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Abstract

Orders for which regular nut graphs exist have been determined recently for the de-
grees up to 11. In this paper we extend the notion of nut graphs to signed graphs, i.e.
graphs with edges weighted either by +1 or −1. A signed graph is proper if it is not
equivalent to an unsigned graph under an intuitive operation of sign switching, otherwise
it is traditional. By including signed nut graphs, we find all pairs (ρ, n) for which a ρ-
regular nut graph of order n exists with ρ ≤ 11. In addition, we show how a literature
construction for obtaining larger nut graphs can be extended to signed graphs, giving a
construction for both proper and traditional ρ-regular signed nut graphs.

Keywords: Signed graph, nut graph, singular graph, graph spectrum, Fowler construc-
tion.

Math. Subj. Class. (2020): 05C92, 05C50, 05C22

1 Introduction and motivation

Spectral graph theory is an important branch of discrete mathematics that links graphs to
linear algebra. Its applications are numerous. For instance, in Chemistry the Hückel molec-
ular orbital theory of conjugated π systems [25] is essentially an exercise in applied spectral
graph theory [26]. Unlike the adjacency matrix itself, the spectrum of the adjacency matrix
is an invariant. Singular graphs, i.e. graphs that have a zero eigenvalue of the adjacency
matrix, have been studied extensively. One subclass of singular graphs, known as nut graphs,
is of particular interest. A nut graph is a singular graph whose 0-1 adjacency matrix has a
one-dimensional kernel (nullity η = 1) and has a full corresponding eigenvector. Some prop-
erties of nut graphs are easily proved. For instance, nut graphs are connected, non-bipartite,
and have no vertices of degree one [24]. It is conventional to require that a nut graph has
n ≥ 2 vertices, although some authors consider K1 as the trivial nut. There exist numerous
construction rules for making larger nut graphs from smaller [24].
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In this contribution we will consider signed graphs, i.e. graphs with edge weights drawn
from {−1, 1} and ask whether they can also be nut graphs. Although the problem may appear
to be purely mathematical, we were driven to study it by the chemical interest arising from
the study of specific properties of conjugated π systems. For example, in electronic structure
theory, nut graphs have distributed radical reactivity, since occupation by a single electron
of the molecular orbital corresponding to the kernel eigenvector leads to spin density on all
carbon centres [23]. In the context of theories of molecular conduction, nut graphs have a
unique status as the strong omni-conductors of nullity 1 [8]. Möbius carbon networks, rep-
resentable by signed graphs, obey different electron counting rules from those of unweighted
Hückel networks [6].

For general discussion of signed graphs the reader is referred to recent papers [1, 12] which
set out notation and basic properties. For nut graphs, several useful papers are available, for
instance [9, 17, 19, 20]. Recently the problem of existence of regular nut graphs was posed,
and solved for cubic and quartic graphs [10]. Later, it was solved for degrees ρ, ρ ≤ 11
[7]. In this paper we carry the problem of the existence of regular nut graphs over from
ordinary graphs to signed graphs. We are able to characterise all cases (ρ ≤ 11) for which
a ρ-regular nut graph of order n (either signed or unsigned) exists. In addition, we describe
a construction, based on work on unsigned nut graphs [7, 10], which produces larger signed
nut graphs from smaller.

2 Signed graphs, nut graphs and signed nut graphs

2.1 Signed graphs

A signed graph Γ = (G,Σ) is a graph G = (V,E) with a distinguished subset of edges Σ ⊆ E
that we shall call negative edges, or more informally Möbius edges. Equivalently, we may
consider the signed graph (G,σ) to be a graph endowed with a mapping σ : E → {−1,+1}
where Σ = {e ∈ E | σ(e) = −1}. The adjacency matrix A(Γ) of a signed graph is a symmetric
matrix obtained from the adjacency matrix A(G) of the underlying graph G by replacing 1
by −1 for entries auv where u is connected with v by a negative edge.

Symmetries (automorphisms) of a signed graph Γ = (G,Σ) are also symmetries of the
underlying graph G. They preserve edge weights:

AutΓ = {α ∈ AutG | ∀e = uv ∈ E(G) : e ∈ Σ ⇐⇒ α(e) = α(u)α(v) ∈ Σ}.
Hence, the automorphism group AutΓ of a signed graph Γ is a subgroup of the automorphism
group AutG of the underlying graph G.

