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Abstract

In chemistry and physics, distortivity of π-systems (stabilisation of bond-alternated
structures) is an important factor in the calculation of geometric, energetic, and electronic
properties of molecules via graph theoretical methods. We use the spectra of paths and
cycles with alternating vertex and edge weights to obtain the eigenvalues and eigenvectors
for a class of linear and cyclic ladders with alternating rung and backbone edge weights.
We derive characteristic polynomials and other structural polynomials formed from the
cofactors of the characteristic matrix for these graphs. We also obtain spectra and struc-
tural polynomials for ladders with flipped weights and/or Möbius topology. In all cases,
the structural polynomials for the composite graphs are expressed in terms of products of
polynomials for graphs of half order. This form of the expressions allows global deduc-
tions about the transmission spectra of molecular devices in the graph-theoretical theory of
ballistic molecular conduction.
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1 Introduction
Our aim is to use weighting of graphs as a tool for the study of ballistic molecular conduc-
tion in undistorted and distorted molecular and extended systems. In this article we derive
the spectra and characteristic polynomials of a series of graphs that possess three common
features. The first is that they are bipartite. The second is that they possess an involution
that allows the graph to be expressed as a product of simpler graphs with known spectra.
The third feature is termed ‘distortivity’ by physical scientists. This refers to the way that
the spectrum changes with edge weights, and is of prime importance in theories of elec-
tronic structure, where molecular structures are modelled by graphs. It is well known to
physicists and chemists that extended overlapping π-electron systems may achieve greater
stability by distorting in such a way that bond lengths alternate, and the sharing of electron
density across the π-system is reduced. This is known in the physics literature as Peierls
distortion [13], and in the chemical literature as Jahn-Teller distortion [12]. It typically af-
fects π-electron systems in such a way as to reduce their conductivity. In order to assess the
importance of distortivity for the specific phenomenon of ballistic molecular conduction,
we need explicit characteristic polynomials and spectra for families of weighted graphs
representing molecules of chemical interest.

1.1 Graph theoretical background

The graphs in which we are interested are linear ladders, their cyclic analogues the tread-
mills, and graphs derivable from them by using (signed or zero) weights, such as linear
polyacenes and (Möbius) cyclacenes, shown in Fig. 1. In graph theory terms, we can mimic

(a)
(b)

(c)
(d)

Figure 1: Families of graphs treated in this paper: (a) ladders; (b) treadmills; (c) linear
polyacenes; (d) cyclic polyacenes.

geometric distortion of a molecular framework by studying weighted graphs in which edge
weights alternate [11]. Adjacency matrices of such graphs have been studied by Gover
[9] in the form of 2-Toeplitz matrices. Gover gave an explicit solution for the spectra of
2-Toeplitz matrices of odd dimension, and an implicit solution for even dimensions. These
solutions form the basis for our treatment of ladders and treadmills. Ladders (treadmills)
comprise two backbone chains (rings), that are linked by ‘rungs’. We shall alternate the
weights on the rungs, and separately on the edges comprising the two backbones, in such
a way that an involution symmetry is preserved. This symmetry element swaps vertices in
upper and lower backbone chains of the graphs and is crucial for the solution of the secu-
lar problem for distorted and undistorted systems. The use of symmetry splits the secular
matrices of the graphs into two non-interacting blocks, each of which represents a single
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path (or cycle) with alternating weighted vertices and edges. It is these backbone graphs
that possess the analytical solutions derived previously by Gover [9] and Shin [18].

An active avenue of research is exploration of the influence of molecular topology
in conduction behaviour. We therefore include certain graphs with edge weights having
flipped signs, and/or with a pair of crossed backbone edges. These flipped and crossed
graphs are sometimes called Möbius graphs [6]. The cases that we consider here have
closed-form spectra and structural polynomials that can be derived using the methodology
used for unflipped, uncrossed graphs.

1.2 Physical motivation

The physical context for the present mathematical exploration is that electronic structure
of unsaturated carbon networks is qualitatively modelled using spectral graph theory. In
particular, the basic reason for our interest in the graphs described in this paper is our
research into molecular conductivity in small molecules [14, 15] using the source-sink-
potential (SSP) method of Ernzerhof et al. [3, 4, 5, 20]. This approach uses graph theory as
a vehicle for showing important qualitative features in electron transmission for individual
molecules. Central to the SSP method is the idea of a molecular device based on a molecu-
lar graph, in which the effects of infinite attached wires are represented by two special extra
vertices, which behave respectively as a source and sink (of electrons). We have shown [14]
that electronic transmission in this model can be expressed using a basic set of polynomials
related to the molecular graph, G. These are the characteristic polynomial,

s(E) = det(E1−A), (1.1)

and the cofactors of the characteristic matrix,

pq(E) = (−1)p+q det(E1−A)[p,q] = (E1−A)−1
pq s(E), (1.2)

where E is the energy of the transmitted electron, 1 is the n × n unit matrix and A is the
n × n adjacency matrix of the graph G of order n. The indices in square-brackets refer to
the sets of rows and columns deleted from the determinant of the characteristic matrix.

The eigenvalue problem,
Ack = ckεk, (1.3)

allows us to define the n eigenvalues {εk}, and the corresponding eigenvectors ck. Spectral
decomposition allows us to write

s(E) =

n∏
k=1

(E − εk), (1.4)

and spectral resolution of the inverse gives a general expression for all pq(E) polynomials
in terms of eigenvectors and eigenvalues of A:

pq(E) =

n∑
k=1

cpkcqk

E − εk
, (1.5)

where cpk is the pth entry in the kth eigenvector, ck. In what follows we will find it
useful to switch between the two approaches, viz. calculating structural polynomials from
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determinants of characteristic matrices, or from explicit solutions of the eigenvalue problem
Eq. (1.3).

For a specific device in which vertices p and q of the molecular graph are attached to
infinite conducting wires, one needs just four polynomials, namely, s, pp, qq, and

vpq,pq(E) = det(E1−A)[pq,pq] (1.6)

to deduce an expression for the transmission, T (E), of an incoming stream of electrons
[14]. These are all characteristic polynomials derived from vertex-deleted graphs:

s ≡ ϕ(G, E),

t ≡ pp = ϕ(G − p, E),

u ≡ qq = ϕ(G − q, E),

v ≡ vpq,pq(E) = ϕ(G − p− q, E), (1.7)

where ϕ(G, E) is the characteristic polynomial of graph G, and the letters s, t, u, and v
refer to literature notation [14]. The formula for vpq,pq can be deduced using Jacobi’s
relation [19]:

svpq,pq = ppqq − 2pq. (1.8)

For convenience, we refer to s(E), the pq(E) and v(E) as structural polynomials.
We have shown [15] that molecular conduction can be thought of in two different

ways, i.e. either as occurring through molecular bonds (graph edges), or through individual
molecular orbitals (eigenvectors of the graph adjacency matrix). We find that there are 11
basic categories of conduction [7, 15, 17] for molecules and that these are determined by
the eigenvector coefficients. Conduction behaviour at eigenvalues of the adjacency ma-
trix is particularly important [15]. Hence arises our interest in closed-form expressions for
spectra and structural polynomials. Spectral representations of the structural polynomials
are also informative, in that they allow elaboration of the SSP model to treat the physically
important effects of Pauli exclusion, an effect that prevents current passing through filled
orbitals. This extension of the theory is worked out in a recent paper [16].

