
Few-Shot Learning
for Low Data
Drug Discovery

Daniel Vella

Supervised by Dr Jean-Paul Ebejer

Department of Arti�cial Intelligence

Faculty of ICT

University of Malta

March, 2022

A dissertation submitted in partial ful�lment of the requirements for the
degree of M.Sc. in Arti�cial Intelligence.

Copyright ©2022 University of Malta

WWW.UM.EDU.MT

First edition, Friday 25th March, 2022

To my father

For showing me perseverance

ix

Acknowledgements

I would firstly like to sincerely thank my supervisor, Dr Jean-Paul Ebejer, to
whom this acknowledgement will not do any justice. I first had the pleasure of be-
ing taught by him in my first postgraduate year, where he captured my distracted
attention with his passion and unique way of teaching. Apart from the subject mat-
ter, the passion for what he does was one of the prime reasons I sought him out to
be my tutor. His patience, dedication and guidance were invaluable, in addition to
his empathy and motivation to push through difficult times. Having given me his
number to contact him conveniently about any dissertation related queries, I cannot
help but include his WhatsApp status, as this contemporarily consolidates what I
am trying to say about him perfectly: "Minghajr il-passjoni insiru robots" (Without
passion, we become robots).

My gratitude also goes to my family, who have supported me with kindness
and words of encouragement throughout my years of studies. This gratitude also
extends to my friends, who have heard the phrase "I need to work on my dissertation"
so much, that I’m afraid of losing a part of my personality upon its completion. To
whoever heard this phrase throughout the past months, I sincerely appreciate you. I
consider myself lucky to be surrounded by such people, and I hope I can reciprocate
the support they showed me whenever they need it. Special thanks goes to Becky
Micallef for proofreading this dissertation.

xi

Abstract

Humans exhibit a remarkable ability to learn quickly from just few examples.
A child seeing a cat for the first time can effectively identify the animal as a cat
upon future encounters. This learning ability is in stark contrast with conventional
machine learning (ML) techniques which are data hungry. This data requirement
poses a challenge for the application of ML for virtual screening (VS) in drug dis-
covery. The main goal in ligand-based VS (LBVS) is to identify active molecules that
exhibit desired therapeutic activity against a biological target, based on information
on known ligands against these targets. Data acquisition on a compound’s activity
against a biological target is resource-intensive and difficult to obtain. Hence, the
aim of this study is to quantify whether few-shot ML can be effectively used for
low-data drug discovery.

Meta-learning techniques aim to achieve the learning how to learn ability ob-
served in humans. Therefore, we explore few-shot ML for this problem domain
using the Tox21, MUV and the GPCR subset of the DUD-E datasets. In few-shot
ML, we train a model using data from a number of experimental assays, and then
use this model to generalise for new experimental assays using only a small (1-10
per class) support set. We build on the state of the art work, which is based on
Matching Networks, by Altae-Tran et al. (2017), and use their work as a founda-
tion to introduce two new architectures, the Prototypical Networks and Relation
Networks, to this domain. Additionally, we also evaluate results using PR-AUC, in
addition to ROC-AUC as in the original work, providing better interpretability of
the performance of the proposed models on highly imbalanced data.

Our results are consistent with those of the state of the art on Tox21 and MUV
datasets. To the best of our knowledge, the DUD-E dataset has not been previ-
ously explored for the few-shot learning domain. Our application of the Prototypi-
cal Networks, improved with the iterative-refinement LSTM, achieves overall better
performance than the state of art on Tox21 data. On MUV data, the baseline mod-
els outperform the few-shot learning models. On the GPCR subset of DUD-E, our
results are not conclusive as on one target the models obtained outstanding per-
formance and inferior performance on the other. We also experiment with different
embeddings on the Tox21 data and find that learned graph embeddings consistently
perform better than extended-connectivity fingerprints, a popular LBVS approach.

Based on our findings, we can conclude that the effectiveness of few-shot learn-
ing is highly dependent on the nature of the data available. The few-shot learning
models struggle to perform consistently on MUV and DUD-E data, in which the
active compounds are structurally distinct. However, on Tox21 data, which is typ-
ically used for lead optimisation, the few-shot ML models perform well and our
contribution of the Prototypical Networks even outperforms the state of the art.
Additionally, training these networks is much faster (up to 190% faster) and for
comparable, or better results, take a fraction of the time to train.

Contents

1 Introduction 1
1.1 Motivation . 5
1.2 Aims and Objectives . 6
1.3 Approach . 7
1.4 Document Structure . 9

2 Background & Literature Overview 11
2.1 Drug Discovery Process . 11
2.2 Virtual Screening . 13

2.2.1 Structure-based Virtual Screening (SBVS) 14
2.2.2 Ligand-based Virtual Screening (LBVS) 14

2.3 Small-Molecule Databases . 16
2.3.1 Toxicology in the 21st Century (Tox21) 17
2.3.2 Maximum Unbiased Validation (MUV) 18
2.3.3 Directory of Useful Decoys - Enhanced (DUD-E) 19

2.4 Machine Learning . 19
2.4.1 Feed-forward Neural Networks . 21
2.4.2 Convolutional Neural Networks . 23
2.4.3 Recurrent Neural Networks . 25
2.4.4 Graph Neural Networks (GNNs) . 26
2.4.5 Evaluation Metrics . 34

2.5 Learning with Low Data . 36
2.5.1 Problem Definition . 37
2.5.2 Siamese Networks . 38
2.5.3 Matching Networks . 40

xii

Contents xiii

2.5.4 Prototypical Networks . 41
2.5.5 Relation Network . 42

2.6 Molecular Machine Learning . 43
2.6.1 Molecular Representation . 44
2.6.2 Open-source Libraries . 50

2.7 Related Work . 52
2.8 Summary . 56

3 Methodology 57
3.1 Overview . 57
3.2 Data Acquisition . 60
3.3 Generating the Molecular Representation 61

3.3.1 Standardise SMILES Molecules . 63
3.3.2 Generate Molecular Features . 64
3.3.3 Molecular Graph Generation . 65

3.4 Few-Shot Machine Learning . 66
3.4.1 Episodic Learning . 67
3.4.2 Learning a Molecular Embedding 69
3.4.3 Training a Few-shot Machine Learning Model 73
3.4.4 ECFPs vs GCNs Learned Embeddings Experiments 76

3.5 Training Process and Hyper-parameters . 77
3.5.1 Performance Monitoring . 77

3.6 Testing . 78
3.7 Evaluation . 79
3.8 System and Software Specifications . 80
3.9 Summary . 81

4 Results & Evaluation 83
4.1 Revisiting aims and objectives . 84
4.2 Benchmark Machine Learning Models . 85
4.3 Few-shot Machine Learning Results . 86

4.3.1 Evaluation Overview . 87
4.3.2 ROC-AUC and PR-AUC Scores . 89
4.3.3 ECFP vs GCN Learned Embeddings on Tox21 103

4.4 Machine Learning Models Training Run Times 104
4.5 Discussion . 104
4.6 Summary . 112

xiv Contents

5 Conclusions 115
5.1 Revisiting this Study’s Aims and Objectives 117
5.2 Critique and Limitations . 119
5.3 Future Work . 120
5.4 Final Remarks . 122

Appendix A Running Jupyter Notebooks 125

References 127

List of Figures

1.1 Overview of the Drug Discovery Process . 2
1.2 Few-shot Classification Example on Tox-21 . 4

2.1 Drug Discovery Process . 12
2.2 Ligand and target binding . 12
2.3 Screening methods . 14
2.4 SBVS and LBVS Methods Criteria . 15
2.5 Structural similarity spectrum. 16
2.6 MUV Data Selection Process . 18
2.7 Model capacity . 21
2.8 Simple Neural Network . 22
2.9 Activation functions . 23
2.10 2D CNN . 24
2.11 Recurrent Neural Network . 25
2.12 LSTM . 26
2.13 Graph Deep Learning Operations . 28
2.14 2D vs Graph Convolutions . 29
2.15 Graph Convolution Function . 30
2.16 Graph Convolutions . 32
2.17 Convolutional GNN Architecture . 34
2.18 Confusion Matrix . 35
2.19 Confusion Matrix Visualisation . 35
2.20 Meta-training and meta-testing . 38
2.21 High level schematic of Siamese network . 39
2.22 Matching Networks Architecture . 41

xv

xvi List of Figures

2.23 Prototypical Networks . 42
2.24 Relation Networks . 43
2.25 SMILES generation in canonical order . 45
2.26 ECFP Iterative stage. 47
2.27 Graph representation of acetic acid . 48
2.28 Learned Embedding through a GCN . 50
2.29 Molecule Net Datasets . 51
2.30 Embedding functions for molecules . 53
2.31 Iterative Refinement of Embeddings . 54
2.32 Schematic of one-shot learning in drug discovery 55

3.1 Schematic of the major parts in our architecture 59
3.2 Molecular Representation Schematic . 62
3.3 SMILES to RDKit Molecule . 63
3.4 DGL Graph Visualisation . 66
3.5 Episodic Learning Schematic . 67
3.6 Graph Neural Network Schematic . 69
3.7 Batching of Graphs . 70
3.8 Learning an embedding through a GCN. 71
3.9 Layers for graph processing in our GCN. 72

