elementary effect resulting from each trajectory [300]. This statistical measure is used
to classify the parameters according to their importance. The other measure, σ, is the
Standard Deviation (SD) of the distribution of the elementary effect resulting from each
trajectory and measures non-linearity and parameter interactions. The total number of
simulation runs required for the Morris method is (k + 1)r [301, 298], where r is the
number of trajectories and is generally taken between 5 and 15 [298]2, depending on the
number of levels. Wate et al. [301] identify the selection of 4 levels and 10 trajectories as
an optimum for a highly dispersed experimentation space.

Once SA is performed, a probabilistic calibration follows in step 3 of the proposed
cost-optimal method using Bayesian inference and the generic calibration approach pro-
posed by Kennedy and O’Hagan (KOH) to model the relationship between the mea-
sured data, y, and the output of the computer simulations η under known conditions
x and uncertain (calibration) parameters t, while accounting for the (structural) inade-
quacy of the model δ(x), and observation errors ε(x) as depicted in Equation 4.1.

y(x) = η(x, t) + δ(x) + ε(x) (4.1)

The high computational cost of complex building physics energy models makes
it difficult to derive posterior distributions analytically. For this reason, MCMC algo-

1When only one parameter is changed at a time during an experiment, the incremental ratio compares
the size of the parameter’s variation to the change in the model output at two different points in the exper-
imentation (input) space. [299].

2Tsvetkova et al. [297] state that r is generally taken between 4 and 10.
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rithms are used in Bayesian calibration to sample from posterior distributions3. Bayesian
inference using MCMC algorithms is computationally challenging to evaluate likeli-
hoods [295], especially for complex and expensive building physics energy models.
Therefore, in BEM and UBEM studies, a meta-model (also called a surrogate model
[302, 303, 304]) usually replaces the computationally intensive building physics model
to improve the computational speed of the iterative calibration process. Various meta-
models have been applied in BEM literature, including MLR in [305, 172, 177], neural
networks in [306, 307], GPE in [169, 176, 121, 161, 181, 134, 308, 309, 310], Support Vector
Machines in [311], MARS in [312], and Polynomial Regression applied in [128]. Linear
regression and GPE are the most popular surrogate models that replace the building
physics energy model [295, 127]. Of all meta-models analysed (MLR, NN, SVM, MARS
and GPE), Lim and Zhai [154] found GPE to have the best accuracy in both the estima-
tion of the input parameters and the prediction of the energy output when compared
to the EnergyPlus model, but has the highest computational cost. In contrast, MLR is
the fastest but least accurate, and the accuracy of MLR decreased more than that of the
other models as the range of input parameters increased [154].

For replicating complex and non-linear building energy models, the meta-model is
usually a Gaussian Process Emulator (GPE) given its flexibility [161, 313, 314]4, and
its ability to accurately predict out-of-sample (test) data and quantify uncertainty [314].
GP models treat observations as realisations of multivariate Gaussian distributions. The
multivariate Gaussian is employed as prior, and this distribution is constrained by exist-
ing data leading to a posterior distribution of the possible functions that generated the
data [304]. GP models for machine learning are described in detail in [316, 161, 313, 314].
A generally accepted guideline is having at least ten (10) simulation runs per significant
parameter [161, 317] for training GP models, where the sample space is generated by
performing Latin Hypercube Sampling (LHS) from the probability distributions of the
significant parameters.

Thus, performing SA using the Morris method to identify the most significant pa-
rameters and fitting a GPE to replace the computationally expensive RB model requires
multiple simulation runs from the building physics model itself, and the computational
expense of these processes, therefore, depends on the simulation run time of the build-
ing physics model. Therefore, this research will aim to provide an additional technique

3Recent research has focused on implementing more efficient sampling algorithms and approximate
Bayesian computation methods, as detailed in Section 2.6.3.

4Their flexibility comes from their non-parametric Bayesian approach to modelling, allowing them to
capture a wide variety of relations between inputs and outputs by using an infinite number of parameters
in theory and allowing the data to identify the complexity level through the means of Bayesian inference
[315, 313].
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to what is found in the UBEM literature detailed in Chapter 2 to improve the com-
putational efficiency of Bayesian calibration for RB energy models. This is done by
addressing the research gap identified in Chapter 2 in replacing a computationally ex-
pensive building physics model (RB) with a more computationally efficient building
physics model that provides a statistically acceptable difference for the simulated fuel
consumption (energy end-use) outputs considered for calibration. This simplification
of the building physics model will facilitate the implementation of the proposed EPBD
cost-optimal method and must be performed on the RB energy model before the SA in
step 2 to optimise the computational efficiency of Bayesian calibration.

4.3 | Methodology to improve the computational effi-
ciency of a RB building physics energy model

This research will validate the conceptual reduced-space order modelling approach
termed the ’reference zone approach’ proposed by the author of this thesis in Gatt et al.
[35]. This approach aims to improve the computational speed of multi-functional RB
building physics energy models when performing Bayesian calibration with metered
energy consumption data for the proposed EPBD cost-optimal method. The ’reference
zone approach’ approach to improve the computational speed from building physics en-
ergy models is different from the current approach used in multiple BEM Bayesian cal-
ibration studies (studies include [138, 139, 92, 130, 163, 172, 147, 132], refer to Section
2.6.3) that replace full-space (and whole-building), dynamic (white-box) models5 with
full-space grey-box (simplified/reduced-order) models [171]), most common being the
resistance capacitance (RC) models, as these models are more computationally efficient
than dynamic (white-box) models.

In the ’reference zone approach’approach, a whole-building and full-space building
physics energy model composed of multiple thermal zones, which can be either a white-
box or grey-box model, termed a ’detailed’ model, with the thermal zones defined as a
minimum according to the function of the space and the method used to condition the
zone, is simplified by splitting the model into a number of simplified geometric repre-
sentations or building blocks using the following modular approach to modelling. A
functional activity, for example, hotel accommodation for which an en suite bedroom is
the space used to satisfy this function, is modelled using one or more building blocks
termed ’reference zones’. Each ’reference zone’ is a representative functional unit of a sub-

5White-box models include EnergyPlus models [171].
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activity. A sub-activity, which is a subset of an activity, is required to be defined for a
space that offers the same service (activity) but has a different defining condition im-
pacting EP, such as a different space conditioning system, schedule, or orientation.

Each ’reference zone’, which in itself is an energy model, is comprehensively charac-
terised in terms of equipment, operation, envelope, and form. In addition, a ’reference
zone’ is geometrically constructed and thermally decoupled by carefully considering
surface adjacency (boundary) conditions so as to keep the total volume of the space and
the heat transfer balance between the interior spaces and the exterior of a sub-activity
under study to mimic as closely as possible the actual building conditions when zone
multipliers are added to aggregate the EP of the sub-activity. This aggregation is possi-
ble given that each defined ’reference zone’ is a functional unit, making it modular and
can therefore be scaled up using zone multipliers to model the whole sub-activity space.
By considering each activity and related sub-activities in the building, this modular ap-
proach can be used to scale up the model from sub-activity functional (’reference zone’)
units to the entire building. The concept of the ’reference zone’ approach to BEM is vi-
sually shown in Figure 4.1, in which the combination of ’reference zones’ coupled with
multipliers to model the entire building results in a reduced space model that has the
potential to be more computationally efficient than the ’detailed’ model.

It must be noted that the ’reference zone’ approach to BEM has the potential to be
applied both using a top-down or bottom-up configuration. In the top-down configura-
tion, a ’detailed’ RB energy model is first developed to represent a group of buildings and
then simplified to improve its computational speed and execute the computationally in-
tensive Bayesian calibration process. Similarly, given its modularity and scalability, the
approach can also be applied using a bottom-up configuration for building stock mod-
elling. Once the ’reference zone approach’ with defined representative ’reference zones’ is
statistically validated for the sample of buildings under study, every building observa-
tion in the stock can theoretically be modelled using this approach, which replaces the
need to define ’detailed’ building physics models.

95



Chapter 4. Bayesian calibration of a multi-functional Reference Building - a computationally
efficient approach 4.3. RB building physics model simplification

Figure 4.1: Flow chart depicting the ’reference zone’ approach that splits the building into
’reference zones’ representing building ’sub-activity’ functional unit models from which
the entire building model can be scaled up using multipliers.
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In addition to its potential to improve the computational speed of SA and meta-
model development replacing the building physics models6 in Bayesian calibration, the
’reference zone’ approach can be applied in applications such as GIS to allow for a simple,
modular and flexible aggregation of EP from the ’reference zones’ to individual buildings
and even up to the urban level. This ability to allow for a modular and flexible ag-
gregation of EP makes this approach especially suitable for modelling multi-functional
heterogeneous buildings stocks, where the defined ’reference zones’ allow for the diver-
sity in the services offered by such buildings to be better represented in BEM in contrast
to simpler zoning division techniques discussed in Chapters 2 and 3 that do not fully
distinguish between the functions and functional diversity of a space. This is because
these simpler zoning division techniques in UBEM generally consider single zone mod-
els, one zone per floor models, or multi-zone per floor models [186]. The multi-zone
per floor models generally distinguish only between the core zone and four perimeter
zones [186], as the core and the different perimeter zones have different external bound-
ary conditions [318].

Another potential application for the ’reference zone’ approach is to provide a better
framework for the consideration of probabilistic functional diversity in a RB (archetype)
representing a cluster of buildings, when modelled using the ’reference zone’ approach
and also to more efficiently analyse the sensitivity of functional diversity on the re-
sulting NZEB EP benchmarks for a given archetype in the EPBD cost-optimal method.
This is achievable, for example, by varying multipliers attributed to each sub-activity
to propagate functionality diversity. Furthermore, this approach can also allow policy
makers to define customisable EP benchmarks, as discussed in Gatt et al. [35]7.

Although various potential applications have been identified, this research will fo-
cus on validating the ’reference zone’ approach concept on a case study multi-functional
RB using the top-down approach to reduce the computational expense of the novel
cost-optimal approach and facilitate its implementation. This validation requires sta-
tistically quantifying the extent to which the reduced space-order model constructed
using the ’reference zone’ approach can replicate the energy end-use simulation outputs
under study of the ’detailed’ model.

6Computation efficient building physics models may also efficiently allow the propagation of simula-
tion runs directly from the building physics models themselves in the KOH framework without the need
to develop meta-models.

7A similar but simpler concept to the ’reference zone’ approach to model school buildings in Malta was
first applied in Gatt [193]. The modular modelling ’bottom-up’ approach performed in this research al-
lows policy makers to define customisable EP benchmarks within the framework of the EPBD cost-optimal
method for school buildings in Malta by considering different classroom orientations and percentage dis-
tributions of functional spaces to derive an EP benchmark for a school building.
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4.4 | Hotel RB case study
This section demonstrates steps 1 to 4 of the proposed EPBD cost-optimal method de-
tailed in Chapter 2, Section 2.5, by applying these steps on a case study cluster of the
5-star hotel building observations described in Chapter 3, for which a RB energy model
must be defined. This section will also apply and validate the ’reference zone’ approach
to this case study. For the case study, cluster 4, made up of only hotel 3, was cho-
sen to demonstrate the proposed EPBD cost-optimal method, given that studying only
one building facilitates the conceptual understanding and demonstration of the novel
cost-optimal approach and the validation of the ’reference zone’ approach to modelling.
Furthermore, the reason why cluster 4 was chosen instead of the other clusters that are
only made up of one hotel observation, that is, cluster 5 and cluster 6, is because the
hotel management was very cooperative in providing information for hotel 2. Also, the
hotels in clusters 5 and 6 have more complex HVAC and DHW systems with additional
parameters for chilled water pumping requirements and heat exchangers to cool the
chiller, which consideration and modelling are beyond the scope of this research work.

DesignBuilder software [267], which provides a graphical interface to EnergyPlus
[268], was used to set up EnergyPlus models for this case study. The extracted Energy-
Plus idf files were then further customised and processed to create parametric Energy-
Plus models required to generate multiple simulation runs at different parameter values
from the models by combining the EP-macro auxiliary program [319] and JEPLUS [50].
The multiple simulation runs are required as input both for SA using the Morris method
and Bayesian calibration to train a meta-model that will take the place of the building
physics model. Both SA and Bayesian calibration were executed in Python [320] using
the SALib [321] and Stan [322] packages, respectively, as detailed in the sections that
follow. EnergyPlus idf files, the JEPLUS files, and the Python source code for this case
study are available on the GitHub repository.

4.4.1 | Hotel 3 description
Hotel 3 under study is a large 5-star beach hotel located in Malta and was built in the
mid-2000s. The hotel is a multi-storey building that covers a total interior floor area of
more than 40,000 m2 and is composed of approximately 300 guest rooms that cover more
than 40 % of the total interior floor area, while dining and food preparation together
cover approximately 10 % of the total interior floor area. The hotel also has an outside
pool area of approximately 900 m2. The hotel laundry is contracted to a third party and
takes place outside the hotel premises.
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The envelope of the hotel building is characterised by non-insulated concrete con-
struction having an average U-Value of 2.1 W.m−2.K−1 with double-glazed aluminium
frame fenestration of average U-value 4 W.m−2.K−1 and a Solar Heat Gain Coefficient
(SHGC) of 0.7.

Regarding the air conditioning systems, more than 65 % of the hotel internal space
is air-conditioned, pairing an air-cooled VRF system with a Dedicated Outdoor Air Sys-
tem (DOAS) that has a constant volume flow. The air conditioning system has never
undergone major upgrades since the start of hotel operation. Furthermore, hotel circu-
lation areas are naturally ventilated and do not have air heating or cooling systems. For
DHW, production is met by using a dedicated LFO boiler system. The hotel produces
most of its potable water using a dedicated in house Reverse Osmosis (RO) plant to
produce 160 m3 per day.

Hotel occupancy varies monthly in terms of the percentage number of occupied
rooms. The levels of occupancy before COVID-19 ranged from 40 to 60 % between
December and February and to 90 % or higher between June and October.

4.4.2 | Hotel 3 case study EnergyPlus (building physics) models
The hotel uses electricity, LFO and LPG as fuels for which consumption data were col-
lected for three years between 2017 and 2019. Electricity is used to supply all end uses,
excluding Domestic Hot Water (DHW) which is supplied entirely by the LFO. LPG is
used only for a portion of cooking equipment and is excluded from building energy
modelling and calibration analysis.

Given that DHW is supplied entirely by LFO, while all other end uses consume elec-
tricity and are defined using different and uncorrelated parameters, separate building
physics models for DHW and the other end uses supplied by electricity were set up in
DesignBuilder [267] using the EnergyPlus simulation tool [268]. Calibration was also
performed separately for the two fuels. The advantage of defining two separate models
is that the DHW model is characterised by only a small number of parameters and does
not require space heat balance calculations, allowing for a more computationally effi-
cient process when multiple simulation runs are generated to calibrate parameters with
metered energy consumption data.

4.4.2.1 | Development of a DHW ’Probabilistic’ EnergyPlus model for Hotel 3

For DHW, a simplified model was constructed for each year between 2017 and 2019 to
consider the difference in the monthly occupancy of rooms and guest nights and the
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corresponding energy consumption for each respective year. The simplified EnergyPlus
model considers the consumption of LFO that meets the DHW demands of the hotel
building as a function of the number of guest nights, the consumption of DHW per guest
night, and the efficiency of the boiler system that generates DHW. Therefore, the DHW
EnergyPlus model was only characterised in terms of DHW equipment and occupancy
schedules, with DHW being the only energy end-use under study. It is to be noted that
this hot water consumption includes other uses directly linked to guests such as use
of hot water in kitchens and other amenities. Thus, using this simplified approach to
modelling, only accommodation which is provided by guest rooms was considered as
an activity for DHW modelling in the ’Reference zone’ approach framework.

A ’Reference zone’ was defined for each sub-activity, where sub-activities distinguish
between different DHW schedule occupancy patterns for the guest rooms. Each ’Ref-
erence zone’ was modelled as a square block having an arbitrary twenty-five (25) m2

functional unit, characterised in terms of DHW equipment and occupancy, but ficti-
tious in terms of geometry, envelope and form. The number of required sub-activities,
each translating to a ’reference zone’ was determined using a quasi-stochastic approach
to modelling occupancy. Using this approach, monthly occupancy data in terms of the
percentage number of occupied rooms was converted to a categorical distribution of
schedules to be assigned to each ’reference zone’. This allows hotel schedules to be de-
fined deterministically for each ’reference zone’ but at the same time ensures that varia-
tion in the monthly occupancy and occupancy density distribution is fully considered in
modelling. Each ’reference zone’ is then scaled up using block multipliers in proportion
to the guest room floor area attributed to each occupancy schedule.

The year 2017 is taken as an example to demonstrate the modelling concept used for
the schedules in the DHW EnergyPlus models. Table 4.1 shows the occupancy patterns
per month in terms of the % number of occupied rooms, the guest nights per occupied
room and the occupational density ratio. The occupational density ratio is defined as
the guest nights per occupied room divided by the peak number of guest nights per
occupied room for a month in a given year. The occupancy data in Table 4.1 was then
translated into twelve (12) categorical and deterministic schedules for the year 2017, as
shown in Table 4.4. Twelve ’reference zones’, one for each schedule, were therefore de-
fined and attributed multipliers in proportion to the floor area assigned to each schedule
shown in Table 4.2; for example, 41 % of the floor area of the guest rooms was occupied
for all months and assigned the Schedule A occupancy pattern, while 4 % of the floor
area of the guest rooms is never occupied and assigned Schedule L as depicted in Table
4.1.
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Table 4.1: 2017 monthly occupancy pattern for hotel 3

Month
% number of occupied

guest-rooms
number of guest nights per

occupied room
Occupational density

ratio
Jan-17 41 2.02 0.72
Feb-17 48 2.29 0.81
Mar-17 66 2.07 0.74
Apr-17 80 2.50 0.89
May-17 86 2.34 0.83
Jun-17 91 2.38 0.85
Jul-17 93 2.73 0.97

Aug-17 95 2.82 1.00
Sep-17 96 2.32 0.82
Oct-17 93 2.41 0.85
Nov-17 79 2.30 0.82
Dec-17 58 2.41 0.86

Table 4.2: Definition of schedules derived from the monthly occupancy patterns in Table
4.1 for the year 2017

Schedule Guest room occupancy pattern
description

% of total guest
room

floor area
Schedule A Occupied all year round 41
Schedule B Schedule A but no occupancy in January 7
Schedule C Schedule B but no occupancy in February 10
Schedule D Schedule C but no occupancy in December 8
Schedule E Schedule D but no occupancy in March 13
Schedule F Schedule E but no occupancy in November 1
Schedule G Schedule F but no occupancy in April 6
Schedule H Schedule G but no occupancy in May 5
Schedule I Schedule H but no occupancy in June 2
Schedule J Schedule I but no occupancy in July October 1
Schedule K Schedule J but no occupancy in September 1
Schedule L Never occupied 4

Appendix C shows the DHW schedule text file in DesignBuilder for the ’reference
zone’ characterised by Schedule A. The schedule provides the hourly DHW consump-
tion profile for a typical day per month with hourly input values that range between 0
and 1 defining the DHW operation in terms of a fraction of the peak DHW flow rate. The
highest hourly value of the fractional peak flow rate for the typical day of the month is
taken to be equal to the occupancy density ratio for the corresponding month shown in
Table 4.1 for 2017. The other schedules, namely Schedule B to Schedule L, are the same
as Schedule A, but assigned null values for the peak flow fraction for all hours during
the unoccupied months.

For the DHW model, the two uncertain parameters that need to be calibrated are
the DHW consumption, which is defined in terms of litres of DHW per guest night, and
the rated efficiency of the boiler. EnergyPlus, however, does not provide a direct input
parameter to define DHW consumption in terms of litres per guest night. Therefore, the
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output of the DesignBuilder idf file was configured using the DesignBuilder input pa-
rameters of occupancy density (people.m−2) and DHW consumption (litres.m−2.day−1)
to generate a maximum flow rate (m3.s−1) for each ’reference zone’ in EnergyPlus that
corresponds to a functional unit of one (1) litre of DHW consumption per guest night.
A multiplier parameter was then introduced to the maximum flow rate (m3.s−1) in the
EnergyPlus idf files using the built-in macro #eval [] in EnergyPlus . This multiplier for
BEM calibration directly represents the consumption of DHW in terms of litres per guest
night and is used to scale the DHW functional unit consumption to the total consump-
tion. Variation of the multiplier generates multiple simulation runs from the model to
allow the DHW per guest night to be calibrated using monthly metered LFO data.

The resulting DHW model idf files for each year for 2017 to 2019 are provided in
the GitHub repository folder8. To develop a probabilistic model, the priors of the un-
certain parameters of the model were assigned a range of values with the upper and
lower bound values determined from both the literature (with the literature references
depicted in Table 4.3) and local hotel energy audits. The priors are shown in Table
4.3. Once the upper and lower bounds for the calibration parameters were determined,
the assignment of flat, non-informative [153, 161] on the bounded priors reflects the
given level of knowledge about the parameters. It must be noted that the choice of non-
informative priors allows the data contribution in the Bayesian framework to dominate
when deriving the resulting posteriors.

Table 4.3: DHW uncertain parameters and corresponding prior distributions

Parameter Distribution Lower Value Upper Value Source

Boiler heater efficiency Uniform 0.7 0.98 Energy audits,
[323, 324, 325]

DHW consumption
(Litres/day/guest night) Uniform 60 200 Energy audits,

[326, 327, 328]

8Refer to the DesignBuilder and corresponding EnergyPlus idf files in folder ’Ch 4 DHW BEM model
2017 to 2019’.
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4.4.2.2 | Development of a computationally efficient and ’Probabilistic’ Energy-
Plus model for electricity end-uses for Hotel 3

Four EnergyPlus models were defined with varying levels of detail for modelling elec-
tricity consumption, ranging from Model A to Model D. Model A is a full-space model
characterised by the actual building geometry, while Model D is the most computation-
ally efficient model. Model D is constructed using the ’reference zone’ approach concept
described in Section 4.3. The aim of defining multiple models is to compare the simu-
lated output accuracy of each simplified model with Model A, and to ultimately validate
Model D for modelling electricity end-uses for Hotel 3. Once validated, defining Model
D probabilistically to replace Model A reduces the computational expense of SA and
Bayesian calibration for the proposed EPBD cost-optimal method.

All models were characterised with the 2017 weather and occupancy data and were
deterministically defined using the main default parameters of the envelope, equip-
ment, comfort and Indoor Air Quality (IAQ) shown in Table 4.5. Furthermore, for all
models, it should be noted that the occupancy and plug-load schedules used for food
preparation areas and meeting rooms were changed from the DesignBuilder default
schedules to match the local occupancy patterns.

The level of detail for all four EnergyPlus models, Model A to Model D for Hotel 3,
therefore, only varies in terms of geometric complexity and in the approach to defining
the availability schedules for space heating, space cooling and artificial lighting for the
guest rooms as described below. DesignBuilder and EnergyPlus files for Model A to
Model D are available in the GitHub repository9. The models are described below.

■ Model A : Model A is a detailed full-space model with the thermal zones defined
as a minimum according to the function of the space and the method used to air-
condition the zone, and characterised by the actual geometry of the building as
shown in the rendered format in Figure 4.2. The guest-rooms in the model are
defined with hourly resolution schedules for typical days in each month using the
quasi-stochastic approach to modelling occupancy, following the same steps as
explained for the DHW model in Section 4.4.2.1. Using this approach, the twelve
(12) categorical schedules, from schedule A to schedule L, replicated in Table 4.4,
were defined to program the availability schedule of use for the space heating and
cooling of the guest rooms.

The guest room zones were assigned an appropriate schedule, from Schedules A
to L, with the frequency of occurrence of the schedule varying according to the

9Refer to folder ’Ch 4 Electricity 2017 BEM models and ref zone validation’ .
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Figure 4.2: Rendered view of Hotel 3 under study

categorical probability distribution shown in Table 4.4. The table also shows the
number of guest rooms assigned and defined for each schedule according to the
distribution. The purpose of these schedules is different from the DHW model
schedules, which defined the DHW operation in terms of the peak flow rate. Here,
for each space heating and cooling schedules A to L, the hourly values for typical
days in a month are assigned as either being on, with a value of 1, or off, with a
value of 0, to program the hours for typical days in a month when space heating
and cooling are available for a guest room to meet the defined temperature set
points according to the monthly occupancy pattern of the assigned schedule. All
schedules have the same hourly values for typical days in a month, but for months
in a schedule that have no occupancy, all hourly values for that month are assigned
a value of 0. As an example, Schedule B is the same as schedule A, but with all
hourly values input as 0 for January, given that January is unoccupied for this
schedule.

Furthermore, for this model, the consumption of artificial lighting in the guest
room also follows the corresponding assigned schedule for space heating and
cooling, but each hourly value for typical days in a month during occupancy is
assigned a percentage of the maximum peak power lighting density according to
the DesignBuilder default schedules for artificial lighting of ensuite bedrooms. In
contrast to space heating and cooling, mechanical ventilation is defined with the
same availability schedule for all guest rooms and is activated on a 24/7 basis for
all days during the year to mitigate humidity issues that are frequently encoun-
tered in Malta due to its coastal climate.
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Once Model A was deterministically defined, the model was checked for its cal-
ibration with metered monthly energy consumption data for the year 2017. The
model is not statistically calibrated for monthly electrical energy consumption,
given that the resulting NMBE and CVRMSE calibration statistical indicators are
45 % and 149 % respectively, and fall well outside the 5 % and 15 % ASHRAE
[1, 2] thresholds, respectively. Furthermore, the annual electricity consumption
discrepancy of Model A with the metered annual electricity consumption is -41.3
% 10. Thus, to increase confidence in the model and execute the next steps of the
proposed EPBD cost-optimal approach, the following sections will update the cur-
rent ’non-calibrated and deterministic’ RB to a ’probabilistically Bayesian calibrated’ RB.

