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Abstract

This dissertation analyses different sources of sea waves data for the Mal-
tese Islands. The first aim was to establish the comparability of different
datasets, be it modelled or measured, hindcast or forecast, for the purpose
of operational use. The second aim was to asses the power potential, using
the same datasets as before, and investigating the applicability of differ-
ent Wave Energy Converters (WECs). The dataset sources considered are
the following: Directional Wave Spectral Drifter (buoy), HF Radar, Satel-
lite, Copernicus model, and ROSARIOSWAN model. The ROSARIOSWAN
model used in this work is one which has yet to be extensively validated and
fine tuned, and so, this work serves to contribute to its further development.

The inter-comparison of data from the considered datasets (excluding HF
radar) generally yielded the the best correlation for the significant wave
height (SWH) comparison, and the worst for the peak period comparison.
ROSARIOSWAN models tend to overestimate the buoy values, while the
Copernicus model compares better, despite lower resolution. Filtering out
data with lower SWH yielded better correlation for all but the SWH parame-
ter, when comparing buoy and model data. Two prominent wave directions,
East and North-West, resulted from this analysis.

The wave power potential analysis indicated that the Maltese Islands have a
low potential for wave energy extraction (Class I) due to, mainly, low SWH;
this is typical of enclosed seas. In addition, high variability in the Maltese
Waters further worsen the situation. The WEC found to be most suitable
in this study is the point absorber Wavestar C6 which, at the buoy posi-
tion, has an annual average output power of 192.7 kW and capacity factor
of 32.1%.
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Chapter 1

Introduction

The diversification of the energy mix through the increased contribution

from renewable energy is one of the fundamental aspects of sustainable de-

velopment. Several existing technologies are reaching their mature stage in

the extraction of renewable energy and so, have been widely commercialised

and applied. However, focusing on the development of newer and more ef-

ficient technologies, is still important in the aim of diversification. Wave

energy is one such field where a lot of research is being carried out in order

to understand the resource and how to adequately extract it. One of the

main challenges of wave energy, like wind energy, is that it is stochastic. This

implies that the long-term generation of wave energy, and energy which can

be extracted, has to be estimated using statistical trends. [1].

In such applications, the validation and use of wave forecasts is very im-

portant. Numerical models provide a way to estimate the energy that can

be generated over the reliable timescale of the wave model [1]. However,

apart from wave forecasts and hindcasts, sea wave measurements obtained

through in-situ and remote sensing, are equally important. These kinds of

measurements are essential for the verification of model data; model data

indeed exists to overcome one of the main limitations of measured data,
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the spatial coverage limitation. It is then important for modelled data to be

compared and assimilated to actual measurements to provide more and more

reliable results. The process of assimilation is a means of integrating mea-

sured data, from in-situ or remote sensing instruments, into the modelled

data calculation procedure in order to increase the accuracy of the model

[2, 3].

Wave buoys are frequently used to measure in-situ wave parameters. These

use an accelerometer, an electronic compass, and a gyroscope to measure

sea waves based on the principle of gravity acceleration. In recent years,

GPS wave buoys have also become popular since these are a low cost new

wave measurement method that uses satellite GPS signals to measure ocean

waves. In-situ Acoustic Doppler Current Profilers that are mounted on

the seabed, can also measure waves by using the doppler effect. Remote

sensing measurements usually are capable of covering larger areas of sea

waves through their non-direct method of measurement. Examples of these

are X-band radar, High Frequency radar, radar altimeters (equipped aboard

satellites) and synthetic aperture radar.

The Physical Oceanography Research Group of the University of Malta have

been using various systems to measure waves in the local context. The

CALYPSO HF radar system [4] consists of a network of seven HF radars,

four of which are located in Malta and Gozo. These observations are added

to numerical modelling endeavours that have been now enhanced to cover

the whole Malta shelf area.

The first goal of this research was to review the existing systems and com-

pare the performance of different datasets with the intention of integrating

measurements across observations and models for cross-validation and ex-

ploitation in operational services. In particular, the inter-comparison of

datasets allowed for a quantitative assessment on the quality and readabil-
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ity of model data to be made. These comparisons are done mainly through a

linear regression and probability density function analysis, along with calcu-

lation of several statistical parameters that further inform the relationship

between two datasets. In order to further test the modelled data, a signifi-

cant wave height analysis is performed. This analysis provides information

on the capability of the model to correctly detect a wave height above a

threshold limit. The information from these comparisons yield useful in-

sights to the performance of modelled data as well as the comparability of

measured values. In particular, the ROSARIOSWAN model used in this

work has yet to be extensively validated, and so, the comparisons made will

contribute to its further development and fine tuning.

The second major goal of this research was to use wave data to provide

assessments on the wave resource potential in hindcast and forecast mode

relevant to the Maltese Islands. This entails the calculation of wave power

available using both point datasets of measured and modelled data, along

with regional calculations using mapped model data. The point data allows

for cross comparison between most of the datasets, while the mapped model

data allows for spatial analysis. The use of mapped model data in the

forecast mode is then useful in providing a tool for the forecasting of the

wave energy resource around the Maltese Islands. In addition, looking into

the WECs and their resulting power output at a point and over a spatial

domain is useful in giving an indication of their suitability.

This report is organised as follows:

In Chapter 2, a literature review that covers the different background in-

formation required in order to give context to following Chapters and the

work carried out in this dissertation, is presented. The sections touch on the

different wave data acquisition systems, wave models, validation and assim-

ilation of wave data, wave energy converters, and previous studies that have
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been carried out.

Chapter 3 presents the methods through which the required data was ob-

tained for analysis. Mainly, the correlations and comparative methods that

were carried out are described. The power potential calculation methods

for the wave power and WEC output, are also put forward. Finally, a

Multi-Criteria Approach (MCA) for WEC technology and installation loca-

tion selection, is described. Chapter 4 describes the datasets utilised in this

work; this consists of model data from the Copernicus Model and ROSAR-

IOSWAN model, and in-situ and remote sensing data from buoy, HF radar,

and satellite. Finally, the bathymetry, that represents the depth at different

locations, is described in relation to the different locations of data acquisi-

tion.

Chapter 5 presents the results obtained from the work carried out based on

the methods described in Chapter 3. An interpretation and brief discussion

follows each of the presented results.

General conclusions about the main findings of this study as well as possible

future work, are finally presented in Chapter 6.
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Literature Review

In this Chapter, different background information is presented reflecting the

requirements of this work in order to give context to following Chapters and

the work carried out in this dissertation. This section touches on the different

wave data acquisition systems, wave models, validation and assimilation

of wave data, wave energy converters and previous studies that have been

carried out. In this regard, the Chapter provides a mix of both a theoretical

and qualitative description of the discussed topics.

2.1 Wave data acquisition systems

As has been mentioned, several different methods of wave data acquisition

exist. Each of these have associated with them their own key characteristics

which makes them preferred in some situations over other technologies; the

key characteristics of some of these are summarised in Figure 2.1.

The first three systems listed in Figure 2.1 are in-situ measurement devices,

whereas the last two are remote measuring devices; these two types of mea-

surement devices will be discussed in the following Sections [5].
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Figure 2.1: Wave measurement systems [5]

2.1.1 In-situ

Wave Buoys

Wave buoys are the primary method of in-situ measurements when it comes

to wave parameters [6]. The networks of dispatched buoys are most of the

time not intended for wave resource estimation and so, oftentimes, wave

buoys are dispatched according to the requirements of the project [6]. One

such network is WaveNet [7] deployed around the UK and buoy networks

belonging to several different programs are agglomerated by the National

Data Buoy Center [8]. Wave buoys operate with on-board accelerometers

that measure vertical acceleration and convert it to vertical displacement η

by the integration

η =

∫∫
dw

dt
, (2.1)

where w is the vertical acceleration [6]. From this, the time series of eleva-

tion is obtained [6]. Directional information can be obtained with additional

sensors which can detect the tilt of the buoy and monitor the north direc-

6



Chapter 2: Literature Review

tion, or with buoys that can track their horizontal motion by utilising the

Earth’s magnetic field [6]. Direction can also be deduced from modern non-

directional buoys since these are equipped satellite communication facilities;

by considering the buoy anchor location and the buoy location given by GPS,

the bearing angle can be found as done by Drago et al. [9]. The wave charac-

teristics that are sought after from the wave buoys are temporal, directional

and spectral [6].

GPS wave buoys function through the utilisation of satallite communica-

tions, without the need for on-board accelerometers due to the high accuracy

of GPS [6]. GPS buoys require higher energy consumption and consistent

connections with satellites in order to function; this can be problematic dur-

ing rough sea conditions [6]. The tilt of the buoy can be measured using

inclinometers (2 perpendicular directions). When acquiring wave data, very

long periods of collection may be impractical depending on the time-scale of

the project at hand; in this case, 1 year of buoy data usually suffices for the

verification of wave models since this captures the seasonal and short-term

variability [6]. The following are the types of characteristics obtained [6]:

• Temporal : Significant Wave Height (SWH), wave period

• Directional : ‘Waverose’ or statistical properties of the direction prop-

erties are usually presented (ex. mean direction).

• Spectral : (spect. vs freq) This kind of information is useful when

considering WECs because of the different optimal operational fre-

quencies.

Because wave buoys have been in use for such a long time, the technol-

ogy is well-established and so is their accuracy, which is beneficial for wave

measurements [5]. Limitations are also well understood; steep waves, harsh
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conditions, expense and risk of loss of equipment [5]. The modern GPS

buoy has been shown to be more robust than the traditional accelerometer

version due to the lack of moving parts, easier deployment and transport

[10]. Data from the GPS buoy can be extracted through the Doppler shift

in the frequencies of the GPS signal due to the motion of the buoy [10].

Some limitations of the GPS buoy data extraction method comes from the

requirement of a fixed reference point, restricting the distance from the buoy

to station [10].

Acoustic Waves and Current Profiler

The Acoustic Wave and Current Profiler (AWCP) is another method of mea-

suring wave height which is installed at the sea bed [6]. The AWCP is a

type of Acoustic Doppler Current Profiler (ADCP) with an additional trans-

ducer in the vertical sense which allows for wave measuring [6]. The beams,

three or more, are used to characterise the current by utilising a diverging

beam pattern [6]. It functions by emitting an acoustic signal followed by

the receiver sampling at different times in order to establish the distance at

which the signal was reflected, from which the current can then be profiled

(see Figure 2.2) [6]. The AWCP allows for the measurement of both waves

and currents concurrently, providing room for their interaction to also be

investigated [6].

Data reflected off of hard surfaces is neglected since this signal will be

stronger than the other reflected waves, overpowering them in the process

[6]. The ADCP then doesn’t sample certain areas in order to avoid this kind

of echo along with the ‘blanking distance’; the latter is an area in which a

pulse lingers after it is transmitted, leading to a type of ringing [6]. These

omitted sampling areas are then extrapolated in the post processing of the

velocity data [6]. Errors in this type of system are reduced through the con-
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Figure 2.2: Range-time plot showing how and ADCP transmits pulses and
echos travel through space [6]

sideration of an ensemble average, whose averaging interval must be chosen

carefully to balance out the instruments noise (large interval) and for how

long can the flow be statistically taken to be stationary [6].

ADCPs are often moored such that they are upward facing; the structure

on which they are to be deployed have to take into account the strength of

the currents at the location in order to prevent movement post-installation

[6]. The European Marine Energy Center (EMEC) gives a 30-day minimum

deployment standard for tidal resource evaluation, justified through the con-

sideration of the Rayleigh criteria [6]. In reality, the length of deployment

depends on factors such as cost, logistics, battery life, internal memory and

weather adequacy [6]. The moored depoloyment has the benefit that it is

not that affected by severe weather or marine traffic [6]. ADCPs can also be

attached to the hulls of ships, looking down into the water, for measurement

by accounting for the motion of the ship itself in the processing of the data;

this sort of deployment is not adequate for measuring the vertical velocity
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component or estimating the turbulance properties [6].

AWCP are required to be deployed in relatively shallow areas (less than

50m) as the signal would be less capable of resolving the vertical velocities

of waves, the further away from the surface the device is [5]. The AWCP

oftentimes stores its data on-board, meaning that the data will only be

accessible once the device is retrieved, and the quality of said data only

realised then [5].

2.1.2 Remote sensing

X-band radar

X-band radar utilises the frequency range 8-12 GHz and systems are found

on several large research vessels; they are able to measure both waves and

currents [6]. This is possible through the reflection of the signals by the

sea surface, primarily through the process of Bragg Scattering [6]. This ‘sea

clutter’ is then processed in order to obtain the relevant wave parameters

[6]; different approaches to obtain the SWH (Hs) have been developed, some

of which are empirical [11, 12], semi-physical [13] and purely physical [14].

X-band is limited by its short range and the requirement of significant ‘sea

clutter’ that can be picked up by the system [6].

HF radar

High Frequency (HF) radar has an edge over the range of X-band radar

due to the lower frequencies used, 3-30 Mhz, which can reach up to 200

km, however, the resolution is less than that achievable by X-band radar

[6]. The range benefits give these systems the possibility for them to be
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installed and maintained onshore, leading to them being utilised for long-

term monitoring and keeping them away from exposed hostile conditions

[6, 5]. Using the Doppler shift Bragg scattered at the surface, the radars

are capable of measuring the surface currents through the utilisation of at

least two HF stations [6]. The mechanism behind HF measurements of wave

heights, associated with first-order Bragg scattering, was discovered in 1955

[15] and later theorised in 1971 [16]. The directional information of the

sea state was shown to be obtainable from the second-order echo by Lipa

[17]. Through an HF radar system survey in Europe [18], an inventory was

compiled by EuroGOOS and the locations of the ongoing systems (amongst

others) are displayed geographically on their online portal; there are four

such stations installed in Malta [19]. The depth up to which the radar can

pick up currents is that of λR/8π, where λR is the radio wavelength [6].

Such HF systems need calibration in order to produce meaningful data; this

is often done by considering another local wave measuring instrument (such

as a buoy) for data comparison [5].

Satellite and synthetic aperture radar

Satellite sensing is very good at providing global coverage and can return

altimetry information from which wave height can be deduced; this informa-

tion is extracted from the time it takes for the radar pulse to travel from the

satellite to the sea surface and back again [6]. The data in this case, however,

tends to be more coarse, and repeated measurements over the same region

are more widely spaced temporarily, making them less useful for direct char-

acterisation of the temporal properties of oceans [6]. This kind of data is

then more useful in the validation of the spatial capabilities of wave models

as it has the benefit of covering large geographical area [6, 5]. Altimetry-

derived data can be used to obtain information about ocean tides, but is
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usually assimilated with hydrodynamic models for a more accurate result

[6]. In coastal areas, the presence of land deforms the waveforms, making it

difficult to extract useful data from it; this is usually discarded [6].

Synthetic Aperture Radar (SAR) is essentially the same technology as X-

band radar, but instead is installed on satellites or air-craft; the combined

information on the movement of the aircraft and the signal that is trans-

mitted and received allows for smaller antennas to be used, resulting in an

effective large antenna [6].

2.2 Models

2.2.1 Wave Models

The use of models for the simulation of the oceans and seas is beneficial

in that they provide a less costly alternative to in-situ measurement cam-

paigns; this makes models highly suitable for the scoping stages of a project

[20]. It is important to keep in mind, however, that model data is reliant on

its inputs, which can only be parametrised and validated by in-situ measure-

ments [20]. The models that are used mostly nowadays are third generation

phase-averaged wave models where, as opposed to the second generation

models, the wave spectrum evolution is based on the physics governing the

wave generation; the three drivers of wave generation are wind, dissipation

and nonlinear wave-wave interaction [20, 21]. These third generation models

are based on the solving of the action density, N , balance equation

∂N

∂t
+

∂cλN

∂λ
+

∂cϕN

∂ϕ
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
, (2.2)
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where σ is the angular frequency, θ is the wave direction, λ and ϕ are the

zonal and meridonal directions and cλ, cϕ, cσ and cθ are the propagation ve-

locities in their respective spaces, and Stot is the source term [20]. The most

commonplace wave models using this formulation for resource assessment

are WAM [21], SWAN [22] and GFS-Wave (previously WAVEWATCH III)

[23]. The models function by calculating for the source terms, Stot, that are

contributed by wind, dissipation and nonlinear wave-wave interaction [20].

The wind input contributes both a linear (A) and exponential growth (BE),

the former being significant during the early growth by the turbulence above

the sea surface and the latter in later stages when the movement of the wave

depends on its own size [20]. This contribution can be thus described by

Sin(σ, θ) = A+BE(σ, θ). (2.3)

Wave breaking (white capping), interaction with the sea bed and depth-

induced wave breaking contribute to the dissipation of the wave energy;

in deep water, the waves are dissipated only through the process of white

capping [24]. The wave energy due to the sea bed friction can be expressed

by the equation

Sds, b = −Cb
σ2

g2 sinh2 kd
E(σ, θ), (2.4)

whereas the physics behind the dissipation due to wave breaking is the least

understood in wave evolution and cannot be formulated as easily [20, 25].

This form of dissipation is then expected to have a smaller impact on the

wave evolution due to its relative rareness (at most about 5%), however,

focus to formulate better models for this term should not be underestimated

[25]. The dissipation due to wave breaking is then, generally, taken to be
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based on Hasselmann’s statistical formulation

Sds, w = −ησ2E(k), (2.5)

where η is a constant that represents the statistical properties of the dissi-

pation process and k is the wavenumber [26], and is often considered in the

form

Sds, w = −Γσ̃
k

k̃
E(σ, θ), (2.6)

where Γ is related to the steepness of the waves, σ̃ and k̃ are the mean fre-

quency and mean wave number, respectively [22]. In the case of the SWAN,

the depth-induced wave breaking is integrated into the model through the

inclusion of the source term

Sds, br = −Sds, br, tot

Etot

E(σ, θ), (2.7)

where Etot is the total wave energy and Sds, br, tot the rate of dissipation of

Etot [22].

For the case of nonlinear interactions, two main processes dominate. These

are three-wave interactions and four-wave interactions; the former are im-

portant in shallow waters and the latter in deep and intermediate water [20].

Three-wave interactions cannot occur in deep waters because the resonance

conditions, by which these nonlinear interactions are governed, cannot be

satisfied by three freely propagating waves [24]. The interaction in deep wa-

ter occurs due to the forming of two diamond patterns by two pairs of two

interfering waves and, given that these four components satisfy the following
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f1 + f2 = f3 + f4 (2.8)

k⃗1 + k⃗2 = k⃗3 + k⃗4, (2.9)

where f is the frequency and k⃗ is the wave-number vector, these two di-

amond patterns will interact between them; these are called quadruplet

wave-wave interactions [24]. These interactions do not change the energy

in the spectrum overall, as they only redistribute it [24]. The interaction be-

tween three-waves, triad wave-wave interactions, occur when the following

resonance conditions are met

f1 + f2 = f3 (2.10)

k⃗1 + k⃗2 = k⃗3 [24]. (2.11)

The WAM model [21] was the first realisation of such a third generation

model as described here, and the development of WAVEWATCH III [23]

based on this model. Because of the varying properties of wave evolution

at different sea depths, the SWAN model was developed from WAM such

that this model includes the effects of the additional dispersion mechanisms

experienced in coastal areas (shallower areas) [22]. This model then takes

into consideration also the geometries of coastal areas and how the waves

interact with these obstacles (by processes of transmission and reflection)

[24].

2.2.2 Wind forecasting models

Apart from the utilisation of wave models, it is worth noting that the input

to the source term in equation 2.2 that comes from wind, equation 2.3, is
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often driven by wind forecast models when simulations are done in forecast

mode. Indeed, the performance of the model varies according to which wind

model is utilised in the simulation; one such study to compare the different

outcomes from combinations of three different wave models driven by four

different wind fields was carried out by Ardhuin et al. [27].

There exists several approaches to the problem of wind forecasting. Different

methods are applicable in different cases according to the required prediction

horizon; broadly classified, these can be ultra-short-term (few minutes - 1hr),

short-term (1 hr - several hrs), medium-term (several hrs - 1 week), long-

term (1 week - 1 yr and beyond) [28].

One type of wind forecasting is based on persistence modelling, wherein the

future wind speed is assumed to be the same as that when the prediction was

made [28]. This kind of modelling is applicable only on the ulta-short-term

time scale since accuracy rapidly decreases with increase in time [28].

Another approach is to consider numeric weather prediction (NWP). Terrain

and more localised topological features are considered in this type of mod-

elling, where factors such as temperature, pressure, surface roughness and

obstacles are also integrated into the model [28, 29]. Increasing the spatial

resolution of such models, to include more and more obstacle and terrain

detail, increases the computational power required to use this type of mod-

elling [28]. High resolution models of this kind are then not very feasible to

use in short-term predictions due to the computational load they incur [29].

Primarily based on historic values, statistical approaches of wind predic-

tions are cheaper and easier to model since they do not need the same

amount of computational power to resolve [28]. These types of models in-

clude techniques such as auto regressive (AR), auto regressive moving aver-

age (ARMA), auto regressive integrated moving average (ARIMA), Bayesian
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approach, and gray predictions [28]. These types of models are mostly ap-

propriate for the short-term time-scale [28].

As in other data driven fields, artificial intelligence (AI) is also used in

the field of wind prediction. One of the benefits of using AI is that the

model does not require a predefined mathematical model, and is based on

the training period of the model [29]. Some of the type’s of AIs that have

been adopted for wind forecasting efforts include artificial neural network

(ANN), adaptive neuro-fuzzy inference system (ANFIS), fuzzy logic meth-

ods, support vector machine (SVM), neuro-fuzzy network, and evolutionary

optimization algorithms [28].

In addition to the methods defined above, hybridised approaches have also

been considered in order to create better optimised models [28]. This ap-

proach allows for information to be lent from one model to another, creating

an overall more robust model [28].

2.3 Validation and assimilation

2.3.1 Validation

The validation of models is an important exercise in order to add confidence

to its utilisation. Once a model is validated, it can be applied in other

regions, insofar that the parameters have not been overly fit to meet the

testing location [20]. The commonly used metrics that are used in validation

exercises of models are the correlation coefficient, Root Mean Square Error

(RMSE), Scatter Index (SI), Mean Absolute Error (MAE) and bias [20].