4.1 Tox21 Test Targets ROC Box Plots for 10+/10- Support Set 90
4.2 Tox21 Test Targets PRC Box Plots for 10+/10- Support Set 90
4.3 ROC Scores for Matching Networks for target MUV-858 101
4.4 Visualising Training Times for Machine Learning Models 106
4.5 PRC plot for Tox21 SR-HSE - 10+/10- support set. 108
4.6 PRC plot for Tox21 SR-HSE - 1+/1- support set. 108
4.7 PRC plot for Tox21 SR-MMP - 10+/10- support set. 108
4.8 PRC plot for Tox21 SR-MMP - 1+/1- support set. 108
4.9 PRC plot for Tox21 SR-p53 - 10+/10- support set. 108
4.10 PRC plot for Tox21 SR-p53 - 1+/1- support set. 108
4.11 Confusion Matrix for Tox21 SR-HSE - 10+/10- support set. 109
4.12 Confusion Matrix for Tox21 SR-HSE - 1+/1- support set. 109
4.13 Confusion Matrix for Tox21 SR-MMP - 10+/10- support set. 109
4.14 Confusion Matrix for Tox21 SR-MMP - 1+/1- support set. 109
4.15 Confusion Matrix for Tox21 SR-p53 - 10+/10- support set. 109
4.16 Confusion Matrix for Tox21 SR-p53 - 1+/1- support set. 109

List of Figures xvii

4.17 ROC plot for MUV-832 with a 1+/10- support set. 111
4.18 Confusion Matrix for MUV-832 with a 1+/10- support set. 111
4.19 ROC-AUC scores between embeddings on Tox21 PN 10-shot support sets. . . 113
4.20 PR-AUC scores between embeddings on Tox21 PN 10-shot support sets. . . . 113

List of Tables

2.1 Examples of SMILES representations. 46
2.2 GCN Architecture used in the state of the art work. 54

3.1 Tox21 Dataset Composition . 61
3.2 MUV Dataset Composition . 62
3.3 Composition of the GPCR subset from DUD-E 62
3.4 Feature vector size for molecular graphs . 64
3.5 Support set composition . 68
3.6 Graph Convolution Network Architecture . 72
3.7 Benchmark Neural Network for Few-Shot Learning 74
3.8 The architecture for generating the relation score using function gq 76
3.9 Neural Network Architecture for ECFPs. 77
3.10 Hyperparameters and Optimisation . 78
3.11 Python libraries utilised for this project. 80
3.12 Hardware provisioned in Google Colab. 81

4.1 Dataset actives and inactive/decoys proportions. 85
4.2 ROC-AUC and PR-AUC Scores for TOX21 SR-HSE Target. 92
4.3 ROC-AUC and PR-AUC Scores for TOX21 SR-MMP Target. 93
4.4 ROC-AUC and PR-AUC Scores for TOX21 SR-p53 Target. 94
4.5 ROC-AUC and PR-AUC Scores for MUV MUV-832 Target. 96
4.6 ROC-AUC and PR-AUC Scores for MUV MUV-846 Target. 98
4.7 ROC-AUC and PR-AUC Scores for MUV MUV-852 Target. 99
4.8 ROC-AUC and PR-AUC Scores for MUV MUV-858 Target. 100
4.9 ROC-AUC and PR-AUC Scores for MUV MUV-859 Target. 101
4.10 ROC-AUC and PR-AUC Scores for DUD-E GPCR adrb2 Target. 102

xviii

List of Tables xix

4.11 ROC-AUC and PR-AUC Scores for DUD-E GPCR cxcr4 Target. 103
4.12 ROC-AUC and PR-AUC Scores for Prototypical Networks on Tox21 with

ECFP or GCN embeddings . 105
4.13 Comparing our best ROC-AUC scores with the SOTA results on Tox21. 110

List of Abbreviations

ADMET Absorption, Distribution, Metabolism, Excretion, and Toxicity

ADR Adverse drug reactions

ANN Artificial Neural Network

AUC Area under the Curve

CNN Convolutional Neural Network

DGL Deep Graph Library

DL Deep Learning

DNN Deep Neural Network

DUD Directory of Useful Decoys

DUD-E Database of Useful (Docking) Decoys - Enhanced

ECFP Extended Connectivity Fingerprints

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

HTS High-Throughput Screening

LBVS Ligand-based virtual screening

LSTM Long-Short Term Memory

xxi

xxii List of Abbreviations

MN Matching Network

ML Machine Learning

MLP Multilayer perceptron

MUV Maximum Unbiased Validation

RecGNN Recurrent Graph Neural Network

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operator Characteristic

SAR structure-activity relationships

SBVS Structure-based virtual screening

SIDER Side-Effect Resource

SMILES Simplified Molecular Input Line Entry System

SPP Similar Property Principle

TanH Hyperbolic Tangent

Tox21 Toxicology in the 21st Century Program

PN Prototypical Network

PRC Precision-Recall Curve

RN Relation Network

VS Virtual Screening

1
Introduction

We humans exhibit a remarkable ability to learn new concepts fast and efficiently. A
child seeing a cat for the first time is able to discriminate future encounters with cats
from other animals. This ability is in stark contrast with conventional supervised end-
to-end machine learning, which is data hungry and requires a plethora of data points
to develop an effective model. Meta-learning reframes the traditional machine learn-
ing problem, allowing machine learning models to learn using only a few examples.
Humans have an innate capability to learn how to learn, and bridging this gap between
human and machine learning is beneficial, particularly in domains where data avail-
ability or acquisition is difficult, such as the drug-discovery domain.

The drug-discovery process is known for its exorbitant costs and resource expendi-
ture. Hughes et al. (2011) report that from the start of the process to the launch of the
medicinal product, costs can exceed one billion dollars and the process can take up to
15 years. Every stage visualised in Figure 1.1 can take years to complete. Moreover,
data acquisition for lead identification and optimisation is also expensive and difficult
to acquire, as this requires testing of a large number of compounds in-vitro and in-vivo.
In lead identification, molecules which exhibit biological activity against a target are
identified. Following identification, molecules need to pass the lead optimisation step,
where characteristics such as absorption or toxicity in the body are determined.

The main goal in the drug discovery process is the development of active com-
pounds that exhibit therapeutic effects against targets. These compounds, known as
ligands, etymologically meaning to bind, are molecules that upon binding to a target
trigger some biological activity. A target is a broad term, encompassing genes, proteins,
and molecular functions or pathways associated with a disease. When ligands exhibit
the desired biological activity, they are referred to as leads (Arya and Coumar, 2021).

1

Chapter 1. Introduction

Figure 1.1: Overview of the drug discovery, development and approval pro-
cess. Thousands of compounds are filtered down to one approved drug-like
compound. Reproduced Figure.1

The dominant approach for the identification of new leads is High-Throughput Screen-
ing (HTS), a physical in-vitro screening process where large numbers of compounds are
tested against a biological target. HTS makes use of robotics to screen a large number of
compounds efficiently, but this process is costly in time and resources. Computational
advancements have enabled the use of in-silico methods to speed up the identification
and optimisation of leads. Virtual screening is an in-silico compound database search
with the goal of finding compounds which have a high probability of exhibiting activ-
ity against a specific biological target. One of the benefits of this approach is to narrow
down the search of thousands of compounds that make their way to physical labora-
tories, effectively reducing resource expenditure. Virtual screening can be sub-divided
into two key categories, namely structure-based (SBVS) and ligand-based virtual screen-
ing (LBVS). The former uses prior knowledge on the biological target, while the latter,
around which this study is focused, makes use of knowledge of known ligands. This
method of screening is a neighbourhood search, utilising information on known active
molecules to identify new ligands. LBVS capitalises on structure-activity relationships
(SARs), whereby ligands are identified through some similarity function against known
active ligands (Hamza et al., 2012). This notion is based on the similar property prin-
ciple (SPP), which states that molecules showing similar structural conformations often

1Accessed From: https://bit.ly/3mdKTV8 - Last Accessed: 26 October 2021.

2

Chapter 1. Introduction

exhibit similar biological activity (Johnson and Maggiora, 1990), allowing known active
ligands to be used as templates for new leads.

The datasets used for ligand-based virtual screening consist of a set of active ligands
(the positive class) along with inactives or decoys for a particular assay (the negative
class), usually for multiple targets. One common representation for molecules in these
datasets are Simplified Molecular Input Line Entry System (SMILES) strings (Weininger,
1988). The datasets used for this study contain a set of experimental assays with binary
labels showing whether a molecule is active or not for that specific experimental assay.
One challenge for machine learning techniques on LBVS is that these datasets are highly
imbalanced, containing a much higher proportion of inactives or decoys than actives.
Data on active compounds is both resource-intensive and difficult to obtain. Hence,
this imbalance should be taken into consideration when evaluating the performance of
machine learning models.

Molecules are complex structures, consisting of atoms and bonds, which make up
different conformations of the molecule. One challenge in the field of cheminformatics
is the representation of molecules in the computational space. The classical notation of
compounds is the empirical formula such as C3H7NO2, however, this holds no infor-
mation on how the atoms are linked together. In fact, this particular formula can refer
to alanine, sarcosine, and lactamide. Molecular representations such as Extended Con-
nectivity Fingerprints (ECFP) (Rogers and Hahn, 2010) and graph convolution learned
embeddings (Duvenaud et al., 2015) contain more information on the properties of the
molecule, and can be used as inputs to machine learning networks. A graph is formally
defined as a set of nodes and a set of edges, where each edge connects a pair of nodes.
This notion intuitively translates to molecular representations where atoms are the set
of nodes, and the bonds are the set of edges. Graphs are 2D objects, so spatial properties
of a molecule such as bond angles and chirality are not inherent to the data object, but
are instead encoded as node or edge attributes (David et al., 2020). Using graph con-
volutional neural networks, embeddings of molecular graphs, augmented with atom
feature information can be learned, which could be of benefit over topological molecu-
lar representations such as ECFP (Wu et al., 2018).

