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Abstract: According to various worldwide statistics, most car accidents occur
solely due to human error. The person driving a car needs to be alert, espe-
cially when travelling through high traffic volumes that permit high-speed
transit since a slight distraction can cause a fatal accident. Even though semi-
automated checks, such as speed detecting cameras and speed barriers, are
deployed, controlling human errors is an arduous task. The key causes of
driver’s distraction include drunken driving, conversing with co-passengers,
fatigue, and operating gadgets while driving. If these distractions are accu-
rately predicted, the drivers can be alerted through an alarm system. Further,
this research develops a deep convolutional neural network (deep CNN)
models for predicting the reason behind the driver’s distraction. The deep
CNN models are trained using numerous images of distracted drivers. The
performance of deepCNNmodels, namely theVGG16,ResNet, andXception
network, is assessed based on the evaluation metrics, such as the precision
score, the recall/sensitivity score, the F1 score, and the specificity score. The
ResNet model outperformed all other models as the best detection model for
predicting and accurately determining the drivers’ activities.
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1 Introduction

Various reports have indicated that several road accidents occurred over the years due to the
driver’s distraction. An inattentive driver is one of the main reasons behind the vast majority of
accidents. The yearly statistics indicate that nearly half a million people are injured due to these
accidents, and thousands of deaths occur each year [1–4]. There are several reasons for driver’s
distraction, such as operating gadgets, conversing with their co-passengers, drunken driving, and
fatigue. There is a need for a reliable method that guarantees road safety. To this end, this
research’s main objective is to develop a suitable solution to curb such occurrences and ensure
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road safety. Predicting the reasons for the driver’s distraction and possibly alerting the driver
could avoid such accidents. Further, this work devises the tools and methods to determine the
best and most efficient Deep Convolutional Neural Network (deep CNN) model for detecting the
reason behind a driver’s distraction. The deep CNNs have proven to perform exceptionally well
in classifying images; thus, it seems to be an excellent fit for resolving this problem.

A deep CNN usually requires significantly less preprocessing than the other classification
algorithms [5–10]. The entire process of finding the best deep CNN model begins with comparing
the models in terms of different evaluation metrics and selecting the best among them. The deep
CNN models help to classify the distracted driver dataset. Further, this system would ensure road
safety in high-risk roads and highways, where speed is also a concern, and the fatality rate is
much higher. Even though the external checks are essential for curbing accidents, predicting the
driver’s distraction plays a significant role in saving lives and guaranteeing road safety.

This research determines an optimized approach among different deep CNN models for
detecting the driver’s distraction. The various models’ performances were compared using the
evaluation metrics, and then the best-suited approach was determined based on these metrics. The
materials and methods section deals with the background concepts and related works on this
topic, and it briefly introduces the deep CNN models. The implementation section discusses the
hardware and software requirements, the dataset utilized, and the individual deep CNN models’
parameter settings. Next, the results and discussions section provides the performance comparisons
of various deep CNN models. Finally, the conclusion section summarizes this work along with a
brief discussion about possible future enhancements.

2 Materials and Methods

2.1 The Deep Convolutional Neural Network (Deep CNN)
The concept of image recognition, classification and processing has evolved through various

architectures and algorithms, and deep CNN models are a branch of Deep Learning [11]. Firstly,
the images get converted into the two-dimensional matrix [12–15]. However, this reduces the
quality of the image when it has pixel dependencies. The deep CNN algorithm ensures that the
image quality and its spatial and temporal dependencies are also preserved. A deep CNN model
trained on a larger dataset usually generalizes much better than a model trained with a smaller
dataset. Further, the deep CNN model processes the images with minimum computation and
minimal damage to the pixel values. The entire process of the deep CNN image classification
can be broadly divided into three steps. The image passes through the convolutional layers, the
pooling layers, and the Fully Connected Layers [16]. Finally, a probabilistic function is applied to
classify the images. Various deep CNN architectures such as LeNet, AlexNet, VGGNet, ResNet,
and Xception can be deployed for image classification. This work focuses on three prominent deep
CNN architectures: the ResNet, Xception, and the VGG16 model.