These methods will be further expanded on in Chapter 3.
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2.3.2 Assimilation

It is more commonplace to find assimilation of observations within the nu-

merical weather prediction and ocean modelling communities rather than in

the field of operational wave modelling [30]. The process of assimilation can

greatly, and positively, impact the quality of numerical wave forecasts as it

aims to minimise the difference between measurements and model estimates

by integrating the former into modelling procedures [2, 3]. Techniques of as-

similation are generally divided into sequential and variational techniques;

in the former, previous model states are not taken into consideration, but

the model is corrected at each individual time step [2]. In the case of varia-

tional techniques, these consider the dynamics of the wave model as a whole

by the recalculation of the waves, and not just considers the error between

measurement and prediction at each step [2].

In light of the positive effects that assimilation has on the models, several

studies that deal with modelling of waves carry out exercises of assimilation

with measured data. Examples of which are the assimilation of the: WAM

model with data from SAR and buoy data [31], WAVEWATCH III model

with data from satellite altimeter and buoy data using the NEMOVAR vari-

ational scheme [30], WAM model with altimeter data using a sequential

method [32] and even the use of a neural network for the assimilation of

buoy data with a SWAN model nested in a WAVEWATCH III model [33].

Sequential Methods

The sequential methods are generally less computationally intensive than

variational methods, which has lead to their extensive use in operational

applications especially in the past [3]. This results because these methods

consider the model only forward in time, and are so time independent; two
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such sequential methods are Optimal Interpolation (OI) and the Kalman

filter [3].

The first documented use of the OI method for SWH analysed-field con-

struction was done by Lionello et al. [32], and provided the first consolidated

technique capable of spreading altimeter data over the model grid [34, 32].

The analysed SWH in the case of the OI described by Lionello et al. [32] is

expressed as the linear combination,

H i
A = H i

P + σi
P

Nobs∑
j=1

Wij
Hj

O −Hj
P

σj
P

, (2.12)

where H i
P are model-produced, first-guess results, Hj

O are the observations,

Nobs is the number of observations, Wij are the weights chosen such that the

RMSE of the analysis (σj
A) is minimsed, and σj

P is the RMSE in the model

prediction

σj
P =

√〈
(Hj

P −Hj
T )

2
〉
, (2.13)

where Hj
T is the true SWH value. The weights, assuming that the model

and measurement errors are uncorrelated, are expressed as follows:

Wij =

Nobs∑
k=1

PikM
−1
kj , (2.14)

where,

Mkj = Pkj +Okj, (2.15)
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where P and O are the prediction and observation error correlation matrices,

respectively, which are in turn expressed as

Pkj =

〈
(Hk

P −Hk
T )(H

j
P −Hj

T )

σk
Pσ

j
P

〉
, (2.16)

and,

Okj =

〈
(Hk

O −Hk
T )(H

j
O −Hj

T )

σk
Pσ

j
P

〉
. (2.17)

The matrices P and O therefore need to be predefined; if known exactly,

which is not the case in practice, the resulting weights would be at their

optimal values [34]. Observational errors are usually assumed to be uncor-

related and random, reducing O to its diagonal values:

Okk =
σ2
obs

σ2
P

, (2.18)

where σobs is the RMSE of the observations [34]. P is a harder to specify

quantiy, but is known to be horizontally correlated [34]. Lionello et al. set

the expression of P , tentatively, as

Pkj = exp

[
−|xk − xj|

L

]
, (2.19)

in their description, where L is the decorrelation length scale and |xk − xj|

is the difference between points k and j [32]. Greenslade and Young [34]

provide a number of expressions for Pkj which have been used in literature

to describe this parameter, which will be listed here with their respective

source citation:
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Pkj =

(
1 +

|xk − xj|
L

)
exp

[
−|xk − xj|

L

]
[35], (2.20)

Pkj = exp

[
−1

2

|xk − xj|2

L2

]
[36], (2.21)

Pkj = exp

[
−
(
|xk − xj|

L

) 3
2

]
[37], (2.22)

Pkj(f) = exp

[
−1

2

|xk − xj|2

L(f)2

]
[38], (2.23)

where, for the case of the last equation 2.23, the background error correlation

function was defined as a function of wave frequency, since, full wave spectra

was assimilated [34].

In the case of the sequential process of Kalman Filtering, all the available

data is used to calculate a more accurate description of the wave state as well

as the uncertainties of the different information sources [39]. This method

will be explained as described by Talgrand in [39]. Consider the following

expression,

z = Γxt + ζ, (2.24)

where z is a vector of known available observations, xt is the unknown true

state vector, Γ is the observation matrix which is the statistically known

link between the estimated parameters and the observations, and ζ is the

associated error. An important assumption here is to consider that the error

vector is unbiased:

E(ζ) = 0 (2.25)
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and that its variances-covariances given by

E(ζζ⊤) = Σ, (2.26)

are known, where E() denotes the statistical mean. When z can be decom-

posed into two vectors:

z = (xb⊤,yo⊤)⊤, (2.27)

where xbT (dim m) is the background estimate of xt and ybT (dim p) is an

additional set of measured observations. The background estimate is an a

priori estimate of the true state, which can be derived from climatological

average data. These two variables can then be represented by

xb = xt + ζb (2.28)

yo = Hxt + ϵ, (2.29)

whereH (p×n) is the observation matrix and ϵ are the associated observation

errors. The parameters in equation 2.24 can be then expressed as

Γ = (In,H
⊤)⊤, (2.30)

ζ = (ζb⊤, ϵ⊤)⊤, (2.31)

and
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Σ =

E(ζbζb⊤) E(ζbϵ⊤)

E(ϵζb⊤) E(ϵϵ⊤),

 (2.32)

which, assuming that the errors ζb and ϵ are uncorrelated, reduces to

Σ =

Pb 0

0 R

 . (2.33)

The Best Linear Unbiased Estimate (BLUE) is then sought after in the form

xa = Az, (2.34)

while imposing the condition that xa is unbiased:

E(xa − xt) = 0, (2.35)

which is satisfied if

AΓ = In, (2.36)

while also imposing the condition that the trace of the covariance matrix of

the estimation error,

Pa = E((xa − xt)(xa − xt)⊤) (2.37)

is minimised.

The solution to this problem is given by
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A =
[
Γ⊤Σ−1Γ

]−1
Γ⊤Σ−1 (2.38)

and

Pa =
[
Γ⊤Σ−1Γ

]−1
. (2.39)

Finally, combining equations 2.30, 2.33, 2.34, 2.38 and 2.39 results in the

following expressions for xa and Pa:

xa = xb +PbH⊤[HPbH⊤ +R]−1(yo −Hxb) (2.40)

Pa = Pb −PbH⊤[HPbH⊤ +R]−1HPb (2.41)

In order to arrive to the Kalman Filtering sequential process, the temporal

dimension must be included. The resulting expressions for the temporal

versions at time k + 1 of the parameters xb
k+1, x

t
k+1 and Pb

k+1 are given by

the following expressions:

xt
k+1 = Mxt

k + ηk, (2.42)

xb
k+1 = Mxa

k, (2.43)

Pb
k+1 = MPa

kM
⊤ +Q, (2.44)

where M is the transition matrix, describing the state vector change from

time k to k+1, ηk is the model error, where the model refers to the transition

matrix, which can be considered to be the assimilation model, it is assumed

unbiased, random, uncorrelated in time and is subject to the condition that
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E(ηkη
⊤
l ) = Qδkl, (2.45)

where Q is a known covariance matrix for ηk. These considerations lead to

the BLUE being expressed as

xa
k+1 = xb

k+1 +Pb
k+1H

⊤[HPb
k+1H

⊤ +R]−1(yok+1 −Hxb
k+1) (2.46)

Pa
k+1 = Pb

k+1 −Pb
k+1H

⊤[HPb
k+1H

⊤ +R]−1HPb
k+1 (2.47)

In combination, equations 2.43, 2.44, 2.46 and 2.47 represent the sequential

process of Kalman Filtering, which gives the BLUE at time k + 1 using all

observations up to time k + 1.

Variational Methods

One of the more commonly used variational methods is that which utilises

the adjoint model. It is the numerical complexity of wave models which

makes the use of the adjoint model more computationally intensive, in gen-

eral, than sequential methods [40].

The bases of the adjoint method, as describe by Talgrand in [39], is based

on the minimisation problem described by the equations

xt
k+1 = Mxt

k, (2.48)

J(x) ≡
∑

0≤k≤N

[Hxk − yo
k]

⊤R−1[Hxk − yo
k]. (2.49)

One can note from comparing equations 2.42 and 2.48 that this approach

assumes a perfect model with ηk = 0. Equation 2.49 is the objective function,
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which is the variational formulation of the estimation of xt; J(x) is to be

minimised subject to the constraint given by equation 2.48.

The adjoint method is an approach aimed to solve the minimisation problem

numerically, and can be derived from the use of the Lagrange multipliers

technique or through the reduction of equation 2.48 to only use the initial

state x0.

2.4 Wave Energy Converters

Several different types of WECs exist due to the different approaches con-

ceived of to extract the energy from the wave energy resource; the variety

in this type of renewable extraction is much larger than for other renewable

sources, resulting in WECs whose efficiency depends on the wave character-

istics [5, 41]. These devices are generally categorised into three categories:

1. Terminators, having a larger horizontal structure perpendicular to the

wave propagation,

2. Attenuators, having a larger horizontal structure parallel to the wave

propagation,

3. and Point absorbers, whose structures are made to not be directional.

Another form of classification involves description by installation location;

onshore, near-shore and offshore [5]. This classification is helpful due to the

different necessities related to water depth and land proximity.

The IEA Ocean Energy Systems adopt a different type of classification, see

Figure 2.3, which is based more on the working principle of the WEC [42].
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Figure 2.3: Ocean Energy Systems WEC classification [42]

TheWECs considered in this work have been obtained from a study by Kam-

razand and Hadadpour [41], having themselves extracted the most common

devices used in similar studies, in order to apply a MCA to WEC selec-

tion and WEC location selection. Additionally, the Pelamis WEC is also

considered in this study due to it being mentioned in the study by Guillou

and Chapalain [43], in which the annual and seasonal variabilities in the

performances of wave energy converters was investigated.

The power matrices of WECs characterise the operation of the device under

different sea states and are hence useful in studying the performance of the

WEC in different areas. The power matrix of a WEC constitutes of a two

dimensional histogram which gives the power output for given ranges of

SWH, Hs, and energy period, TE, which will be described in more detail

in Section 3.3, and the method of obtaining the output power of WEC
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from these power matrices in combination with sea parameter data will be

described in Section 3. Information regarding the WECs is summarised in

Table 2.1.

Table 2.1: Different WEC technologies

Technology Rated power / kW Classification Matrix resolution Reference
(Hs × T )

Archimedes 2500 Point absoarber 0.5 m × 0.5 s [41]
Wavebob 1000 Point absoarber 0.5 m × 0.5 s [41]
Aquabuoy 250 Point absoarber 0.5 m × 1.0 s [41]
Wavestar C6 600 Point absoarber 0.5 m × 1.0 s [41]
Wave Dragon 5900 Terminator 0.5 m × 1.0 s [43]
CECO (α = 30◦) 692 Point absoarber 1.0 m × 2.0 s [44]
SeaPower 3587 Attenuator 0.5 m × 1.0 s [41]
OEbuoy 2880 Oscillating water column 0.5 m × 1.0 s [41]
Pelamis 750 Attenuator 0.5 m × 1.0 s [43]

2.4.1 WEC descriptions

Point absorbers

Archimedes: The Archimedes Waveswing is a submersible device which

uses a direct-drive generator to convert wave energy to electricity [45]. De-

veloped by AWS Ocean Energy, the system’s working principle is based on

changing water pressure due to wave transmission, which is then converted

into mechanical energy [45]. A completed Archimedes Waveswing 16 kW

unit is shown in Figure 2.4.

The output pattern of this device is however more variable as it doesn’t

have an effective rated power, which allows it to generate more energy in

higher energy waters [46]. The information regarding the operation of this

WEC technology, vis-a-vis the power matrix, is to be based on that which is

available from the work of Kamranzad and Hadadpour [41], which is in turn

based on the 2005 report by the Environmental Change Institute [46]. The

current state of the Archimedes Wavestring technology has been developed
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Figure 2.4: 16 kW Archimedes Waveswing [Image by AWS]

and refined much further since its first test in 2004, and that as is reported in

the aforementioned literature, and is now more adequate to suit the evolving

market and customer needs [45]. The current device is suitable for depths

> 25 m with configurations of ratings between 25 and 250 kW, with the 25

kW version being available for order [45].

Wavebob: The Wavebob is an axi-symmetric, self-reacting device and op-

erates on the principle of differential vertical motion [47, 48]. The device’s

functioning relies on the differing properties of two floating buoys of which

the WEC is made up of; this can be observed in Figure 2.5, where the buoys

are of two types, a torus and Float-Neck-Tank (FNT) [49]. Figure 2.6 shows

a 1:4 scale model of the WEC.

The relative vertical motion is generated in this case by the high natural fre-

quency of the torus buoy, while the heavier FNT has a low natural frequency

29



Chapter 2: Literature Review

Figure 2.5: Wavebob Schematic [Image by Wavebob Ltd.]

and high inertia, causing a mismatch in oscillating period and amplitude be-

tween the two buoys [49]. The Power Take-Off (PTO), marked in Figure 2.5,

then converts this motion to electricity [49].

The Wavebob company has been defunct since 2013 due to lack of funding;

the development of the Wavebob has been halted since [50].

AquaBuoy: AquaBuoy, developed by the company AquaEnergy, also func-

tions with the principle of vertical displacement. In this technology’s case

the generation of electricity is not direct as the system converts the vertical

component of wave kinetic energy into pressurised water [51]. The pres-

surised water jets are generated through opposing full-cycle hose pumps,

which alternately produce a pressurised water jet from the same output

during upward and downward movement [51]. This jet is in turn directed
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Figure 2.6: 1:4 Scale Wavebob model [49]

towards a Pelton turbine coupled with a generator [51]. A schematic and

image of the AquaBuoy are illustrated in Figures 2.7 and 2.8, respectively.

Figure 2.7: AquaBuoy Schematic [52]

Wavestar C6: The Wavestar C6 is a 600 kW-rated machine made up of

large platform which is attached to the seabed [53]. Extending out of the

platform are the energy extraction devices: arms connected to floats which

rise and fall with the passing waves, transferring the energy from the waves

to a generator via hydraulic connections to a PTO [53]. The 20 floats, on

either side, are connected in such a way that the resulting energy production
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Figure 2.8: AquaBuoy [52]

is continuous and steady, which is relatively hard to accomplish given the

fluctuating nature of waves [53]. The WEC is made to operate in sea states

of Hs < 8 m, above which the floats are lifted out of the water as a storm

protection measure [54]. A visualisation of the full-scale WEC is given in

Figure 2.9.

Figure 2.9: Wavestar C6 full-scale system visualisation [Image by Wave
Star Energy]

In 2009 a test Section of the 600 kW machine was installed, consisting of

two floats, and has been supplying energy to the grid since 2010 [55]. At

the time of writing, the operation of Wavestar has been paused due to an

ongoing rebuild; two more floats are to be added while the PTO system is

to be upgraded with state of the art technology [53].
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CECO: The CECOWEC utilises a concept which is not common amongst

other technologies; it is designed in such a way that the device extracts en-

ergy from both the horizontal and vertical components of the wave through

oblique oscillations, as opposed to extracting only the vertical or horizontal

component [56]. This is achieved through relative motion between the float-

ing component (two Lateral Mobile Modules (LMMs) attached to a sliding

frame) and the supporting structure (which holds the PTO and is attached

to the seabed) inclined at an angle α [56]. The system can be classified as

a direct mechanical drive system [56]. Illustrations of the CECO described

properties are shown in Figure 2.10.

Figure 2.10: 3D sketch of the CECO concept (a) and its motion under wave
action (b) [56]

Performace of the CECO WEC is dependant on a variety of parameters: the
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LMM’s geometry, mass, dimensions and submergence levels, along with the

inclination of the PTO system and its damping effect [56]. These parameters

can then be altered in order to be able to develop a suitably efficient system

at a specific location, keeping in mind that the oscillatory motions should be

aligned with the dominant wave propagation direction [56]. The importance

of the inclination of the system, that is the value of α, is here reiterated,

since this has considerable effects on the output power [44]. Indeed, in [44],

López et al. carried out an investigation in order to be able to quantify the

effects of the PTO inclination on the performance of the CECO WEC. In

the aforementioned work, five values of α were considered (15-75◦ in steps of

15◦), for which the respective power matrices were obtained. In this work,

the power matrix associated with α = 30◦ will be considered. This WEC is

currently at a level 4 of technological readiness [56].

Terminator

Wave Dragon The Wave Dragon WEC takes an approach to energy gen-

eration from waves that aims to apply well-proven principles from hydro

power plants [57]. The idea behind this device is to use the potential energy

from the waves, rather than oscillatory motion as depended on by the point

absorbers described. The structure of the WEC is such that it is both sta-

tionary and floating, in that, it is comparable to having a moored ship in

deep water which is made to be as stationary as possible [57]. Wave Dargon

is aimed at being set up in deep waters in order to be able to intercept waves

of higher energy than coastal waves [57].

The Wave Dragon is comprised of two wave reflectors that redirect the waves

up a ramp and into a reservoir [58]. The construction of the ramp is such

that is is doubly curved, elliptical and circular, thus allowing for better

overtopping into the reservoir [58]. As widely used in hydro plants, the Wave
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Dragon is equipped with a propeller turbine which is rotated by water flow

when the reservoir is emptied [58]. The turbines are coupled with permanent

magnet generators, which are suitable for low and variable speeds, while also

eliminating the need for a gearbox [58]. An image along with a diagram of

the working principle of the Wave Dragon can be found in Figure 2.11

Figure 2.11: Wave Dragon WEC image and diagram [59]

Attenuator

SeaPower: The Seapower WEC is relatively simplistic in its design and

construction, making it comparatively more cost effective than alternate at-

tenuator technologies [60]. The device is made of a couple of hollow pontoons

and a singular hinge, making it relatively low maintenance and durable [60].

Altering the dimensions of the pontoon properties and spacing is necessary

in order to be able to make the WEC suitable for the location where it is

to be installed [60]. A 1:4 scale prototype of the WEC installed in Foynes,

Ireland is shown in Figure 2.12, where the describe features can be observed.
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The principle of operation is illustrated in Figure 2.13, showing a diagram

extracted from the patent for the Seapower technology.

Figure 2.12: 1:4 Scale Seapower model at Foynes, Ireland [Image by
Seapower Ltd.]

Two types of PTO are being developed for use with the Seapower, each hav-

ing in scope different end user requirements [60]. One PTO is the Hydraulic

Seawater to Freshwater PTO System, which is specifically designed for the

purpose of desalination or pumped water storage [60]. The other PTO being

developed is the Mechanical Direct Drive PTO module, which is rated at 1

MW with 25% capacity, and is intended for grid-connected direct electricity

generation from deep water sites [60].

Pelamis: The Pelamis WEC was the world’s first energy wave project to

be implemeneted on a commercial scale; located 5km off the Portuguese Agu-

cadoura coast, the system started delivering 2.25MW of power in September

of 2008 [61]. This WEC is made up of four tube segments, each of length

120 m, attached together with joints which house the PTO systems, through

which the mechanical energy is converted into electricity [43]. Figure 2.14

shows a full-scale version of the WEC installed in place. The Pelamis com-
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Figure 2.13: Seapower diagram patent extract [Image by Seapower Ltd.]

pany has been defunct since 2014, with the assets and intellectual properties

now being owned by Wave Energy Scotland [62].

Figure 2.14: Pelamis Wave Power WEC [Image by EMEC]

Oscillating water column

OEbuoy: The OE buoy WEC, Figure 2.15, functions on the principle of an

oscillating water column. The WEC is made up of a large floating platform

with partially submerged water chambers wherein water can flow in and out.

The oscillatory motion of the water in the chamber pushes air in and out
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of the chamber through a turbine, which is in turn coupled to a generator

which converts the rotation of the turbine into electricity [63].

Figure 2.15: OE buoy [Image by OceanEnergy]

2.5 Studies on Wave Power Potential

The measurements and models as described in Sections 2.1 and 2.2, accom-

panied by the methods mentioned in Section 2.3, allow for studies regarding

the wave energy potential in an area to be carried out. Using statistical

models, the different wave parameters over defined periods of time can be

averaged out. To characterise an area’s energy potential on a yearly, monthly

and seasonal basis (as is most commonly required for the estimation of en-

ergy production from WECs) several years of data is required; often this

data is acquired from wave models in hindcast. This multi-year data allows

for not just a better statistical representation of the wave energy, but also

for the calculation of the annual, monthly, and seasonal variability index,

quantifying how the wave parameters and resource changes according to the

period under consideration.

Several such investigations, the characterisation of the wave parameters and

energy resource, have been carried out in different locations due to the in-
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creasing interest in wave energy as a source of renewable energy. In an

investigation by Mota and Pinto [64], the wave energy potential along the

western Portuguese coast was considered. The study was aimed at identify-

ing potential approperiate locations for the implementation of a WECs. The

area identified by this study as the most appropriate was that from Peniche

to Nazaré, having an annual wave energy of around 200 MWh/m. The first

main conclusion from this work is that one cannot base nearshore energy

assessments on those performed offshore when the coast is not facing the

predominant wave direction. The second is that, in the case when the coast

is exposed and oriented towards the predominant wave direction, than the

wave power offshore and nearshore are more comparable.

Vicinanza et al. [65] investigated the wave energy potential along the north-

west of Sardinia using two wave-data sources: buoy records and hindcast

data. The main driver of this study is the potential exploitability of the sea

as a source for electricity generation, since, Sardinia suffers from high costs

of electricity due to it being an island. As a reference of the north-west coast

of Sardinia, three locations along the Meridian with latitudes of 39.5◦, 40◦,

and 41.5◦ were considered, with resulting annual wave power ranging from

8.19 kW/m to 10.29 kW/m. The resulting output power is mostly delivered

through north-westerly waves.

Iglesias et al. [66], investigated the wave energy potential in Galicia, in

the north-west of Spain, which experiences harsh wave climates. Using a

third-generation WAM model, 18 of the closest points to the coast were se-

lected, resulting in an annual energy ranging from 128.59 MWh/m to 438.89

MWh/m, with an associated average power ranging from 14.68 kW/m to

50.10 kW/m. It is noted in the study that wave energy is not the only

factor to be consider when choosing a location for WEC installation; prox-

imity to facilities, minimal environmental disturbance, non-interference with
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marine traffic and, fishing and aquaculture are important to be considered.