Molecular embeddings in computational space can be subsequently used as inputs
to train machine learning models. The cost and difficulty of data acquisition in the drug
discovery domain has been established from the start. Building on this notion, in this
study, we aim to explore few-shot learning for virtual screening to address the low-data
problem in this problem domain. The ability for a machine learning model to learn new
concepts fast with just a few training examples would be invaluable for virtual screen-
ing. Meta-learning aims to achieve this generalising capability for new environments

3

Chapter 1. Introduction

that have not been encountered during training time. Meta-learning models are trained
using a variety of training tasks and optimised for performance over a distribution of
tasks, including unseen ones. Few-shot classification is a type of meta-supervised learn-
ing. Learning consists of a series of episodes, each consisting of a N-way K-shot clas-
sification task, effectively simulating the conditions at testing time. The way refers to
the number of classes we have per task and the number of samples we have is the shot
component. These samples make up the support set (Snell et al., 2017). During test time,
a small support set is sampled from new, previously unseen targets, and these few data
points are used by the model to generalise for the activity of query molecules against
this new target (Vinyals et al., 2016).

Figure 1.2: 2-way 3-shot few-shot classification. Training a meta-learner on
a set of experimental assays, and generalising for an unseen assay in the
Tox-21 dataset.

We highlight that few-shot learning in the domain under study is in contrast to other
domains such as computer vision, where the model is trained to recognise new classes.
For example, given a few images of a lion as the support set, the model must generalise
for new unseen images of a lion. In this domain, the challenge is to generalise for the
behaviour of molecules in experimental assays which are related but not identical to
the assays in the training collection. Given a few molecules from new experimental
assays, can the model predict the activity of other molecules in this new assay? Thus,
the molecules might have already been seen during training, but the corresponding

4

Chapter 1. Introduction 1.1. Motivation

label would be for another distinct experimental assay. Figure 1.2 illustrates this method
of learning using only 2 assays as training data for a 2-way 3-shot few-shot classifier.

In this study, we explore the application of a number of few-shot learning architec-
tures including, in chronological order, siamese networks (Koch et al., 2015), Matching
Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al., 2017) and Relation
Networks (Sung et al., 2018). This group of architectures fall under the umbrella of
metric-based meta-learning. In our study, we embed molecule representations using
graph convolution networks, and then use or learn a distance function over these em-
beddings. Effectively, metric-based learners seek to learn a relationship between the
input embeddings in the task space. For the purposes of this study, few-shot learning
refers to training with as little as one example per class, to a maximum of 10 examples
per class. Training with only one example per class is referred to as one-shot learning
(Koch et al., 2015; Vinyals et al., 2016).

1.1 | Motivation
The discovery and development of drugs is an expensive and resource-intensive pro-
cess. Moreover, the probability of success for drug development programs is low (Hay
et al., 2014; Wong et al., 2019). Even upon identification of a small-molecule compound
that achieves a desired therapeutic activity, attrition rates are high as the compound
usually fails for other reasons such as poor absorption, distribution, metabolism and
excretion (ADME) or toxicology characteristics (Waring et al., 2015). It is difficult to
predict such characteristics about the candidate molecule when only a small amount of
related biological data is available. Therefore, the lead identification and optimisation
step in drug discovery is essentially a low-data problem (Altae-Tran et al., 2017). The
applicability of machine learning to the lead identification and optimisation step of the
drug discovery process is hindered by the requirements for the plethora of data required
to train a model. In the past years, machine learning for the low-data domain has been
applied with success for the computer vision domain (Koch et al., 2015; Snell et al., 2017;
Vinyals et al., 2016). Studies have shown that it is possible to train a model using only a
few data points. Few-shot learning relieves the burden of collecting large-scale labelled
data and makes the learning of rare cases possible (Wang et al., 2020). However, similar
research ventures in the drug discovery are limited. Thus, in this work, we explore the
generalising capabilities of machine learning models using only a few training exam-
ples. The end goal is to successfully classify the predicted activity of a molecule in an
unseen experimental assay, using only a few known ligands from this assay. This falls

5

Chapter 1. Introduction 1.2. Aims and Objectives

within the domain of ligand-based virtual screening as we make use of information on
known ligands to identify new ones for a specific experimental assay.

Altae-Tran et al. (2017) introduce a deep-learning architecture for few-shot learn-
ing in drug discovery, building on past work in metric-based meta-learning. The au-
thors propose the iterative refinement long short-term memory (LSTM) which builds
further on the Matching Networks (Vinyals et al., 2016), originally proposed for the
computer vision domain, by introducing iterative refinement of embeddings using long-
short term memory (LSTM) networks. We will explore and quantify the effectiveness
of such machine learning techniques in the drug discovery domain. Additionally, to
our knowledge, no attempts have been made to explore subsequent developments in
the few-shot learning domain following the Matching Networks application by Altae-
Tran et al. (2017). Thus, in this study, we will draw inspiration from successful few-shot
learning approaches in other domains, such as the Prototypical (Snell et al., 2017) and
Relation (Sung et al., 2018) Networks, and apply the same concepts to this problem do-
main.

1.2 | Aims and Objectives
The aim of this study is to determine the efficacy of low-data machine learning for
Ligand-based virtual screening (LBVS) for the lead identification and optimisation part
of the drug discovery process. We explore whether a machine learning model can gener-
alise well enough to classify the activity of molecules in a new experimental assay using
only a few examples as the support set, after being trained for similar tasks on other
related, but not identical experimental assays. In this study, the following objectives are
achieved to satisfy the defined aim:

1. Build molecular representations for the computational space using ECFP and neu-
ral graphs.

2. Establish conventional supervised machine-learning models as a baseline bench-
mark for the few-shot learning approaches.

3. Investigate the performance of different few-shot learning architectures, taking
into consideration the unbalanced nature of the datasets at hand.

4. Investigate the performance of low-data machine learning models on different
datasets/tasks.

6

Chapter 1. Introduction 1.3. Approach

5. Determine whether one molecular representation is superior to the other for few-
shot learning.

Our aim and objectives are essentially designed to answer two main research ques-
tions, which serve as the foundation for this research study.

Research Questions

1. Since we have limited active data, a model that can generalise using only a
few examples is highly advantageous. Therefore, are few-shot machine learning
techniques effective for low-data ligand-based virtual screening?

2. Do Prototypical (Snell et al., 2017) and Relation networks (Sung et al., 2018)
offer better performance for ligand-based virtual screening than the Matching
Network (Vinyals et al., 2016) component in the established state of the art (Altae-
Tran et al., 2017)?

Additionally, the implementations of our molecular representation pipelines and
few-shot learning models are open sourced (see Appendix A) to facilitate the reproduc-
tion of results and further research. The models are also in the process of being possibly
integrated within the DeepChem project (Ramsundar et al., 2019).

1.3 | Approach
We start from a comprehensive review of the current state of the art approaches in the
drug discovery domain for few-shot meta-learning. The state of the art, identified to be
the work by Altae-Tran et al. (2017), set our initial trajectory. Following this, another
review ensued in which we explored few-shot learning approaches in other domains,
specifically the computer vision domain.

Following the literature review, we reproduce the work of Altae-Tran et al. (2017).
While the authors open-sourced their primitives and machine-learning models, the code
is highly dependent on the DeepChem library and at the time of writing, their imple-
mentation was not functional as it required outdated versions of both Tensorflow and
DeepChem. Therefore, their work was reimplemented from scratch. We also attempt to
draw inspiration from other advances in the few-shot meta-learning domain to further
build on the work that currently exists in the drug discovery domain.

Our machine learning pipeline is composed of the following main components:

7

Chapter 1. Introduction 1.3. Approach

1. Data Loading. The datasets utilised for this study are the Toxicology in the 21st
Century Program (Tox21) (NIH, 2014), Maximum Unbiased Validation (MUV)
(Rohrer and Baumann, 2009), and the GPCR subset of Database of Useful (Dock-
ing) Decoys - Enhanced (DUD-E) (Mysinger et al., 2012). These are loaded as CSV
files at the start of our machine learning pipeline.

2. Conversion of SMILES to ECFP or Graphs. We experiment with different molec-
ular representations, namely ECFP and graph convolutions.

3. Learning the molecular embedding. A neural network learns the molecular em-
beddings to output an n-sized vector that is used as input further down the ma-
chine learning pipeline. In the case of graphs, we implement a graph convolu-
tional network to learn the embedding.

4. Training the few-shot learning model. Each dataset is composed of a number of
assays which are reserved for training. Training is conducted in episodes made
up of 2-way K-shot classification tasks, where we experimented with varying
amounts of samples for each class for the support set. The range of sampled values
for each class making up the support set was from one example to 10 examples per
class. The learned embeddings from the previous step are refined using LSTMs as
proposed in the state of the art work (Altae-Tran et al., 2017). The implemented
metric-based architectures are Siamese Networks, Matching Networks, Prototyp-
ical Networks and Relation Networks.

5. Testing the model on new experimental assays. A subset of assays in each dataset
are reserved for testing, from which we randomly sample a support set, which
the model uses to predict the activity of the remaining queries against the new,
previously unseen target.

We finally compare and contrast the results obtained with the results reported in
Altae-Tran et al. (2017). Additionally, we provide more reliable metrics for the problem
domain to improve the interpretability of the machine learning models. We also conduct
and present results on few-shot learning for the DUD-E dataset, for which to the best of
our knowledge, no other similar attempt has been done prior to our study.