2.2 The ResNet Model
Generally, in deep CNN models, the classification efficiency keeps improving proportionately

with the number of network layers. However, this causes a consequent increase in the training
and testing error rate. This phenomenon is referred to as the vanishing or exploding gradient.
Further, this issue can be resolved using the Residual Network (ResNet) [17–19]. These networks
deploy an approach known as skip connections. Further, the network skips the training from
a few layers and connects directly to the output. ResNet’s basic architecture is inspired by the
VGG network, where the convolutional layers use 3 × 3 filters. The architecture involves two
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concepts for model optimization. The layers possess the same number of filters for the same type
of output feature maps. Moreover, when the output feature map’s size is halved, the number of
filters is doubled to preserve each layer’s time complexity [20–22]. In this work, the ResNet model
was trained and tested over the Kaggle dataset for Distracted Driver Detection by State Farm.
Moreover, this model efficiently classifies the driver’s distraction. Fig. 1 portrays the architecture
for the ResNet model that consists of 152 layers. Each step is carried forward with four layers
of similar behavioural pattern in a ResNet. Every subsequent segment follows the same pattern.
A three-by-three convolution is performed with a constant dimension: 64, 128, 256, and 512,
respectively. Thus, it bypasses the input after every two convolutions. Moreover, the width and
height dimensions during the entire layer remain constant. Skip connections perform identity
mapping, and their outputs are added to the outputs of the stacked layers. Furthermore, the
ResNet model is less complicated and can be easily optimized compared to the other networks.
Besides, this model converges faster and generates better results than other peer-level networks.

Figure 1: Architecture of the ResNet deep CNN model

2.3 The Xception Model
The Extreme Inception or the Xception model is an inspired version of CNN’s Inception

model, an ‘extreme’ improvement. The Inception model has deep convolutional layers and wider
convolutional layers that work in a parallel manner. This model has two different levels, each with
three convolutional layers. Unlike the inception model, the Xception model has two levels, where
one of them has a single layer. This layer slices the output into three segments and passes it on to
the next set of filters. The first level has a single convolutional level of 1 * 1 filter, while the next
level has three convolutional levels of a 3 * 3 filter. The aspect that defines the Xception model is
the Depthwise Separable Convolution [23–25]. A general deep CNN model takes care of spatial
and channel distribution, but the Xception model involves depthwise and pointwise convolution.
The work by Chollet [26] shows the improvement of Xception over the previous models. This
research uses this Xception model to evaluate the distracted driver dataset for classifying the
driver’s distraction. The architecture of the Xception network model is illustrated in Fig. 2. The
Xception model is a 71-layer deep CNN, inspired by the Inception model from Google, and it is
based on an extreme interpretation of the Inception model [27]. Its architecture is stacked with
depthwise separable convolutional layers. The pre-trained version of the model is trained using
millions of images from the Imagenet database. Moreover, this model can classify hundreds of
object categories and has rich representations of its utilities for a wide range of pictures. The
Xception model has profound utilities in the domains of image identification and classification.
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Figure 2: Architecture of the Xception deep CNN model

2.4 The VGG16 Model
The VGG16 architecture is an improved version of the AlexNet deep CNN model. When

this model was tested over the Imagenet dataset, it showed a top-5 test accuracy of 92.7%. The
VGG16 model uses 16 layers with tunable parameters. There are 13 convolutional layers and three
fully connected layers. It also contains five max-pooling layers in the middle, and at the output,
it has the Softmax activation function [28–30]. The entire module’s architecture is divided into
various sets of convolutional layers and max-pooling layers, following which the fully connected
layer and the activation function are present. In the VGG16 model, the image passes through
two sets of two convolutional layers and one max pooling layer. Subsequently, it is followed by
three sets of three convolutional layers and one max pooling layer. After this stage, the image
passes through the three dense, fully connected layers, finally entering the Softmax activation
function [31].

The VGG16 model also has hidden layers with the Rectified Linear Unit (ReLU) as the
activation function. This model happens to be less computationally intensive than the previous
ones due to the decrease in kernels. Besides that, the convolutional layer preserves the image
resolution as it has a small receptive field, that of 3 * 3, and a stride of 1. Fig. 3 represents the
architecture of the VGG16 model. The input of the first convolution layer is of a definite size
and a specific fixated RGB image. The picture moves across many network layers, utilizing the
filters with a minimal 3 * 3-pixel responsive field. The stride of convolution is fixated at a pixel,
and the in-space resolution is saved even after the convolution [32].