Table 4.4: Guest room occupancy pattern schedules and the number of guest rooms
assigned to each schedule for Hotel 3

Schedule Guest room occupancy pattern
description

% of total guest
room

floor area

Number of guest
rooms

assigned to Model A
Schedule A Occupied all year round 41 358
Schedule B Schedule A but no occupancy in January 7 63
Schedule C Schedule B but no occupancy in February 10 98
Schedule D Schedule C but no occupancy in December 8 55
Schedule E Schedule D but no occupancy in March 13 123
Schedule F Schedule E but no occupancy in November 1 20
Schedule G Schedule F but no occupancy in April 6 55
Schedule H Schedule G but no occupancy in May 5 51
Schedule I Schedule H but no occupancy in June 2 31
Schedule J Schedule I but no occupancy in July October 1 14
Schedule K Schedule J but no occupancy in September 1 33
Schedule L Never occupied 4 37

10The calculations are found in the Microsoft Excel file entitled ’2017 Uncalibrated Model A ASHRAE
statistics’. The Excel file is found in the GitHub repository folder ’Ch 4 Electricity 2017 BEM models and ref
zone validation’, sub-folder ’Validation’.
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■ Model B: Model B is similar to Model A in terms of geometric complexity, but
an average annual schedule with hourly resolution is defined for space heating
and cooling for all guest rooms. This average hourly schedule assumes that the
guest rooms are occupied for all months, but the percentage hours of availability
of space heating and cooling for typical days in a month is made equal to the
percentage number of occupied rooms for the corresponding month. The aim of
this model is to validate this simplified approach to modelling occupancy, which
defines only one schedule for all guest-rooms.

■ Model C : Model C is similar to Model B in terms of guest room schedules, but
is defined as a reduced space-order model that uses the adiabatic block multiplier
concept explained in [329]. In this simplified approach to modelling, the hotel’s
middle floors, which are characterised by similar zoning, operation, and form (pri-
marily made up of en-suite guest rooms and circulation areas), are combined using
block multipliers. A block multiplier is a representative middle floor that replaces
all similar floors and outputs energy results that are multiplied by the number of
floors that it represents. All other floors below or above it are retained in the model
since the upper and lower floors have different surface adjacencies and activities.
This model allows one to compare this standard approach to simplify building
energy models with the ’reference zone’ approach concept (Model D) in terms of
simulation output accuracy and computational speed.
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Table 4.5: Main parameter values to characterise the EnergyPlus model for electricity end-uses with respect to envelope,
equipment, and operation. Acronyms; BOH : Back-of-house, DB : DesignBuilder, FOH : Front-of-house, RO: Reverse Osmosis,
SHGC : Solar heat gain coefficient, U[] : Uniform distribution. Equipment power densities normalised by floor area of the
corresponding activity space.

.

Envelope

Parameter Activity space Units
Known value or

uncertainty
Value source

Deterministic
model default

Wall U-Value Whole building W.m−2.K−1 2.1 Observed 2.1

Roof U-value Whole building W.m−2.K−1 1.7 Observed 1.7

Fenestration U-value Whole building W.m−2.K−1 4 Observed 4

Glazing SHGC Whole building None 0.7 Observed 0.7

Equipment

Parameter Activity space Units
Known value or

uncertainty
Value source

Deterministic
model default

VRF cooling COP Whole building None U [2, 4.6] DB database range 3.3 (DB default)

VRF heating COP Whole building None U [2.6, 5.1] DB database range 3.4 (DB default)

Fan ventilation
pressure rise

Whole building Pa U [690, 2400] DB typical values 600 (DB default)

Kitchen equipment
power density

Food preparation W.m−2 U [88, 385]
DB default, local energy audits,

[330]
130 (author)

Guest room
power density

En-suite
(guest) rooms

W.m−2 U [3.15, 14.6]
DB default, local energy audits,

[330]
3.15 (DB default)



Parameter Activity space Units
Known value or

uncertainty
Value source

Deterministic
model default

RO power density RO plant W.m−2 70 Observed 70

DHW pump power plant kW U [17.2, 25.8] Site-visit, energy audits DB auto sized

Operation (comfort and IAQ)

Parameter Activity space Units
Known value or

uncertainty
Value source

Deterministic
model default

Cooling temperature
set-point

En-suite
(guest) rooms

°C U [22,25]
Site-visits, [331],

[332], [280]
25.4 (DB default)

Heating temperature
set-point

En-suite
(guest) rooms

°C U [20,21]
Site-visits, [331],

[332], [280]
21.6 (DB default)

Cooling temperature
set-point

Food preparation °C U [27,31]
Site-visits, [331, 332],

[280] , DB default
30.1 (DB default)

Cooling temperature
set-point

Eating drinking °C 25 DB default 25 (DB default)

Heating temperature
set-point

Eating drinking °C 23 DB default 23 (DB default)

BOH ventilation rate BOH ACH U [3,15] Site-visits, [333], DB default 4.9 (DB default)

FOH ventilation rate FOH
m3.s.−1

.person−1 U [0.003,0.014]
DB default, [332],

[280]
0.0104 (DB default)
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■ Model D : Model D is also similar to Model B in terms of operation and equip-
ment, but features a reduced space-order model constructed using the proposed
’reference zone’ approach concept detailed in Section 4.3. The use of only one oc-
cupancy schedule in Model B versus Model A minimises the required number of
sub-activities and the corresponding number of reference zones to model the guest
rooms in this model.

The model is defined by the activities, the number of reference zones per activity,
and the number of multipliers per reference zone, as shown in Table 4.6. The table
also shows the space conditioning attributes for each activity in the model, while
Figure 4.3 shows a plan view snapshot of the geometry for Model D.

Each ’reference zone’ is constructed as a rectangular block, and all ’reference zones’
which are space cooled or heated are modelled to represent as accurately as possi-
ble perfect average archetype spaces. In addition, each ’reference zone’ is thermally
decoupled to carefully maintain as close as possible the space surface adjacency
(boundary) conditions11 of Model A for each sub-activity when the multipliers
depicted in Table 4.6 are added. This processing aims to enable Model D to repli-
cate as closely as possible the heat-space balance calculations of Model A.

For the ’reference zones’ that are not space cooled or heated, such as the circula-
tion areas, a total floor area approach is used in contrast to an archetype space
approach. In this approach, since no heat space balance calculations are required,
only the total area and volume of the spaces replicate Model A to correctly quan-
tify the end-uses of plug loads, artificial lighting, and mechanical ventilation. The
energy consumption for these end-uses is only a function of the floor area and
volume of the non-conditioned space for the defined operational schedules.

11The space surface adjacency (boundary) conditions of Model A were maintained as closely as possible
for Model D for all sub-activities in terms of various properties. These properties include the space surface
area to volume ratio, the space exposed surface area to the exterior per orientation, the Window to Wall
Ratio (WWR) for each orientation, the % unshaded and % shaded glazing per orientation, and the adjacency
conditions with other sub-activities.
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Figure 4.3: Hotel 3 Model D geometry plan view snapshot from DesignBuilder software.
Each rectangular block shown in the figure depicts the geometry of a reference zone
energy model representing a sub-activity. The sub-activities are defined in Table 4.6
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Table 4.6: Definition of hotel 3 according to activities and related sub-activities for the
’reference zone’ approach to modelling. Acronyms; C : Cooled, E : Extract, H : Heated, HR
: Heat Recovery, MV : Mechanically Ventilated, NV : Naturally Ventilated, S : Supply,
WS : Work Shops

Activity
(Space)

No. of
reference

zones

Sub-activity
criteria

Multiplier per
reference zone

Space
conditioning

Accommodation
(En-suite rooms) 8 Archetype space

per orientation

N (106), NE (8)
E (39), SE (8)

S (114), SW (8)
W (38), NW (7)

C, H,
MV (S&E)

Reception 1 Archetype space 8
C, H,

MV(S&E)
+ HR

Circulation 1 Total Floor Area (TFA) NV
Massage room 1 Total Floor Area (TFA) C, H, MV(S)

Car-park 1 Total Floor Area (TFA) MV(S
E)

Food preparation 1 Archetype space 1 C, H,
MV(S&E)

Eating & drinking 1 Archetype space 8 C, H,
MV (S)

Meeting rooms 1 Archetype space 2 C, H, MV(S)

Hall 1 Archetype space 1 C, H,
MV(S)

Office work
(offices) 4 Archetype space

per orientation
N (16), E (3)
S(3), W(1)

C, H,
MV(S)

Swimming
(pool/sauna) 1 Archetype space 1 AHU

Fitness
(gym) 1 Archetype space 1 C, H,

MV(S&E)
Changing

rooms
C, H,

MV(S&E)
Public toilet 1 Total Floor Area (TFA) NV

Shop 2 Archetype space
per orientation N (1), S (1) C, H,

MV(S&E)
Server room 1 Archetype space 10 C,H
Linen room 1 Archetype space 1 MV (S

E)

Stores 2 Space conditioning WS (TFA)
General (TFA)

WS: MV(S&E)
General : NV

Plant 3 Equipment &
space conditioning

RO plant (TFA)
Light plant (TFA)
Reservoir (TFA)

RO: MV(S&E)
Light: MV(S&E)
Reservoir: NV

Work Shops (WS) 1 Total Floor Area (TFA) MV (S
E)
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One must note that to facilitate the geometric conversion from Model A to Model
D, CSV files containing geometric, zone surface adjacency properties, and other non-
geometric information of Model A were generated by the DesignBuilder (DB) software
from the EnergyPlus IDF ASCII files. A Microsoft Excel workbook was programmed
and validated to automatically extract and process the required information to construct
the ’reference zones’ for Model D.

This approach is demonstrated for the construction of the ’reference zones’ of the en-
suite guest-rooms, using an archetype space per 45° orientation. The Microsoft Excel
workbook allowed important information from Model A to be extracted. This infor-
mation included the total en-suite guest-room floor area per orientation, the average
en-suite guest-room floor area, the exposed space wall surface area per orientation, the
WWR per exposed wall orientation, the % of glazing that is shaded per exposed wall
orientation and the horizontal roof surface area. This information was processed to de-
fine an average ’archetype’ guest-room, termed ’reference zone’, to be constructed on De-
signBuilder software for every orientation. The ’reference zone’ has an average en-suite
guest-room floor area and is characterised by average geometric characteristics that also
reflect the average surface adjacency (boundary) conditions for each orientation. Multi-
pliers were then assigned to each ’reference zone’ guest room block accordingly to satisfy
the total floor area of the guest rooms per orientation.

The eight (8) ’reference zones’ for the guest-rooms for Hotel 3 are shown in Figure 4.4.
The red blocks are ’dummy’ naturally ventilated zones that replicate the heat transfer of
the guest rooms with the naturally ventilated circulation spaces. Furthermore, the dark
grey top surface represents the proportion of the ceiling, which is modelled as a roof for
each orientation, while the light grey ceiling surface for each ’reference zone’ represents
an adiabatic ceiling surface. The surfaces with the fenestration are the exposed surfaces.
All other surfaces, including the floor and the widths of the blocks, are modelled as
adiabatic.
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Figure 4.4: ’Reference Zones’ geometry for Model D en-suite guest rooms shown on De-
signBuilder software where the red zones are naturally ventilated replicating boundary
surface conditions to model the heat transfer of the guest-rooms with the naturally ven-
tilated circulation spaces

One must note that there is uncertainty in identifying the impact of the roofs on
the actual heat balance of guest rooms, as the roof surfaces in Model A are partially
shaded and obstructed. Therefore, three (3) variants, Model D1 to Model D312, were
considered and analysed to identify which variant can best replace Model A. Model D1
considered 15 % of the guest rooms’ ceiling surface area as an external roof, as shown in
Figure 4.4. Model D2 assumed the whole ceiling of the guest rooms to be fully adiabatic.
Finally, Model D3 was similar to Model D1 but the 15 % exposed roof was reduced by
modelling the ceiling surfaces of the ’reference zones’ orientated North (N) and East (E)
as fully adiabatic.

12The DesignBuilder and EnergyPlus files for Models D1 to D3 are found in the GitHub repository folder
’Ch 4 Electricity 2017 BEM models and ref zone validation’ sub-folder ’Model D1 D2 D3 plus Passive’. Refer also
to Appendix B for a detailed description of all files and folders found in the GitHub Repository.
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4.4.2.3 | Statistical validation and computational expense analysis of the simpli-
fied electricity end-use models for the default parameters

Table 4.7 provides statistical indicators that compare the monthly EnergyPlus simulated
outputs for the end uses of total electricity consumption (kWh), space cooling (kWh),
and space heating (kWh) of the simplified models to the monthly EnergyPlus outputs
of Model A.

The statistical indicators show that all simplified models are valid and monthly cali-
brated with Model A for total electrical energy consumption, since the resulting NMBE
and CVRMSE calibration statistical indicators fall within the 5 % and 15 % ASHRAE
[334] thresholds for CVRMSE and NMBE, respectively. Furthermore, the annual elec-
tricity consumption discrepancy with Model A is < 2 % for all simplified models. All
simplified models are also statistically calibrated for monthly space cooling with Model
A, and the resulting maximum annual space cooling consumption discrepancy is 3.6
% for Model D313. For monthly space heating, Model D2 is also statistically calibrated
with Model A with an annual space heating discrepancy of 1.3 %, while Model B and
Model D1 also achieve a good agreement for annual space heating with a discrepancy of
4.7 % and 5.3 %, respectively. On the other hand, Models C, D1, and D3 provide inferior
results in predicting monthly and annual consumption for space heating.

Table 4.7 also compares the simulation run time for all models when performing a
single simulation run. Models D1 to D3 provide a significant reduction in computa-
tional time, with a simulation run-time improvement of 4000 % compared to Model A,
while Model C provides a substantial simulation run-time improvement of 3000 %. In
contrast, Model B does not provide an improvement in simulation run-time over Model
A.

Given that all variants of Model D provide the most computationally efficient ap-
proach, while Model D2 is also statistically calibrated with Model A for all end-uses
considered, Model D2 was chosen to replace Model A for generating multiple simu-
lation runs for SA and Bayesian calibration in a much shorter time span. Therefore,
to develop a probabilistic building physics model for the electricity end-uses, Model
D2 was defined probabilistically. The priors of the uncertain parameters of Model D2
were assigned a range of values with the upper and lower bound values determined
from both the literature (with the references to the literature shown in Table 4.5, column
’Value source’) and the local hotel energy audits. The priors for the uncertain parameters
are the distributions shown in Table 4.5, column ’Known value or uncertainty’. Once the

13Space cooling and space heating contribute to 12.7 % and 6.5 % of total electricity consumption re-
spectively for Model A.
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upper and lower bounds for the calibration parameters were determined, the assign-
ment of flat, non-informative [153, 161] on the bounded priors reflects the given level of
knowledge about the parameters. It must be noted that the choice of non-informative
priors allows the data contribution in the Bayesian framework to dominate when deriv-
ing the resulting posteriors.

In the sections that follow, Model D2 will also be validated against Model A for
its ability to identify the most significant parameters in SA and to accurately predict
monthly electricity outputs for LHS simulation runs from the calibration parameters
prior distributions. In the following sections, Model D2 and Model D will be used in-
terchangeably.

To provide further confidence in choosing Model D2 over Models D1 and D3 to re-
place Model A, different combinations of passive measures were applied in Table 4.8 to
all variants of Model D with the default parameters defined in Table 4.5. This analysis
identifies which simplified model best replaces Model A to predict annual energy sav-
ings for space heating and cooling relative to the base scenario14. Therefore, this analysis
indicates the potential of using a simplified model in the proposed cost-optimal analysis
to identify improvements in EP when ECMs are applied to the calibrated model for EP
benchmarking. Table 4.8 shows that Model D2 provides the closest % energy savings
predictions for space cooling and heating to Model A for all combinations of passive
measures. The maximum discrepancy is only 4.6 %15 which occurs when the model is
simulated to include all passive measures M1 to M3, which are described in Table 4.8.
This result reaffirms the choice of Model D2, given that the model, once calibrated, pro-
vides the best potential to also replace Model A in Steps 5 and 6 (refer to Section 2.5) of
the proposed EPBD cost-optimal approach.

To develop a probabilistic building physics model for the electricity end-uses, the
priors of the uncertain parameters of Model D2 were assigned a range of values with
the upper and lower bound values determined from both the literature (with the lit-
erature references depicted in Table 4.5) and local hotel energy audits. The priors are
shown in Table 4.5. Once the upper and lower bounds for the calibration parameters
were determined, the assignment of flat, non-informative [153, 161] on the bounded
priors reflects the given level of knowledge about the parameters. It must be noted

14The DesignBuilder and EnergyPlus files for Models D1 to D3 with and without the passive measures
in Table 4.7 are found in the GitHub repository folder ’Ch 4 Electricity 2017 BEM models and ref zone valida-
tion’ sub-folder ’Model D1 D2 D3 plus Passive’ . The statistical analysis to derive the results in Table 4.7 is
performed in Microsoft Excel file entitled ’Models D1 D2 D3 vs Model A ECMs performance’ under the same
sub-folder.

15The 4.6 % is calculated by subtracting the 19.89 % annual energy savings from Model A with the 15.25
% annual energy savings of Model D2 from column ’M1 to M3’.
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that the choice of non-informative priors allows the data contribution in the Bayesian
framework to dominate when deriving the resulting posteriors.
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Table 4.7: Accuracy and computational efficiency performance of the simplified EnergyPlus models (Model B, Model C, and
Model D with variants Model D1, Model D2 and Model D3) in comparison to the full-space detailed EnergyPlus model (Model
A)

Monthly
electrical

consumption
(kWh)

Monthly space
cooling
(kWh)

Monthly space
heating
(kWh)

Annual
electricity

(kWh)

Annual
space

cooling
(kWh)

Annual
space

heating
(kWh)

Model
computational

efficiency

EnergyPlus
models

comparison16
NMBE % CVRMSE % NMBE % CVRMSE % NMBE % CVRMSE % difference % difference % difference %

Run
time

improvement
(min)

Run
time

reduction
(%)

Model B
vs.

Model A
0.36 1.19 -1.37 4.55 5.14 17.04 -0.33 1.26 -4.71 0 0

Model C
vs.

Model A
0.32 1.06 0.53 1.77 8.5 28.2 -0.29 0.33 -7.79 42 3000

Model D1
vs.

Model A
1.06 3.51 -1.15 3.83 -5.77 19.13 -0.97 1.06 5.29 58.5 4000

Model D2
vs.

Model A
2.13 7.07 2.54 8.42 1.42 4.73 -1.95 -2.33 -1.31 58.5 4000

Model D3
vs.

Model A
0.3 1.01 -3.97 13.17 -10.8 35.82 -0.28 3.64 9.90 58.5 4000

16For Model B and Model C, the monthly space cooling energy end-use consumption was removed for January, February and December. For Models
D1, D2 and D3, the space cooling schedule was not made available for January, February and December in the EnergyPlus models. All models referred
to in this table can be found in GitHub repository ’Ch 4 Electricity 2017 BEM models and ref zone validation’. The statistical analysis to derive the results in
the table is performed in Microsoft Excel file ’Models B C D vs Model A ASHRAE calibration validation’ under sub-folder ’Validation’.
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Table 4.8: Comparison of the percentage of annual energy savings from space heating
and cooling relative to the base scenario for the different ’Reference Zone’ model variants
(Models D1 to Model D3) and Model A upon the application of different passive mea-
sures. Measure M1 is the application of roof insulation for a final roof U-value of 0.4
W.m−2.K−1. Measure M2 is the application of wall insulation for a final wall U-value of
0.5 W.m−2.K−1. Measure M3 is the application of a 3M PR70 spectrally selective coating
on the glazing to achieve a glazing with a U-value of 3 W.m−2.K−1 and SHGC of 0.55.
In the ’M1 to M3’ scenario, the model is simulated with all passive measures applied.

Total annual space heating & cooling (kWh)
consumption for different passive measures

% Annual space heating
& cooling (kWh) energy savings

Base
scenario

M1 M2 M3
M1

to M3
M1 M2 M3

M1
to M3

Model A 777982 740640 753281 732305 659323 4.80 5.59 5.87 15.25
Model D1 797376 714338 736773 761762 627600 10.41 8.22 4.47 21.29
Model D2 762573 697060 727575 726166 610892 8.59 4.81 4.77 19.89
Model D3 822816 724888 787216 786330 635167 11.90 4.52 4.43 22.80
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4.4.3 | Sensitivity Analysis (SA)
The first step in calibrating the RB energy models with metered energy consumption
data is to perform SA and rank the parameters according to their impact on the model
output. Choosing the correct number of parameters to calibrate, where the number of
calibration parameters is denoted by q, is critical to optimise the parameter dimensional
space. This optimisation is required because the number of calibration parameters im-
pacts both the required number of simulation runs required to train a meta-model and
the computational time required for the Bayesian calibration process.

SA for the case study was performed using the Morris method [137] supported in
SALib [321]. The analysis was carried out separately for the DHW (refer to Section
4.4.3.1) and electricity end-uses (refer to Section 4.4.3.2) EnergyPlus models. The source
code files for SA are found in the GitHub repository17. For both cases, SA was carried
out with 4 levels and 10 trajectories, as suggested and successfully demonstrated in
Wate et al. [301].

4.4.3.1 | DHW model Sensitivity Analysis (SA)

Given that only two uncertain parameters, the DHW consumption per guest night and
the boiler water heater efficiency, must be calibrated with the metered LFO energy con-
sumption for the DHW model, SA analysis is not essential. However, for completeness,
this section will demonstrate the Morris method applied to the DHW model for the 2017
hotel occupancy schedules.

Figure 4.5 shows the result of the Morris method in terms of the modified mean µ∗

and SD σ for each parameter. The ranking of the parameters according to the modified
mean µ∗ shows that the DHW consumption per guest night has a much greater impact
on the annual LFO end-use energy consumption than the boiler water heater efficiency.
This ranking was derived when considering the parameter prior distributions depicted
in Table 4.3 for the SA. Both parameters for the DHW model will be calibrated with
monthly metered LFO consumption in Section 4.4.4.1.

17Refer to folders ’Ch 4 DHW SA’ for the DHW model SA source files and folder ’Ch 4 Electricity SA’ for
the electricity energy end-uses SA source files.
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Figure 4.5: Results from the Morris method for the DHW EnergyPlus model to identify
which parameters have the largest influence on annual LFO energy consumption
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4.4.3.2 | Electricity energy end-uses model SA

For the electricity end uses, SA using the Morris method was performed both for En-
ergyPlus Model A and EnergyPlus Model D18 to rank the impact of the 11 uncertain
uncertain parameters identified in Table 4.5 on the simulated annual electricity energy
end-use energy. Performing the Morris method using both models allows one to com-
pare the results of the two models and identify to what extent Model D can replicate
the results of Model A and therefore replace Model A for improved computational effi-
ciency when performing SA. Table 4.9 compares the ranking of the eleven (11) uncertain
parameters according to the modified mean µ∗ for the two models.

Table 4.9: Electricity end uses model parameters ranked according to the modified mean
µ∗ for both Model A and Model D

Model A Model D
Rank Parameter µ∗ Parameter µ∗

1
Fan ventilation

pressure rise
2.42E+06

Fan ventilation
pressure rise

2.38E+06

2
Kitchen equipment

power density
2.35E+06

Kitchen equipment
power density

2.34E+06

3
BOH ventilation

rate
1.68E+06

BOH ventilation
rate

1.68E+06

4
FOH ventilation

rate
9.36E+05

FOH ventilation
rate

9.31E+05

5
VRF cooling

COP
8.80E+05

VRF cooling
COP

8.51E+05

6
Guest rooms equipment

power density
7.59E+05

Guest rooms equipment
power density

7.64E+05

7
Guest rooms

Cooling temp set point
3.68E+05

Guest rooms
Cooling temp set point

3.66E+05

8 VRF heating COP 1.53E+05 VRF heating COP 1.46E+05

9
Kitchen cooling

set-point temperature
7.38E+04

Kitchen cooling
set-point temperature

7.36E+04

10 DHW pump power 3.77E+04 DHW pump power 3.77E+04

11
Guest rooms

heating temp set point
2.58E+04

Guest rooms
heating temp set point

2.47E+04

18For both models, the 2017 occupancy schedules were used for SA.
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Both models provide the same ranking position result for the parameters under
study. This result provides evidence that a reduced space-order building physics model
constructed using the ’reference zone’ concept has the potential to replace a detailed full
space-order model, thus allowing for a more computationally efficient approach to SA
in BEM. The suitability of replacing Model A with Model D for SA is further evident
given the resulting low discrepancies in the simulated annual electricity energy end-
use output values between the two models, with a maximum discrepancy of 2.96 %, a
median discrepancy of % 0.30, NMBE of 0.19 % and CVRMSE of 2.06 %19.

Figure 4.6 shows the result of the Morris method for Model D in terms of the modi-
fied mean µ∗ and SD σ for each parameter. The seven top-ranking parameters in Table
4.5 will be calibrated for this case study. The choice of seven calibration parameters (q =
7) is based on a visual study of Figure 4.6 that shows that the four least significant pa-
rameters fall under the same cluster for µ∗ and σ, and can therefore be grouped together
in terms of having the lowest impact on the model output.