8

Chapter 1. Introduction 1.4. Document Structure

1.4 | Document Structure
The rest of this dissertation is composed of a total of five chapters. The four chapters to
follow are outlined in the following list;

⌅ In the Background and Literature Overview chapter, we provide a brief overview
of the drug discovery process and dive deeper into virtual screening. Molecular
datasets relevant to this study are presented. We present commonly used com-
putational representations of molecules, such as fingerprints and graphs. These
form the inputs of our machine learning networks, for which we lay the foun-
dations through the introduction of feed-forward, convolutional, recurrent and
graph neural networks. We finally delve into the crux of this study, few-shot learn-
ing. Existing literature for few-shot learning is presented, along with state of the
art developments in the molecular domain.

⌅ In the Methodology chapter, we present the approach taken to explore and build
a relevant study on few-shot learning in the drug discovery domain. The chapter
expands on the machine learning models and any resources used for the devel-
opment of the presented architectures. Arguments supporting the choice of such
architectures are also presented to add relevance to our study.

⌅ In the Results and Discussion chapter, we present the conducted experiments and
the respective results. We discuss results and compare and contrast our results
with that of existing state of the art literature in the field. We also explain how our
work builds on the state of the art literature by drawing inspiration from advances
in few-shot learning for other domains, specifically the image domain.

⌅ In the Conclusion chapter, we culminate the discussion by summarising the work
carried out while highlighting our contributions to few-shot learning in the ligand-
based virtual screening domain. We conclude by proposing relevant future work
that can provide relevant contributions to the field by further building on this and
other studies.

9

2
Background & Literature Overview

In this chapter, we expound on the theoretical aspects required for the understanding
and appreciation of this study. This study revolves around cheminformatics, coined
in 1998 (Brown), which is the application of computational techniques for chemistry.
Cheminformatics involves the use of in-silico techniques to guide the drug discovery
and development process through the utilisation of molecular databases (Prakash and
Gareja, 2010). We focus mainly on virtual screening, which is used to computationally
screen compound libraries to identify potential candidates likely to exhibit therapeutic
activity against targets, and further optimisation on these leads. After introducing these
concepts, the chapter introduces and expands on machine learning concepts required
for this study, including few-shot learning techniques. Finally, we look at the state of
the art work for few-shot learning for this problem domain.

2.1 | Drug Discovery Process
The drug discovery process is multifaceted, mainly involving the identification and de-
velopment of a compound that can be used to treat and manage a disease condition. The
process is time-consuming, resource intensive, and the probability of success for drug
development is reported to be low (Hay et al., 2014; Wong et al., 2019). Moreover, attri-
tion rates of compounds which make it to further stages of the drug discovery process is
high, even in the final clinical phases. In fact, thousands of compounds are tested, and
only one may eventually make it to market. From process inception to the launch of the
medicinal product, the process can take up to 15 years and costs can exceed $1 billion
(Hughes et al., 2011).

Initial research generates data to formulate a hypothesis about the effect observed

11

Chapter 2. Background & Literature Overview 2.1. Drug Discovery Process

Figure 2.1: High-level schematic of the drug discovery process. Adapted
from Hughes et al. (2011).

from activation or inhibition of a biological target. A target is a broad term that can en-
compass anything from molecular entities, such as genes, proteins or RNA, to biological
functions such as molecular functions or pathways associated with a disease. The pri-
mary goal in the drug discovery process is to identify and develop ligands that exhibit
the desired therapeutic effect against identified targets (see Figure 2.2).

Figure 2.2: Ligand and target protein binding to create a complex. Repro-
duced Figure.1

A thorough search for an active drug-like small molecule (i.e. the ligand), referred
to as the development candidate, ensues. This is part of the lead discovery phase and
involves both hit identification and lead optimisation. Large libraries of ligands that
can interact with the target need to be screened to identify hits. A hit molecule refers
to one that shows consistent activity in an assay. The search requires multiple screen-
ing approaches, involving the interplay between both experimental and computational
approaches to effectively guide the search in a more productive way (Reddy et al., 2007).

1Accessed from: https://kambria.io/blog/modern-ai-drug-discovery/. Last Accessed: 15 Nov 2021

12

Chapter 2. Background & Literature Overview 2.2. Virtual Screening

High Throughput Screening (HTS) technology utilises automation and robotics to
identify active molecules from thousands of chemicals against target assays. Assays
used in HTS can be subdivided into two categories, namely biochemical assays and cell-
based assays. Biochemical assays make use of homogeneous reactions to test for binding
or affinity of compounds with the target of interest (Zang et al., 2012). However, such
activity might not be representative of the activity in a cellular context, so in vitro cell-
based assays, as the name implies, addresses this problem by making use of cultured
cells for testing (An and Tolliday, 2010). A typical HTS process involves the testing
to obtain early information on Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) of tested compounds. The results from such screening techniques
can be used to build databases of molecular activity, however, this process is resource-
intensive and expensive.

Computer-aided drug discovery and design approaches optimise the search, thus
reducing both the exorbitant costs that come with the aforementioned experimental
efforts and the time to market of developed drugs. Computational methods, such as
Virtual Screening (VS), afford the prediction of certain properties in order to screen the
most promising compounds (Van De Waterbeemd and Gifford, 2003), effectively filter-
ing molecule databases for compounds that make it to later stage in-vitro processes.

Screening is used to identify hits and optimise leads, which progress further in the
drug discovery pipeline to further optimisation, drug development and clinical phases
(refer to Figure 2.1) (Hughes et al., 2011). This study is related to the lead discovery
and lead optimisation part of the drug discovery process. Our study further focuses on
ligand-based virtual screening (LBVS) which is explained in more detail in Section 2.2.2.

2.2 | Virtual Screening
VS is an in-silico, compound database searching process with the goal of finding com-
pounds which have a high probability of exhibiting activity against a specific biological
target. Virtual screening is subdivided into two main categories, namely structure-based
(SBVS) and ligand-based (LBVS) (Lavecchia and Di Giovanni, 2013). The starting point
for the former is the target protein itself, while for the latter category, it is a known lig-
and. This study focuses on LBVS predictive models, however, it is worth noting that the
two categories may be combined, and most current virtual screening studies do (Fer-
reira et al., 2015). Both screening techniques can be used in conjunction if both the 3D
structure of the target, affording the use of SBVS techniques, and a number of active
compounds, affording the use of LBVS techniques, are known (refer to Figure 2.4).

13

Chapter 2. Background & Literature Overview 2.2. Virtual Screening

Figure 2.3: Screening methods involve the interplay of experimental and
computational screening approaches to filter through databases in a rational
way. Adapted from Reddy et al. (2007).

2.2.1 | Structure-based Virtual Screening (SBVS)
SBVS techniques require knowledge about the 3-dimensional (3D) structure of a biolog-
ical target. Libraries of small molecules are screened against this target by docking into
the active site of the target using computation techniques. The binding affinity between
the molecule and the target is evaluated and ranked using a scoring function (Lavecchia
and Di Giovanni, 2013). Molecules can take on multiple spatial arrangements, better
referred to as conformations, due to the rotation around single bonds. As a result, scoring
is not a trivial computational task, as molecular docking involves (i) the exploration of
a large conformational space and (ii) the calculation of the energy associated with each
conformation (Ferreira et al., 2015) to compute protein-ligand interactions.

2.2.2 | Ligand-based Virtual Screening (LBVS)
A ligand, etymologically meaning "to bind", is a molecule that can bind to a protein
molecule, resulting in some biological activity. LBVS, also referred to as neighbourhood
behaviour search, makes use of the information available on known active molecules to
identify new ligands. One method is based on molecular descriptor exploration from

14

Chapter 2. Background & Literature Overview 2.2. Virtual Screening

Figure 2.4: SBVS and LBVS Methods Criteria. Adapted from Pal (2016).

known active compounds, in which a set of mutual descriptors from known actives are
used to filter out molecules from a database (Geppert et al., 2010). Another technique in
LBVS is the use of structural features from known ligands to generate pharmacophore
models (Spitzer et al., 2010). A pharmacophore is a substructure of a molecule that
is responsible for specific interactions. Thus, these techniques are used to reduce the
chemical space to be searched further down the drug-discovery pipeline. Databases
of molecules are searched to identify either structurally similar molecules, or ones that
possess a common pharmacophore with the known active (pharmacophore substruc-
ture search) (Reddy et al., 2007). The notion of LBVS techniques is in contrast with that
of SBVS. The latter uses prior knowledge about the properties of the biological target,
while LBVS uses prior knowledge on known ligands.

LBVS capitalises on structure-activity relationships (SAR)s, whereby new ligands
are identified by evaluating the similarity between candidate ligands and known active
ligands against a particular target (Hamza et al., 2012). One of the theories underpin-
ning similarity searching techniques is the Similar Property Principle (SPP), stating that
molecules with close structural similarity often exhibit similar biological activity (John-
son and Maggiora, 1990). Figure 2.5 visualises the relationship between identified hits
and the structural similarity of the molecule. Similarity-based methods are cornerstones
of chemoinformatics. Based on the SPP, known active ligands can be used as templates
for finding other molecules with a high probability of exhibiting affinity to the target.

