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Abstract

Segmentation is the process of delineating regions of interest and this process is ap-
plied to medical scans to help with diagnosis of diseases as well as treatment planning
and monitoring. At the date of writing this work, segmentation is primarily carried out
manually by medical professionals, which adds a substantial workload.

Convolutional Encoder-Decoders (CEDs) currently dominate the medical image auto-
matic segmentation field and many have produced satisfactory results, given the limited
availability of training data. This work explores literature of some of these implementa-
tions and goes into detail about a state-of-the-art model called v16pUNet1.1C, which
is an architecture based on VGG16, UNet and the Cascade Framework. The Com-
bined Healthy Abdominal Organ Segmentation (CHAOS) Challenge database and its
Task 2 framework are used to replicate and verify the state-of-the-art implementation.
A modification of the architecture of v16pUNet1.1C was carried out with the purpose
of increasing the performance. Modifications were also performed on the learning rate,
context connections and the cascade framework, however, none seemed to lead to an
increase in mean score performance, although they did narrow the interquartile range,
which is a success in its own merit. The modified model, called v16pUNet1.1D, managed
to achieve a mean score of 85.92, just 0.06 points shy from first place in Task 2 of the
CHAOS Challenge.
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1 Introduction

1.1 Introduction
This chapter presents the problem statement, background and context, objectives, ethical
considerations, and relevance of the study.

1.2 Problem Statement
Segmentation helps extract objects of interest from scans, which enables medical profes-
sionals to achieve a better understanding prior to or during medical procedures through
visualization and printing (Furtado, 2021b). This dissertation deals with the problem of
segmentation, specifically, segmentation of healthy liver. Segmentation is the process of
labelling each pixel in an image, where the label identifies the object to which each pixel
belongs. Throughout this dissertation, the term object will refer to the object of interest,
that is, the healthy liver, unless stated otherwise. However, it is important to recognize
that the remaining pixels, also referred to as the background pixels, are considered as a
separate object (Matcha, 2021). A typical scan can have tens, if not hundreds, of slices,
and thus the process of segmentation can be very repetitive and exhaustive if carried out
manually Alves et al. (2018); Li et al. (2021). Processes that alleviate this burden exist,
one of them being automatic segmentation models.

Automatic segmentation models do not necessarily need to be used by themselves,
but can also be used as an aid to alleviate the work load, increasing the reliability, accu-
racy and repeatability, and therefore, the quality of the segmentations (Lachinov, 2019;
Li et al., 2021; Vladimir et al., 2019). This helps medical professionals make a more accu-
rate diagnosis and, due to the increased efficiency, segmentation could also be applied to
monitor medical conditions which can be scanned, such as tumour growth (Isensee et al.,
2020; Tan et al., 2020).

Many challenges arose to prompt innovative solutions in the field of medical image
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CHAPTER 1. INTRODUCTION

segmentation. One of these challenges was the CHAOS Challenge (Kavur et al., 2021),
which, as its title suggests, focuses on healthy abdominal organs. This challenge prompted
the work being presented in this dissertation. A more in-depth introduction to this chal-
lenge can be found in Section 2.2.

1.2.1 Difficulties in Automatic Segmentation
Segmentation models try to find commonalities in colour, intensity, texture and shape to
try to separate an image into its various regions of interest (Conze et al., 2021; Furtado,
2021b). Difficulties generally arise when there is lack of contrast between neighbouring
regions or similarity between regions (Furtado, 2021b; Shuang and Wang, 2020). When
speaking of liver in particular, there is a lack of contrast between it and the neighbouring
organs, and inhomogeneous intensities within the liver area (Furtado, 2021b; Shuang and
Wang, 2020).

1.2.2 Accurate Liver Volume Applications
The liver is the second-largest organ and the largest internal organ of the human body. The
liver plays a role in digestion of food, detoxification of drugs and alcohol, and metabolism
(Marieb and Keller, 2017). As per Kavur et al. (2021), “the liver volume is affected by
several diseases including congestive heart failure, cancer, cirrhosis, infections, metabolic
disorders, and congenital diseases”. According to data provided by the World Health Or-
ganization’s International Agency for Research on Cancer, there were 841,000 new cases
of liver cancer alone in 2018 (Rumgay et al., 2022). The dimensions of the liver may be a
good way of diagnosing the severity of the disease as well as help with treatment plan-
ning (Kavur et al., 2021; Shuang andWang, 2020). Therein lies the importance of fast and
accurate liver segmentation from which the liver volume can be determined.

1.3 Aims and Objectives
Due to the wide scope of the medical image segmentation problem, clear and conserva-
tive goals have to be set. The principal objective is to identify a state-of-the-art model of
which the results are available so that the implementation could be replicated and verified
using the same database and metrics. Additional objectives include modification of the
state-of-the-art architecture, and experimentation by changing the training parameters
with the aim to improve upon the exiting state-of-the-art implementation.

2



CHAPTER 1. INTRODUCTION

1.4 Research Design and Ethical Considerations
This study has been approved by the University Research Ethics Committee of the Uni-
versity ofMalta. The dataset (Kavur et al., 2019) being used is anonymized, and no patient
data is available at either the source, Kavur et al. (2021), or in the files themselves.

1.5 Conclusion
This chapter presented an introduction to the study. Chapter 2 provides a critical review
of the literature. Chapter 3 goes deeper into the selection process and building blocks
that will be used in Chapter 4. Chapter 4 describes the research design whilst Chapter 5
presents the results, discussed in Chapter 6. Chapter 7 summarizes the most important
conclusions of the study, and proposes recommendations arising from the study and sug-
gestions for future research.
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2 Literature Review

2.1 Introduction
This review was initiated using the following electronic research databases: Google
Scholar1, HyDI2, and the CHAOS Challenge leaderboard3 until end of July 2022. The fol-
lowing keywords were used: “CHAOS, CT, Segmentation, Liver”. Only papers published
in the last 5 years were considered (2017-2022), however, original published papers that
were used as basis may be older.

2.2 Details on Challenge
The aim of this dissertation is embodied by one of the tasks which makes up the CHAOS
Challenge (Kavur et al., 2021), specifically Task 2 Liver Segmentation (CT only). However,
the aim of the CHAOS Challenge is broader than this dissertation, covering five tasks in
total. In fact, the aim of the CHAOS Challenge is stated as follows “the segmentation of
abdominal organs (liver, kidneys and spleen) from CT and Magnetic Resonance Imaging
(MRI) data” (Kavur et al., 2021). The tasks are described in detail on the CHAOSwebsite4,
however, due to the importance of the challenge within this dissertation, a brief overview
of each task can be found below:

• Task 1 - Liver Segmentation (CT & MRI): to provide an implementation which can
segment the liver in both CT and MRI modalities, also known as cross-modality.

• Task 2 - Liver Segmentation (CT only): to provide an implementation which can
segment the liver using the provided CT datasets only.

1https://scholar.google.com/2https://hydi.um.edu.mt/3https://chaos.grand-challenge.org/evaluation/challenge/leaderboard/4https://chaos.grand-challenge.org/
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• Task 3 - Liver Segmentation (MRI only): to provide an implementation which can
segment the liver using the provided MRI datasets only.

• Task 4 - Segmentation of abdominal organs (CT & MRI): an extension on Task 1. To
provide an implementation which can segment liver, kidneys and spleen in the MRI
datasets and liver only in the CT datasets.

• Task 5 - Segmentation of abdominal organs (MRI only): an extension to Task 3where
the goal is to provide an implementation which can segment the liver, kidneys and
spleen in the MRI datasets only.

Due to time constraints, it was decided that this work would focus on the simplest
task, that is, Task 2. In the next section, Section 2.3, reference is being made to the mean
score of the CEDs. The mean score is based on the mean of the score obtained from four
metrics: Sørensen–Dice Coefficient (DICE), Relative Absolute Volume Difference (RAVD),
Average Symmetric Surface Distance (ASSD), andMaximum Symmetric Surface Distance
(MSSD). Further detail about the scoring system and the metrics themselves will be given
in Section 3.2.2.

2.3 Existing Implementations
The CHAOS Challenge (Kavur et al., 2021) was held at The IEEE International Sympo-
sium on Biomedical Imaging (ISBI) on April 11th, 2019, Venice, ITALY. Therefore, at the
time of starting the literature review of this dissertation, the challenge is already a few
years old. Although the challenge is officially closed, submissions can still be made, as
the submission period has been extended, however, these cannot be published as part
of the challenge itself. Since the challenge first launched, both during the official run and
the extended period, several implementations have been applied to tackle Task 2 of the
challenge. In this section, these architectures will be explored briefly to achieve a ba-
sic understanding of the several approaches which can be applied to address the liver
segmentation problem.

The architectures which will be described in this chapter are all working models which
had their results published on the challenge website5 and achieved a higher mean score
than the best score quoted byKavur et al. (2021) for Task 2, or have beenmentioned in the
CHAOS publication (Kavur et al., 2021), or both. Therefore, these implementations were
used as a starting point. A disclaimer about these implementations: these are implemen-

5https://chaos.grand-challenge.org/evaluation/challenge/leaderboard/
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tations which have either been detailed in a publication, pre-prints or post-prints. The im-
plementations applied to tackle Task 2may either be an exact implementation or modified
versions of the implementations. Unless explicitly stated in the submission to the CHAOS
Challenge (Kavur et al., 2021), or a reference to literature is placed within the description,
there is no way of knowing whether and how these were modified. An example of this
are the following five architectures: DualTail-Net, Ternaus-Net, Link-Net34, ResNet-50,
and SE-ResNet-50. These were applied to the CHAOS Challenge (Kavur et al., 2021) by
teamMedianCHAOS, four of which are UNet (Ronneberger et al., 2015) variants. Although
Kavur et al. (2021) provide information regarding the configuration of each of the applied
model, this information is insufficient to replicate such implementations in detail, unless
these were implemented in the exact same way as the papers cited in their respective
subsections below. Furthermore, in the results section, the implementations were listed
as MedianCHAOS with an iterating number at the end (example MedianCHAOS1). There-
fore, the ability to associate the score with the particular model was lost. A mean score
for all the submissions byMedianCHAOSwas calculated to be 75.50. Nonetheless, even if
modified, the concept of the implementation being applied is still retained. Furthermore,
the architectures presented below are in no way an exhaustive list of all the architectures
which can be applied to Task 2. It is also worth noting that most approaches use some
form of CEDs within their implementation. This will become more clear as the architec-
tures are explored.

The architectures which are going to be discussed in this chapter are closely related
to one another. Figure 2.1 presents an overview of how each architecture relates to its
predecessors, and splits the architectures into four levels. These levels denote the subjec-
tive complexity level, from Level 1 representing themost basic, to Level 4 representing the
most complex. It is also worth noting that Level 1 and Level 2 contain four architectures
which were developed for classification purposes and serve as the base for the architec-
tures presented in Level 3 and Level 4, and that these are segmentation architectures. Fol-
lowing along with Figure 2.1, from the nine presented segmentation architectures, UNet
(Ronneberger et al., 2015) had an influence on seven, while ResNet (He et al., 2015) and
VGG (Simonyan and Zisserman, 2014) had an influence on three. VGG also inspired the
ResNet architecture and both architectures are very popular amongst machine learning
enthusiasts. DenseNet (Huang et al., 2017) is younger than the other three classification
architectures, and it has not yet enjoyed as much popularity. The coming sections will
now go into further detail about each architecture.
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ResNet
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Attention
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cGAN

v16pUNet
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Level 2
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Figure 2.1: Relationships between the different architectures that will be reviewed in the comingsections. Levels on the right-hand side of the figure indicate the subjective complexity level.

2.3.1 cGAN
Conze et al. (2021) with their team PKDIA, apply the concept of Conditional Generative
Adversarial Networks (cGANs) to the CHAOS Challenge, which is an architecture com-
posed of two separate components, the generator and discriminator, connected by a loss
function. To build the generator Conze et al. (2021) combine a pre-trained VGG-19 (Si-
monyan and Zisserman, 2014) with UNet (Ronneberger et al., 2015) to form an amalga-
mation of both architectures. Conze et al. (2021) apply the auto-context paradigm (Yan
et al., 2019), thus forming the generator part of the cGAN. The discriminator part of the
cGAN tries to discernwhether the generated image looks real enough to be considered (or
mistaken) as ground truth. Therefore, the discriminator uses the source image to assess
either the prediction from generator or the true ground truth, and outputs the likelihood,
with 0 meaning that the presented input is considered to be fake, and 1 being the real
ground truth (Conze et al., 2021). This, in turn, gives feedback to the generator (through
the loss function) so that it learns whether it has done a good enough job to fool the dis-
criminator or whether it requires further optimization. Note that both the discriminator
and the generator are optimizing their model with each prediction presented. The mean
score achieved by PKDIA is of 82.46, which is the best result recorded by Kavur et al.
(2021).
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2.3.2 Modified Attention UNet
Ernst et al. (2019), who participated in the CHAOS Challenge (Kavur et al., 2021) using
team name OvGUMEMoRIAL, used a modified version of Attention UNet (Oktay et al.,
2018). The modifications can be summarized in three points: the addition of three scaled
inputs in addition to the original input at the encoder stage, loss calculation at the dif-
ferent depth levels of the model, and the use of Parametric Rectified Linear Unit (PReLU)
(Ernst et al., 2019) instead of the more common Rectified Linear Unit (ReLU) (Fukushima,
1975). Similar to Leaky ReLU, PReLU allows values below zero to leak information to the
next layers by multiplying these values with a fixed multiplier (Ernst et al., 2019). PReLU
however, allows the model to adjust and learn the optimal value of such a multiplier (Ernst
et al., 2019). The mean score obtained by OvGUMEMoRIAL is 61.13.