Figure 4.6: Morris method results for the electricity energy end uses Model D to identify
which parameters have the biggest impact on total annual electrical energy consump-
tion

19The Microsoft Excel file ’SA CVRSME and NMBE validation’ used to statistically compare the differ-
ence in the simulated annual electricity energy end-use output values between Model A and Model D is
provided in the GitHub repository folder ’Ch 4 Electricity SA’ sub-folder ’SA ASHRAE validation for Model
D2 vs Model A’. Refer to Appendix B for a detailed description of all files and folders found in the GitHub
Repository.
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4.4.4 | Bayesian Calibration
To enable calibration of the q calibration parameters t (t1 to tq) using a meta-model that
replaces the more computationally intensive building physics model, a field observed
input data set matrix D f is combined with computer simulation data set matrix Dc as
prescribed in Higdon et al. [335] and according to the following steps (adapted from
[161]):

1. Construct a matrix D f comprised of the observable output such as the metered
fuel consumption data, y(x f ), and the measurable (known) or observable p inputs
x f (x f

1 to x f
p). Examples of observable or measurable inputs include the outdoor

dry-bulb temperature and the monthly number of occupied rooms. For a number
n of observed values and only one observable output y, matrix D f has dimensions
n x (p+1).

2. Generate predicted fuel consumption output data η(xc, tc) from the building physics
model for m observations at the same measurable or observable inputs xc (xc = x f ).
The m simulation points for xc, tc for data set [xc

1 to xc
p and tc

1 to tc
q] are determined

by LHS sampling from the parameter space of the prior distribution calibration
parameters t at the observable inputs xc.

3. Construct matrix Dc composed of the predicted output data η(xc, tc), and data set
[xc

1 to xc
p and tc

1 to tc
q] having dimensions m x (p + q + 1).

4. Combine matrix D f and matrix Dc in a meta-model in line with Higdon et al.
[335] and explore the joint posterior distribution using a full Bayesian statistical
inference with MCMC sampling algorithms that include the No-U-Turn sampler
(NUTS) [178]20 implemented in Stan [322].

5. Perform Bayesian model diagnostics and calibration validation.

Bayesian calibration was implemented separately for LFO and electricity using monthly
resolution data. For calibration, the combined field and the computer-simulated ap-
proach to Bayesian statistical inference described above was executed in Stan [322] us-
ing the NUTS algorithm. Two source code files were used for Bayesian calibration for
each fuel as follows:

20NUTS has been successfully applied in Bayesian calibration of BEM studies, including [176, 161, 121].
NUTS does not require manual tuning and has been shown in [336] to be more effective in terms of con-
vergence given fewer required iterations compared to other commonly used algorithms, such as the Gibbs
sampler [337].
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1. Python interface code file with a .ipynb extension format having D f and Dc in
CSV file format as input. D f and Dc are processed using the code in Python to
set up the data dictionary to input and run into the Stan model. The results from
Stan are also extracted using this code to perform Bayesian diagnostics and visu-
alisations of Bayesian inference using the Arviz [151] package in Python and to
validate calibration for both in-sample (training) and out-of-sample (test) data.

2. Stan [322] code with a .stan extension to construct the meta-model and perform
Bayesian calibration.

The code for these files was adapted from Chong et al. [161]. The source code files are
found in the GitHub repository21.

4.4.4.1 | DHW model Bayesian calibration

For calibrating the DHW model, two-thirds (years 2017 and 2018) of the monthly occu-
pancy and LFO consumption data was employed as the training set for the calibration
of the the parameters, while the remaining data (year 2019) was used as the test-set to
assess the the model’s ability to predict outcomes when given unseen data.

For calibration, the field-observed input data set matrix D f for the training data set
covers 24 months of data and is a 24 by 2 matrix. It is composed of the known input x f

1 ,
which is the monthly number of guest nights, and the observable output, y, which is the
monthly metered consumption of LFO .

Furthermore, the computer simulation data set matrix Dc for the training data set is
a 240 by 4 matrix, for which 240 (m=240 22) LHS simulation runs of the building physics
model were performed, 120 simulations each for the year 2017 and 2018. Matrix Dc is
composed of η(xc, tc), the monthly predicted LFO consumption, and data set [xc

1, tc
1, tc

2].
For the data-set, xc

1 (xc
1 = x f

1 ) is the monthly number of guest nights while t1 and t2 are
the calibration parameters of the simulation model. More specifically, t1 is the DHW
consumption in litres per guest night and t2 is the boiler heater efficiency.

Given the low dimensionality of the model having only one observable input (p = 1)
and two calibration parameters (q = 2), a Bayesian linear regression model documented
in the Stan Guide [338] was used as a meta-model with the likelihood function depicted
in Equation 4.2.

21Refer to folder ’Ch 4 DHW Bayesian calibration’ for the LFO energy end-use (DHW model) calibration
source files and folder ’Ch 4 Electricity Bayesian calibration’ for the electricity calibration source files. Refer
to Appendix B for a detailed description of all files and folders found in the GitHub Repository.

22The fast simulation time of the DHW EnergyPlus model completing 240 monthly simulations com-
prised of 20 annual simulations in <620 seconds allowed an abundance of simulations to be executed to
train the model.
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z ∼ normal(α + βXt, σ) (4.2)

In the equation, z is a single vector that has a dimension N (N = n + m) combining the
n observation output values for y(x f , t f ) and the m model prediction values for η, where
t f represents the calibration parameter space corresponding to D f . Furthermore, Xt is
an N by (p + q) matrix that combines x f , t f , xc and tc into a single matrix. The model
assumes a normally distributed noise term with scale σ and its intercept and slope pa-
rameters are α and β, respectively.. Equation 4.2 and the prior parameter distributions
derive the posterior distribution of the calibration parameters t f via Bayesian inference.

The prior and resulting posterior distribution after Bayesian inference of the calibra-
tion parameters t f

1 and t f
2 are visually shown in Figure 4.7, together with a statistical

summary of the posterior distributions in Table 4.10. It can be observed that the un-
certainty in the value of t f

1 has been significantly reduced following calibration from a
prior distribution for DHW ranging from 60 to 200 litres/guest night to a posterior dis-
tribution whose 95 % Highest Density Interval (HDI) extends to only between 66 and
106 litres/guest night. In contrast, for parameter t f

2 that has a much lower impact on
LFO consumption, the posterior distribution has not narrowed significantly compared
to the prior. This means that given the observed data, not much has been learned about
the value of t f

2 following calibration.
The overall reduction in the uncertainty of the parameters after calibration is how-

ever satisfactory based on the resulting model output before and after calibration, as
identified from Figures 4.8 and 4.9. The figures show that both the predicted monthly
meta-model (Figure 4.8) and simulated annual EnergyPlus (Figure 4.923) LFO consump-
tion distributions generated from the posterior distributions are significantly narrower
when compared to EnergyPlus simulation runs propagated from prior distributions.

Table 4.10: A statistical summary of the DHW model posterior distribution for each
calibration parameter

Symbol Parameter Mean Median SD HDI5% HDI95%

t f
1 DHW (l/guest night) 87.1 87.1 41.4 66 106

t f
2 Boiler heater efficiency 0.84 0.84 0.45 0.72 0.96

23The JEPLUS files required to propagate annual uncertainty in LFO end use from the DHW building
physics model and the corresponding simulation results are found in GitHub Repository folder ’Ch 4 Elec-
tricity Bayesian calibration’ sub-folder ’Physics models Annual uncert propag Prior Post’. Refer to Appendix B
for a detailed description of all files and folders found in the GitHub Repository.

125



Chapter 4. Bayesian calibration of a multi-functional Reference Building - a computationally
efficient approach 4.4. Hotel RB case study

(a)

(b)

Figure 4.7: The prior and resulting posterior distributions of the DHW energy model
calibration parameters for (a) t f

1 : DHW consumption in litres per guest night and (b) t f
2

: Boiler water heater efficiency
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Figure 4.8: Monthly LFO consumption box plot comparing EnergyPlus simulation runs
for prior calibration parameters distributions (orange plot) and the posterior predicted
consumption from the calibrated meta-model (blue plot). The red dots depict the actual
metered monthly LFO consumption
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Figure 4.9: Annual LFO consumption distribution generated from EnergyPlus model
for simulation runs from prior (orange plot) versus posterior (blue plot) calibration pa-
rameter distributions for the years 2017 and 2018.
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4.4.4.1.1 DHW Bayesian model diagnostics

The Bayesian model for DHW was checked for adequate convergence using both trace
plots (see Figure 4.10) and statistical diagnostic metrics (see Table 4.11). Both the trace
plots generated in Arziz and the R-hat statistic24 indicate that the chains have mixed
well and that the model has converged given that the trace plots [151] show a good
mixture of the chains and the R-hat statistic25 is approximately 1 ± 0.1 [339, 161]. Fur-
thermore, the parallel plot generated from Arviz and shown in Figure 4.11 does not
show a divergence for the posterior parameters26.

Table 4.10 also depicts statistical metrics to determine sampling efficiency in terms
of Effective Sample Size (ESS) for both the bulk (ESSbulk) and tail (ESStail) of the distri-
butions, which metrics are defined and explained in Vehtari et al. [339]. The ESS ≥ 100
[339, 341] for all parameters shows that the model provides reliable estimates for the
mean and quartiles of the posterior distributions. Furthermore, the model also has the
potential to produce repeatable values in different simulation runs, since the ESS is also
≥ 200 [341].

The Monte Carlo Standard Error (MCSE) of the sample mean, which is another mea-
sure of the accuracy of the chains, is also shown in Table 4.1027. The MCSE is smaller
than the 5 % threshold [342] for all parameters in the DHW model, therefore, provid-
ing additional confidence in the accuracy of the sampling efficiency of the DHW meta-
model.

Table 4.11: DHW Bayesian model parameters diagnostic statistical checks

Parameter Rhat ESSbulk ESStail MCSEmean

t f
1 1.01 497 550 0.004

t f
2 1.00 469 459 0.0012
α 1.00 695 567 0.001
β1 1.00 993 558 0.001
β2 1.00 1234 656 0.001
β3 1.00 1389 618 0.001
σ 1.01 1145 453 0.000

24R-hat is the ratio of variance between chains and the variance within chains [126], Stan reports "R-hat
which is the maximum of rank normalised split-R-hat and rank normalised folded-split-R-hat".

25R-hat is the ratio of variance between chains and the variance within chains [126], Stan reports "R-hat
which is the maximum of rank normalised split-R-hat and rank normalised folded-split-R-hat".

26Divergence tests, performed exclusively for the NUTS MCMC algorithm, depict divergences that may
indicate that the algorithm has run into regions of high curvature in the posterior that it cannot effectively
explore, therefore missing a region of the parameter space and biasing the results [340].

27MCSE is defined as the SD of the chains divided by their ESS and "provides a quantitative suggestion of
how big the estimation noise is” [148].

129



Chapter 4. Bayesian calibration of a multi-functional Reference Building - a computationally
efficient approach 4.4. Hotel RB case study

Figure 4.10: DHW model meta-model parameters trace plots to visually monitor con-
vergence. The good mixture of the chains for the model is a good indication that the
model has converged.

Figure 4.11: DHW model meta-model parameters Parallel Plot showing that the param-
eter posterior points have no divergences. Note : tf0, tf1, alpha, beta0, beta1, beta2, and
sigma represent the parameters t f

1 ,t f
2 , α, β1, β2,β3 and σ shown in Table 4.10 respectively.
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4.4.4.1.2 DHW Bayesian model calibration validation

Validation of the calibration exercise must be carried out to ensure that the predicted
outputs from the calibrated meta-model match the measured (actual) energy consump-
tion for both the training and test data-sets as closely as possible. Therefore, the corre-
sponding predictive output distribution of the calibrated model, which is a function of
the inputs x and the calibrated parameters t, must be inferred for both the training and
testing (out-of-sample) data set. Bayesian predictive inference was performed using the
same Stan file that was used for calibration in Python.

Figure 4.12 shows the predictive distribution of monthly LFO consumption for the
training data set (years 2017 and 2018), where the red dots are the actual monthly LFO
consumption measured. The predictive performance of the model is satisfactory since,
for all months, the measured energy consumption falls within the interquartile range
of the predictive distribution. Furthermore, the Bayesian p-value of the model is 0.528,
and the resulting NMBE and CVRMSE calibration statistical indicators for the training
data are - 0.05 % and 0.24 %, respectively, as summarised in Table 4.1229. These val-
ues fall within the 5 % and 15 % ASHRAE [1, 2] thresholds for NMBE and CVRMSE,
respectively, and therefore the model is considered calibrated.

The calibration was also validated on the DHW building physics EnergyPlus model
itself30. As depicted in Table 4.12, when the mean value of the posterior distribution
parameters is used as input to the EnergyPlus model that generated the simulated data
to train the meta-model, the building physics model is considered calibrated with a
NMBE of 0.71 % and CVRMSE of 3.72 %, as shown in Table 4.12. The satisfactory quality
of the calibration of the building physics model is also visually evident in Figure 4.12,
where the blue dots are the monthly consumption simulated by EnergyPlus for LFO for
the years 2017 and 2018.

28According to Gelman [343], the posterior predictive p-value will almost certainly be very close to 0.5
if the model is true or nearly true.

29These statistical calculations consider the mean value of the posterior distribution of the calibration
parameters.

30The JEPlus/EnergyPlus models characterised with the mean value of the calibration parameter pos-
terior distributions are found in GitHub Repository folder ’Ch 4 DHW Bayesian calibration’ sub-folder ’ Cal-
ibration Validation on Physics models’. Refer to Appendix B for a detailed description of all files and folders
found in the GitHub Repository.
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Figure 4.12: Box plot depicting the monthly LFO energy end-use consumption predic-
tive distribution for the training data set (years 2017 and 2018). The red dots depict
the actual monthly LFO measured energy consumption, while the blue dots show the
simulated LFO consumption considering the mean value of the posterior distribution
calibration parameters.
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Table 4.12: Calibration validation statistical indicators for the training and testing data-
sets. Calibration is validated for both the Bayesian meta-model and the corresponding
EnergyPlus models considering the mean value of the posterior distribution of the cali-
bration parameters.

NMBE % CVRMSE %
Training data meta-model -0.05 0.24

Test data meta-model -1.12 3.72
Training data EnergyPlus 0.71 3.43

Test data EnergyPlus 0.56 1.85

The Bayesian calibrated model also showed very good predictive performance for
the test data set (year 2019), as shown visually in Figure 4.13 and reflected in the statis-
tical calibration indicators in Table 4.12, where the NMBE is -1.12 %, and the CVRMSE
is 3.72 %. Furthermore, when the mean value of the posterior distribution of the cali-
bration parameters is input into the building physics model characterised by occupancy
data for the year 2019, the building physics model is considered calibrated with NMBE
of 0.56 % and CVRMSE of 1.85 %. The good quality of the calibration is evident in Fig-
ure 4.13, where the blue dots once again represent the monthly consumption simulated
by EnergyPlus for LFO for 2019.
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Figure 4.13: Box plot depicting the monthly LFO consumption predictive distribution
for the test data set (year 2019). The red dots depict the actual monthly LFO measured
energy consumption.
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4.4.4.2 | Electricity end-uses model Bayesian calibration

For the electrical energy end-uses model calibration, two-thirds (years 2017 and 2018)
of the monthly occupancy, weather parameters, and electricity consumption data (kWh)
were used to train the meta-model, while the remaining data (year 2019) were used as a
test set to gauge the model’s predictive performance when given unseen data.

For calibration, the field-observed input data set matrix D f for the training data set
covers 24 months of data and is a 24 x 5 matrix. It consists of four (p = 4) known inputs
x f , x f

1 to x f
4 , and the observable output, y, which is the monthly metered electrical energy

consumption. For the known inputs in matrix D f , x f
1 is the monthly number of occupied

rooms, x f
2 is the monthly average dry bulb temperature (◦C), x f

3 is the monthly average
% relative humidity (% RH), and x f

4 is the monthly direct solar radiation per unit area
(kWh.m−2).

Furthermore, the computer simulation data set matrix Dc for the training data set is
a 200 x 12 matrix, for which 200 (m = 200) LHS monthly simulation runs of the building
physics model, Model D, were performed, 100 simulations each for the year 2017 and
2018. Matrix Dc is composed of η(xc, tc), which is the predicted monthly electricity con-
sumption, and data set [xc, tc]. The known inputs xc (composed of xc

1 to xc
4) is equal to

x f (composed of x f
1 to x f

4 ) while tc, composed of t1 to t7, are the seven (q = 7) calibra-
tion parameters of the simulation model. It should be noted that before constructing the
computer simulation data set matrix Dc, Model D was validated for its ability to repli-
cate the monthly simulated electricity outputs of Model A for the year 2017 for an LHS
sample of the calibration input parameters. For 100 LHS simulation runs, Model D was
found to have the ability to satisfactorily replicate the monthly electricity output results
of Model A with NMBE of 0.38 %, CVRMSE of 3.78 %, a median discrepancy of 1.35 %
and a maximum discrepancy of 3.90 %31. Figure 4.14 shows a box plot that compares
the monthly electrical simulated output of the two models.

31Refer to GitHub Repository folder ’Ch 4 Electricity Bayesian calibration’ sub-folder ’Validation of Model
D2 for monthly calibration’. Refer also to Appendix B for a detailed description of all files and folders found
in the GitHub Repository.
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Figure 4.14: Box plot comparing the monthly electricity outputs of Model A with Model
D for 100 LHS sample runs from the prior calibration parameters.

GP models combined the field-observed input data set matrix D f and the computer
simulation data set matrix Dc using the KOH framework, for which distinct models
were used to emulate the building physics model simulator η(xc, tc) and the discrep-
ancy term δ(x) as detailed in Chong et al. [161]. For each GP model, a mean function
returning a zero vector and a covariance function is defined, where each covariance
function (Ση and Σδ) includes a precision hyperparameter (λη and λδ) and correlation
hyperparameters (βη

1 to β
η
p+q and βδ

1 to βδ
p). Observation errors are accounted for by

a covariance matrix Σy having precision hyperparameter λϵ. A likelihood function
L(z | t, βη , βδ, λη , λδ, λϵ ) is then defined. All equations for the GP models and likeli-
hood functions are provided by Chong et al. [161].

In the likelihood function, z is a single vector that has a dimension N (N = n + m)
that combines the n observation output values for y(x f , t f ) and the m model prediction
values for η, where t f represents the calibration parameter space corresponding to D f .
Furthermore, Xt is an N by (p + q) matrix that combines x f , t f , xc, and tc into one matrix.
Using this modelling approach, the joint probability posterior density distribution that
results is dependent on the unknown calibration parameters t f

1 to t f
7 , the GP correlation

hyperparameters (βη
1 to β

η
11 and βδ

1 to βδ
4 ), and the GP precision hyperparameters (λη

,λδ,λϵ). The same prior distributions for the precision and correlation hyperparameters
as defined in Chong et al. [161] were used32.

32The Python and Stan code, adapted from [161] for electricity end-uses Bayesian calibration, is found in
GitHub repository folder entitled ’KOH calibration in PyStan’in folder ’Ch 4 Electricity Bayesian calibration’.
The required JEPlus files to execute the LHS simulation runs to train the meta-model are found in GitHub
repository folder entitled ’Electricity EnergyPlus JEPLUS files for KOH LHS runs calibration ’, together with
the corresponding simulation run results in GitHub repository folder ’JEPLUS Datacomp simulation outputs’.
Both of these files are found in folder ’Ch 4 Electricity Bayesian calibration’. Refer to Appendix B for a detailed
description of all files and folders found in the GitHub Repository.
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The prior and resulting posterior distribution after Bayesian inference of the cali-
bration parameters t f

1 to t f
7 are visually shown in Figure 4.15, together with a statistical

summary of the posterior distributions in Table 4.13. It can be observed that given the
available observed data, the uncertainty in the value of t f

1 , t f
2 , t f

3 and t f
6 has been signifi-

cantly reduced following calibration, while not much has been learned about the value
of t f

4 , t f
5 and t f

7 .
However, the overall reduction in the uncertainty of the parameters after calibration

is satisfactory based on the resulting model output before and after calibration, as iden-
tified from Figure 4.16 and Figure 4.17. The figures show that both the monthly meta-
model predicted (Figure 4.16) and annual EnergyPlus simulated (Figure 4.17)33 electric-
ity consumption distributions generated from the posterior parameter distributions are
significantly narrower when compared to EnergyPlus simulation runs propagated from
prior parameter distributions.

33The JEPLUS files required to propagate annual uncertainty in electricity energy end use from the
building physics model (Model D) and the corresponding simulation results are found in GitHub Reposi-
tory folder ’Ch 4 Electricity Bayesian calibration’ sub-folder ’building physics models Annual uncert propag Prior
Post’. Refer to Appendix B for a detailed description of all files and folders found in the GitHub Repository.
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(a) t f
1 (b) t f

2

(c) t f
3 (d) t f

4

(e) t f
5 (f) t f

6
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(g) t f
7

Figure 4.15: The prior and resulting posterior distributions of the electricity end used
energy model calibration parameters for (a) t f

1 : Guest rooms cooling temp set-point (deg
C), (b) t f

2 : VRF cooling COP, (c) t f
3 : Kitchen equipment power density (W.m−2), (d) t f

4 :
FOH ventilation rate (m3.s−1.person−1), (e) t f

5 : BOH Zone ACH, (f) t f
6 : Fan ventilation

pressure rise (Pa) and (g) t f
7 : Guest rooms equipment power density (W.m−2)

Table 4.13: A statistical summary of the electricity end-uses model posterior distribution
for each calibration parameter. Posterior statistics for the other meta-model parameters,
including the GP hyperparameters, are found in the GitHub repository.

Prior Posterior distribution statistics
Symbol Parameter Prior distribution Mean Median SD HDI5% HDI95%

t f
1

Guest rooms cooling
temp. Set point (deg C)

U(22,25) 22.5 22.4 0.48 22.01 23.60

t f
2 VRF cooling COP U(2,4.6) 2.18 2.12 0.20 2.02 2.55

t f
3

Kitchen equipment
power density (W.m−2)

U(88,385) 237 238 62 114 350

t f
4

FOH ventilation rate
(m3.s−1.person−1)

U(0.003,0.014) 0.0079 0.0077 0.0031 0.0032 0.013

t f
5 BOH Zone ACH U(3,15) 11.13 12.02 3.23 4.72 14.9

t f
6

Fan ventilation
pressure rise (Pa)

U(600,2400) 1112 990 398 690 1957

t f
7

Guest rooms equipment
power density (W.m−2)

U(3.15,9.3) 7.17 7.62 1.7 3.97 9.28
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Figure 4.16: Monthly electrical consumption box plot comparing EnergyPlus Model D
simulation runs for prior calibration parameters distributions (orange plot) and the pos-
terior predicted consumption from the calibrated meta-model (blue plot). The red dots
depict the actual metered monthly electricity consumption.
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Figure 4.17: Annual electrical consumption distribution generated from EnergyPlus
Model D for simulation runs from prior (orange plot) versus posterior (blue plot) cali-
bration parameter distributions for the years 2017 and 2018.
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4.4.4.2.1 Electricity end-uses Bayesian model diagnostics

The GP Bayesian model for electricity end-uses was checked for adequate convergence
using both trace plots34 and the statistical diagnostic metrics35 provided in Table 4.14.
Both the trace plots generated in Arziz [151] and the R-hat statistic generated in Stan
indicate that the chains have mixed well and that the model has converged. Further-
more, the parallel plot generated from Arviz and shown in Figure 4.18 does not show a
divergence for the posterior parameters.

Table 4.14 also shows that the ESS ≥ 100 [339, 341] for both the bulk and tail of the
distributions, concluding that the model provides reliable estimates for the mean and
quartiles of the posterior distributions. Furthermore, the MCSE of the sample mean is
less than the 5 % threshold [342] for all parameters in the model, providing additional
confidence in the accuracy of the sampling efficiency.

Table 4.14: Electricity energy end uses Bayesian model parameters diagnostic statistical
checks for the calibration parameters.

Parameter Rhat ESSbulk ESStail MCSEmean

t f
1 1.0 678 361 0.006

t f
2 1.0 811 327 0.003

t f
3 1.0 361 284 0.011

t f
4 1.0 498 516 0.012

t f
5 1.0 404 533 0.014

t f
6 1.0 402 477 0.012

t f
7 1.0 753 543 0.010

34Trace plots can be viewed in the GitHub repository, more specifically in the Python Jupyter notebook
for the calibration of the electricity end-uses. Refer to the folder ’Ch 4 Electricity Bayesian calibration’ sub-
folder ’KOH calibration in PyStan’. Refer also to Appendix B for a detailed description of all files and
folders found in the GitHub Repository.

35Model diagnostic statistics checks for the other meta-model parameters, including the GP hyperpa-
rameters, are also found in the Python Jupyter notebook for the calibration of the electricity end-uses. Refer
to the folder ’Ch 4 Electricity Bayesian calibration’ sub-folder ’KOH calibration in PyStan’.
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(a) (b) (c)

Figure 4.18: Parallel plot showing that the parameter posterior points have no diver-
gences for (a) the calibration parameters t f . Note: tf0 to tf6 correspond to the parame-
ters t f

1 to t f
7 respectively as shown in Table 4.14 (b) the GP correlation hyperparameters

β and (c) the GP precision hyperparameters λ.
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4.4.4.2.2 Electrical end-uses Bayesian model calibration validation

The predictive output distribution of the calibrated model, which is a function of the
inputs x and the calibrated parameters t, was inferred for both the training and test-
ing (out-of-sample) data set using the same Stan file that was used for calibration in
Python36.