We can summarise the key features of our approach and the main results as follows.
Explicit expressions for structural polynomials, spectra and eigenvectors of weighted paths
and cycles are obtained. These are useful in themselves for the discussion of distortivity
and conduction. We then exploit the graph-product structure of the families of ladders,
treadmills and Möbius forms to build analytical expressions for the structural polynomi-
als and spectral properties of these graphs in terms of those of the simpler graphs. This
gives compact formulas that are ultimately related to Chebyshev and similar orthogonal
polynomials. It is this ‘factorised’ form of the final expressions that gives a powerful tool
for interpretation of spectra and conduction properties of ladders, treadmills. This inter-
pretation will be used to analyse the effects of flips and twists on conduction in physically
realisable systems.

1.3 Plan

The plan of the paper is as follows. First we derive eigenvectors and eigenvalues for
weighted alternating paths (Section 2), and then derive expressions for the important struc-
tural polynomials in Section 3. These results are used to derive spectra for ladders and
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their structural polynomials in Sections 4 and 5. The spectra for alternating cycles are de-
rived in Section 6, and their structural polynomials in Section 7. Derivations of spectra and
structural polynomials of treadmills then follow in Sections 8 and 9. Section 10 introduces
important chemical graphs that can be derived from ladders and treadmills. We end with a
brief conclusion.

Our explicit treatment of cases necessarily leads to a large number of equations, but
the central results are Eqs. (5.6) and (9.3), which show the generic relationships between
the structural polynomials of ladders and chains, and treadmills and cycles, respectively.
The structural polynomials for weighted chains are given in Eqs. (3.12) and (3.13), and
weighted cycles in Eqs. (7.13) and (7.14) and for flipped cycles in Eqs. (7.15) and (7.16).
The blocks of equations giving the results are: Eqs. (5.7) to (5.10) for ladders; Eqs. (9.4)
and (9.5) for treadmills; Eqs. (9.9) and (9.10) for flipped treadmills; Eqs. (9.14) and (9.15)
for Möbius treadmills; Eqs. (9.19) and (9.20) for flipped Möbius treadmills.

2 The spectra of alternating weighted paths PM(a, b | c, d)

We consider paths, PM (a, b | c, d), with alternating vertex weights a, b, and edge weights
c, d. Eigenvalues and eigenvectors for such weighted paths have been deduced by Gover
[9] and Shin [18]. Gover used recursion to show that the spectrum of the odd-vertex chain,
P2N+1, could be expressed in terms of two sets of polynomials. One is the Chebyshev
polynomials of the second kind, UN . The other set of polynomials satisfy the Chebyshev
recursion relation, but with different initial values. The eigenvectors for the odd paths are
evaluated at the zeroes of the polynomial UN . The even paths have an analogous form for
eigenvectors and eigenvalues, but one of the quantities cannot be evaluated analytically.
We discuss odd and even paths separately.

2.1 The odd path, P2N+1(a, b | c, d)

A path, P2N+1(a, b | c, d), with 2N+1 vertices is shown in Fig. 2. It is convenient to write

a b a a b a

c d c

b

d c d1 2 3 2N-1 2N+1... ...

b

2N

Figure 2: A chain, P2N+1(a, b | c, d), with 2N + 1 vertices and alternating vertex weights
(a, b), and edge weights (c, d).

the adjacency matrix, AP, for this bipartite graph in the form

AP =

(
a1N+1 BP(
BP
)T

b1N

)
, (2.1)

where 1h symbolises a unit matrix of dimension h, and superscript T indicates a transpose.
We place the (N + 1) odd-numbered vertices shown in Fig. 2 in the first block, and the N
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even-numbered vertices in the second. The (N + 1)×N -dimensional matrix BP is then

BP =



c 0 · · · 0 0

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . d c

0 0 · · · 0 d


. (2.2)

In order to find the eigenvalues of the matrix AP we can use the fact that the blocks on
the diagonal are invariant to any unitary transformation. Therefore, a singular value de-
composition of the off diagonal block will render the whole matrix in a form in which each
block is diagonal or pseudo-diagonal. This technique has been used [15], for example, to
provide a compact derivation of the Coulson-Rushbrooke theorem for bipartite graphs [1].
The singular value decomposition [8, Sections 2.5.3 and 2.5.6] of BP can be written as

BPXP = YPσP, (2.3)

where XP, and YP are N - and (N + 1)-dimensional orthogonal matrices, respectively.
The (N + 1)×N -dimensional rectangular matrix, σP, is “diagonal”, i.e.

σP
1 0 · · · 0

0 σP
2

. . .
...

...
. . . . . . 0

0
. . . σP

N

0 0 · · · 0


, (2.4)

and the singular values σP
k ≥ 0, have labels k. The theory of singular value decomposition

tells us further that(
BP
)T

BPXP
k = XP

k (σP
k )2 for k = 1, . . . , N,

BP
(
BP
)T

YP
k = YP

k (σP
k )2 for k = 1, . . . , N + 1, (2.5)

with σP
k > 0 for k = 1, . . . , N , and σP

N+1 = 0. We note that the N × N -dimensional
positive definite tridiagonal matrix

(
BP
)T

BP =



c2 + d2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd c2 + d2


(2.6)
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represents the adjacency matrix of a path of length N with equal vertex weights (c2 + d2),
and equal edge weights cd, so the eigenvalues are

(σP
k )2 = c2 + d2 + 2cd cos θP

k for k = 1, 2, . . . , N, (2.7)

where the angle

θP
k =

πk

N + 1
(2.8)

also describes the orthonormal eigenvectors

XP
pk = NP

k sin pθP
k , (2.9)

and the normalisation factor is

NP
k =

√
2

N + 1
. (2.10)

The (N + 1)× (N + 1)-dimensional semi-definite tridiagonal matrix, on the other hand,

BP
(
BP
)T

=



c2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd d2


, (2.11)

has no such simple expressions for its eigenvectors, but they can be derived directly from
the singular value decomposition. We can use Eq. (2.3) to deduce that

Y P
pk =

1

σP
k

(
cXP

pk + dXP
p−1,k

)
for k,p = 1, 2, . . . , N. (2.12)

We note from Eq. (2.9) that p = 0 implies XP
0k = 0, and p = N + 1, implies XP

N+1,k = 0.
The nullspace vector is

Y P
p,N+1 = NP

N+1 (−1)
p−1

cp−1dN−p+1, (2.13)

where the normalisation factor is

NP
N+1 =

√
d2 − c2

d2N+2 − c2N+2
. (2.14)

We define the (2N + 1)-dimensional orthogonal matrix

WP =

(
YP 0
0 XP

)
, (2.15)

which gives

(
WP

)T
APWP =

(
a1N+1

(
YP
)T

BPXP(
XP
)T (

BP
)T

YP b1N

)
. (2.16)
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The off-diagonal blocks in Eq. (2.16) simplify because(
YP
)T

BPXP = σP, (2.17)

where σP is given in Eq. (2.4). It is evident that each block of
(
WP

)T
APWP is diagonal,

so that it comprises N two-dimensional interacting blocks of the form(
a σP

k

σP
k b

)
(2.18)

and a single one-dimensional block with eigenvalue a. The two-dimensional blocks give
2N eigenvalues

EP
k± =

1

2
(a+ b)± 1

2
DP

k for k = 1, 2, . . . , N (2.19)

with discriminant

DP
k =

√
(a− b)2 + 4(σP

k )2 =
√

(a− b)2 + 4(c2 + d2 + 2cd cos θP
k ). (2.20)

The eigenvectors arising from these two-dimensional blocks can be written as

NP
k±

(
σP

k

EP
k± − a

)
, (2.21)

where the normalisation constants are

NP
k+ =

√
1

DP
k

(
EP

k+ − a
) and NP

k− =

√
1

DP
k

(
a− EP

k−
) . (2.22)