2.2 Singular graphs, core graphs and nut graphs

A graph that has zero as an eigenvalue is called a singular graph, i.e. a graph is singular if
and only if its adjacency matrix has a non-trivial kernel. The dimension of the kernel is the
nullity. An eigenvector x can be viewed as a weighting of vertices, i.e. a mapping x : V → R.
A vector x belongs to the kernel, kerA, which is denoted by x ∈ kerA, if and only if for each
vertex v the sum of entries on the neighbours NG(v) equals 0:

∑

u∈NG(v)

x(u) = 0. (1)
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The equation (1) is called the local condition. The support, suppx, of a kernel eigenvector
x ∈ kerA is the subset of V at which x attains non-zero values:

suppx = {v ∈ V | x(v) 6= 0}. (2)

If suppx = V , we say that vector x is full. Define suppkerA as follows:

suppkerA =
⋃

x∈kerA

suppx. (3)

A singular graph G is a core graph if supp kerA = V . A core graph of nullity 1 is called a nut
graph. Although the kernel of a core graph may have a basis that has no full vectors, there
exists a basis with all vectors being full.

Proposition 1. Each core graph admits a kernel basis that contains only full vectors.

Proof. Let V (G) = {1, . . . , n} and let x1, . . . ,xη be an arbitrary kernel basis. Let ι be the
smallest integer (i.e. vertex label), such that at least one of the entries x1(ι), . . . ,xη(ι) is
zero, and let xℓ(ι) be one of those entries. As G is a core graph, at least one of the entries
x1(ι), . . . ,xη(ι) is non-zero; let us denote the first such encountered entry by xk(ι). We can
replace vector xℓ by xℓ + αxk, where α > 0. If we pick α large enough, i.e. if

α > max

{ |xℓ(i)|
|xk(i)|

| i 6= ι,xk(i) 6= 0

}

,

then xℓ(i) + αxk(i) will be non-zero for all i. No new zero entries were created in the
replacement process and at least one zero was eliminated. We repeat this process until no
more zeros remain.

Corollary 2. Each core graph admits a kernel basis that contains only full vectors with
integer entries.

Proof. An integer basis always exists for an integer eigenvalue. The replacement process
described in the proof of Proposition 1 will keep all entries integer if we choose an integer for
the value of α at each step.

2.3 Switching equivalence of signed graphs

Let Γ = (G,Σ) be a signed graph over G = (V,E) and let U ⊆ V (G) be a set of its
vertices. A switching at U is an operation that transforms Γ = (G,Σ) to a signed graph
ΓU = (G,Σ∇ ∂U) where ∇ denotes symmetric difference of sets and

∂U = {uv ∈ E | u ∈ U, v /∈ U}.

Note that ∂U = ∂(V (G) \ U), ΓU = ΓV (G)\U and (ΓU )U = Γ. In fact, switching is an
equivalence relation among the signed graphs with the same underlying graph. Any graph
G can be regarded as a traditional signed graph Γ = (G, ∅). We extend this definition. Any
signed graph is a traditional signed graph if it is switching equivalent to Γ = (G, ∅), otherwise
it is called a proper signed graph.

As observed, for instance in [1], switching has an obvious linear algebraic description.

3



Proposition 3 ([1]). Let A(Γ) be the adjacency matrix of signed graph Γ and A(ΓU ) be the
corresponding adjacency matrix of the signed graph switched at U . Let S = diag(s1, s2, . . . , sn)
be the diagonal matrix with si = −1 if vi ∈ U and si = 1 elsewhere. Then

A(ΓU ) = SA(Γ)S.

Since ST = S−1 = S we also have:

A(Γ) = SA(ΓU )S.

Theorem 4. Let G be a connected graph on n vertices and m edges. There are 2m signed
graphs over G, there are 2m−n+1 switching equivalence classes, and each class has 2n−1 signed
graphs.

Proof. We divide our argument into four steps.

Step (a): For a given connected graph G (and a spanning tree T ) there are 2m different
signed graphs. Indeed, we may choose any subset Σ of edges E and make all edges in Σ
negative. Some of the signed graphs will have all edges of T positive, while others will have
some edges of T negative.

Step (b): Among the 2m signed graphs over G exactly 2m−n+1 will have all edges of T
positive. Indeed, while fixing (n − 1) edges of T positive, any selection of the remaining
(m− n+ 1) non-tree edges determines Σ. Such a selection can be done in 2m−n+1 ways.

Hence, Step (a) gives the total number of signed graphs while Step (b) gives the number
of signed graphs having all edges of T positive.

Step (c): There are 2n−1 switchings available. Namely, any switching is determined by a
pair (U, V \U), but (U, V \U) is the same switching as (V \U,U). Hence we have to divide 2n,
the number of subsets of V , by 2. Thus, each switching equivalence class contains 2n−1 signed
graphs. Dividing the total number of signed graphs 2m by the cardinality of each switching
class 2n−1 we obtain the number of different switching equivalence classes: 2m−n+1.