Figure 4.19 depicts the monthly electricity consumption predictive distribution for
the training data (years 2017 and 2018), where the red dots are the actual monthly mea-
sured electrical consumption. The predictive performance of the model is satisfactory
since, for almost all months, the measured energy consumption is within the predic-
tive distribution’s interquartile range. Furthermore, the Bayesian p-value of the model
is 0.45, and the resulting CVRMSE and NMBE calibration statistical indicators for the
training data are - 0.05 % and 0.24 %, respectively, as summarised in Table 4.1537. These
values fall within the 5 % and 15 % ASHRAE [2] thresholds for NMBE and CVRMSE,
respectively, and therefore the model is considered calibrated.

Table 4.15: Calibration validation statistical indicators for the training and testing data-
sets. Calibration is validated for both the Bayesian electricity end use meta-model and
the corresponding EnergyPlus models considering the mean value of the posterior dis-
tribution of the calibration parameters. The results are also shown for Model A for the
year 2017

NMBE % CVRMSE %
Training data meta-model -0.05 0.24

Test data meta-model 1.53 5.10
2017 EnergyPlus Model A -0.57 1.90

Training data EnergyPlus Model D -0.09 4.35
Test data EnergyPlus Model D 0.02 0.06

The calibration was also validated on both EnergyPlus Model D and Model A38. As
depicted in Table 4.15, when the mean value of the posterior distribution parameters
is used as input to EnergyPlus Model D that generated the simulated data to train the
meta-model, the building physics model is considered calibrated with a NMBE of -0.09
% and CVRMSE of 4.35 %, as shown in Table 4.15. The blue dots in Figure 4.19 visualise

36Refer to the Python Jupyter notebook for the calibration of the electricity end-uses found in GitHub
Repository folder ’Ch 4 Electricity Bayesian calibration’ sub-folder ’KOH calibration in PyStan’ . Refer also to
Appendix B for a detailed description of all files and folders found in the GitHub Repository.

37These statistical calculations consider the mean value of the posterior distribution of the calibration
parameters.

38The JEPlus/EnergyPlus models for both Models A and Model A characterised with the mean value
of the calibration parameter posterior distributions are found in GitHub Repository folder ’Ch 4 Electricity
Bayesian calibration’ sub-folder ’ Calibration Validation on Physics models’.
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the monthly electricity consumption simulated by EnergyPlus Model D for the years
2017 and 2018, showing that the calibrated model is able to "predict the overall load shape
that is reflected in the data" [344]. For the year 2017, the calibration was also validated for
Model A with a resulting NMBE of -0.57 % and CVRMSE of 1.90 %, as shown in Table
4.15, further confirming that Model D can successfully replace Model A for a computa-
tional efficient approach to Bayesian calibration.

Figure 4.19: Box plot depicting the monthly electricity consumption predictive distri-
bution for the training data set (years 2017 and 2018). The red dots depict the actual
monthly measured electrical energy consumption, while the blue dots shows the sim-
ulated electrical consumption considering the mean value of the posterior distribution
calibration parameters.
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The Bayesian calibrated model also showed very good predictive performance for
the test data set (year 2019), as shown visually in Figure 4.20 and reflected in the statis-
tical calibration indicators in Table 4.15, where the NMBE is -1.53 %, and the CVRMSE
is 5.10 %. Furthermore, when the mean value of the posterior distribution of the cal-
ibration parameters are input into the building physics model characterised by occu-
pancy data for the year 2019, the building physics model is considered calibrated with
a CVRMSE of 0.56 % and NMBE of 1.85 %. The good quality of the calibration of the
building physics model is also reflected in Figure 4.20, where the blue dots represent the
monthly electricity consumption simulated by EnergyPlus Model D for the year 2019.
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Figure 4.20: Box plot depicting the monthly electricity consumption predictive distribu-
tion for the test data set (year 2019). The red dots depict the actual monthly electricity
measured energy consumption.
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4.5 | Conclusion

This chapter has demonstrated and statistically validated a computationally efficient
and innovative approach of updating ’non-calibrated and deterministic RBs’ to ’probabilis-
tic Bayesian calibrated RBs’ to facilitate the implementation of the proposed cost-optimal
approach. Improved computational efficiency is achieved by replacing computation-
ally intensive and full-space RB building physics models, termed ’detailed’ models, with
reduced-space RB building physics (EnergyPlus) models, referred to as ’simplified’ mod-
els that are constructed using the ’reference zone’ approach concept. The ’reference zone’
approach was conceptualised by the author and published in Gatt et al. [35]. Compu-
tationally intensive RB models are synonymous with heterogeneous, multi-functional
building stocks that are composed of large building blocks with complex geometries
and multiple thermal zones. The use of the ’simplified’ models improves the computa-
tional efficiency of running multiple simulations from the EnergyPlus RB model for a
sample space of uncertain parameters. The EnergyPlus simulation runs are required
to perform both SA, to identify the most significant parameters for calibration, and to
train the meta-model that emulates the simulator in the iterative BEM Bayesian calibra-
tion framework.

The ’reference zone’ approach was successfully demonstrated and validated for a 5-
star hotel RB in Malta that falls into cluster 4 in the RB clustering solution of Chapter
3. The validation was performed by comparing the monthly and annual simulation
outputs for electricity consumption of the ’simplified’ , ’reference zone’ EnergyPlus model
to a ’detailed’ EnergyPlus model. The ’simplified’ model showed an improvement of 4000
% in computational run-time efficiency over the ’detailed’ model and perfectly replicated
the results of the ’detailed’ model in terms of parameter ranking statistical significance
for SA. The ’simplified’ model also satisfactorily reproduced the monthly outputs of the
’detailed’ model for the simulation runs that trained the GP meta-model, emulating the
simulator in Bayesian calibration, with a NMBE of 0.38 %, CVRMSE of 3.78 %, and a
median discrepancy of 1.35 %. Furthermore, a highly computationally efficient model
was also constructed for the monthly consumption of LFO that generates DHW for the
hotel, by using a ’reference zone’ concept where no space heat balance calculations are
required.

RB Bayesian calibration, performed by applying a GP meta-model that was trained
using simulation runs from the ’simplified’ model, also successfully enabled all mod-
els under study, that is, the GP meta-model, the ’simplified’ EnergyPlus model, and the
’detailed’ EnergyPlus models to be statistically calibrated with monthly metered energy
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consumption data according to the CVRMSE and NMBE ASHRAE [1, 2] thresholds for
both the training and test data sets. This calibration was validated for the models sim-
ulated with the mean value of the posterior distributions of the calibrated parameters,
for which the uncertainty in the calibration parameters was also satisfactorily reduced
for the ’flat’ prior calibration parameters distributions used in the study.

Thus, based on the outcome of the 5-star hotel case study, one can conclude that the
’reference zone’ approach provides good potential to achieve a highly computationally
efficient and accurate approach to performing Bayesian calibration of multi-functional
RBs in UBEM and the proposed cost-optimal approach.

The strength of the ’reference zone’ approach also lies in its scalability and modularity,
and therefore its potential to be applied using a bottom-up technique once representa-
tive ’reference zones’ for different activities and sub-activities are statistically validated
for a sample of the building stock under study. Every building observation in the stock
can than theoretically be modelled using this approach, which replaces the need to de-
fine ’detailed’ BEMs in GIS. This modelling approach improves computational efficiency
and allows the variability in the functionality of a heterogeneous building stock to be
fully defined.

The next chapter will demonstrate steps 5 and 6 of the proposed EPBD cost-optimal
method, described in Section 2.5, by applying energy efficiency measures to the proba-
bilistic and calibrated RB hotel model with posterior calibration parameter distributions.
The potential of replacing the ’detailed’ model with the simplified model constructed
using the ’reference zone’ approach for these steps will also be studied to optimise the
computational efficiency of the proposed cost-optimal approach.
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5

Developing a probabilistic approach
to establish NZEB benchmarks under

uncertainty

Chapter Abstract : This chapter establishes a comprehensive framework for develop-
ing, applying, and successfully validating the final two steps of the proposed EPBD
cost-optimal method, more specifically, of deriving NZEB EP benchmarks from the
cost-optimal analysis, for which there are currently no established criteria in the
EPBD, followed by a probabilistic risk analysis for the derived benchmarks. To de-
rive NZEB EP benchmarks, an objective approach was developed to defining NZEB
EP benchmarks according to four different levels of ambition and was validated us-
ing the hotel RB case study calibrated in Chapter 4. For probabilistic risk analy-
sis, uncertainty is propagated from the posterior calibration parameter distributions
to visualise and statistically quantify the financial risk the private investor faces to
reach each derived benchmark. The results of the RB case study showed that this
risk analysis is critical for MS to define more realistic benchmarks and comprehen-
sively quantify financial support requirements. It also contrasts with the current
EPBD deterministic financial feasibility analysis, which resulted in being prone to
derive unsustainable EP benchmarks and hide financial risk. Furthermore, when re-
peating the cost-optimal analysis using non-calibrated NCM software, a large EP gap
resulted, which makes the analysis highly susceptible to providing misleading policy
outcomes. Thus, one can conclude that parameter uncertainty and use of calibrated
RBs is critical to devise robust policy measures in the EPBD. Based on the results,
other positive aspects of the developed framework include a time-bound tightening
approach to higher EP ambitions, improved risk transparency to private investors,
and more targeted policies.
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5.1 | Introduction and chapter objectives

This chapter will demonstrate and validate the final two steps, more specifically steps 5
and 6 of the proposed EPBD cost-optimal method, as detailed in Chapter 2, Section 2.5.
For this purpose, these steps are applied to the’ probabilistic Bayesian calibrated’ hotel RB
developed in Chapter 4. Step 5 aims to objectively derive NZEB EP benchmarks through
a cost-optimal analysis considering global Life-cycle Costs (LCC) for a RB representing
a building stock cluster under study. Step 6 then conducts a probabilistic uncertainty in
operational energy savings and the corresponding risk in life cycle financial feasibility
for a RB energy model under study to meet the defined NZEB EP benchmarks. This
probabilistic risk analysis, which is not performed in the current ’deterministic’ EPBD
cost-optimal approach, will be evaluated in its potential to allow EU policy makers to
establish more robust energy renovation support policies and facilitate the path for the
EU to achieve its carbon neutrality goals for 2050.

As identified in Chapter 2, and as detailed in a state-of-the-art review of different
NZEB definitions by Gatt et al. [158] and [29], objectively deriving NZEB EP bench-
marks even when considering the current ’deterministic’ EPBD cost-optimal method is
not straightforward. The reason being that the term ’Nearly’ in NZEB is not a quantifi-
able metric and the European Commission (EC) does not provide objective criteria for
defining NZEB benchmarks once cost-optimal plots that consider the impact of different
Discount Rates (DRs) and Price Development (PD) scenarios are constructed. Therefore,
this chapter will also address this methodological research gap by developing an objec-
tive and harmonised approach to allow MS to define NZEB EP benchmarks according
to different ordinal levels of renovation ambition for a RB under study. For each de-
fined level of NZEB EP ambition, the uncertainty in operational energy savings and the
corresponding risk in life cycle financial feasibility for a RB model under study will be
propagated and statistically quantified, allowing MS to establish robust energy renova-
tion support policies through a probabilistic approach to risk and uncertainty analysis.

Furthermore, to meet the above objectives, this chapter will also address the research
gap identified in chapter 2 by developing a probabilistic approach to risk and uncer-
tainty analysis that considers the joint impact of technical and financial uncertainties on
the NZEB EP benchmarks to comply with the EPBD cost-optimal framework described
by the EC [345]. More specifically, this framework requires MS to consider both a finan-
cial and macroeconomic perspective to LCC and to perform a Sensitivity Analysis (SA)
on the impact of different Discount Rates (DRs) and Price Development (PD) scenarios
on the resulting EP benchmarks for a RB. In addition, the propagated uncertainty in
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EP improvements and LCC risks for a defined NZEB benchmark level generated from
the ’Bayesian calibrated RBs’ for the proposed EPBD cost-optimal approach requires to
be visualised, statistically quantified and interpreted to allow establishing more robust
energy support policies.

The chapter will finally compare, from a statistical and policy perspective, the results
and outcomes of the proposed EPBD cost-optimal approach with the current ’determin-
istic’ approach. To enable this comparison, the current EPBD cost-optimal approach will
be applied to the hotel RB case study using SBEM-mt software [346], the National Cal-
culation Methodology (NCM) for Malta. The results of the chapter and the previous
chapters will allow the hypothesis presented in Chapter 2 to be accepted or rejected and
the research questions put forward in Chapter 1 to be answered.

5.2 | The NZEB EP benchmarking and probabilistic risk
analysis framework for theEPBDcost-optimalmethod

The two-stage framework detailing the approach taken to execute steps 5 and 6 of the
proposed EPBD cost-optimal method is visually shown in Figure 5.1 and is described
in the sections that follow. Section 5.3 then applies and demonstrates this framework to
the ’probabilistic Bayesian calibrated’ hotel RB developed in Chapter 4.

5.2.1 | Step 5: NZEB EP benchmarking approach to different am-
bition levels

The NZEB EP benchmarking approach in this research applies the mean value of the
posterior distributions of the calibration parameters to each RB building physics energy
model representing a building stock under study, as shown in Figure 5.1. The calibrated
RB model characterised with the mean value of the posterior distributions of the calibra-
tion parameters is treated deterministically when deriving EP benchmarks to facilitate
the NZEB benchmarking process and make it more objective. The cost-optimal EP and
NZEB EP benchmarks are then derived using the EPBD cost-optimal analysis that ap-
plies a set of packages of energy efficiency measures (COMs) and calculates the annual
primary energy consumption and EN 15459 [54] global LCC for each COM using the
current EPBD cost-optimal methodology detailed in Chapter 2, Section 2.2.1. The main
inputs to calculate the EP and global LCC required for the EPBD cost-optimal analysis
are shown in Figure 5.1.
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Figure 5.1: Flow chart detailing the approach used in this study to execute steps 5 and
6 of the proposed EPBD cost-optimal approach to establish NZEB benchmarks and per-
form risk analysis per benchmark to establish robust policies.

The global LCC, Cg(t) for a COM, referred to the starting year t0, over the calcula-
tion period t, is calculated by summing the different costs incurred, for every energy
efficiency measure j constituting the COM and discounting them to the starting year t0

by means of a discount factor Rd as follows [55]:

Cg(t) = COINIT + ∑
j

[
t

∑
i=1

(COa,i(j).Rd(i)) + COcarbon,i(j)− VAL f in,t(j)

]
(5.1)

where:

■ COINIT is the initial investment costs

■ COa,i is year i annual cost, which is the addition of the running costs and periodic
(including annual maintenance costs COa,maint) or replacement costs COa,RAR. This
cost is discounted by the discount factor Rd, during every year i

■ COcarbon,i is the carbon (GHG emissions) cost for every year i resulting from the
operational energy consumption

■ VAL f in,t is the residual value discounted to the starting year t0
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Rd (i) for year i is related to the DR, r, as :

Rd(p) =
(

1
1 + r/100

)p

(5.2)

where p means the years quantified from the starting period.

Equation 5.1 details the equation for the macroeconomic global LCC calculation that
considers each cost without taxes and charges. However, for the financial global LCC
calculation, the cost of GHG emissions is not considered and all costs include taxes and
charges [55].

The EPBD cost-optimal analysis generates the cost-optimal plots shown in Figure 2.1
as their main output to establish minimum EP requirements for benchmarking. Accord-
ing to the EPBD Commission Regulation [345, 55], the cost-optimal analysis requires
to be carried out both from a macroeconomic and financial perspective, and a SA is
mandatory to identify the impact of different PD scenarios and DRs on the resulting
cost-optimal and NZEB benchmarks. The NZEB benchmarking approach considered in
this study directly uses this requirement to objectively define ordinal levels of NZEB EP
benchmarks according to different levels of EP ambition levels. More specifically, the
approach defines four different levels of NZEB EP ambition levels to complement the
current subjective EPBD NZEB definition1 which are derived by considering the result-
ing cost-optimal plots for all perspectives and sensitivities as follows:

1. Low ambition: The EP corresponding to the financial scenario giving the lowest
global LCC when compared to the reference scenario, for the DRs and PD sensi-
tivities considered.

2. Medium ambition: The least ambitious EP when choosing between scenario 1
and 2, defined below.

3. High ambition: The most ambitious EP when choosing between scenario 1 and 2,
defined below.

4. Highest ambition: The EP coinciding with the macroeconomic sensitivity sce-
nario giving the best EP in the macroeconomic feasibility region of the cost-optimal
plots for the DRs and PD sensitivities considered.

1According to the 2010 EPBD [9], NZEB is a building that “has a very high energy performance with a low
amount of energy required covered to a very significant extent by energy from renewable sources, including energy
from renewable sources produced on-site or nearby".
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For the above NZEB EP definitions, Scenario 1 and Scenario 2 are defined as follows:

■ Scenario 1 : The EP arising from the financial perspective that provides the ’best’
EP in the feasibility region of the financial cost-optimal plots for the DRs and PD
sensitivities considered. This can be viewed as the theoretically ’best’ EP that pri-
vate investors are willing to invest without financial incentives.

■ Scenario 2 :The EP corresponding to the macroeconomic scenario giving the low-
est global LCC compared to the reference scenario for the DRs and PD sensitivities
considered. Private investors are not likely to be willing to invest in this EP level
without financial incentives unless this EP also falls within the feasibility region
of the financial cost-optimal plots.

The four (4) NZEB EP ambition levels for a RB under study are visually depicted as
points A, B, C and D in Figure 5.2. As an example, the ambition levels are demonstrated
for a generic cost-optimal analysis that considers four (4) sensitivity combinations for
PD and DR for both the financial and macroeconomic perspectives. In the figure, each
blue point on the plots represents a COM, and the black dashed lines for each cost-
optimal plot show the ’operational’ EP scenario. The ’operational’ EP is shown by the
vertical line, and the corresponding global LCC is depicted by the horizontal line. The
EP scenario for the calibrated RB prior to the application of energy efficiency measures,
termed the ’reference’ scenario, should coincide as closely as possible with the ’opera-
tional’ EP scenario for a calibrated model.

Furthermore, the application of a COM that is found below the horizontal black
dashed line for each plot in Figure 5.2, provides a lower global LCC than the ’opera-
tional’ scenario and its application is therefore feasible for the PD, and DR under con-
sideration. Following this context and the above definitions, point A coincides with the
lowest NZEB EP ambition in Figure 5.2. At the same time, Scenario 1 and Scenario 2 are
represented by point B and point C, respectively. For the specific context of Figure 5.2,
point C coincides with the medium NZEB EP ambition level, while point B coincides
with the high EP ambition. Furthermore, the highest NZEB EP ambition level coincides
with point D.

From the resulting cost-optimal plots, one can also deterministically quantify the fi-
nancial risk faced by a private investor to upgrade a RB to each NZEB EP ambition level
benchmark. This risk quantification termed the ’deterministic financial risk’ in this thesis,
is simply the difference between the global LCC of the reference scenario and the global
LCC corresponding to each level of NZEB ambition under study for a considered finan-
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cial analysis scenario. This risk can be easily calculated within the current deterministic
EPBD cost-optimal analysis framework.

An advantage of defining the above multiple objective NZEB benchmarks according
to different ambition levels is determining an objective and time-bound tightening ap-
proach [347] to NZEB EP benchmarking. This prepares the market to adapt over time to
more stringent EP requirements and allows MS to establish a long-term path for policy
makers to continuously improve the EP of their building stock [348]. For a holistic and
integrated design approach [349, 350] to NZEB, multiple objective NZEB benchmarks
can also be derived for each requirement of the multiple indicator NZEB assessment
approach provided in Annex H of ISO 52000-1 [108]. This approach was applied for a
case study building by the author of this thesis in Gatt et al. [158].2

2The ISO 52000-1 [108] standard defines four sequential requirements which are to be met for a building
to have a qualified NZEB status. The requirements first prioritise the building passive design in terms “The
building Fabric (Energy needs)” followed by energy-efficient technical building systems in terms of “The total
primary energy use” and finally gives weighting renewable energy generation to offset the energy demand
and reduce the carbon footprint of the building. Renewable energy generation is reflected in terms of the
third requirement “Non-renewable primary energy use without compensation between energy carriers” and the
final NZEB rating “Numerical indicator of non-renewable primary energy use with compensation”.
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5.2.2 | Step 6 : Probabilistic Risk analysis for each defined NZEB
benchmark

For the risk analysis, as shown in Figure 5.1, the posterior calibrated parameter prob-
ability distributions derived from steps 1 to 4 of the proposed cost-optimal approach
are used to define the calibrated RB building physics model. For each defined NZEB
EP ambition level found from the above NZEB EP benchmarking approach, uncertainty
in operational EP and the corresponding Life-cycle Costs (LCC) is propagated for the
RB building physics model implementing the corresponding COM that achieves the de-
sired NZEB EP ambition level under study. To enable this propagation in uncertainty
for each NZEB ambition level, a near random sample is generated from the posterior
calibrated parameter probability distributions using the LHS sampling method. The RB
building physics model characterized with the COM that achieves the NZEB ambition
level under study is then run for each sample point to calculate the annual operational
EP. The calculated annual operational EP results are fed into the EN 15459 [54] financial
LCC tool to calculate the life cycle operational energy cost for the defined energy prices,
PD and DR. The resulting operational energy cost is then combined with the other de-
fined financial LCC parameters shown in Figure 5.1 to calculate the other EN 15459 [54]
LCC that makes up the total global LCC for each sample point. The main output from
the uncertainty propagation for each NZEB ambition level is a data set consisting of the
annual operational EP and the corresponding total global LCC for each sample point.

For a comprehensive risk analysis in line with the EPBD commission regulation [55],
the above uncertainty propagation for a defined NZEB ambition level must calculate the
EN 15459 [54] financial LCC3 considering different sensitivities for different PD scenar-
ios and DRs. For quantifying risk, the uncertainty in operational EP and global LCC for
each defined NZEB ambition level and each sensitivity must then be compared against
the ’Reference’ or ’as is’ scenario of not implementing energy efficiency measures. The
latter is performed by propagating uncertainty for the calibrated RB building physics
model without energy efficiency measures for a LHS sample space of the posterior cali-
brated parameter probability distributions.

In this framework, joint plots [351]4 are proposed to visualise the EP and financial
risk for achieving a NZEB ambition level. These plots facilitate the combination of bi-

3A risk analysis that considers the macroeconomic perspective to LCC is not considered mandatory for
this step, given that the main objective is to establish policies that objectively and more realistically quantify
financial support measures that reduce risk to the private investor to reduce the technical and financial
uncertainty barriers. These are the main barriers to energy renovation [42, 43, 44] and EP contracting [45],
to facilitate the transition of the building stock to the established EP benchmarks.

4Joint plots are also called joint grids [352], or marginal plots [353].
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variate scatter plots with marginal uni-variate probability distributions. The scatter
plots analyse the correlation between the global LCC and the annual primary energy
for the uncertainty propagation. In addition, the marginal probability density plots on
the top and right margin of the scatter plot show the distribution of annual primary
energy and global LCC along both axes. Figure 5.3 shows the proposed joint plot con-
struction that can be implemented for this stage of the cost-optimal method for a NZEB
ambition level that has four (4) PD and DRs combination scenarios. Figure 5.3 uses dif-
ferent colours to distinguish between the uncertainty propagation from the ’reference’
scenario and NZEB ambition level under consideration for both the annual primary en-
ergy and global LCC. For this framework, the joint-plots shown in Figure 5.3 need to be
constructed for all NZEB ambition levels defined in Section 5.2.1.

From the joint plots shown in Figure 5.3, policy makers can perform various data
analysis techniques to identify policy options to facilitate the transition of building
stocks to a defined NZEB EP ambition level. For a given PD and DR scenario, finan-
cial risk is eliminated for the private investor in theory when the global LCC probability
density plots for the ’reference’ scenario and the NZEB ambition level under study do not
intersect each other. An objective and statistical approach to policy making to calculate
the worst-case or ’robust’ [354] financial risk is therefore to establish a % Highest Density
Interval (HDI), typically 89 % or 95 % HDI [355], to identify the points that cover most
of the distribution for the global LCC for both the ambition level under consideration
and the ’reference’ scenario density plots. The robust financial risk is the quantification
of the global LCC that causes the HDI credible interval of the density plots to intersect
with each other.

160



Chapter 5. Developing a probabilistic approach to establish NZEB benchmarks under
uncertainty 5.2. NZEB Benchmarking and risk analysis framework

(a) Scenario: Price dev. 1, DR 1 (b) Scenario: Price dev. 1, DR 2

(c) Scenario: Price dev. 2, DR 1 (d) Scenario: Price dev. 2, DR 2

Figure 5.3: Joint plots combining scatter plots with probability distributions to analyse
operational EP and financial global LCC uncertainty of a package of measures corre-
sponding to a NZEB benchmark versus the ’reference’ scenario
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To better visualise and provide a mathematical context to robust financial risk, Fig-
ure 5.4 shows a typical joint plot for a defined ambition level for a specific DR and Price
Development (PD) combination scenario. The marginal distribution plot for the finan-
cial global LCC is magnified, and the density plot for both the ’reference’ and NZEB
ambition level scenarios are described in terms of the upper and lower bounds of a %
HDI credible interval that covers most of the distribution. From Figure 5.4, the robust
global LCC financial risk that causes the intersection between the two credible intervals
is calculated as shown in Equation 5.3.