2.3.3 DualTail-Net
Vladimir et al. (2019) introduced a novel architecture called the DualTail-Net to the
CHAOS Challenge (Kavur et al., 2021), which is the only architecture presented by Me-
dianCHAOS which claims not to be a UNet variant. However, many similarities can be
attributed to UNet. The encoder part of the architecture is quite typical, using convolu-
tion, Exponential Linear Unit (ELU), and max-pooling layers (Vladimir et al., 2019). The
DualTail-Net gets its name from the decoder part of the architecture, where it uses two
separate decoders working in parallel and one feeding its output into the other (Vladimir
et al., 2019). One decoder, for which input is taken from the bottleneck output, is split
into four blocks and is fed connections from both the encoder and the other decoder
(Vladimir et al., 2019). The latter consists of three blocks and takes its input from the last
encoder (Vladimir et al., 2019). The novel part of the DualTail-Net is, of course, the use
of a second decoder which works in parallel with the main decoder.

2.3.4 Ternaus-Net
Iglovikov and Shvets (2018), using a UNet combined with VGG (Simonyan and Zisserman,
2014) encoder, particularly a VGG-11 encoder, introduced the technique of fine-tuning,
a technique which was commonly used in image classification but had not yet been ap-
plied to image segmentation. Fine-tuning is the process of initializing the weights of the
architecture using the weights of a pre-trained model (Iglovikov and Shvets, 2018). Me-
dianCHAOS, similar to one of Iglovikov and Shvets (2018) implementations, used weights
whichwere pre-trained on ImageNet (Kavur et al., 2021). Using this technique, the perfor-

8



CHAPTER 2. LITERATURE REVIEW

mance of the model is improved as well as achieving much faster convergence (Iglovikov
and Shvets, 2018; Shvets et al., 2018).

2.3.5 Link-Net34
Link-Net, similar to Ternaus-Net (Iglovikov and Shvets, 2018), uses UNet but with a
ResNet-type encoder (Shvets et al., 2018). Shvets et al. (2018) uses a pre-trained
ResNet34 encoder (ResNet18 was used in Link-Net (Chaurasia and Culurciello, 2017)),
however, slightly modifies the decoder by including batch normalization.

2.3.6 ResNet-50
ResNet originated after He et al. (2015) tried to answer whether stacking more layers,
essentially deepening the architecture, has a direct effect towards increasing the perfor-
mance of a model. He et al. (2015) gives an overview of the difficulties involved in solving
issues such as vanishing and exploding gradients, and degradation of model accuracy.
He et al. (2015) tries to tackle the latter problem by introducing a deep residual learning
framework. Residual learning is done by introducing shortcut connections within the ar-
chitecture (He et al., 2015). The input of a set of layers is processed through an identity
map and the output of the identity map is propagated forward and added to the out-
put of the stacked layers (He et al., 2015), essentially propagating and adding the input
to the output of the two to three stacked layers (Furtado, 2021b). Other functions can
be applied other than the identity map, however, He et al. (2015) stated that the perfor-
mance achieved using an identity map is adequate, given that almost no computations are
required other than the addition. Using this method, He et al. (2015) managed to show
that deepening the model simply by stacking does not lead to an increase in performance,
however, with the introduced shortcut connections, a deeper model does perform better.
He et al. (2015) presents five different configurations of ResNet: 18, 34, 50, 101, and 152.
MedianCHAOS implemented ResNet-50 (He et al., 2015) variant as a replacement to the
UNet encoder and used a UNet decoder. No further information is given by Kavur et al.
(2021).

2.3.7 SE-ResNet-50
The SE in SE-ResNet-50 stands for Squeeze-and-Excitation, which concept was con-
ceived by Hu et al. (2017) in their paper Squeeze-and-Excitation Networks. Hu et al. (2017)
try to exploit contextual information which is present within all channels by squeezing
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global spatial information into what they call a channel descriptor. This channel descrip-
tor, also referred to as channel-wise statistics, is generated by using global average pooling
on each channel (Hu et al., 2017). The channel descriptor is passed through a Fully Con-
nected (FC) layer, a ReLU, another FC layer, and a sigmoid activation function, of which
the output is then used by the model to gate the channels (a multiplication operation
should suffice) (Hu et al., 2017). The FC and ReLU layers are added to limit architecture
complexity and aid generalization (Hu et al., 2017). Apart from the explanation of their SE
block, Hu et al. (2017) show how their proposed block can be applied to ResNet. Thus,
by combining the knowledge gained through ResNet-50 with the novel approach pro-
posed by Hu et al. (2017), a SE-ResNet-50 (He et al., 2015; Hu et al., 2017) architecture
can be constructed. Also, as per Section 2.3.6, it is being assumed that MedianCHAOS
implemented SE-ResNet-50 (He et al., 2015; Hu et al., 2017) as the encoder part of the
architecture and that for the decoder part, a UNet approach was taken.

2.3.8 Pixel Shuffle
Pixel Shuffle was first introduced by Shi et al. (2016). Lachinov (2019) formed his own
team for the CHAOS Challenge (Kavur et al., 2021) and introduced a combination of
residual blocks (mentioned in Section 2.3.6) applied to UNet and pixel shuffle. Due to
the introduction of pixel shuffle, a group normalization is being used with the number of
groups being set to four for two-dimensional images (Lachinov, 2019). In an ideal scenario
pixel shuffling uses a group of four images and stitches them into one higher resolution
image as per Figure 2.2, hence why the group normalization is being set to four images.
The concept shown in Figure 2.2 can be extended to three-dimensional volumes (Lachi-
nov, 2019). At the decoding part of the architecture, instead of using up-convolutions,
Lachinov (2019) uses the pixel shuffle operation to upsample the images. The mean score
obtained by Lachinov (2019) is 39.86.

2.3.9 SC-SegNet
Tan et al. (2020) presented the SC-SegNet, which was not included in Kavur et al. (2021)’s
paper, as this implementationwas submitted during the extended period of the Challenge.
The SC-SegNet requires two inputs, an input image and a constraint, more specifically,
a shape constraint. This implementation thus contains two separate architectures, the
SC-SegNet which generates the predicted segmentations and the constraint generator
which is based on DenseNet (Huang et al., 2017). The SC in SC-SegNet therefore stands
for shape-constrained (Tan et al., 2020). In order to train such an architecture, a cascaded
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Figure 2.2: An example of an ideal implementation of the pixel shuffle operation applied to two-dimensional images, showing four channels in four colours on the left and the output of the operationon the right. The four channels were stitched together to form a higher resolution image (Lachinov,2019).

learning strategy is employed, where first, the shape-constraining architecture is trained,
then the SC-SegNet is trained, supervised by the ground truth images and the shape
constraining model (Tan et al., 2020). The architecture of SC-SegNet is based on FCN
(Long et al., 2015), DenseNet, and UNet. Apart from the SC-SegNet,Tan et al. (2020) also
proposed a loss function which goes hand in hand with the architecture. The loss func-
tion considers three factors, adaptive weighted cross entropy, consistency between the
learned shape constraint and the segmentation output, and edge preservation smooth-
ness (Tan et al., 2020). The mean score obtained by SC-SegNet on the CHAOS Challenge
is 83.52.

2.3.10 Honourable Mentions
Two other teams are listed as having participated in the CHAOS Challenge, with team
names ISDUE and IITKGP-KLIV, however, very little detail is given about their implemen-
tations. For the sake of completeness their mean scores were as follows: ISDUE achieved
a mean score of 55.79, and IITKGP-KLIV achieved a mean score of 55.35.

Apart from the implementations mentioned above, other implementations have made
great strides since the challenge closed, achieving an even better score than the bestmean
score published in the CHAOS Challenge paper (Kavur et al., 2021) of 82.46. Unfortu-
nately, most of these implementations did not have their methodology stated and were
simply described by a short comment.

Table 2.1 summarizes the score of the implementations mentioned above. More de-

11



CHAPTER 2. LITERATURE REVIEW

Table 2.1: Summary of Results for the models mentioned in Section 2.3 (Kavur et al., 2021).
Model Mean DICE RAVD ASSD MSSDScore Score Score Score Score
cGAN 82.46 97.79 73.60 94.06 64.38Modified Attention UNet Loss 61.13 90.18 44.35 81.03 28.96Median CHAOS Models 80.45 97.55 69.19 94.02 61.02Pixel Shuffle 39.86 68.00 22.67 53.28 15.47SC-SegNet 83.52 97.57 67.99 94.77 73.75

tails can be found on the CHAOS paper (Kavur et al., 2021) the CHAOS and website6.

2.4 Building Blocks
As seen in Figure 2.1, UNet and VGG have had a great impact on current Deep Convolu-
tional Neural Networks (CNNs) and CEDs as well as the work which will be presented in
this dissertation. Furthermore, many of the implementations mentioned in the previous
section also made use of these architectures, either by directly using them as their base
or indirectly by using architectures which were inspired by VGG or UNet architectures.
Therefore, it was deemed important to review the work which had been carried out in
these papers. A brief overview on their contributions will be given below and a more
in-depth look into the inner workings of these architectures can be found in Chapter 3.

2.4.1 UNet
The UNet architecture, presented by Ronneberger et al. (2015), builds upon the concepts
of Fully Convolutional Networks (FCNs) (Long et al., 2015), where Ronneberger et al.
(2015) optimized UNet to work with few training images but, at the same time, yield-
ing more precise results. Ronneberger et al. (2015) emphasize on feature localization by
using what they call skip-connections, which connect the encoder parts of the architecture
with the decoder parts atmultiple levels by using the concatenate operation (Ronneberger
et al., 2015; Vladimir et al., 2019). Another difference from FCN is that UNet does not
have any FC layers, instead, it uses up-convolutions (Conze et al., 2021; Ronneberger
et al., 2015). By concatenating the skip connections with the up-convolution output, the
convolutions that follow can extract context from feature maps that are less processed
and closer to the image, which enables the architecture to achieve a high resolution out-

6https://chaos.grand-challenge.org/evaluation/challenge/leaderboard/
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put (Ronneberger et al., 2015). This architecture has been very popular amongst many
biomedical and medical applications, achieving many state-of-the-art results (Lachinov,
2019) and many of the architectures presented in Section 2.3 used UNet as their base
architecture (Conze et al., 2021; Furtado, 2021b; Lachinov, 2019), as seen in Figure 2.1.

2.4.2 VGG
The aim of Simonyan and Zisserman (2014) when writing their paper, was to study how
CNN performance is affected by increase in depth and the feasibility of deepening CNNs
for classification. With this in mind, Simonyan and Zisserman (2014) came up with sev-
eral CNN configurations, presenting six configurations in total. All configurations use a
combination of five stacks of convolutional layers and max pooling layers, followed by FC
layers and a soft-max (Simonyan and Zisserman, 2014). Like UNet, the VGG architectures
can be applied in various situations and can even be combined with UNet as seen in Sec-
tion 2.3.1 and Section 2.3.4. Given its versatility, simplicity and effectiveness, the VGG
architectures are widely used in conjunction with other architectures.

2.5 Conclusion
This chapter presented a critical review of the literature associated with the study. The
next chapter shall describe and discuss the background concepts used in the study.
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3.1 Introduction
This chapter presents details on key concepts and background information on several
topics, including the CHAOS Challenge, the selection process, and the building blocks,
which are necessary to understanding the next Chapter.

3.2 The CHAOS Challenge
In Chapter 1, the CHAOS Challenge was briefly introduced. The results obtained in this
work are a direct consequence of the CHAOS Challenge because the challenge provided
resources, such as the database to train the architecture and a platform to submit seg-
mentation results. This not only givesmore robust results, but also enables the participant
to compare their model with models implemented by other participants on a worldwide
scale. Therefore, a more in-depth analysis of the resources provided by the Challenge and
its metric will be presented below.

3.2.1 Database
Themost important reason of why the CHAOS Challenge (Kavur et al., 2021) was chosen,
apart frombeing one of the latest challenges to be published at the time ofwriting this dis-
sertation, is its database (Kavur et al., 2019). The challenge provides two databases, one
for CT and one for MRI. Given that this dissertation focuses on CT, only the CT database
will be explained, however, more information can be found on either the challenge pub-
lication by Kavur et al. (2021) or their website1.

The CT database contains 80 CT scans of 80 different potential liver donor patients,
who have healthy (no tumours, lesions or any other diseases) liver and who were injected

1https://chaos.grand-challenge.org/
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with contrast agent prior to taking the scans (Kavur et al., 2021). A single CT scan will
be referred to as a dataset, as denoted by Kavur et al. (2021), and a dataset contains
multiple slices. Slices are the individual two-dimensional images which, when combined
and ordered, make up the dataset. Each dataset has a varying number of slices, as each
dataset was taken using different CTmachines or using different machine settings or both
(Kavur et al., 2021). However, all patients, and thus all datasets, have the same orientation
and alignment as well as bit-depth (16-bit) and slice size (512 by 512 pixels) (Kavur et al.,
2021). The number of slices per dataset varies from 78 to 294, with an average number of
160 slices per dataset. The database was also described by (Kavur et al., 2021) as having
the following characteristics:

• Similar Hounsfield value range of adjacent organs.
• Varying Hounsfield ranges for the same tissue across data sets due to the contrast
media.