Iglesias and Carballo [67], investigated the wave energy potential along the

Death Coast, in the north-west of Spain. 10 locations were considered for

this study; 8 coming from the 44-year hindcast wind, sea level and wave

dataset, and 2 from in-situ wave buoy measurements. Additionally, 8 more

points along the Galician coast were considered for means of comparison

to the Death Coast area. It was found that the Death Coast showed the

greatest energy potential in this area, with wave power of the order of 50

kW/m with maximums surpassing 1700 kW/m.

Akpınar and Kömürcü investigated the wave energy potential along the

south-east coasts of the Black Sea. The study considered 7 points adn six-

hourly data from a SWAN model covering the years 1995-2009. The results

obtained from the model were validated using buoy data and then the en-

ergy potential was extracted. The majority of points indicated an annual

wave energy of 6 MWh/m, while the Sinop point registered an annual wave

energy of 10 MWh/m. In this study, annual and seasonal variations were

also considered.

Sierra et al. [68], investigate the wave energy potential along the Atlantic

coast of Morocco using a 44-year series of hindcast data from a third-

generation wave model. In this case, 23 points were considered for the

characterisation of the wave energy potential, with a resulting average an-

nual wave power and energy of 30 kW/m and 262 MWh/m, respectively.

The temporal variability was also investigated on an annual, monthly and

seasonal scale, which resulted in a distinct seasonal pattern. In this study,

a multi-criteria analysis was considered for the identification of a potential

WEC location. This approach considered: the wave energy at a point, WEC

capacity factor, energy temporal variability, distance to the coast, and water

depth.
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Lisboa et al. [69], investigate the wave energy potential in the south of

Brazil using the numerical simulation Mike 21 SW spectral model. The study

investigated the nearshore and offshore energy potential and variability. The

model used considered a 10-year hindcast dataset. The nearshore points

exhibited similar annual wave power, with the maximum reaching 6.7 kW/m;

the wave power offshore reached a value of 22.3 kW/m. The annual, seasonal

and monthly variability were also investigated, resulting in moderate and

high variability, offshore and onshore, respectively. The prominant directions

of wave propagation were south and north-east for the offshore case, and

south-south-east and east for the nearshore case.

Though these works consider different areas, datasets and approaches, they

all consider two important wave parameters; SWH and average period,

among other things. As will be described in Chapter 3, these two parame-

ters allow for the calculation of the wave power, which then can be used to

find the wave power of the required period of time. Additionally, most of the

studies ([64, 65, 66, 67, 68, 69]) consider also the wave direction, where either

the values for SWH, peak period, or power (or all) are characterised by their

direction of occurrence through directional histograms. The directionality

of the wave power is imporant in the implementation of direction-dependant

WECs.

2.6 Studies on Maltese waters

The first attempt to quantify the wave climatology in Maltese waters was

that carried out by the Physical Oceanography Unit (PO-unit) as part of

the Interreg IIIB MEDOCC WERMED Project [70], focused primarily on

the Sicilian Channel and the Maltese Islands [9]. At the time, there were no

in-situ measurements being taken in the area, and so, the approach was that

41



Chapter 2: Literature Review

of numerical wave modelling [9]. The analysis considered three different grid

runs of the WAM model; one grid over the Mediterranean with resolution

0.5◦, and two nested grids on the eastern and central Mediterranean with

resolutions of 0.25◦ and 0.125◦, respectively [9]. Hourly values at every grid

point were obtained for a 44-year period which allowed for a description of

the wave variability, both spatial and temporal, to be obtained [9].

The PO-unit also took part in an initial feasibility study, headed by the

company Seabased, through the deployment of a series of underwater wave

buoys around the Maltese archipelago, meant to quantify the wave resource

[9].

The Blue Ocean Energy project aimed to test the feasibility of extracting the

energy resource around the Maltese islands, in the coastal areas, using the

proposed DEXAWAVE converter; the project then required the testing of

this new technology [71]. The PO-Unit then set out to make an assessment

of the wave potential around the Maltese islands, through measurements

using a Datawell [72] wave buoy and numerical modelling techniques [9].

The wave models considered were the Malta MARIA WAM model with a

resolution of 0.125◦, with a nested Malta SWAN model with a resolution of

0.002◦ in order to better simulate the coastal areas [9]. The model was fine-

tuned using the in-situ buoy data, which was also used for data validation

[9]. The resulting analysis of the wave resource showed a strong seasonality,

with wave power reaching 13.15 kW m−1 in Winter, just above 6 kW m−1

in Spring and Autumn, and less than 1.72 kW m−1 in Summer [9].

The CALYPSO HF radar system, which initially consisted of four radar

stations (two in Malta and two in Sicily), was subject to several validation

and system performance exercises after its installation in order to be able

to ensure a better quality of data output from the system [4]. The mea-

surements used to validate the data were those acquired for near-surface
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velocity measurements using Lagrangian drifters and ADCP current profil-

ers [4]. The validation results were found to be consistent with other such

exercises carried out for different networks [4].

The first analysis of the CALYPSO HF radar system, which at the time

still consisted of four stations, was carried out in 2018 [73]. The HF radar

measurements are beneficial since they cover a larger area of sea for data

extraction. The main focus of the analysis was to compare the HF data ob-

tained to the output from wave models and altimetry data during a period

of extreme wave conditions as a first attempt to test the HF radar mea-

surements in this area due to theoretical limits imposed by the technology

at higher wave heights (associated with the capability of the inversion of

the second-order spectrum) [73]. It has been shown, through this study,

that the limitation was not a very fixed one, and the measurements were

obtainable and valid at even more energetic wave conditions [73]. The data

collected from the HF radar experiences degradation, spikes, and even data

gaps due to corruption of the electromagnetic signal [74]. In particular, for

the case of the CALYPSO system, daily strong interference has been noted

at the 13.5 MHz frequency, which actively affects the HF outputs [74]. For

the sake of quality control, then, a Hidden Markov Model sequence model

is implemented in order to reconstruct the missing data by considering the

other points in the time sequence output by the radar system; this is a very

powerful tool for the processing of the SWH data [74].

The HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal

Areas of Europe) was a project that spanned from June 2000 to May 2003,

and was aimed at obtaining a 40-year hindcast of wind, wave, sea-level and

current climatology for European waters and coastal seas [75, 76]. The re-

sulting product could then be utilised for coastal and environmental decision

processes [76]. The project consisted of seven work packages covering: 1)
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atmospheric data, 2) circulation models, 3) wave hindcasting, 4) remote

sensed data, 5) uncertainty of assessment data, 6) atlas of met-ocean data

for European waters and coastal seas, and 7) management, dissemination

and exploitation [76]. The atmospheric data was the first step of the project

in order to be able to use the resulting 50 km × 50 km grid to feed into

the wave and ocean models [76]. The resulting model had a forecasting

resolution of 10 km in the spatial domain and 3 hrs in the temporal do-

main [76]. The participating parties in this project consisted of Instituto

Superior Técnico (Portugal), Clima Maritimo, Puertos del Estado (Spain),

GKSS Forschungszentrum (Germany), Méteómer (France), University Col-

lege Cork (Ireland), University of Malta (Malta), Bulgarian Academy of

Sciences (Bulgaria), and University of Gdansk (Poland) [76].

Since there are now more HF radars installed on the Maltese islands, along

with more data having been collected over the years, further validation and

assimilation with models and other data is now possible. Such exercises

should be undertaken periodically in order to update the models and such

to the current situation.

2.7 Summary

This section will summarise the information presented in this Chapter, and

outline the salient points to this work.

Firstly, wave data acquisition systems were defined. These belong to two

main groups: in-situ and remote sensing devices. For the case of in-situ de-

vices, the working principles for wave buoys, and acoustic waves and current

profilers were described. The same was done for the remote sensing devices,

where X-band radar HF radar, satellite, and synthetic aperture radar were
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described. The devices utilised in this work are the wave buoy, HF radar,

and satellite.

Wave models and wind forecast models were also outlined in this Chapter.

In the case of wave models, the third generation wave model WAM was

described, along with its input source terms. The relevance of this generation

of wave model is that it is the one generally in use nowadays. In the case

of wind models, these are important due to their forcing of wave models,

and so, different approaches to the forecasting of this parameter have be

discussed.

The importance of validation and assimilation with regards to data is dis-

cussed; validation measures give indications as to how well one data set

compares to another, while assimilation takes reliable measurements and

includes them in the calculation of model outputs. Some details are given

about the two main types of assimilation; sequential and variational. Val-

idation techniques constitute a large portion of this work when comparing

the different datasets available, whereas assimilation is relevant in the case

of the wave models used.

Different types of classifications of WECs were discussed while also pre-

senting the nine WECs considered in this work. These devices were the

following: Archimedes, Wavebob, Aquabuoy, Wavestar C6, Wave Dragon,

CECO, SeaPower, OEbuoy, and Pelamis. Their working principles and spec-

ifications were presented.

The main outputs and results from several studies, obtained from litera-

ture, investigating wave power potential in different locations were presented.

These generally constituted of using the SWH and wave period to extract

the power; most of such studies also carry out directional analysis of the

wave power. Lastly, different studies carried out on Maltese waters are pre-
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sented and discussed. In combination, these last two sections allows for the

staring point of this work to be identified and for comparison with available

literature treating the same area of the Maltese Islands.
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Methods

In this Chapter, the different methods of analysis used are described. Firstly,

in Section 3.1, the calculation of the distance between two points on the

earth’s surface is described. In Section 3.2, the correlation relations used, as

well as other comparative parameters which give further significance to these

correlations, are explained. In Section 3.3, the algorithms used to estimate

the power potential, and to calculate the WEC output and the MCA index,

are described.

3.1 Orthodromic distance

In order to be able to compare point data from buoy and satellite missions

to model data, the closest grid cell from the model can be found by finding

the smallest orthodromic distance between the data point and the grid cell;

this distance is also known as the great circle distance. Figure 3.1 illustrates

the problem, where the closest grid cell (blue point) to the required point

(green cross) must be determined.

In order to calculate this distance, the Haversine formula is used;

47



Chapter 3: Methods

Figure 3.1: Illustration of the closest grid cell problem

a = sin2

(
∆ϕ

2

)
+ cosϕ1 · cosϕ2 · sin2

(
∆λ

2

)
(3.1)

c = 2 · atan2
(√

a,
√
1− a

)
dO = R · c,

where ϕi is latitude of point i, λi is longitude of point i, ∆ϕ and ∆λ are

the differences between the two points of latitude and longitude, respectively,

and R is the radius of the earth (6371 km), where dO is the required distance

in meters [77].

3.2 Correlations and error metrics

3.2.1 Correlations

Several correlations were evaluated for different combinations of datasets.

When evaluating these relations, some were forced to have a zero intercept,

while others were not. m and c are used to represent the slope and intercept,

respectively; the subscript 0 is used to indicated the forced zero intercept
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case.

Forced-zero intercept

For this case, the slope of the best fit line was calculated by

m0 =

∑n
i=1 xiyi∑n
i=1 x

2
i

, (3.2)

where n is the number of elements, and xi and yi are the ith elements of

their respective datasets X and Y . Thus the relation is expressed as

y = m0x (3.3)

Non-zero intercept

For this case, the slope of the best fit line was calculated by

m =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
[78], (3.4)

where x and y are the mean values of the elements of their respective datasets

X and Y . The intercept is calculated as

c = y − (m× x). (3.5)

Thus the relation is expressed as

y = mx+ c (3.6)
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Coefficient of determination (R2)

For the calculation of the coefficient of determination, the calculation of

Total Sum of Squares (TSS) along with that of Residual Sum of Squares

(RSS) is required. TSS is given by

TSS =
n∑

i=1

(yi − y)2 , (3.7)

while RSS is given by

RSS =
n∑

i=1

(yi − ŷi)
2 , (3.8)

where ŷi is the i
th predicted value from the model (i.e the result from Equa-

tions 3.3 and 3.6, in this case) [79].

The coefficient of determination is then calculated using the following ex-

pression,

R2 = 1− RSS

TSS
. (3.9)

This value is to be interpreted as how well the model, in this case a straight

line, fits the data; the coefficient varies from 0 to 1, with values closer to 1

indicating a better fit [79]. However, a negative value for R2 can result from

regression. This is usually the result of a bad model-fit through the forcing

of a value for the intercept, such as forcing a zero-intercept; in such a case,

the mean value of the data is better at representing the relationship than

the model under test [80].
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The correlation coefficient (R)

For the calculation of the correlation coefficient, the MATLAB function

corr2() was utilised. This function is capable of calculating the correla-

tion coefficient of two two-dimensional inputs. It implements the following

algorithm

R =

∑n
i=1

∑m
j=1(xij − x)(yij − y)√∑n

i=1

∑m
j=1(xij − x)2

√∑n
i=1

∑m
j=1(yij − y)2

[81], (3.10)

which reduces to the following in the one-dimensional case

R =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
. (3.11)

This coefficient represents the correlation between two datasets in that it

indicates whether it is positive or negative, and how strong it is.

3.2.2 Error Metrics

Other parameters were calculated in order to obtain more statistical infor-

mation regarding the relationship between the two sets of data under con-

sideration, as described in Section 3.2.1. The parameters considered were

obtained from Rusu and Raileanu [82], which were utilised in a similar anal-

ysis. The following are the expressions used and their description.

The mean error, referred to as the bias is given by the Equation,

Bias =

∑n
i=1(yi − xi)

n
, (3.12)

51



Chapter 3: Methods

where this value represents the average bias between the corresponding val-

ues in datasets X and Y .

The MAE is given by

MAE =

∑n
i=1 |yi − xi|

n
, (3.13)

where the result can only be positive in this case, as opposed to the bias

Equation in 3.12, since the positivity or negativity of the error between the

values is being ignored.

The RMSE is given by

RMSE =

√∑n
i=1 (yi − xi)

2

n
, (3.14)

where this value is an absolute measure of how accurately the simulated val-

ues are predicted when compared to measured values; the lower this value

is, the better the prediction is by the model [83]. When not comparing sim-

ulated and measured values, this measure shows how well the two datasets

match.

The values of these parameters are related by the inequalities:

Bias ≤ MAE ≤ RMSE [84]. (3.15)

The SI is given by

SI =

√∑n
i=1 (yi − xi − Bias)2

Y
(3.16)
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3.2.3 Probability Density

Another quantitative estimate of the similarity between two datasets is the

probability density of the values for either dataset. This can be computed

by binning the data and plotting the value of the bin against the associated

probability density. The probability density function is obtained using the

MATLAB histcounts() function, where the normalisation was set to pdf.

The function calculates the output value vi for the ith bin according to the

Equation

vi =
ci

N · wi

, (3.17)

where ci is the number of elements in the bin, wi is the width of the bin,

and N is the number of elements in the input data [85].

3.2.4 SWH Threshold Analysis

It is is important to know how well a model can predict certain SWHs over

specified thresholds [27]. In such a threshold analysis, the model is tested

against an accurate source of wave data, such as buoy data, in order to

establish the following:

1. The Probability of Detection (PD) by the models

2. and the Probability of False Alarm (PFA) (i.e the probability that a

calculated above threshold value by the model is actually below the

threshold)

In order to calculate these values, the following relations are used,
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PD =
no. of O events detected by M

no. of events detected by O
× 100 (3.18)

PFA =
no. of M events not detected by O

no. of events detected by M
× 100 (3.19)

where ‘events’ refers to an occurrence of a SWH above the threshold value,

O refers to the accurate source of wave data, and M refers to the model

data under inspection.

3.3 Power Potential Calculations

The mechanical energy of a propagating wave, including both kinetic and

potential energies, per unit surface area and averaged over a wave period, is

given by

E =
1

8
ρgH2, (3.20)

where ρ is the liquid density, g is the acceleration due to gravity and H is

the wave height [1]. The power of a wave can then be represented by the

Equation

P = CgE, (3.21)

where Cg is the group velocity of the wave, which is the partial derivative

of the dispersion relation (σ) with respect to the wave number (k) [1]. σ is

given by the Equation
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σ =
√

gk tanh kd, (3.22)

resulting in a group velocity given by

Cg =
∂σ

∂k
=

σ

2k

[
1 +

2kd

sinh 2kd

]
, (3.23)

where d is the still water depth [1].

Equation 3.23 considers a single monochromatic wave, in reality, sea waves

are irregular and consist of several wave frequencies [1]. Irregular sea states

can be broken down into multiple sine waves that are representative of the

resulting state. Conversely, an irregular wave can be constructed from dif-

ferent sine waves [1]. Then, the energy from each sine wave must be added

to produce the total energy:

E =
1

8
ρg

N∑
i=1

H2 [1]. (3.24)

Going a step further, the total energy can be expressed as follows for irregular

waves

Etot =

∫ ∞

0

E(σ)dσ, (3.25)

which describes a continuous energy density spectrum, where E(σ) is the

energy density spectrum. This can be done by decomposing the time series

into a great number of sine waves, such that the frequency difference between

them approach zero [1].

The variance density spectrum S(σ) is defined as
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E(σ) = ρgS(σ) [1]. (3.26)

Defining the moment of the variance density spectrum, with the rth moment

being given by

mr =

∫ ∞

0

σrS(σ)dσ, (3.27)

is useful for the calculation of statistical wave properties, such as the signif-

icant wave height Hs, which is defined as the average of the top 1/3 of the

wave heights in a time series, which can be expressed in moments by the

following

Hs = 4
√
m0 [1]. (3.28)

The total wave energy can now be expressed as

Etot = ρgm0 =
1

16
ρgH2

s , (3.29)

by Equations 3.25, 3.26 and 3.27 [1].

The wave power can now be expressed as

P = ρg

∫ ∞

0

Cg(σ)S(σ)dσ, (3.30)

which is difficult to implement when considering Cg as expressed in Equation

3.23 [1]. To mitigate this, the deep water condition, where d is a very large

value, is considered, resulting in the following approximation of Cg for deep
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water

Cg =
1

2

√
g

k
=

g

2

1

σ
=

gT

4π
, (3.31)

where T is the wave period [1]. Combining Equations 3.30 and 3.31, and

using the definition of the moments (Equation 3.27), the wave power can

expressed as

P =
1

2
ρg2m−1. (3.32)

Considering the parameter TE to be the speed of propagation of wave energy,

Cg can be expressed as

Cg =
gTE

4π
, (3.33)

by Equation 3.31, which when combined with the expression for Etot in Equa-

tion 3.29 as dictated by Equation 3.21, results in the following expression of

wave power

P =
1

64π
ρg2TEH

2
s ≈ 479TEH

2
s . (3.34)

By equating Equations 3.32 and 3.34, and by the definition of Hs (Equation

3.28), TE can be expressed as:

TE = 2π
m−1

m0

. (3.35)

The two methods of obtaining the wave power described here are the spec-
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tral method, Equation 3.30, and the statistical method, Equation 3.34. In

general, for the latter method, the deep water condition assumed for the

wave energy calculations, are often met by the WEC [1].

When calculating the power, sometimes the energy period TE is unavailable

as output of a model or from the measurements. However, the peak period

Tp is most of the time available. In cases when TE is to be estimated, it can

be done using the Equation

TE = αTp, (3.36)

where α depends on the shape of the wave spectrum; a value of α = 0.86

describes a Pierson-Moskowitz spectrum, while α = 0.90 is considered a more

conservative value and describes a standard JONSWAP spectrum with peak

enhancement factor γ = 3.3 [86]. In this work, when TE is unavailable, a

value of α = 0.90 is assumed.

3.3.1 MATLAB Application

The implementation of Equation 3.34 in the MATLAB environment to find

the power and energy at a specific geographical point, is now described.

In order to create a statistical representation of the sea state, the bivariate

histogram function, histogram2 [87], is used to convert time-series data to

a matrix representation. The function is used to bin the values of SWH (Hs)

and energy period (TE) into a two-dimensional histogram. The bin widths

of Hs and TE are taken to be 0.5 m and 1 s, respectively, such that the last

bin contains the largest value in the data. The smallest bin mid-points are

taken to be 0.25 and 1 for Hs and TE, respectively. αij is then calculated as
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follows,

αij =
Mij

Nt

, (3.37)

where Mij is the number of data points in the ith TE and jth Hs bin, and

Nt is the total number of data points in the time series. The power is then

calculated, by Equation 3.34, using the following algorithm:

P =
∑
i

∑
j

0.479 · Ti ·H2
j · αij, (3.38)

where Ti and Hj represent the mid points of the bins for TE and Hs, respec-

tively; this calulation outputs the power in kW / m. In order to obtain the

energy value from P over a time th, where the time is given in hours, the

following calculation is made

E = P · th, (3.39)

where E is in kWh.

Using this method, different time-spans of data can be used to represent

the average power over that specific time-span. For example, 24 data points

of hourly data can be used to produce a singular 24-hour averaged power

representative of that one day’s sea states. In the case when the hourly

values of the power and energy are required (for hourly data), the above

calculation is done without the involvement of αij, since the power can be

directly computed from the values of Hs and TE by Equation 3.34.
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3.3.2 Variability

Measuring the variability of the wave resource and parameters is an im-

portant undertaking for the determination of a suitable location for the

installation of a WEC.

One of the more straightforward measures which can be utilised to quan-

tify the temporal variability of the wave power is that of the Coefficient of

Variation (COV) [86]. This is given by,

COV =
1

x̄

√√√√√∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

/
n

n− 1
, (3.40)

where xi is the ith element of the time series, x̄ is the mean value of the

time series, and n is the total number of elements [88]. In the ideal case

when COV = 0, there is no variability present [68]. A value in the range

0.85− 0.9 would be indicative of an area of moderate variability, and those

areas with values > 1.2 experience high variability; the lower this value is,

the more suitable the area is for wave energy exploitation due to energy

stability [68, 88].

Other measures that are able to quantify the variability of the wave energy

resource are the monthly and seasonal index; the benefit of this type of

measure is that the variability can be captured in a singular value [86]. The

Seasonal Variability Index (SV) is defined in [86] as

SV =
PS1 − PS4

Pyr

, (3.41)

where PS1 and PS4 are the mean wave power for the most and least energetic

seasons, respectively, and Pyr is the mean annual power. Similarly defined,
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the Monthly Variability Index (MV) is defined as

MV =
PM1 − PM4

Pyr

, (3.42)

where PM1 and PM4 are the mean wave power for the most and least en-

ergetic months, respectively. It is expected that the monthly variability

index is higher than the seasonal one; values < 1 indicate moderate seasonal

variability [68].