Robust LCC f inancial risk (euro.m−2) = Amb_HDI_upper − Re f _HDI_lower (5.3)

where Amb_HDI_upper is the upper bound of the HDI credible interval ambition
level distribution under study, and Re f _HDI_lower is the lower bound of the ’reference’
scenario distribution credible interval. This calculation can be performed for each DR
and PD under consideration to identify the impact of varying these financial parameters
on the robust global LCC financial risk for each defined NZEB ambition level in Section
5.2.1 to ensure well informed policy decision making under uncertainty.

Figure 5.4: Joint plot visualising the uncertainty propagation for a defined NZEB ambi-
tion level versus the ’reference’ scenario visualising the parameters to calculate the robust
global LCC financial risk at a given DR and PD scenario for well informed policy mak-
ing to facilitate the transition of a building to NZEB.
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5.3 | Application of the framework to the hotel RB case
study

This section applies the NZEB EP benchmarking and probabilistic risk analysis frame-
work described in Section 5.2 to the ’probabilistic Bayesian calibrated’ hotel RB case study
energy model developed in Chapter 4. The ’probabilistic Bayesian calibrated’ hotel RB
energy model is composed of the electricity end-uses calibrated RB building physics
model coupled with the calibrated RB DHW building physics model described in Sec-
tion 4.4.2.1. The electricity end-uses calibrated RB building physics model was charac-
terised in Section 4.4.2.2 both as a detailed full-space model (Model A) and a computa-
tionally efficient model constructed using the ’reference zone’ approach concept (Model
D). Therefore, this section will first assess the suitability of replacing Model A with
Model D to improve BEM computational efficiency in the context of this proposed
framework. If Model D is deemed suitable to replace Model A, it will be the electric-
ity end-uses model applied to derive NZEB benchmarks and perform risk analysis. It
should be noted that the ECMs chosen for application to the case study are only in-
tended to demonstrate the framework and not to provide a comprehensive list of en-
ergy efficiency measure options that can be applied to hotels in Malta to improve their
operational EP.

5.3.1 | Evaluating computationally efficient RBbuilding physicsmod-
els for application to the framework

Similarly to the iterative Bayesian calibration process performed in Chapter 4, the frame-
work described in Section 5.2 that executes step 5 and step 6 of the proposed EPBD cost-
optimal approach requires multiple simulation runs from the RB Physics model(s) itself
to derive EP benchmarks and to analyse risk and therefore its computational efficiency
depends on the computational expense of the applied building physics model(s). Thus,
similar to the Bayesian calibration process performed in Chapter 4, the framework can
also be made more computationally efficient for the hotel case study by replacing Model
A with Model D for electricity end-uses, given that Model D showed a 4000 % run-time
efficiency improvement over Model A.

However, before replacing Model A with Model D, one must specifically assess for
this framework how well Model D can replicate the results of Model A in predicting the
annual energy savings for space heating plus cooling and total energy end use relative
to the ’reference’ scenario when the different packages of passive measures considered
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for the cost-optimal analysis are applied5. It must be highlighted that the adequacy of
replacing Model A with Model D for Bayesian calibration was analysed differently in
Chapter 4. The analysis in Chapter 4 for Bayesian calibration made use of ’probabilis-
tic Bayesian calibrated’ RB building physics models for the ’reference’ scenario without
considering the impact of energy efficiency measures.

It must be noted that a preliminary evaluation that considers the impact of pas-
sive ECMs was already carried out in Section 4.4.2.2 for the non-calibrated RB building
physics models characterised with the default parameters shown in Table 4.5. The re-
sults successfully showed that Model D could correctly predict annual energy savings
for space heating and cooling compared to Model A, with a maximum discrepancy of
only 4.6 % in energy savings potential when all passive measures under study were ap-
plied to the EnergyPlus models. However, to further increase confidence in the suitabil-
ity of applying Model D to replace Model A for this framework, this evaluation must be
repeated using the calibrated RB building physics models defined with the mean value
of the posterior parameter distributions. This reflects the way the RB model must be
characterised for NZEB EP benchmarking as described in Section 5.2.1.

To demonstrate this framework for the hotel case study, the same passive measures
M1 to M3 described in Table 4.8, referred to as MP1 to MP3 in this section, are considered
for this case study. Table 5.1 below describes the passive measures.

Table 5.1: Passive measures considered for the hotel case study

Measure Initial parameter values Measures description Final parameter values

MP1
Wall U-value =
2.1 W.m−2.K−1

Application of 5 cm XPS
on external walls

Wall U-value =
0.5 W.m−2.K−1

MP2
Roof U-value =
1.7 W.m−2.K−1

Application of 8 cm EPS
on roof

Roof U-value =
0.4 W.m−2.K−1

MP3

Glazing U-value =
3.1 W.m−2.K−1,

SHGC = 0.7,
Light transmission = 0.8

Application of 3M corporation
PR70 film

on fenestration glazing

Glazing U-value =
3 W.m−2.K−1,
SHGC = 0.4,

Light transmission = 0.5

5In the context of deriving benchmarks and propagating uncertainty, the building energy systems (ac-
tive) measures for space heating, cooling and ventilation are assumed to provide the same seasonal and
annual energy efficiency performance parameters for both Model A and Model D. That is the performance
of the space heating, cooling and ventilation equipment is independent of the partial load (hourly) perfor-
mance. This assumption is in line with the monthly EP calculation energy use approach described in ISO
52016-1 [356].
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For both Model A and Model D EnergyPlus models, defined with mean posterior
calibration parameter distributions shown in Table 4.13, a full parameterisation simula-
tion exercise considering all possible passive COMs was carried out in JEPlus [50] and
both the annual energy end-uses for space heating and cooling and the annual electric-
ity consumption were analysed as shown in Table 5.2. The JEPlus, EnergyPlus models
and the spreadsheet calculation required to derive Table 5.2 are found in the GitHub
repository6. From Table 5.2, one can see that the maximum difference in the energy sav-
ings potential for Model D compared to Model A for annual space heating plus cooling
and total electrical energy end uses outputs is only 4.3 % and 1.25 %, respectively. This
difference occurs when the package of passive measures comprised of MP1 and MP2 is
applied to the models. The results in Table 5.2 for the case study also clearly show that
both Model A and Model D predict a minimal EP improvement potential when passive
measures are applied given Malta’s temperate climate7.

Table 5.2: Comparison of improvements between Model A and Model D for all cases
of passive combination of measures for the simulated hotel case study with the mean
value of the posterior distribution of the calibrated parameters. The ECMs applied for
each case are marked with an X.

Measures applied
Annual space heating & cooling

energy end uses (kWh)
Total annual electricity
energy end uses (kWh)

% EP improvement
from Reference scenario Delta

% EP improvement from
Reference scenario Delta

MP1 MP2 MP3 Model A Model D Model A Model D
Reference scenario 0.00 0.00 0.00 0.00 0.00 0.00

x 2.45 3.22 -0.77 0.71 0.96 -0.25
x 3.23 2.73 0.50 0.84 0.75 0.08

x x 6.09 6.22 -0.13 1.64 1.78 -0.13
x 3.59 6.38 -2.79 0.93 1.70 -0.77
x x 6.14 10.48 -4.34 1.67 2.92 -1.25
x x 7.39 9.58 -2.19 1.91 2.58 -0.67
x x x 10.51 14.03 -3.52 2.78 3.88 -1.10

6Refer to GitHub Repository folder ’Ch 5 Model D justification’. Refer also to Appendix B for a detailed
description of all files and folders found in the GitHub Repository.

7Chapter 3, Section 3.4.1 explains the impact of Malta’s temperate climate on the potential of different
ECMs.
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Therefore, based on the results in Table 5.2, Model D was deemed suitable to replace
Model A to achieve a computationally efficient approach to executing this framework.
Furthermore, the choice to replace Model A with Model D for this framework is further
corroborated by the spreadsheet calculation results provided in the GitHub Repository8.
As shown in these results, for all parameterisation cases, the maximum discrepancy in
the annual total space heating plus cooling and the annual total electricity use output
from the models is only 4.3 % and 3.7 %, respectively. Furthermore, Model D can repli-
cate the parameterisation results for both the annual total space heating plus cooling
and annual total electricity energy use with a CVRMSE < 8 % and NMBE < 3.4 %. These
statistics, which fall within the ASHRAE [152] thresholds, demonstrate the ability of
Model D to predict the overall load shape in the output data with minimal bias error
when compared to Model A.

8Refer to GitHub Repository folder ’Ch 5 Model D justification’. Refer also to Appendix B for a detailed
description of all files and folders found in the GitHub Repository.
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5.3.2 | Step 5 : NZEB EP Benchmarking applied to the RB case
study

This section applies the proposed EPBD NZEB EP benchmarking approach described in
Section 5.2.1 to the hotel case study. For this case study, both Model D and the DHW
building physics model are treated deterministically by applying the mean value of the
calibration parameters posterior distributions summarised in Table 4.10 and Table 4.14
for DHW and electricity end-uses, respectively.

5.3.2.1 | Description of the ECMs under consideration

The passive and building energy systems (active) ECMs for the EPBD cost-optimal
method used to derive NZEB EP benchmarks are shown in Table 5.1 and Table 5.3,
respectively. In total, three passive ECMs were considered, MP1 to MP3. MP1 is the
application of external wall insulation, MP2 is the addition of roof insulation, and MP3
is the application of a spectrally selective film to the glazing fenestration. As shown
in Table 5.1, the application of insulation reduces the U-value or thermal transmittance
of the components of the building envelope under study, while the spectrally selective
film is applied to reduce the heat gain from solar radiation. For each ECM, MP1 to MP3,
two discrete options or parameter values were investigated. The two options constitute
the initial parameter values that are known (deterministic) for the building envelope as
shown in Table 4.5 and that characterise the ’reference’ RB scenario, and the final param-
eter values after the application of ECMs.

Similarly, three building energy systems (active) ECMs, MA1 to MA3, were consid-
ered for NZEB EP benchmarking, as shown in Table 5.3. MA1 upgrades the existing
VRF system to improve its rated COP in both heating and cooling, MA2 replaces the
DHW boiler with a DHW heat pump, and MA3 improves Specific Fan Power (SFP) of
the mechanical ventilation system. Furthermore, ECMs MA1 to MA3 each investigate
two discrete options for NZEB EP. More specifically, the mean value of the calibration
parameter posterior distributions describe the initial, ’reference’ RB scenario parameters,
while the final parameter values follow the application of ECMs. It should be noted that
for the VRF rated heating COP, the default parameter shown in Table 5.1 was taken as
the initial parameter value. Unlike the VRF rated cooling COP, the VRF rated heating
COP was not calibrated, as it was not found to be one of the most significant parameters
that impacts annual electricity consumption after the SA exercise in Section 4.4.3.2.
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Table 5.3: Building energy systems (active) measures considered for the hotel case study

Measure

Initial parameter
values

for NZEB EP
Benchmarking

Initial parameter
values for

Risk analysis

Measures
description

Final parameter
values

MA1

VRF rated cooling
COP = 2.18 ,

VRF rated heating
COP = 3.4

VRF rated cooling
COP posterior distribn,

VRF rated heating
COP = 3.4

Upgrade/RAR
air-cooled

VRF system

VRF rated
cooling COP = 4.2,

VRF rated
heating COP = 4.31

MA2
DHW boiler heater

efficiency = 0.84

DHW boiler
heater efficiency

posterior distribn

RAR
fuel boiler with

DHW heat-pump

DHW heat pump
rated COP = 4

MA3

Mech vent
system fan

pressure rise
= 1112 Pa

Mech vent system fan
pressure rise

posterior distribn

Upgrade/RAR
mechanical

vent system

Mech vent
system fan

pressure rise
= 945 Pa

5.3.2.2 | The EN 15459 global LCC financial parameters

For the case study, the values of the global LCC financial parameters for each ECM and
the corresponding ’reference’ scenario of not implementing ECM are shown in Table 5.4
and Table 5.5 for the passive and building energy systems (active) ECMs, respectively.
The DRs considered for the financial calculation are DR 1 of 3.2 %, to reflect the aver-
age landing rate in October 2021 in Malta [357], and DR 2 of 4 %, which reflects the
financial DR recommended by EC [358] to be used as a reference for the long-term real
opportunity cost of capital for the programming period 2014-2020 [359]. Furthermore,
the values of the global LCC macroeconomic parameters for the ECMs are the same as
for the financial calculations, but the 18 % Value Added Tax (VAT) is deduced from the
costs. The DR chosen for macroeconomic calculation are DR 1 of 3 % according to the
EC guidelines [55] and DR 2 of 5 % according to the 2018 cost-optimal studies for Malta
[56]. The calculation period for both financial and macroeconomic calculations is taken
to be 20 years, as required by the EC guidelines [55] for commercial buildings. The
period starting from the year 2022 to the year 2042 was considered for the case study.
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Table 5.4: Financial global LCC parameters for the passive ECMs considered for the
hotel case study

Passive ECM
COINIT

(euro.m−2)b
COa,maint

(% of COINIT)
Life time

(Years)
COa,RAR

(euro)
Year of RAR

VAL f in
c

(euro.m−2)
Reference
scenario a 0 0 0 0 0 0

MP1 45 0 30 0 0 15
MP2 70 0 30 0 0 23
MP3 106 10 30 0 0 35

a Scenario when no ECMs are applied.
b Area in m2 refers to surface area of building element on which the passive ECM is applied. For

the case study, wall area for MP1 is 19,796 m2, roof area for MP2 is 19,825 m2, glazing area for
MP3 is 4,476 m2.

c Non-discounted VAL f in values shown.

Table 5.5: Financial global LCC parameters for the building energy systems (active)
ECMs considered for the hotel case study

Active measure
COINIT

(euro.m−2)
COINIT
(euro)

COa,maint
(% of COINIT )

COa,maint
(euro)

Lifetime
(years)

COa,RAR
d

(euro)
Year of
RAR

VAL f in
e

(euro)
MA1 136 4,130,025 2 82,061 15 4,130,025 15 2,735,350

Reference_MA1a 205,151
MA2 649,000 2 12,980 15 649,000 15 432,667

Reference_MA2b 25,960 20 519,200 10 259,600
MA3 94 3,338,429 4 135,377 15 3,338,429 15 2,256,286

Reference_MA3c 169,221
a Reference_MA1 refers to the reference scenario of operating using the current VRF system throughout the cal-

culation period. The cost of operating with this scenario is fully reflected in the COa,maint, that considers the
replacement of the system to be spread over 20 years.

b Reference_MA2 refers to the reference scenario of operating using the current DHW boiler system that has a 10
year remaining lifetime. The DHW boiler system is replaced after 10 years with a similar DHW boiler system
having a 20 years lifespan.

c Reference_MA3 refers to the reference scenario of operating using the current mechanical ventilation system
throughout the calculation period. The cost of operating with this scenario is fully reflected in the COa,maint, that
considers the replacement of the system to be spread over 20 years.

d No learning rate assumed.
e Non-discounted VAL f in values shown.

For the development of the price for the fuel and carbon emissions costs, two sce-
narios are considered, Price Development (PD) 1 and PD 2. PD 1 considers the future
price escalation trend to follow the same % annual average EU linear PD rate of the past
years. In contrast, PD 2 considers future price escalations based on EU outlook stud-
ies or machine learning regression prediction trends based on a time series of previous
observations.
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More specifically, for PD 1, the following fuel prices were considered for the global
LCC calculation period:

■ An increase in the electricity price of 2.5 % per year reflects the development of
the EU annual average electricity price between 2008 and the first half of 2021
according to the Eurostat electricity price statistics [360].

■ An increase in the LFO price of 5 % per year to reflect the development of the
EU annual average LFO price between 1998 and 2018 according to the European
Environmental Agency [361].

■ An increase in the price of carbon emissions by 27 % per year to reflect the devel-
opment of the price of carbon emissions allowances between 2005 and the end of
2021 documented on the Trading Economics website [362] for the EU Emissions
Trading System (ETS).

As for PD 2, the following fuel prices were considered for the global LCC calculation
period:

■ Development of electricity prices according to the Policy Oriented Tool for Energy
and Climate Change Impact Assessment (POTEnCIA) central scenario EU energy
outlook for 2050 [363]. This scenario depicts stable electricity prices up to 20409.

■ Development of LFO prices according to the POTEnCIA central scenario EU en-
ergy outlook for 2050 [363]. This scenario depicts an increase in LFO electricity
prices of approximately 4 % per annum up to 204010.

■ Carbon emissions price forecast using a statistical regression trend developed from
a time series of monthly carbon emission price observations between 2007 and
2021 that was collected from the investing.com website [364] for EU ETS. The
trend of exponential regression analysis that provides a R2 of 0.85 is shown in Fig-
ure 5.5. The carbon prices for the months considered in the calculation period, that
is between the period year 2022 to 2042, were forecast using this regression model.

9The electricity generation cost trend up to 2050 is in depicted in Figure 107 of [363] and the actual
price development ratios applied for the case study are shown in Python notebook ’cost-optimal Python note
book’ found in GitHub Repository folder ’Ch 5 Cost-optimal Python note book’. Refer also to Appendix B for a
detailed description of all files and folders found in the GitHub Repository.

10The LFO cost trend up to 2050 is in depicted in Figure 9 of [363] and the actual price development
ratios applied for the case study are shown in Python notebook ’cost-optimal Python note book’ found in
GitHub Repository folder ’Ch 5 Cost-optimal Python note book’. Refer also to Appendix B for a detailed
description of all files and folders found in the GitHub Repository.
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The prices were then converted to annual resolution data using pivot tables in
Microsoft Excel11.

Figure 5.5: Time-series of carbon emission monthly price observations between 2007 and
2021 collected from the investing.com website [364] for the EU ETS. The exponential
regression analysis exponential trend provides a R2 of 0.85.

Thus, NZEB EP benchmarking for the case study was performed for the following
four financial perspective sensitivity scenarios:

1. Scenario A_f : PD 1, DR 1 (3.2 %)

2. Scenario B_f : PD 1, DR 2 (4 %)

3. Scenario C_f : PD 2, DR 1 (3.2 %)

4. Scenario D_f : PD 2, DR 2 (4 %)

and for the following four macroeconomic perspective sensitivity scenarios:

1. Scenario A_m : PD 1, DR 1 (3 %)

2. Scenario B_m : PD 1, DR 2 (5 %)

3. Scenario C_m : PD 2, DR 1 (3 %)

4. Scenario D_m : PD 2, DR 2 (5 %)

11The source code data to develop the regression analysis in Figure 5.5 is provided in the Microsoft
Excel file ’Carbon Emissions Price regression analysis’ found in GitHub repository folder ’Ch 5 GHG Price
development regression’. Refer to Appendix B for a detailed description of all files and folders found in the
GitHub Repository.
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5.3.2.3 | EP analysis and EN 15459 global LCC calculations for different COMs

The six ECMs shown in Table 5.1 and Table 5.3, each defined with two discrete options
of 64 (26) cases (COMs), define a complete parametric EnergyPlus simulation exercise
for the hotel RB case study. This parametric simulation EP analysis exercise to calculate
the annual site energy consumption for each COM was carried out in JEPlus [50] using
both Model D and the DHW building physics model. The JEPlus models to generate
simulation runs for each year from 2017 to 2019, and the corresponding energy end-use
simulation results are found in the GitHub Repository12. The EP output for each COM
was then fed into an EN 15459 [54] global LCC tool programmed in Python Notebook
’cost-optimal Python note book’ found in the GitHub Repository13. The notebook is pro-
grammed from the first principles using Equation 5.1 and characterised by the financial
parameters described in Section 5.3.2.2 above. The ’cost-optimal python note book’ also
converts the site energy consumption for each COM to both primary energy and op-
erational carbon emissions using the local conversion factors of Malta for each fuel, as
specified in Chapter 3, Section 3.4.1.

The ’cost-optimal Python note book’ was also programmed to perform the global LCC
analysis for each sensitivity scenario, Scenario A_f to Scenario D_f and Scenario A_m
to Scenario D_m, described in Section 5.3.2.2 above, and programmed to automatically
generate cost-optimal plots and combine the cost-optimal plots for all global LCC sen-
sitivity scenarios using the visualisation layout shown in Figure 5.2. The program also
automatically derives using logical operators, the four levels of NZEB EP benchmarks
detailed in Section 5.2.1 and their corresponding COM. The cost-optimal analysis for
the case study was carried out separately for three consecutive years, 2017 to 2019, us-
ing the corresponding ’cost-optimal Python note book’, the appropriate weather file and
the actual monthly occupancy patterns for that year. Testing for more than one year
was carried out to demonstrate the robustness of the approach.

Furthermore, the results were also compared to the outcome of the current EPBD
cost-optimal approach of Section 5.4 using SBEM-mt [346], the NCM software for Malta.
The analysis was performed with Model D characterised with the occupancy of 2018
and the 2010 weather file as input. The latter analysis is described with the notation
’year 2018-10’. The year 2018 was chosen because it provides the median hotel annual

12Refer to GitHub Repository folder ’Ch 5 Model D JEPlus Parametric simul electric’ to find the JEPlus
parametric models and corresponding annual electricity end-use energy consumption results from Model
D. Furthermore, the GitHub Repository folder ’Ch 5 JEPlus Parametric simulations DHW’ provides the JEPlus
parametric models for the DHW building physics model and the corresponding annual DHW (LFO) end-
use consumption simulation results. Refer also to Appendix B for a detailed description of all files and
folders found in the GitHub Repository.

13Refer to GitHub Repository folder ’Ch 5 Cost-optimal Python note book’.
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occupancy between 2017 and 2019, while the SBEM-mt [346] software uses the weather
file for the year 2010 for the EP calculations.

The annual operational primary energy consumption for the ’year 2018-10’ could not
be derived from metered site energy consumption for the hotel case study but was theo-
retically calculated using the Degree days modelling method detailed in [1]. Using this
modelling method, the monthly hotel site electrical energy consumption data for the
years 2017 to 2019, the dependent variable, was plotted against the monthly total degree
days. The sum of the heating and cooling degree days is the total degree days. The total
degree days were calculated using hourly outside dry-bulb temperatures for a defined
range of base temperatures for both cooling and heating, as detailed in [1]. A Python
program termed ’Degree days notebook’, provided in the GitHub repository14, was then
programmed to test all combinations of cooling and heating base temperatures. This
analysis was done to determine the combination of base temperatures that achieves the
optimal coefficient of determination (R2) between monthly site electrical consumption
and monthly total degree days. The optimal R2 of 0.96 was achieved when a base tem-
perature of 12 °C was applied for both cooling and heating. The regression plot that
achieves the optimal R2 is depicted in Figure 5.6. The total monthly and annual degree
days were determined from the regression equation shown in Figure 5.6 by inputting
the identified optimal base temperatures and the hourly dry-bulb outside temperatures
for the year 201015. These results were used to model the monthly and annual elec-
tric consumption for the year 2010. The consumption of LFO to generate DHW was
the same as in 2018, given that the same occupancy patterns characterised the DHW
EnergyPlus model.

14Refer to GitHub Repository folder ’Ch 5 Degree days notebook’
15Microsoft Excel file ’Heating cooling DD calculator 2010 2016 2017 2018 2019’ found in GitHub Reposi-

tory folder ’Ch 5 Degree days notebook’ sub-folder ’Excel DD calculator’ contains hourly dry-bulb temperature
data for the year 2010 and years 2016 to 2020. This data allows degree days to be calculated on a monthly
resolution for these years for a given set of base temperatures. Refer also to Appendix B for a detailed
description of all files and folders found in the GitHub Repository.
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Figure 5.6: Regression plot analysing monthly site electrical consumption for the hotel
case study using Degree Days modelling. The plot is shown for the cooling and heating
base temperature of 12 °C that achieve the optimal R2 of 0.96.

Table 5.6 shows the results for the four different NZEB ambition benchmark levels
for each year considered. It can be seen that the ECMs, marked with an X in the table,
which makes up the COM required to achieve the four NZEB benchmark ambition lev-
els, are the same for all years. The EP benchmark values for each respective ambition
level defined in kWh.m−2.year−1 are also stable, and their sensitivity to weather and
occupancy patterns for the years under consideration is minimal. The NZEB EP bench-
mark values obtained for each respective ambition level for the years considered can
also be visualised in Figure 5.7.