For the 3 * 3 convolutional layers, one layer of zeros gets added to the borders for the same
padding. The max-pooling function is performed across a 2 * 2-pixel window, with a stride of
2. Three fully connected layers follow a stack of convoluting sheets, with the final layer being
the Softmax layer. The fully connected layer configuration is similar in every network, and every
hidden layer is provided with the ReLU activation function.
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Figure 3: Architecture of the VGG16 deep CNN model

Figure 4: Methodological flow of the work

2.5 Model Comparison
This research presents an accurately trained model for classifying the driver’s distraction. The

rate of fatal accidents due to the driver’s human error or negligence has been at a record high
for the past few years. Accidents can be prevented by alerting drivers whenever they tend to
get distracted. The input provided for training the system is the distracted driver’s images, such
as the driver using a mobile phone, adjusting radio channels, drinking, and/or engaged in other
such activities [33]. This dataset will then train the various deep CNN algorithms, and the best
model for this task is determined. For increasing distraction levels, the model proportionately
recognizes a wide range of distracted drivers better while eliminating the non-distracted ones.
The deep CNN algorithms require minimal preprocessing of the data; also, they can capture
the spatial and temporal dependencies in images. However, basic preprocessing methods are still
needed to ensure that the dataset does not provide irrelevant details. The RGB images are
converted into the grey-scale format, where a two-dimensional matrix structure represents each
image. The images’ thresholding is necessary due to the car seats’ background noise. Thresholding
ensures the extraction of only the relevant part(s) from the image—characterizing the driver’s
distraction. The primary image processing methods guarantee the obtained image’s appropriateness
and contribute to the dataset’s variety. Fig. 4 shows this work’s methodological flow. As mentioned
earlier, deep CNN architecture provides various image classification algorithms and models. We
used three models: ResNet, Xception, and VGG16. These models were trained separately using
the distracted driver dataset. Further, various evaluation metrics were employed to assess these
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models’ performance. The best model was decided based on the evaluation metrics. To this end,
the ResNet was observed to be the best model for performing a successful driver’s distraction
classification.

3 Implementation

3.1 Hardware Requirement
The system was executed on a Hewlett-Packard (HP) Spectre ×360 convertible workstation

with a 64-bit Intel® Core™i7 processor and a GPU. It had 16 GB RAM and a 64-bit operating
system with touch and pen input supports. The camera used in this system was an HP TrueVision
Full HD WVA Webcam that comes inbuilt with the workstation and interspersed with dual digital
microphones.

3.2 Software Requirement
The software applications used for this system included a Python platform and R-Studio.

The system was built primarily on the Python language along with secondary support from R
programming. Several Python libraries like NumPy, Keras, TensorFlow, Pandas, and Matplotlib
were used to implement the deep CNN models. Further, these models were executed using open-
source machine learning and deep learning libraries like Keras and TensorFlow.

3.3 Dataset Description
The State Farm Distracted Driver Detection dataset used in this work was obtained from

Kaggle. This dataset comprises more than 20,000 image data, totalling an overall size of approxi-
mately 8 GB. All the dataset images had the same dimension, 480 * 480 pixels, and several driver
images in various driving postures. The pictures were classified into ten classes, as shown in Tab. 1.
The different deep CNN models were trained to predict the likelihood of the driver’s distraction in
each picture. Fig. 5 shows the demo pictures from each of the ten classes of images. Further, this
dataset possesses the distribution of more than 20,000 images into the ten distinguished classes.
The histogram visualized in Fig. 6 shows that approximately 2500 image data are present under
each class. However, one exception is the number of images in class C8, which consists of people
talking to a passenger. This category has 4000 data compared to the other class images, whose
average frequency is around 2350.

Table 1: Classes of images in the dataset and their description

Class Image description

C0 Safe driving
C1 Texting–Right hand
C2 Talking on phone–Right hand
C3 Texting–Left hand
C4 Talking on phone–Left hand
C5 Operating radio
C6 Drinking
C7 Reaching back
C8 Makeup or doing hair
C9 Talking to passenger
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Figure 5: Sample pictures from each of the ten classes of images–(a) class C0–safe driving (b)
class C1–texting with right hand (c) class C2–talking on the phone with right hand (d) class C3–
texting with left hand (e) class C4–talking on the phone with left hand (f) class C5–operating
radio (g) class C6–drinking (h) class C7–reaching back (i) class C8–doing hair (j) class C9–talking
to a passenger

Figure 6: Frequency of images in each class
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3.4 Data Preprocessing
Certain observations were drawn after acquiring and evaluating the information about the

dataset. Not all the pixel values contributed equally to the class value assigned to a particular
image. For example, in most cases, hands and head positioning play a vital role in determining
the image class. The images are preprocessed to remove the background noise, which barely
contributed as a prominent feature for the evaluation. The image data was converted into 64 * 64
pixels from its original resolution of 480 * 480 pixels. The images had many background noises
not required for the prediction, such as the windshield and the seats. The essential characteristics
of the image are the positioning of hands, head, and legs. Hence, unwanted information was
removed using image processing techniques like grey-scaling and thresholding. The mean RGB
values of every image in the dataset were determined, and these values were 95.124, 96.961, and
80.123. Every image’s pixel values were subtracted by the mean value to retain only valuable
information for the training model. The position of arms, head, legs, and any new object was still
clearly identifiable, making the image appropriate for further processing by the deep CNN models.