We can write the 2N + 1 eigenvectors of AP in the form cP
k± for k = 1, 2, . . . , N , and

cP
N+1, the latter arising from the extra null space eigenvector in the singular value de-

composition. Using expression (2.12) for YP, we obtain expressions for the eigenvector
coefficients

cP2p,k± = NP
k±
(
EP

k± − a
)
XP

pk,

cP2p−1,k± = NP
k±
(
cXP

pk + dXP
p−1,k

)
. (2.23)

There is, in addition, a single eigenvalue arising from the one-dimensional block, and cor-
responding to the null-space eigenvector in the YP subspace, that is of the form

EP
N+1 = a. (2.24)

The corresponding eigenvector has coefficients

cP2p,N+1 = 0,

cP2p−1,N+1 = NP
N+1 (−1)

p−1
cp−1dN−p+1. (2.25)
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2.2 The even path, P2N(a, b | c, d)

The adjacency matrix for the bipartite graph, P2N (a, b | c, d), can be written as

AP =

(
a1N BP(
BP
)T

b1N

)
, (2.26)

using the same numbering scheme for vertices as that shown in Fig. 2. The adjacency
matrix is identical to Eq. (2.1), but with one row missing, so that BP is a square N × N
matrix.

We again use singular decomposition [8, Sections 2.5.3 and 2.5.6] of BP as shown in
Eq. (2.3), where XP and YP are both N -dimensional orthogonal matrices. We note that
the N ×N -dimensional positive definite tridiagonal matrix has the form

(
BP
)T

BP =



c2 + d2 cd 0 · · · 0 0

cd c2 + d2 cd
. . . 0

0 cd c2 + d2 . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . c2 + d2 cd

0 0 · · · 0 cd c2


. (2.27)

We introduce an Ansatz for the eigenvectors of the matrix in Eq. (2.27) as

XP
pk = NP

k sin pθP
k , (2.28)

where NP
k is a normalization factor, and θP

k is an angle yet to be determined. Examining
the first row of

(
BP
)T

BPXP, leaving out the normalisation factor, we find

(c2 + d2) sin θP
k + cd sin 2θP

k = σP
k

2
sin θP

k , (2.29)

and expanding sin 2θP
k , we obtain an expression for the eigenvalue as

(σP
k )2 = c2 + d2 + 2cd cos θP

k (2.30)

which should be compared with Eq. (2.7). Likewise, for row p,

cd sin (p− 1)θP
k + (c2 + d2) sin pθP

k + cd sin (p + 1)θP
k = σP

k

2
sin pθP

k . (2.31)

Noting that
sin (p− 1)θP

k + sin (p + 1)θP
k = 2 sin pθP

k cos θP
k , (2.32)

it is easy to see that the eigenvalue equations are satisfied for rows p = 2 up to row N − 1
using the expression Eq. (2.30) for the eigenvalue. However, the N th equation is

cd sin (N − 1)θP
k + c2 sinNθP

k = σP2
k sinNθP

k . (2.33)

In order to ensure that this equation be satisfied, we would need to add a factor

d2 sinNθP
k + cd sin (N + 1)θP

k (2.34)
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to the left-hand side. Dividing by sin θP
k , it follows that we require a condition on θP

k , such
that

cUN (cos θP
k ) + dUN−1(cos θP

k ) = 0 for − π ≤ θP
k ≤ π. (2.35)

Eq. (2.35) is a polynomial of order N in the variable cos θP
k , and has N solutions that fully

determine the spectrum.
The norm of the eigenvectors is obtained from

N∑
p=1

(
XP

pk

)2
=
(
NP

k

)2 N∑
p=1

sin2 pθP
k

=
(
NP
Xk

)2 1

4

{
2N + 1− sin (2N + 1) θP

k

sin θP
k

}
= 1, (2.36)

where we use a well-known trigonometrical summation [10]. This simplifies to

NP
k =

2√
2N + 1− U2N (cos θP

k )
, (2.37)

which has been expressed in terms of the Chebyshev polynomial of the second kind,

U2N (cos θ) =
sin(2N + 1)θ

sin θ
.

The N ×N -dimensional semi-definite tridiagonal matrix BP
(
BP
)T

, has eigenvectors YP

that can be derived directly from the singular value decomposition as

Y P
pk =

NP
k

σp
k

[
c sin pθP

k + d sin (p− 1) θP
k

]
. (2.38)

The expression for the eigenvalues,

EP
k± =

1

2
(a+ b)± 1

2
DP

k for k = 1, 2, . . . , N, (2.39)

where
DP

k =
√

(a− b)2 + 4(c2 + d2 + 2cd cos θP
k ), (2.40)

is identical to that for the odd path (Eq. (2.19)), apart from the difference in angle θP
k . The

eigenvector entries are

cP2p,k± = NP
k±
(
EP

k± − a
)
XP

pk,

cP2p−1,k± = NP
k±
(
cXP

pk + dXP
p−1,k

)
. (2.41)

We note that the expressions for eigenvalues and eigenvectors of odd and even paths are
substantially the same for the pairs EP

k±. The odd path has an extra eigenvector arising

from the null space of BP
(
BP
)T

. The expression for the angle θP
k , however, is different in

the two cases (c.f. Eqs. (2.8) and (2.35)), as are the normalisation factors (c.f. Eqs. (2.10)
and (2.37)). The angle θP

k is the sole quantity that cannot be determined in closed form for
the even chain. For some values of the edge weights c, d, the angle θP

k may be equal to±π.
Such cases must be treated separately as the expressions for the norm (2.37) and for the
eigenvector entries in Eq. (2.41) vanish, but this is not difficult.



P. W. Fowler et al.: Spectra and structural polynomials of graphs of relevance to the theory . . . 389

3 Structural polynomials of alternating paths
The characteristic polynomials for alternating paths can be written

s (P2N+1(a, b | c, d), E) = (E − a)

N∏
k=1

(E − EP
k+)(E − EP

k−),

s (P2N (a, b | c, d), E) =

N∏
k=1

(E − EP
k+)(E − EP

k−). (3.1)

We can combine these factors in pairs as(
E − EP

k+

) (
E − EP

k−
)

= (E − a)(E − b)− c2 − d2 − 2cd cos θP
k , (3.2)

and using the product expression for the Chebyshev function of the second kind,

UN (z) =

N∏
k=1

(
2z − 2 cos

kπ

N + 1

)
, (3.3)

it can be shown that the ‘half-chain’ expression for the odd path is

s (P2N+1(a, b | c, d), E) = (E − a)(cd)NUN (x) ,

(3.4)

with

x =
(E − a)(E − b)−

(
c2 + d2

)
2cd

. (3.5)

The expression in Eq. (3.3) cannot be used for even paths because of the more complicated
formula for the angle, θP

k . It has been shown by Gover [9], however, that the even chain
has a related ‘half-chain’ form

s (P2N (a, b | c, d), E) = d(cd)N−1ŨN (x; c, d) , (3.6)

where
ŨN (x; c, d) = cUN (x) + dUN−1(x). (3.7)

We can derive an expression in terms of Chebyshev polynomials for the full chain by using
the standard formula

U2N+1(z) = 2zUN (2z2 − 1) (3.8)

which, when applied to Eqs. (3.4) and (3.6) gives

s (P2N+1(a, b | c, d), E) =
(cd)N (E − a)