• Significant shape differences of anatomical structures across patients.
• 15% of the database contains atypical liver shapes (that is, unusual size or orienta-
tion of the liver).

The database is distributed into two sub-categories, consisting of 40 datasets for train-
ing and 40 datasets for evaluating the model (also referred to as testing) (Kavur et al.,
2021). The training data contains both the source images, which are the images outputted
by the scanner in the DICOM standard format (without the patient-related information),
and the corresponding ground truth images (Kavur et al., 2021).

The ground truth images are images which contain segmentations of the DICOM im-
ages carried out by professionals (Kavur et al., 2021). During training, the ground truth im-
ages are used by the model to be able to learn, and to verify or validate that the proposed
implementation is indeed converging towards an optimal solution. The testing datasets
provided to the challenge participants only contains the DICOM images and no ground
truth. (Kavur et al., 2019). The ground truth is reserved by the challenge organizer and,
in order to achieve the final evaluation, the predicted segmentation images (or predic-
tions) must be submitted to the challenge organizer. The predictions are the output of
the model when processing the test dataset. These are compared to the ground truth
using various metrics to be able to measure the model’s performance. Detailed explana-
tions of the metrics and evaluation will be given in the coming section, Section 3.2.2. This
approach is taken to avoid foul play during the training and optimization process of the
implementation being proposed (Maier-Hein et al., 2018).
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3.2.2 Evaluation
In order to assess the performance of a proposed implementation, the model needs to be
evaluated. Evaluation is carried out by mathematically measuring the performance of the
predictions. By using mathematical evaluation methods, one is able objectively compare
the proposed implementations, thus, optimizations and changes would reflect on that
feedback (Goodfellow et al., 2016). It is also important to keep inmind that segmentations
of organs can be used for various medical procedures (Kavur et al., 2021). Having a single
metric to evaluate the proposed methods will not yield a robust evaluation that covers
a broad spectrum of medical procedures. Thus, the CHAOS Challenge proposes four
metrics (Maier-Hein et al., 2018) for evaluating the predictions and the implementations
being proposed. The purpose of thesemetrics is to analyse results in terms of overlapping,
volumetric, and spatial differences between a predicted solution and the ground truth
(Kavur et al., 2021). The metrics chosen by the CHAOS Challenge (Kavur et al., 2021) are
summarized in bullet form below. In the equations shown below, the term S represents
the set of voxel labels as processed by the model, the term G represents the set of voxel
labels in the ground truth, and |.| denotes cardinality.

• DICE, a measure of the accuracy of the predictions. Ideal score 100% (Goal: maxi-
mize).

2|(S ∩G)|
|S|+ |G|

• RAVD, compares the difference in volume between the ground truths and predic-
tions. Ideal score 0% (Goal: minimize).

abs(|S| − |G|)
|G| × 100

• ASSD, the average Hausdorff distance between the ground truths and predictions.
Ideal score is 0mm (Goal: minimize).

mean(inf{ε ≥ 0 | G ⊆ Sε and S ⊆ Gε})

• MSSD, the maximum Hausdorff distance between the ground truths and predic-
tions. Ideal score is 0mm (Goal: minimize).

max(inf{ε ≥ 0 | G ⊆ Sε and S ⊆ Gε})

Although the abovemetrics can be used as an indicator of the performance of amodel,
there exists an inherent difficulty in comparing the four values simultaneously. Addition-
ally, both the ASSD and MSSD can have values ranging from 0 mm up to an unknown
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Table 3.1: CHAOS Metrics’ Threshold Values.
Metric Worst Value Threshold
RAVD ∞ < 5%ASSD ∆ < 15mmMSSD ∆ < 5mm
∆ represents the largest possible distance (Kavur et al., 2021).

maximum quantity and similarly, RAVD can have values up to infinity (Kavur et al., 2021).
This makes it difficult to discern performance as well as plot the data. Kavur et al. (2021)
introduced a scoring system to deal with these issues and to help eliminate performance
figures which are too poor to be of any value. Thus, Kavur et al. (2021) set maximum
threshold values for all themetrics except theDICE Score2. Any values beyond the thresh-
old are assigned a score of 0. The procedure to determine the thresholds is explained in
detail by Kavur et al. (2021). The threshold values are tabulated in Table 3.1. Values within
the threshold are normalized to obtain a score between 0 and 100, where 100 is the ideal
score. The final score, also referred to as the mean score, is achieved by averaging the
score over the four metrics to achieve a single point of reference for the overall perfor-
mance of the model (Kavur et al., 2021). When submitting predictions to the Challenge,
the scoring system is used to establish the rank of the model.

3.3 Selection Process
In the previous chapter, several implementations for the liver segmentation problemwere
explored. All the implementations are interesting and offer several concepts to explore,
making it extremely hard to select a single implementation. Nonetheless, due to resource
and time constraints, a point of reference had to be selected prior to starting experimen-
tation, in order to achieve a successful implementation. A selection process was carried
out in order to filter through the hundreds of papers which had been published on the
subject.

Work in this dissertation was carried out to verify existing state-of-the-art implemen-
tations. In order to do so, the selected model had to have already published results using
the CHAOS Challenge. Thus, the first criteria that was set in stone was that any work that
would be selected had to have cited the CHAOS Challenge (Kavur et al., 2019) and, more

2Kavur et al. (2021) shows a threshold of DICE > 0.8 in their paper, however, upon investigating thereceived results, no difference in values could be noticed between the DICE values and the DICE scorevalues. Therefore, it is being presumed that no processing is being carried out to compute the DICE scorevalues.
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importantly, the work had to have been evaluated using the CHAOS Challenge database
(Kavur et al., 2019) and have its results published for Task 2. An implicit criterion of time
was also present, given that the CHAOS Challenge was first published on April 11, 2019
and the selection of work was carried out around the month of October 20213. The cri-
teria presented above narrowed the search down to the CNNs, which were reviewed in
Chapter 2. Other considerations which were taken into account during the selection pro-
cess were the performance achieved by the proposed model, the information available
about the implementation of such a model, as well as the difficulty of implementing same
implementation.

In the end, Conze et al. (2021) was chosen as the main reference paper for the follow-
ing reasons: Conze et al. (2021) implemented 16 different models, starting from basic and
advancing to more complex implementations, which meant one could understand simple
concepts first and steadily build up to bridge the gap towards the state-of-the-art imple-
mentation. For each of the models implemented, the results obtained from the CHAOS
Challenge were clearly listed in a table. Overall, the paper is well explained and enough
detail about the architectures implemented is presented. Where previously published ar-
chitectures were used, Conze et al. (2021) made clear references to the published work,
avoiding any misunderstandings. Furthermore, although it was not a requirement, the
models implemented were tested not just on Task 2 of the CHAOS Challenge but on all
tasks. This gives an understanding of the robustness of the implemented model.

3.4 Starting Point
Asmentioned in Section 2.3.1, the state-of-the-art implementation by Conze et al. (2021)
uses the cGAN architecture. However, the best score for Task 2 of the CHAOS Challenge
was achieved by a model called v16pUNet1.1C, which was also present in Conze et al.
(2021)’s work. Given that v16pUNet1.1C achieved the best performance, it is being con-
sidered as state-of-the-art, at least in terms of Task 2. Thus, the focus of this dissertation
was placed on this architecture, given its performance versus complexity advantage. The
name of this architecture can be split into four parts: ‘v16’ representing the VGG16 en-
coder, p short for pre-trained (Conze et al. (2021) pre-trained on ImageNet (Russakovsky
et al., 2015)), ‘UNet’ meaning that the architecture is based on a UNet architecture, ‘1.1’
meaning that the architecture is cascaded and ‘C’ to denote Conze et al. (2021)’s archi-
tecture. Each of these components are explained in Section 2.4. The overall architecture

3Although the initial selection was carried out in the month of October 2021, another review was alsocarried out in the during the month of May 2022 to include any new implementations.

18



CHAPTER 3. BACKGROUND

1

In
p

u
t Im

age

Triplicate
Greyscale

Image

3

v16pUNetC 
Linear Activation

Function

1

P
o

sterio
r

P
ro

b
ab

ility

Stack: 
Input Image 

Posterior Probability 
Input Image

3

v16pUNetC 
Sigmoid Activation

Function

Post-Processing: 
Largest Connected

Component

1 Segm
en

ted
 Im

age

Figure 3.1: Pre-Trained Cascaded Framework Architecture Diagram (Conze et al., 2021)

can be observed in Figure 3.1. Due to the fact that the model being used is pre-trained on
RGB images, the input (being greyscale) image needs to be triplicated and concatenated in
a stack format to mimic the three channels of an RGB image. A similar concept is applied
to the input of the second model but instead of triplicating the posterior probabilities of
the first model, Conze et al. (2021) concatenated the input image, the posterior proba-
bilities and the input image again, stacking the three in a sandwich-like manner, with the
posterior probabilities in between two copies of the input image. This enables the second
model to obtain context, not only from the output of the previous model, but also from
the input.

3.5 Building Blocks in Detail

3.5.1 VGG16UNet Architecture
The VGG16UNet Architecture is a combination of two architectures, VGG16 as an en-
coder and UNet as a decoder. Since the UNet architecture will be explained in Sec-
tion 3.5.2, only the VGG16, and the combination of UNet and VGG16 will be explored in
this section. Inspired by Krizhevsky et al. (2012), in their paper, Simonyan and Zisserman
(2014) propose six configurations of what today are generally known as VGG architec-
tures. Given that in this dissertation only the VGG16 architecture has been implemented,
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Figure 3.2: VGG16 Architecture Diagram (Simonyan and Zisserman, 2014)

the explanation shall focus only on VGG16. However, the other five implementations
share a similar approach, with a different number of layers. To aid with the explanation, a
diagram of the architecture was prepared and can be seen in Figure 3.2. The architecture
is built on five sets of stacks of 3 × 3 convolutions with ReLU, with a 2 × 2 max pool
operation at the end of each stack. Stack 1 and Stack 2 (the stacks closest to the input)
contain two convolutions, while Stacks 3 to 5 contain three convolutions. After the last
max pool operation, Simonyan and Zisserman (2014) use two 4096-D FC layers and one
1000-D FC layer for a 1000 way classification. The output of the last FC layer is passed
through a soft-max activation layer to obtain the classification output.

Observing both the encoder part of UNet and the VGG16 architecture, one can notice
several similarities in the construction of the architecture such as the structuring of the
convolution layers followed by a max pool operation. Focusing more on the differences,
VGG16 increases the number of convolutions at deeper levels and at the deepest level,
the architecture does not go beyond 512 feature maps. By taking note of these changes
and updating the UNet decoder to match these changes, the VGG16UNetC can be con-
structed. The architecture diagram of the VGG16UNetC can be observed in Figure 3.3.

3.5.2 The UNet Architecture
The UNet architecture builds upon the FCN architecture by Long et al. (2015). UNet is
made up of five types of CNN layers, three convolution types, copy and crop operation
(previously referred to as skip connection), and max pool layers. The UNet architecture
takes its name after the shape which the architecture forms when presented as a diagram,
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Figure 3.3: VGG16UNetC Architecture Diagram (Conze et al., 2021)

as seen in Figure 3.4. The architecture consists of two 3 × 3 convolution operations,
each followed by a ReLU, where the first convolution operation doubles the number of
features. These are followed by a 2 × 2 max pooling operation with a stride of 2 for
down sampling. The convolution, ReLU and max pooling operations are repeated for four
times in total to make up the contracting path. Before each max pooling operation, the
output is stored to later be used by the expanding path. The expanding path follows sim-
ilar repetitions to the contracting path, but the max pooling operations are replaced by
2× 2 up-convolution operations. The up-convolution halves the number of features, but
doubles the resolution. After the up-convolution, a concatenation operation is carried
out to double the number of features prior to convolution operations. Linking the con-
tracting and expanding paths, is the bottleneck, which consists of two 3 × 3 convolution
operations each followed by a ReLU. The final operation of the expanding path is a 1 × 1
convolution to map the 64 remaining feature maps to the desired number of classes. On
the bottom right of the figure, there is a legend showing the five types of layers.

The diagram shown in Figure 3.4 has one key difference from the diagram presented
by Ronneberger et al. (2015), this being the use unpadded convolutions. As a conse-
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Figure 3.4: UNet Architecture Diagram (Ronneberger et al., 2015)

quence, the skip connections would also require a crop operation and the size of the out-
put images (segmented images) would not be the same as the input. Depending on the
type of input images being fed to the model, unpadded convolutions can be replaced by
padded ones to, essentially, achieve a same resolution input-output (Ronneberger et al.,
2015). At the time, Ronneberger et al. (2015) opted for unpadded convolutions, as the
input image had to be split into smaller patches since the original image was too large to
be processed at one go by the Graphics Processing Units (GPUs) available then. In order
to achieve a complete output, a process of stitching had to take place after all the patches
were processed (Ronneberger et al., 2015). Due to the limited availability of training data,
Ronneberger et al. (2015) also performed data augmentation by applying elastic defor-
mations, essentially increasing the potential invariance learning of the model.