Every switching equivalence class of signed graphs over G contains exactly one signed
graph with all edges of T positive. Recall that in any tree there is a unique path between
any two vertices. Choose any vertex w from V . Let U be the set of vertices v in T that have
an even number of negative edges on the unique w − v path of T . Then V \ U contains the
vertices v that have an odd number of negative edges on the path from w to v along T . The
switching (U, V \ U) will make T all positive. Hence, each switching class has at least one
signed graph that makes T all positive. However, since the cardinality under Step (c) is the
same as under Step (b), namely 2m−n+1, we may deduce that each switching class contains
exactly one all-positive T .

2.4 Signed singular graphs, signed core graphs and signed nut graphs

One may consider the kernel of the adjacency matrix of a signed graph. Note that definitions
(2) and (3) can be extended to signed graph in a natural way. A signed graph is a signed
singular graph if it has a zero as an eigenvalue. A signed graph is a signed core graph if

4



supp kerA(Γ) = V (G). A signed graph is a signed nut graph if its adjacency matrix A(Γ) has
nullity one and its kernel kerA(Γ) contains a full kernel eigenvector.

A graph G on n vertices and m edges gives rise to 2m distinct signed graphs. If we
are interested only in non-isomorphic signed graphs, this number may be reduced by the
symmetries preserve signs. However, there is also an equivalence relation, to be described in
the next section, among the signed graphs Γ = (G,σ) over the same underlying graph that is
very convenient as it preserves several important signed invariants and reduces the number
of graphs to be considered.

2.5 Switching equivalence and signed singular graphs

Proposition 3 has the following immediate consequence:

Proposition 5. Let Γ be a signed graph and let U ⊆ V (G). If Γ is singular and if x is any
of its kernel vectors, then ΓU is singular and the vector xU defined as

xU (v) =

{

x(v), if v ∈ V (G) \ U,
−x(v), if v ∈ U,

is a kernel eigenvector for ΓU .

This proposition is helpful in the study of singular graphs. Namely, it follows that many
properties of signed graphs concerning singularity hold for the whole switching equivalence
class.

Corollary 6. Let Γ and Γ′ be two switching equivalent signed graphs. The following holds:

(1) If one of the pair is singular, then the other is also singular. In addition, if both are
singular, they have the same nullity.

(2) If one of the pair is a core graph, then the other is also a core graph.

(3) If one of the pair is a nut graph then the other is also a nut graph.

In particular, this reduces the search for nut graphs to a search over distinct switching
equivalence classes. The following fact may be useful.

Corollary 7. Every switching equivalence class of signed nut graphs has exactly one repre-
sentative that has kernel eigenvector with all entries positive.

Proof. Let Γ be a signed nut graph and let x be its kernel eigenvector. Let

U = {v ∈ V | x(v) < 0}

The switching at U gives rise to the switching-equivalent signed nut graph ΓU with an all-
positive kernel eigenvector.

The above corollary enables us to select for any signed nut graph Γ = (G,Σ) a unique
switching equivalent graph Γ′ = (G,Σ′) s.t. the kernel eigenvector x′ relative to Γ′ is given by
x′(v) = |x(v)|. This canonical choice of switching can be viewed in the more general setting
of signed graphs.
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Algorithm 1 Given the class of graphs Gn,ρ, i.e. the class of connected ρ-regular graphs of
order n, find a signed nut graph in this class.

Input: Gn,ρ, the class of all connected ρ-regular graphs of order n.
Output: A signed nut graph in Gn,ρ (or report that there is none).
1: for all G ∈ Gn,ρ do
2: T ← spanning tree of G
3: for all Σ ⊆ E(G) \ T do
4: Γ← (G,Σ)
5: if Γ is a signed nut graph then
6: return Γ
7: end if
8: end for
9: end for

10: report there is no signed nut graph in class Gn,ρ

Using the idea of the proof of Theorem 4 and a database of regular connected graphs of
a given order [14] we may search for signed nut graphs of that order.

Let F (n, ρ) be the number of connected graphs of order n and degree ρ. In the worst case
the algorithm has to check 2m−n+1 signed structures on each. Since 2m = nρ this implies a
maximum of F (n, ρ)2m−n+1 tests.

3 Results

Our contribution here is based on recent interest in the study of families of nut graphs.
An efficient strategy for generating nut graphs of small order was published in 2018 [5] and
the full collection of nut graphs found there for orders up to 20 was reported in the House
of Graphs [2]. For arbitrary simple graphs, the list is complete for orders up to 12, and
counts are give up to 13. A list of regular nut graphs for orders from 3 to 8 was deposited
in the same place. This list covers orders up to 22 and is complete up to order 14. More
recently, the orders for which regular nut graphs of degree ρ exist have been established for
ρ ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11}. In [10], the set N(ρ) was defined as the set consisting of all
integers n for which a ρ-regular nut graph of order n exists. There it was shown that

N(1) = N(2) = ∅,
N(3) = {12} ∪ {2k | k ≥ 9},
N(4) = {8, 10, 12} ∪ {k | k ≥ 14}.