3.5 Execution of ResNet Model
The ResNet model used fivefold cross-validation to verify the results’ stability and authenticity.

A checkpoint was created after each set of validations to avoid the loss of the stored weights. Fur-
ther, each cross-validation was set to run with ten epochs, and the various performance evaluation
metrics were determined. As shown in Fig. 7, the model was prepared using the ResNet50 layer
using the ‘Imagenet’ data as its weights, as available in the Keras library. Next, these values were
flattened using a flatten layer. The ResNet deep CNN model was fine-tuned with the dense layer
using the ‘Softmax’ function. Further, to utilize an adaptive learning rate, Adam optimization was
used instead of Gradient Descent optimization.

Figure 7: The ResNet model description–left: layer name, right: input-output size
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3.6 Execution of Xception Model
The Xception model was set up using transfer learning, utilizing a pre-trained VGG16 model.

Like the ResNet model, in the Xception model, each cross-validation was run with ten epochs,
and the various evaluation metrics were determined. As shown in Fig. 8, the Xception model
was prepared using the Xception layer with the weights trained using the ‘Imagenet’ dataset.
The shuffle parameter was set to true, and the verbose parameter was set to 1. Further, these
values were flattened using a flatten layer. The Xception model, like the ResNet model, was fine-
tuned with the dense layer using the ‘Softmax’ function. Adam optimization was used instead of
Gradient Descent optimization, and the loss parameter was set to ‘Categorical Crossentropy.’

Figure 8: The Xception model description–left: layer name, right: input-output size

3.7 Execution of VGG16 Model
The VGG16 model was set up with the Softmax function and the ReLU activation function.

The ReLU activation function helped filter out the negative values and pass only the non-negative
values onto the next layer. The fully connected layers were initially added to the network with
appropriate activation functions. Two dense layers were used with 1024 and 512 units, respectively,
in the initial few layers, utilizing the ReLU activation function. After implementing the two dense
ReLU layers, a dense Softmax with ten units was added to the network. Ten units were used to
predict the occurrences of the ten distraction classes created. The Softmax layer finally returned a
value in the range of 0 to 1, based on the distracted drivers’ image class (C0 to C9). Further, while
training the model, Adam optimization was used, rather than the Stochastic Gradient Descent
(SGD), to reach the global minima. The learning rate was set as 1e−5. This learning rate was
tweaked several times to reach the current results. The description of the VGG16 Model network
is shown in Fig. 9. The input data was passed through these different layers. The fully connected
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dense layers were included in the model, and finally, a ten-unit output was used to classify the
images under the ten distraction classes.

Figure 9: The VGG16 model description–left: layer name, right: input-output size

4 Results and Discussions

The performance comparison was accomplished based on the evaluation metrics—precision
score, recall/sensitivity score, F1 score, and specificity score [34]. True positive, true negative, false
positive, and false negative values were used to compute the evaluation metrics [35–41]. The results
were plotted using Python’s Matplotlib library for better interpretation and visualization. The
results tabulated in Tab. 2 represent the evaluation metric scores for the ten classes of images
obtained by the deep CNN ResNet model. The highest precision, recall/sensitivity, and F1 score
were observed for the class label C7, and the lowest precision, recall/sensitivity, and F1 score were
seen in class label C6. However, the specificity score was highest for the class label C9 and lowest
for the class label C2.
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Table 2: Evaluation metric scores for ResNet model

Class Precision Recall/sensitivity F1 score Specificity

C0 0.898256 0.932561 0.915087 0.927344
C1 0.921629 0.895839 0.908551 0.932311
C2 0.919436 0.900081 0.909656 0.880700
C3 0.909340 0.899880 0.904585 0.936223
C4 0.899656 0.886203 0.892879 0.897917
C5 0.919789 0.935015 0.927339 0.887314
C6 0.893566 0.885012 0.889268 0.937503
C7 0.935239 0.948569 0.941857 0.927314
C8 0.934616 0.915964 0.925196 0.930666
C9 0.927263 0.945105 0.936099 0.942343