3.5.3 Cascaded Framework
The cascaded framework works by having two models, one after the other, with the first
model being used to give context to the second model. This is what Yan et al. (2019)
called long-range spatial context. In their implementation, Yan et al. (2019) used different
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sized models in their cascade, the first processed a scaled down, lower resolution ver-
sion of the input image. The posterior probabilities of the first model are then scaled to
the original resolution and concatenated with the input image. This stack is then fed to
the full resolution model, of which the output is the segmented image. This framework
can also be implemented without scaling, meaning that the input to the first model is the
same resolution as the input to the second. Figure 3.5 shows the cascaded framework
as implemented by Yan et al. (2019). In their work, Conze et al. (2021) applied the cas-
caded framework to several architectures and reported an overall mean score increase of
approximately 2 percent.

3.5.4 Pre-Training
Another feature which Yan et al. (2019) used was transfer learning for the first architec-
ture (see Figure 3.5). Transfer learning is not to be confusedwith pre-training. Pre-training
occurs when the architecture is first trained on a mock database and the weights and bi-
ases are saved. The mock database does not necessarily follow the same types of images
or tasks which the target database does. Thus, pre-training is considered as a general
term. The process of transferring the weights and biases to the architecture which will
be trained on the target database, is known as transfer learning. Transfer learning is gen-
erally considered as such when the mock database has a similar task to that of the target
database, which helps the architecture to familiarize itself with the task at hand prior to
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start training on the target database. When the task of the mock database is not similar to
that of the target database, the term used is simply that the model has been pre-trained,
stating the database on which the model has been pre-trained. The weights and biases
learned from the mock database are then transferred to the architecture training on the
target database. During the training process on the target database, a process referred
to as fine-tuning (Goodfellow et al., 2016; Iglovikov and Shvets, 2018; Kavur et al., 2021;
Zhu et al., 2022) occurs, which is the process of further adjusting the weights to the target
data.

Two caveats of using pre-trained models are that the architecture being used must
match the pre-trained model’s architecture exactly and, unless pre-training is carried out
by the architecture developer, only a limited selection of models are available, given that
pre-trained models are made available by third-parties. Most pre-trained models are pre-
trained on classification tasks, therefore, when translating to a segmentation task, pre-
training can only be applied to the encoder part (see Section 3.6.3) of an architecture.
Nonetheless, pre-training still plays an important role, as it can compensate for a lack of
training data and increases the variety of the data which helps to avoid overfitting.

3.6 Introduction to Convolutional Encoder-Decoders
CEDs are built on the concepts which were laid down by CNNs. To fully understand the
progress that has been made in artificial neural network architecture, it is important to
understand what CNNs are. The sections that follow present brief definitions of what is
understood by the terminology used by CNNs and a brief overview of CNNs and CEDs.

3.6.1 Implementation, Model and Architecture
In this work, there are several references to the terms Implementation, Model, and Archi-
tecture. A brief clarification on how these terms are being usedwill follow. When the term
implementation is used in this work, it is understood to include the training parameters,
and the architecture or model. All the details required to be able to replicate the building
and train the architecture or model should be included, such as type of optimizer, learning
rate, loss function, number of epochs, number of augmentations, etcetera. An architec-
ture is a representation of the individual layers, clearly defining each layer in detail and
how each is connected to the other. No training details are required when using the term
architecture. A model is defined as the architecture after it has been trained. It contains
information on how the model is built and the weights which have been calculated after
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training, but training parameters are not necessarily included4. For a given input, a model
will always output the same result as its weights and biases are fixed. An architecture that
is partially trained is also being considered a model because if the training is stopped, its
bias and weights are still fixed at that point in time and will still give a deterministic result.

3.6.2 What are CNNs?
CNNs are a sequence of layers which compute feature maps (Furtado, 2021b). To explain
what featuremaps are, consider a greyscale image of size 512 by 512 pixels and this image
will be used as an input to a CNN (Furtado, 2021b). Then it can be said that the CNN will
be fed a feature map of depth 1 and a resolution of 512 by 512. As the CNN processes
the image, it computes matrices having an increased depth but lower resolution. These
lower resolution feature maps try to capture features from the input that are particular
enough to be able to correctly classify or segment the input, but general enough that if
a different input is fed, they are still able to output a satisfactory answer. An important
part of CNNs and also part of their name, are the convolution operations or convolutional
layers (Hu et al., 2017). Convolutions are mathematical product-sum operations (Furtado,
2021b). They have a kernel size of (n × n) and a bias. The kernel passes over the feature
maps, producing an output of which the size depends on the stride and padding selected.
This output is then processed by other mathematical operations or layers such as batch
normalization, ReLU, pooling layers, activation layers, and FC layers.

Up till this point, data has been considered to move forward only (from the input to
the output). However, for a model to learn, information needs to be propagated back-
wards. This is done using an algorithm called back-propagation (Furtado, 2021b). Dur-
ing the training process, the model is allowed access to both the training data and the
ground truth values. By using the ground truth values, the model is able to mathemati-
cally calculate the difference between what was predicted and what the value should be.
This information (error or loss) is then passed backward (also applying a learning rate to
limit the magnitude of change) to update the convolutional kernels and biases as well as
other layers which benefit from such information (Furtado, 2021b). The model iterates
this process several times and, ideally, the loss starts to become so small, that the changes
applied by back-propagation become negligible (Furtado, 2021b). At this point, the model
has successfully learned a function that best approximates the input-output relationship
of the training data.

4https://developers.google.com/machine-learning/glossary#m
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3.6.3 What are Convolutional Encoder-Decoders?
CEDs can be defined by three main parts: the encoder, the bottleneck, and the decoder.
The encoder is the contracting part of the architecture, it computes and codes the orig-
inal input, CT slices in the case of this dissertation, into feature maps. The feature maps
are generally of lower resolution but higher depth than the original input. The encoder’s
architecture is usually inspired by a CNN architecture (Conze et al., 2021; Li et al., 2021;
Ronneberger et al., 2015; Vladimir et al., 2019). This, however, is where the similarities be-
tween CNNs and CEDs end, because CNNs are generally used for classification, whereas
CEDs are generally applied to image segmentation. At this point the CNNs can prepare
to output their results, whereas CEDs still have two parts remaining for them to be able
to output the segmented image.

The decoder, also known as the expanding path of the architecture, tries to find an
optimal solution for the output from the coded input, that is, it tries to guess the desired
output from the information which was computed in the feature maps. The decoder is
generally made up of convolution, batch normalization, ReLU, and activation layers. The
link between the end of the encoder and the start of the decoder is known as the bottle-
neck. The bottleneck bridges the output codes from the encoder and prepares them for
the decoder for further processing. The architecture may also have other intermediate
connections between the contracting path and the expanding path, such as dense con-
nections or residual connections. (Conze et al., 2021; Li et al., 2021; Ronneberger et al.,
2015; Vladimir et al., 2019).

3.7 Conclusion
This chapter presented background information of the concepts associated with this
study. The next chapter shall describe and discuss the research design used in this
study.
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4 Implementation

4.1 Introduction
As discussed in Section 3.4, the work carried out during this dissertation follows very
closely the work carried out by Conze et al. (2021). In their work, Conze et al. (2021) pre-
sented multiple models with varying implementation difficulty. Although the main focus
of this dissertation was implementing the v16pUNetC, this helped with the familiariza-
tion of several architectures. The research approach which has been taken to tackle the
research question is a quantitative research method with experimental research design,
as the research involves the modelling of data and calculation of metrics using a statistical
approach to make sense of the data (Kamiri and Mariga, 2021). This chapter is split into
three main sections: Section 4.2 explains the difficulties encountered that are CHAOS
related, Section 4.3 where part of the work carried out by Conze et al. (2021) was veri-
fied, and Section 4.4 where variations on a modified model inspired by Conze et al. (2021)
were carried out.

4.2 Getting Started
The work carried out prior to running a training session with an architecture, is vast and
very important. This includes tasks such as setting up the environment, importing and
processing the dataset, implementation of part of the pre-processing, as well as dealing
with any anomalies. The synergy between these components was tested using the UNet
architecture (Ronneberger et al., 2015), given its simplistic nature, with slight modifica-
tions. Thesemodifications included the padded convolutions and the batch normalization
after each convolution. The addition of the padded convolutions was explained in Section
3.5.2, but in short, these were used to keep the output resolution the same as the input.
Batch normalization is carried out in batches during training to speed up the optimization
process of the model. It introduces additive and multiplicative noise on the hidden units,
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which has a regularization effect and should make drop out layers unnecessary (Good-
fellow et al., 2016). During this process, no architecture changes were carried out, using
only the UNet architecture to test out the various components.
4.2.1 Database and Metrics
Specific details about the composition of the Database and the metrics used by the
CHAOS Challenge were discussed in Section 3.2. In this section, the practical aspects of
the database will be discussed. The two X-ray tube physical parameters that govern the
quality of the slices are the tube current over time (mAs) and the peak tube voltage (kVP).
Higher tube current over time generally translates to lower noise while the peak tube
voltage affects the penetrating power of the X-Rays; as peak tube voltage is increased,
the X-rays’ penetrating power increases. This can affect the contrast of the slice as well
as its Hounsfield Unit (HU) values. Let δ be a measurement of a patient’s tissue at a
location (x, y, z) in HU. It can be said that δHU(x,y,z) is a measurement based on the
linear attenuation coefficient, µ, of the patient’s tissue at a location (x, y, z) in space (at
a particular voxel) (Mahesh, 2013). To convert the value of µ(x, y, z) to HU the following
equation can be used:

δHU(x,y,z) = 1000
µ(x, y, z)− µw

µwwhere µw is the linear attenuation coefficient of water. The HU range for a human body
CT scan generally ranges from -1,000 HU for free air to around 1,200 HU for bone. The
HU range does not have an upper limit for CT scans, therefore, the limit for a slice is
typically set either by what is being scanned or the physical limitations of the sensor, that
is, by the bit-depth of the scanning machine and the saturation levels of the sensor itself.
This gives a practical range to work with. HUs are used by medical professionals as their
values are easier to remember than linear coefficient unit values. Most CT scans provided
by the CHAOS Challenge are stored in 16-bit, unsigned integer format (expect for dataset
39) and, depending on the tool which is used to read the DICOM images, these have to be
converted into HUs. In order to be able to carry out this operation, a DICOM file stores a
slope and an intercept value. These are then applied to the array of values stored within
the DICOM file, which values are converted to HUs. These are applied as follows:

δHU = δraw × slope+ intercept
where δraw is the value stored in the DICOM image and δHU is the converted value. The
tube current over time, tube peak voltage, slope and intercept values contained within
the training and testing databases were read1 to check for any anomalies. Dataset 39 in

1Details about the databases parameters can be found in Appendix A.1, Table A.1.
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the Testing database had different peak voltage than all other datasets.
During the process of reading the datasets, a medical professional may apply a win-

dow filter. The window filter helps to overcome the sensitivity limitations of the human
eye, as it can only differentiate between a limited number of light intensities. Therefore,
windowing helps medical professionals to view only the areas of interest required. When
changing the kVP, thewindow levels also need to be adjusted tomatch the newHUvalues
of interest. A similar approach can be applied to an implementation to facilitate training.
In fact, it is almost essential. Initially, the process of windowingwas not being applied, and
the architectures were being fed the whole range of each image. However, normalization
without windowing was found to be problematic because each individual slice contains
different maximum andminimum values. Thus, when normalizing each image individually,
the relationship between the physical value (linear attenuation coefficient) and the val-
ues being computed, is lost. Furthermore, some DICOM images contained what will be
referred to as anomaly values, which are not removed by a normalization operation. The
anomaly values are single pixels within the slice that contain values magnitudes higher
than the generally accepted range for human tissue. These anomaly values were gener-
ally located at the top leftmost part of the image, which is not within the chest area of
the patient. These anomaly values caused two major problems to the model. The first
problem was that the anomaly values significantly slowed down the optimization process
of the model during training. The slowdown was attributed to the model being unable to
optimize towards a specific range of HU values, causing the model to have to re-adjust
completely whenever the anomaly is present. Secondly, when the model encountered
the anomaly values within the validation datasets only, the model was unable to detect
any liver.

Solving the normalization issue was tedious. All the maximum and minimum values
from all the DICOM slices were read and visualized for all slices. The graph, seen in Fig-
ure 4.1, shows that 90% of the slices have a maximum value of less than 1,906 HU. Values
above 1,906 HU then jump to 16,600 HU which is too dense to be considered as human
tissue. A maximum saturating threshold was therefore set to 2,000 HU, as visualized in
Figure 4.1 by the green line. A similar exercise was carried out for the minimum values.
The minimum values ranged from -1,200 HU to -1,000 HU. The saturating threshold for
the minimum values was set to -1024 HU. The slices were then capped at values ranging
from -1024 HU to 2,000 HU. Values beyond the thresholds were set to the threshold and
the images were then normalized to [0, 1]. Figure 4.2 shows an example of a normalized
image prior to applying the windowing on the left-hand side, and post-application of the
windowing on the right-hand side.
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Figure 4.1: A graph showing the maximum value for every slice within the training database sortedin ascending order of maximum value. Superimposed in orange is the maximum threshold value.

4.3 Replication and Verification
One of the key objectives of this dissertation was to replicate the v16pUNet1.1C model
(Conze et al., 2021) which achieved the best result for Task 2 of the CHAOS Challenge
(Kavur et al., 2021). Deeper VGG models were also implemented by Conze et al. (2021),
such as v19pUNet1.1, which uses aVGG19 encoder. However, for liver segmentation, the
deeper models did not lead to performance gains. Therefore, these architecture versions
were not replicated. Training parameters as stated by Conze et al. (2021) are listed in
Table 4.1.