2y
U2N+1(y),

s (P2N (a, b | c, d), E) =
d(cd)N−1

2y
(cU2N+1(y) + dU2N−1(y)) , (3.9)

where, comparing Eqs. (3.4), (3.6) and (3.8) gives

y =

√
(E − a)(E − b)− (c− d)2

4cd
. (3.10)
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In the case of a non-alternating linear chain, with a = b and c = d, Eqs. (3.9) simplify to

s (P2N+1(a, a | c, c), E) = c2N+1U2N+1

(
E − a

2c

)
,

s (P2N (a, a | c, c), E) =
c2N+1

E − a

(
U2N+1

(
E − a

2c

)
+ U2N−1

(
E − a

2c

))
= c2NU2N

(
E − a

2c

)
, (3.11)

where we have used the Chebyshev recursion relations in the last step.
Closed-form expressions for the other structural polynomials can be derived using the

explicit inverse for 2-Toeplitz matrices derived by da Fonseca and Petronilho [2], and using
Eqs. (1.1) and (1.2). Making the necessary translation of notation, we find that for paths of
order 2N + 1 and assuming that p ≤ q,

2p,2q (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)2Up−1(x)UN−q(x),

2p−1,2q−1 (P2N+1(a, b | c, d), E) = (cd)N−1Ũp−1(x; c, d)ŨN+1−q(x; d, c),

2p,2q+1 (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)Up−1(x)ŨN−q(x; d, c),

2p−1,2q (P2N+1(a, b | c, d), E) = (cd)N−1(E − a)Ũp−1(x; c, d)UN−q(x). (3.12)

The expressions for 2N -vertex paths, again assuming that p ≤ q, are

2p,2q (P2N (a, b | c, d), E) = d(cd)N−2(E − a)Up−1(x)ŨN−q(x; c, d),

2p−1,2q−1 (P2N (a, b | c, d), E) = d(cd)N−2(E − b)Ũp−1(x; c, d)UN−q(x),

2p,2q+1 (P2N (a, b | c, d), E) = d(cd)N−2(E − a)(E − b)Up−1(x)UN−q−1(x),

2p−1,2q (P2N (a, b | c, d), E) = d(cd)N−2Ũp−1(x; c, d)ŨN−q(x; c, d). (3.13)

For cases where q < p, one needs to swap indices p and q in Eqs. (3.12) and (3.13).

4 Alternating ladders L2M(a, b | c, d)

a b a a b a

c d c

b

d c d1 2 3 ... ... M-1

b

c d c d c d1 2 3 ... ...

_ _ _

M-2 M

_____ ___

M-1M-2 M

Figure 3: A linear ladder, L2M (a, b | c, d), with 2M vertices and alternating rung (a, b)
and riser weights (c, d).

The 2M -vertex linear ladder, L2M (a, b | c, d), has two alternating M -vertex paths
(1, 2, . . . ,M) and (1, 2, . . . ,M) joined by rungs between like-numbered vertices, (p,p),
with alternating weights as displayed in Fig. 3. The quantities (a, b) are, in this case, rung
weights, and (c, d) are edge weights for the two riser chains.
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The ladder has an involution involving simultaneous exchange of all vertices attached to
the ends of the rungs. This involution can be exhibited by arranging the adjacency matrix
so that the vertices are first put into 2 × 2 blocks with vertices 1 to M of the first path
followed by vertices 1̄ to M̄ of the lower path. Next, odd vertices 1, 3, . . . are placed in a
block together, and then the even vertices, 2, 4, . . . . The same procedure is adopted for the
lower path. We now have a 4× 4 blocked adjacency matrix in the form:

0 BP a1 0(
BP
)T

0 0 b1
a1 0 0 BP

0 b1
(
BP
)T

0

 , (4.1)

where BP is the same matrix as in Eq. (2.2). This matrix can be block-diagonalised by an
orthogonal transformation of the form(

1√
2
1M

1√
2
1M

1√
2
1M − 1√

2
1M

)
(4.2)

where the blocks are over allM vertices of top and bottom paths. This transformation leads
to the adjacency matrix

a1 BP 0 0(
BP
)T

b1 0 0
0 0 −a1 BP

0 0
(
BP
)T −b1

 =

(
AP 0

0 AP

)
, (4.3)

in which AP is the adjacency matrix of PM (a, b | c, d) as in Eq. (2.1), and AP is the
adjacency matrix of PM (−a,−b | c, d), the path with vertex weights of opposite sign.
It follows that we can use the results of Section 2 to derive expressions for all relevant
quantities. The eigenvalues for L2M are thus

EL
µ = EP

µ ,

E
(L)
µ = EP

µ for µ = 1, 2, . . . ,M, (4.4)

where EP
µ is an index ranging over the eigenvalues of the path PM (a, b|c, d) as given by

Eq. (2.39), or (2.19) and (2.24), depending on whether M is even or odd. The eigenfunc-
tions can be written using the vector cL using Eq. (2.23) as

cLpµ =
cPpµ√

2
, cLp̄µ =

cPp̄µ√
2
,

cLpµ̄ =
cP̄pµ√

2
, cLp̄µ̄ = −

cP̄p̄µ√
2

(4.5)

where the index, µ = 1, 2, . . . ,M , labels the eigenvectors in each of the symmetric and
antisymmetric blocks, labelled µ and µ̄, respectively.
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5 Structural polynomials of alternating ladders

The characteristic polynomial, sLM (E), can be derived directly from the expressions in
Section 3 to give

sL4N = d2(cd)2N−2ŨN (x; c, d) ŨN (x̄; c, d) ,

sL4N+2 = (E2 − a2)(cd)2NUN (x)UN (x̄) , (5.1)

where we use x defined in Eq. (3.5) along with the antisymmetric analogue

x̄ =
(E + a)(E + b)− c2 − d2

2cd
. (5.2)

We can also use the results of Section 3 to write

sL4N =
d2

4yȳ
(cd)2N−2 (cU2N+1(y) + dU2N−1(y)) (cU2N+1(ȳ) + dU2N−1(ȳ)) ,

sL4N+2 =
(E2 − a2)

4yȳ
(cd)2NU2N+1(y)U2N+1(ȳ), (5.3)

in which we use

ȳ =

√
(E + a)(E + b)− (c− d)2

4cd
, (5.4)

along with the definition of y in Eq. (3.10). The characteristic polynomials for the ladder,
therefore, are written in Eqs. (5.1) and (5.3) as products of characteristic polynomials for
the part systems PM (a, b | c, d) and PM (−a,−b | c, d).

We can easily deduce the forms of the pq structural polynomials, since, using the
spectral expansion of the structural polynomials in Eq. (1.5),

LM
pq = (E1−AL)−1

pq s
L(E) =

1

2

M∑
µ=1

{
cPpµc

P
qµ

E − EP
µ

+
cPpµc

P
qµ

E − EP
µ

}
sL(E). (5.5)

It follows immediately that,

LM
pq =

1

2

{
Ppq(E)sP̄(E) + sP(E)P̄pq(E)

}
, (5.6)

which also exhibits a simple structure in terms of PM (a, b | c, d) and PM (−a,−b | c, d).