Figure 10: Evaluation metric scores for the ResNet model

Table 3: Evaluation metric scores for the Xception model

Class Precision Recall/Sensitivity F1 score Specificity

C0 0.838796 0.871794 0.854977 0.867176
C1 0.838745 0.825986 0.832317 0.838330
C2 0.845383 0.876435 0.860629 0.861214
C3 0.846906 0.863070 0.854911 0.857773
C4 0.864518 0.816668 0.839912 0.844702
C5 0.860903 0.821891 0.840945 0.833461
C6 0.885570 0.883673 0.884620 0.838098
C7 0.849068 0.829360 0.839098 0.851014
C8 0.853574 0.870602 0.862004 0.846314
C9 0.840395 0.862963 0.851530 0.854277
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The visualization in Fig. 10 shows the precision, recall/ sensitivity, F1 score, and specificity
score for the ResNet model. Overall, this model performed well for all the class labels, especially
the C7–C9 class labels. The evaluation metric scores obtained by the Xception model are tabulated
in Tab. 3. The visualization of the evaluation metric scores for the Xception model is shown in
Fig. 11, where the precision, recall/sensitivity, F1 score, and specificity score are plotted. It can
be observed that these scores are lower than those of the ResNet model. The highest precision,
recall/sensitivity, and F1 score were observed for the class label C6, while the lowest precision and
F1 score were seen in the case of the class label C1, and the lowest recall/sensitivity was observed
for the class label C4. The specificity score was highest for the class label C0 and lowest for C5.
The evaluation metric scores obtained by the VGG16 model are tabulated in Tab. 4. It can be
observed that these scores are lower than those of the ResNet and the Xception models.

Figure 11: Evaluation metric scores for the Xception model

Table 4: Evaluation metric scores for the VGG16 model

Class Precision Recall/Sensitivity F1 Score Specificity

C0 0.804566 0.793518 0.799004 0.778454
C1 0.804267 0.795585 0.799903 0.793168
C2 0.772659 0.812991 0.792312 0.785359
C3 0.818786 0.790966 0.804635 0.793673
C4 0.789905 0.797396 0.793633 0.799706
C5 0.777102 0.802638 0.789664 0.770034
C6 0.832470 0.792253 0.811864 0.795098
C7 0.788208 0.785093 0.786647 0.782170
C8 0.822332 0.796262 0.809087 0.803522
C9 0.810999 0.801453 0.806198 0.770733

The graphical visualization of the evaluation metric scores for the VGG16 model is shown
in Fig. 12. The highest precision score was observed for the class label C6, and the lowest was
observed for C2. Similarly, the highest recall/sensitivity score was seen in C2, and the lowest was
observed for C7. The F1 score was maximum for C6 and minimum for C7. Also, the specificity
score was maximum for C8 and minimum for C5. Comparing the evaluation metrics scores
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shows that the ResNet model provides the most superior performance, followed by the Xception
model. Even though the VGG16 model yielded lower evaluation metric scores than the other two
models, the results were satisfactory [42–45]. These models can be further optimized to prevent
the overfitting issue in the network. Fine-tuning the learning rates or the hyper-parameters and/or
adding or removing layers can also optimize the model. The activation functions such as ReLU,
Sigmoid, and Softmax functions could also be more efficiently used for achieving better results.

Figure 12: Evaluation metric scores for the VGG16 model

5 Conclusion

After implementing all the deep CNN models—ResNet, Xception, and VGG16—it can be
concluded that the ResNet model provides the most superior performance, followed by Xception
and VGG16, respectively. The evaluation metrics used for comparing the models’ performances
were the precision score, the recall/sensitivity score, the F1 score, and the specificity score. The
dataset consisted of distracted driver images, and this work classified them into ten classes based
on the distractions. Even though the VGG16 model is primitive compared to the other two
models, it offers satisfactory results. However, as the complexity of the images and the dataset
increases, the differences tend to become more prominent, and the superior performance of the
ResNet model becomes evident. The advantage of using the ResNet deep CNN architecture for
the distracted driver dataset is that the layers are stacked better while having much lesser kernels
than in the VGG16 model. The ResNet model is less complicated and can be easily optimized
compared to the other networks. Also, this model converges faster and generates better results
than other networks. Furthermore, by using the ResNet deep CNN architecture for detecting the
driver’s distraction, the system can also create various alerting prototypes in the future by integrat-
ing cloud technology, the Internet of Things, and other disciplines. Moreover, alarm systems can
be installed to detect the driver’s distraction and ensure road safety. In conclusion, these systems
help reduce accidents and guarantee self-awareness in drivers by continuously alerting them.
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