These values were introduced by M. Cornett in [86] as a new means, one

easy to compute, of quantifying the seasonal and monthly variation of the

wave power.

3.3.3 WEC power output

The wave power output from any specific WEC will vary according to several

different parameters, as discussed in Section 2.4. The power available in the

sea cannot be all converted to electricity through the use of WECs; the

output power of WECs are described by their power matrices that give

the power output for different combinations of Hs and TE/Tp. In order to

calculate the output power of a particular point from time-series data, the

following procedure is followed.

Firstly, as discussed in Section 3.3.1, a statistical representation of the sea

state is obtained by using the bivariate histogram function, histogram2.

However, in this case, as shown in Table 2.1, the bin centres and widths

will depend on the resolution of the WEC power matrix under consideration

and the period is either the energy period (TE) or the peak period (TP ),

depending on the power matrix. Given then that Pij represents the elements
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of the WEC power matrix at the mid points Ti and Hj of the TE/Tp and Hs

bins, respectively, the output WEC power is found to be

PWEC =
∑
i

∑
j

Pij · αij, (3.43)

where αij has the same meaning as in Section 3.3.1.

3.3.4 Multi-Criteria Approach

The MCA index that is based on the work by Kamranzad and Hadadpour

[41], is now described.

The idea behind the definition of this index is to create a comparative tool

for the selection of a WEC and its location by considering several different

aspects that makes a WEC suitable or not; the index thus includes other

measures apart from energy output alone. The MCA index defined by Kam-

ranzad and Hadadpour [41] is as follows,

MCA =

(
Ee

2000
× accessibility× availability× E0

10000
× 5

Hs100

MV IE0

)
, (3.44)

where Ee is the exploitable storage of wave energy, given by

Ee = Pmean × te, (3.45)

where te is the total number of hours where the wave power exceeds 2 kW/m,

and Pmean is the mean wave power.
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The terms accessibility and availability are not related to the performance

of WECs, but rather to the sea condition. Accessibility is a measure of how

suitable the area is for Operational and Maintenance (O&M) purposes; it

is the percentage of time when Hs < 1.5 m in this case [41]. Availability

is a measure of how often the sea state favours energy production; it is the

percentage of time when 0.5 < Hs < 4 m, which is a generalised range for

WEC cut-in and cut-off Hs values [41].

E0 is the annual energy yield from the WEC, that is, PWEC × 8760. MV IE0

is the monthly variability index of the WEC output energy and is calculated

in a similar way to the MV , Equation 3.42, but the monthly averaged wave

power is substituted for the WEC monthly averaged output energy. Hs100 is

the design wave height and represents the design cost at the location under

consideration. This parameter will be ignored in this work, and so, the MCA

index will be defined as

MCA =

(
Ee

2000
× accessibility× availability× E0

10000

MV IE0

)
, (3.46)

for the upcoming calculations.
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Datasets

In this Chapter, the datasets considered in this work are described. The

model, remotely sensed, and in-situ datasets are described in Sections 4.1

and 4.2, respectively. In Section 4.3, the model grids, buoy position, and

other relevant positions are plotted atop bathymetry data for the purpose

of investigating the possible error sources between the datasets because of

varying sea-bed depths.

4.1 Models

In this work, two different wave model data products were considered; Coper-

nicus and ROSARIOSWAN data. These datasets were both used in two

ways. The first, the extraction of time series data at specific coordinates for

comparison with buoy data or for isolated analysis, and the second, the use of

a range of coordinates to illustrate spatial variation of different parameters.
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4.1.1 Copernicus Model

The gridded dataset used in this work from Copernicus was the ‘Mediter-

ranean Sea Waves Analysis and Forecasting Product’ [89]. The data used,

med-hcmr-wav-an-fc-h from product MEDSEA ANALYSISFORECAST WAV 006 -

017, is hourly instantaneous data for the variables summarised in Table 4.1.

The model is forced by 10m ECMWF above-sea-surface winds, and uses an

optimal interpolation scheme with the available along-track satellite SWH

observations by CMEMS [90].
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Based on the WAM Cycle 4.6.2, the output grid data is the result of a fine

grid nested in a larger grid, which spans 75◦W to 10◦E in longitude and

70◦N to 10◦S in latitude with resolution 1/6◦ [90]. The spatial coverage of

the nested finer dataset spans from longitude 18.125◦W to 36.2917◦E and

latitude 30.1875◦N to 45.9792◦N with a spatial resolution of 1/24◦, approx-

imately 4.6km, which is illustrated in Figures 4.1 and 4.2 [90].

Figure 4.1: Copernicus Model Grid of the entire spatial domain considered
overlaying the Maltese Archipelago

Both the analysis and forecast are updated twice daily in this wave product

at 06:00 UTC and 20:00 UTC; the forecast horizon is that of ten days [90].

The spatial subset considered here is, unless other wise stated, that data

which spans from longitude 13◦E to 16◦E and latitude 35◦N to 37◦N.
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Figure 4.2: Copernicus Model Grid zoomed in to the Gozo region

4.1.2 ROSARIOSWAN

The third-generation wave model ROSARIOSWAN used in this work is a

SWAN model which is nested in the Copernicus model; the model covers the

Malta Shelf Area, which includes the sea between Malta and Sicily and is

a model which has yet to undergo extensive validation. The two variations

of the model considered here are one forced by the SKIRON atmospheric

forecast and the other by the MARIA atmospheric forecast.

The model covers an area bounded by 35.376◦−37.124◦N in latitude and

13.75◦−15.45◦E in longitude with a spatial resolution of 1/500◦. This is

shown in Figure 4.3 and the grid sizes are equivalent to about 0.2km.

Unlike the case for Copernicus Model, the grid for the entire domain cannot

be visualised due to the much higher resolution of the ROSARIOSWAN

dataset, making the grid lines indiscernible; the increased resolution can be
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Figure 4.3: ROSARIOSWAN Model Grid zoomed in to the Gozo region

noted when comparing Figures 4.2 and 4.3.

ROSARIOSWAN data constitutes of hourly data of the variables summarised

in Table 4.2. The model produces an hourly forecast for 2.5 days, starting at

midnight of the first day and ending at noon two days later [91]. This data

was provided by the Physical Oceanography Research Group [92], which falls

under the Department of Geosciences at the University of Malta.

Table 4.2: ROSARIOSWAN output variables

Name Standard Name Units

hs sea surface wave significant height m
tp s
tm01 sea surface wave mean period from variance spectral density first frequency moment s
theta0 sea surface wave from direction degrees
depth sea floor depth below sea level m
hswe sea surface swell wave significant height m
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4.2 In-situ and remote sensing

4.2.1 Buoy

The buoy deployed off the Maltese coast of Marsalforn, Gozo (36.081N,

14.2816E) is a Directional Wave Spectral Drifter (DWSD) developed by the

Scripps Institution of Oceanography’s (SIO) Lagrangian Drifter Laboratory

[93]. This buoy returns both directional wave spectra data, along with sea

surface temperature in real time, and is a cost effective solution for wave

measurements. The DWSD, Figure 4.4, is a 35cm spherical float which mea-

sures orbital wave motion with remote user-programmable sampling window

[93, 94]. Data is stored on board the DWSD, that has up to 16GB of internal

storage, but can also communicate remotely and send data in real-time via

the Iridium short burst data telemetry system. [94]. The DWSD has been

shown to be an accurate wave parameter measurement device, and is easily

deployable [95].

By measuring the time-series of the vertical, zonal and meridional velocity

components, w, u and v, respectively, the power spectral density, co-spectra

and quadrature-spectra can be derived through Fourier transformations [96].

Given that the directional variance spectra of each sea-state is expressed by

the truncated Fourier series,

S(f, θ) =
a0
2π

[
1 + 2

2∑
m=1

(am cos(mθ) + bm sin(mθ))

]
, (4.1)

the DWSD is able to output the first five coefficients (a0, a1, a2, b1 and b2)

from 0.03-0.50 Hz with a bandwidth ∆f = 1/256 Hz; from these coefficients,

the wave parameters can be obtained [96]. The mean wave direction and the

principle wave direction, θ1 and θ2, respectively, are given by the following
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Figure 4.4: Schematic of the Directional Wave Spectra Drifter [Image by
SIO]

equations,

θ1 = arctan

(
b1
a1

)
, (4.2)

and

θ2 =
1

2
arctan

(
b2
a2

)
[96]. (4.3)

The expression for the SWH, given previously by equation 3.28, is found by

considering the following summation for m0:

m0 = π∆f

Nb∑
n=1

a0,n, (4.4)

where Nb is the number of bands in the frequency range [96]. Similarly, m1

71



Chapter 4: Datasets

is expressed as

m1 = π∆f

Nb∑
n=1

fn · a0,n, (4.5)

such that the mean period can be calculated as,

Tm =
m0

m1

[96]. (4.6)

fp is defined as the center frequency of the non-directional spectral band

with maximum spectral density; the peak period can then be expressed as

Tp =
1

fp
[96]. (4.7)

The wave peak direction is given by

Dp = arctan

(
b1
a1

)
f=fp

[96]. (4.8)

The dataset from the DWSD that has been acquired for use in this work

consists of the following parameters:

• Date and time

• Latitude (◦)

• Longitude (◦)

• Sea temperature (◦C)

• SWH (m)
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• Wave direction (◦)

• Dominant wave period (s)

• Mean wave period (s)

The dataset available from this buoy spans over one year from 04/08/2020

08:00 to 12/07/2021 06:00. Measurements of the wave parameters by this

instrument are no longer being made since the buoy drifted away from its

anchored point on the 23/10/2021 and ceased to transmit its location on

09/11/2021 [97]. This data was provided by the Physical Oceanography

Research Group [92].

4.2.2 HF Radar

The station used in this work from the CALYPSO HF radar system, de-

scribed in Section 2.6, is the SOPU station, located at 36.0563667◦N and

14.3084000◦E. In particular, the second annular ring, located at a radius of

5.85144 km, is considered here as this is the closest measurement to the buoy

position, see Figures 4.5 and 4.6 [98]. Wave height, mean period, and direc-

tion are measured by the radar every 10 minutes; the radar also produces

measurements for wind direction and height standard deviation.

The available dataset for this radar station spans from 01/01/2020 to 19/11/2021.

However, there are many erroneous entries for the annular ring required in

this work. In addition to this, there is a gap of data due to malfunction

of the HF Radar after being struck by lightning. As a result of this, only

817 points are available for this whole period, which, when averaged on the

hour, result in a total of 339 data points. This data was also provided by

the Physical Oceanography Research Group of the University of Malta [92].
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4.2.3 Satellite

In order to compare the data from different satellite missions with other

datasets, the satellite data ‘GLOBAL OCEAN L3 SIGNIFICANT WAVE

HEIGHT FROM NRT SATELLITE MEASUREMENTS’ [99] was consid-

ered. The satellite data product used, WAVE GLO WAV L3 SWH NRT OBSER-

VATIONS 014 001, gives altimetry measurements of SWH along the satellite

tracks of the Saral/AltiKa (al), Cryosat-2 (c2), CFOSAT (cfo), Hai Yang-2B

measurements (h2b), Jason-3 (j3), Sentinel-3A (s3a) and Sentinel-3B (s3b)

missions [100]. The dataset also gives the 10-meter wind speed [100]. In

upcoming analyses, the data from s3a has been omitted.

4.3 Bathymetry

When comparing datasets, the proximity of model data points to measured

data locations is important to note for the establishment of possible error

sources. Increased distance between measurement and model leads to higher

variation in the underlying bathymetry; this variation in depth adds to the

errors when the model and in-situ data are compared. In order to visually

inspect these features, the plots of the respective grids and data points used

for either wave model are plotted over EMODnet Bathymetry data [101]

(in case of the ROSARIOSWAN data, the bathymetry data displayed is

a combination of EMODnet and survey data which was provided by the

Physical Oceanography Research Group [92]), along with the position of the

buoy (as described in Section 2.1.1) and the second HF radar annular ring.

The resulting plots are given in Figures 4.5 and 4.6.

In order to select the closest model data point to the buoy, the orthodromic

distance between the data positions and buoy position was calculated, as de-
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Figure 4.5: Copernicus Model grid, grid point utilised, buoy position and
SOP HF Radar second annular ring overlaying bathymetry data

scribed in Section 3.1. The cell that was found to have the smallest distance,

and which corresponded to a valid point in the land/sea mask, was consid-

ered. The resulting model points from this process are (36.1042N, 14.2917E)

and (36.0812N, 14.282E) for the Copernicus and ROSARIOSWAN models,

respectively. Given the higher spatial resolution of the ROSARIOSWAN

data, the grid point chosen is much closer to the buoy position than the

grid point chosen from the Copernicus data. The result of this is that a

larger variation in depth exists for the case of the Copernicus model data.

Looking at Figure 4.5 for the Copernicus model, the buoy is located on the

60 m depth isoline, whereas the model point is located between the 180 and

200 m depth isoline; this indicates a difference of at least 120 m between

the two points. Looking at Figure 4.6 for the ROSARIOSWAN model, the

buoy and model grid point are in very close proximity when compared to

the Copernicus Model case; indeed, both points are close to the 60 m isoline,
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Figure 4.6: ROSARIOSWAN model grid, grid point utilised, buoy position
and SOP HF Radar second annular ring overlaying bathymetry data

and the difference in depth is less than 20 m.

For the case of the SOPU radar annular ring, it can be noted that this mea-

surement area crosses several bathymetric isobars, since, the radar outputs

only one value per annular ring. The output measurement is then sampled

from a sea state with increased bathymetric variation, and so, this can be a

source of error in the output.
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Results and Discussion

In this Chapter, the results from the investigations carried out in this study

are presented and discussed. In Sections 5.1-5.4 the comparative meth-

ods described in Section 3.2 are applied in order to investigate the rela-

tionship between the different datasets described in Chapter 4. Results of

the wave power available at the buoy position as well as over mapped re-

gions are presented in Section 5.5 and their respective variability results

in Section 5.6. Finally, in Section 5.7, the WEC power outputs are pre-

sented along with an MCA analysis. The code and data used in this anal-

ysis can be accessed through the link http://ioi.research.um.edu.mt/

staff/martina/SeaWavesDataAnalysis.zip; the documentation can be

found through the link http://ioi.research.um.edu.mt/staff/martina/

documentation.pdf.

5.1 Data Comparison: Buoy vs Models

In this Section, the relationship between the buoy measurement dataset and

the numerical models under consideration, are investigated.
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5.1.1 Buoy vs Copernicus Model

Using the Copernicus Model time-series data from the grid point as described

in Section 4.3, and as illustrated in Figure 4.5, a temporal comparison be-

tween the buoy data and Copernicus model can be made. The data being

compared here is the SWH, wave direction, mean period, and peak period;

the time series of these are overlaid for visual inspection as shown in Figure

5.1. In addition, the probability density of each of the parameters from both

datasets were overlaid for ease of comparison; the resulting distributions are

given in Figure 5.2.

From the time series and probability density plots, some information can

already be obtained regarding the relationship between the two datasets.

Starting from the SWH and wave direction parameters, one can note that

the relationship between the datasets in this case show a relatively good

agreement where, the time series and probability densities tend to overlap

quite well. One can note from Figure 5.2b, that there are two clear peaks

in the data, which correspond to, roughly, the East and North-West direc-

tions. Looking at the mean period, one can note, from both the time series

and probability distribution plots, that the Copernicus model data seems to

correlate to the buoy data, albeit with a downwards shift. From Figure 5.2c,

one can observe that the peak of the Copernicus data occurs at ∼ 3.5 s and

that of the buoy data at ∼ 5.2 s. Finally, in the case of the peak period, not

much can be inferred from Figure 5.1d. However, Figure 5.2d has a bit more

to offer. From the probability density plot, it can be noted that, for the

case of Copernicus, the peak curve is similar to that of the buoy data. It is,

however, the case that the Copernicus data points are concentrated between

0 and 10 s, whereas the buoy plot has a lower peak with values beyond 10

s; there are no values beyond 15 s belonging to the Copernicus model data.
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.1: Copernicus model (red) and Buoy (black) time series data from
August 4th 2020 to July 12th 2021
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.2: Probability Density of Copernicus model (red) and Buoy (black)
data
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Correlation and other error metrics were computed for these datasets as

described in Sections 3.2.1 and 3.2.2. Scatter plots between each parameter

of the dataseries were plotted and linear regression was performed. The

resulting plots are given in Figures 5.3 and 5.4 for the forced-zero intercept

and non-zero intercept regressions, respectively.

(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.3: Correlation plots between Copernicus model and Buoy; forced-
zero intercept regression

The best linear fit from the four parameters is given by that of the SWH,

clearly illustrated in Figures 5.3a and 5.4a; the R2 values are 0.86 and 0.89,

for the forced-zero intercept and non-zero intercept case, respectively. The

model fit is then slightly better in the case where there is no forced inter-

cept, indicating an offset of the Copernicus model data from the buoy data.

The strong correlation between the two datasets is confirmed with the high

correlation value of R that results to be equal to 0.94. Additionally, the
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.4: Correlation plots between Copernicus model and Buoy; non-zero
intercept regression

good correlation is also supported by the bias, −0.01, and the MAE, 0.18 as

well as the RMSE, 0.26. The SI is also not too high a value at 23%.

As can be seen in Figures 5.3b and 5.4b, for wave direction, a concentration of

points can be seen in two directions. These are roughly Easterly and North-

Westerly, matching the observations made from the probability density plots.

The linear fit performs slightly better in the non-zero intercept case, with

R2 = 0.39 as opposed to R2 = 0.33, both indicative of a weak relationship.

Upon visual inspection, however, in the case of the non-zero intercept, it can

be noted that the line almost completely misses the directions, as described

above, with high density of points. This result might be due to the high

number of scattered points which are the likely cause for the very high MAE
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and RMSE, 52.46 and 96.27, as well as a SI of 41%.

It is notable that the line fit for the mean period cases, Figures 5.4c and

5.3c, is especially poor; R2 = −1.91 and 0.17 for the forced-zero intercept

and non-zero intercept case, respectively. The negative value of R2 indicates

a poor fit due to the forced intercept, however, not forcing an intercept still

results in a low goodness-of-fit, which can be easily seen from Figure 5.4c,

where, the V-like distribution of the data points cannot be modelled well

using linear regression. The correlation, as reflected by R = 0.41, is weak,

but the SI is the lowest from all the parameters at 18%, indicating that the

variation of each point from the expected error is less than in the case of the

SWH. It can also be noted that the bias and MAE are very close in value.

This implies that, the difference between the two datasets has mostly the

same sign, in this case positive. Therefore, the buoy data is systematically

larger than the Copernicus model data; this can be confirmed from Figure

5.1c, where the red lines (Copernicus) have a shift with respect to the black

lines (buoy).

The line fit for the peak period cases, shown in Figures 5.4d and 5.3d, is the

worst from all cases. This can be visually noted in both scatter plots and

from the values of R2, which is negative for the forced-zero intercept case

(−0.35) and 0 for the non-forced intercept case. In terms of the correlation,

R gives a slightly negative value, which is reflected in the slight negative

slope in Figure 5.3d. The RMSE= 4.34, which is a relatively high value,

and this can be explained by noting that the values from the Copernicus

model never exceed 15 s, whereas those for the buoy go beyond 30 s, thus

resulting in a high error for the higher values. This case has the highest

value for SI, 48%, indicating that the bias is not a good representation of

the differences found between the two datasets.
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Plotting the data, classified according to different parameters

In order to be able to understand better the origin of the features of the

scatter plots for the mean period (the V-shape) and the wave direction

(background scattered points), the two datasets were plotted such that dif-

ferent subsets of the data were classified based on different parameters; these

parameters were

1. Months,

2. Seasons,

3. and SWH,

with the resulting plots given in Figures 5.5, 5.6 and 5.7, respectively.

Noting the plots in Figure 5.5, the colour-coding of points from July 2020

through June 2021 by month showed no clear clustering of points and so,

not much could be concluded from these plots. In Figure 5.6, a more general

clustering is made by season, where the seasons are taken as follows: Au-

tumn: 14/09/2020 - 30/11/2020, Winter: 01/12/2020 - 29/02/2021, Spring:

01/03/2021 - 31/05/2021, and Summer: 01/06/2021 - 13/09/2021.

This allows for seasonal effects to be noted more clearly rather than consid-

ering the individual months. In this case, more information can be obtained

from the plots. For the SWH that is shown in Figure 5.6a, one can note that

the point values associated with Autumn, Winter and Spring have a larger

variability than those belonging to Summer, as these are more localised at

smaller wave heights. In the case of Autumn, in the case of higher wave

heights, some values scatter more on the upper side of the plot, indicat-

ing that the Copernicus model could be potentially slightly underestimating
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.5: Correlation plots between Copernicus model and Buoy; classified
by month

these values. The opposite can be observed for the higher values during Win-

ter, where some values scatter more on the lower side of the plot, indicating

that the Copernicus model could be potentially slightly overestimating these

values. In the case of Spring, the scattering behaviours is like that of Au-

tumn, albeit with a few points scattering similarly to Winter.

For the wave direction parameter, shown in Figure 5.7b, Winter an Sum-

mer winds are predominantly clustered at the NW direction, while Autumn

and Spring are more divided between the two dominant directions. The

‘background’ scattered points are contributed from all the different seasons,

however, less so from Winter. For the mean period parameter, Figure 5.6c,

not much can be said regarding the different clusters, since all contribute to
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.6: Correlation plots between Copernicus model and Buoy; classified
by season

the resulting V-shaped plot.

In terms of the peak period, shown in Figure 5.6d, the seemingly more

discretised values overlap significantly, making this plot not ideal to assess

in terms of clustering.

The clustering according to seasons, however, failed to give more insight into

what caused the ‘background’ scattered points in the mean direction and the

V-shaped distribution in the mean period data. In light of this, the clustering

according to the SWH comes into play, where clustering was performed in

ranges of SWH, increasing with a step of 1m, up to 5m. These plots, shown in

Figure 5.7, indeed give some more information regarding the resulting data

distributions; the SWH plot, Figure 5.7a, will not be discussed for obvious
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.7: Correlation plots between Copernicus model and Buoy; classified
by Significant Wave Height

reasons. Looking firstly at the wave direction case, Figure 5.7b, one can

note now, that most of the ‘background’ scattered points are attributed to

wave heights in the 0-1 m range, which suggests that the correlation between

the buoy and Copernicus model mean direction data weakens significantly

at lower wave heights. Similarly for the case of the mean period, Figure

5.7c, the 0-1 m wave height range significantly contributes to the part of

the distribution that alters the linear distribution, again, suggesting that

the correlation of the mean period of the smaller wave heights is weak. In

the case of the peak period, Figure 5.7d, it can be noted that the points

corresponding to the 0-1 m wave height range are more prevalent towards

the upper part of the plot. This could be indicative of the Copernicus model

data underestimating the peak period measured by the buoy.
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Plotting filtered data

Given the above investigation, the SWH is seemingly a significant parameter

that affects how well the correlation between the two datasets performs. In

this regard, the Copernicus model and Buoy data correlation, regression and

measure calculations are carried out again with a dataset excluding the 0-1

m wave height range; the resulting plots are given in Figure 5.8, where a

non-zero intercept regression has been carried out. The below comparisons

will hence be made with the non-zero intercept plots for the non-filtered

case, Figure 5.4.