In [7], N(ρ) was determined for every ρ, 5 ≤ ρ ≤ 11. Combining these results, we obtain the
following theorem.

Theorem 8. The following holds:

1. N(1) = ∅

2. N(2) = ∅

6



3. N(3) = {12} ∪ {2k | k ≥ 9}

4. N(4) = {8, 10, 12} ∪ {k | k ≥ 14}

5. N(5) = {2k | k ≥ 5}

6. N(6) = {k | k ≥ 12}

7. N(7) = {2k | k ≥ 6}

8. N(8) = {12} ∪ {k | k ≥ 14}

9. N(9) = {2k | k ≥ 8}

10. N(10) = {k | k ≥ 15}

11. N(11) = {2k | k ≥ 8}

Note that for each ρ, 3 ≤ ρ ≤ 11, the set N(d) misses only a finite number of integer
values. The question we tackle here is: which of the missing numbers can be covered by
regular signed nut graphs? The main result of this paper is embodied in Table 1 and stated
formally in Theorems 8, 9 and 10.

❍
❍
❍
❍
❍❍

ρ
n

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 % % % X X

4 % X X X X X X X X X

5 ∄ % X X X X X

6 ∄ X X X X X X X X

7 ∄ X X X X

8 X X X X X X X

9 ∄ X X

10 ∄ X X X X X

11 ∄ X X

Table 1: Existence of small regular signed nut graphs of order n and degree ρ. Notation:
X. . . there exists a traditional signed nut graph; . . . there exists a proper signed nut graph
(but no traditional signed nut graph); ∄. . . there exists no signed nut graph (by Theorem 10);
%. . . there exists no signed nut graph (proof by exhaustion).

Theorem 9. Let Ns(ρ) denote the set of orders n for which no ρ-regular nut graph exists
but there exists a (proper) signed nut graph.

1. Ns(3) = {14, 16}

2. Ns(4) = {5, 7, 9, 11, 13}

7



3. Ns(5) = ∅

4. Ns(6) = {8, 9, 10, 11}

5. Ns(7) = {10}

6. Ns(8) = {9, 10, 11, 13}

7. Ns(9) = {12, 14}

8. Ns(10) = {12, 13, 14}

9. Ns(11) = {14}

Proof. In the proof we first used computer search based on the data about regular nut graphs
from the House of Graphs [2]. For some set of parameters n, d, we were able to prove existence
and non-existence by search using the straightforward Algorithm 1. For some sets the search
was unfeasible, but in these cases an example was generated by a heuristic approach. In
some cases this involved planting a small number of negative edges. In others, a negative
hamiltonian cycle was added to an ordinary nut graph.

A further theorem extends the results of Theorem 9 to infinity along the leading diagonal
of the table.

Theorem 10. Let Γ be a signed graph whose underlying graph is Kn. If Γ is a signed nut
graph then n ≡ 1 (mod 4). Moreover, for each n ≡ 1 (mod 4), there exists a signed nut
graph with underlying graph Kn.

Proof. Let n = 4k+ q, where 0 ≤ q ≤ 3. We divide the proof into three parts: (a) q ∈ {0, 2},
(b) q = 3, and (c) q = 1.

Assume that Γ is singular. Let x be a full kernel eigenvector (existence established
by Proposition 1). We may assume that x is a non-zero integer vector. If x has no odd
coordinate, we may multiply x by an appropriate power of 1

2 so that at least one coordinate
becomes odd. We call vertex s even if xs ≡ 0 (mod 2) and odd if xs ≡ 1 (mod 2). The local
condition for a kernel eigenvector x is

∑

s∼r

xsσ(rs) = 0 (4)

for each choice of a pivot vertex r, where σ(rs) is the weight (±1) of the edge between r and
s. We know that at least one vertex, say r, must be odd. The local condition at r implies
that there is an even number of odd vertices around r and hence, together with r, an odd
number of odd vertices in total for a presumed Kn nut graph.

Case (a): q ∈ {0, 2}. This means that n is even. The signed graph Γ must have an even
vertex t. The local condition at t implies that there is an even number of odd vertices around
t, and hence an even number of odd vertices in total, a contradiction. This rules out the
existence of signed complete nut graphs for q ∈ {0, 2}.

