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Fullerenes, a third family of allotropes of carbon ( C), exist as large stable clusters 
of C atoms. The eigenvalues of the adjacency matrix A of a graph, with the same structure 
as a fullerene, estimate the energies of the 1r-electrons in these unsaturated systems and the 
eigenvectors of A model the 1r-molecular orbitals. The eigenvalue zero of A indicates the 
presence of NBOs with no net stabilization or destabilization. Zero energy levels are rare 
in fullerenes. We study the substructures in fullerenes and other trivalent polyhedra that 
determine the presence of the eigenvalue zero. Together with the symmetry group of the 
graph, they shed new light on singular graphs and on singular polyhedra in particular. 
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1. Introduction 

In addition to graphite and diamond, a third family of allotropes of C ex­
ists as large stable clusters of C atoms. The Ruckel molecular orbital (HMOT) 
theory gives an approximation for the 1r-molecular orbitals { x} of a molecule ( or 
1r-system) as a solution to a simplified Schrodinger equation, Ax = >.x, that 
determines the molecular orbital energies >., where A is the adjacency matrix 
of the molecular graph whose structure is the same as that of the molecule. 

In [5], the authors rationalised the NBOs in some fullerenes and other C 
allotropes by looking for an "orbital pattern" similar to one of the four NBOs 
of the graphite sheet. In [3, 4], the author was motivated by the same question 
directed at an arbitrary graph: Which structural features force a graph to be 
singular? The linearly independent kernel eigenvectors, in a minimal basis (in 
which the vectors have a minimum number of non-zero entries) for the nullspace 
of A, determine subgraphs called mes which may be chosen from an established 
list. This leads to the queries: 1. which part of the molecule of a singular 
fullerene is responsible for a particular NBO? 
2. are there any chemical minimal configurations? In section 3 we investigate 
the substructures (me, core, periphery) that make a singular graph and settle a 
query raised in [3]. In section 4 we investigate the cores of trivalent polyhedra. 
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In section 5 we see that simple (non-degenerate) eigenvalues and symmetry can 
be crucial in characterising nut graphs, which imply equidistributivity of the 
1r-electron charge density, from among the singular graphs. 

By inspecting the sign of the kernel eigenvector entries, we identify, in 
section 6, interesting substructures that help to classify singular graphs. Applied 
to trivalent polyhedra, these ideas yield fruitful results. In section 7, we see that 
vertex transitivity inhibits the formation of a simple kernel eigenvector and that 
it is impossible to have a me (and hence a nut graph) with the (+1,-1,0)-kernel 
eigenvector, the one shared by the isolated pentagon (IP) tubular fullerenes. We 
end up by noting the relevance of these results to the chemistry of fullerenes. 

2. Chemical graphs 

A graph H(V, £) having a vertex set V(H) = { v1, v2, ... , vn} and a set 
£ of m(H) ( = m) edges joining distinct pairs of vertices, is said to be of order 
n(H)(= n). In a molecular graph, the vertices represent the C atoms and the 
edges, the o- bonds. 

The valency val ( v) of a vertex v is the number of edges incident to v. The 
complete graph Kn has n vertices and an edge between every pair of distinct 
vertices. The complement H of H is the graph with vertex set V and edge set 
£(Kn)\£(H). The cycle Cn has n vertices, is connected and the valency of each 
vertex is two. The graph G(X, Y, £) is bipartite if XUY is a partition of its 
vertex set so that each edge joins a vertex of X to a vertex of Y. The graph 
Kr,s is the complete bipartite graph with IXI = r, IYI = s and every vertex of 
X adjacent to every vertex of Y. 

A fullerene is an allotrope of carbon which like graphite is built of sp2-

hybridised atoms, but unlike graphite need not have a zero HOMO-LUMO gap 
in the distribution of the 1r-energy levels of its electrons. In 3D, fullerenes can 
be embedded on a sphere, ellipsoid or other convex surface. The molecular 
graph of a fullerene has a planar embedding, its faces consist of pentagons and 
hexagons and each C atom forms three bonds. 

Euler's Polyhedral Formula: Let G be a connected planar graph with 
f faces (regions). If n :::: 3, then n + f = m + 2. 

Lemma 2.1 A fullerene has exactly 12 pentagons and an even number 
of C atoms. 