(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.8: Correlation plots between Copernicus model and Buoy; 0-1 m
wave height range data points excluded

Apart from the case of the SWH, the filtering caused overall improved cor-

relations in the wave parameters. In the case of the SWH, Figure 5.8a, all
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the measures but the SI are slightly worse, where, SI dropped from 23%

to 12%; the measures still, however, indicate a good correlation and linear

fit. In the case of the wave direction, Figure 5.8b, it can be clearly noted

that the ‘background’ scattered values have been largely filtered out, with

the exception of two small clusters at the top-left and bottom-right of the

Figure. These clusters are likely the result of the fact that 0◦ and 360◦ are

the same and so, small values and large values in the range correspond to

similar directions. The value of R increased from 0.63 to 0.8, and the fit bet-

ter represents the data with an R2 value of 0.65 (up from 0.39), indicating

that the linear regression represents a moderate relationship. Additionally

MAE, RMSE and SI all improved with values decreased by approximately

55%, 37% and 68% respectively. The resulting bias is also closer to zero at

−1.76.

For the case of the mean period, it can be clearly observed, Figure 5.8c,

that the V-shaped distribution has been removed and a more linear plot

is obtained. Indeed, the linear fit performs better with and increase in R2

from 0.17 to 0.65, indicating that the linear regression represents a moderate

relationship. The correlation measure R also improved, almost doubly, from

a value of 0.41 to 0.81. Additionally MAE, RMSE and SI all improved with

values decreased by approximately 43%, 46% and 72%, respectively. The

resulting bias is also closer to zero at 0.83.

In the peak period plot, Figure 5.8d, it can also be noted that much of the

points associated with the higher peak period values from the buoy dataset

have been filtered out, resulting in a less scattered plot. The correlation

between the datasets improved, R increased from −0.02 to 0.66, suggesting

a moderate relationship. As a result, the linear fit also performed better with

R2 going up to 0.43 from 0. Additionally MAE, RMSE and SI all improved

with values decreased by approximately 64%, 72% and 79%, respectively.
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The resulting bias is also closer to zero at −0.05. The measure calculations

are then most improved in this case, with higher percentage decreases than

those in the other parameters.

SWH Threshold Analysis

The probability of the Copernicus model being able to detect SWHs above

a given threshold is plotted against the probability of it being a false alarm,

using the method described in Section 3.2.4, where the model is compared

to the buoy data. The resulting plot is given in Figure 5.9, where thresholds

are taken from Hs = 0.5m to 5m in steps of 0.5m.

Figure 5.9: Copernicus model Data SWH Threshold Analysis; tested against
buoy data

From this plot, it can be observed that the Copernicus model has a good PD

of sea states when thresholds of Hs fall in the range 0.5-3.5; these values all
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lie in the 80-95% probability range. With increase in the threshold, however,

there is also an increase in the PFA where, from Hs > 0.5 to Hs > 3.5, this

probability goes up from ∼ 5% to ∼ 75%. There is then a sudden drop in

PD for the case of Hs > 4, with a value of ∼ 33% and an associated PFA of

∼ 90%; this is likely the result of a small number of events with Hs > 4.

5.1.2 Buoy vs ROSARIOSWAN Maria Model

Using the ROSARIOSWAN Maria model time series data from the grid

point as described in Section 4.3, and as illustrated in Figure 4.6, a tempo-

ral comparison between the buoy data and ROSARIOSWAN Maria model

can be made. The data being compared here is the SWH, wave direction,

mean period and peak period; the time series of these are overlaid for visual

inspection in Figure 5.10. In addition, the probability density of each of

the parameters from both datasets were overlaid for ease of comparison; the

resulting distributions are given in Figure 5.11.

From the time series and probability density plots, some information can

already be obtained regarding the relationship between the two datasets. In

this case, it is only in the wave direction parameter that the datasets show a

very good agreement; again in this case one can note from Figure 5.11b, that

there are two clear peaks in the data, which correspond to, roughly, the East

and North-West directions. This is not to say that in the other parameters

there isn’t a good agreement, but in the cases of the SWH, mean period and

peak period, there seems to be an underestimation by the ROSARIOSWAN

Maria model when compared to the buoy data. This is represented in a

downwards shift in the visual plots and a leftwards shift in the probability

density functions. The shape of the data does, however, show a good match.

Looking now at the peaks in the data, from the probability density func-
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.10: ROSARIOSWAN Maria model (red) and Buoy (black) time
series data from August 4th 2020 to July 12th 2021
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.11: Probability Density of ROSARIOSWAN Maria model (red)
and Buoy (black) data

tions, allows for a quantification of these shifts between the two datasets.

Starting with the SWH, Figure 5.11a, it can observed that the peak of the

ROSARIOSWAN Maria data occurs at ∼ 0.17 m and that of the buoy data

at ∼ 0.55 m. In the case of the mean period, Figure 5.11c, it can observed

that the peak of the ROSARIOSWAN Maria data occurs at ∼ 3.0 s and

that of the buoy data at ∼ 5.5 s. Finally, in the case of the peak period, it

is more difficult to infer where the peak lies for the ROSARIOSWAN Maria

data; it is here considered that this peak is at ∼ 4.0 s and that of the buoy

data at ∼ 6.0 s. Similar to the situation of the Copernicus model data,

Section 5.1.1, it is the case that the ROSARIOSWAN Maria data points are

concentrated in the area below 10 s, resulting in a higher peak, whereas the

buoy plot has a lower peak with some values beyond 10 s; there are no values
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beyond 10 s belonging to the ROSARIOSWAN Maria data.

Correlation and other error metrics were computed for these datasets as

described in Sections 3.2.1 and 3.2.2. Scatter plots between each parameter

of the dataseries were plotted and linear was regression performed. The

resulting plots are given in Figures 5.12 and 5.13 for the forced-zero intercept

and non-zero intercept regressions, respectively.

(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.12: Correlation plots between ROSARIOSWAN Maria model and
Buoy; forced zero-intercept regression

The best linear fit from the four parameters is given by that of the SWH,

illustrated in Figures 5.12a and 5.13a; the R2 values are 0.35 and 0.57, for

the forced-zero intercept and non-zero intercept case, respectively. Despite

this, however, these fits are still relatively weak, given the low values of R2,

with the non-zero intercept case being more of a moderately good fit rather
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.13: Correlation plots between ROSARIOSWAN Maria model and
Buoy; non-zero-intercept regression

than weak. Thus, the model fit is slightly better in the case where there

is no forced intercept, indicating an offset of the ROSARIOSWAN Maria

data from the buoy data; this is consistent with what was discussed above

regarding the offsets in the time-series and probability density function plots;

the offset is here equal to 0.45 m. The good correlation between the two

datasets is primarily represented in the value of R, 0.75, which shows that

there is a relatively well established relationship between them. Additionally,

the other parameters of the relationship as given by the bias, 0.22, and the

MAE, 0.39 as well as the RMSE, 0.52 are not insignificant given that the

maximum data points do not exceed 4.5 m. For the case of the SI, 40%,

the high scatter is evident from the plots, which gets worse with increasing

SWH value.
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For the case of the wave direction, a concentration of points can be again seen

in two directions, see Figures 5.12b and 5.13b, which are roughly Easterly

and North-Westerly, matching the observations made from the probability

density plots. The linear fit performs better in the non-zero intercept case,

with R2 = 0.36 as opposed to R2 = 0.23, being still both indicative of a

weak relationship. Upon visual inspection, however, in the case of the non-

zero intercept, it can be noted that the line almost completely misses the

directions with high density of points. This misfit might be a result of the

high number of scattered points, especially for values < 130◦ and > 280◦ in

the ROSARIOSWAN data (x-axis), which are the likely cause for the very

high MAE and RMSE, 58.79 and 102.02, as well as a SI of 42%.

It is notable that the line fit for the mean period cases, Figures 5.13c and

5.12c, is especially poor; R2 = −1.78 and 0.1 for the forced-zero intercept

and non-zero intercept case, respectively. The negative value of R2 is telling

of a poor fit due to the forced intercept, however, not forcing an intercept

still results in a low goodness-of-fit, which can be easily seen from Figure

5.13c. Although less prominent than in the case of the Copernicus model

vs the buoy data, Section 5.1.1, the V-like distribution of the data points

for this parameter is still present and is difficult to model well using linear

regression. The correlation, as reflected by R = 0.31, is weak, but the SI is

the lowest from all the parameters at 16%, indicating that the variation of

each point from the expected error is less than in the case of the the SWH.

It can also be noted that the bias and MAE are, again, very close in value.

What this implies is that, the difference between the two datasets has mostly

the same sign, in this case positive. In this case that translates to the buoy

data having systematically larger values than the ROSARIOSWAN Maria

data; this can be indeed confirmed from Figure 5.11c, where the red lines

(ROSARIOSWAN Maria) are shifted down from the black lined (buoy), as

has been mentioned previously.
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The line fit for the peak period cases, Figures 5.13d and 5.12d, is the worst

from all cases. This can be visually noted in both scatter plots and from the

values of R2, which is negative for the forced-zero intercept case (−0.44) and

0.01 for the non-forced intercept case. In terms of the correlation, R gives a

negative value, which is reflected in the negative slope in Figure 5.12d. The

RMSE= 5.05, which is a relatively high value, and this can be explained by

noting that the values of ROSARIOSWAN Maria values never exceed ∼ 10

s, whereas those for the buoy go beyond 30 s, thus resulting in a high error

for the higher values. This case has the highest value for SI, 45%, indicating

that the bias is not a good representation of the differences found between

the two datasets.

Plotting filtered data

Following the same reasoning behind the decision to filter out the data cor-

responding to SWH less than 1 m in Section 5.1.1, the ROSARIOSWAN

Maria and Buoy data correlation, regression and measure calculations are

carried out again here with a dataset excluding the 0-1 m wave height range;

the resulting plots are given in Figure 5.14, where a non-zero intercept re-

gression has been carried out. The below comparisons will hence be made

with the non-zero intercept plots for the non-filtered case, Figure 5.13.

Apart from the case of the SWH, the filtering caused overall improved corre-

lations in the wave parameters. In the case of the SWH, Figure 5.14a, all the

measures but the SI are slightly worse, where, SI dropped from 40% to 21%;

the measures now, however, indicate a weaker correlation and goodness-of-

fit for the linear regression. In the case of the wave direction, Figure 5.14b,

it can be clearly noted that the ‘background’ scattered values have been

largely filtered out, with the exception of two horizontal distributions of

points level with the clustered values. The value of R increased from 0.6 to
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.14: Correlation plots between ROSARIOSWAN Maria model and
Buoy; 0-1 m wave height range data points excluded

0.81, and the fit better represents the data with an R2 value of 0.65 (up from

0.36), indicating that the linear regression represents a moderate relation-

ship. Additionally MAE, RMSE and SI all improved with values decreased

by approximately 50%, 37% and 67% respectively. The resulting bias in

this case actually increased to −2.51, taking it further away from zero. For

the case of the mean period, the V-shaped distribution has been removed

and a slightly more linear plot is obtained. Indeed, the linear fit performs

better with and increase in R2 from 0.1 to 0.27, however still indicating that

the linear regression represents a very weak relationship. The correlation

measure R also improved from a value of 0.31 to 0.52. Additionally MAE,

RMSE and SI all improved with values decreased by approximately 18%,

19% and 56%, respectively. The resulting bias is only slightly lower at 1.84.
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Overall, the improvement resulting from filtering was not very extensive in

this case, where the correlation is still relatively weak.

In the peak period plot, Figure 5.14d, it can also be noted that much of the

points associated with the higher peak period values from the buoy dataset

have been filtered out, resulting in a less scattered plot. The correlation

between the datasets improved, R increased from −0.11 to 0.37, suggesting

a weak relationship. As a result, the linear fit also performed better with

R2 going up to 0.14 from 0.01, however this is, again, still indicative of an

ill-fit. Values of MAE, RMSE and SI all improved with values decreased

by approximately 43%, 56% and 76%, respectively. The resulting bias is

also slightly closer to zero at 1.77. The measure calculations are then most

improved in this case, with higher percentage decreases than those in the

other parameters.

SWH Threshold Analysis

The probability of the ROSARIOSWAN Maria model being able to detect

SWHs above a given threshold is plotted against the probability of it being

a false alarm, using the method described in Section 3.2.4, where the model

is compared to the buoy data. The resulting plot is given in Figure 5.15,

where thresholds are taken from Hs = 0.5 to 5 in steps of 0.5.

From this plot, it can be observed that the ROSARIOSWAN Maria model

has a relatively good PD of sea states when the threshold of Hs is at 0.5 m,

with a value of about ∼ 62%, with an associated PFA of ∼ 8%. Unlike the

case of the Copernicus model in Section 5.1.1, the power PD starts degrading

immediately with increasing threshold value; there is a generally downwards

trend apart from a ‘bump’ between the thresholds 1.5 and 3 m. In addition,

with increase in the threshold there is also an increase in the PFA where,
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Figure 5.15: ROSARIOSWAN Maria model Data SWH Threshold Analysis;
tested against buoy data

from Hs > 0.5 to Hs > 3.5, this probability goes up from ∼ 8% to ∼ 85%

and the PD decreases from ∼ 62% to ∼ 26%. For the case of Hs > 4, the

value of PD falls to 0% with an associated PFA of 100%; in this case, it is

likely a very limited number of points exist that satisfy this threshold, thus

the extreme values.
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5.1.3 Buoy vs ROSARIOSWAN Skiron Model

Using the ROSARIOSWAN Skiron model time series data from the grid

point as described in Section 4.3, and as illustrated in Figure 4.6, a tempo-

ral comparison between the buoy data and ROSARIOSWAN Skiron model

can be made. The data being compared here is the SWH, wave direction,

mean period and peak period; the time series of these are overlaid for visual

inspection in Figure 5.16. In addition, the probability density of each of

the parameters from both datasets were overlaid for ease of comparison; the

resulting distributions are given in Figure 5.17.

Given that ROSARIOSWAN Skiron uses the same model as the ROSAR-

IOSWAN Maria with a different wind forcing model, the results for the

Skiron forced model turn out to be quite comparable to those of the Maria

forced model. In light of this, the discussion is not here repeated, but the

regression plots are presented in Figures 5.19 and 5.18. The values for the

resulting parameters are summarised in Tables for convenience in Section

5.1.4.

Plotting filtered data

Again, the data is filtered based on SWH values such that the ROSAR-

IOSWAN Skiron and Buoy data correlation, regression and measure calcu-

lations are carried out again here with a dataset excluding the 0-1 m wave

height range; the resulting plots are given in Figure 5.20, where a non-zero

intercept regression has been carried out.
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.16: ROSARIOSWAN Skiron model (red) and Buoy (black) time
series data from August 4th 2020 to July 12th 2021
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.17: Probability Density of ROSARIOSWAN Skiron model (red)
and Buoy (black) data

SWH Threshold Analysis

The probability of the ROSARIOSWAN Skiron model being able to detect

SWHs above a given threshold is plotted against the probability of it being

a false alarm, using the method described in Section 3.2.4, where the model

is compared to the buoy data. The resulting plot is given in Figure 5.21,

where thresholds are taken from Hs = 0.5 to 5 in steps of 0.5.

From this plot, it can be observed that the ROSARIOSWAN Skiron model

has a relatively good PD of sea states when the threshold of Hs is at 0.5

m, with a value of about ∼ 62%. Like in the case for the ROSARIOSWAN

Maria model in Section 5.1.2, the PD starts degrading immediately with
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.18: Correlation plots between ROSARIOSWAN Skiron model and
Buoy; forced zero-intercept regression

increasing threshold value, with a general downwards trend up to Hs > 2.5.

In addition, with increase in the threshold there is also an increase in the

PFA where, from Hs > 0.5 to Hs > 2.5, this probability goes up from ∼ 8%

to ∼ 54%, and the associated PD decreases from ∼ 62% to ∼ 34%. For the

case of Hs > 3 and Hs > 3.5, the PFA goes down to ∼ 50% again, and the

associated PD values are ∼ 28% and ∼ 41%, respectively. For the case of

Hs > 4, the value of PD actually increases up to ∼ 98% and the PFA falls

to ∼ 44%. In this case it is again likely that a very limited number of points

exist that satisfy this threshold, thus resulting in extreme values.
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.19: Correlation plots between ROSARIOSWAN Skiron model and
Buoy; non-zero-intercept regression
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.20: Correlation plots between ROSARIOSWAN Skiron model and
Buoy; 0-1 m wave height range data points excluded
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Figure 5.21: ROSARIOSWAN Skiron model Data SWH Threshold Analysis;
tested against buoy data
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5.1.4 Summary

In this Section, the R value, bias, MAE, RMSE and SI for the comparisons

mentioned above are summarised in Tables for the SWH, wave direction,

mean period and peak period in Tables 5.1-5.4, respectively, for both the

full datasets and the SWH-filtered datasets.

Table 5.1: SWH parameters from buoy and model data comparison for the
period 04/08/2020 - 12/07/2021

Original data set R Bias MAE RMSE SI

Copernicus 0.94 -0.01 0.18 0.26 23
ROSARIOSWAN Maria 0.75 0.22 0.39 0.52 40
ROSARIOSWAN Skiron 0.74 0.28 0.41 0.54 40
Filtered data set
Copernicus 0.88 -0.08 0.27 0.37 12
ROSARIOSWAN Maria 0.55 0.32 0.59 0.73 21
ROSARIOSWAN Skiron 0.56 0.45 0.63 0.76 20

Table 5.2: Wave Direction parameters from buoy and model data compari-
son for the period 04/08/2020 - 12/07/2021

Original data set R Bias MAE RMSE SI

Copernicus 0.63 -9.78 52.46 96.27 41
ROSARIOSWAN Maria 0.60 0.74 58.79 102.02 42
ROSARIOSWAN Skiron 0.57 2.16 61.88 102.03 43
Filtered data set
Copernicus 0.80 -1.76 23.36 60.75 13
ROSARIOSWAN Maria 0.81 -2.51 29.57 64.64 14
ROSARIOSWAN Skiron 0.71 -0.46 35.85 74.21 16

In light of the preceding discussions and comparisons of the buoy measure-

ment data with model data from Copernicus, ROSARIOSWAN Maria and

Skiron, and by comparing the Tables 5.1-5.4, it can be noted that the buoy

measurements tend to have a stronger correlation with the Copernicus model

rather than either of the ROSARIOSWAN models. This is exemplified by

higher values of R and lower values of bias, MAE and RMSE. The two
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Table 5.3: Mean Period parameters from buoy and model data comparison
for the period 04/08/2020 - 12/07/2021

Original data set R Bias MAE RMSE SI

Copernicus 0.41 1.49 1.51 1.82 18
ROSARIOSWAN Maria 0.31 2.05 2.06 2.27 16
ROSARIOSWAN Skiron 0.34 2.11 2.11 2.30 15
Filtered data set
Copernicus 0.81 0.83 0.86 0.99 5
ROSARIOSWAN Maria 0.52 1.69 1.69 1.84 7
ROSARIOSWAN Skiron 0.50 1.86 1.87 2.00 7

Table 5.4: Peak Period parameters from buoy and model data comparison
for the period 04/08/2020 - 12/07/2021

Original data set R Bias MAE RMSE SI

Copernicus -0.02 1.46 2.39 4.34 48
ROSARIOSWAN Maria -0.11 3.09 3.28 5.05 45
ROSARIOSWAN Skiron -0.08 3.03 3.21 4.97 45
Filtered data set
Copernicus 0.66 -0.05 0.84 1.23 10
ROSARIOSWAN Maria 0.37 1.66 1.86 2.23 11
ROSARIOSWAN Skiron 0.37 1.77 1.94 2.34 12

ROSARIOSWAN models, Maria and Skiron, are for the most part compa-

rable in their correlation with the buoy measurements, thus having similar

parameters in Tables 5.1-5.4.
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5.2 Data Comparison: Radar vs Models

In this Section, the relationship between the SOPU HF radar measurement

dataset and the numerical models under consideration are investigated. In

this case, unlike that for the comparisons between the buoy and model data

(Section 5.1), no filtering will be considered due to the limited amount of

data available; see Section 4.2.2.

5.2.1 Radar vs Copernicus Model

In order to find the Copernicus model grid points that intersect with the

SOPU radar’s second annular ring, which is 5.85 km away from the station

(a radius of about 0.0527◦), a ring segment extending from shore to shore is

considered. The ring is made of two concentric circles of radii 0.0580◦ and

0.0474◦, see Figure 5.22. From this Figure it can be seen that two points

fall in this region from which data corresponding to each Radar data point

available could be extracted. Given that there are 339 radar data points,

see Section 4.2.2, a total of 678 data points can be compared.

Correlation and other error metrics were computed for these datasets as de-

scribed in Sections 3.2.1 and 3.2.2. Scatter plots between each parameter

of the dataseries were plotted and linear regression was performed. The pa-

rameters considered in this case were the SWH, Direction and mean period.

The resulting plots are given in Figures 5.23 and 5.24 for the forced-zero

intercept and non-zero intercept regressions, respectively.

The best linear fit from the three parameters is given by that of the wave

direction, although this is not immediately evident from visual inspection of

Figures 5.23b and 5.24b; the R2 values are 0.28 and 0.32, for the forced-zero

intercept and non-zero intercept case, respectively. The model fit is then only
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Figure 5.22: Copernicus model grid points overlapping the SOPU radar
measurement area

slightly better in the case where there is no forced intercept. It is telling

from this data comparison, where the best linear fit from all the parameters

is very weak for either case, that more data would be ideal for comparison.