Furthermore, as also shown in Table 5.6, the potential percentage of energy savings
calculated from the reference scenario is also stable throughout the years and varies
between 17.45 and 19.36 % for the low-ambition benchmark and between 22.90 and
24.72 % for the highest ambition benchmark. The resulting potential energy savings
from the different COMs achieving each benchmark are consistent with other studies
detailed in Chapter 3, Section 3.4.1. More specifically, given Malta’s temperate climate,
the potential for EP improvements by upgrading the building from medium to higher
NZEB EP benchmarks through more stringent passive ECMs are minimal compared
to the EP improvements that can be achieved by upgrading building energy (active)
systems.
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Table 5.6: Derived NZEB EP benchmarks are corresponding ECMs for the hotel case
study for all years 2017 to 2019 under consideration

Passive ECMs Active ECMs

Year
NZEB EP

benchmark
level

Primary EP
benchmark

(kWh.m2.
year−1)

% EP
improvement

MP1 MP2 MP3 MA1 MA2 MA3

2017

Reference 354
Operational 355

Low 292 17.45 x x
Medium 282 20.46 x x x

High 274 22.50 x x x x x
Highest 273 22.90 x x x x x x

2018

Reference 357
Operational 355

Low 289 19.04 x x
Medium 278 22.04 x x x

High 272 23.79 x x x x x
Highest 270 24.27 x x x x x x

2018_10

Reference 348
Operational 349

Low 284 18.39 x x
Medium 273 21.55 x x x

High 268 22.99 x x x x x
Highest 266 23.56 x x x x x x

2019

Reference 365
Operational 362

Low 294 19.36 x x
Medium 284 22.29 x x x

High 277 24.19 x x x x x
Highest 275 24.72 x x x x x x

Table 5.6 also shows that the annual primary EP gap between the annual simulated
EP for the EnergyPlus model without ECMs, termed the ’reference scenario’, and the an-
nual operational primary EP is negligible for all considered years. This clearly high-
lights the importance of calibrating the RB energy model for the cost-optimal analysis,
to obtain realistic EP benchmarks and the corresponding quantification of primary en-
ergy savings when upgrading buildings to the defined NZEB EP benchmark levels.
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Figure 5.7: The NZEB primary EP benchmark results for each considered year 2017 to
2019

The resulting cost-optimal plots to allow a better visualisation of the derived NZEB
benchmarks in Table 5.6, are shown in Figure 5.8 for the year 2018_10. Using the same
notation as in Section 5.2.1, point A coincides with COM giving the lowest NZEB EP
ambition level, point B and point C are the COMs giving the high and medium NZEB EP
ambition levels, respectively, while point D is the COM providing the highest NZEB EP
ambition level. The resulting cost-optimal plots for the other considered years provide
a similar outcome and can be found in the GitHub repository16.

16Refer to GitHub Repository folder ’Ch 5 Cost-optimal python note book’, which provides the cost-optimal
and NZEB benchmarking results for each year under study in a separate Python Notebook entitled ’Ho-
tel_3_cost_opt_analysis’. Refer also to Appendix B for a detailed description of all files and folders found in
the GitHub Repository.
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5.3.3 | Step 6 : Risk analysis for each defined NZEB benchmark ap-
plied to the RB case study

This section applies the proposed EPBD probabilistic risk analysis described in Section
5.2.1 to the hotel RB case study for each of the four NZEB EP ambition levels derived
in the previous section considering all the years 2017 to 2019 under study. The risk
analysis joint plots in the format shown in Figure 5.3 were constructed using the ’cost-
optimal python note book’. For this analysis, both Model D and the DHW building physics
model were treated probabilistically with the calibration parameters defined according
to the posterior distributions of the calibration parameters summarised in Table 4.10
and Table 4.14 for DHW and electricity end-uses, respectively.

The main inputs to the ’cost-optimal python note book’, set up with the financial pa-
rameters defined in Section 5.3.2.2, are the uncertainty in operational EP propagated
from the posterior calibrated parameter probability distributions for each of the derived
NZEB EP ambition levels under study and for the ’Reference’ scenario. The derived
NZEB EP ambition levels under study are shown in Table 5.6. The uncertainty propaga-
tion exercise was carried out using the LHS sampling method in JEPlus [50] for Model D
and the DHW building physics model separately for sample points taken from posterior
calibrated parameter probability distributions17.

The joint plots that visualise the EP and financial risk to upgrade to each defined
NZEB ambition level when compared with the ’reference’ scenario for the low, medium,
high and highest ambition levels are shown in Figure 5.9, Figure 5.10, Figure 5.11 and
Figure 5.12 , respectively for the year 2018_10. The joint plots for the years 2017, 2018
and 2019 provide a similar outcome. These plots are found in the GitHub repository18.
Four joint plots are constructed for each ambition level, that is, one plot for each finan-
cial perspective scenario considered, Scenario A_f to Scenario D_f. The x-axis for each
joint plot shows the operational primary energy use per m2 of floor area. It must be
noted that the operational primary energy on each plot only considers the energy end-
uses impacted by the COM that is implemented to achieve the required NZEB ambition
level19. In addition, the y-axis for each joint plot depicts the global LCC corresponding

17The JEPlus/EnergyPlus files to execute the risk analysis simulation runs and corresponding results
for each year under consideration, and each NZEB EP ambition level including the reference scenario are
found in GitHub repository folder ’Ch 5 Model D JEPlus risk propag’ for Model D and folder ’Ch 5 JEPlus
DHW risk propag’ for the DHW EnergyPlus model. Refer also to Appendix B for a detailed description of
all files and folders found in the GitHub Repository.

18Refer to GitHub Repository folder ’Ch 5 Cost-optimal python note book’, which provides the risk analysis
results for every year under study in a separate Python notebook entitled ’Hotel_3_cost_opt_analysis’.

19As an example, the x-axis for the joint plots for the NZEB low ambition level depicts the annual
operational primary energy per m2 of floor area for DHW, space heating and cooling given that measures
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to the energy end uses under study. The ’cost-optimal python note book’ was also pro-
grammed to calculate the global LCC robust financial risk according to Equation 5.3 for
each ambition level and corresponding joint plots.

(a) Scenario A_f: PD 1, DR 1 (3.2 %) (b) Scenario B_f: PD 1, DR 2 (4 %)

(c) Scenario C_f: PD 2, DR 1 (3.2 %) (d) Scenario D_f: PD 2, DR 2 (4 %)

Figure 5.9: Joint plots combining scatter plots for with probability distributions to anal-
yse operational EP and financial global LCC uncertainty of the COM corresponding to
the low ambition NZEB EP benchmark versus the ’reference’ scenario

MA1 and MA2 improve the EP for these energy end-uses. For the other ambition levels, the x-axis for the
joint plots also includes the operational primary energy end-use per m2 for mechanical ventilation. The
reason is that, unlike the lower ambition level, the other (higher) ambition levels also implement measure
MA3 that improves the EP for mechanical ventilation
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(a) Scenario A_f: PD 1, DR 1 (3.2 %) (b) Scenario B_f: PD 1, DR 2 (4 %)

(c) Scenario C_f: PD 2, DR 1 (3.2 %) (d) Scenario D_f: PD 2, DR 2 (4 %)

Figure 5.10: Joint plots combining scatter plots for with probability distributions to anal-
yse operational EP and financial global LCC uncertainty of the COM corresponding to
the medium ambition NZEB EP benchmark versus the ’reference’ scenario
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(a) Scenario A_f: PD 1, DR 1 (3.2 %) (b) Scenario B_f: PD 1, DR 2 (4 %)

(c) Scenario C_f: PD 2, DR 1 (3.2 %) (d) Scenario D_f: PD 2, DR 2 (4 %)

Figure 5.11: Joint plots combining scatter plots for with probability distributions to anal-
yse operational EP and financial global LCC uncertainty of the COM corresponding to
the high ambition NZEB EP benchmark versus the ’reference’ scenario
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(a) Scenario A_f: PD 1, DR 1 (3.2 %) (b) Scenario B_f: PD 1, DR 2 (4 %)

(c) Scenario C_f: PD 2, DR 1 (3.2 %) (d) Scenario D_f: PD 2, DR 2 (4 %)

Figure 5.12: Joint plots combining scatter plots for with probability distributions to anal-
yse operational EP and financial global LCC uncertainty of the COM corresponding to
the highest ambition NZEB EP benchmark versus the ’reference’ scenario
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5.3.4 | A critical comparison between outcome of the deterministic
and robust financial risk results

Table 5.7 compares the results of the deterministic and robust global LCC financial risks
for each NZEB EP ambition level for all years 2017 to 2019. The financial risk results are
also presented visually for the year 2018_10 in Figure 5.13 for each financial perspective
scenario. It should be noted that negative financial global LCC risk values shown in Ta-
ble 5.7 and Figure 5.13 translate into financial feasibility (NPV > 0) that will add value to
the private investor. Furthermore, from Table 5.7 and Figure 5.13, one can conclude that
the financial global LCC risk is not very sensitive to the financial perspective scenarios
considered for this RB case study.

Table 5.7: Comparison of the resulting deterministic versus robust global LCC financial
risk calculation for each NZEB EP ambition level and financial perspective scenario for
the years 2017 to 2019

2017 Global LCC
financial risk

(euro.m−2)

2018 Global LCC
financial risk

(euro.m−2)

2018_10 Global LCC
financial risk

(euro.m−2)

2019 Global LCC
financial risk

(euro.m−2)
NZEB EP
ambition

benchmark
level

Financial
Perspective

Scenario
Deterministic

Robust
(Equation )

Deterministic
Robust

(Equation 5.3 )
Deterministic

Robust
(Equation 5.3)

Deterministic
Robust

(Equation 5.3)

Low

A_f -87 -19 -94 -35 -89 -30 -91 -33
B_f -78 -7 -83 -22 -79 -18 -80 -21
C_f -71 -16 -78 -31 -73 -26 -75 -29
D_f -62 -5 -68 -19 -64 -14 -65 -17

Medium

A_f -61 80 -68 67 -63 69 -65 66
B_f -50 92 -56 80 -51 82 -52 79
C_f -40 74 -46 62 -41 64 -43 62
D_f -29 86 -35 75 -30 77 -32 75

High

A_f -27 115 -33 101 -27 105 -30 98
B_f -14 129 -19 116 -14 120 -16 113
C_f -4 110 -9 97 -3 101 -7 95
D_f 8 124 3 112 8 116 6 111

Highest

A_f 14 155 8 141 14 145 10 138
B_f 27 167 21 154 27 158 24 151
C_f 35 150 29 138 35 141 31 136
D_f 47 162 42 151 47 154 44 149

Both the deterministic and robust risk values are negative for all the financial per-
spective scenarios for the low NZEB EP ambition level. Therefore, upgrading the build-
ing to the low NZEB EP ambition level is robust to financial risk and financially fea-
sible to the private investor without the need for financial support. The risk analysis
joint plots in Figure 5.9 reflect these results and show that the global LCC distribution
plots for the ’reference’ and low ambition scenario do not intersect for all considered fi-
nancial perspective scenarios. It should be noted, however, that the deterministic risk
values provide financial feasibility outcomes that are more optimistic than the robust
risk values for the low ambition level for all years and financial perspective scenarios,
as depicted in Table 5.7.
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Figure 5.13: Comparison of the resulting deterministic versus robust global LCC finan-
cial risk calculation for each NZEB EP ambition level and financial perspective scenario
for the year 2018_10

When performing energy retrofitting to the medium ambition level, the results of
deterministic financial risk also show financial feasibility regardless of the financial per-
spective scenario. However, in contrast to the low ambition level, the robust financial
risk values and the corresponding intersecting distributions in the joint plot (refer to
Figure 5.10) show that upgrading to the medium ambition level does not provide a
robust risk-free implementation for the private investor. A similar trend in the deter-
ministic and probabilistic risk analysis outcomes is also observed for the high ambition
level. However, for the high ambition level, the financial risk values are higher, and
the financial feasibility is low to negligible even for the more optimistic deterministic
analysis.

Furthermore, as expected, the highest ambition level shows the financial feasibility
outcome that performs worst because, regardless of the risk analysis performed, deter-
ministic or probabilistic, implementing ECMs to achieve this NZEB EP benchmark is not
financially feasible for the private investor and is only feasible from a macroeconomic
perspective when considering the cost of operational carbon emissions. Therefore, while
the current EPBD cost-optimal regulations [345, 55] give the option to establish bench-
marks from either the financial or macroeconomic perspective, the financial feasibility
results of this study indicate that the establishment of benchmarks derived from the
macroeconomic calculations should be considered with caution, as upgrading to such
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benchmarks can pose a high financial risk to the private investor, which is only fully
exposed when calculating the robust financial risk from the probabilistic risk analysis.

It should be noted that although the case study is a RB derived from a single typi-
cal building, the financial risk results can also be interpreted from the perspective of a
RB representing a cluster of buildings in UBEM. As shown from the deterministic risk
results for the medium and, to a lesser extent, the high ambition levels, if one considers
a cluster where each building observation is characterised only by the mean param-
eter values for the envelope and equipment in the analysis, the risk results could be
overoptimistic and misleading for a random building observation within the building
stock cluster under study, given that the robust financial risk defined by Equation 5.3 is
ignored.

The case study results above therefore indicate that a deterministic risk assessment
is prone to provide an over-optimistic financial feasibility outcome. Thus, performing
only a deterministic risk assessment without a probabilistic risk analysis can make man-
dating minimum EP requirements to higher ambition levels, such as the medium or high
versus low NZEB EP benchmark for the RB case study, a natural choice for the entire
building stock to maximise reductions in GHG emissions. However, as shown from
the probabilistic risk analysis, mandating to these higher ambition benchmarks without
providing financial support can negatively impact individual buildings with unsustain-
able EP and unrealistic benchmarks that are counterproductive in the long term [168].
This outcome may decrease investors’ faith in the policy-making procedure as well as
the overall desired outcomes of the energy renovation of the building stock under con-
sideration. Moreover, this would go against the general spirit of the EPBD that energy
efficiency measures need to be financially feasible.

The case study results also demonstrate the economic law of diminishing marginal
utility for the energy renovation of the building stock, as highlighted by the EC [365].
The low level of EP ambition in the RB case study addresses the low-hanging fruit,
which is shown in Table 5.6 to provide more than 70 % of the EP improvements achiev-
able by the highest NZEB EP benchmark and is economically feasible for all financial
risk scenarios. Making such results transparent to investors and ESCOs for different
building stocks provides them with a better assurance of the financial and energy sav-
ings benefits of performing energy renovation, thus addressing the uncertainty barrier
and triggering energy renovation. Although this does not undermine the importance of
focusing on deep energy renovation, as highlighted in the EU energy renovation wave
[4], renovation as a minimum to ambition levels that address low-hanging fruit is criti-
cal for MS to meet the carbon neutrality goals for 2050, as this renovation provides the
highest potential for EP improvements in building stock.
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For mandating higher EP ambition levels to trigger deeper energy renovation, a
probabilistic risk analysis also provides the appropriate framework to objectively quan-
tify the necessary financial support measures to trigger energy renovation. This quan-
tification is critical, as the lack of appropriate financial incentives for commercial build-
ings was found by the EC to be a relevant barrier to energy renovation [4]. More specifi-
cally, within this framework, a customised financial incentive value can be attributed to
a building based on the recommendation of a certified EPC assessor or an approved en-
ergy auditor and with a maximum incentive threshold equal to the robust risk value for
a given ambition level. The total financial incentive can still be budgeted by MS using
the deterministic risk calculated for each level of ambition and identifying the number of
buildings to be targeted. This financial support can then be coupled with a time-bound
tightening approach to higher EP ambition levels, as discussed in Section 5.2.1, with the
financial support progressively reduced within this long-term framework. Such long-
term EP targets and a progressive reduction in financial incentives trigger an improve-
ment in the learning rate [366] to achieve a self-sustainable framework for investors that
continuously improves the EP of building stocks for a sustainable renovation path with
minimal financial incentives.

Finally, the above probabilistic risk analysis framework allows policy makers to
quantify the impact of wide calibration parameter posterior distributions in the decision-
making process of defining NZEB EP benchmarks and when quantifying financial in-
centive requirements. The narrowing of the posterior calibrated parameter distributions
results in less uncertainty in the probabilistic risk analysis step that consequently allows
the definition of NZEB EP more targeted benchmarks and financial incentives for effec-
tive and more ambitious policy making. The need for narrower posterior calibration
parameter distributions will automatically trigger policy makers to gather more data
and define more informative priors in the Bayesian calibration process. Alternatively,
a more refined RB clustering approach can be established to better handle the diversity
of heterogeneous building stocks. The Bayesian calibration approach coupled with a
probabilistic risk analysis framework in the proposed EPBD cost-optimal method there-
fore has the advantage of allowing for a continuous and progressive learning process in
policy making as discussed in Section 2.6.1.
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5.4 | Comparison of results with the ’deterministic’ as-
set ratingNCMmethodology for theRBcase study

For the RB case study, this chapter will compare the NZEB EP benchmarks and financial
risk results for the year 2018_10 from the previous section (which were derived using the
proposed cost-optimal approach detailed in Section 2.5), with the results obtained using
the current and ’deterministic’ EPBD cost-optimal approach. The current cost-optimal
approach is described in Section 2.2.1. The SBEM-MT software [346] is used as a build-
ing energy modelling tool to perform the ’deterministic’ cost-optimal approach for this
study, as it is the asset rating NCM for Malta. SBEM-MT was also used to carry out the
2018 cost-optimal studies for non-residential buildings [56]. Unlike EnergyPlus, a fully
dynamic simulation tool, SBEM-MT uses the ISO 13790 [173] monthly quasi-steady state
calculation method, as explained by the author in Gatt [228], to evaluate annual energy
use for space heating and cooling.

The geometry and envelope construction of Model D was first replicated in the
SBEM-MT software to enable the above-mentioned comparison between the two ap-
proaches. Given that NCM for Malta is based on an asset rating approach, SBEM-MT
operates under standard conditions, and all occupancy and equipment schedules, in-
cluding comfort and IAQ parameter set points, are fixed and could not be changed.
Furthermore, the software does not allow the modeller to customise the equipment
plug-load parameters.

To provide a comprehensive comparative analysis of the results achieved from the
proposed EPBD cost-optimal approach with the current approach, a SA on the impact of
the SBEM-MT input parameter values on the NZEB EP benchmarking outcome was car-
ried out by defining two RB SBEM-MT models having the HVAC and DHW equipment
parameters characterised as follows:

1. Asset SBEM-MT (mean_calib_par) model : This model is characterised with the
VRF space cooling and heating COP, the DHW boiler efficiency, and the fan venti-
lation pressure rise having the mean value of the calibration parameters posterior
distributions summarised in Table 4.10 and Table 4.14 for DHW and electricity
end-uses, respectively. This SBEM-MT model allows direct comparison with the
calibrated RB EnergyPlus (composed of Model D and the DHW building physics
models) model used to derive the NZEB EP benchmarks in Section 5.3.2.
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2. Asset SBEM-MT (datasheet_par) model : This model is characterised as the above
’Asset SBEM-MT (mean_calib_par) model’ but with a space heating and cooling COP
of 3.8 and 4.42, respectively. These reflect the seasonal COP values found in the
manufacturer’s data sheet for this case study and, in the absence of a calibration
exercise with metered EP data, are generally deemed to be the most appropriate
values to characterise the energy models.

For both of these models20, the NZEB EP benchmarking process, as detailed in Sec-
tion 5.2.1, was performed in Python using the ’SBEM cost-optimal python note book’ found
in the GitHub repository21. The same ECMs and EN 15459 [54] global LCC parameters
were applied, as defined in Section 5.3.2.1 and Section 5.3.2.2 respectively, for the RB
case study. It should be noted that the only difference in the input parameters of the
benchmarking process was specifically for the ’Asset SBEM-MT (datasheet_par)’ model.
In this model, active measure MA1 described in Table 5.3 was characterised by the ini-
tial COP parameter values of 3.8 and 4.42 for space heating and cooling, respectively,
as discussed above, and by the final parameters having COP values of 4.2 and 6.8 for
space heating and cooling, respectively. These final parameter values reflect the high
efficiency seasonal values for space heating and cooling used in the cost-optimal stud-
ies for Malta [56]22 and assure consistency with the technical documentation approach
used to characterise the ’Asset SBEM-MT (datasheet_par)’ model.

As shown in Table 5.8, the primary energy consumption of the calibrated model
for the reference scenario matches the annual operational primary energy consumption
with a discrepancy or energy performance gap of only 0.3 %, while the SBEM mod-
els overestimate the energy consumption with an EP gap greater than 35 %, specifi-
cally 37.5 % and 49.3 % for the ’Asset SBEM-MT (datasheet_par)’ and ’Asset SBEM-MT
(mean_calib_par)’ models respectively.

20SBEM-MT energy models for the RB case study that calculate the energy demand (i.e. the models are
defined with a COP of 1 for space heating and cooling) are available in the GitHub Repository folder ’Ch 5
SBEM analysis’ sub-folder ’SBEM models COPs of 1’ for all the considered passive combination of measures.
The full parametric EP analysis involving the 64 COMs was enabled by using the results from this energy
demand analysis and converting the energy demand to end-use energy consumption by varying the COP
of the space cooling and space heating systems for each COM under consideration using Microsoft Ex-
cel file ’ASSET_Cost_opt_sheets_for_Python_input’ found in sub-folder ’SBEM COMS EP analysis’. Refer to
Appendix B for a detailed description of all files and folders found in the GitHub Repository.

21Refer to GitHub repository folder ’Ch 5 SBEM analysis’ sub-section ’Python cost-opt analysis’.
22The high efficiency seasonal values used in the cost-optimal studies for Malta were chosen instead

of the minimum compliance efficiency requirements found in European Ecodesign regulation [367]. The
reason being that the initial parameter COP values of 3.8 and 4.42 for space heating and cooling in the Asset
SBEM-MT (datasheet_par) model are already almost in compliance with the seasonal efficiency COP and
Energy Efficiency Ratio (EER) requirements of 3.8 and 4.6 for space heating and cooling in the European
Ecodesign regulation [367].
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Table 5.8: Comparison of the primary energy consumption for the ’reference scenario’ and
the resulting % EP gap for the RB energy models under study

RB model

Reference scenario
primary energy

consumption
(kWh.m2.yr−1)

% energy
performance

gap

Calibrated
EnergyPlus

model
348 -0.29

Asset SBEM-MT
(mean_calib_par)

521 49.28

Asset SBEM-MT
(datasheet_par)

480 37.54

This EP gap resulting from the asset rating EPC software is consistent with the local
and foreign studies reviewed in Chapter 2. Thus, a detailed investigation of why the
EP gap occurs for Malta, specifically concerning the SBEM-MT software, is beyond the
scope of this thesis, and this analysis is detailed in Vassallo [24]. However, similar to
the result of this case study, Vassallo [24] also reported large EP gaps of up to 60 %.
Furthermore, an evaluation of the accuracy of the resulting energy end-uses of SBEM-
MT compared to EnergyPlus for individual buildings has already been carried out in
Bartolo [368] and Mallia [369] for non-residential buildings and is also not within the
scope of this thesis. However, the results of these two studies indicate that the SBEM-
MT software is prone to overestimate the annual energy consumption for space heating
and cooling compared to EnergyPlus.

To allow a better evaluation of the EP benchmarking results, the analysis required
for the case study is simply a comparison of the resulting annual site energy end-use
consumption for the reference scenario. The results of this analysis are shown in Figure
5.14 for the three RB models. From Figure 5.14, it can be seen that the largest discrepancy
is for DHW, which is more than 400 % higher for SBEM-mt models. The reason is
that SBEM-mt mostly follows the United Kingdom (UK) NCM schedules found in the
DesignBuilder software that consider a 100 % hotel occupancy for all months and a 60
% higher DHW consumption per guest night compared to the calibrated EnergyPlus
model. Furthermore, SBEM-mt clearly underestimates the auxiliary energy required to
drive the mechanical ventilation fans compared to the calibrated model and does not
account for the LPG consumption for the cooking equipment. In addition, the energy
consumption of the artificial lighting end-use is higher for SBEM-MT models, despite
not accounting for exterior lighting.
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Figure 5.14: ’Reference scenario’ site energy end-use consumption breakdown compari-
son between the RB energy models under study

On the other hand, the electrical equipment consumption is higher for the calibrated
EnergyPlus model since the RO system was included and modelled as an electrical plug
load and the food preparation areas were characterised with a higher calibrated plug
load power density than the UK NCM values reflecting the findings of local hotel energy
audits.

These differences in energy end-uses between the SBEM-MT and the EnergyPlus
calibrated model result in a significant discrepancy in the EP benchmarks and the corre-
sponding ECMs for each NZEB EP ambition level, as shown in Table 5.9 and Figure 5.15.
The corresponding cost-optimal plots that derive these benchmarks for both SBEM-mt
models are shown in the ’SBEM cost-optimal python note book’ found in the GitHub repos-
itory.
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Table 5.9: Comparison of the resulting NZEB EP benchmarks and corresponding COMs
for the RB energy models under study

Passive ECMs Active ECMs

RB energy
model

NZEB EP
benchmark

level

Primary
EP benchmark
(kWh.m2.yr−1)

% EP improvement
from reference

scenario
MP1 MP2 MP3 MA1 MA2 MA3

Calibrated
EnergyPlus
(Model D &
DHW model)

Reference 348
Low 284 18.4 x x

Medium 273 21.6 x x x
High 268 23 x x x x x

Highest 266 23.6 x x x x x x

Asset SBEM-MT
(mean_calib_par)

Reference 521
Low 228 56.3 x x

Medium 215 58.7 x x x
High 204 60.9 x x x x x x

Highest 204 60.9 x x x x x x

Asset SBEM-MT
(datasheet_par)

Reference 480
Low 237 50.6 x

Medium 210 56.3 x x x
High 201 58.1 x x x x x x

Highest 201 58.1 x x x x x x

Figure 5.15: Comparison of NZEB EP benchmarks obtained for the different RB energy
models under study
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Given the above difference in the energy consumption end-uses, most notably the
overestimation for the DHW energy end-use consumption predicted by the SBEM-MT
models, both SBEM-MT models provide a much more optimistic scenario in the poten-
tial EP improvements that are achievable for each NZEB EP benchmark. More specifi-
cally, the maximum potential in EP improvements is 60.9 % for the SBEM-MT models
versus 23.6 % for the calibrated EnergyPlus model. Furthermore, the resulting COMs
corresponding to each ambition NZEB EP benchmark are different between the Ener-
gyPlus and SBEM-MT models. For the SBEM-MT models, ECM MA3 only appears first
at the high EP ambition level instead of the medium EP ambition level as for the cal-
ibrated EnergyPlus model, mainly due to the underestimated annual auxiliary energy
consumption in SBEM-MT. Similarly, passive ECM MP3 appears both at the high and
highest EP ambition levels versus only at the highest EP ambition level for the calibrated
EnergyPlus model.