The replication of v16pUNet1.1C was split into three steps: first the implementation
of v16UNetC, then applying pre-training on ImageNet to achieve v16pUNetC and the last
step was to cascade the architecture to achieve the v16pUNet1.1C. With the exception
of the normalization step suggested by PyTorch2 when using pre-trained models, the de-

2https://pytorch.org/vision/0.8/models.html
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Slice with Anomaly Normalized Slice with Windowing

Figure 4.2: Before and after range restricted normalization - Left: Image normalized using its minand max values, and Right: the same slice after normalization using -1024 HU and 2000 HU as minmax values.

Table 4.1: Implementation Parameters (Conze et al., 2021)
Parameter Value/Type
Number of Augmentations per Slice 100Augmentation Type Random scaling, rotation,shearing and shiftingNumber of Training Epochs 6Batch Size 3Optimizer AdamLearning Rate 10−5

Loss Function Fuzzy DICE LossPre-Training Dataset ImageNet(Russakovsky et al., 2015)Post-Processing Largest connected segmented areaIDE KerasGPU Nvidia GeForce 1080 Ti
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tails of each of these steps are included in Chapter 3. The normalization parameters as
suggested by PyTorch are as follows: mean equal to [0.485, 0.456, 0.406] and standard
deviation equal to [0.229, 0.224, 0.225].

4.3.1 Ambiguities
There were a few parameters of which the setup values were not clear, namely the trans-
formation values for augmenting the database, the loss function, and the training percent-
age (and validation percentage). Startingwith the former issue, little literature clearly state
the exact properties of the applied transformations. In their paper, Furtado (2021a) state
that they applied “random translations up to 10 pixels, random rotations up to 10 degrees,
shearing up to 10 pixels and scaling up to 10% up and down as well”. Thus, except for the
scaling transformation (unless stated otherwise), these values were used throughout all
the training sessions. Another transformation which was added was the elastic transfor-
mation, as it yields “biologically plausible images” (Çiçek et al., 2016; Eaton-Rosen et al.,
2018; Isensee et al., 2020; Kavur et al., 2021; Ronneberger et al., 2015; Zhang et al.,
2021).

Moving on to discuss the loss function, Conze et al. (2021) mention the fuzzyDICE Loss
in their work, but no detail or reference is given about the implementation of such a func-
tion. Furthermore, no literature could be found on how to go about implementing fuzzy
DICE Loss. Thus, the loss function was replaced, first by a Binary Cross Entropy (BCE) loss
function, and later by a variation on the DICE loss function. Both loss functions provide
very good performance for CT liver segmentation, but the DICE loss function should per-
form slightly better (Furtado, 2021a). The choice of an optimal loss function is a critical
process, as fundamentally, it measures the quality3 of the output of the implementation
(Furtado, 2021a). If a loss function fails to reveal the problems in the model’s output, then
the model cannot be optimized correctly (Furtado, 2021a; Li et al., 2021). The smooth
DICE loss function is very similar to the standard DICE loss but contains an additional
smooth parameter to not only prevent dividing by zero, but to also act as a generalization
parameter. The smooth parameter is generally set to 1 (RNA, 2021). The equation for the
smooth DICE loss can be found below, where (1) represents the smooth parameter:

1− 2|(S ∩G)|+ (1)
|S|+ |G|+ (1)

3It is widely known that using accuracy as a loss function gives great importance to the backgroundpixels, which are a large portion of the image (Furtado, 2021b; Li et al., 2021). This problem can be solvedby choosing an appropriate loss function (Furtado, 2021b; Li et al., 2021).
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Figure 4.3: Cross-Validation Diagram for 20% validation subset, five runs, indicating the validationsubset using a purple pointer.

There is no right or wrong answer when choosing which data is going to be used for
training and which data is going to be used for validation. The ideal and best approach is
cross-validation. Cross-validation is a process where the data is split into a given number
of subsets. A single subset is assigned to the validation set and the remaining subsets are
assigned to the training set. The architecture is then trained and validated using the cho-
sen configuration of subsets. After completing the training process, the validation metrics
are saved. The validation subset is then merged with the training subset whilst extract-
ing another validation subset from the training subset, systematically. This process is
repeated until all the subsets have been assigned to both the training and validation sets.
The results from each training run are then compared, and the variance is calculated to
check how robust the implementation is to a particular database. Figure 4.3 shows an ex-
ample diagramof cross-validation using subsets of 20%of the training database. Although
cross-validation is the ideal method, it is also a very lengthy process, as it requires the ar-
chitecture to be trained multiple times. On average, each training session took around
three days. Furthermore, other limitations exist, such as resource availability to train and
validate the models and challenge limitations on the number of submissions per day. Due
to these limitations, it is therefore more common practice to split the training database
into two subsets, 80% training and 20% validation, at random (Furtado, 2021a,b; Good-
fellow et al., 2016; Wen et al., 2021), at the cost of not knowing the expected variance.
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Table 4.2: Implementation Parameters (this work)
Parameter Value/Type
Number of Augmentations per Slice 100Training % (Validation %) 80% (20%)Augmentation Library AlbumentationsAugmentation Type Random translation 0.02% ≈ 10 pixels,rotation ±10◦, shearing ±10◦ andelastic transformation σ = 10 α = 10Number of Training Epochs 6Batch Size 3Optimizer AdamLearning Rate 10−5

Loss Function Smooth DICE LossPre-Training Dataset ImageNet(Russakovsky et al., 2015)Post-Processing Three-DimensionalLargest-Connected-Component FilterIDE PytorchGPU/s Nvidia GeForce 3060 Ti 8GB andNvidia GeForce 3060 12GB

4.3.2 Implementation and Parameters
Due to the nature of the way the augmentations are applied during training, a clarifica-
tion note is necessary. Typically, augmentations are applied independently of whether
the input image belongs to a particular group or set. However, in this particular case, the
images being augmented are CT slices which have a specific sequence. It was therefore
decided that the transformations applied for data augmentation would be kept uniform
for each dataset. This means that the transformations were applied by first generating a
random seed per dataset, per augmentation number and this seed was then applied (and
re-used) for all the slices of the particular dataset for the particular augmentation number.
This means that if the dataset were to be visualized in three dimensions, the visualization
would show a homogeneous and organic-like volume of the liver, avoiding any disconti-
nuities between slices. The parameters used to replicate the results achieved by Conze
et al. (2021) are listed in Table 4.2. Trainingwas carried out using theNetworks Laboratory
computers provided by the Department of Communications and Computer Engineering
on computers having the GPUs listed in Table 4.2, while testing was carried out using the
personal computer on an Nvidia GeForce 1070 8GB. Other computer specifications have
little effect on the training and testing performance given that the processes are being
run on the GPUs.
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4.4 Experimentation

4.4.1 Performance Tuning
Following the Performance Tuning Guide4, one of the optimizations that PyTorch recom-
mend, is to turn off the bias for convolutional layers which are immediately followed by
a batch normalization operation. They state that removing the convolution bias should
have no effect on the output result. They also state that the pre-trained models which
they offer, also use this principle, as it frees up memory, reduces computation time and
the model should theoretically achieve the same performance.

4.4.2 Architecture Discrepancies
In their work, Conze et al. (2021) presented several diagrams, one of which shows the
architectures of their implementations for UNet, v19UNet and v19pUNet. The diagrams,
however, differ from the original source for both UNet and VGG19 implementations.
These discrepancies will be discussed in the following sections.
UNet discrepancy
In the Background Chapter, reference was made to the original UNet diagram which was
presented in Figure 3.4. It is understood that in their diagram, Conze et al. (2021) pre-
sented the UNet Architecture, however there are several discrepancies from the original.
The number of feature channels are all different; in the original (Ronneberger et al., 2015),
they follow the order presented in Figure 3.4 of [64, 128, 256, 512] and 1024 for the
bottleneck. Conze et al. (2021) present the channels as follows: [32, 64, 128, 256] and
256 for the bottleneck. Another discrepancy is the implementation of the bottleneck for
UNet. Whereas in the original architecture the bottleneck doubles in number of features,
in the diagram shown by Conze et al. (2021), the bottleneck maintains the same number
of features as the previous convolution operation. This may have been implemented as
such to mimic the architectures presented by Simonyan and Zisserman (2014). To clar-
ify, throughout this dissertation, when a reference is made to UNet, reference is being
made to the original architecture of Ronneberger et al. (2015) as presented in Figure 3.4,
whereas when referring to the architecture presented by Conze et al. (2021), the nomen-
clature changes to UNetC.

4https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
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Figure 4.4: VGG16UNetD Architecture Diagram

VGG19-UNet discrepancy
In their diagram, Conze et al. (2021) presented their implementation of the v19UNet and
v19pUNet. Although these two architectures were not implemented during the course of
this dissertation, these diagramswere used as referencewhen implementing their VGG16
counterparts. Consider the VGG19 architecture as presented by Simonyan and Zisserman
(2014). Using the following representation [number of convolutions × number of fea-
tures, ...], VGG19 consists of the following sets of convolutions: [2×64, 2×128, 4×256,
4×512, 4×512]. However, the diagram presented by Conze et al. (2021) shows that the
bottleneck layers were reduced by 1 convolution to [3×512]. Translating this interpre-
tation to VGG16, one can end up with two versions of architectures: [2×64, 2×128,
3×256, 3×512, 3×512] which will be referred to as v16UNetD and any architectures or
models which are a derivative of v16UNetD will be denoted by the letter ‘D’ (for example
v16pUNetD); and [2×64, 2×128, 3×256, 3×512, 2×512] v16UNetC (v16pUNetC). The
diagram for the latter architecture was presented in Figure 3.3, whereas the diagram for
v16UNetD can be seen in Figure 4.4.
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4.4.3 Training
As mentioned in Section 4.3, Conze et al. (2021) trained their architecture for six epochs.
It is therefore being assumed that Conze et al. (2021) first applied the transformations
on the database (100 per slice) and then fed the augmented database to the architecture
and trained for six epochs. There is no mention of whether different approaches were
taken for training the architecture, thus two different methods were applied separately
to determine which is better.
Validation Shuffle
To make the most of training an architecture using a small database, the validation shuffle
method was tested to check whether this would improve performance. The validation
shuffle method is very simple in its implementation. Initially, the dataset directory num-
bers are shuffled to generate a random sequence of the datasets. This sequence is then
split into two subsets, 16 datasets for training and 4 datasets for validation, approximating
the 80% and 20% respectively, as discussed in Section 4.3.1. This process can be repeated
after a set number of epochs to achieve updated training and validation datasets subsets.
In theory, this should expose the architecture to all the possible datasets, however, this
may also cause the model to decrease its generalization capabilities. Nonetheless, the
implementations were tested to verify this training method.
Augmentation Sequence
During the course of this dissertation, twomethodswere tested on how to go about feed-
ing themodel with the augmented datasets. The firstmethod is what is considered closest
to the method applied by Conze et al. (2021). This involves augmenting the database at
once with the required number of augmentations per slice then feeding all the data (in
batches) to the model. Validation only takes place after the whole database and the aug-
mentations are fed to the model. For example, consider the CHAOS database, containing
2,874 slices, then splitting the training and validation datasets using 80% training, 20%
validation (2,299 slices5) and applying 10 augmentations for each slice on the training
sets, totalling to 22,990 slices. After the latter number of slices have been fed to the
model, the validation starts. After the validation, the model has trained for one epoch.
This method shall be referred to as All-At-Once (AAO) or the 6-epoch method.

Another method of feeding the model can be applied by training the model for six
epochs at a time per augmentation. Referring to the previous example, this means that at

5Note that this value is only indicative. The program splits the database based on whole datasets.
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every epoch, the model is trained only on 2,299 slices and then validated. After training
on the same slices for six epochs, the augmentation transformations are applied on the
original database for the training slices only. These transformed slices are then fed to the
model, which is trained for another six epochs. This process is repeated for the number
of augmentations required. This method shall be referred to as One-At-a-Time (OAT). It
is expected that OAT is more time-consuming, given that the validation step is repeated
multiple times, depending on the number of augmentations required.

4.4.4 Normalization Adjustment
Taking the windowing filter, explained in Section 4.2.1, one step further and applying the
same principles as medical professionals, the thresholds can be adjusted such that win-
dowing is carried out over the set of HU values that fall within the ground truth region
of the DICOM slice. This restrics the HU values to the required values only. These val-
ues were found by first applying the ground truth to each corresponding DICOM slice
and then reading the minimum and maximum values. After carrying out this process
for all the training and testing databases, the minimum threshold of -700 HU and the
maximum threshold of 1,600 HU were chosen. The range was reduced from 3,024 HU
to 2,300 HU. The windowing process is being applied through a normalization function,
hence this threshold tuning is being called Normalization Adjustment.