The structural polynomials for L4N+2(a, b | c, d), expressed in terms of the half-ladder,
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where both vertices are on the same backbone path, and assuming p ≤ q, are


L4N+2

2p,2q =
E2 − a2

2
(cd)2N−1

{
(E − a)Up−1(x)UN−q(x)UN (x̄)

+(E + a)UN (x)Up−1(x̄)UN−q(x̄)
}
,


L4N+2

2p−1,2q−1 =
1

2
(cd)2N−1

{
(E + a)Ũp−1(x; c, d)ŨN+1−q(x; d, c)UN (x̄)

+ (E − a)UN (x)Ũp−1(x̄; c, d)ŨN+1−q(x̄; d, c)
}
,


L4N+2

2p,2q+1 =
E2 − a2

2
(cd)2N−1

{
Up−1(x)ŨN−q(x; d, c)UN (x̄)

+ UN (x)Up−1(x̄)ŨN−q(x̄; d, c)
}
,


L4N+2

2p−1,2q =
E2 − a2

2
(cd)2N−1

{
Ũp−1(x; c, d)UN−q(x)UN (x̄)

+ UN (x)Ũp−1(x̄; c, d)UN−q(x̄)
}
. (5.7)

If p > q, then the indices p and q are swapped on the right-hand side of Eq. (5.7). For
vertices on different backbone chains, and assuming again p ≤ q,


L4N+2

2p,2q =
E2 − a2

2
(cd)2N−1

{
(E − a)Up−1(x)Un−q(x)UN (x̄)

−(E + a)UN (x)Up−1(x̄)UN−q(x̄)
}
,


L4N+2

2p−1,2q−1 =
1

2
(cd)2N−1

{
(E + a)Ũp−1(x; c, d)ŨN+1−q(x; d, c)UN (x̄)

− (E − a)UN (x)Ũp−1(x̄; c, d)ŨN+1−q(x̄; d, c)
}
,


L4N+2

2p,2q+1 =
E2 − a2

2
(cd)2N−1

{
Up−1(x)ŨN−q(x; d, c)UN (x̄)

− UN (x)Up−1(x̄)ŨN−q(x̄; d, c)
}
,


L4N+2

2p−1,2q =
E2 − a2

2
(cd)2N−1

{
Ũp−1(x; c, d)UN−q(x)UN (x̄)

− UN (x)Ũp−1(x̄; c, d)UN−q(x̄)
}
. (5.8)

If p > q, then the indices p and q are swapped on the right-hand side of Eq. (5.8). Com-
paring Eqs. (5.7) and (5.8), we observe a sign change in the expressions that arises from
the sign patterns of the antisymmetric functions in Eq. (4.5).

The structural polynomials, expressed in terms of the half-ladder for L4N (a, b | c, d),
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where both vertices are on the same backbone path and p ≤ q, are

L4N
2p,2q =

1

2
d2(cd)2N−3

{
(E − a)Up−1(x)ŨN−q(x; c, d)ŨN (x̄; c, d)

+ (E + a)ŨN (x; c, d)Up−1(x̄)ŨN−q(x̄; c, d)
}
,

L4N
2p−1,2q−1 =

1

2
d2(cd)2N−3

{
(E − b)Ũp−1(x; c, d)UN−q(x)ŨN (x̄; c, d)

+ (E + b)ŨN (x; c, d)Ũp−1(x̄; c, d)UN−q(x̄)
}
,

L4N
2p,2q+1 =

1

2
d2(cd)2N−3

{
(E − a)(E − b)Up−1(x)UN−q−1(x)ŨN (x̄; c, d)

+(E + a)(E + b)ŨN (x; c, d)Up−1(x̄)UN−q−1(x̄)
}
,

L4N
2ps−1,2q =

1

2
d2(cd)2N−3

{
Ũp−1(x; c, d)ŨN−q(x; c, d)ŨN (x̄; c, d)

+ ŨN (x; c, d)Ũp−1(x̄; c, d)ŨN−q(x̄; c, d)
}
. (5.9)

If p > q, p and q are swapped on the RHS of Eq. (5.9). For vertices on different backbone
paths and p ≤ q,

L4N
2p,2q =

1

2
d2(cd)2N−3

{
(E − a)Up−1(x)ŨN−q(x; c, d)ŨN (x̄; c, d)

− (E + a)ŨN (x; c, d)Up−1(x̄)ŨN−q(x̄; c, d)
}
,

L4N
2p−1,2q−1 =

1

2
d2(cd)2N−3

{
(E − b)Ũp−1(x; c, d)UN−q(x)ŨN (x̄; c, d)

− (E + b)ŨN (x; c, d)Ũp−1(x̄; c, d)UN−q(x̄)
}
,

L4N
2p,2q+1 =

1

2
d2(cd)2N−3

{
(E − a)(E − b)Up−1(x)UN−q−1(x)ŨN (x̄; c, d)

−(E + a)(E + b)ŨN (x; c, d)Up−1(x̄)UN−q−1(x̄)
}
,

L4N
2ps−1,2q =

1

2
d2(cd)2N−3

{
Ũp−1(x; c, d)ŨN−q(x; c, d)ŨN (x̄; c, d)

− ŨN (x; c, d)Ũp−1(x̄; c, d)ŨN−q(x̄; c, d)
}
. (5.10)

which exhibit the same sign change as in Eq. (5.8) for L4N+2 ladder. If p > q, then p and
q are swapped on the RHS of Eq. (5.10).

6 Alternating cycles
We restrict our attention to even cycles with alternating weights. We consider separately
the standard cycle, C2N (a, b | c, d), and the flipped cycle, Cf2N (a, b | c, d).

6.1 Alternating cycles, C2N(a, b | c, d)

The 2N -vertex cycle, C2N (a, b | c, d), has alternating weights as displayed in Fig. 4. The
quantities (a, b) are in this case vertex weights, and (c, d) are edge weights. It is convenient



P. W. Fowler et al.: Spectra and structural polynomials of graphs of relevance to the theory . . . 395

a

b

a

ab bc
d c

d
c

d

1
2

3

2N-1 2N
2N-2

Figure 4: A ring, C2N (a, b | c, d), with 2N vertices and alternating vertex weights (a, b)
and edge weights (c, d).

to write the adjacency matrix for this bipartite graph as

AC =

(
a1N BC(
BC
)T

b1N

)
, (6.1)

where we have placed the N odd-numbered vertices in the first block, and the N even-
numbered vertices in the second. The N ×N matrix BC is

BC =



c 0 · · · 0 d

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 d c


. (6.2)

BC is the adjacency matrix of a directed, weighted N -cycle. It is easy to show that

BCXC = XCΩC, (6.3)

where
ΩC

kk′ = δkk′(c+ d(ωC)
−k

), (6.4)

with

ωC = exp

(
2πı

N

)
. (6.5)

The kth eigenvector has entries

XC
pk =

1√
N

exp

(
2πıkp

N

)
for p, k = 1, 2, . . . , N. (6.6)

We use Eq. (6.6) to define the 2N -dimensional unitary matrix

W =

(
XC 0
0 XC

)
(6.7)
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so that

W†ACW =

(
a1N XC†BCXC

XC† (BC
)T

XC b1N

)
, (6.8)

where the † sign denotes the Hermitian conjugate. This transformation achieves a block
diagonalization comprising N two-dimensional blocks of the form(

a c+ d(ωC)−k

c+ d(ωC)k b

)
, (6.9)

each with eigenvalues

EC
k± =

1

2
(a+ b)± 1

2
DC

k for k = 1, . . . , N, (6.10)

where the discriminant is

DC
k =

√
(a− b)2 + 4

(
c2 + d2 + 2cd cos

(
2πk

N

))
. (6.11)

The eigenvectors can be written as entries in the vector cC:

cC2p−1,k± = NC
k±X

C
pk

(
EC

k± − b
)
,

cC2p,k± = NC
k±(cXC

pk + dXC
p+1,k). (6.12)

The normalisation constants are

NC
k+ =

√
1

DC
k

(
EC

k+ − b
) and NC

k− =

√
1

DC
k

(
b− EC

k−
) . (6.13)

6.2 Flipped alternating cycles, Cf
2N(a, b | c, d)

The 2N -vertex cycle,Cf2N (a, b | c, d), has alternating weights as displayed in Fig. 4, except
that a single weight has a changed sign; without loss of generality, we shall flip the (1, 2N)
edge. It is convenient to write the adjacency matrix as