It should be noted that although the resulting NZEB EP benchmarks defined in
kWh.m−2.yr−1 are fairly consistent between the two SBEM-MT models, some discrep-
ancies can be observed from Table 5.9 in the resulting COMs corresponding to each
ambition NZEB EP. More specifically, active ECM MA1 does not appear for the ’Asset
SBEM-MT (datasheet_par)’ model at the lower ambition benchmark level as opposed to
the other models, because, as shown in Figure 5.14, its lower annual energy end-use
consumption for space cooling results in a reduced potential for energy savings when
implementing ECM MA1.

The deterministic global LCC financial risk results were also calculated, as discussed
in Section 5.2.1, for the SBEM-MT models directly from the resulting cost-optimal plots
using the ’SBEM cost-optimal python note book’. These results are compared directly to
the deterministic and robust global LCC financial risk result obtained for the calibrated
EnergyPlus RB model discussed in the previous section, as shown in Figure 5.16. It
is evident that both SBEM-MT models portray a very optimistic scenario for financial
risk in contrast to the calibrated EnergyPlus model. From the analysis, it is shown that
for the SBEM-MT models, even upgrading the RB to the highest ambition EP level is
still financially feasible to the private investor, irrespective of the financial sensitivity
scenario under consideration.
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Figure 5.16: Comparison of the resulting financial global LCC risk for the different RB
energy models under study for each NZEB EP ambition level and financial perspective
scenario. For the calibrated RB EnergyPlus model, both robust and deterministic risk
are evaluated, while only deterministic is considered for the Asset SBEM-MT models.

Clearly, the over-optimistic results for financial feasibility of SBEM-MT are not cred-
ible. For example, one can observe from Figure 5.16 that both SBEM-MT models show
that upgrading to the highest EP ambition level is up to four times more financially fea-
sible than when upgrading the calibrated Energy Plus RB model to the low ambition
level using the more optimistic deterministic financial risk scenario. Such a discrepancy
cannot be underestimated and therefore it is not wise to commit to maximum reno-
vation measures based on the SBEM-MT results, when the calibrated Energy Plus RB
model results demonstrate a significant financial risk.

Therefore, using uncalibrated RB models with ECMs tend to produce optimistic EP
and carbon emission savings, as well as unrealistic financial feasibility, which on the
long-run could result in loss of investment and reduced confidence in the energy mod-
els. Consequently, a change in direction will need to be implemented by using calibrated
models that take into consideration not only calibration with actual energy consump-
tion for the reference building for each category under consideration, but also the range
of probabilistic risk encountered in energy savings and costings.
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5.5 | Conclusion
This chapter established a comprehensive framework to develop, apply, and success-
fully validate the final two steps of the proposed EPBD cost-optimal method detailed
in Chapter 2, Section 2.5, namely to derive NZEB EP benchmarks from the global LCC
cost-optimal analysis in step 5, followed by a probabilistic risk analysis for the derived
NZEB EP benchmarks in the final step, step 6.

Step 5 has developed and validated an innovative and objective approach to defining
NZEB EP benchmarks according to four different ordinal levels of EP ambition. To date,
there are no established and objective criteria in the EPBD to facilitate a step-change
pathway towards the decarbonisation of buildings. Moreover, this approach provides
a harmonised approach to define NZEB benchmarks and can be easily implemented
by MS, given that the same mandatory global LCC calculations are used in the current
EPBD cost-optimal method.

For step 6, a probabilistic risk analysis approach has been developed and validated
using posterior calibrated parameter distributions. The outcome has been demonstrated
to more realistically quantify financial risk for each identified NZEB EP ambition level
benchmark, thus enabling private investors as well as policy makers to take informed
decisions on the pathway towards decarbonisation.

The approach has been demonstrated to significantly bring a step-change in the
current deterministic financial feasibility analysis of the EPBD cost-optimal method by
adding transparency to any potential financial risks associated with the implementa-
tion of ECMs for different energy efficiency ambition levels leading progressively to full
decarbonisation of buildings.

The proposed method has credibly demonstrated the need for calibrating NCM soft-
ware(s) with operational EP data and using probabilistic approaches to integrate risks
in the decision-making process for EPBD cost-optimal analysis and subsequent policy
making including financial support decisions. Only then will the prevailing reported EP
gap be minimised, and financial risks associated with acting on misleading optimistic
EP results be avoided.

All in all, the proposed approach contributes towards fulfilling some of the most
pressing requirements of the EPBD, including transparency in cost-optimal calculations
through the inclusion of risk and uncertainty analysis, harmonisation of ’cross-national’
benchmarks among MS through objective and calibrated reference buildings and the es-
tablishment of more targeted EP benchmarks and policies through a continuous build-
ing stock learning process for policy makers.
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Conclusions

This chapter concludes the thesis by synthesising the key findings in relation to the
research aim, objectives, and questions and by discussing the value and contribution of
these findings to the fields of energy policy and building stock energy modelling. The
chapter also reviews the limitations of the study and proposes opportunities for future
research.

6.1 | Achieved Aim, Objectives and Key Research Find-
ings

This research aimed to propose and validate an innovative approach to the EPBD cost-
optimal method to allow policy makers to optimally handle the diversity and uncer-
tainties of the building stock when deriving EP benchmarks for heterogeneous multi-
functional building stocks under different defined ambition levels of EP.

After reviewing the methodological similarities and the resulting limitations of con-
ventional UBEM studies and the current EPBD cost-optimal method, several limitations
were identified, which were demonstrated to ignore uncertainties and diversities of the
parameters in RB energy modelling that impact the EP of the building stock. These
limitations make the current EPBD cost-optimal method prone to optimistic savings
and unrealistically attractive economic benefits that cannot be achieved when buildings
adopt them. Consequently, the goal of significantly reducing carbon dioxide emissions
from renovated buildings by 2030 and full decarbonisation by 2050 may not be met.

Following a deep analysis of the state-of-the-art UBEM literature to handle these
limitations, a clear and innovative EPBD cost-optimal approach has been proposed, as
shown in Chapter 2, Section 2.5, Figure 2.6, to integrate state-of-the-art UBEM tech-
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niques employing ’probabilistic Bayesian calibrated RBs’ into the current EPBD. This frame-
work was hypothesised to better address the diversity and uncertainties of the build-
ings’ different parameters compared to the current EPBD cost-optimal approach, ulti-
mately leading to the establishment of more robust policy measures and strategies that
trigger energy renovation and facilitate the transition of buildings to NZEB.

Every step of the proposed approach, shown in Figure 2.6, which can be applied to
any building stock irrespective of its size and diversity, was further developed and suc-
cessfully applied and validated for a small, multi-functional and heterogeneous build-
ing stock case study, which was the 5-star hotel building stock in Malta.

Consequently, the research objectives were successfully met for the development of
the proposed EPBD cost-optimal approach, to enable its application to multi-functional,
heterogeneous building stocks, as follows:

■ The development and application of a machine learning approach to define RBs
for ’small’ (X ≫ N)1 multi-functional, heterogeneous building stocks and the em-
ployment of the novel cost-optimal approach to a defined RB.

■ The investigation and statistical validation of innovative techniques to reduce the
computational expense of the novel cost-optimal approach without loss in accu-
racy.

■ The development of a harmonised and ordinal scale approach to define the NZEB
EP ambition levels and the identification of an approach to propagate the EP and
financial uncertainty for each defined ambition level for a RB under study ulti-
mately leading to robust results that assure solid basis for energy renovation sup-
port policies.

■ A comparison of the novel cost-optimal approach with the current deterministic
approach and the establishment of the strengths and limitations of each approach.

As a prelude to the final conclusions of the thesis, this section will first synthesize
the research findings that address the above objectives.

1For the scope of this research, a ’small’ building stock is one where the number of explanatory variables
’X’ impacting energy performance is greater than the number of building observations ’N’in a population.
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■ An approach to define RBs for ’small’ (X ≫ N), multi-functional and heteroge-
neous building stocks has not been adequately addressed in the literature. The
current and generic approach to define RBs, detailed in Section 2.2.3.1, if not fur-
ther developed, is more applicable to the larger and less diverse building stocks,
such as residential and office buildings. This research grouped the challenges
posed by ’small’, multi-functional and heterogeneous building stocks into two cat-
egories. These are building energy modelling challenges to collect information
and represent the various activities and functionalities for these building stocks,
as well as the high-dimensional data processing challenges inherent with these
specific building stocks due to their diverse activities and the limited number of
building observations.

■ The objective and innovative approach developed in Chapter 3 successfully ad-
dresses the above research gaps by applying multiple methodological and ma-
chine learning concepts to objectively tackle the above challenges and provide a
comprehensive approach to define RBs specifically for these building stocks. The
approach was tested successfully on the five-star hotel building stock case study,
whereby through appropriate statistical approaches, the buildings were compre-
hensively clustered to define and fully characterise RBs, while taking into account
the diversity of their services (functionality) offered by these buildings in the fi-
nal clustering solution. The approach was further validated for the case study to
be more comprehensive to defining RBs when compared to simplified clustering
approaches that perform clustering only on easily obtainable bench-marking vari-
ables or directly on operational metered energy consumption. This is because the
strength of this approach lies in its ability to uncover building characteristics and
functionalities to successfully characterise a heterogeneous physics building RB
energy model.

The key innovations are summarised below:

1. The application of multiple supervised and non-supervised machine-learning
techniques to successfully and systematically reduce and combine building
feature data with individual metered energy consumption to address the
high-dimensional data processing challenges posed by such buildings stocks.
The use of individual metered energy consumption data overcomes a limita-
tion of national typology methodologies employed, for example, by Mata et
al. [202] and the TABULA project [75, 203] that characterise RBs using only
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building feature data without considering the relative importance of different
building characteristics on metered energy consumption.

2. The use of additional features to characterise RBs that complement the four
features presented by Torcellini et al. [204] and Corgnati et al. [26], which
includes a specific ’functionality feature’ to ensure that the diversity of the ser-
vices offered by the individual buildings in a stock is better represented by
the final RB clustering solution.

3. The investigation of multiple clustering solutions for each feature, to make
RB clustering solution less sensitive to the chosen clustering approach.

■ The proposed EPBD cost-optimal approach which applies ’probabilistic Bayesian
calibrated RBs’ is significantly more computationally intensive than the current
EPBD cost-optimal approach due to the additional requirements to perform mul-
tiple simulation runs from the building physics model. Simulation runs are re-
quired for SA to identify the calibration parameters for Bayesian calibration and
to train the meta-model for Bayesian calibration, as discussed in Section 4.2. Once
the model is calibrated, further simulation runs are required to perform the prob-
abilistic risk analysis developed in Section 5.2.2.

■ Once RBs are defined, this thesis’s developed ’reference zone’ approach is a com-
putationally efficient and innovative approach for performing Bayesian calibra-
tion of RB energy models by replacing computationally intensive and full-space
multi-functional RB EnergyPlus (Physics) models with reduced-space RB Energy-
Plus models to improve simulation run-time. The approach constructs an Energy-
Plus model from a defined number of ’reference zones’ using multipliers. ’Reference
zones’ are simple EnergyPlus geometric representations or building blocks, each
modelling a functional unit of a sub-activity in the building. The reduced-space
model improved the simulation run-time computation efficiency by 4,000 % over
the full-space model for the RB case study. Furthermore, the ’reference zone’ ap-
proach for the RB case study also produced statistically accurate monthly outputs
to successfully calibrate RB models in compliance with the CVRMSE and NMBE
thresholds provided in ASHRAE [1, 2] and to reduce the uncertainty of the defined
prior parameters satisfactorily.

■ The thesis has highlighted the challenges for objectively deriving NZEB EP bench-
marks even when considering the current ’deterministic’ EPBD cost-optimal method,
mainly because the term ’Nearly’ in NZEB is not a quantifiable metric, and the Eu-
ropean Commission (EC) does not provide objective criteria for defining NZEB

198



Chapter 6. Conclusions 6.1. Achieved Aim, Objectives and Key Research Findings

EP benchmarks. This challenge was successfully addressed by developing an ob-
jective approach that defines NZEB EP benchmarks for the EPBD cost-optimal
method according to four distinct and ordinal levels of EP ambition, that directly
employ the same mandatory global LCC calculations used in the current EPBD
cost-optimal method. The approach was successfully programmed in Python, ap-
plied to a calibrated hotel RB case study, and validated to provide well-distinct EP
benchmarks, whereby the low level of EP ambition tackles the low-hanging fruit.

■ In a nutshell, the proposed EPBD cost-optimal approach developed in this re-
search has successfully achieved the following advances:

1. The use of ’probabilistic Bayesian calibrated RBs’ in the proposed approach ver-
sus ’deterministic RBs’ employed in the current cost-optimal approach allows
policy makers to express their initial beliefs of the building parameters di-
versities and uncertainties in the RB energy model. This is done by defining
uncertain parameters as ’prior’ probability distributions and to update them
to narrower ’posterior’ distributions via a Bayesian approach using metered
EP data.

2. The probabilistic risk analysis enabled by propagating uncertainties from the
resulting calibration parameter ’posterior’ distributions allows policy makers
to visualise and statistically quantify the financial risk faced by the private
investor when upgrading each defined NZEB EP ambition level.

3. The probabilistic risk analysis is critical as findings from the hotel RB case
study revealed that the application of the current deterministic financial feasi-
bility analysis in the EPBD cost-optimal approach can provide over-optimistic
outcomes even for the higher more costly NZEB EP ambition levels. Such
outcomes make the current deterministic approach highly prone to hiding fi-
nancial risks for the private investor in the cost-optimal analysis, which can
lead to the establishment of unsustainable and counterproductive NZEB EP
benchmarks and erroneously nullify the need for any financial support re-
quirements to trigger more agressive energy renovation.

4. The developed equations as derived from the developed probabilistic risk
analysis provides an objective approach to allow policy makers to calculate
the maximum global LCC financial support that should be considered for a
’random’ individual building within a cluster of buildings, represented by the
RB under study, to upgrade it to a defined NZEB EP ambition level.
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5. The Bayesian calibrated approach successfully allows RB energy models to be
defined with a minimal EP gap. This was successfully demonstrated when
the EP gap resulted to be less than 1 % for the hotel RB case study, as com-
pared to more than 30 % when the asset rating NCM methodology software
SBEM was used. Clearly, the uncalibrated NCM software could not deliver
realistic EP benchmarks. Therefore, the calibrated methodology approach
provide an objective guidance to policy makers, increases confidence in ex-
pected energy efficiency financial benefits and accelerates the building reno-
vation wave.

6. Aggregating the entire building stock EP probabilistically from the calibrated
RBs allows better validation of the choice of RBs representing the building
stock under study. This is done by statistically comparing the resulting ag-
gregated EP distribution from the RBs models with the metered energy con-
sumption distribution of individual buildings in the buiding stock under
study.

Consequently, the hypothesis developed in this work can be accepted and it can be
concluded that an EPBD cost-optimal framework that employs this innovative approach
of ’Bayesian calibrated RBs’ better handles the uncertainties and diversities of the building
stock and will potentially lead to the establishment of more robust policy measures and
strategies that accelerate energy renovation and facilitate the transition of buildings to
NZEB.

6.2 | Research value and contribution
This section describes the value of the conducted research and its contribution to the
fields of EU energy policy and building stock energy modelling.

6.2.1 | Research value and contribution to EU energy policy
The value of research and its contribution to the field of EU energy policy can be sum-
marised as follows.

■ This research has EU-wide significance by objectively demonstrating the main lim-
itations of the current EPBD cost-optimal methodology and proposing an inno-
vative EPBD cost-optimal approach that facilitates the definition of more robust
policy measures and strategies to accelerate energy renovation and the transition
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of building stocks to NZEB to meet the 2050 carbon neutrality [3] and Renovation
Wave [4] goals.

■ The research has potential to contribute to the establishment of a ’stronger long-
term renovation strategy’, which is one of the main goals of the 2018 EPBD and the
EU Green deal [3]. This strategy is better achieved for the proposed cost-optimal
method EPBD as follows:

1. Handling uncertainties and building stock diversities when deriving NZEB
measures and benchmarks to achieve more realistic EP benchmarks and EP
improvements for a building stock under study, as well as a more accurate
quantification of the financial support policies required for energy renova-
tion.

2. Providing a transparent approach to more accurately quantify the financial
risk of renovation investment for private investors and ESCOs when upgrad-
ing to the most beneficial NZEB EP level. This transparency triggers energy
renovation by directly addressing financial uncertainty, one of the main bar-
riers to energy renovation [42, 43, 44].

3. Increasing options for achieving high energy efficiency by objectively defin-
ing multiple NZEB EP benchmarks according to different EP ambition levels
for the building stock under study instead of a single NZEB benchmark. This
also facilitates a progressive approach [347] to NZEB EP benchmarking that
prepares the market to adapt with time to more stringent EP requirements to
achieve the long-term decarbonisation objectives [348]. The developed NZEB
EP benchmarking approach can easily be incorporated into Building Reno-
vation passports to allow a road map for staged renovation by progressively
allowing buildings to update to each NZEB ambition level. Staged renova-
tion within the framework of Building Renovation passports is promoted in
the proposed EPBD [370] as one of the solutions to address the high upfront
costs of renovation.

4. The financial support quantified from the developed probabilistic risk anal-
ysis can also be coupled with this time-bound tightening approach to higher
EP ambition levels, with progressively diminishing fiscal support within this
long-term framework, thus making better use of available funds in a sus-
tainable manner. Such long-term EP targets and a progressive reduction in
financial incentives trigger an improvement in the learning rate and energy
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efficiency of different technologies to achieve a self-sustainable framework
for investors.

5. The NZEB EP benchmarking approach proposed in this study can also allow
the EC to more objectively define the concept of ‘deep renovation’, which is
being strongly advocated in the EU energy renovation wave [4] but has not
yet been appropriately defined [370]. This objectivity is achievable by cou-
pling the achievement of ‘deep renovation’ with the high or highest NZEB EP
benchmarking levels.

6. The probabilistic Bayesian calibration and risk analysis approach facilitate
more focused EP benchmarks and policies by establishing a continuous learn-
ing process of building stocks with diminishing uncertainties and more re-
fined RBs to limit variability in EUI and financial risk workings.

■ The proposed EPBD cost-optimal approach, in conjunction with the new EPB stan-
dards, provides a better framework for establishing and defining cross-national
comparable EP benchmarks between MS as follows:

1. The calibration process defines EP benchmarks that more closely reflect the
operational EP of the buildings.

2. The NZEB EP benchmarking approach developed in this study provides a
standardised approach to define NZEB benchmarks directly from the result-
ing cost-optimal plots.

6.2.2 | Research value and contribution to the field of building stock
energy modelling

The value of the research and its contribution to the field of building stock energy mod-
elling can be summarised as follows:

■ The machine-learning and innovative method to define RB energy models for
multi-functional and heterogeneous ’small’ building stocks provides researchers
with a tangible methodology to increase knowledge on the EP of these building
stocks, which have so far received far less attention than residential buildings and
other less diverse building stocks.

■ The developed ’reference zone’ building energy modelling concept provides an ef-
fective solution to significantly reduce the computational time required for pro-
cessing iterative Bayesian calibration of multi-functional and heterogeneous RBs,
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and facilitates the incorporation of Bayesian calibration into building energy mod-
elling in practical terms.

■ The scalability and modularity of ’reference zone’ approach to define RB models has
the potential to allow the building stock to be more efficiently modelled using a
bottom-up technique without the need to define full-space RB energy models (in
GIS). This is possible once representative ’reference zones’ for different activities
and sub-activities are statistically validated for a sample of the building stock un-
der study. Each individual building in the stock can then theoretically be custom-
modelled using a reduced-space-order building physics model to improve com-
putational efficiency while allowing the definition of variable functionalities that
are synonymous with heterogeneous building stocks.

6.3 | Research Limitations
The findings of this study should be seen in light of the following limitations.

■ The methodology to define RBs for ’small’ (X ≫ N), multi-functional, and hetero-
geneous building stocks was applied and validated using only a single building
stock case study. This limitation resulted from the fact that no EN standard defines
the requirements of a building renovation passport. Thus, there are currently no
requirements for such heterogeneous buildings to keep and update building en-
velope and energy systems data, energy consumption, and other relevant param-
eters required for this research. As a result, a laborious exercise had to be carried
out to comprehensively collect the required data, which is time-consuming. This
exercise involved multiple site visits to validate plans and measure different di-
mensions, long meetings with the management of each building to understand
the processes used and their inter-connectivity, reviewing, and validating existing
energy audits or performing actual energy audits, as well as collecting electricity,
fuel and water consumption data manually for three years.

■ The proposed EPBD cost-optimal approach was applied using only one RB case
study representing one building observation. This limitation resulted from time
constraints and the lack of computational resources required to set-up and per-
form multiple simulation runs from the EnergyPlus/JEPlus models and develop
the required Python programs for Bayesian calibration and the EPBD cost-optimal
analysis, including for the probabilistic risk analysis.
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■ Based on the available knowledge of the RB case study and the available resolution
of operational energy consumption data, Bayesian calibration was only performed
with calibration parameters defined using flat priors and calibration metered en-
ergy consumption of the whole building.

■ The ’reference zone’ approach was applied and validated for only one multi-functional
building observation operating under one climate and only for monthly resolution
energy end-use fuel data. This limitation resulted from time constraints and lack
of computational resources required to conceptualise and formalise the ’reference
zone’ approach concept, by constructing and running a detailed full-space building
energy model and comparing its outcomes to the simplified ’reference zone’ model.

6.4 | Recommendations for Future Research
Based on the research findings and limitations of this thesis, the fields of building stock
modelling and EU energy policy would benefit from the following additional research
to further analyse and substantiate the proposed EPBD approach and the corresponding
methodologies, including concepts developed in this research.

■ Applying and testing the methodology to define RBs for ’small’ (X ≫ N), multi-
functional, and heterogeneous building stocks to other building stocks with a
larger population, to better understand how the resulting cluster-to-observation
ratio varies as the observations and building stock diversity change.

■ Applying the proposed EPBD cost-optimal method to all other derived hotel RBs
in Chapter 3 to further analyse the impact of multiple observations on the resulting
benchmarks and financial risk analysis. The analysis can compare the outcomes of
representing the multiple building observation in each derived cluster as follows2:

1. Using the median typical ’real’ building as a RB in each derived cluster and
defining the building envelope and equipment parameters probabilistically

2. Constructing a fictitious ’archetype’ RB which represents the average or me-
dian characteristics in terms of functionality and geometry of the building

2For configurations 1 to 3 below, Bayesian calibration can be carried out using only metered energy con-
sumption data of the building representing each cluster or alternatively by calibrating the chosen building
per cluster multiple times using individual metered data of the other building observations falling under
the same cluster. The posterior calibrated parameter distributions for each calibration exercise per cluster
can then be merged. The resulting EUI distributions for each calibration approach can also be compared
using statistical tests as performed in [74, 128].
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stock cluster and defining the building envelope and equipment parameters
probabilistically.

3. Using the the typical ’real’ RB or fictitious ’archetype’ RB described in No. 2
above but constructed using the ’reference zone’ approach rather than a full-
space energy model to improve computational speed.

4. Defining the building envelope and equipment parameters probabilistically
and constructing full-space energy models for each building, potentially test-
ing different zoning configurations, to calibrate each building individually.

5. Defining the building envelope and equipment parameters probabilistically
and using energy models constructed based on the ’reference zone’ approach
for each building to calibrate each building individually.

■ Performing the proposed approach on all the derived RBs that represent a whole
building stock under study allows one to understand whether any refinements to
the RB clustering solution and the ’prior’ calibration parameter definitions need to
be devised to derive narrow posterior calibration parameter distributions leading
to more specific NZEB EP benchmarks and financial support requirements.

■ Applying and testing the ’reference zone’ approach concept to include other config-
urations for different building types, climates, and finer resolution data to iden-
tify whether the ’reference zone’ approach has the same potential in replicating the
data from full-space models under these different scenarios. Potentially, one can
also establish specific guidelines for constructing representative ’reference zones’ in
terms of the number of optimal sub-activities and boundary conditions for these
different scenarios.

■ Analysing the potential of applying the ’reference zone’ approach concept to de-
fine RB models in GIS using a bottom-up approach for improved computational
efficiency and to allow the diverse functionalities of individual buildings in a het-
erogeneous building stock to be better represented. The results of the ’reference
zone’ approach can then be compared with the simpler zoning division techniques
in UBEM that generally consider single zone models, one zone per floor models,
or multi-zone per floor models [186].

■ Performing a SA on the choice of priors, the amount of parameters to be calibrated
, and the meta-model choice (potentially also propagating simulation runs from
the building physics ’reference zone’ model itself without developing a meta-model
in the KOH framework), when calibrating a RB model to study their impact on the
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resulting NZEB EP benchmarks and probabilistic risk analysis for the proposed
EPBD cost-optimal method. This SA also allows parameter identifiability issues
in the Bayesian calibration process to be identified.