However, Maggiora (2006) postulates that SARs are not always consistent with the
SPP as in some cases, similar molecules may exhibit drastic changes in activity. This is
referred to as the activity cliff, signifying the ratio between the similarity of two molecules
and the difference in their activity. Such inconsistencies are a limitation of SARs and re-

15

Chapter 2. Background & Literature Overview 2.3. Small-Molecule Databases

Figure 2.5: Structural spectrum of thrombin inhibitors, visualising hits ar-
ranged within layers of increasing structural diversity from top to bottom
and left to right. Structural similarity is compared using the Tanimoto co-
efficient on molecular fingerprints based on 166 MACCS structural keys.
Reproduced from Eckert and Bajorath (2007).

sult in outliers in the data. Maggiora (2006) concludes that advancements in computa-
tional techniques such as machine learning can ameliorate SAR models in such scenar-
ios, however, the quality of data and the molecule representation defining the chemical
space of the molecules is a limiting factor.

2.3 | Small-Molecule Databases
Small-molecule databases contain records consisting of a SMILES representation (see
Section 2.6.1) and a Boolean value (0/1) for classification tasks indicating the molecule’s
activity in a specific assay. Regression tasks are also available for certain molecule
databases, such as QM7 and Free-Solv (Wu et al., 2018). However, they are beyond
the scope of this study. The datasets relevant for this study are made up of active
and inactive or decoy compounds against a target in a specific assay. Typically, each
dataset contains multiple assays for different pathways or target proteins. The data
for active molecules is empirically obtained through in-vitro or in-vivo experimentation
(Réau et al., 2018). On the other hand, the data for decoys is not always empirical. It

16

Chapter 2. Background & Literature Overview 2.3. Small-Molecule Databases

is also worth mentioning that such datasets are highly imbalanced, with the propor-
tion of the number of inactive molecules being significantly greater than that of active
molecules. For example, in clinical cases there is unavoidable higher data for the control
groups than the treatment groups (Malin et al., 2013).

⌅ Actives. Molecules which are empirically known to bind to a target, successfully
active or inhibit a biological or chemical function. Molecules with a high confi-
dence of bio-activity through virtual screening can also be regarded as actives.

⌅ Inactive. True inactive molecules are ones that are confirmed to be inactive through
experimental assays. Inactivity implies that when in contact with a target, no
desired activation or inhibition is observed (Réau et al., 2018). Putative inactive
molecules (also called decoys) are also used in datasets.

⌅ Decoy. Given that data on inactive compounds is scarce in literature, putative
inactive compounds are used instead. Decoy compounds are assumed to be in-
active and not experimentally confirmed to be truly inactive. Therefore, false
positives may arise. Structure-based virtual screening (SBVS) techniques such as
protein-ligand docking and scoring are used to discriminate between active and
inactive molecules, however several biases can influence this outcome (Verdonk
et al., 2004). One example of this bias includes the difference in chemical space
between active and decoys, leading to artificial overestimation of the molecule’s
activity (Bissantz et al., 2000). Databases such as the MUV (see Section 2.3.2) and
DUD-E (see Section 2.3.3) were designed to minimise such biases.

For the purposes of this study, we explore three main datasets, namely the Toxicol-
ogy in the 21st Century (Tox21) (Huang et al., 2016), the Maximum Unbiased Validation
(MUV) (Rohrer and Baumann, 2009) and the Directory of Useful Decoys - Enhanced
(DUD-E) (Mysinger et al., 2012). We expand on these datasets in the sections to follow.

2.3.1 | Toxicology in the 21st Century (Tox21)
The Tox21 library contains several thousand compounds, which have been tested through
quantitative HTS against a number of nuclear receptors (NR) and stress response (SR)
pathway assays. The National Center for Advancing Translational Sciences (NCATS)
launched the Tox21 Data Challenge in 2014 to crowdsource data analysis on a subset
of the Tox21 library, containing 10,000 compounds tested against a total of 12 NR and
SR pathway assays (Huang et al., 2016). Tox21 is a toxicology dataset and is therefore
used primarily in lead optimisation, to filter out leads which exhibit toxicity against a

17

Chapter 2. Background & Literature Overview 2.3. Small-Molecule Databases

number of biological targets. Toxicity is one component of the ADMET, which plays an
important role in drug discovery.

The NR assays provide information for the activity against a number of targets,
namely the Androgen Receptor (AR), Androgen Receptor Ligand Binding Domain (AR-
LBD), Aryl Hydrocarbon Receptor (AhR), Estrogen Receptor (ER), Estrogen Receptor
Alpha Ligand Binding Domain (ER-LBD) aromatase inhibitors, and the Peroxisome
Proliferator Activated Receptor gamma (PPAR-gamma). The SR assays provide infor-
mation about the activity against antioxidant response element (ARE), ATPase Family
AAA Domain Containing 5 (ATAD5), heat shock response (HSE), Mitochondrial Mem-
brane Potential (MMP) and Cellular tumor antigen (p53) assays (NIH, 2014).

2.3.2 | Maximum Unbiased Validation (MUV)

Figure 2.6: A) Artificial enrichment is avoided by having larger distances
between actives when compared to distances between decoys and actives.
B) If the opposite happens, artificial enrichment is the result. C) The 500th
nearest neighbour distance is computed for every active (k=5 visualised for
the sake of clarity). D) If an active is in a region that is significantly lacking
in decoys, which is determined by the radius from the active being larger
than the distance to the 100th nearest neighbour (with a 90% confidence
boundary), the active is rejected. Reproduced from Rohrer and Baumann
(2009).

18

Chapter 2. Background & Literature Overview 2.4. Machine Learning

The MUV dataset was designed to minimise biases in screening databases and is
typically used to validate VS techniques. Refined nearest neighbour analysis is used to
benchmark PubChem (Kim et al., 2021) BioAssay2 data on bioactivity. Initially, com-
pounds which exhibit potential for unspecific bio-activity are eliminated through an
assay artifact filter. Active molecules which are not found within the same chemical
space as decoys are subsequently eliminated to reduce an inherent chemical space bias
through the chemical space embedding filter. The spread of actives within the chemical
space is adjusted to a common level, eliminating actives outside this threshold. The dis-
tance between actives and decoys is also normalised to a common level to enforce spatial
randomness. Figure 2.6 shows the process of active and decoy selection for the MUV
dataset, which is composed of 500 decoys for each active. MUV provides a dataset of
potential actives (PA) and potential decoys (PD) reducing inherent chemical space bias
and artificial enrichment (Rohrer and Baumann, 2009).

2.3.3 | Directory of Useful Decoys - Enhanced (DUD-E)
The DUD-E dataset is an enhanced version of the Directory of Useful Decoys (DUD)
(Huang et al., 2006), seeking to address the limitations associated with the latter, some
of which include molecule net formal charge imbalance within the dataset, artificial
enrichment, and false negatives (i.e. decoys binding to a target). DUD-E adds the net
molecular charge to the physical properties matched to identify decoys. The DUD-E
contains 22,886 active compounds and their affinities against 102 targets. The actives
are experimentally verified, and each one is attributed 50 decoys which have similar
physio-chemical properties but different 2D structures (Mysinger et al., 2012). The data
available can be downloaded either separately by specific targets, (e.g. HIV protease) or
by a number of specific subsets, namely G-protein coupled receptors (GPCR), protein
kinases, nuclear hormone receptors, and proteases. For the purposes of our study, we
make use of the GPCR subset from the DUD-E dataset.

2.4 | Machine Learning
Machine Learning (ML) has proven to be effective in addressing complex problems,
such as computer vision (Voulodimos et al., 2018) and natural language processing
(Young et al., 2018). Prior to the advent of neural networks, machine learning tasks
relied on handcrafted feature engineering to extract feature sets, which necessitated

2Accessed from: https://pubchemdocs.ncbi.nlm.nih.gov/bioassays. Last Accessed: 03 Nov 2021

19

Chapter 2. Background & Literature Overview 2.4. Machine Learning

prior domain knowledge. However, this has recently been revolutionised with end-to-
end deep learning paradigms such as convolutional neural networks (CNNs) (LeCun
and Bengio, 1995) and recurrent neural networks (RNNs) (Hochreiter and Schmidhu-
ber, 1997). The former have been widely used to advance image, video, speech and
audio processing, while RNNs have enabled breakthroughs in sequential data such as
speech or text (LeCun et al., 2015). We go into these paradigms in more depth in Sec-
tions 2.4.2 and 2.4.3. Deep Learning (DL) (LeCun et al., 2015) is built around the notion
of composing computational models with multiple processing layers, affording multi-
ple levels of abstraction in the data representation. One significant benefit of DL is that
it requires little domain specific engineering by hand, instead taking advantage of the
computational power and volume of data available (LeCun et al., 2015). Images, text,
and videos are naturally represented in Euclidean space, from which patterns and rep-
resentations can be extracted through the use of deep learning. Data such as molecules
in chemoinformatics, can be naturally represented as graphs. In Section 2.4.4 we go into
graph machine learning in more detail.

There are three main paradigms in ML; (a) supervised p(y|x), (b) unsupervised p(x),
and (c) reinforcement learning (Kotsiantis et al., 2007). Additionally, semi-supervised
learning is a learning paradigm which incorporates two of the three main paradigms
with the goal of incorporating the combination of labelled and unlabelled data to train
a model (Zhu and Goldberg, 2009). When the examples used for learning are labelled,
the learning is said to be supervised. For the purposes of this study, we are mainly
concerned with the supervised learning paradigm. We make use of data on compounds
which are known to be active or inactive/decoys against a specific biological target.