ACf

=

 a1N BCf(
BCf

)T

b1N

 , (6.14)

in the same manner as in Section 6. The N -dimensional matrix BCf

is hence defined by

BCf

=



c 0 · · · 0 −d

d c
. . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0
. . . d c

0 0 · · · 0 d


. (6.15)
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Proceeding as before,
BCf

XCf

= XCf

ΩCf

, (6.16)

where
ΩCf

kk′ = δkk′(c+ d(ωCf

)−(2k−1)), (6.17)

with
ωCf

= exp
( ıπ
N

)
, (6.18)

and the eigenfunctions are

XCf

pk =
1√
N

exp

{
ıπ(2k− 1)p

N

}
for p, k = 1, 2, . . . , N. (6.19)

The derivation proceeds exactly as for the simple cycle. The eigenvalues are

ECf

k± =
1

2
(a+ b)± 1

2
DCf

k for k = 1, . . . , N (6.20)

and the discriminant is

DCf

k =

√
(a− b)2 + 4

(
c2 + d2 + 2cd cos

(
π(2k− 1)

N

))
. (6.21)

The eigenvectors are written as entries in the vector cCf as

cC
f

2p−1,k± = NCf

k±X
Cf

pk

(
ECf

k± − b
)
,

cC
f

2p,k± = NCf

k± (cXCf

pk + dXCf

p+1,k), (6.22)

which is the analogue of Eq. (6.12), and the normalisation constants are

NCf

k+ =

√
1

DCf

k

(
ECf

k+ − a
) and NCf

k− =

√
1

DCf

k

(
a− ECf

k−
) . (6.23)

7 Structural polynomials of alternating cycles
We derive expressions for the structural polynomials of even cycles and flipped cycles in
this section. The characteristic polynomial, sC2N (E), for the graph C2N (a, b | c, d) is

sC2N =

N∏
k=1

(E − EC
k+)(E − EC

k−)

=

N∏
k=1

(
(E − a)(E − b)− c2 − d2 − 2cd cos

2πk

N

)
. (7.1)

Expressing the cosine in terms of the half-angle, we find that

sC2N = (4cd)N
N∏

k=1

(
(E − a)(E − b)− (c− d)2

4cd
− cos2 2πk

2N

)

= (4cd)N
2N∏
k=1

{
y − cos

2πk

2N

}
(7.2)
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where y is defined in Eq. (3.10). We use the well-known relation

2TN (z)− 2 =

N∏
k=1

(
2z − 2 cos

2πk

N

)
, (7.3)

where the Chebyshev polynomial of the first kind is

TN (cos θ) = cos(nθ).

We conclude that
sC2N = 2(cd)N {T2N (y)− 1} . (7.4)

We can also derive a formula for the half ring by using Eq. (7.4) in conjunction with the
standard formula

T2N (z) = TN
(
2z2 − 1

)
, (7.5)

to give

sC2N = 2(cd)N (TN (x)− 1) , (7.6)

where we have used the definition of x in Eq. (3.5).
The characteristic polynomial, sC

f
2N (E), for the graph Cf2N (a, b | c, d) is

sC
f
2N =

N∏
k=1

(E − ECf

k+)(E − ECf

k−) =

N∏
k=1

(
2cdx2 − 2cd cos

π(2k− 1)

N

)
. (7.7)

Expressing the cosine in terms of the half-angle, we find that

sC
f
2N = (4cd)N

N∏
k=1

(
y2 − cos2 π(2k− 1)

2N

)
= 4(−cd)NTN (y)TN (−y), (7.8)

where we have used y as in Eq. (3.10), and the well-known relation

TN (z) = 2N−1
N∏

k=1

{
z − cos

(
π(2k− 1)

2N

)}
. (7.9)

The product formula
2T 2

N (z) = T2N (z) + 1 (7.10)

and the parity of the Chebychev polynomials gives the final ‘full-ring’ expression

sC
f
2N = 2(cd)N (T2N (y) + 1) . (7.11)

We can also derive a formula for the half ring using the transformation in Eq. (7.5), to give

sC
f
2N = 2(cd)N (TN (x) + 1) . (7.12)

The remaining structural polynomials can be deduced using the fact that removal of
a vertex from a cycle gives rise to a path, and we have already derived the characteristic
polynomials of even and odd vertex paths in Section 3. There are two kinds of vertex in
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our alternating cycles, odd-numbered vertices with weight a, and even-numbered vertices
with weight b. When one of these vertices is removed we create a path of length 2N − 1.
The equations for the diagonal parts of pq for C2N (a, b | c, d) are:

C2N
2p,2p = (cd)N−1(E − a)UN−1(x),

C2N
2p+1,2p+1 = (cd)N−1(E − b)UN−1(x). (7.13)

The formulae for the off-diagonal  polynomials can be deduced using Eq. (1.6), and by
noting that if we remove a second vertex, then we form two (or possibly one) paths. This
requires some trivial but lengthy trigonometry. The results are

C2N
2p,2p+2q = (E − a)(cd)N−1 {UN−q−1(x) + Uq−1(x)} ,

C2N
2p+1,2p+2q+1 = (E − b)(cd)N−1 {UN−q−1(x) + Uq−1(x)} ,

C2N
2p+1,2p+2q+2 = (cd)N−1

{
ŨN−q−1(x; c, d) + Ũq(x; d, c)

}
. (7.14)

Note that the formulae do not depend upon p, but only upon q, the offset along the ring. The
results for the flipped cycle can be calculated in the same manner. The diagonal  quantities
are identical to those for the cycle. This is because the deletion of a vertex creates a chain,
and flipped edges can be removed from a tree using an orthogonal transformation. Hence,


Cf

2N
2p,2p = (cd)N−1(E − a)UN−1(x),


Cf

2N
2p+1,2p+1 = (cd)N−1(E − b)UN−1(x), (7.15)

and further


Cf

2N
2p,2p+2q = (E − a)(cd)N−1 {UN−q−1(x)− Uq−1(x)} ,


Cf

2N
2p+1,2p+2q+1 = (E − b)(cd)N−1 {UN−q−1(x)− Uq−1(x)} ,


Cf

2N
2p+1,2p+2q+2 = (cd)N−1

{
ŨN−q−1(x; c, d)− Ũq(x; d, c)

}
. (7.16)

The changes in sign between Eqs. (7.14) and (7.16) arise because of the sign change be-
tween Eqs. (7.6) and (7.12).

8 Alternating treadmills
Treadmills are cyclic ladders. We consider a 4N -vertex treadmill, T4N (a, b | c, d), with
rung edge weights (a, b), and backbone weights (c, d) displayed in Fig. 5. We shall also
consider a related treadmill, namely the ‘flipped’ treadmill, T f4N (a, b | c, d), which has
a pair of symmetrically related backbone edges with weights having a changed sign. We
also include in our discussion the Möbius treadmill, TM4N (a, b | c, d), which has a pair of
crossed edges connecting top and bottom rings. There is also the flipped Möbius treadmill,
TM

f

4N (a, b | c, d), which has a pair of crossed bottom and top edges with weights having a
changed sign. All of these treadmills possess the same involution symmetry, and hence can
be treated in the same way.
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a b a a

c d d c1 2 3 2N-1...

b

2N d

b

2N-2c c 4

b

c d d c1 2 3 2N-1...2N 2N-2c c 4

___ ___ ________

d

Figure 5: A treadmill, T4N (a, b | c, d), with 4N vertices and alternating rung (a, b) and
ring edge weights (c, d).