Case (b): q ∈ 3. In this case all entries xs are odd: the parity of the sum in (1) is opposite
for even and odd vertices.
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Let m+ denote the number of edges in Γ with positive sign. For each vertex s, let ρ+(s)
and ρ−(s), respectively, denote the number of edges with positive sign and negative sign that
are incident with s. Note that ρ+(s) + ρ−(s) = n − 1. Summing local conditions over all
pivots r:

0 =
∑

r

ρ+(r)xr −
∑

r

ρ−(r)xr

Hence,

0 =
∑

r

{ρ+(r)− ρ−(r)}xr =
∑

r

{2ρ+(r)− n+ 1}xr

and

∑

r

ρ+(r)xr =
n− 1

2

∑

r

xr = {2k + 1}
∑

r

xr. (5)

The RHS of (5) is an odd number since it is a product of two odd numbers, hence
∑

r ρ+(r)xr
is odd. Therefore, the subgraph with positive edges only has an odd number of vertices with
odd degree. By the Handshaking Lemma this is impossible.

Case (c): q = 1 is the only remaining possibility and the first part of the theorem follows,
provided such nut graphs exist.

Now we construct a signed nut graph for each n of the form n = 4k + 1. A signed graph
(call it Γ) is constructed from K4k+1 as follows. Partition the vertex set of K4k+1 into a single
vertex r = 0 and k subsets of 4 vertices for k copies of the path graph P4. Change the signs
of all edges internal to each P4 to −1. To construct a kernel eigenvector x of Γ for λ = 0
place +1 on vertex 0, then entries −1,+1,+1,−1 on each P4. We denote by 1, 2, 3, 4 the
vertices of the first P4, by 5, 6, 7, 8 the vertices of the second P4, etc. Owing to the symmetry
of Γ (since automorphisms of Γ preserve edge-weights) there are only three vertex types to
be considered.

1. For r = 0 all weights σ(rs) = 1 and exactly half of the xs are equal to 1 and the other
half are equal to −1. Hence, (1) is true in this case.

2. The vertex r may be an end-vertex of any of the k paths P4. The net contribution of
the three remaining vertices of P4 is −1, and all contributions of other paths cancel
out. Taking into account the edge to vertex 0, the weighted sum in (1) is indeed equal
to 0.

3. The vertex r may be an inner vertex of any of the k paths P4. Again, the net con-
tribution of the three remaining vertices of P4 is −1, and by the same argument, the
weighted sum in (1) is again equal to 0.

As x is a full kernel eigenvector, Γ is a signed core graph.
It remains to prove that Γ is a signed nut graph, i.e. with nullity η(Γ) = 1. This is done

by showing that the constructed full kernel eigenvector x is the only eigenvector for λ = 0
(up to a scalar multiple). First, note that all edges incident with vertex 0 have weight +1.
Hence for r = 0, (1) becomes:

∑

s 6=0

xs = 0 (6)
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It follows that
n
∑

s=0

xs = x0 (7)

Now consider any path P4 with vertices, say, 1, 2, 3, 4. Note that vertices 1 and 4 fall into one
symmetry class while vertices 2 and 3 are in the other symmetry class. The local conditions
are:

0 = x0 − x2 +
∑

s 6=0,1,2

xs = x0 − x1 − 2x2 (8)

0 = x0 − x1 − x3 +
∑

s 6=0,1,2,3

xs = x0 − 2x1 − x2 − 2x3 (9)

0 = x0 − x2 − x4 +
∑

s 6=0,2,3,4

xs = x0 − 2x2 − x3 − 2x4 (10)

0 = x0 − x3 +
∑

s 6=0,3,4

xs = x0 − 2x3 − x4 (11)

It is straightforward to show that x1 to x4 are related to x0 as:

x1 = x4 = −x0, x2 = x3 = x0 (12)

Since this holds for all k path graphs P4 it follows that Γ is indeed a signed nut graph.

The spectrum of Γ is easily described. The eigenvalues, with multiplicities, are:

(2(k − 1)±
√

4k(k − 1) + 5)1, (±
√
5)k, (±

√
5− 2)k−1, 01. (13)

For k = 1, this reduces to five distinct eigenvalues.

4 A construction for proper signed nut graphs

Theorem 9 has answered our initial question, in that if we consider ordinary graphs as special
cases of signed graphs and ρ ≤ 11 we need only to perform a computer search for existence
of signed nut graphs for those values of n for which no ordinary nut graph exists. However,
if we wanted to search for proper signed nut graphs with the intention of determining the
orders for which a proper signed graph exists, then methods would be needed for generating
larger signed nut graphs. There are several known constructions that take a nut graph and
produce a larger nut graph. We will revisit one construction here and extend it to signed
graphs. This is the so-called Fowler construction for enlarging unweighted nut graphs.

Recall that Γ is a proper signed nut graph if and only if it is not switching equivalent to
an ordinary unweighted nut graph.