3. Singular graphs 

A graph is singular if its adjacency matrix A has the eigenvalue zero. 
There exist ry( G) ( = rJ) non-zero vectors x, called kernel eigenvectors in the 
nullspace fo of A, satisfying Ax = 0. The multiplicity rJ of the zero eigenvalue 
of A is said to be the nullity of A and corresponds to the number of NBOs in 
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HMOT. The rank of G, denoted by r(G), is the rank of its adjacency matrix 
A which is n( G) - 17( G). 

Definition 3.1. Let xo be a kernel eigenvector of a singular graph G, 
of order n :2': 3. A subgraph of G induced by the vertices corresponding to the 
non-zero entries of xo is said to be a core2 , x ( w. r. t xo), (sometimes also 
denoted by Xp, or Xxo), where p is the number of vertices of the core, called the 
core order. 

Definition 3.2. A singular graph r of order n :2': 3, having a core Xp 
and periphery P := V(I') - V(xp), is said to be a minimal configuration, of 
core order p, if the following conditions are satisfied: (i) 17(I') = l, 
(ii) P = 0 or P induces an empty graph (with no edges), and 
(iii) 17(xp) = 1 + IPI. 

Lemma 3.3. The order of a me having a core Xp is p + 17(xp) - 1. 

(1) A graph G is a core if G is singular graph of nullity at least one, having a 
kernel eigenvector with each entry being non-zero. 
(2) The core of a graph of nullity one is unique. 
(3) Condition (iii) in Definition 3.2 is a consequence of the Interlacing Theorem 
and requires that the nullity is decreased by one with each addition, to X, of a 
vertex of P. 
(4) A me r is "grown" from x by adding 17(xp) - 1 mutually disconnected 
(independent) vertices. 
(5) If Xi is a vector in a minimal basis of £0 , then there exists a subgraph r of 
G with core Xxi. 
(6) The core-order is a maximum when 17(xp) = 1 and n(G) = p. It is a minimum 
when 17(xp) = p and the core (Kp) is empty. 
(7) If a is the maximum number of independent vertices in G, then Ka is a 
subgraph of G. By interlacing, if the nullity of G is 17, then P+ + 17 :2': a and 
P- + 17 :2': a, P+ (p_) being the number of positive (negative) eigenvalues of G. 

Definition 3.4. A singular graph is said to be a nut graph if each 
entry of every kernel eigenvector is non-zero. 

A nut graph is a me with P = 0 and is equal to its core. It is so termed 
by connotation with the core and the absence of a periphery. 

Proposition 3.5. A me r is bipartite if and only if its core is induced 
by a set of ( n + l) /2 independent vertices. 

Because of its odd cycles, a fullerene is not bipartite. However there are 
fullerenes (e.g. C32 : 51 of Figure 1) which are singular because they have a 
bipartite me as a subgraph. 

2 The core is sometimes referred to as the 'support' of the eigenvector in the literature. 
1 Fullerenes are indexed in spiral order[2]. 
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• entry of kernel eigenvector is +1 

entry of kernel eigenvector is -1 

Figure 1: The singular fullerene C32 : 5 with core 12K1. 

Figure 2: A me G13 with core C12 in C20-

4. Cores in fullerenes 

The smallest fullerene cage, the dodecahedron, is the molecular graph G 
of C20, which is the cubic planar graph (regular of valency 3) on 20 vertices, 
that has 12 pentagonal faces. The nullity of C20 is four and it is a core. The 
four NBOs correspond to distinct mes, found as subgraphs, for the four kernel 
eigenvectors in a minimal basis for the nulls pace of G. Two of the mes are As 
with core Ks and each of the other two is the bicyclic graph G13 of Figure 2 
having cycle C12 as core. The fullerene C32 : 5 has 12K1 as a core. A possible 
me is the path P23. 

The chemically realizable fullerenes known to date satisfy the isolated 
pentagon rule (IPR): no two pentagonal faces share a common edge. The small­
est fullerene to follow the IP rule is C60 which has no NBO. By introducing a 
cycle of hexagons between the two caps of the fullerene C50, we obtain C70. 

The NBO of IP C70 is characterised by the core 2C20 of a minimal con­
figuration, which has 43 vertices. Since 70 = n(C70) > 43, there may be various 
possible mes which are subgraphs of C70. In fact, those found in C70 show us 
that these mes may even be non-cospectral. 