Further analysing the Direction data comparison, the correlation between

the two datasets is not as weak, as indicated by the value of R, 0.57, which

indicates a moderate correlation. The bias, −26.97, and the MAE, 71.55 as

well as the RMSE, 118.19, are not insignificant. It is likely that these errors

are introduced through the clustering of points at the top left and bottom

right areas of the plot, similar to the case of comparison of the Buoy and

Copernicus model data in Section 5.1.1. The SI is not too high a value at

17%.

For the case of SWH, Figures 5.23a and 5.24a, the correlation between the

two datasets is quite weak, with R = 0.21. The linear fit in this case performs
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period

Figure 5.23: Correlation plots between Copernicus model and Radar; forced-
zero intercept regression

terribly for both the forced-zero and the non-zero intercept case, with R2 =

−0.21 and R2 = 0.05, both indicative of an ill-fitting model. Upon visual

inspection it can be noted that, at lower values of the Copernicus model,

there are high values from the Radar measurements; in particular, between

wave heights of 0 and 0.5 m for the Copernicus model, there are radar

measurements of the SWHs ranging between 0 and 5.5 m. This feature of

the plot could then be a possible reason for the misfit of the linear regression.

The values of MAE and RMSE, 0.49 and 0.86, are not insignificant due to

the order of the wave heights. The bias and SI are not too high in this case

at 0.11 and 25%, respectively.

It can be noted that the line fit for the mean period cases, Figures 5.23c
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period

Figure 5.24: Correlation plots between Copernicus model and Radar; non-
zero intercept regression

and 5.24c, is the worst from all cases. This can be visually noted in both

scatter plots and from the values of R2, which is negative for the forced-zero

intercept case (−0.55) and 0 for the non-forced intercept case. In terms of

the correlation, R = 0.04, which is very close to zero, indicating that there

exists almost no correlation. The bias, MAE and RMSE, have values of 1.76,

1.92 and 2.73, which are relatively high; this could possibly be explained by

noting that the values of Copernicus never exceed 8 s, whereas those for

the radar go up to about 14 s, thus resulting in a high error for the higher

values. This case has the lowest value for SI, 10%.

113



Chapter 5: Results and Discussion

5.2.2 Radar vs ROSARIOSWAN Model

In the case of the comparison between radar data and the ROSARIOSWAN

model (Maria and Skiron) data, the model point closest to the buoy position

was considered, see Section 4.3. This was considered since the radar annular

ring in use, the second, is the closest to the buoy position and is what is

used for comparison with such in-situ data. From the 339 radar data points,

only 150 and 30 data points overlapped with the model for the Maria and

Skiron variations, respectively, since some missing data exists in these model

datasets as well. This portion makes up about 44% and 9% of the radar

dataset for the Maria and Skiron models, respectively, which is already a

very small set compared to the time range over which this data was collected,

see Section 4.2.2.

Correlation and other error metrics were computed for these datasets for the

parameters of SWH, Direction and mean period. The limited number over-

lapping points, over an almost two-year period, mean that the correlation

analysis and regression did not yield very useful results, and are thus not

plotted here; the resulting correlation and regression measures are however

presented in Tables 5.5 and 5.6, respectively, where both versions of the

ROSARIOSWAN model are included.

As can be seen from these Tables, the limited data affects negatively the

capability of comparing the two datasets well. In terms of correlation, the

only moderate correlation is that for the Maria model’s wave direction pa-

rameter, R = 0.47, where the associated non-zero intercept linear fit has the

highest R2 at 0.22; this value is quite a low one. The bias for this same

value is, unexpectedly, relatively low at −8.43. The second best non-zero

intercept linear fit is the case of the mean period parameter for the Skiron

model, where R2 = 0.17. In this case, however, both the R value and the
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Table 5.5: Wave parameters’ resulting correlation measures from SOPU
radar and ROSARIOSWAN model data comparison for the period 04/08/2020
- 12/07/2021

Wave Parameter R Bias MAE RMSE SI

Maria
SWH 0.16 0.37 0.61 1.02 12
Mean Period −0.15 2.87 2.92 3.77 5
Direction 0.47 −8.43 77.77 124.45 9
Skiron
SWH 0.16 0.48 0.71 0.99 5
Mean Period −0.41 3.1 3.52 4.33 3
Direction 0.08 −73.77 128.18 170.24 6

Table 5.6: Wave parameters’ resulting linear regressions (non-zero and
forced-zero intercept) from SOPU radar and ROSARIOSWAN data compari-
son for the period 04/08/2020 - 12/07/2021

Wave Parameter y = mx+ c R2 y = mx R2

Maria
SWH 0.828 + 0.218x 0.03 0.883x −0.49
Mean Period 7.251− 0.356x 0.02 1.72x −0.83
Direction 84.478 + 0.489x 0.22 0.816x 0.08
Skiron
SWH 0.921 + 0.177x 0.03 0.884x −1
Mean Period 9.127− 0.881x 0.17 1.658x −1.41
Direction 123.174 + 0.085x 0.01 0.54x −0.22

sign of the gradient in the equation indicate a negative correlation. This

is very undesirable since, in the ideal case, the resulting correlations are

positive and equal to one. For all the other parameters, the linear fits are

ill-fitting, more so for the forced-zero intercept (as is expected), and the val-

ues of R, bias, MAE and RMSE further support this. The SI are quite low,

but this is likely the case because of the limited amount of points available

for comparison.
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5.3 Data Comparison: Models vs Models

In this Section, model data comparison is made between the Copernicus

model, see Section 4.1.1, and the ROSARIOSWAN model’s two variations,

Maria and Skiron, see Section 4.1.2. The comparisons will be made at the

grid points of the models closest to the buoy position as described in Section

4.3.

5.3.1 ROSARIOSWAN Maria vs Skiron

Here, a comparison between the ROSARIOSWAN Maria and Skiron con-

figurations is made. Differing in their wind forcing source data, and not

in the model itself, it is useful to see how these two datasets differ from

one-another. First, the time series of these are overlaid for visual inspection

in Figure 5.25. In addition, the probability density of each of the parame-

ters from both datasets were overlaid for ease of comparison; the resulting

distributions are given in Figure 5.26.

From these Figures, it is already clear that both model versions show a

strong correlation. Some further things can be said about each parameter

from the probability density plots in Figure 5.26, even though, overall, these

show very good matches. For the case of the SWH, it can be noted that the

Skiron model tends to produce a slightly higher probability density at the

distributions peak, despite it being the same peak. This can also be said for

the case of the wave direction, where this is the case for values of direction in

the, approximate, range 70-270◦. The opposite is the case, Maria model has

higher probability densities, for values < 70◦ and > 325◦. For the remaining

range, 270 − 325◦, the models have a very similar probability density. Not

much can be said for the case of the mean period, as the probability densities
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.25: ROSARIOSWAN Skiron (black) and ROSARIOSWAN Maria
(red) models’ time series data from January 2020 to November 2021

117



Chapter 5: Results and Discussion

(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.26: Probability Density of ROSARIOSWAN Maria (red) and
ROSARIOSWAN Skiron (black) model data

overlap quite well in this case. For the case of the peak period, in general,

the probability densities match in the position of peaks and troughs in the

distribution. However, for the case of the Maria model, peaks are generally

higher and troughs lower than those resulting from the Skiron model.

Correlation and other error metrics were computed for these datasets, the

resulting plots are given in Figures 5.27 and 5.28 for the forced-zero intercept

and non-zero intercept regressions, respectively.

From these plots, it can be seen that all the wave parameters show a strong

correlation between the datasets, as is expected. In all cases but the Wave

direction, the data points spread further out away from the origin of the

plots, indicating larger differences between higher values. For the case of the
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.27: Correlation plots between ROSARIOSWAN Maria and
ROSARIOSWAN Skiron models; forced-zero intercept regression

wave direction, a concentration of points can again be seen in two directions,

see Figures 5.27b and 5.28b, which are roughly Easterly and North-Westerly.

In this plot it can be noted that there is ‘background’ scattered points which

do not show a correlation.

Since all of the plots show a relatively good correlation and linear fit, the

parameters have been summarised in Tables 5.7 and 5.8 for ease of analysis.

As one case see from Table 5.7, all of the R values in this case are ≥ 0.80,

which is indicative of the aforementioned strong correlation. In addition to

this, the biases are all < 0.1, apart from the direction case, therefore, are

quite close to zero. In the direction case the bias is −2; this is likely a result

of the ‘background’ scatter mentioned above. The MAE and RMSE are not
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.28: Correlation plots between ROSARIOSWAN Maria and
ROSARIOSWAN Skiron models; non-zero intercept regression

insignificant for all cases, and this can be attributed to the spread of the

points, which can be seen in the scatter plots. Indeed, as a reflection of this,

the SI is the highest for the SWH case (59%) and lowest for the mean period

case (23%).

Further indication of the strong correlation between the datasets are the R2

values for the forced-zero and non-zero intercept regressions, see Table 5.8.

What can be noted here is that the R2 values for the non-zero intercept

linear fits are very close to the forced-zero intercept cases. This indicates

that a linear relationship of the form y = mx, with 0.882 ≤ m ≤ 1.005 in

these cases (which are relatively close to 1), is not too far off from the best

linear fit.
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Table 5.7: Wave parameters’ resulting correlation measures from ROSAR-
IOSWAN Maria and ROSARIOSWAN Skiron model data comparison for the
period January 2020 - November 2021

Wave Parameter R Bias MAE RMSE SI

SWH 0.87 −0.04 0.21 0.34 59
Direction 0.8 −2 33.75 72.62 45
Mean Period 0.84 0.01 0.37 0.51 19
Peak Period 0.81 0.09 0.51 0.87 23

Table 5.8: Wave parameters’ resulting linear regressions (non-zero and
forced-zero intercept) from ROSARIOSWAN Maria and ROSARIOSWAN Sk-
iron model data comparison for the period January 2020 - November 2021

Wave Parameter y = mx+ c R2 y = mx R2

SWH 0.111 + 0.801x 0.75 0.882x 0.74
Direction 47.961 + 0.753x 0.63 0.931x 0.59
Mean Period 0.653 + 0.804x 0.7 0.988x 0.66
Peak Period 0.808 + 0.844x 0.65 1.005x 0.63

5.3.2 Copernicus model vs ROSARIOSWAN

In this Section, the Copernicus Model will be compared to the ROSAR-

IOSWANmodel; the time-series plot for the Copernicus model and the Maria

and Skiron models have been plotted in Figures 5.29 and 5.33 respectively

for the period January 2020 - November 2021; as analysed and discussed in

Section 5.3.1, there is quite a good correlation between the Maria and Skiron

versions of the ROSARIOSWAN Models. Because of this, the comparison

of the ROSARIOSWAN models with the Copernicus model will not be done

separately for the two versions since the resulting correlation measures and

regressions are very similar. This can be seen from the scatter plots for the

Maria and Skiron models in Figures 5.30 and 5.31, and 5.34 and 5.35, re-

spectively, as well as from the probability density plots in Figures 5.32 and

5.36 for Maria and Skiron, respectively. The resulting parameters have been

summarised in Tables 5.9 and 5.10 for ease of comparison.
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.29: ROSARIOSWAN Maria model (red) and Copernicus model
data (black) from January 2020 to November 2021
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.30: Correlation plots between ROSARIOSWAN Maria model and
Copernicus model; forced-zero intercept regression
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.31: Correlation plots between ROSARIOSWAN Maria model and
Copernicus model; non-zero intercept regression
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.32: Probability Density of ROSARIOSWAN Maria model (red)
and Copernicus model (black) data
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(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

(d) Peak Period

Figure 5.33: ROSARIOSWAN Skiron model (red) and Copernicus model
data (black) from January 2020 to November 2021

126



Chapter 5: Results and Discussion

(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.34: Correlation plots between ROSARIOSWAN Skiron model and
Copernicus model; forced-zero intercept regression
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.35: Correlation plots between ROSARIOSWAN Skiron model and
Copernicus model; non-zero intercept regression
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(a) Significant Wave Height (b) Wave Direction

(c) Mean Period (d) Peak Period

Figure 5.36: Probability Density of ROSARIOSWAN Skiron model (red)
and Copernicus model (black) data
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Table 5.9: Wave parameters’ resulting correlation measures from Coperni-
cus model and ROSARIOSWAN model data comparison for the period Jan-
uary 2020 - November 2021

Wave Parameter R Bias MAE RMSE SI

Maria
SWH 0.82 0.22 0.34 0.47 52
Direction 0.7 10.78 45.77 89.49 52
Mean Period 0.69 0.49 0.75 0.94 26
Peak Period 0.5 1.53 1.79 2.24 33
Skiron
SWH 0.77 0.27 0.38 0.53 58
Direction 0.67 12.56 50.02 91.25 53
Mean Period 0.64 0.49 0.77 0.97 28
Peak Period 0.5 1.45 1.75 2.2 33

Table 5.10: Wave parameters’ resulting linear regressions (non-zero and
forced-zero intercept) from Copernicus model and ROSARIOSWAN data com-
parison for the period January 2020 - November 2021

Wave Parameter y = mx+ c R2 y = mx R2

Maria
SWH 0.318 + 0.871x 0.67 1.108x 0.59
Direction 75.288 + 0.68x 0.49 0.96x 0.38
Mean Period 1.165 + 0.797x 0.47 1.124x 0.39
Peak Period 3.136 + 0.652x 0.25 1.277x 0
Skiron
SWH 0.35 + 0.889x 0.6 1.17x 0.49
Direction 75.653 + 0.686x 0.45 0.976x 0.34
Mean Period 1.222 + 0.781x 0.41 1.125x 0.33
Peak Period 3.235 + 0.622x 0.25 1.248x −0.03

Looking at the probability distribution plots, Figures 5.32 and 5.36, one can

note that the general distribution of densities is comparable between the

datasets. In the case of the SWH and mean period, the ROSARIOSWAN

model tends to output a higher density at the peak value, with this peak

value being shifted lower than that associated with the Copernicus model

data. In the case of the direction probability density, there is a good match in

peaks at roughly Eastern and North-Western directions, as seen in previous
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cases, where the ROSARIOSWAN model has a slightly higher density than

the Copernicus model at the Eastern peak, with the opposite being the case

for the North-Western peak. Finally, for the case of the peak period, the

ROSARIOSWAN model peaks before the Copernicus case and at a lower

value. It can be noted that the probability density of the ROSARIOSWAN

is more ‘continuous’ in the sense that the area below this distribution is

whole. In the case of the Copernicus model, the peaks are separated and

narrow, leading to higher probability densities.

Table 5.9 shows that for the correlation parameters of the different ROSAR-

IOSWAN models with the Copernicus model, these behave very similarly.

From the values of R, it can be seen that the SWH in this case has the

strongest correlation from the other wave parameters; the correlation is a

good one, while, for the other parameters, the correlation is a moderate

one. For each of the cases, based on the scale of the parameter values, the

bias is not insignificant as neither is very close to zero, but they are also

not excessively large either. Similar can be said for the cases of MAE and

RMSE, where these are not insignificant. For the case of the scatter index,

the parameter showing the lowest value is that of the mean period; this can

be observed from the Figures 5.30c and 5.34c, where the data spreads the

least from the other cases.

The linear regressions, Table 5.10, again clearly show the similarity of the

regression between the Maria and Skiron case. For the non-zero intercept

case, based on the value of R2, the best fitting line is that calculated for

the SWH, this is a further reflection of the good correlation between the

datasets for this parameter. In a similar way, the other parameters’ fits are

weaker, with those for direction and mean period showing a moderate fit,

and that for peak period a rather ill-fit. For the forced-zero intercept case,

the R2 values are worse, with the case for peak period showing clearly that
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the fit is very ill-suited with a zero and negative value for the case of Maria

and Skiron, respectively; the other fits are moderate for the mean period

and direction, and good for the SWH.

5.4 Data Comparison: Other

In this Section, the relationships between the different sources of data, be it

in-situ, remote sensing and model data, not yet considered are investigated.

Further, the difference between forecast and hindcast analysis Copernicus

model data is investigated through comparison with satellite data.

5.4.1 Satellite vs Copernicus model

Year-long satellite data of SWH, see Section 4.2.3, was obtained from 01/01/2020

midnight to 01/01/2021 midnight over the spatial area covered by the Coper-

nicus data considered in this work; the resulting satellite tracks are given in

Figure 5.37.

The orthodromic distance calculation, Section 3.1 is used in finding the

closest Copernicus model point to each of the satellite readings. The satellite

measurements, being instantaneous in time, are associated to the hourly

Copernicus data by assigning those values with minutes ≤ 30 to the previous

hour and those > 30 to the following hour; for example, a measurement at

17:26 would be assigned to hour 17 and a measurement at 17:36 would be

assigned to hour 18.

Plotting these datasets against each other results in the plots with forced-

zero intercept and non-forced intercept regressions in Figures 5.38 and 5.39,

respectively. A scatter plot displaying the points from the different satellite
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Figure 5.37: Satellite tracks between 01/01/2020 and 01/01/2021 in the
area bounded by 13-16E and 35-37N

missions is also plotted in Figure 5.40.

Looking at both regressions, Figures 5.38 and 5.39, one can quickly note

from only visual inspection that the data fits the regression quite well in

both cases; in fact, up to two significant Figures, both R2 values of the

forced-zero intercept and non-forced intercept are 0.94. What this means is

that the data comparison is good enough such that, forcing a zero-intercept

doesn’t change the line by a huge amount. This can be noted from the

equations of both cases,

y = 0.966x

y = −0.017 + 0.977x,
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Figure 5.38: Significant Wave Height correlation plot between Copernicus
model and Satellite data between 01/01/2020 and 01/01/2021; forced-zero
intercept regression

where the gradients aren’t very different from each other and the intercept

is quite close to zero. Further indication that the datasets compare well

together is the value of R, 0.97, which indicates a good fit. Additionally, the

bias is quite close to zero at −0.04, while the MAE and RMSE are also low

in value, 0.12 and 0.16, respectively. The SI in this case is 14%, indicating

that the deviation of the point from the expected value, given the bias, is

not too large. The good correlation between the two datasets can be also

seen when looking at the probability density plot in Figure 5.41, where the

peak curves are very similar in shape.

This good fit to a linear relationship can be expected since the hindcast

analysis Copernicus model dataset is assimilated with Satellite data.
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Figure 5.39: Significant Wave Height correlation plot between Copernicus
model and Satellite data between 01/01/2020 and 01/01/2021; non-zero in-
tercept regression

SWH Threshold Analysis

The probability of the Copernicus model being able to detect SWHs above

a given threshold is plotted against the probability of it being a false alarm,

using the method described in Section 3.2.4, where Satellite data is used

as the reference dataset. The resulting plot is given in Figure 5.42, where

thresholds are taken from Hs = 0.5 to 5 in steps of 0.5.

From this plot, it can be observed that the Copernicus model has a good PD

of sea states when thresholds of Hs fall in the range 0.5-4.5; these values all

lie in the 80-100% probability range. For the most part, the points seem to

cluster in the top left area of the plot with a PFA under 20%. For Hs > 3.5

and 4.5, the values of PFA are closer to 30%. There is then a dramatic
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Figure 5.40: Significant Wave Height correlation plot between Copernicus
model and Satellite data between 01/01/2020 and 01/01/2021; classified by
satellite type

drop to zero in PD for the case of Hs > 5, with an associated PFA of 100%.

This extreme value is likely to be the result of the small number of events

that satisfy this threshold value, and so, the data might not be sufficient to

represent this situation well.

Save for the aforementioned extreme case, the PD performance is quite good

in this case, without a significant increase in PFA. A better performance is

then observed when carrying out threshold analysis for Copernicus model

data with the satellite data, rather than with the buoy data (Section 5.1.1).

This is again likely the result of the Copernicus model data being assimilated

with satellite data, hence, comparing well to it.
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Figure 5.41: Probability Density of Copernicus model (red) and Satellite
(black) data

5.4.2 Satellite vs Copernicus model: forecast vs hind-

cast analysis

Given the fact that the Satellite data considered is assimilated with the

Copernicus model in the hindcast analysis data, it would be of interest to

compare the forecast model output to the re-analysed model output. For

this purpose, 10 day forecast data was obtained from the Copernicus model

on 19/11/2021, spanning between 19/11/2021 12:00 and 28/11/2021 11:00.

The same range of model data was then extracted on the 29/11/2021 as the

model data would then be the re-analysed, thus assimilated, version. The

satellite tracks that fall in this time bracket, and hence the ones used for

comparison, are illustrated in Figure 5.43.

Scatter plots have been plotted for both the forecast and hindcast analysis
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Figure 5.42: Copernicus model Data SWH Threshold Analysis; tested
against satellite data

data, and are plotted side-by-side for ease of comparison; Figures 5.44, 5.45

and 5.46, show the scatter plots separated according to satellite type, with a

forced-zero intercept linear regression, and with a non-zero intercept linear

regression, respectively.

Additionally, the probability densities and SWH threshold analysis were also

similarly plotted in Figures 5.47 and 5.48.

One can quickly note, by comparing Figures 5.44a and 5.44b that the corre-

lation between the datasets is much more linear in the case of the hindcast

analysis data, as is to be expected because of the assimilation. This im-

provement in correlation is further shown in the linear regression fits in

Figures 5.45 and 5.46. For the case of the forced-zero intercept, Figure 5.45,

the linear fit performs better in the hindcast case, with and increase in R2

138



Chapter 5: Results and Discussion

Figure 5.43: Satellite tracks between 19/11/2021 12:00 and 28/11/2021
11:00 in the area bounded by 13-16E and 35-37N

(a) Forecast (b) Re-analysis

Figure 5.44: Correlation plots between Copernicus model and Satellite data
separated by Satellite type between 19/11/2021 12:00 and 28/11/2021 11:00

from −1.63 to 0.79, indicating that the linear regression represents a strong

relationship. In the case of the non-zero intercept, Figure 5.46, again the

linear fit performs better in the hindcast case, with and increase in R2 from

0.13 to 0.84, which are, in turn, improvements over the values in the forced-

zero intercept case. The fit is then the strongest for the hindcast, non-zero
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(a) Forecast (b) Re-analysis

Figure 5.45: Correlation plots between Copernicus model and Satellite data
between 19/11/2021 12:00 and 28/11/2021 11:00; forced zero-intercept re-
gression

(a) Forecast (b) Re-analysis

Figure 5.46: Correlation plots between Copernicus model and Satellite data;
non-zero-intercept regression

intercept correlation plot.