Let G be a graph and v a vertex of degree ρ. Let N(v) = {u1, u2, . . . , uρ}. Recall [10, 7]
that the Fowler Construction, denoted F (G, v), is a graph with

V (F (G, v)) = V (G) ⊔ {q1, . . . , qρ} ⊔ {p1, . . . , pρ}
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v

a

u1b1 u2b2 uρ bρ. . .
σ(vu1) σ(vu2) σ(vuρ)

(a) Γ

v

(1− ρ)a

q1σ(vu1)b1 q2 σ(vu2)b2 qρ σ(vuρ)bρ. . .

p1a p2a pρ a. . .

u1b1 u2b2 uρ bρ. . .

σ(vu1) σ(vu2) σ(vuρ)

(b) F (Γ, v)

Figure 1: A construction for expansion of a signed nut graph Γ about vertex v of degree ρ,
to give F (Γ, v). The labelling of vertices in Γ and F (Γ, v) is shown within the circles that
represent vertices. Shown beside each vertex is the corresponding entry of the unique kernel
eigenvector of the respective graph. Panel (a) shows the neighbourhood of vertex v in Γ.
Edges from vertex v to its neighbours have weights σ(vui) which are either +1 or −1. In the
figure, edges with weight −1 are indicated in red, as an illustration. Edges of the remainder
of the graph, indicated by the shaded bubble, may take arbitrary signs. Panel (b) shows
additional vertices and edges in F (Γ, v). Vertices qi inherit their entries from Γ as described
in Equation (15). Edges piui inherit their weights (signs) from Γ. All other explicit edges in
Panel (b) have weights +1.
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and

E(F (G, v)) = (E(G) \ {vui | 1 ≤ i ≤ ρ}) ∪ {qipj | 1 ≤ i, j ≤ ρ, i 6= j}
∪ {vqi | 1 ≤ i ≤ ρ} ∪ {piui | 1 ≤ i ≤ ρ}.

Here, we generalise this construction to signed graphs.

Definition 1. Let Γ = (G,σ) be a signed graph and v a vertex of G that has degree ρ. Then
F (Γ, v) = (F (G, v), σ′), where for 1 ≤ i, j ≤ ρ,

σ′(e) =























1 if e = vqi,

1 if e = qipj ,

σ(vui) if e = piui,

σ(e) otherwise,

(14)

is the Fowler Construction for signed graphs.

Lemma 11. Let Γ = (G,σ) be a signed graph and v a vertex of G that has degree ρ and let
x be a kernel eigenvector for Γ. Then x′, defined as

x′(w) =























−(ρ− 1)x(v) if w = v,

σ(vui)x(ui) if w = qi,

x(v) if w = pi,

x(w) otherwise,

(15)

for w ∈ V (F (Γ, v)), is a kernel eigenvector for F (Γ, v).

The local structures in the signed graphs Γ and F (Γ, v) are shown in Figure 1, which also
indicates the local relationships between kernel eigenvectors in these graphs.

Lemma 12. Let Γ be a singular signed graph, and let x be a kernel eigenvector. Let u, v ∈ V
be any two non-adjacent vertices, having the same degree, say ρ, and sharing ρ−1 neighbours.
Let u′ denote the neighbour of u that is not a neighbour of v, and let v′ denote the neighbour of
v that is not a neighbour of u. If σ(uw) = σ(wv) for all w ∈ N(u)\{u′}, then |x(u′)| = |x(v′)|.
Moreover, x(u′) = x(v′) if and only if σ(vv′) = σ(uu′).

Proof. Let N(u) \ {u′} = N(v) \ {v′} = {w2, . . . , wρ} (see Figure 2). The respective local
conditions at vertices u and v are

σ(uu′)x(u′) +

ρ
∑

i=2

σ(uwi)x(wi) = 0, (16)

σ(vv′)x(v′) +

ρ
∑

i=2

σ(wiv)x(wi) = 0. (17)

Since σ(uwi) = σ(wiv) for all 2 ≤ i ≤ ρ, we get that

σ(uu′)x(u′) = σ(vv′)x(v′), (18)
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w2

w3

w4

w5

wρ

uu′ v v′

...

Figure 2: The neighbourhood of vertices u and v from Lemma 12. The red edges indicate a
possible selection of edges with weight −1.

by taking the difference of (16) and (17). Clearly,

|x(u′)| = |σ(uu′)x(u′)| = |σ(vv′)x(v′)| = |x(v′)|.

If σ(uu′) = σ(vv′), then (18) implies x(u′) = x(v′). Similarly, if x(u′) = x(v′), then (18)
implies σ(uu′) = σ(vv′).

Lemma 13. Let Γ and Γ′ be signed graphs over the same base graph G, i.e. Γ = (G,σ) and
Γ′ = (G,σ′). Let v be a vertex of G. Then Γ is switching equivalent to Γ′ if and only if
F (Γ, v) is switching equivalent to F (Γ′, v).