An infinite family of tubular fullerenes, Cn, with hemi-C50 caps and 
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• entry of eigenvector is +1 

® entry of eigenvector is -1 

o entry of eigenvector is 0 

Figure 3: The fullerene C70. 

nullity one, has members at n = 70 + 30k, (k = 0, 1, 2, ... ) with overall fivefold 
symmetry. The core of these fullerenes consists of the disjoint union of k ~ 2 
copies of C20. A minimal configuration is a 20k + 2k - 1-vertex-subgraph of the 
fullerene. A second family has members at n = 84 + 36k, (k = 0, 1, 2, ... ), with 
hemi-C72 caps, overall six-fold symmetry and nullity one fork > 0, the fullerene 
Cs4 with k = 0 having nullity 3. For k > 0, the core consists of the disjoint 
union of k ~ 2 copies of C24. A minimal configuration is a 24k + 2k - 1-vertex­
subgraph of the fullerene. One of the cores of the fullerene Cs4 is also 2C24. In 
addition it has more cores and only 12 vertices do not belong to any core. 

Another interesting property of the structure of tubular fullerenes of nul­
lity one is that in building up the fullerene from a me, each vertex addition 
leaves the rank of the adjacency matrix fixed. 

Proposition 4.1. Sufficient conditions that the rank of the adjacency 
matrix of a graph G remains unchanged with the addition of a vertex v to G are 
that 
1. the vector r of neighbours of v is in the orthogonal complement of the nullspace 
Eo(A(G)). 
2. the vertex v does not belong to a new me in G + v. 

Each of the 27 vertices added to a me to form C70 satisfies the sufficient 
conditions in Proposition 4.1. 

5. Symmetry 

The automorphism group r( G) of a graph G is the group of permu­
tations (symmetries) that act on the vertices and preserve adjacencies. 
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i ~7·=-~~ 
0 

• entry of kernel eigenvector is +1 

@ entry of kernel eigenvector is -1 

o entry of kernel eigenvector is 0 

Figure 4: A me with core 2C20 in the fullerene C70. 

Lemma 5.1. Let i, j be vertices in G. For all I E r(G), {i, j} is an 
edge of G ~ b( i), 1 (j)} is also an edge. 

Immediate consequences are: 
1. non-edges are sent to non-edges by I E r( G) 
2. val(i)=val(r(i)) 
3. r( G) = r( G) 

Let I; be a subgroup of r(G). The possible images of a vertex i of G 
under the permutations of I; are said to form the orbit ni of i induced by I;. 

Thus ni = b(i) : I EI;}. 
A graph G is said to be vertex transitive if it has only one orbit; that 

is Vi,j E V(G),::31 E r(G) such that 1 (i) =j. 

Theorem 5.2. If I E r( G) and). is a simple eigenvalue of G, then the 
entries of the >.-eigenvector corresponding to the vertices in an orbit have the 
same absolute value. 

Theorem 5.3. Let G be a connected vertex-transitive graph. If). #- p 
is a simple eigenvalue with >.-eigenvector x = (x1, x2, ... , Xn), then 
(1) lx1I = lx2I = · · · = lxnl 
(2) the number of positive entries in the >.-eigenvector is n(G)/2 
(3) n( G) is even 
(4) ). = 2q- p E Z, where q is the valency of the regular subgraph induced by the 
vertices corresponding to the positive (or negative) entries of the >.-eigenvector. 

6. Symmetry in singular graphs 

If x is a kernel eigenvector of a singular graph G, then we identify three 
disconnected subgraphs c+, c- and G0 , induced by the vertices corresponding 
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Figure 5: A vertex transitive nut graph. 

Figure 6: Substructures of G0 in a cubic graph with a ( + 1, -1, D)-kernel eigen­
vector (e.g.C32 : 5). 

to the positive, negative and zero entries of x respectively, whose vertices parti­
tion V(G). The vertex-transitive nut graph Gin Figure 5 has c+ = G_ = C4. 

Rem ark 6.1. There are no nut graphs of order less than seven but 
there exist nut graphs of all orders n ~ 7. The occurrence of nut graphs is not 
so common among graphs of low order. Proposition 6.2 suggests that symmetry 
tends to help towards the formation of the kernel eigenvector required for a nut 
graph. 