As a further comparison of the forecast and hindcast correlations with satel-

lite data, the correlation measure R also improved from a value of 0.35 to

0.91, again indicating a very strong relation between the values. Additionally

MAE, RMSE and SI all improved with values decreased by approximately

67%, 62% and 69%, respectively. The resulting bias is also closer to zero

at −0.02. The probability density fit is also improved, see Figure 5.47, in

the hindcast case. In the forecast probability density, the Copernicus model
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(a) Forecast (b) Re-analysis

Figure 5.47: Probability Density of Copernicus model (red) and Satellite
(black) data between 19/11/2021 12:00 and 28/11/2021 11:00

(a) Forecast (b) Re-analysis

Figure 5.48: Copernicus Data SWH Threshold Analysis between
19/11/2021 12:00 and 28/11/2021 11:00; tested against satellite data

correctly predicted two peaks of SWH values, but at the incorrect values

with a much less broad distribution. In the case of the hindcast, the two

peaks more closely match those corresponding to the satellite data.

As a final note, a SWH threshold analysis was carried out on the data for the

sake of rough comparison, since, the amount of data is limited to 10 days.

Looking at Figure 5.48, it can be noted that the PD quickly disintegrates

in the case of the forecast data for Hs > 1.5, where it is very close to zero.

In contrast, in the hindcast case, the PD and associated PFA are ∼ 82%

and ∼ 11%, respectively, for the same point, which is much better. The last

141



Chapter 5: Results and Discussion

point in the re-analyses case, Hs > 2, the PD and PFA have values of ∼ 52%

and ∼ 20%, respectively.

5.4.3 In-situ and remote-sensing measurement com-

parison

The comparison of different measurements, in-situ and remote sensing, with

each other is slightly more complicated than that of comparison of mea-

surements with model data. This is because measurements have a generally

more limited spatial and/or temporal coverage of an area (as discussed in

Section 2.1), and so, overlap between different sources might be difficult to

obtain. In this Section, the comparisons between buoy, satellite and radar

measurements are presented.

Buoy vs Satellite

In order to find Satellite data points in the vicinity of the buoy, a circu-

lar region of radius 0.05◦ was considered, see Figure 5.49. This distance

was chosen such that at least one satellite point for which buoy data was

available could be compared; the satellite dataset range in this case spanned

from January 2020 to November 2021. Indeed, over the one year buoy data

available, only one satellite point could be considered for comparison, this

is presented in Table 5.11. Based on this singular data point, it can be

seen that the values are relatively close to each other, with a difference of

0.121 m, with the Satellite outputting the lower of the values. Considering

the proximity of the point to shore, it seems that there is no clear error

resulting from reflection off land mass by the satellite.
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Figure 5.49: Satellite and buoy overlapping data for the period 04/08/2020
- 12/07/2021

Table 5.11: Satellite and buoy overlapping SWH data for the period
04/08/2020 - 12/07/2021

Date and Time Latitude Longitude Satellite Distance from buoy Buoy

23/03/2021 23:00 36.0858◦N 14.2440◦E 2.2590 m 3.42 km 2.3800 m

Radar vs Satellite

In order to find Satellite data points that intersect with the SOPU radar’s

second annular ring, which is 5.85 km away from the station (a radius of

about 0.0527◦), a ring segment extending from shore to shore is considered.

The ring is made of two concentric circles of radii 0.0580◦ and 0.0474◦ were

considered, see Figure 5.50. This distance was chosen such that at least

one satellite point for which radar data was available could be compared.

Again, over the one year buoy data available, only one satellite point could
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Figure 5.50: Satellite and SOPU radar overlapping data for the period
04/08/2020 - 12/07/2021

be considered for comparison, this is presented in Table 5.12. Based on

this singular data point, it can be seen that the value pair aren’t very well

matching, with the Satellite data being more that double that of SOPU

radar. Considering that in the previous case, when comparing the singular

buoy and satellite point, there was quite a good match between the values, it

might be the case that the erroneous value in this case is that from the SOPU

radar. However, given the very limited points available for comparison, this

cannot be concluded here.

Table 5.12: Satellite and SOPU radar overlapping SWH data for the period
04/08/2020 - 12/07/2021

Date and Time Latitude Longitude Satellite Distance from SOPU station SOPU radar

25/10/2021 06:00 36.0844◦N 14.3543◦E 1.3910 m 5.17 km 0.6050 m
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Buoy vs Radar

As discussed in Section 4.2.2, the available data for the SOPU radar at the

distance closest to the buoy point has several missing values, hence, the

points coinciding with the one-year buoy dataset is more-so limited. This

can be visualised from the time-series plots of the two datasets in Figure

5.51.

(a) Significant Wave Height

(b) Wave Direction

(c) Mean Period

Figure 5.51: SOPU HF Radar (red) (Jan 2020 - Nov 2021) and Buoy (black)
(Aug 2020 - Jul 2021) time series data

145



Chapter 5: Results and Discussion

The limited number overlapping points, 45 out of a possible 8030 (∼ 0.6%

of the buoy dataset), mean that the correlation analysis and regression did

not yield any useful results, and are thus not plotted here; the resulting

correlation and regression measures are however presented in Tables 5.13

and 5.14, respectively. A moderate correlation is found for the case of the

direction, which yields a weak fit in both linear regressions. The SWH’s

R value indicates a weak correlation, but the resulting linear regressions

are very ill-fitting. The mean period shows almost no correlation and has

ill-fitting regressions.

Table 5.13: Wave parameters’ resulting correlation measures from SOPU
radar and buoy data comparison for the period 04/08/2020 - 12/07/2021

Wave Parameter R Bias MAE RMSE SI

SWH 0.21 0.11 0.49 0.86 25

Mean Period 0.04 1.76 1.92 2.73 10

Direction 0.57 −26.97 71.55 118.19 17

Table 5.14: Wave parameters’ resulting linear regressions (non-zero and
forced-zero intercept) from SOPU radar and buoy data comparison for the
period 04/08/2020 - 12/07/2021

Wave Parameter y = mx+ c R2 y = mx R2

SWH 0.66 + 0.293x 0.05 0.85x −0.21

Mean Period 5.187 + 0.074x 0 1.376x −0.55

Direction 53.737 + 0.613x 0.32 0.807x 0.28
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5.5 Power Calculations

The wave power is first calculated over a one-year period, between 04/08/2020

and 12/07/2021, near the position of the buoy for the datasets of the buoy,

Copernicus Model, ROSARIOSWAN Maria and ROSARIOSWAN Skiron

models in order to compare the outputs by using the method described in

Section 3.3.1.

It is helpful to be able to visualise the power and energy available over the

region under consideration for ease of comparison between different areas.

It is also useful to use this visualisation with forecast model data, such that

the power in the sea waves can be anticipated ahead of time. This can be

done for a number of forecast time windows and displayed in succession in

the form of an animated sequence of forecasts.

The power maps of the spatial domain under consideration are then found by

using the same method describe in Section 3.3.1 but for every single point.

For the case of the Copernicus model data, the variable TE is used directly

in the equation since this is an output variable, VTM10 (see Table 4.1), of

the model. For the case of the ROSARIOSWAN data, the peak period Tp is

used as the energy period is not an output of the model, see Table 4.2.

5.5.1 At buoy position

Here, the yearly averaged power at the buoy point is presented in Table 5.15

The power is overestimated by 1.3864 kW/m by the Copernicus Model when

compared to the result from the buoy data, while the ROSARIOSWAN

Models underestimate the power output by 0.5037 and 1.0642 kW/m by

the Skiron and Maria versions, respectively. The underestimation by the
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Table 5.15: Power calculation at buoy position between 04/08/2020 and
12/07/2021

Data Power / kW/m

Buoy 3.4816
Copernicus Model 4.8680
ROSARIOSWAN Skiron Model 2.9779
ROSARIOSWAN Maria Model 2.4174

Figure 5.52: Seasonal average wave power between 04/08/2020 08:00 and
12/07/2021 06:00

ROSARIOSWAN model is likely a result of the underestimation by this

model, for both Maria and Skiron, of the SWH and peak period parameters,

as discussed in Sections 5.1.2 and 5.1.3.

The time series average power for each month and season, for each of the

datasets, are plotted in Figures 5.52 and 5.53, respectively, for a visual

representation of the variability of the power on these time scales.

For the case of the seasonal mean values, Figure 5.52, it can be noted that

the datasets’ outputs are closest in value during Spring and Summer, and

the largest variation occurs in Winter. The outputs of the ROSARIOSWAN

models Skiron and Maria, have values which are relatively close during Au-

tumn, Spring and Summer, but deviate during Winter.

For the case of the monthly mean values, Figure 5.53, the datasets’ outputs
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Figure 5.53: Monthly average wave power between 04/08/2020 08:00 and
12/07/2021 06:00

are closest in value during May, and the largest variation occurs during Jan-

uary. ROSARIOSWAN models Skiron and Maria match fairly well between

August and December and between May and July. Between January and

April, ROSARIOSWAN Maria has output values closer to the Copernicus

model, which both show a large overestimation when compared to the buoy

values. The Copernicus model and buoy outputs are close between August

and November, and between April and July, with a slight overestimation

by the model. ROSARIOSWAN Skiron likely has the closest annual mean

due to having both underestimations and overestimations with no extreme

jumps.

Power directional histogram

Additionally, directional histograms of the power output over this one year

period are also plotted, Figure 5.54, for each dataset in order to be able to

compare the outputs by each model as compared to the in-situ measure-

ments. The binning is done with a width of 22.5◦ with bin centers starting

at 0◦. Each bar is divided into up to five segments indicating the proportion

of the binned power data which is ≤ 1 kW/m, in the ranges 1-2, 2-3, 3-4

kW/m and that > 4 kW/m.
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(a) Buoy (b) Copernicus Model

(c) ROSARIOSWAN Skiron (d) ROSARIOSWAN Maria

Figure 5.54: Wave power (kW / m) directional histogram between
04/08/2020 and 12/07/2021

Looking at the plots in general, it can be noted that the histograms show

two main peaks at 90◦ and 315◦, which correspond to Eastern and North-

Westerly directions. This is consistent with what is discussed in Sections

5.1-5.3 when wave direction is available, as these show the high occurrence

of waves from these directions. It can be noted that the high North-Westerly

wave occurrence coincides with the most common wind direction experienced

on the Maltese Islands which, on average, blows 20.7% of the days in a year

[102].

The best agreement in these directional histograms exists between the buoy

data and Copernicus model datasets, Figures 5.54a and 5.54b, respectively,

where the shape and distribution of wave power in the bins is comparable.
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The Copernicus model does however tend to overestimate the proportion of

waves which have power < 1 kW/m, and in turn, underestimate those with

power > 4 kW/m between 292.5◦ and 337.5◦. In the direction ranges 0◦-

112.5◦ and 292.5◦-337.5◦, the Copernicus model also tends to underestimate

the intermediary ranges of the wave power. In the direction range 135◦-270◦,

the Copernicus model shows the highest occurrence of wave power is of < 1

kW/m, while the same range from the buoy data indicates that the highest

occurrence is of waves with power in the range 1-2 kW/m.

Comparing first the two ROSARIOSWAN Models with each other, Figures

5.54c and 5.54d, it can be noted that there is a large underestimation of the

power in the direction range 135◦-270◦ in both cases when compared to the

buoy data histogram. Another common feature of both ROSARIOSWAN

Model histograms is that, as in the case of the Copernicus model, they

tend to overestimate the proportion of waves which have power < 1 kW/m,

and underestimate the remaining ranges. Comparing the ROSARIOSWAN

Maria model to the buoy data histogram reveals that the shape of the con-

secutive bars matches less (with the buoy case) than in the case of the the

ROSARIOSWAN Skiron model. This can be noted in the range 67.5◦-112.5◦,

where the bars are consecutively decreasing in magnitude rather than first

increasing and then decreasing to a lower percentage than the first, and in

the range 0◦-45◦, where the bars are consecutively increasing in magnitude

rather than first decreasing and then increasing to a higher percentage than

the first. It would seem then that the ROSARIOSWAN Skiron model is

better at representing the directional power distribution than the ROSAR-

IOSWAN Maria model.
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5.5.2 Copernicus Model Map

In this Section, power maps have been plotted for the Copernicus model

dataset, that described in Section 4.1.1, using the process described in Sec-

tion 3.3.1. The plots presented here are the resulting power plots for three

time averaging windows: one year, 24hr and 1hr.

Forecast and hindcast analysis

Since the Copernicus model gives both forecast and re-analysed data, it

would be of interest to compare the resulting power plots of the same time

span, but one is data obtained from forecast and the other from the hindcast.

The plots for the hindcast and the forecast are given in Figures 5.55 and 5.56,

respectively.

It can be noted that, when comparing the day-averaged plots, Figures 5.55b

and 5.56b, the plots are relatively similar. In particular, one can note that

both plots depict lower power values to the West of Malta (and Sicily), a

result of shadowing by the land. Additionally, towards the East, there is

an increase in wave power, especially towards the bottom right of the plots,

this is likely a result of the larger fetch from the East as opposed towards

the North or South. What can be noted is that, in the case of the low-power

shadows, the forecast seems to overestimate how far these extend; this can

be noted from the 0.9 kW/m isoline, which is much closer to land in the

case of the hindcast data. The increase in power towards the right is fairly

similar in both cases, with the forecast showing a slight overestimation at

the bottom right area.

Looking at the hour plots, Figures 5.55a and 5.56a, it can be noted that

the plots are again relatively similar. In the case of the hindcast data, the
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(a) 1 hour window: 20/11/2021 14:00:00

(b) 24 hour window: 20/11/2021

Figure 5.55: Power plot of the re-analysis data from the Copernicus model
on 20/11/2021

isolines are shifted slightly Eastwards, resulting in higher power values as

one progresses Westwards when compared to the forecast data. The shadow

153



Chapter 5: Results and Discussion

(a) 1 hour window: 20/11/2021 14:00:00

(b) 24 hour window: 20/11/2021

Figure 5.56: Power plot of the forecast data from the Copernicus model on
20/11/2021

of lower power in the forecast case. extends further than that in the hindcast

case, as can be noted from the 0.6 kW / m isoline.

154



Chapter 5: Results and Discussion

It can then be noted than the day-averaged and hourly forecast both give

quite a good approximation to the hindcast data. This indicates that the

forecasts on both a low and high time resolution (1hr and 24hrs) can produce

reliable wave power forecasts.

One year averaged data

Considering an averaging window over a longer period of time allows for

a better estimation of the yearly wave power climate. Here, Copernicus

model data between 04/08/2020 08:00 and 12/07/2021 06:00 is considered

for the calculation. Naturally, having several years of data as opposed to one

provides a better statistical representation of the power distribution. For the

purposes of this work, however, a year is sufficient to illustrate typical power

values. The average Hs and TE variable maps are plotted, Figures 5.57 and

5.58, respectively, in order to illustrate the average sea state that results in

the wave power map plot which is given in Figure 5.59.

The Hs and TE plots are here described. Looking first at Figure 5.57, it

is quickly notable that the average SWH over a year is relatively low, with

offshore values reaching values around ∼ 1.2 m at most. For the case of the

energy period TE, Figure 5.58, the average offshore energy period over a year

reach values around ∼ 5.4 s at most. The area beyond the West coast of

Malta seems to have a slightly lower energy period values when compared to

those beyond the East coast. These average values are consistent with the

global mean Hs and TE maps presented by Martinez and Iglesias in [103],

for the region under consideration.

When the power values obtained in this Figure are compared to those ob-

tained by Drago et al [9], for a smaller region using a SWAN model over a

five-year period, these are found to be consistent. According to the work
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Figure 5.57: Hs plot of the re-analysis data from the Copernicus model
between 04/08/2020 08:00 and 12/07/2021 06:00

Figure 5.58: TE plot of the re-analysis data from the Copernicus model
between 04/08/2020 08:00 and 12/07/2021 06:00
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Figure 5.59: Power plot of the re-analysis data from the Copernicus model
between 04/08/2020 08:00 and 12/07/2021 06:00

done by Martinez and Iglesias [103], in an investigation of global wave power

exploitability, the region under consideration here is classified as Class I by

the wave resource classes. This class, defined by regions of power less than

10 kW/m, is the lowest of the classes, and is indicative of poor wave en-

ergy resource. The average Hs and TE described in the previous paragraph

are also consistent with the ranges typically associated with Class I areas;

Hs < 2m and 1.7 < TE < 12.6 s. In contrast to this, regions in the Northern

part of Europe have classifications up to Class IV, which are regions with

power in the range 40-80 kW/m [103].

5.5.3 ROSARIOSWAN Map

In this Section, power maps from the best 24hr wave forecast have been

plotted for the ROSARIOSWAN dataset, that described in Section 4.1.2,

using the process described in Section 3.3.1. The plots presented here are the
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Figure 5.60: Power plot of the forecast data from the ROSARIOSWAN
model for 09/09/2021

resulting power plots for two time averaging windows, 24hr and 1hr. It can

be immediately noted, from these plots, that these are of higher resolution

than those in the Copernicus model case; despite the fact that the area

covered by the ROSARIOSWAN model is smaller than that considered in

this work for the Copernicus model case, the processing of ROSARIOSWAN

data takes longer because of its much higher resolution. One 24hr averaged

window plot is given in Figure 5.60 and one 1hr averaged plot is given in

Figure 5.61.

What can be noted from the hourly-averaged plot for 13:00 on 09/09/2021,

Figure 5.61, is that a ‘shadow’ of lower power is formed towards South-West

beyond coasts of Malta and Sicily, in this time-period. In contrast, in the

day-averaged plot for the same day, Figure 5.60, the lower-power shadow

is estabished more towards a North-Eastern direction for Malta, and an

Eastern direction for Sicily. Both plots have higher power values in the
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Figure 5.61: Power plot of the forecast data from the ROSARIOSWAN
model for 09/09/2021 13:00

bottom-right area of the plots.

5.6 Variability

The variability of the power resource is an important factor to consider when

investigating the wave resource, especially for the application of WEC tech-

nologies. In this Section, the variability measures described in Section 3.3.2

are calculated at the buoy point for the different data sources available, as

well as over the whole region of Copernicus model data under consideration.
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5.6.1 At buoy position

The resulting calculated values for the variability measures for the buoy,

Copernicus Model, ROSARIOSWAN Skiron and ROSARIOSWAN Maria

model data are summerised in Table 5.16.

Table 5.16: Variability measures, COV, SV and MV, at buoy position

Data COV SV MV

Buoy 1.5986 1.1305 1.6722
Copernicus Model 1.9166 1.6817 2.4785
ROSARIOSWAN Skiron Model 2.3198 1.8470 2.8074
ROSARIOSWAN Maria Model 2.1148 1.9318 3.4689

For all measures, the variability is overestimated when compared to the

results from the buoy data, with the ROSARIOSWAN Maria Model having

the greatest difference, except for the COV case, and the Copernicus Model

the least. According to the discussion in Section 3.3.2, based on the COV

measure, the area can be considered to have high variability since COV> 1.2

in all cases.

Based on the work of Cornett [86], who defined the SV and MV and carried

out a global assessment, the values obtained here for SV and MV can be

analysed. Considering first SV, in the case of the buoy result, this value is

slightly higher than what is expected in coastal areas at similar latitudes.

For the higher values of SV, these are comparable to the non-coastal areas

of similar latitudes.

Similarly, for the case of MV, the buoy result is higher, by an increased

amount in this case, than what is expected at similar latitudes at coastal

areas. The value of MV for the case of Copernicus model data is comparable

to non-coastal areas. The value of MV from both the ROASRIOSWAN

models is quite high and is attributed to select areas on the global scale of
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high variability.

It should be noted that the variability in the Mediterranean region is not

covered by the global analysis by Cornett. The area might then actually

be one of higher variability than that of the open ocean due to it being

closed off. This is infact confirmed in the work by Martinez and Iglesias

[103], who carried out investigations into the exploitability of the global

wave resource. In this aforementioned work, a plot of the COV did include

the Mediterranean region, which showed a comparably higher variation than

non-enclosed spaces. This variation supports then the higher values obtained

in the calculation of the COV.

5.6.2 Map

As done for the single point case in Section 5.6.1, the process is repeated

here for the entire Copernicus model domain under consideration, and the

resulting variability measures of COV, SV and MV are plotted in maps in

Figures 5.62, 5.63 and 5.64, respectively.

What can be noted over the whole region from these plots is that, for each

measure, the differences from one point to another are not very dramatic.

The changes are quite gradual and consistent with no specific region having

particularly high or low values. From the COV and MV maps, Figures

5.62 and 5.64, respectively, it can be noted that the region West of Malta

has higher variation than the region East of Malta. In the case of MV,

this effect is more prominent closer to the islands’ coasts. Although in the

seasonal case, Figure 5.63, this effect isn’t evident on a regional scale, it is

closer to the coast, with the West coast experiencing more variation than

the East.
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Figure 5.62: Copernicus Model Coefficient of variation between 04/08/2020
08:00 and 12/07/2021 06:00

Figure 5.63: Copernicus Model Seasonal Variation between 04/08/2020
08:00 and 12/07/2021 06:00
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Figure 5.64: Copernicus Model Monthly Variation between 04/08/2020
08:00 and 12/07/2021 06:00
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5.7 Wave Energy Converters Output Power

Having a means now to characterise the wave power and sea state, here we

present the respective output power from different types of WECs based on

these considerations. Similar to the calculations carried out for the wave

power in Section 5.5, the WEC output power is first calculated over a one-

year period, between 04/08/2020 and 12/07/2021, near the position of the

buoy for the datasets of the buoy, Copernicus Model, ROSARIOSWAN

Maria and ROSARIOSWAN Skiron in order to compare the outputs by

using the method described in Section 3.3.3.

Again, it is helpful to be able to visualise the power output that each WEC

has to offer over the region under consideration for ease of comparison be-

tween different areas and WEC type. It is also useful to use this visualisation

with forecast model data, such that the output power in the sea waves can

be anticipated ahead of time. Such forecast data can then be compared to

hindcast analysis data, resulting in an indicator of how good the prediction

is.

The output WEC power maps of the spatial domain under consideration

are then found by using the same method describe in Section 3.3.3 for every

single point. The use of either TE or Tp as one of the binning dimensions

depends on how the power matrix of the WEC under consideration is defined.

In this case, the WECs under consideration are those listed in Table 2.1,

where Pelamis, Wave Dragon, and Wavestar’s power matrices are defined by

TE rather than Tp.
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5.7.1 At buoy position

Here presented are the WEC outputs for the buoy position. These are sum-

marised in Table 5.17 and plotted in Figure 5.65. In addition, the capacity

factors, based on these annual output power values and the rated power

given in Table 2.1, are given in Table 5.18.