Mitchell (1997) describes machine learning as learning a set of tasks from experience
by improving a designated performance measure. In a supervised learning scenario, the
experience refers to the set of labelled data points D = X, y, where the machine learns
over the data points. Processing of the data points depends on the task at hand, which
could include a classification task y = f (x) or a regression task f : Rn� > R, among
others. The performance measure, which we elaborate more on in Section 2.4.5, is a
measure of how well the model produces the expected output. In conventional super-
vised learning scenarios, datasets are split into training, validation and testing splits to
evaluate the performance. The validation dataset is used to evaluate the performance at
training time, while the test set is used to evaluate the final performance of the machine
learning model. The goal here is to develop a generalisation ability, whereby the model
can perform well on previously unseen data at the inference stage. In statistical learning,
the independent and identically distributed (IID) assumption stipulates that the train-
ing and test sets are identically distributed and are collected from the same probability

20

Chapter 2. Background & Literature Overview 2.4. Machine Learning

distribution. Therefore, in theory, the expected test set error should be identical to the
training set error. However, in practice, this is not always the case and underfitting or
overfitting can occur. Underfitting occurs when the model is not capable of capturing
the relationship between the inputs and the target values, generating an inadequate er-
ror rate. On the other hand, overfitting occurs when the model generalises too close
to the training data, rendering it unable to generalise well to unseen data in the test
set. Regularisation can be used to reduce overfitting by reducing the complexity of the
model. It is defined as any modification to the learning approach to reduce the gener-
alisation error, but not the training error (Goodfellow et al., 2016). Figure 2.7 visualises
underfitting and overfitting intuitively for some data points.

Figure 2.7: A visualisation of underfitting, overfitting and appropriately fit-
ting a model. The circles and crosses represent two classes in the training
data. Reproduced Figure.3

2.4.1 | Feed-forward Neural Networks

Inspired by the neurons in the human brain, neural networks are the cornerstone of
deep learning. Neural networks consist of an input layer, hidden layers, and an output
layer. Each hidden layer can consist of multiple units or nodes, also referred to as percep-
trons. Neural networks take as input a vector of variables x = (x1, x2, ..., xp) to predict
a response Y by building a nonlinear function f (X). In Figure 2.8, the neural network
takes four features x1, ..., x4, which are connected to the hidden layer, and subsequently
connected to the node in the output layer. A neural network can be defined by Equa-
tion 2.1. More hidden layers can be stacked, increasing the number of parameters and
making the network deeper.

3Accessed From: https://bit.ly/3ARNdoA - Last Accessed: 18 October 2021.

21

Chapter 2. Background & Literature Overview 2.4. Machine Learning

f (X) = b0 +
K

Â
k=1

bk Ak (2.1)

where:

bk = bias
K = number of nodes in the hidden layer
g = function for given hidden layer node
f (X) = nonlinear function output

Figure 2.8: Neural network with one hidden layer and one output layer Y
computed through f (X). f (X) takes as input the outputs from Ak. Ak is
learned during training and is a nonlinear transformation of inputs from
the input layer. Reproduced from James et al. (2021).

The outputs of the perceptrons in the neural network are passed through a differen-
tiable, non-linear activation function. Four commonly used activation functions are the
rectified linear activation (ReLU), leaky ReLU, Sigmoid, or hyperbolic tangent (tanh)
functions (see Figure 2.9). The sigmoid function squashes values between zero and one,
while the TanH function squashes values between negative one and one. The ReLU
function sets any negative value to zero, and positive values between 0 and 1. In con-
trast, the leaky ReLU has a small slope for negative values rather than setting them all
to zero. The leaky ReLU minimises the risk of a vanishing gradient, as negative val-

22

Chapter 2. Background & Literature Overview 2.4. Machine Learning

ues are not all set to zero. The default recommendation in machine learning for neural
networks is the ReLU activation function (Glorot et al., 2011; Goodfellow et al., 2016).

Figure 2.9: Activation function visualisations for sigmoid, tanh, ReLU and
leaky ReLU functions. Reproduced Figure.4

Feed-forward neural networks are called as such because information flows from
the input, through the hidden layers and finally to the output y (Sarle, 1994). Such
networks learn through gradient descent and back propagation (Rumelhart et al., 1986).
After producing an output from the forward pass through the network, a cost function
calculates the loss. A commonly used function in classification tasks is the cross-entropy
loss function. In a multi-class classification task, the outputs of the neural network are
passed through a softmax function to represent the outputs as class probabilities. The
softmax activation function ensures that the outputs are non-negative and sum to one,
with the highest value signifying the highest probability of the predicted class. The
discrepancy between the predicted values and the target labels is computed through
the loss function. The loss is propagated back to the network to adjust the weights and
guide learning towards a local minimum of the differentiable function. The goal is to
minimise the cost function as much as possible while avoiding overfitting (Goodfellow
et al., 2016).

2.4.2 | Convolutional Neural Networks
In this section, we provide a brief overview into convolutional neural networks (CNNs).
This will provide the theoretical foundation for subsequent sections, which will dive
into convolutional neural networks on graphs. LeCun and Bengio (1995) pioneered
convolutional neural networks (CNNs), a kind of feed-forward neural networks, which
have led to breakthroughs in computer vision (He et al., 2016; Krizhevsky et al., 2012).

4Accessed From: https://bit.ly/3pesklC - Last Accessed: 18 October 2021.

23

Chapter 2. Background & Literature Overview 2.4. Machine Learning

A CNN model is composed of two main concepts, namely; the convolution and the
pooling operator. A kernel, which is represented from a matrix of numbers, is defined,
which is iterated across the whole image using the stride parameter. The lower the
stride, the denser the resulting feature maps. Figure 2.10 visualises a stride of 2 for
the convolutional kernel of size 3x3 pixels. The kernel is convoluted with the range
of pixel values to formulate the feature maps, which is pivotal in feature extraction.
The convolution is a type of matrix operation, which can be defined by Equation 2.2
(Goodfellow et al., 2016).

(I ⇤ K)(i, j) =
m

Â
i=0

n

Â
j=0

I(i + k � 1, j + l � 1)K(k, l) (2.2)

where:

I = Input image
K = kernel
O = output
m = Rows of kernel
n = Columns of kernel
i = Row index of output
j = Column index of output

The pooling operation is applied to the resulting feature maps after the convolution
operation. In Figure 2.10, max pooling is utilised which takes the maximum value from
a defined range of values. Pooling effectively down-samples the feature maps to reduce
overfitting (Li et al., 2021).

Figure 2.10: Procedure of a CNN for a 2D input, visualising the convolu-
tional kernel with a stride of 2 pixels, and the pooling operation. Repro-
duced from Li et al. (2021).

24

Chapter 2. Background & Literature Overview 2.4. Machine Learning

2.4.3 | Recurrent Neural Networks

Recurrent neural networks (RNNs) are an extension to feedforward neural networks
for processing sequential data. RNNs integrate feedback connections so the outputs of
each time step have recurrent connections (Goodfellow et al., 2016). Rather than taking
as input a fixed-sized input, RNNs allow us to learn over sequences of inputs, where
each input is not just influenced by itself, but by the history of inputs that are fed to
the network. RNNs have an internal hidden state that is updated with every step and
is propagated for the following input, thus acting as memory for the network (Schuster
and Paliwal, 1997). Figure 2.11 illustrates this flow, where each step, or module, is a
neural network.

Figure 2.11: Recurrent Neural Network with hidden state, persisting and
carrying relevant information from one step to the other. Reproduced Fig-
ure.5

An innovation in RNNs is the Long Short-Term Memory (LSTM) networks, pio-
neered by Hochreiter and Schmidhuber (1997). LSTMs, as the name implies, are able
to handle and learn long-term dependencies. LSTMs, similar to RNNs, have repeating
modules, but each module has four main elements rather than one neural network (refer
to Figure 2.12). LSTM units are composed of modules with corresponding input gates,
output gates and forget gates, which regulate data flowing in and out of the cell while
updating the hidden state. The forget gate layer removes information from the cell state.
The next step in the LSTM module is the input gate layer, which updates the state. The
final step is the computation of the output layer, which is based on the cell state. LSTMs
are of significant importance for this study, as the state of the art work for few-shot
learning in drug discovery makes use of LSTM architectures to process the molecular
embeddings.

5Accessed From: https://bit.ly/3j96sUY - Last Accessed: 18 Oct 2021.

25

Chapter 2. Background & Literature Overview 2.4. Machine Learning

Figure 2.12: Repeating modules in LSTMs, containing four neural networks
(represented by yellow boxes). Reproduced Figure.6

2.4.3.1 | Attention

RNNs can memorise sequences, however this might not be done in a way that benefits
learning. Attention, initially proposed by Graves et al. (2014), focuses on a subset of
the provided information. Attention is differentiable, allowing the model to learn what
to focus on, constraining read and write operations to a small portion of the memory,
rather than considering all of it. Attention has been used successfully in applications
such as machine translation (Bahdanau et al., 2014) and voice recognition (Chan et al.,
2016).

2.4.4 | Graph Neural Networks (GNNs)
As information for several applications can be naturally represented as graphs, the ne-
cessity to extend deep learning techniques for graph data lead to the emergence of
Graph Neural Networks (GNNs). Some examples of data that can be naturally rep-
resented as graphs include social networks, citation networks, knowledge graphs, and
molecular data. We make use of GNNs in our study to embed the molecule represen-
tations (explained in further detail in Section 2.6.1) in latent space, before processing
further by the few-shot learning architectures, which will be presented in Section 2.5.
GNNs can be used to predict either node, edge, or graph level outputs (Wu et al., 2020).
For the purposes of this study, we will be working with graph-level classification, as we
are concerned with the molecular activity of molecules in an experimental assay. Each
molecule is represented as a single graph, and its class label describes the molecular
activity associated with it (see Section 2.6.1.3). We go into further detail about graphs in
the next section. Wu et al. (2020) propose the following taxonomy for GNNs, categoris-
ing them into four groups, namely:

6Accessed From: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ - Last Accessed: 18
October 2021.