8.1 The treadmill T4N(a, b | c, d)

This system has an involution symmetry based upon exchange of vertices attached to the
ends of rungs. The methodology proceeds in exactly the same way as for the ladder exam-
ple in Section 4. Hence, the 4 × 4 blocks of vertices (top ring odd, top ring even, bottom
ring odd, and bottom ring even) produce the adjacency matrix

0 BC a1 0(
BC
)T

0 0 b1
a1 0 0 BC

0 b1
(
BC
)T

0

 , (8.1)

where BC is the same matrix as in Eq. (6.2). This matrix can be block-diagonalised by an
orthogonal transformation of the form(

1√
2
12N

1√
2
12N

1√
2
12N − 1√

2
12N

)
. (8.2)

The adjacency matrix after the transformation is:
a1 BC 0 0(

BC
)T

b1 0 0
0 0 −a1 BC

0 0
(
BC
)T −b1

 =

(
AC 0

0 AC

)
, (8.3)

in which AC is the adjacency matrix of C2N (a, b | c, d) as shown in Eq. (6.1), and AC

is the adjacency matrix of C2N (−a,−b | c, d), the ring with vertex weights of opposite
sign. It follows that we can use the results of Section 6 to derive expressions for all relevant
quantities. The eigenvalues for T4N (a, b | c, d) are therefore

E
T(s)
k± = EC

k±,

E
T(a)
k± = EC

k± for k = 1, 2, . . . , N, (8.4)

where EC is the expression given in Eq. (6.10) for the eigenvalues of the cycle C2N (a, b |
c, d), andEC refers to the eigenvalues of the cycleC2N (−a,−b | c, d) with reversed vertex
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weights. The eigenvectors for the treadmill can be placed in a vector cT, with entries

c
T(s)
pk± = c

T(s)
pk± =

1√
2
cCpk±,

c
T(a)
pk± = −cT(a)

pk± =
1√
2
cCpk±, (8.5)

where the superscripts (s), and (a) indicate the symmetric and antisymmetric eigenvectors,
respectively.

8.2 Flipped treadmills, T f
4N(a, b | c, d)

Flipped treadmills can be obtained by simply changing the sign of a pair of symmetrically
positioned edges on the top and bottom rings. We shall take edges (1, 2N) and (1̄, 2N) to
have weights −d, without loss of generality, since a series of orthogonal transformations
can move the flipped pair of edges to any position around the rings. We use the same
diagonalization methodology as for the standard treadmill, whence the adjacency matrix is

a1 BCf

0 0(
BCf

)T

b1 0 0

0 0 −a1 BCf

0 0
(
BCf

)T

−b1

 =

(
ACf

0

0 AC
f

)
, (8.6)

where the matrix BCf

is shown in Eq. (6.15), ACf

is the adjacency matrix of Cf2N (a, b |
c, d) as shown in Eq. (6.14), and AC

f

is the adjacency matrix of Cf2N (−a,−b | c, d), the
ring with vertex weights of opposite sign. The eigenvalues for T f4N (a, b | c, d) are thus

E
Tf (s)
k± = ECf

k± ,

E
Tf (a)
k± = EC

f

k± for k = 1, 2, . . . , N, (8.7)

where ECf

k± , given in Eq. (6.20), is an eigenvalue of Cf2N (a, b | c, d), and EC
f

k± is an eigen-
value of Cf2N (−a,−b | c, d).

The eigenfunction entries can be written as

c
Tf (s)
pk± = c

Tf (s)
pk± =

1√
2
cC

f

pk±,

c
Tf (a)
pk± = −cT

f (a)
pk± =

1√
2
cC

f

pk±, (8.8)

with 2N eigenvectors in the symmetric and the antisymmetric blocks (i.e. k = 1, 2, . . . , N ).

8.3 Möbius treadmills, TM
4N(a, b | c, d)

The Möbius treadmill has the same involution symmetry as the other treadmills defined
in Section 8. Using the treadmill block diagonalisation procedure, the adjacency matrix
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a b a a

c d d c1 2 3 2N-1...

b

2N

d

d

b

2N-2c c 4

b

c d d c1 2 3 2N-1...2N 2N-2c c 4

___ ___ ________

Figure 6: A Möbius treadmill, TM4N (a, b | c, d), with 4N vertices and alternating rung (a, b)
and ring edge weights (c, d).

becomes 
a1 BC 0 0(

BC
)T

b1 0 0

0 0 −a1 BCf

0 0
(
BCf

)T

−b1

 =

(
AC 0

0 AC
f

)
, (8.9)

which has the structure of C2N (a, b | c, d) in the top block, and Cf2N (−a,−b | c, d) in the
lower one. The eigenvalues for TM4N (a, b | c, d) are thus

E
TM (s)
k± = EC

k±,

E
TM (a)
k± = EC

f

k± for k = 1, 2, . . . , N. (8.10)

The eigenfunction entries can be written as

c
TM (s)
pk± = c

TM (s)
pk± =

1√
2
cCpk±,

c
TM (a)
pk± = −cT

M (a)
pk± =

1√
2
cC

f

pk±, (8.11)

with 2N eigenvectors in the symmetric and the antisymmetric blocks.

8.4 Flipped Möbius treadmills, TMf

4N (a, b | c, d)

The block diagonalisation procedure gives the adjacency matrix
a1

(
BCf

)T

0 0

BCfT b1 0 0
0 0 −a1 BC

0 0
(
BC
)T −b1

 =

(
ACf

0

0 AC

)
, (8.12)

which has the structure of Cf2N (a, b | c, d) in the top block, and C2N (−a,−b | c, d) in the
lower. The eigenfunction entries, in this case, are

c
TMf

(s)
pk± = c

TMf
(s)

pk± =
1√
2
cC

f

pk±,

c
TMf

(a)
pk± = −cT

Mf
(a)

pk± =
1√
2
cCpk±. (8.13)
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9 Structural polynomials of alternating treadmills
The characteristic polynomial, sT4N (E), can be written immediately because we have
been able to split the secular equations into two annulene terms, C2N (a, b | c, d) and
C2N (−a,−b | c, d), to give

sT4N = s(C2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x)− 1) (TN (x̄)− 1) , (9.1)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT4N = 4(cd)2N (T2N (y)− 1) (T2N (ȳ)− 1) (9.2)

with y and ȳ defined in Eqs. (3.10) and (5.4). The factoring of the secular problem for the
treadmill allows the characteristic polynomials to be written as a product of the character-
istic polynomials of C2N (a, b | c, d) and C2N (−a,−b | c, d).

The other structural polynomials can be obtained using the same logic as in Section 5,

T4N
pq =

1

2
((C2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

+ s(C2N (a, b | c, d), E)(C2N (−a,−b | c, d), E)) . (9.3)

It follows that, for pairs of indices on the same ring,

T4N
2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N
2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N
2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄)− 1]

+ [UN−q−1(x̄) + Uq(x̄)] [TN (x)− 1]} , (9.4)

and for pairs of indices on different rings,

T4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x)− 1]} ,
T4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄)− 1]

− [UN−q−1(x̄) + Uq(x̄)] [TN (x)− 1]} , (9.5)

where we observe the expected sign change arising from the antisymmetry.

9.1 Structural polynomials of T f
4N(a, b | c, d)

The characteristic polynomial, sT
f
4N (E), can be written immediately as we have been able

to split the secular equations into contributions from two flipped annulenes,Cf2N (a, b | c, d)
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and Cf2N (−a,−b | c, d), to give

sT
f
4N = s(Cf2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x) + 1) (TN (x̄) + 1) , (9.6)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write a product form

sT
f
4N = 4(cd)2N (T2N (y) + 1) (T2N (ȳ) + 1) (9.7)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5:


T f
4N

pq =
1

2

(
(Cf2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

+ s(Cf2N (a, b | c, d), E)(Cf2N (−a,−b | c, d), E)
)
, (9.8)

so that, for indices on the same ring,


T f
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄) + 1]

+ [UN−q−1(x̄)− Uq(x̄)] [TN (x) + 1]} , (9.9)

and, for indices on different rings,


T f
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x) + 1]} ,


T f
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄) + 1]

− [UN−q−1(x̄)− Uq(x̄)] [TN (x) + 1]} . (9.10)

The differences between equations for plain (c.f. Eqs. (9.4) and (9.5)) and flipped treadmills
occur because of the sign changes arising from edge flips. These affect all terms inside the
square brackets because symmetry divides the adjacency matrix into two flipped ringsCf2N .