Proposition 6.2. Let G be a connected vertex-transitive graph of 
valency p. If zero is a simple eigenvalue, then {1) G is a nut graph 
{2) n(G) is even and p is even 
(3) c+ is f-regular on n/2 vertices. 

Proposition 6.3. Let G be a singular vertex-transitive graph. Then 
( 1) G is regular 
{2) G is a core. 

The triangular prism is such a vertex-transitive graph of nullity two and 
1s a core. 

Proposition 6.4. The following are separately sufficient conditions 
for a multi-orbit-vertex graph: {1) two simple eigenvalues in a p-regular graph, 
when p is odd 
{2) two simple eigenvalues of different parity in a p-regular graph, when p is 
even 
{3) a trivalent graph of nullity one 
(4) a singular graph of nullity one with a kernel eigenvector having entries of 
different absolute value. 
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~A 

C12-2 A~ 

• entry of kernel eigenvector is +2 
o entry of kernel eigenvector is -1 

Figure 7: C35 : 14 and C12 : 2 

Corollary 6.5. Let the kernel eigenvector of a me G have an entry 
which is zero. Then 
(1) G is not vertex-transitive 
(2) the vertices of the core belong to a union of orbits disjoint from those to 
which the periphery belong. 

7. Cubic polyhedra 

From Proposition 6.2 we deduce: 

Proposition 7.1. A vertex-transitive cubic graph G is either non-
singular or has nullity more than one. 

The IP fullerene C70 has a kernel eigenvector with the entries being + 1, 
-1 and 0. 

Lemma 7.2. If the entries of a kernel eigenvector of a cubic graph are 
+ 1, -1 and 0, then 
(1) the valency of the vertices of G0 are 1 or 3. 
(2) the core is the union of cycles and K1s. 

Proposition 7.3. A cubic graph G of nullity one with a (+l,-l,0)­
kernel eigenvector is not a me. 

Proposition 7.4. If a cubic polyhedron is a nut graph, then it is 
multi-orbit. 

Polyhedron C12 : 22 of Figure 7 have a ( + 1, + 1, -2)-kernel eigenvector. 
The fullerene C44 : 14 is an example of a nut graph with several distinct entries 
in its kernel eigenvector. 

2 The trivalent poyhedra are indexed according to the plantri program of Brinkmann and 
McKay [1]. 
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@ entry of kernel eigenvector is -2 
• entry of kernel eigenvector is +1 
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Figure 8: Factor (motif) in a nut fullerene with a ( + 1, + 1, -2)-kernel eigenvec­
tor. 

Labels are entries 

of kernel eigenvector 

Figure 9: The nut fullerene C44 : 14. 

Lemma 7.5. If a cubic nut graph has a (+l, +1, -2)-kernel eigenvec­
tor, then 
(1) c+ is the union of cycles 
(2) c- is the union of K2s. 

Proposition 7.6. If a cubic nut graph G has a (+l,+l,-2)-kernel 
eigenvector, then 
(i) n(G) = 6k, k :2': 2. 
has the motif in Figure 10 as a factor (i. e. there are n/6 disjoint motifs spanning 
G). 

8. Conclusion 

Nut graphs differ from other graphs of nullity one in that contributions by 
an NBO-electron to charge, net spin and bond-order take place at vertices and 
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edges over the whole 1r-framework of a nut graph whereas they are concentrated 
into the core-substructure not affecting the periphery when the latter is not 
empty. There are 13 nut fullerenes for n ::; 70. There are fullerenes of nullity 
more than one, such as the dodecahedron and C36:15 both of which are cores. 
Other singular fullerenes of nullity more than one, such as C36:13, have vertices 
which correspond to zero entries in each possible kernel eigenvector since they 
do not belong to any core. These vertices have no contribution to charge from 
the NBO electron(s). 

There are ten singular IP fullerenes for n ::; 120 all of nullity one except 
Cs4 isomer 24 which has nullity three. None of them are nut graphs, as examples 
of 'sporadic' closed shell fullerenes [2], though C105 and C114 approach "nut 
graph" status as they each have an eigenvalue very close to but not exactly 
zero. 
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