26

Chapter 2. Background & Literature Overview 2.4. Machine Learning

⌅ Recurrent Graph Neural Networks (RecGNNs) were first proposed by Gori et al.
(2005), which extend upon Recurrent Neural Networks (RNNs) and fall into the
Recurrent GNNs category. Node representations are learned through an iterative
process by propagating neighbouring information until an equilibrium is reached,
however this is computationally expensive.

⌅ Convolutional GNNs. Through the use of convolutional operations, each node’s
representation is generated through aggregation of its own features, and its neigh-
bouring node features. In contrast to RecGNNs, these neural networks stack mul-
tiple graph convolutional layers to achieve a high level node representation. As
our study is primarily concerned with this category of neural networks, we go into
further detail in subsequent sections.

⌅ Graph Autoencoders are unsupervised learning frameworks, encoding nodes or
graphs into latent vector space and subsequently reconstructing the graphs.

⌅ Spatial-temporal GNNs, as the name implies, consider both spatial and temporal
data. This is particularly useful in applications where the temporal and spatial
dependencies are correlated, such as in human action recognition (Yan et al., 2018).

2.4.4.1 | Graphs

A graph is formally represented as a set of nodes and edges, as shown in Equation 2.3.
Graphs are named as such as they can be conveniently represented graphically as 2D
data structures (Bondy and Murty, 1976). Graphs can be either homogeneous or hetero-
geneous. In the former, the nodes are all of the same type, which is in contrast to hetero-
geneous graphs which can include nodes and edges of different entity types. For this
study, we are concerned with homogeneous graphs, as nodes representing the molecu-
lar graph are of the same atom type.

G = (V , E) (2.3)

where:

V = set of vertices/nodes v
E = set of edges eij, where each edge e connects pairs of nodes (vi, vj) in V

The neighbourhood of a node N(v) is the set of nodes connected to a node vi, and
can be defined as N(v) = u 2 V|(v, u) 2 E. In graph processing, the adjacency matrix
A is a n ⇥ n matrix describing node connectivity. n is the number of nodes in a graph.

27

Chapter 2. Background & Literature Overview 2.4. Machine Learning

If nodes vi and vj are connected such that eij 2 E, Aij = 1, and Aij = 1 if eij /2 E. The
adjacency matrix is symmetric, such that A = AT, if the graph is undirected, meaning
that there is no explicit direction between two connected nodes resulting in an inverse
direction of the pair of edges between them. Each node can have a feature vector xv of
size d, which makes up the graph feature matrix X. Similarly, each edge can have edge
attributes, represented in the edge feature matrix Xe (Wu et al., 2020).

2.4.4.2 | Elements of Graph Deep Learning

If the graph object is our input signal, we can apply a set of operators for the function we
are attempting to learn. Bronstein et al. (2021) propose four key building blocks for deep
learning on graphs, which include linear set equivariant layers, non-linear functions,
local pooling layers and set invariant layers (see Figure 2.13). For graphs, the nodes v
are found on a domain W such that v 2 W. The nodes in W are stored in a feature space
C, such that C = Rk. Using a set of feature functions X(W, C), we can transform the
feature space of the nodes in our domain.

Figure 2.13: The main components in graph deep learning, including per-
mutation equivariant, local pooling, and permutation invariant global pool-
ing layers. Non-linearity is not visualised, which is also a key component.
Reproduced from Bronstein et al. (2021).

In the equivariant layer B, we can take the nodes in our domain and apply a function
that transforms the features of the nodes such that X(W, C) ! X(W0, C0). Equivariance
allows for a function g to be applied before or after this layer, such that B(g.x) = g.B(x).
The non-linear activation functions can be applied element-wise on the features of the
nodes in a graph, such that (s(x))(v) = s(x(v)). Local pooling layers can be used to
apply coarsening to the graph such that X(W, C) ! X(W0, C), in which we can reduce

28

Chapter 2. Background & Literature Overview 2.4. Machine Learning

the number of nodes in our domain such that W0 ✓ W. Finally, we have the invariant
layer Z, which can also be referred to as a global pooling layer, in which X(W, C) ! y,
which satisfies the invariant condition such that Z(g.x) = Z(x) (Bronstein et al., 2021).

2.4.4.3 | Graph Convolutional Networks

Inheriting ideas of message passing, graph convolutional networks (GCNs) are closely
related to RecGNNs, but effectively address the graph mutual dependencies problem
(Micheli, 2009) through the use of layers with different weights. Figure 2.14 shows how
images can be represented as graphs, where each pixel is connected to nearby pixels. A
3x3 filter is used to convolve the central node’s representation with neighbouring nodes
captured within the filter. Node information is propagated along edges, based on the
notion of message passing neural networks (Wu et al., 2020). In contrast with images,
molecular graph representations are irregular and nodes do not have an explicit order.

(a) 2D Convolution (b) Graph Convolution

Figure 2.14: 2D vs Graph Convolutions. (a) illustrates that in 2D convolu-
tions, each pixel is analogous to a graph with neighbouring pixels deter-
mined by the filter size. The neighbours are ordered and are of a fixed size.
(b) In contrast, node neighbours in graphs are irregular as they can vary in
size and the order is arbitrary. Reproduced from Wu et al. (2020).

The goal of these models is to learn a function for a graph G, using the feature matrix
C and the adjacency matrix A to produce a node level output. This function is equivalent
to the equivariant layers explained in the previous section and are synonymous with
graph convolutional operators (see Figure 2.15). Local pooling operations (see Section
2.4.4.4) are used to reduce dimensionality and global pooling operations, also referred
to as readout functions, are used to compute graph level outputs (see Section 2.4.4.5).

Bruna et al. (2013) first introduced the concept of spectral GNNs, combining con-
cepts from graph signal processing (Sandryhaila and Moura, 2013) such as spectral anal-

29

Chapter 2. Background & Literature Overview 2.4. Machine Learning

Figure 2.15: Equivariant function in a graph, synonymous with a graph con-
volutional operator over neighbouring nodes. Reproduced from Bronstein
et al. (2021).

ysis with Convolutional Neural Networks (CNNs). A signal x can be represented as a
vector x 2 Rn. The graph Laplacian (Chung and Graham, 1997) is an essential operator
in spectral graph analysis. Equation 2.4 is the definition of the normalised version of
the graph Laplacian matrix L, which is composed of a set of orthonormal eigenvectors
ul (graph Fourier modes) and the associated real non-negative eigenvalues l (graph
frequencies).

L = In � D�1/2AD�1/2 (2.4)

where:

D = diagonal matrix of node degrees
A = graph adjacency matrix
I = identity matrix

The normalised Laplacian matrix L is formalised by Equation 2.5.

L = ULUT (2.5)

where:

U = Matrix of eigenvectors ordered by eigenvalues U = [u0, ..., un�1] 2 Rn⇥n

L = Diagonal matrix of eigenvalues (spectrum) L = [l0, ..., ln�1] 2 Rn⇥n

I = identity matrix

The eigenvectors of this matrix form orthonormal space UTU = I. The graph Fourier
transform of signal x, which in graph signal processing represents the node in a graph
through feature vectors, is defined as F (x) = UTx 2 Rn (Shuman et al., 2013). The
inverse of the graph Fourier transform is F�1(x̂) = Ux̂. The graph Fourier transform
projects x to the orthonormal space. A spectral graph convolution is in essence the

30

Chapter 2. Background & Literature Overview 2.4. Machine Learning

multiplication of a signal x with a filter g 2 Rn in the Fourier space of a graph, which is
formalised in Equation 2.6

x⇤Gg = F�1(F (x)�F (g)) (2.6)

x⇤Gg = UgqUTx (2.7)

Substituting the values in the definition of the graph Fourier transform we get U(UTx�
UTg. We can denote the filter g as gq = diag(UTg). The spectral graph convolution can
thus be formalised in Equation 2.7. The difference between different graph convolu-
tional networks is the filter gq , but they all follow this same definition (Wu et al., 2020).
In Bruna et al. (2013), it is assumed that the filter g is a set of learnable parameters.

The work by Bruna et al. (2013) is domain dependent, meaning the filters cannot be
transferred to other graphs if these have different structures. Additionally, any changes
in the graph require a recomputation of the eigenbasis, and the eigendecomposition
is computationally expensive, with complexity of O(n3). As a result, Defferrard et al.
(2016) propose ChebNet, in an attempt to find a compromise between the slow and more
structured spectral approach, with faster heuristics by approximating smooth filters in
the spectral domain. The computation complexity is reduced to O(m) by utilising lo-
calised filters to extract local features independently of graph size. Kipf and Welling
(2016) propose a first-order approximation of ChebNet. The graph convolution is for-
mulated using the propagation rule which is formalised in Equation 2.8.

f (H(l), A) = s
⇣

D̂� 1
2 ÂD̂� 1

2 H(l)W(l)
⌘

(2.8)

where

A = Adjacency matrix
Â = A + I, in which I is the identity matrix to include self-loops
D̂ = diagonal node degree matrix of Â
s(·) = non-linear activation function
W = weight matrix for the l th layer
H = neural network layer
f = non-linear function

In Equation 2.8, the current node is included in the aggregation of neighbouring
nodes through the addition of the identity matrix to the adjacency matrix to form Â. The
diagonal node degree matrix D is used to normalise A to preserve the scale of feature
vectors, such that D�1A, which is equivalent to averaging neighbouring node features.
This is further enhanced through symmetric normalisation of A through D�1/2AD�1/2,

31

Chapter 2. Background & Literature Overview 2.4. Machine Learning

which gives us the propagation rule in Equation 2.8 (Kipf and Welling, 2016). The con-
volutional layer can finally be mathematically defined through Equation 2.9.

h(l+1)
i = s(b(l) + Â

j2N (i)

1
cji

h(l)j W(l)) (2.9)

where

hj = feature set of nodes
Ni = set of neighbouring nodes i
cji = product of the square root of node degrees
b = learnable bias
s = non-linear activation function

From a message-passing perspective, the above can be summarised into the follow-
ing steps for every node feature space u;

1. Aggregating the neighbouring representations hv, producing an intermediate rep-
resentation ĥu.

2. Transforming ĥu through a linear projection and finally through a non-linearity
function such that hu = f (Wuĥu) (Kipf and Welling, 2016).