■ Incorporating higher resolution energy consumption data and potentially sub-
metering data to identify the potential to further fine-tune the calibration process
and understand the impact of these data on the resulting NZEB EP benchmarks
and probabilistic financial risk analysis.

■ Identifying and analysing an approach to optimally handle uncertainties and the
diversity of other global LCC financial parameters, such as the capital costs of
ECMs, in addition to performing only SA on the PD and DR as required by current
EPBD.

■ Identifying the potential of applying multi-objective genetic algorithms in the pro-
posed cost-optimal analysis to find non-dominated solutions (Pareto front) for the
RB model to converge faster to the NZEB EP ambition levels rather than perform-
ing a full parameterisation exercise simulating all potential COMs.

■ Analysing through multiple calibrated RB case studies how the proposed cost-
optimal approach can perform refinements to derived NZEB EP benchmarks and
financial risk calculations to ensure compliance with the EN 16798-1 [332] comfort
and IAQ set-points requirements.

■ Investigating how the proposed cost-optimal approach can facilitate the smart-
ness indicator compliance introduced in Section 2.6.2.3. A potential approach is to
mandate minimum EP requirements of the buildings using an operational versus
or in combination with an asset-rating approach, given the lower EP gap resulting
from the calibrated models. Minimum EP requirements can be derived using the
proposed approach using comfort set-points that encourage energy-efficient oc-
cupant behaviour and the implementation of smart building energy management
systems.

6.5 | Final Remark
This research has provided tangible findings and insight for future upgrading of the
EPBD cost-optimal approach. This will significantly address the limitations of the cur-
rent approach and establish robust policy measures required for the EU to successfully
meet its 2050 carbon-neutrality goals. Furthermore, it is only by devising such robust
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policy measures that energy renovation can be triggered and sustained, while providing
for new job opportunities and investments, thus contributing to the much needed stim-
ulus in the economy and the sustainable regeneration of society following the recent
pandemic and political shocks across Europe.
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GitHub Repository Folders and Files

Introduction

All the building energy model files, JEPlus files, Microsoft Excel files, and Python source
code used for this research are found in the following repository link: https://drive.
google.com/drive/folders/1S2Y2-TIHlwabHnlzLHHUa8n06GByf_Nd?usp=sharing

This section provide a detailed description of all folders and files in this link, making
reference to the Chapter, Section, and Footnote where each folder, file, and source code
are used to implement this research.
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Appendix B. GitHub Repository Folders and Files

Chapter 3 Folders and Files

This section provides a detailed description of all folders and files referred to in Chapter
3.
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Table B.1: Description of GitHub repository folders and sub-folders for Chapter 3

Section Footnote Folder name Sub-folders Description

3.4.3 9
Ch 3 5 star hotels RB

definition methodology

1. Clustering 2017
Primary energy

2. Clustering 2018
Primary energy

3. Clustering 2019
Primary energy

The sub-folders contains the Python Jupyter notebooks and corresponding characterisation and energy
performance data to execute the methodology to define RBs for the hotel-building stock

case-study for the years 2017 to 2019 occupancy schedules.



Appendix B. GitHub Repository Folders and Files

Chapter 4 Folders and Files

This section provides a detailed description of all folders and files referred to in Chapter
4.
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Table B.2: Description of GitHub repository folders and sub-folders for Chapter 4

Section Footnote Folder name Sub-folders Description

4.4.2.1 8
Ch 4 DHW BEM model

2017 to 2019
Not applicable

The folder contains the hotel RB case-study DHW building energy model as DesignBuilder and
EnergyPlus idf files for all years i.e. 2017 to 2019 occupancy schedules.

4.4.2.2 9
Ch 4 Electricity 2017
BEM models and ref

zone validation

1. Model A
2.Model B
3. Model C

4. Model D (2)

The folders contains the DesignBuilder and corresponding EnergyPlus files for the hotel RB
case-study electricity energy end-uses models, Model A and Model D.

4.4.2.2 10
Ch 4 Electricity 2017

BEM models and
ref zone validation

Validation
The folder contains Microsoft Excel file ’2017 Uncalibrated Model A ASHRAE statistics’ that

provides NMBE and CVRMSE calibration statistical indicators for Model A.

4.4.2.2 14
Ch 4 Electricity 2017
BEM models and ref

zone validation

Model D1 D2 D3 plus
Passive

The folder contains DesignBuilder and EnergyPlus files for Models D1 to Modela D3 with and without
the passive measures in Table 4.8 .

The folder also contains the Microsoft Excel file entitled ’Models D1 D2 D3 vs Model
A ECMs performance’ to perform the statistical analysis in

Table 4.8.

4.4.2.2 16
Ch 4 Electricity 2017 BEM

models and ref zone
validation

Validation
The folder contains Microsoft Excel file ’Models B C D vs Model A ASHRAE calibration validation’

to perform the statistical analysis in in Table 4.7.

4.4.3 17 Ch 4 DHW SA

1.SA DHW JEPLUS
files and models

2.SA DHW JEPLUS
simulation results
3.SA DHW Morris

SA Python implemenation

The folders contains the JEPlus files to execute the DHW model EnergyPlus simulation runs for
the Morris Method and the corresponding results. The Python Jupyter notebook via the SOBOL
package constructs the Morris grid of required simulation runs executed in the JEPlus files and

calculates the Morris method statistical parameters shown in Figure 4.5.

4.4.3 17 Ch 4 Electricity SA
1. SA Ref Zone Model D2
2. SA Full model Model A

The folders contains the JEPlus files to execute Model A and Model D EnergyPlus simulation runs from
the uncertain paramters for the Morris Method and the corresponding results. The Python Jupyter

notebooks for Model A and Model D via the SOBOL package constructs the Morris grid of required
simulation runs executed in the JEPlus files and calculates the Morris method statistical parameters

shown in Table 4.9 and Figure 4.6.

4.4.3.2 19 Ch 4 Electricity SA
SA ASHRAE validation

for Model D2 vs
Model A

The folder contains Microsoft Excel file ’SA CVRSME and NMBE validation’ used to statistically compare
the difference in the simulated annual electricity energy end-use output values between

Model A and Model D.

4.4.4 21
Ch 4 DHW Baysesian

calibration

1. DHW EnergyPlus &
JEPLUS files for LHS

runs calibration
2. JEPLUS Datacomp
simulation outputs

3. Calibration in PyStan

The folders contain the JEPlus files to execute the DHW model simulation runs from the
calibration paramters required to train the meta-model. The monthly energy end use output
results from JEPlus are an input to the Python Jupyter notebook ’Bayesian calibration model

DHW_linear_2017_2018_test.ipynb’ found in these folders . The Python Jupyter notebook and
the corresponding Stan code, called directly from the notebook, perform, diagnose and

validate Bayesian calibration.

4.4.4,4.4.4.2 21,32,34,35,36
Ch 4 Electricity Bayesian

calibration

1. Electricity EnergyPlus
& JEPLUS files for KOH

LHS runs calibration
2. JEPLUS Datacomp
simulation outputs
3. KOH calibration

in PyStan

The folders contain the JEPlus files to execute Model D simulation runs from the calibration parameters
required to train the meta-model. The monthly energy end use output results from JEPlus are an input

to the Python Jupyter notebook ’Model D2_ Bayesian calibration.ipynb’ found in these folders.
The Python Jupyter notebook and the corresponding Stan code, called directly from the Python

notebook, perform, diagnose and validate Bayesian calibration.



Table B.3: Description of GitHub repository folders and sub-folders for Chapter 4...ctd

Section Footnote Folder name Sub-folders Description

4.4.4.1 23
Ch 4 DHW Baysesian

calibration

1. Physics models Annual
uncert propag Prior Post
2. Calibration in PyStan

The folders contain the JEPlus files to execute the annual simulation runs for the DHW model from
both the Prior and Posterior distributions. The results of these simulation runs is fed into the Python

Jupyter Notebook ’Bayesian calibration model ’DHW_linear_2017_2018_test.ipynb’ to generate
Figure 4.9

4.4.4.1.2 30
Ch 4 DHW Baysesian

calibration

1. Calibration Validation
on Physics models

2. Calibration in PyStan

The folders contain the JEPlus/EnergyPlus models characterised with the mean value of the calibration
parameter posterior distributions . The monthly simulation energy end-use results are fed into the

Python Jupyter notebook Bayesian calibration model ’DHW_linear_2017_2018_test.ipynb’ to calculate
the statistics in Table tab:DHW_CVRMSE_NMBE for the EnergyPlus models.

4.4.4.2 31
Ch 4 Electricity Bayesian

calibration

1. Validation of Model D2
for monthly calibration

/2017 Model A LHS
2. Validation of Model D2

for monthly calibration
/2017 Model D LHS

3. Validation of Model D2
for monthly calibration
/Model D vs Model A
ASHRAE validation

The folders contains JEPlus files for both Model A and Model D to execute 100 LHS sample runs from the
prior calibration parameters. The validation folder contains a Microsoft Excel file

’Model D CVRSME and NMBE calib month validation’ to statistically compare using ASHRAE validation
criteria the monthly electricity outputs from the two models. The validation folder also contains a Python

notebook ’Box_plot_modelD_cal_valid.ipynb’ to generate the box plot in Figure 4.14.

4.4.4.2 33
Ch 4 Electricity Bayesian

calibration

1. Physics models Annual
uncert propag Prior Post

2. KOH calibration in PyStan

The folders contain the JEPlus files to execute the annual simulation runs for Model D from both the
Prior and Posterior distributions. The results of these simulation runs are fed into the Python Jupyter

notebook ’Model D2_ Bayesian calibration.ipynb’ to generate Figure 4.17.

4.4.4.1.2 30
Ch 4 Electricity Bayesian

calibration

1. Calibration Validation
on Physics models
2. KOH calibration

in PyStan

The folders contain the JEPlus/EnergyPlus models characterised with the mean value of the calibration
parameter posterior distributions for both Model A and Model D . The monthly simulation energy

end-use results are fed into the Python Jupyter Notebook ’ Model D2_ Bayesian calibration.
.ipynb’ to calculate the statistics in Table 4.15 for the EnergyPlus models.
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Chapter 5 Folders and Files

This section provides a detailed description of all folders and files referred to in Chapter
5.
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Table B.4: Description of GitHub repository folders and sub-folders for Chapter 5

Section Footnote Folder name Sub-folders Description

5.3.1 6, 8
Ch 5 Model D

justification

1. 2017 Model
A EPlus files
and results

2. 2017 Model D
EPlus files
and results
3. Model D
validation

The folders contain JEPlus and corresponding EnergyPlus models for Model A and Model D.
The corresponding energy end-use simulation results from the parametric simulation runs for

all package of passive measures combinations in Table 5.1 are also provided.
The statistical calculations to derive Table 5.2 are

also found in Microsoft Excel file ’2017 Model D vs Model A validation calculations’.

5.3.2.2 11
Ch 5 GHG Price

development
regression

Not applicable
The data and modelling to develop the GHG carbon emission regression price trend analysis in

Figure 5.5 is provided in Microsoft Excel file
’Carbon Emissions Price regression analysis’.

5.3.2.3 12

Ch 5 Model D
JEPlus Parametric

simul
electric

1. 2017 Model
& results

2. 2018 Model
& results

3. 2018_10 Model
& results

4. 2019 Model
& results

The folders contains the JEPlus parametric models and corresponding parameteric simulation
results from Model D for annual electricity end-use consumption. Results are provided for

each year 2017 to 2019 weather and occupancy schedules. The results together with the
parametric simulation results from the DHW model (refer to folder ’Ch 5 JEPlus

Parametric simulations DHW’) are combined in Microsoft Excel file ’Cost_opt_study
_simulations_mean_post_values’ in folder ’Ch 5 Cost-optimal Python note book’ for each

year seperately. These simulation results are an input to the Python Jupyter notebook
’Hotel_3_cost_opt_analysis’ in folder ’Ch 5 Cost-optimal Python note book’

set-up for each year under study. These results are used by the notebook to execute step 5
of the proposed cost-optimal approach to derive NZEB EP benchmarks for each year under

study separately.

5.3.2.3 12

Ch 5 JEPlus
Parametric
simulations

DHW

1. 2017 Model
& results

2. 2018 Model
& results

3. 2018_10 Model
& results

4. 2019 Model
& results

The folders contains the JEPlus parametric models and corresponding parametric simulation
results from the DHW energyPlus model for annual LFO end use consumption. Results
are provided for each year 2017 to 2019 occupancy schedules. The results together with
the parametric simulation results from Model D (refer to folder ’Ch 5 JEPlus Parametric

simulations elec’) are combined in Microsoft Excel file ’Cost_opt_study
_simulations_mean_post_values’ in folder ’Ch 5 Cost-optimal Python note book’ for each

year separately. These simulation results are an input to the Python Jupyter notebook
’ Hotel_3_cost_opt_analysis’ in folder ’Ch 5 Cost-optimal Python note book’ set-up for each

year under study. This results are used by the notebook to execute step 5 of the proposed
cost-optimal approach to derive NZEB EP benchmarks for each year under study separately.



Table B.5: Description of GitHub repository folders and sub-folders for Chapter 5...ctd

Section Footnote Folder name Sub-folders Description

5.3.2.3 14, 15
Ch 5 Degree days

notebook

1. Python DD
analysis

2. Excel DD
calculator

The folders contain Python notebook ’Degree_day_analysis.ipynb’ that uses outside hourly
dry-bulb temperature data for the years 2017 to 2019 obtained from the Malta International
Airport and the monthly metered electrical energy consumption data of the hotel RB case-

study. The notebook automatically determines the optimal base temperatures
using the Degree Day analysis approach described in ASHRAE [372]. The folders also contain a

Microsoft Excel file ’Heating cooling DD calculator 2010 2016 2017 2018 2019’ containing
hourly dry-bulb temperature data for the year 2010 and years 2016 to 2020, that allows

degree days to be calculated on a monthly resolution for these years for given base temperatures.

5.3.3 17
Ch 5 Model D

JEPlus risk propag

1. 2017 JEPlus
models & results

2. 2018 JEPlus
models & results
3. 2018_10 JEPlus
models & results

4. 2019 JEPlus
models & results

The folders contain the JEPlus/EnergyPlus files to execute the risk analysis simulation runs
from Model D and corresponding results for each year and NZEB EP ambition level including
the reference scenario under consideration. The simulation results in spreadsheet format are

combined with the simulation results for the DHW model from folder ’Ch 5 JEPlus DHW
risk propag’ for each year and ambition level separately and are an input to the Python

Jupyter notebook ’ Hotel_3_cost_opt_analysis’ found in folder ’Ch 5 Cost-optimal
Python note book’. A different notebook is used for each year under study.

These results are used by the notebook to execute step 6 of the proposed cost-optimal
approach and to construct the required joint plot visualisations shown in Figure

5.3.

5.3.3 17
Ch 5 JEPlus

DHW risk propag

1. 2017 JEPlus
models & results

2. 2018 JEPlus
models & results
3. 2018_10 JEPlus
models & results

4. 2019 JEPlus
models & results

The folders contain the JEPlus/EnergyPlus files to execute the risk analysis simulation runs
from the DHW model and corresponding results for each year and NZEB EP ambition level
including the reference scenario under consideration. The simulation results in spreadsheet

format are combined with the simulation results for Model D from folder ’Ch 5 JEPlus Model D
risk propag’ for each year and ambition level separately and are an input to the Python

Jupyter Notebook ’ Hotel_3_cost_opt_analysis’ found in folder ’Ch 5 Cost-optimal
Python note book’. A different notebook is used for each year under study. These results

are used by the notebook to execute step 6 of the proposed cost-optimal approach and
to construct the required joint plot visualisations shown in Figure 5.3.

5.3.2.3,
5.3.3

13,16,18,9,10
Ch 5 Cost-optimal
Python note book

1. 2017 models
& results

2. 2018 models
& results

3. 2018_10 models
& results

4. 2019 models
& results

Each subfolder, one for each year under study, contains a Python Jupyter notebook entitled
’ Hotel_3_cost_opt_analysis’. The notebook first defines the global LCC parameters for

all ECMs, shown in Section 5.3.2.2 for the RB case-study. It then uses these
financial parameters values and the combined simulation results of Model D and the DHW model
to calculate the EN 15459 [54] global LCC for each COM, to generate the cost-optimal plots using

the visualisations shown in Figure 5.2 and to automatically define
the four NZEB EP ambition levels defined in Section 5.2.1. The Python notebook

also uses the combined risk propagation results of Model D and the DHW model to perform
the risk analysis for each defined NZEB EP ambition level and to derive the joint plot visualisations

shown in Figure 5.3. The same Python notebook also calculates the robust
and deterministic financial risk for each ambition level as defined in Equation 5.3 and

Section 5.2.1 respectively.



Table B.6: Description of GitHub repository folders and sub-folders for Chapter 5...ctd

Section Footnote Folder name Sub-folders Description

5.4 20 Ch 5 SBEM analysis

1. SBEM models
COPs of 1

2. SBEM COMS
EP analysis

The folders provide SBEM-MT energy models for the RB case study that calculate the energy
demand (i.e. the models are defined with a seasonal COP of 1 for space heating and cooling) for

all considered passive combination of measures. Using the results from this energy demand
analysis, the full parametric EP analysis involving 64 COMs for each of the two RB SBEM-MT

model configurations defined in Section 5.4 was carried out. This was possible by
converting the energy demand to energy end-use energy consumption by varying the COP of the

space cooling and space heating systems for each COM under consideration using Microsoft
Excel file ’ASSET_Cost_opt_sheets_for_Python_input’ found in sub-folder ’SBEM COMS

EP analysis’. These parametric results are an input to the Python Jupyter Notebook ’Hotel_3_cost_opt_analysis’
found in folder ’Ch 5 Cost-optimal Python note book’. A separate notebook

was set-up for each RB SBEM-MT model configuration. These results are used by the
notebook to execute step 5 of the proposed cost-optimal approach to derive NZEB EP benchmarks

and to calculate the deterministic financial risk for each resulting NZEB EP ambition level.

5.4 21 Ch 5 SBEM analysis

1. Python cost-opt
analysis/

2018_10 Manuf
_Data_sheet

_values
2. Python cost-opt

analysis/2018_10 Post
_calibrated

_values

Each subfolder, one for each SBEM RB model under study configuration, as defined in Section
5.4, contains a Python Jupyter notebook. The notebook first defines the

global LCC parameters for all ECMs, shown in Section 5.3.2.2 for the RB
case-study. It then uses these financial parameter values and the parametric results from

Microsoft Excel file ’ASSET_Cost_opt_sheets_for_Python_input’, found in sub-folder
’SBEM COMS EP analysis’, to calculate the EN 15459 [54] global LCC for each COM, generate the

cost-optimal plots using the visualisations shown in Figure 5.2, and to
automatically define the four NZEB EP ambition levels defined in Section 5.2.1.

The notebook also calculates the deterministic risk for each NZEB ambition level as defined in
Section 5.2.1.



C

2017 DHW Schedule A

Schedule:Compact,

Hotel_EnsuiteBed_Occ,

Fraction,

Through: 31 Jan,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.72,

Until: 09:00, 0.18,

Until: 21:00, 0,

Until: 22:00, 0.18,

Until: 23:00, 0.54,

Until: 24:00, 0.72,

For: Weekends,

Until: 08:00, 0.72,

Until: 09:00, 0.18,

Until: 21:00, 0,

Until: 22:00, 0.18,

Until: 23:00, 0.54,

Until: 24:00, 0.72,

For: Holidays,

Until: 08:00, 0.72,

Until: 09:00, 0.18,

Until: 21:00, 0,

Until: 22:00, 0.18,

Until: 23:00, 0.54,

Until: 24:00, 0.72,

221



Appendix C. 2017 DHW Schedule A

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 28 Feb,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.81,

Until: 09:00, 0.20,

Until: 21:00, 0,

Until: 22:00, 0.20,

Until: 23:00, 0.61,

Until: 24:00, 0.81,

For: Weekends,

Until: 08:00, 0.81,

Until: 09:00, 0.20,

Until: 21:00, 0,

Until: 22:00, 0.20,

Until: 23:00, 0.61,

Until: 24:00, 0.81,

For: Holidays,

Until: 08:00, 0.81,

Until: 09:00, 0.20,

Until: 21:00, 0,

Until: 22:00, 0.20,

Until: 23:00, 0.61,

Until: 24:00, 0.81,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 31 Mar,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.74,

Until: 09:00, 0.185,

Until: 21:00, 0,

Until: 22:00, 0.185,

Until: 23:00, 0.555,

Until: 24:00, 0.74,

For: Weekends,

Until: 08:00, 0.74,

Until: 09:00, 0.185,
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Until: 21:00, 0,

Until: 22:00, 0.185,

Until: 23:00, 0.555,

Until: 24:00, 0.74,

For: Holidays,

Until: 08:00, 0.74,

Until: 09:00, 0.185,

Until: 21:00, 0,

Until: 22:00, 0.185,

Until: 23:00, 0.555,

Until: 24:00, 0.74,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 30 Apr,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.89,

Until: 09:00, 0.2225,

Until: 21:00, 0,

Until: 22:00, 0.2225,

Until: 23:00, 0.6675,

Until: 24:00, 0.89,

For: Weekends,

Until: 08:00, 0.89,

Until: 09:00, 0.2225,

Until: 21:00, 0,

Until: 22:00, 0.2225,

Until: 23:00, 0.6675,

Until: 24:00, 0.89,

For: Holidays,

Until: 08:00, 0.89,

Until: 09:00, 0.2225,

Until: 21:00, 0,

Until: 22:00, 0.2225,

Until: 23:00, 0.6675,

Until: 24:00, 0.89,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,
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Through: 31 May,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.83,

Until: 09:00, 0.21,

Until: 21:00, 0,

Until: 22:00, 0.21,

Until: 23:00, 0.6225,

Until: 24:00, 0.83,

For: Weekends,

Until: 08:00, 0.83,

Until: 09:00, 0.21,

Until: 21:00, 0,

Until: 22:00, 0.21,

Until: 23:00, 0.6225,

Until: 24:00, 0.72,

For: Holidays,

Until: 08:00, 0.72,

Until: 09:00, 0.21,

Until: 21:00, 0,

Until: 22:00, 0.21,

Until: 23:00, 0.6225,

Until: 24:00, 0.83,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 30 Jun,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,

Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: Weekends,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,
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Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: Holidays,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,

Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 31 Jul,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.97,

Until: 09:00, 0.2425,

Until: 21:00, 0,

Until: 22:00, 0.2425,

Until: 23:00, 0.7275,

Until: 24:00, 0.97,

For: Weekends,

Until: 08:00, 0.97,

Until: 09:00, 0.2425,

Until: 21:00, 0,

Until: 22:00, 0.2425,

Until: 23:00, 0.7275,

Until: 24:00, 0.97,

For: Holidays,

Until: 08:00, 0.97,

Until: 09:00, 0.2425,

Until: 21:00, 0,

Until: 22:00, 0.2425,

Until: 23:00, 0.7275,

Until: 24:00, 0.97,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 31 Aug,

For: Weekdays SummerDesignDay,

225



Appendix C. 2017 DHW Schedule A

Until: 08:00, 1,

Until: 09:00, 0.25,

Until: 21:00, 0,

Until: 22:00, 0.25,

Until: 23:00, 0.75,

Until: 24:00, 1,

For: Weekends,

Until: 08:00, 1,

Until: 09:00, 0.25,

Until: 21:00, 0,

Until: 22:00, 0.25,

Until: 23:00, 0.75,

Until: 24:00, 1,

For: Holidays,

Until: 08:00, 1,

Until: 09:00, 0.25,

Until: 21:00, 0,

Until: 22:00, 0.25,

Until: 23:00, 0.75,

Until: 24:00, 1,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 30 Sep,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.82,

Until: 09:00, 0.205,

Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,

For: Weekends,

Until: 08:00, 0.82,

Until: 09:00, 0.205,

Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,
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For: Holidays,

Until: 08:00, 0.82,

Until: 09:00, 0.205,

Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 31 Oct,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,

Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: Weekends,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,

Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: Holidays,

Until: 08:00, 0.85,

Until: 09:00, 0.2125,

Until: 21:00, 0,

Until: 22:00, 0.2125,

Until: 23:00, 0.6375,

Until: 24:00, 0.85,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 30 Nov,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.82,

Until: 09:00, 0.205,
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Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,

For: Weekends,

Until: 08:00, 0.82,

Until: 09:00, 0.205,

Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,

For: Holidays,

Until: 08:00, 0.82,

Until: 09:00, 0.205,

Until: 21:00, 0,

Until: 22:00, 0.205,

Until: 23:00, 0.615,

Until: 24:00, 0.82,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0,

Through: 31 Dec,

For: Weekdays SummerDesignDay,

Until: 08:00, 0.86,

Until: 09:00, 0.215,

Until: 21:00, 0,

Until: 22:00, 0.215,

Until: 23:00, 0.645,

Until: 24:00, 0.86,

For: Weekends,

Until: 08:00, 0.86,

Until: 09:00, 0.215,

Until: 21:00, 0,

Until: 22:00, 0.215,

Until: 23:00, 0.645,

Until: 24:00, 0.86,

For: Holidays,

Until: 08:00, 0.86,
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Until: 09:00, 0.215,

Until: 21:00, 0,

Until: 22:00, 0.215,

Until: 23:00, 0.645,

Until: 24:00, 0.86,

For: WinterDesignDay AllOtherDays,

Until: 24:00, 0;
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