4.4.5 Cascaded Framework Experiments
Apart from different training configurations, experimentation was carried out on the cas-
caded framework model. The experiments can be categorized in five parts, experimenta-
tion with: the connections between the two models, the connections from one model to
the other at the shallow levels and at the deep levels, different learning rates for the two
architectures in the same run, and different model sizes. Each of the mentioned parts will
be explored in more detail below.
Connections Between the Two Models
When using a cascaded framework, an inherent connection is required between the first
and second models. In their paper, Conze et al. (2021) show the connection between
the two models as a stack of the input image, posterior probability of the first model and
another copy of the input image, but no details are given about how this configuration
was decided. Figure 4.5 shows three alternative approaches to these connections. Fig-
ure 4.5 (a) shows a similar configuration to the one used by Conze et al. (2021) changing
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only the configuration of the stack, where instead of having a stack with duplicate input
image and a single copy of the posterior probabilities of the first model, the stack con-
tains two copies of the posterior probabilities of the first model and a single copy of the
input. This configuration should give greater importance to the posterior probabilities of
the first model rather than the original input. The model will be referred to as [v, x, v]
Context, referring to the posterior probabilities as v and the input slice as x.

Figure 4.5 (b) and (c) show a completely different approach. Inspired by residual con-
nections, the posterior probabilities are added to the input image and then fed to the
second model. In (b), Model 1’s posterior probabilities are added to the input image. The
result is then triplicated and fed to the pre-trained model, Model 2. This architecture will
be referred to as v16pUNet1S1D, the ‘S’ instead of ‘.’ signifying a combined but Single
source. In (c), Model 1 is configured to output three posterior probabilities (channels).
Each one of these is then added to a copy of the input image and are then fed to Model 2.
This network will be referred to as v16pUNet1T1D, where T signifies the Three posterior
probabilities.
Connections at Shallow and Deep Levels
Taking inspiration from both UNet and the cascade framework, three approaches were
implemented to share context between the two networks. Two of the methods take into
context shallow connections whilst the other approach focuses on the deep connections.

Figure 4.6 and Figure 4.7 show the second part of the architecture only within a cas-
cade framework (Model 2). The feature maps are copied from Model 1, transferred from
Model 1 toModel 2, and concatenated to the feature maps which the encoder ofModel 2
generates, keeping the same depth during all steps. Figure 4.6 shows two implemen-
tations in a single figure, where the only difference between the two is the number of
feature maps, one having 64 and the other 128, at the penultimate convolutional layer.
Following Model 2, the encoder part of the model for both the shallow and deep connec-
tion re-configuration remains unchanged. This cannot be changed since the model being
used is pre-trained and, therefore, the layers are fixed.

For the shallow connection implementations, the bottleneck and the two deepest lay-
ers of the model decoder also remain unchanged. The part where the model differs from
v16pUNet1.1D is at the three shallow connections of the decoder. Retaining the same
spirit as UNet, Model 2 takes context from the encoder part of the same model as well
as the encoder part of Model 1. Thus, by having the additional connections, instead of
doubling the number of feature maps, these are tripled, giving the network more context
fromModel 1. A similar line of thought was followed when implementing the variation of
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Figure 4.5: Alternative configurations of connection between the first and second models of the
cascade framework, where (a) shows a variation in the stack configuration by having duplicate pos-terior probabilities instead of the standard duplicate input image, (b) shows a configuration wherethe posterior probability of the first model is added to the input image and then triplicated, and in(c) the first model is configured to output three channels and the input is added to each channel.

keeping additional feature maps at the penultimate layer. Tests were carried out to verify
whether adding more features would result in better discrimination.

The approach towards giving more context to the deeper levels of the network, also
follows the same concept as that of the shallow connections. As seen in Figure 4.7, the
deepest three layers, these being the bottleneck and the two layers that follow in the
decoder part of the Model 2, are given context from the encoder parts of Model 1.
Varying Learning Rates
The cascade framework inherently contains at least two cascaded models, the learning
rates of which can be altered separately from one another. Let LR1 be the learning rate
of the first model, Model 1 and LR2 the learning rate for the second model, Model 2. LR2
was kept constant at 1× 10−5 whilst changing LR1 and two implementations were run,
one having LR1 = 1.25 × LR2 and the other having LR1 = 0.75 × LR2.
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Figure 4.6: Two configurations of the secondmodel within the cascade framework, Model 2, wherethe pink connections are context (skip) connections from the first model, Model 1. The differencebetween the two configurations is at the last 2 no. convolution. One configuration compresses the192 feature maps to 64 and the other configuration compresses the 192 feature maps to 128 beforethe final convolution layer.

Adjusting Model Sizes
So far, when discussing the cascade framework, there has been an underlying assumption
that the architectures for the two models were the same. Additionally, as discussed in
previous sections, the first model is used to produce posterior probabilities which are
used as context for the second model. Given the pre-text that the first model is only used
to give context to the second model, the question arises as to whether the complexity
and depth of the first model needs to be the same as that of the second. An architecture
with a shallower first model was implemented, where Model 1 is an implementation of
v16pUNetD with reduced depth such that it arrives at a bottleneck after three levels of
depth as seen in Figure 4.8. Model 2 follows the architecture of v16pUNetDwith shallow
connections and 64 feature maps at the penultimate layer, as seen in Figure 4.6.
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4.5 Conclusion
This chapter presented the methods applied and the reasoning behind the experiments
carried out during the course of this dissertation. The next chapter presents the results
of these experiments.
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5 Results

5.1 Introduction
In this chapter, the results obtained from the experiments which were carried out were
tabulated as well as visualized using the box plot format.

5.2 Submission Process
The results being presented in this chapter are all results which were submitted to the
CHAOS Challenge. That is, after training the model on the training database, the model
is then put into an evaluation state and the test database is fed to the model. As stated
in Section 3.2.1, the ground truth for the test database is not disclosed to the public to
avoid over-optimization. The model outputs the segmented datasets using the require-
ments specified by the challenge. Prior to submission, Conze et al. (2021) used a largest
connected segmented area filter as listed in Table 4.1. Similar to Conze et al. (2021)’s ap-
proach, in this work, each of the test dataset segmentations are passed through a three-
dimensional largest-connected-component filter having 26-way connectivity. This can be
applied given the premise that the liver is a single volume. It was observed that the mean
score after applying the filter rises by approximately 10% overall. Therefore, all results
presented in this chapter will be the results achieved after applying the filter. Another
requirement for submitting to the challenge is a sheet stating the important details of the
implementation. After uploading the submission files1, the metrics and scores are auto-
matically calculated by the challenge and these are published on the challenge website2.

1Segmented outputs can be submitted at:https://chaos.grand-challenge.org/evaluation/challenge/submissions/create/2https://chaos.grand-challenge.org/evaluation/challenge/leaderboard/
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Table 5.1: Replication Results - results within this table are from the v16pUNet1.1C Model. Thestandard result, labelled v16pUNet1.1C, uses the parameters stated in Table 4.2. The BCE Loss vari-ation uses the same parameters as standard other than the loss function and scaling transformationresult uses the same parameters as standard but includes the scaling transformation when augment-ing the database. The results presented in this table are a summary of the full results, which can befound in Table A.2
Variation Mean DICE RAVD ASSD MSSDScore Score Score Score Score
Standard 85.49 97.80 79.12 94.72 70.35BCE Loss 83.87 97.87 72.88 94.97 69.77Scaling 84.92 97.55 75.85 94.13 72.16

5.3 Replication and Verification of Results
The objective of the results being presented in this section was to verify the results
achieved by Conze et al. (2021). Due to the ambiguities which were mentioned in Sec-
tion 4.3.1, three results are being presented to make sure that the selected loss function
and transformations applied, as listed in Table 4.2, are satisfactory.

The results achieved are summarized in Figure 5.1 and Table 5.1. Figure 5.1 shows
three box plots, one for the implementation of v16pUNet1.1C using the standard train-
ing parameters (listed in Table 4.2), another using the standard training parameters, but
with a BCE loss function instead of DICE loss function and the third result also uses the
standard training parameters but, additionally, includes a scaling transformation to the
transformation list. The box plot shows the minimum and maximum values in the form of
whiskers, bottom whisker being the minimum and top whisker being the maximum and
the lower and upper quartiles are shown by the lower and upper bounds of the box re-
spectively. The box plot also shows the median values for each plot as a dashed, red line,
the mean marked with × and the mean score achieved by Conze et al. (2021) as a solid,
black line.

The mean score achieved by Conze et al. (2021) was of 85.53, which is very close to
the mean achieved by the replication model of 85.49, observed in Table 5.1. Changing
the loss function from a smooth DICE loss function to a BCE loss functions, the mean
score decreases to 83.87. A slight decrease in the mean score is also observed when
including the scaling transformation in the transformation list. The RAVD score shows
a similar trend to the mean score. Minute changes can be observed in the DICE score
and the ASSD score. The MSSD score shows a different trend, where an increase can be
observed after the application of the scaling transformation.
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Figure 5.1: Replication results for the v16pUNet1.1C Model plotted in box plot format, where themedian values for each plot as a dashed, red line, the mean marked with × and the mean scoreachieved by Conze et al. (2021) as a solid, black line. The standard result, labelled v16pUNet1.1C,uses the parameters stated in Table 4.2. The BCE Loss variation uses the same parameters as stan-dard other than the loss function and scaling transformation result uses the same parameters asstandard but includes the scaling transformation when augmenting the database. The plots for themetrics’ scores can be found, which can be found in Figure A.1.

5.4 Experimental Results

5.4.1 Comparison of the Modified Model
A comparison between the model proposed by Conze et al. (2021), the v16pUNet1.1C,
and the model which originated from the discrepancy stated in Section 4.4.2, called
v16pUNet1.1D, was carried out to test which model has the better performance.

The results achieved are summarized in Figure 5.2 and Table 5.2. Figure 5.2 shows six
box plots, comparing implementations of v16pUNet1.1C and v16pUNet1.1D using the
standard training parameters (listed in Table 4.2), using OAT training, and OAT training
with shuffled validation (discussed in Section 4.4.3). The figure includes themedian values
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Figure 5.2: A comparison of v16pUNet1.1C and v16pUNet1.1D models’ results in box plot format,where the median values for each plot as a dashed, red line, the mean marked with ×. The param-eters common to both models are listed in Table 4.2. The legend splits the training method of theresults by colour while the x-axis ticks show which result is associated to which model. The plots forthe metrics’ scores can be found, which can be found in Figure A.2.

for each plot shown as a dashed, red line and the mean marked with ×.
Comparing the mean score results of v16pUNet1.1C and v16pUNet1.1D models pre-

sented in Figure 5.2, v16pUNet1.1D achieves a bettermean score for AAOandOAT train-
ing and slightly lower performance when using OAT with shuffle. Observing the median
result, v16pUNet1.1D obtained better performance for all training categories. Observing
the metric results in Table 5.2, the mean score, DICE Score, RAVD Score, and ASSD score
show almost identical performance. The main discriminator was the MSSD.

5.4.2 Experiments on the Modified Model
Figure 5.3 and Table 5.3 present a summary of most of the experiments which were car-
ried out on the v16pUNet1.1D model. In total, 13 variations were tested on the modi-
fied model. The standard implementation, as per previous sections, uses the parameters
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Table 5.2: Comparison Results - results within this table are a direct comparison of thev16pUNet1.1C and the v16pUNet1.1D models under various training methods. The parameterscommon to both models are listed in Table 4.2. The results are distinguished by the first threecolumns: the model, the type of training, and whether the validation set was shuffled during training.The results presented in this table are a summary of the full results, which can be found in Table A.3.
Architecture Training Shuffled Mean DICE RAVD ASSD MSSDType Score Score Score Score Score
v16pUNet1.1C AAO No 85.49 97.80 79.12 94.72 70.35v16pUNet1.1D AAO No 85.92 97.78 78.01 94.77 73.09v16pUNet1.1C OAT No 84.46 97.67 79.90 94.39 65.90v16pUNet1.1D OAT No 85.84 97.85 80.33 94.80 70.38v16pUNet1.1C OAT Yes 84.12 97.77 73.66 94.69 70.37v16pUNet1.1D OAT Yes 83.99 97.77 73.53 94.63 70.01

listed in Table 4.2. The results of the standard implementation are slightly different, as
the results being shown are from another run. All the variations on the architecture are
explained in detail in Section 4.4. Figure 5.3 groups the variations into five categories
by colour: minor changes with the heading Standard are represented in purple, the green
colour represents the variations in the connections between the twomodels in a cascaded
framework, the blue colour represents the variations of the within model connections,
changes in Learning Rate (LR) are represented by the yellow colour, and the pink colour
represents size adjustment models. Below each plot is a unique reference for that par-
ticular result. The metrics’ score plots and the full variations’ results table with standard
deviation values can be found in Appendix A.2, titled Additional Results.

Observing the mean scores from Figure 5.3 and Table 5.3, there is an overall decrease
in performance when applying any variation except the Normalization Adjustment result
and v16pUNet1T1D. A similar trend can also be notedwhen observing themedian results
with the addition that all within connections achieve a better median for the mean score.