Proof. Let Γ and Γ′ be two signed graphs over graph G, say Γ = (G,Σ) and Γ′ = (G,Σ′).
Let v ∈ V (G) and let F (Γ, v) and F (Γ′, v) be the corresponding Fowler constructions. Let Γ
and Γ′ be switching equivalent. This means that there exists S ⊂ V (G), such that Γ′ = ΓS .
We know that ΓS = ΓV (G)\S . Without loss of generality we may assume that v /∈ S. Let the
vertex labelling of F (Γ, v), F (Γ′, v) and F (G, v) be the same as in Figure 1. In particular,
this means that all vertices of G belong also to F (G, v). Since v /∈ S we have:

F (Γ′, v) = F (ΓS , v) = F (Γ, v)S .

Hence it follows:
Γ ∼ Γ′ ⇒ F (Γ, v) ∼ F (Γ′, v).

To prove the converse assume the following: F (Γ, v) ∼ F (Γ′, v), where Γ = (G,Σ) and
Γ′ = (G,Σ′). Let S ⊂ V (F (G, v)) such that v /∈ S. Since all edges above u1, u2, . . . , us
in Figure 1(b) are positive in both signed graphs, it is clear that S ⊂ V (G) and the result
follows.

Theorem 14. Let Γ be a signed graph and v any one of its vertices. Then the nullities of
Γ and F (Γ, v) are equal, i.e. η(Γ) = η(F (Γ, v)). Moreover, ker Γ admits a full eigenvector if
and only if kerF (Γ, v) admits a full eigenvector.

Proof. Let u1, . . . , uρ be the neighbours of vertex v in G. Assume first that G is a core graph
and that x is an admissible eigenvector. Let x(w) denote the entry of x at vertex w. Let
a = x(v) and let bi = x(ui). We now produce a vertex labelling x′ of F (Γ, v) as above. It
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follows that if x is a valid assignment of G then x′ is a valid assignment on F (Γ, v). Thus
η(F (Γ, v)) ≥ η(Γ).

On the other hand, apply Lemma 12 to F (Γ, v) and an admissible assignment x′. First
consider vertices qi and qj and their neighbourhoods. Lemma 12 implies that x′(pi) = x′(pj).
Hence x′ is constant on pi, say x′(pi) = a. Thus, it follows that x′(v) = −(ρ − 1)a. The
second application of the lemma goes to vertices v and pi. It implies that for each i the
values x′(qi) and x′(ui) are equal, namely x′(qi) = x′(ui). Finally, let x(w) = x′(w) for every
w ∈ V (G) \ {v} and let x(v) = a. Hence, the existence of an admissible x′ on F (Γ, v) implies
the existence of an admissible x on Γ. Thus η(F (Γ, v)) ≤ η(Γ).

An alternative proof of η(F (Γ, v)) ≤ η(Γ). One may work out the rank of F (Γ, v) directly.
Let NG(v) = {u1, . . . , uρ} and V (G) \ N [v] = {w1, . . . , wn−ρ−1}, where n = |V (G)|. The
adjacency matrix A(Γ) can be partitioned into block matrices as follows:

A(Γ) =

v w1 . . . wn−ρ−1 u1 . . . uρ












































0 0 . . . 0 σ(vu1) . . . σ(vuρ) v
0

B C
w1

...
...

0 wn−ρ−1

σ(vu1)
CT D

u1
...

...
σ(vuρ) uρ

(19)

where submatrices B, C and D encode the signed edges between the respective vertex-sets.
The adjacency matrix of A(F (Γ, v)) can similarly be partitioned as follows:

v w1 . . . wn−ρ−1 u1 . . . uρ q1 . . . qρ p1 . . . pρ




































































































0 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 v
0

B C 0 0
w1

...
...

0 wn−ρ−1

0
CT D 0 K

u1
...

...
0 uρ
1

0 0 0 J− I
q1

...
...

1 qρ
0

0 K J− I 0
p1

...
...

0 pρ

(20)

where I is the identity matrix, J is the all-one matrix and K = diag(σ(vu1), . . . , σ(vuρ)) =
diag(σ′(p1u1), . . . , σ

′(pρuρ)) is a modified identity matrix in which weights of edges from the
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neighbourhood of the original vertex v replace the unit entries. Elementary row and corre-
sponding column operations that leave the rank unchanged are performed by replacing the
rows and columns corresponding to u1, . . . , uρ by u1 + σ(vu1)q1, . . . , uρ + σ(vuρ)qρ, respec-
tively (where by abuse of notation ui and qi stand for rows/columns corresponding to ui and
qi, respectively), to obtain the matrix

v w1 . . . wn−ρ−1 u1 . . . uρ q1 . . . qρ p1 . . . pρ




































































































0 0 . . . 0 σ(vu1) . . . σ(vuρ) 1 . . . 1 0 . . . 0 v
0

B C 0 0
w1

...
...