9.2 Structural polynomials of TM
4N(a, b | c, d)

The characteristic polynomial, sT
M
4N (E), can be written immediately as we have been able

to split the secular equations into contributions from two annulenes, C2N (a, b | c, d) and
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Cf2N (−a,−b | c, d), to give

sT
M
4N = s(C2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x)− 1) (TN (x̄) + 1) , (9.11)

with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT
M
4N = 4(cd)2N (T2N (y)− 1) (T2N (ȳ) + 1) , (9.12)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5,


TM
4N

pq =
1

2

(
(C2N (a, b | c, d), E)s(Cf2N (−a,−b | c, d), E)

+ s(C2N (a, b | c, d), E)(Cf2N (−a,−b | c, d), E)
)
, (9.13)

so that, for indices on the same ring,


TM
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN+q−1(x) + Uq−1(x)] [TN (x̄) + 1]

+ (E + a) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄) + 1]

+ [UN−q−1(x̄)− Uq(x̄)] [TN (x)− 1]} , (9.14)

whilst for indices on different rings,


TM
4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,

T
M
4N )2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x) + Uq−1(x)] [TN (x̄) + 1]

− (E + b) [UN−q−1(x̄)− Uq−1(x̄)] [TN (x)− 1]} ,


TM
4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x) + Uq(x)] [TN (x̄) + 1]

− [UN−q−1(x̄)− Uq(x̄)] [TN (x)− 1]} . (9.15)

The sign changes in this case affect only one of the sets of terms inside square brackets,
because symmetry divides the adjacency matrix into contributions from one ring C2N and
one flipped ring Cf2N .

9.3 Structural polynomials of TMf

4N (a, b | c, d)

The characteristic polynomial, sT
Mf

4N (E), can be written immediately as we have been
able to split the secular equations into contributions from annulenes, Cf2N (a, b | c, d) and
C2N (−a,−b | c, d), to give

sT
Mf

4N = s(Cf2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

= 4(cd)2N (TN (x) + 1) (TN (x̄)− 1) , (9.16)
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with x and x̄ defined in Eqs. (3.5) and (5.2). We can also write

sT
Mf

4N = 4(cd)2N (T2N (y) + 1) (T2N (ȳ)− 1) , (9.17)

with y and ȳ defined in Eqs. (3.10) and (5.4).
The  structural polynomials can be obtained using the same logic as in Section 5,


TMf

4N
pq =

1

2

(
(Cf2N (a, b | c, d), E)s(C2N (−a,−b | c, d), E)

+ s(Cf2N (a, b | c, d), E)(C2N (−a,−b | c, d), E)
)
, (9.18)

so that, for indices on the same ring,


TMf

4N
2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1]

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N
2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1)

+ (E + a) [UN−q−1(x̄) + Uq−1(x̄)] (TN (x) + 1]} ,


TMf

4N
2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄)− 1]

+ [UN−q−1(x̄) + Uq(x̄)] [TN (x) + 1]} , (9.19)

and for indices on different rings,


TMf

4N

2p,2p+2q = (cd)2N−1 {(E − a) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1]

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N

2p+1,2p+2q+1 = (cd)2N−1 {(E − b) [UN−q−1(x)− Uq−1(x)] [TN (x̄)− 1)

− (E + b) [UN−q−1(x̄) + Uq−1(x̄)] [TN (x) + 1]} ,


TMf

4N

2p+1,2p+2q+2 = (cd)2N−1 {[UN−q−1(x)− Uq(x)] [TN (x̄)− 1]

− [UN−q−1(x̄) + Uq(x̄)] [TN (x) + 1]} . (9.20)

The sign changes in this case affect only one of the sets of terms inside square brackets,
because symmetry divides the adjacency matrix into a flipped ring Cf2N and one plain ring
C2N .

10 Graphs derived from alternating ladders and treadmills
A series of interesting graphs can be derived from our alternating ladders and treadmills
by putting either a = 0, or b = 0. Some of the graphs that can be derived from ladders
are shown in Fig. 7. Ladders with backbone chains with odd numbers of vertices lead to
polyacenes with arms and legs, or to polyacenes themselves (Fig. 7(a) and 7(b)), by putting
the first rung edge parameter or the second to zero. Even-vertex backbones give polyacenes
with a single arm and leg, as shown in Fig. 7(c), whichever rung weight is set to zero. In
the case of treadmills, it does not matter which rung weight is set to zero. In either case one
obtains cyclic polyacenes. The appropriate formulae in Sections 4 and 8 for eigenvalues,
eigenvectors and structural polynomials can be used in these cases.



P. W. Fowler et al.: Spectra and structural polynomials of graphs of relevance to the theory . . . 407

(a) (b) (c)

Figure 7: Graphs derived from ladders by zeroing rung parameters to zero: (a) L14(0, 1 |
1, 1), with two 7-vertex backbone chains, a = 0; (b) L14(0, 1 | 1, 1), with two 7-vertex
backbone chains, b = 0; (c) L12(1, 0 | 1, 1), with two 6-vertex backbone chains, b = 0.

11 Conclusions
The algebraic development of structural polynomials reported here has been carried out
in order to have exact results on which to base an elaboration of the theory of molecular
conduction. The new formulae will allow us to treat π distortivity and its effect on ballistic
conduction through conjugated molecular frameworks, as predicted within the source-sink
potential (SSP) approach, a model that has a very direct connection to graph theory. In the
simplest picture, a molecular device consists of a molecule attached to two semi-infinite
wires. Such a device can be modelled qualitatively by replacing the system by a graph in
which the electronic interactions are replaced by a series of edge weights. Furthermore,
the infinite wires can be replaced by source and sink vertices, with complex vertex weights
modified to reproduce the physics of a current of electrons down the wires. The formula
for the transmission, T (E), of current of electrons through a device with energy E, can
then be expressed in terms of four polynomials derived from the graph of the molecule.
These polynomials can be chosen as the characteristic polynomial s(E) of the graph it-
self, pp(E), qq(E), and pq(E) (c.f. Eqs. (1.1) and (1.2)), where vertices p and q of the
molecule are attached to the source and sink vertices in the device.

The formulae we have obtained for ladders and the various forms of treadmills show
that the structural polynomials can be written in a simple manner. We have shown that
the existence of an involution allows the characteristic polynomials to be written neatly
as a product of the characteristic polynomials of certain ‘half’ graphs comprising vertex-
weighted backbones. The remaining structural polynomials are also expressed in terms of
half graphs, albeit in a slightly more complicated form.

Representation of the various structural polynomials in this ‘factorised’ form has advan-
tages for understanding the structure of the spectrum and has implications for the physics of
the transmission as a function of energy. The different sign patterns of the structural poly-
nomials exhibited in, for example, the varieties of treadmill (flipped, Möbius, etc.) will
have a profound effect on transmission, T (E), as a function of the energy of the incoming
electrons. In certain cases, for example, conduction is switched off for the whole range of
accessible energies, E. A detailed account of the SSP modelling of conduction in systems
represented by graphs with these exotic topologies will be published elsewhere.
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