Table 5.17: WEC annual average output power (kW) based on the period
04/08/2020 - 12/07/2021 for different data sources

WEC Buoy Copernicus Model ROSARIOSWAN Maria ROSARIOSWAN Skiron

Aquabuoy 24.5 30.0 24.9 21.6
Archimedes 51.1 64.4 39.8 30.4
CECO 11.7 13.3 12.5 10.1
OEbuoy 68.2 83.0 49.4 44.7
Pelamis 67.3 88.4 88.0 68.7
SeaPower 88.0 103.3 59.0 52.3
Wave Dragon 812.6 910.5 657.9 588.2
Wavebob 61.0 75.8 46.5 39.2
Wavestar C6 192.7 213.9 195.2 175.5

Table 5.18: WEC annual capacity factor (%) based on the period
04/08/2020 - 12/07/2021 for different data sources

WEC Buoy Copernicus Model ROSARIOSWAN Maria ROSARIOSWAN Skiron

Aquabuoy 9.8 12.0 10.0 8.7
Archimedes 2.0 2.6 1.6 1.2
CECO 1.7 1.9 1.8 1.5
OEbuoy 2.4 2.9 1.7 1.6
Pelamis 9.0 11.8 11.7 9.2
SeaPower 2.5 2.9 1.6 1.5
Wave Dragon 13.8 15.4 11.2 10.0
Wavebob 6.1 7.6 4.7 3.9
Wavestar C6 32.1 35.6 32.5 29.3

Looking at Figure 5.65, it can be observed that all datasets generally fol-

low a similar pattern for the WEC output power, indicating that the re-

sulting values from different datasets are consistent. When compared to

the buoy results, the Copernicus model seems to overestimate the output

power, while the ROSARIOSWAN models underestimate it. In particular,

the ROASRIOSWAN Skiron model understimates the output more that the
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Figure 5.65: WEC annual average output power (kW) based on the period
04/08/2020 - 12/07/2021 for different data sources

ROASRIOSWAN Maria model. This underestimation of the power from the

ROSARIOSWAN model data is again likely to be a result of the underes-

timation of the SWH and peak period parameters by the model itself as

discussed in Sections 5.1.2 and 5.1.3.

The absolute difference between the buoy measurement and model WEC

output power, represented as a percentage of the buoy result, can be cal-

culated to quantify the difference in each model case. For the Coperni-

cus model, the largest absolute difference (31.3%) is associated with the

WEC Pelamis, for ROSARIOSWAN Maria (33.0%) with SeaPower and for

ROSARIOSWAN Skiron (40.5%) with SeaPower.

Based on the buoy output, it can be clearly observed that the WEC that

seems to have the highest output power is the WaveDragon at 812.6 kW, and
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the least output power is supplied by CECO at 11.7 kW. The second highest

output is produced by the Wavestar C6, which is still higher than the rest

of the power outputs as it is outputs 192.7 kW. The second lowest power

output is given by the AquaBuoy with an output of 24.5 kW. The other

six WEC output powers fall between 50 and 90 kW and so represent more

intermediary output powers. In order to better understand the variability of

the outputs between the models, the difference between the maximum and

minimum values for a given WEC is presented as a percentage of the buoy

output power in Table 5.19. From this Table it can be inferred that the

largest variation in output power exists in the Archimedes outputs (66.5%),

and the smallest variation in the Wavestar C6 (19.9%). This means that

the calculation of output power of a WEC is affected by which dataset is

being used to calculate it. This is understandable as the different models

will produce different combinations of Hs and TE/Tp which will result in

differing histograms of these two values, which will in turn affect the result

when multiplying with the power matrix of a WEC.

Table 5.19: WEC output power percentage difference between maximum and
minimum output values from models as compared to the power output resulting
from buoy measurement data

Data % difference

Aquabuoy 34.2
Archimedes 66.5
CECO 27.4
OEbuoy 56.1
Pelamis 29.3
SeaPower 58.0
Wave Dragon 39.7
Wavebob 59.9
Wavestar C6 19.9

Looking at the capacity factors in Table 5.18, the WECs can be broadly

grouped. On one end, the worst capacity factors belong to the Archimedes,
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CECO, OEbuoy and SeaPower WECs, with values at around 2%. On the

other end, the highest capacity factor is for the Wavestar C6 WEC at 32.1%,

which is followed by WaveDragon at 13.8%. Aquabuoy, Pelamis and Wave-

bob then lie in intermediary values between these two extremes. It would

seem then that the Wavestar C6 outputs more power than most WECs,

apart from WaveDragon, while also having the highest capacity factor.

5.7.2 Using Copernicus Model Map

Forecast and Hindcast analysis

For the purpose of comparison between resulting output power of a WEC

for forecast and hindcast analysis Copernicus model data, only a couple of

WEC types are considered here rather than all of the nine devices, as this

is an analysis of the accuracy of the forecast rather than of the specific

WEC output at the time range considered. The averaging period in this

case is over a nine-day period over which the forecast was available; the

range corresponds to 19/11/2021 12:00 - 28/11/2021 11:00. The two WECs

considered were the SeaPower and the WaveDragon; the resulting plots are

given in Figures 5.66 and 5.67, respectively. In these plots, apart from the

WEC output power plots for the forecast and hindcast data, the difference

between the two is also plotted.

For this particular time period, it seems that in both WEC cases the Coper-

nicus model forecast underestimates the output power from the WEC. In-

deed, the difference for both, Figures 5.66c and 5.67c, are positive values.

Based on the discussion in Section 5.7.1 regarding the output WEC power

at the buoy point, the Copernicus model in that case showed a tendency to

overestimate the output power when compared to the results from the buoy

measurements, where in that case the model was using hindcast analysis
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(a) Forecast

(b) Re-analysis

(c) Difference

Figure 5.66: SeaPower output power plot using data from the Copernicus
model between 19/11/2021 12:00 and 28/11/2021 11:00
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(a) Forecast

(b) Re-analysis

(c) Difference

Figure 5.67: WaveDragon output power plot using data from the Copernicus
model between 19/11/2021 12:00 and 28/11/2021 11:00
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Figure 5.68: AquaBuoy output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00

data. Considering this then, it can’t be said whether the forecast would

likely be underestimating or overestimating the WEC output power as this

could possibly be fluctuating between the two.

One year averaged data

Considering an averaging window over the whole year period for the entire

Copernicus region considered yields a better estimation of the yearly output

wave power of the WEC under consideration; the Copernicus model data

between 04/08/2020 08:00 and 12/07/2021 06:00 is once again used here for

the calculation. The resulting plots for the nine WECs considered in this

work are given in Figures 5.68-5.76.

What can be said for all of these plots is that the power output for all

the WECs is higher away from the coastal areas. This coastal lower-power

‘shadow’ tends to, in all WECs, extend more beyond the Maltese East coast
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Figure 5.69: Archimedes output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00

Figure 5.70: CECO output power plot using re-analysis data from the Coper-
nicus model between 04/08/2020 08:00 and 12/07/2021 06:00
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Figure 5.71: OEbuoy output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00

Figure 5.72: Pelamis output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00
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Figure 5.73: SeaPower output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00

Figure 5.74: WaveDragon output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00
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Figure 5.75: Wavebob output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00

Figure 5.76: Wavestar C6 output power plot using re-analysis data from the
Copernicus model between 04/08/2020 08:00 and 12/07/2021 06:00
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rather beyond the West, which is illustrated by the isobars in each plot.

The WECs AquaBuoy, OEbuoy, Pelamis and Wavebob (Figures 5.68, 5.71,

5.72 and 5.75, respectively) show a higher power output beyond the West

coast when compared to the East coast. The remaining WECs, Archimedes,

CECO, SeaPower, WaveDragon and Wavestar C6 (Figures 5.69, 5.70, 5.73,

5.74 and 5.76, respectively), do not show such a strong relative drop in power

when comparing the West area to the East area. Rather, in this case, the

power output tends to decrease with increasing latitude, granted that the

isobars are not horizontal and so, still indicate a slight lower power in the

Eastern area when compared to the same latitude in the Western area.

Looking at the power outputs of the WECs, similar to the discussion for

the power at the buoy position in Section 5.7.1, the highest output power

is produced by the WaveDragon with a regional maximum of about 910

kW, and the least output power is supplied by CECO with a maximum in

the region of about 16 kW. The second highest output is produced by the

Wavestar C6, which is still higher than the rest of the power outputs as the

maximum in the region is around 240 kW. The second lowest power output

is given by the AquaBuoy with a maximum in the region of about 36 kW.

The other six WEC output powers generally fall between 75 and 110 kW,

away from coastal areas, and so represent more intermediary output powers.

These aforementioned six WECs’ output power can then be considered as

the most typical output values in this region.

5.7.3 Using ROSARIOSWAN Model Map

In this Section, only a couple of WEC types are considered rather than all

of the nine devices, for the purpose of illustrating differing WEC output

in the time range considered for different WECs. The averaging period in
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Figure 5.77: SeaPower output power plot using data from the ROSAR-
IOSWAN model forecast between 05/09/2021 and 09/09/2021

this case is over a five-day period from the best 24hr wave forecast; the

range corresponds to 05/09/2021 - 09/09/2021. The two WECs considered

were the SeaPower and the WaveBob WECs; the resulting plots are given

in Figures 5.77 and 5.78, respectively.

From this comparison, it can be clearly seen how different WECs will perform

differently in the same sea states. As an example, there are areas in the

Wavebob case, Figure 5.78, which have no output. These correspond to sea-

states with a combination ofHs and Tp which yield 0 kW in the power matrix

of the WEC in question. In the case of the Seapower WEC, Figure 5.77, there

are no such areas, indicating that the sea-states favoured production with

this WEC in this case. Another notable difference between the two is the

variation in output power from the WECs, where the Wavebob experiences

a wider variation than the SeaPower case.
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Figure 5.78: Wavebob output power plot using data from the ROSAR-
IOSWAN model forecast between 05/09/2021 and 09/09/2021

5.7.4 Multi Criteria Approach

In this Section, the suitability of the WECs considered in this work is quan-

tified through the modified MCA index, as described in Section 3.3.4, where

a number of different factors are taken into consideration. The MCA is car-

ried out for the buoy position data for the same datasets used to obtain the

power results described in Section 5.7.1, that is, buoy, Copernicus model,

ROSARIOSWAN Maria and ROSARIOSWAN Skiron models.

At buoy position

Here presented are the MCA outputs for the buoy position. These are sum-

marised in Table 5.20 and plotted in Figure 5.79.

Looking at Figure 5.79, it can be observed that all datasets generally follow
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Table 5.20: MCA index (×104) based on the period 04/08/2020 -
12/07/2021 for different data sources

WEC Buoy Copernicus Model ROSARIOSWAN Maria ROSARIOSWAN Skiron

Aquabuoy 54.96 55.27 13.87 16.60
Archimedes 104.63 112.06 23.72 21.26
CECO 38.58 31.57 10.09 10.52
OEbuoy 135.40 141.68 28.34 31.39
Pelamis 132.58 136.82 46.38 41.32
SeaPower 248.97 217.00 36.43 53.73
Wave Dragon 1830.71 1588.17 451.55 420.96
Wavebob 149.24 149.38 31.50 30.19
Wavestar C6 586.83 546.17 143.46 158.51

a similar pattern for the MCA, indicating that the resulting values from

different datasets are relatively consistent. The ranked order of the result-

ing MCA index is given in Table 5.21 for easy of comparison between the

datasets.

Table 5.21: MCA index rank

WEC Buoy Copernicus Model ROSARIOSWAN Maria ROSARIOSWAN Skiron

Aquabuoy 8 8 8 8
Archimedes 7 7 7 7
CECO 9 9 9 9
OEbuoy 5 5 6 5
Pelamis 6 6 3 4
SeaPower 3 3 4 3
Wave Dragon 1 1 1 1
Wavebob 4 4 5 6
Wavestar C6 2 2 2 2

In all cases, WaveDragon and Wavestar C6 ranked 1st and 2nd, respectively,

and Archimedes, Aquabuoy and CECO ranked 7th, 8th and 9th, respectively.

This indicates that, for the extreme MCA indices, the resulting ranks from

the different datasets are the same. In the case of the intermediate rank-

ings, the different data sources do not result in the same order; these will be

described in the following. SeaPower and OEbuoy were ranked 3rd and 5th,

respectively, in all but the ROSARIOSWAN Maria data, in which they were

ranked 4th and 6th, respectively. Wavebob and Pelamis were both ranked 4th

and 6th, respectively, in the buoy and Copernicus model data. In ROSAR-
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Figure 5.79: MCA index based on the period 04/08/2020 - 12/07/2021 for
different data sources

IOSWAN Maria data, these were ranked 5th and 3rd, respectively, and in

ROSARIOSWAN Skiron data, these were ranked 6th and 4th, respectively.

What can also be noted from this comparison is that the Copernicus model

rankings are not only identical to the buoy measurement rankings, but that,

when considering the actual values of the MCA, Table 5.20, these are very

close to each other; this is also visually evident from Figure 5.79. This is

not the case for the ROSARIOSWAN model data where, for both cases, the

MCA values are all less than 35% of the buoy MCA values. The ROSAR-

IOSWAN model data MCA values from both the Maria and Skiron cases are

comparable to each other, but less so than the buoy and Copernicus model;

indeed, the resulting MCA rankings from the ROSARIOSWAN Maria and

Skiron models do not match.
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It would seem then, from this analysis, that the extreme MCA values are

properly ranked by all models when considering the ranking from the buoy

measurements to be the ‘true’ ranking. Using this same measure, the Coper-

nicus model resulting MCA values and rankings are the best of the three

models, with matching rankings and similar index values, whereas the ROSAR-

IOSWAN models underestimate the MCA index values and do not have

consistent rankings with the respective buoy values.
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Conclusion

This dissertation has focused on the comparison of different wave datasets

in order to establish the performance of models and measurements with

respect to each other, including model forecast and hindcast considerations.

In addition, calculations of the power potential, variability and WEC output

were carried out for the different datasets for comparison and analysis.

The model data from Copernicus showed a better comparison to the buoy

data than the ROSARIOSWAN, despite having a model grid of lower reso-

lution. In all cases, the best and worst correlations were seen in the SWH

and peak period parameters, respectively. The mean period data displayed

a V-like distribution, which results from the underestimation of the param-

eter by the models for data corresponding to low SWH values (according to

buoy data); a similar plot is obtained when comparing HF radar data to the

Copernicus model. Such underestimation by the models also occurs for the

peak period case. In the ROSARIOSWAN cases, the SWH, mean period,

and peak period show a systematic error in the form of an underestimation.

The analyses of the comparison between HF radar data to models and other

datasets were limited by the comparatively small dataset available, and so,

182



Chapter 6: Conclusion

more data would be required to make sounder conclusions.

Where datasets were sufficiently large to produce legible scatter plots, plots

of the direction parameter showed clustering around the Eastern and North-

Western directions, indicating a higher frequency of waves originating from

these directions. Scattered ‘background’ points were also noted in many

plots, likely to correspond to lower SWHs, along with weaker clusters of

points in the top left and bottom right of the plots.

The comparison of models with each other, Copernicus model and the two

ROSARIOSWAN models, showed good correlations in general, with the

weaker correlation belonging to the peak period parameter.

The Copernicus model showed very good correlation with the satellite data

given that this is this same data which is assimilated with the model for

hindcast calculations. Indeed, the correlation between the two datasets im-

proved by 160% from forecast data to hindcast analysis data, with decreases

of MAE, RMSE, and SI of 67%, 62%, and 69% respectively.

All the comparisons made are summarised in Table 6.1.
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Buoy vs Models Parameter correlations from strongest to weakest: SWH,

direction, mean period, and peak period, for all cases.

Both ROSARIOSWAN models resulted in generally sim-

ilar correlations and error metrics for each parameter,

showing no obvious better-performing model. The cor-

relation and error metrics were generally better in most

parameters for the Copernicus model case, with the most

comparable values with ROSARIOSWAN being achieved

for the direction parameter. For ROSARIOSWAN: for

all cases but the wave direction, a shift downwards in the

distribution of values is observed. For the Copernicus

Model: a shift downwards in the distribution of values is

observed for the mean period.

Radar vs Mod-

els

The most comparable model to radar data was the Coper-

nicus model. The ROSARIOSWAN Maria model outper-

formed the Skiron version in this case.

Copernicus Model Parameter correlations from strongest to weakest: Direc-

tion, SWH, and mean period. The strongest linear fit,

the wave direction, had an associated R2 of 0.32, which

is relatively weak. More data required for better compar-

ison.

ROSARIOSWAN

Maria

Parameter correlations from strongest to weakest: Direc-

tion, SWH, and mean period. Very limited number of

overlapping points for comparison

ROSARIOSWAN

Skiron

Parameter correlations from strongest to weakest: SWH,

Direction, and mean period. Very limited number of over-

lapping points for comparison
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Models vs Mod-

els

ROSARIOSWAN

Maria vs Skiron

Parameter correlations from strongest to weakest: SWH,

mean period, peak period, and wave direction. All the R

values in this case are > 0.80, indicating strong correla-

tion.

ROSARIOSWAN

vs Copernicus

Both ROSARIOSWAN models output similar correla-

tions and error metrics; the Maria version is slightly more

comparable to the Copernicus model. Parameter corre-

lations from strongest to weakest: SWH, direction, mean

period, and peak period. For all cases but the wave di-

rection, a shift downwards in the distribution of values is

observed.

Other

Satellite vs Coper-

nicus Model

Very high correlation, R = 0.97, when hindcast data is

used and compared with satellite data since the model is

assimilated with this same data. The correlation coeffi-

cient increased by 157% from using forecast model data

to hindcast model data.

Buoy vs Satellite One data point of SWH available: Satellite = 2.2590 m

and Buoy = 2.3800 m. Comparable but limited data

points for comparison.

Radar vs Satellite One data point of SWH available: Satellite = 1.3910 m

and Buoy = 0.6050 m. Not very comparable but limited

data points for comparison.

Buoy vs Radar Only 0.6% of the buoy dataset could be compared. Very

ill-fitting linear regression results.

Table 6.1: Summary of dataset comparison results
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In the power potential calculations, the Copernicus model and ROSAR-

IOSWAN models overestimate and underestimate the power potential, re-

spectively, when compared to the buoy output, with ROSARIOSWAN Sk-

iron having the closest value. The ROSARIOSWAN models are expected to

underestimate the power due to its underestimation of the wave parameters.

The directional histograms of the output power are generally agreeable be-

tween datasets, with a tendency to overestimate the portion of events with

power ≤ 1 kW/m, with peaks at the East and North-West directions and

low occurrence between the South-East and West directions.

As expected, the one year averaged Copernicus model plot indicated low

power potential, near the Maltese Islands, with lower potential along the

East coast when compared to the West, classifying the area as a Class I

wave resource (the lowest classification). Along with this, high variability

is seen in Maltese waters, with a tendency of higher variability occurring

beyond the West coast as compared to the East coast. This is unfavourable

since the high and low of the power availability and variability, respectively,

occur at opposing sides.

The estimation of power output based on the Copernicus forecast can be

said to be reliable when comparing it to the hindcast analysis data on both

a short time-scale (1hr) and a longer time-scale (24hr), making it suitable

basis for power potential forecast.

On the consideration of WECs, the analyses carried out suggests that the top

two suitable technologies are those of the Wave Dragon and Wavestar C6,

both having the highest values of power output and capacity factor. Given

the Wavestar C6 is a point absorber, hence less directional, it is probably

a better choice over the Wave Dragon, despite the latter’s higher output

power.
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6.1 Future work

The analyses carried out in this work depends heavily on the datasets used.

It is to be noted that the limited amount of HF radar data hindered the

analysis in regards to the data source. Collection of this data in a more

complete form over a longer period of time is then required for a more sound

analyses to be carried out.

The MCA index calculation was in this work presented for a single point.

The calculation of the index over a whole mapped region can be also done,

however, this required more time than available in order to run the calcula-

tion over for all the points.

The analysis regarding the power output of the WECs, in this case, did

not consider explicitly the directionality of the technologies. Investigation

of how this parameter affects the power output would yield a better picture

of the suitability of the respective WEC.

187



References

[1] Neill SP, Hashemi MR. Chapter 5 - Wave Energy. In: Neill SP,
Hashemi MR, editors. Fundamentals of Ocean Renewable Energy. E-
Business Solutions. Academic Press; 2018. p. 107–140.

[2] Holthuijsen LH, Booij N, van Endt M, Cakes S, Soares CG. Assimila-
tion of buoy and satellite data in wave forecasts with integral control
variables. Journal of Marine Systems. 1997;13(1):21–31.

[3] Violante-Carvalho N, Ramos AVC. Revisão das Técnicas para a Assim-
ilação do Espectro Direcional Bi-Dimensional em Modelos de Ondas.
Revista Ciências Exatas e Naturais. 2006;8(1):9–24.

[4] Drago A, Ciraolo G, Capodici F, Cosoli S, Gacic M, Poulain PM, et al.
In: CALYPSO an operational network of HF radars for the Malta-
Sicily Channel. Proceedings of the Seventh EuroGOOS International
Conference; 2014. p. 167–176.

[5] Pecher A, Kofoed JP. Handbook of Ocean Wave Energy. Ocean En-
gineering & Oceanography. Springer International Publishing; 2016.

[6] Neill SP, Hashemi MR. Chapter 7 - In Situ and Remote Methods for
Resource Characterization. In: Neill SP, Hashemi MR, editors. Funda-
mentals of Ocean Renewable Energy. E-Business Solutions. Academic
Press; 2018. p. 157–191.

[7] Cefas. WaveNet Interactive Map;. Available from: http://wavenet.
cefas.co.uk/Map.

[8] NOAA. National Data Buoy Center;. Available from: https://www.
ndbc.noaa.gov/.

[9] Drago A, Azzopardi J, Gauci A, R T, Bruschi A. Assessing the offshore
wave energy potential for the Maltese islands. ISE Annual Conference.
2013 03;p. 16–27.

188

http://wavenet.cefas.co.uk/Map
http://wavenet.cefas.co.uk/Map
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/


References

[10] Joodaki G, Nahavandchi H, Cheng K. Ocean Wave Measurement
Using GPS Buoys. Journal of Geodetic Science. 2013;3(3):163–172.
Available from: https://doi.org/10.2478/jogs-2013-0023.
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