5.5 Conclusion
This chapter presented the results obtained from the experiments which were run during
the course of this dissertation. The next chapter will discuss in detail these results.
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Table 5.3: Experimentation Results - results within this table are from the v16pUNet1.1D Model.The standard result uses parameters detailed in Table 4.2 and is a different run from the result pre-sented in Table 5.2. The variations applied to the architecture are detailed in Section 4.4. The resultspresented in this table are a summary of the full results, which can be found in Table A.4.
Variation Mean DICE RAVD ASSD MSSDScore Score Score Score Score
Standard 85.20 97.77 78.31 94.58 70.14Scaling 83.44 97.63 69.80 94.44 71.92Normalization Adjustment 85.64 97.78 80.03 94.59 70.16
[v, x, v] Context 84.87 97.70 77.26 94.37 70.15v16pUNet1S1D 84.71 97.74 77.86 94.20 69.03v16pUNet1T1D 85.59 97.77 80.15 94.58 69.86Shallow Connections - 64 84.91 97.77 79.18 94.53 68.15Shallow Connections - 128 84.63 97.71 78.64 94.05 68.11Deep Connections 84.86 97.83 74.32 94.90 72.39LR1 = LR2 × 1.25 80.83 97.47 61.09 93.80 70.95LR1 = LR2 × 0.75 80.61 97.50 64.02 93.70 67.23Size Adjustment LR1 = LR2 × 1.25 80.80 97.61 63.48 94.12 67.98Size Adjustment LR1 = LR2 81.34 97.56 65.43 94.08 68.28Size Adjustment LR1 = LR2 × 0.75 82.12 97.60 67.24 94.24 69.41
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6 Discussion

6.1 Introduction
In this chapter, the results presented in Chapter 5 are interpreted. This includes a com-
parison of the several implementations and architectures which were presented as well
as an objective and subjective opinion on the performance achieved.

6.2 Replication and Verification Results
The first set of results in the previous chapter were presented to show that the goal
of replicating the state-of-the-art model presented by Conze et al. (2021) was success-
fully replicated and that any ambiguities with the design of the architecture were set-
tled. Three separate implementations are being presented in Figure 5.1 and Table 5.1:
the v16pUNet1.1C which is being referred to as the standard for this set of results, the
BCE Loss result where the architecture was trained using a BCE loss function instead of
a smooth DICE, and the Scaling Transformation result, which should be an exact replica
of what was presented by Conze et al. (2021).

Observing Figure 5.1 and comparing the standard result with the result achieved by
Conze et al. (2021) (85.53, solid, black line), the mean score and median score achieved
are almost exactly identical to themean score achieved by Conze et al. (2021). Comparing
to the Scaling Transformation result, which uses all the data transformations as per Conze
et al. (2021), similar values are observed, although having a slightly lower mean score and
a slightly higher median score. Quantifying the differences in mean scores from Table 5.1,
the standard model achieved a result of 84.49, 0.04 less than that reported by Conze
et al. (2021) and the Scaling Transformation achieved a mean score of 84.92, 0.61 less
than that reported by the same. The difference observed is minute and can be attributed
to different training and validation datasets. Observing the implementation of the BCE
Loss, a decrease in mean score of 1.62 can be noted, very similar in magnitude to what
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was reported by Furtado (2021b).
Looking at the results achieved, and comparing them to the data which was provided

by Conze et al. (2021), the replication and verification of their work was, overall, suc-
cessful. The scaling transform, although included by Conze et al. (2021), was found to
have very little effect on the mean score result and, if anything, it widened the interquar-
tile range indicating an increase in variability of the mean scores of the individual testing
datasets’ results. This translates to lower precision, thus, the scaling transform was ex-
cluded from the implementations that followed, as reported in Section 4.3.1.

6.3 Comparison of Implementations
The results presented in Section 5.4.1 serve a two-fold purpose, to compare the modified
model, the v16pUNet1.1D, with the v16pUNet1.1C model and to compare the differ-
ent approaches towards training the architectures. To further clarify, the architecture as
presented by Conze et al. (2021) is being referred to as v16pUNet1.1C.

6.3.1 Training Methods
Starting from the training methods, three methods were proposed in this dissertation:
the AAO, the OAT, and the OAT with shuffled validation. The AAO, OAT methods as
well as the validation shuffle were explained in Section 4.4.3. In Figure 5.2, these have
been categorized using three colours, purple, green and blue respectively. In Table 5.2,
the results have been sorted using the Training Type and Shuffled columns.

Analysing the mean score achieved by OAT with shuffled validation, for both models,
the results are almost identical and lower than the other two training methods. Analysing
the metrics’ score, however, the results achieved are more consistent, meaning that this
training method did not discriminate between the two models. Using OAT only as the
training method yielded better results, v16pUNet1.1D showing an increase of almost 2
points. A similar trend, but to a lesser degree, was observed when switching to AAO. In
terms of mean score points, taking the mean score of both models, AAO scored 85.71,
OAT scored 85.15 and OAT with shuffled validation scored 84.06. Shifting the atten-
tion to the medians presented in Figure 5.2, a similar trend can be observed where AAO
achieved the highest score and decreases when switching to OAT and OAT with shuffled
validation.
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6.3.2 Modified Model
As discussed in Section 4.4.2, investigating the discrepancies and departing from thework
presented by Simonyan and Zisserman (2014), a modified architecture is being presented,
called v16pUNet1.1D. Observing themean score results achieved in Figure 5.2 across the
three training methods, v16pUNet1.1D achieved a higher mean score when using both
AAO and OAT, and a lower mean score when using OAT with shuffled validation. This
particular run of v16pUNet1.1D also achieved the second-highest mean score of 85.92
for Task 2 of the CHAOSChallenge, with the highest score being 85.98 at the time of writ-
ing this dissertation. The performance advantage of using v16pUNet1.1D is even more
clear when observing the median results, where v16pUNet1.1D achieved much higher
median scores for every training method when compared to v16pUNet1.1C. This shows
that adding the additional convolutional layer in the bottleneck has enough impact to in-
crease the overall median score. Looking at the mean score values presented in Table 5.2
and taking the difference between the two models for each training method, a difference
of 0.43, 1.38 and 0.13 can be observed for AAO, OAT, and OAT with shuffled validation
respectively. When v16pUNet1.1D had a worse performance than v16pUNet1.1C, the
difference in performance was much lower than when v16pUNet1.1D performed bet-
ter than v16pUNet1.1C, that is, the significance of the performance difference when
v16pUNet1.1D performed better is higher. Therefore, this architecture was chosen for
further experimentation.

6.4 Experiments on Modified Model
The results presented in Figure 5.3 and Table 5.3 are the results of the experiments which
were carried out on the modified model, the v16pUNet1.1D. As stated in Section 5.4.2
the results are categorized into five groups, which are an indication of the type of modi-
fication which was carried out. In the coming section, each group will be discussed indi-
vidually. The standard result in Figure 5.3 and Table 5.3 is a result from a different run,
and therefore has different results than the run presented in Figure 5.2 and Table 5.2.

6.4.1 Standard Category
The standard category contains three results: the standard, the scaling transform,
and the normalization adjustment. Analysing the effect of the scaling transform on
v16pUNet1.1D, a decrease in mean score of 1.76 was observed. This decrease in per-
formance is similar to what was reported in Section 6.2. The median score on the other
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hand is higher, while overall interquartile results are both lower, thus, it was deemed
that the scaling transform does not provide any significant performance increase. The
Normalization Adjustment result, on the other hand, shows a higher mean score and a
lower median score, while the lower quartile shows a higher result and a reduced range
between quartiles. Due to the reduced quartile range, the mean score result was deemed
to be significant, meaning that reducing the windowing range does improve performance.

6.4.2 Between Connections Category
The standard between model connection, as published by Conze et al. (2021), uses a
[x, v, x] connection, where v represents the posterior probabilities of Model 1 and
x represents the slice or input. Three modifications were proposed in Section 4.4.5:
[v, x, v] Context, v16pUNet1S1D, and v16pUNet1T1D, the results of which were pre-
sented in Figure 5.3 and Table 5.3. All three results showed performance close to the
standard result, with [v, x, v] Context achieving a mean score of 84.87, v16pUNet1S1D
with a mean score of 84.71, and v16pUNet1T1D with a mean score of 85.49. The
median score followed the mean score very closely. Interpreting the results shown on
Figure 5.3, the performance of [v, x, v] Context looks very similar to the standard re-
sult. v16pUNet1S1D shows promise because, while the mean score and median score
are slightly lower than the standard result, the interquartile range has been reduced by
around 1.5 points. v16pUNet1T1D did just the opposite, that is, a higher mean score was
achieved, while increasing the interquartile range. However, the interquartile range was
increased from the top end and only very slightly. Further tests are required to confirm
the repeatability of such results.

6.4.3 Within Connections Category
The within connections category was an experiment to test whether context from one
model to the other, in a cascaded framework, provided any benefits. The initial attempt
was to connect all encoder outputs from Model 1 to the decoder of Model 2, however,
due to GPU memory limitations (an estimate of 20GB was required), this could not be
tested. Thus, three variations were tested based on a similar concept. These variations
were described in Section 4.4.5 and were labelled as follows: Shallow 64, Shallow 128,
and Deep. All models show good performance reducing the interquartile range by any-
where from 0.7 to 1.3 points. The mean score results are also close to the standard result,
at worst achieving a difference in performance of 0.57 points and although 0.57 is not
small, the median results achieved are all above the median score of the standard model.
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From what was observed, adding context between the two models when using a cascade
framework, does seem to provide a significant improvement, especially in the interquar-
tile range. Although Shallow 128 has the lowest mean score, overall, it has obtained the
best performance when considering the median and interquartile results.

6.4.4 Learning Rate Category
The Learning Rate category consists of two results labelled: LR1 = LR2×1.25 and
LR1 = LR2×0.75. The methodology to producing the LR results is explained in Sec-
tion 4.4.5, where the LR of Model 2 is being kept constant at 1× 10−5 and a ratio is being
applied to obtain the LR of Model 1. The model performance digressed when changing
the LR of Model 1 in either direction. The results shown in Figure 5.3 are an indica-
tion that the model is very susceptible to changes made to the learning rate parameter.
Overall, a performance decrease of 4.48 points in the mean score can be observed. An
interesting observation can be made by looking at the metrics’ score results in Table 5.3.
Increasing the LR of Model 1 increased the MSSD score while reducing the RAVD score
while. The opposite can be observed when reducing the LR of Model 1. Further, testing
would be required to verify the claims being made in this paragraph, however, the overall
result obtained was still a decrease in performance.

6.4.5 Size Adjustment Category
The size adjustment category, explained in Section 4.4.5, was trained using the standard
training parameters (tabulated in Table 4.2), except for the learning rate. Three different
learning rates were applied, using the same configuration explained in Sub-section Vary-
ing Learning Rates, and the nomenclature used is self-explanatory. Figure 5.3 shows that
the spread of themean scores for the Size Adjustment models is very large, and all models
performed worse than the Standard model. The median scores, although slightly higher
than the mean scores, follow the same trend. Size Adjustment LR1 = LR2×1.25 did man-
age to achieve a narrow interquartile range, however, this in itself was not good enough to
be considered as a step forward. Table 5.3 shows that the mean score of the three models
is 81.42. Although the results achievedwere not an improvementwhen compared to their
counterparts, there is one aspect in which they performed excellently. The average train-
ing time of the three models was around two days, a huge improvement when compared
to the overall average of three days. This in itself does not outweigh the performance
benefits gained by the additional layers and training time, but it may be something which
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can be applied if time restrictions are more important than the 3.78 points gained when
using the Standard model.

6.5 Analysis
After analysing and discussing the results achieved, and giving a subjective overview of all
models, there is still a degree of uncertainty as to which model performed best. Consider-
ing only the mean score and median score, the best model is the standard v16pUNet1.1D
model with a mean score of 85.92 points and a median score of 88.01 points, achiev-
ing second place in Task 2 of the CHAOS Challenge. However, considering only the in-
terquartile range, the best model would be the Shallow 128 with an interquartile range
of 6.13 points. Experiments can also be carried out using a combination of the variations
presented above. However, based on the results obtained so far, and considering the
variance observed, the best model is the Normalization Adjustment model, achieving a
narrow interquartile range of 6.20 points and a good mean score of 85.64, achieving 13th
place in Task 2 of the CHAOS Challenge.

6.6 Conclusion
In this chapter, the performance of the several architectures which were implemented
was discussed through the interpretation of their results. The next chapter will present
the conclusions and any future work which may be carried out.
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7.1 Introduction
This chapter presents the outcomes of this work, its limitations, and recommendations
for future work.

7.2 Summary of Conclusions
The main objective of this dissertation was to replicate a state-of-the-art implementation
that is able to segment healthy liver using CT scans. This goal was successfully achieved
as discussed in Section 6.2. Going beyond the baseline objective, by applying a modifica-
tion on the state-of-the-art architecture, a model improvement was achieved, obtaining
second place in the CHAOS Challenge for Task 2. Further variations were carried out on
themodified architecture, including oneswhichwere not published in this work, however,
these did not perform any better than the modified architecture, v16pUNet1.1D.

7.3 Limitations
The field of image segmentation is vast, with thousands of different architectures and
even more implementations. Medical image segmentation, although a subset of image
segmentation, also shares the same characteristics. Exploring all architectures and im-
plementations is next to impossible, given the time limitations. This imposed a limitation
on the number of variations which could be explored. There is also an issue of resource
availability and energy use, for example, it is not viable to test every architecture using
all the possible combinations of batches, epochs and learning rates, as this would be a
huge waste of energy and resources, especially when interpolation can be carried out
to predict the outcome. Furthermore, some architectures, although they may achieve
state-of-the-art performance, are simply not feasible to run, either because of resource
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limitations (such as using too much GPU Memory) or the time and power consumption
required versus performance gained is simply not feasible. The GPU Memory limitation
was encountered and overcome several times throughout this work, by tweaking the ar-
chitecture to limit the use of GPU Memory to the available resources.