0 wn−ρ−1

σ(vu1)
CT D 0 J′

u1
...

...
σ(vuρ) uρ

1
0 0 0 J− I

q1
...

...
1 qρ
0

0 (J′)T J− I 0
p1

...
...

0 pρ

(21)

where J′ is a ρ×ρ matrix defined as (J′)i,j = σ(vui) and all other symbols have their previous
meanings.

We remark that the block J− I is of full rank. We now pre-multiply the blocked matrix
for F (Γ, v) by a non-singular matrix that is chosen to transform the first J− I block of (21)
to I. The transformation matrix is

v w1 . . . wn−ρ−1 u1 . . . uρ q1 . . . qρ p1 . . . pρ




































































































1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 v
0

In−ρ−1 0 0 0
w1

...
...

0 wn−ρ−1

0
0 Iρ 0 0

u1
...

...
0 uρ
0

0 0 (Jρ − Iρ)
−1 0

q1
...

...
0 qρ
0

0 0 0 Iρ

p1
...

...
0 pρ

(22)

The matrix (Jρ − Iρ)
−1 has diagonal entries 1

ρ−1 − 1 and off-diagonal entries 1
ρ−1 . Since
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the matrix (22) is non-singular, the matrix resulting from the premultiplication has the same
rank as before, and is

v w1 . . . wn−ρ−1 u1 . . . uρ q1 . . . qρ p1 . . . pρ








































































































0 0 . . . 0 σ(vu1) . . . σ(vuρ) 1 . . . 1 0 . . . 0 v
0

B C 0 0
w1

...
...

0 wn−ρ−1

σ(vu1)
CT D 0 J′

u1
...

...
σ(vuρ) uρ

1
ρ−1

0 0 0 Iρ

q1
...

...
1

ρ−1 qρ
0

0 (J′)T Jρ − Iρ 0
p1

...
...

0 pρ

(23)

Now we take linear combinations of rows to reduce the block J′ to 0. We replace each
row Rk (k = 1 to ρ) of J′ by the linear combination Rk − σ(vuk)

∑

i ri, where ri is the row
of the identity matrix Iρ, and by definition σ(vuk) is the sign of all the entries in the kth row
of matrix J′. This converts the matrix (23) to

v w1 . . . wn−ρ−1 u1 . . . uρ q1 . . . qρ p1 . . . pρ












































































































0 0 . . . 0 σ(vu1) . . . σ(vuρ) 1 . . . 1 0 . . . 0 v
0

B C 0 0
w1

...
...

0 wn−ρ−1

−σ(vu1)
ρ−1

CT D 0 0
u1

...
...

−σ(vuρ)
ρ−1 uρ
1

ρ−1
0 0 0 Iρ

q1
...

...
1

ρ−1 qρ
0

0 (J′)T Jρ − Iρ 0
p1

...
...

0 pρ

(24)

Now consider the rank of the red block of this matrix. Before this last transformation, it
was equal to A(Γ) and had η = 1, as Γ is a signed nut graph. After the transformation, the
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red block differs only by the replacement of σ(vui) with −σ(vui)/(ρ− 1). The block now has
nullity 0 or nullity 1. (We know that the submatrix

[

B C

C
T

D

]

is non-singular, as deletion of
any vertex (here v) from a nut graph reduces the nullity to zero [21, 22].) Hence, the rank of
the red block is ≥ n− 1 and the inequality follows:

rk(A(F (Γ, v))) ≥ rk(A(Γ)) + 2ρ = n− 1 + 2ρ,

since the last 2ρ rows are linearly independent of all the other rows. Thus, η(F (Γ, v)) ≤ η(Γ),
as before.

Corollary 15. Let Γ = (G,σ) be a signed graph and v ∈ V (G) any one of its vertices. The
following statements hold:

(1) F (Γ, v) is a signed nut graph if and only if Γ is a signed nut graph.

(2) F (Γ, v) is a proper signed nut graph if and only if Γ is a proper signed nut graph.

Proof. Follows directly from Lemma 13 and Theorem 14. Namely, if Γ is proper then it is
switching equivalent to the all-positive (traditional) signed nut graph Γ′ = (G, ∅). However,
in this case F (Γ′, v) = F ((G, ∅), v) = (F (G, v), ∅). Virtually the same argument can be used
in the opposite direction.

5 Conclusion

Invocation of signed graphs as candidates for nut graphs allows extension of the orders at
which a nut graph exists, and allows proof of all cases for regular nut graphs (signed and
unsigned) with degree at most 11. As with unweighted nut graphs, signed nut graphs can
be generated by a generic construction in which the order of a smaller signed nut graph
increases from n to n + 2ρ, where ρ is the degree of the vertex chosen as the focus of this
vertex-expansion construction.
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