The database being used also has its own set of limitations. As a general rule for any
deep-learning architecture, the greater the pool of images, the more generalized the re-
sult and, usually, the better the performance achieved, assuming that the images being
presented are of the same nature. The CHAOS Challenge provided 20 training datasets
(2,874 Slices) and 20 testing datasets (3,533 Slices) and although these might seem to be
a lot, this is actually quite small when compared to, for example, ImageNet which has ap-
proximately 14 million images. Nonetheless, training on a small database is a challenge in
itself, and thus, was considered as part of the task. Another limitation of the database was
found when reading the information off the DICOM images. By reading the information
contained within the DICOM files it was found that the peak tube voltage for the training
database was kept constant at 120 kVP, while for the testing database, for dataset 39,
the peak tube voltage changes from 120 kVP to 100 kVP. This creates inconsistencies in
the HU values which the model was not trained on, making it more susceptible to errors.

Another limitation, tied to time restrictions, was the use of a single challenge to verify
the performance of the models. One way ensure that the implementation being used is
not optimized on a particular database, is to apply it to several databases, which might
have different metrics, and test its performance. This would therefore serve as a test to
verify that the implementation is generalized enough to work on different databases.

7.4 Recommendations for Future Research
There are several future endeavours which can be tackled or experimented upon. This
list presents some of the thoughts which were written down during the experimentation
phase, but there was simply not enough time to put them into practice.

Starting from presentation of the input data, only two pre-processing techniques were
applied (excluding data transformations for augmentation purposes), namely windowing
and normalization. However, there is a plethora of image pre-processing techniques and
combinationswhich can be applied prior to feeding the data to the implementation, which
may lead to improved performance. Similar to pre-processing techniques, post-processing
techniques can also be applied to the output of the implementations to improve the score
achieved. Examples of such workflows were presented by Furtado (2021b).

The recommendations mentioned in the previous paragraph all had to do with data
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manipulation, however, other experiments can be carried out on the model architecture.
The encoder part of the model can be changed from VGG16 to other encoders such as
ResNet (Furtado, 2021b; Lachinov, 2019), ResNeXt etc., and have their performance com-
pared. Although the smooth DICE loss function has been found to be the better option,
other loss functions can be implemented to better represent the problems within the seg-
mented outputs (Furtado, 2021b; Li et al., 2021). The in-between convolution activation
function being used by this work’s architecture is ReLU. Other types of activation func-
tions such as Leaky ReLU or PReLU (Ernst et al., 2019) can be applied. Although currently
limited by the GPU memory, training can be carried out on more powerful hardware to
test whether increasing the batch size, increases the generalization ability of the archi-
tecture.

7.5 Conclusion
In this chapter, the outcomes of this work, its limitations, and recommendations for fu-
ture work were discussed. The main objective of this dissertation has been successfully
reached. Beyond the main objective several other experiments were carried out to test
various different implementations.
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A . Appendices

A.1 Database Technical Information
Appendix A.1 includes a table showing the CT Scan parameters and the conversion pa-
rameters that were contained within the DICOM files. Table A.1 shows the parameters
for the Training database and Testing databases.
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Table A.1: Training and Testing Databases - Tube Current Over Set Amount of Time, Tube VoltagePeak, Slope & Intercept
Dataset No. Tube Current Tube Voltage Peak Slope Intercept(mAs) (kVP)

Trai
nin

g

1 200 120 1 -12002 240 120 1 -10005 260 120 1 -10006 180 120 1 -12008 260 120 1 -100010 300 120 1 -100014 200 120 1 -100016 260 120 1 -100018 260 120 1 -100019 240 120 1 -100021 469 120 1 -102422 300 120 1 -100023 305 120 1 -102424 296 120 1 -102425 375 120 1 -102426 300 120 1 -100027 305 120 1 -102428 300 120 1 -100029 296 120 1 -102430 287 120 1 -1024

Tes
ting

3 220 120 1 -10004 220 120 1 -10007 240 120 1 -10009 260 120 1 -100011 240 120 1 -100012 220 120 1 -100013 240 120 1 -100015 240 120 1 -100017 260 120 1 -100020 260 120 1 -100031 296 120 1 -102432 313 120 1 -102433 305 120 1 -102434 305 120 1 -102435 313 120 1 -102436 305 120 1 -102437 391 120 1 -102438 296 120 1 -102439 227 100 1 040 305 120 1 -1024
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A.2 Additional Results
Appendix A.2 is split into two parts, the first part showing additional box plots related to
the metrics’ scores and the second part show additional results in table form. The figures
are split into the four quadrants representing the metrics used by the CHAOS challenge:
top left, DICE score; top right, RAVD score; bottom left, ASSD score; and bottom right,
MSSD score. The tables are organized using columns to represent each of the individual
metrics and giving information not only on the score but also on the actual metric values.
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Figure A.1: Metrics’ Replication results for the v16pUNet1.1C Model plotted in box plot format, where the median values for each plot as adashed, red line, the mean marked with ×, the mean score and standard deviation achieved by Conze et al. (2021) as a solid, black line andgrey shading respectively. The standard result, labelled v16pUNet1.1C, uses the parameters stated in Table 4.2. The BCE Loss variation usesthe same parameters as standard other than the loss function and scaling transformation result uses the same parameters as standard butincludes the scaling transformation when augmenting the database.

66



AppendixA.2

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

96.50

96.75

97.00

97.25

97.50

97.75

98.00

98.25

98.50
DICE SCORE

AAO

OAT

OAT & Shuffled

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

30

40

50

60

70

80

90

100

RAVD SCORE

AAO

OAT

OAT & Shuffled

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

92

93

94

95

96

ASSD SCORE

AAO

OAT

OAT & Shuffled

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

v1
6

p
U

N
et

1
.1

C

v1
6

p
U

N
et

1
.1

D

30

40

50

60

70

80

90

MSSD SCORE

AAO

OAT

OAT & Shuffled

Figure A.2: A comparison of v16pUNet1.1C and v16pUNet1.1D metrics’ results in box plot format, where the median values for each plotas a dashed, red line, the mean marked with×. The parameters common to both models are listed in Table 4.2. The legend splits the trainingmethod of the results by colour while the x-axis ticks show which result is associated to which model.
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Figure A.3: v16pUNet1.1D Variation Metrics’ Results plotted in box plot format, where the median values for each plot as a dashed, red lineand the mean marked with ×. The standard result, labelled v16pUNet1.1D, uses the parameters stated in Table 4.2. The variations appliedto the architecture are detailed in Section 4.4.
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Table A.2: Replication Results - Full - results within this table are from the v16pUNet1.1CModel. The standard result, labelled v16pUNet1.1C,uses the parameters stated in Table 4.2. The BCE Loss variation uses the same parameters as standard other than the loss function and scalingtransformation result uses the same parameters as standard but includes the scaling transformation when augmenting the database. Theresults presented in this table include both the actual values for the metrics, the score and the standard deviation of each.
Variation Mean Score DICE Score RAVD (%) RAVD Score ASSD ASSD Score MSSD MSSD Score
Standard 85.49 ± 5.06 97.80 ± 0.32 1.04 ± 0.67 79.12 ± 13.50 0.79 ± 0.17 94.72 ± 1.14 17.79 ± 8.83 70.35 ± 14.72BCE Loss 83.87 ± 5.53 97.87 ± 0.37 1.36 ± 0.95 72.88 ± 19.07 0.76 ± 0.15 94.97 ± 1.00 18.14 ± 6.41 69.77 ± 10.69Scaling 84.92 ± 5.63 97.55 ± 0.35 1.21 ± 0.82 75.85 ± 16.30 0.88 ± 0.21 94.13 ± 1.38 16.70 ± 6.45 72.16 ± 10.75

Table A.3: Comparison Results - Full - results within this table are a direct comparison of the v16pUNet1.1C and the v16pUNet1.1D modelsunder various training methods. The parameters common to both models are listed in Table 4.2. The results are distinguished by the firstthree columns: the model, the type of training, and whether the validation set was shuffled during training. The results presented in this tableare a summary of the full results, which can be found in Table A.3. The results presented in this table include both the actual values for themetrics, the score and the standard deviation of each.
Architecture Training Type Shuffled Mean Score DICE Score RAVD (%) RAVD Score ASSD ASSD Score MSSD MSSD Score
v16pUNet1.1C AAO No 85.49 ± 5.06 97.80 ± 0.32 1.04 ± 0.67 79.12 ± 13.50 0.79 ± 0.17 94.72 ± 1.14 17.79 ± 8.83 70.35 ± 14.72v16pUNet1.1D AAO No 85.92 ± 6.07 97.78 ± 0.42 1.10 ± 0.88 78.01 ± 17.69 0.78 ± 0.16 94.77 ± 1.05 16.14 ± 6.43 73.09 ± 10.72v16pUNet1.1C OAT No 84.46 ± 4.35 97.67 ± 0.42 1.01 ± 0.90 79.90 ± 17.97 0.84 ± 0.16 94.39 ± 1.08 20.46 ± 8.05 65.90 ± 13.42v16pUNet1.1D OAT No 85.84 ± 4.43 97.85 ± 0.38 0.98 ± 0.81 80.33 ± 16.29 0.78 ± 0.16 94.80 ± 1.05 17.77 ± 6.71 70.38 ± 11.18v16pUNet1.1C OAT Yes 84.12 ± 5.49 97.77 ± 0.40 1.32 ± 0.97 73.66 ± 19.41 0.80 ± 0.17 94.69 ± 1.15 17.78 ± 7.74 70.37 ± 12.90v16pUNet1.1D OAT Yes 83.99 ± 5.73 97.77 ± 0.39 1.32 ± 1.00 73.53 ± 20.06 0.80 ± 0.20 94.63 ± 1.32 17.99 ± 5.60 70.01 ± 9.33
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Table A.4: Experimentation Results - Full - results within this table are from the v16pUNet1.1D Model. The standard result uses parametersdetailed in Table 4.2 and is a different run from the result presented in Table A.3. The variations applied to the architecture are detailed inSection 4.4. The results presented in this table include both the actual values for the metrics, the score and the standard deviation of each.
Variation Mean Score DICE Score RAVD (%) RAVD Score ASSD ASSD Score MSSD MSSD Score
Standard 85.20 ± 5.67 97.77 ± 0.36 1.08 ± 0.84 78.31 ± 16.86 0.81 ± 0.20 94.58 ± 1.30 17.92 ± 8.71 70.14 ± 14.52Scaling 83.44 ± 5.66 97.63 ± 0.36 1.51 ± 1.06 69.80 ± 21.15 0.83 ± 0.16 94.44 ± 1.03 16.85 ± 6.09 71.92 ± 10.14Normalization Adjustment 85.64 ± 4.87 97.78 ± 0.35 1.00 ± 0.73 80.03 ± 14.58 0.81 ± 0.18 94.59 ± 1.20 17.91 ± 8.24 70.16 ± 13.74
[v, x, v] Context 84.87 ± 5.82 97.70 ± 0.40 1.14 ± 1.05 77.26 ± 21.03 0.84 ± 0.17 94.37 ± 1.11 17.91 ± 6.76 70.15 ± 11.26v16pUNet1S1D 84.71 ± 5.24 97.74 ± 0.38 1.11 ± 0.86 77.86 ± 17.22 0.87 ± 0.24 94.20 ± 1.59 18.58 ± 6.43 69.03 ± 10.72v16pUNet1T1D 85.59 ± 4.81 97.77 ± 0.40 0.99 ± 0.89 80.15 ± 17.77 0.81 ± 0.18 94.58 ± 1.22 18.09 ± 6.35 69.86 ± 10.58Shallow Connections - 64 84.91 ± 5.22 97.77 ± 0.36 1.04 ± 0.84 79.18 ± 16.81 0.82 ± 0.19 94.53 ± 1.25 19.11 ± 8.59 68.15 ± 14.32Shallow Connections - 128 84.63 ± 7.37 97.71 ± 0.44 1.07 ± 0.78 78.64 ± 15.57 0.89 ± 0.40 94.05 ± 2.65 19.14 ± 9.23 68.11 ± 15.38Deep Connections 84.86 ± 4.85 97.83 ± 0.36 1.28 ± 0.93 74.32 ± 18.68 0.77 ± 0.14 94.90 ± 0.91 16.56 ± 5.19 72.39 ± 8.66LR1 = LR2 ×1.25 80.83 ± 6.63 97.47 ± 0.44 1.95 ± 1.18 61.09 ± 23.62 0.93 ± 0.19 93.80 ± 1.27 17.43 ± 4.91 70.95 ± 8.18LR1 = LR2 ×0.75 80.61 ± 6.89 97.50 ± 0.43 1.80 ± 1.20 64.02 ± 23.96 0.95 ± 0.25 93.70 ± 1.68 19.66 ± 5.92 67.23 ± 9.86Size Adjustment LR1 = LR2 × 1.25 80.80 ± 6.68 97.61 ± 0.39 1.83 ± 1.24 63.48 ± 24.89 0.88 ± 0.20 94.12 ± 1.36 19.21 ± 7.14 67.98 ± 11.90Size Adjustment LR1 = LR2 81.34 ± 7.09 97.56 ± 0.44 1.73 ± 1.21 65.43 ± 24.27 0.89 ± 0.17 94.08 ± 1.15 19.03 ± 7.10 68.28 ± 11.84Size Adjustment LR1 = LR2 × 0.75 82.12 ± 6.56 97.60 ± 0.43 1.64 ± 1.15 67.24 ± 23.04 0.86 ± 0.18 94.24 ± 1.18 18.35 ± 6.01 69.41 ± 10.02
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