In our study, we make use of the convolutional operator from Kipf and Welling
(2016) to process our graphs. Figure 2.16 is a graphical representation of an example
of a graph convolution network. The node in blue is the one on which the operation is
being performed.

Figure 2.16: Graph Convolutions. Reproduced from Altae-Tran et al. (2017).

32

Chapter 2. Background & Literature Overview 2.4. Machine Learning

2.4.4.4 | Local Pooling Layer

Once node features are created using GNNs, local pooling can be used to reduce the di-
mensionality of the graph node features, reducing the probability of overfitting and
computational complexity issues (Wu et al., 2020). Pooling essentially coarsens the
graph by creating smaller node representations or by reducing the number of nodes
in our domain as explained in Section 2.4.4.2. Commonly used operations are mean,
max or sum pooling as these are fast operations (Equation 2.10). Henaff et al. (2015)
highlight the importance of performing a simple max or mean pooling operation at the
beginning of the network to attenuate the computational cost of graph Fourier trans-
forms. In Figure 2.17, we visualise a pooling operator that coarsens the graphs. In our
study, we do not coarsen the graph using local pooling layers. Between graph convo-
lution layers, we simply apply a linear max function to aggregate the maximum node
features for the current node from its neighbouring nodes.

r(i) = mean/max/sum(h(i)n) (2.10)

2.4.4.5 | Global Pooling Layer

As explained in Section 2.4.4.2, we can use a permutation-invariant global pooling layer
in a GNN. This layer is also referred to as a readout layer in literature (Wu et al., 2020).
The readout layer is used to generate graph-level representations after the node fea-
tures have been transformed using convolutional and local pooling layers. The readout
layer is typically used at the end of the GNN pipeline as the node representations are
collapsed into a vector representing the graph (Wu et al., 2020). This vector can be fur-
ther processed by multilayer perceptrons (MLP) to classify the final output as shown in
Figure 2.17.

In their review, (Wu et al., 2020) point out that methods to improve pooling opera-
tion’s effectiveness and computational complexity is still an open research question.

2.4.4.6 | Challenges in Graph Machine Learning

Graphs pose a challenge for machine learning algorithms due to their complexity as the
number of neighbouring nodes per node can differ and have no particular order. This
differs from other domains such as image processing, where each pixel has a fixed num-
ber of ordered neighbouring pixels. In fact, images are analogous to graphs as they are
made up of pixels connected to adjacent pixels. However, graph data can be irregular
with a differing number of neighbouring nodes per node, in no particular order. A fun-

33

Chapter 2. Background & Literature Overview 2.4. Machine Learning

Figure 2.17: Convolutional GNN with pooling, readout, Multilayer percep-
tron (MLP) and softmax layer for graph classification. The pooling layer
coarsens the graph, while the readout layer reduces the graph representa-
tion into a vector. Reproduced from Wu et al. (2020).

damental assumption in machine learning algorithms is the independence of distinct
data from each other, such as different images. However, given the interconnection of
nodes in a graph network, this assumption no longer holds. However, this assumption
does not pose a challenge to our study as molecules are represented as distinct graphs,
rather than one large graph.

2.4.5 | Evaluation Metrics
The most commonly used basic way to evaluate the performance of a classifier is through
the accuracy metric (Equation 2.11). However, the accuracy metric is commonly not
representative of the true performance, as it does not provide reliable insight into the
performance in multi-class problems or when using imbalanced datasets. A confusion
matrix is thus used to summarise the output from a classifier. As the name implies, it
shows how the classifier ’confuses’ predictions. The confusion matrix provides the true
positives and negatives, and the false positives and negatives.

In this study, the data is highly imbalanced (refer to Section 2.3). If we rely purely on
accuracy, the model can simply predict the most common class, which in this case is the
negative class (i.e. the inactive/decoy class). As we are more interested in the positive
class (i.e. the active class), a more robust representation is required. Sensitivity (recall)
(Equation 2.12) is equivalent to the true positive rate, and specificity (Equation 2.13) is
equivalent to the 1 � FalsePositiveRate. The precision is the positive predictive power,
meaning how well the positive class is predicted.

accuracy =
TP + TN

TP + TN + FN + FP
(2.11)

34

Chapter 2. Background & Literature Overview 2.4. Machine Learning

Figure 2.18: Confusion Matrix

sensitivity =
TP

TP + FN
(2.12)

speci f icity =
TN

TN + FP
(2.13)

precision =
TP

TP + FP
(2.14)

(a) Actual and Predicted possibilities (b) Four outcomes from the confusion matrix.

Figure 2.19: Confusion Matrix Visualisation. (a) illustrates the actual and
predicted values. Outcomes from predicted values can take on four val-
ues, represented via a confusion matrix. Reproduced from Saito and
Rehmsmeier (2015).

These measures are single-threshold measures, which are based off cutoffs for a
classifier into positive and negative predictions. Threshold-free measures such as the
Receiver Operator Characteristic (ROC) and Precision-Recall Curve (PRC) plots are more
powerful as they produce scores that are used to divide datasets into positively and neg-
atively predicted classes, rather than provide a static division. The ROC plot shows the
relationship between sensitivity and specificity. The ROC plot for random classifiers is a
diagonal line from the origin (0,0) to (1, 1), which is the baseline for the ROC curve. The
ROC Area under the Curve (AUC) score is 1.0 for perfect classifiers and 0.5 for random

35

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

classifiers. The ROC is a well-renowned measure, however, the PRC is better suited for
imbalanced datasets (Fawcett, 2006).

Fawcett (2006) explore the performance of the PRC evaluation method against the
ROC in imbalanced bioinformatics datasets, and the authors strongly recommend the
use of PRC in such scenarios as it provides a more accurate and intuitive interpretation.
It is also reported that despite these findings, many studies still use the ROC to evaluate
performance on imbalanced datasets. The PRC plot visualises the relationship between
precision and recall. The baseline, unlike the ROC plot, is not fixed but moves accord-
ingly with class distribution. Therefore, the PRC AUC achieves better evaluations for
predicting the positive class.

2.5 | Learning with Low Data
Humans have an innate capacity to learn new concepts from just a few examples (Lake
et al., 2011). For instance, a person seeing a Segway for the first time is able to differen-
tiate future encounters of Segways from other vehicles (Lake et al., 2015). In contrast,
conventional supervised end-to-end machine learning is data hungry, and cannot gen-
eralise using a few examples.

Inspired by human learning (Lake et al., 2015), few-shot learning makes use of data
from similar tasks to compensate for the lack of data for the task at hand. Several suc-
cessful research programs have exploited this paradigm (Koch et al., 2015; Snell et al.,
2017; Sung et al., 2018; Vinyals et al., 2016), in which a model learns a similarity mea-
sure from image embeddings from tasks which are similar, but not identical to the task
at the inference stage. Thus, few-shot learning (Fei-Fei et al., 2006) is a machine learning
paradigm that aims to bridge this gap between this human learning ability and machine
learning. Learning to learn (Thrun and Pratt, 2012) is referred to as meta-learning (Finn
et al., 2017). Being able to learn from only a few examples is important as certain do-
mains do not have access to the plethora of data that we see in other domains such as
computer vision. This inaccessibility could be due to privacy, safety, or ethical issues.
For instance, data acquisition can be problematic in the drug discovery domain due to
possible toxicity, low activity or solubility in clinical candidates. Learning with less data
leads to less expensive data gathering and computational cost for learning (Wang et al.,
2020).

36

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

2.5.1 | Problem De�nition

This section will introduce commonly used terms and nomenclature in the few-shot
learning paradigm. Few-shot learning can be characterised as metric-learning or non-
parametric meta-learning (Hospedales et al., 2020). Metric learning refers to learning a
distance function over data samples to differentiate between data samples. For instance,
in the image domain we can train a CNN to embed an image as a vector, which is
subsequently compared to other embeddings to infer a class prediction.

The meta-learning paradigm differs from conventional supervised end-to-end learn-
ing, where in the latter data points from k classes are used to train a model that can
identify unseen objects that belong to the same classes. In the meta learning paradigm,
we have a meta-training and meta-testing stage.

2.5.1.1 | Meta-learning

Figure 2.20 illustrates a typical meta-learning scenario in the image domain. The dif-
ferent stacks of images represent different classes. A subset of classes are reserved for
training, and the rest for testing. Training consists of a number of epochs, each com-
posed of a sequence of episodes. Each episode consists of a k-way n-shot scenario. The
k represents the number of classes to sample, while n is the number of data points to
sample per class. For example, a 3-way 1-shot meta-learning scenario consists of 3 dif-
ferent classes, where each episode consists of 1 example per class. During training, the
sampling of these data points make up the support set S = xi, yi. A set Q of q query
data points are sampled from the remaining data points in the sampled task. The model
learns a differentiable function to classify the query data points using only the support
set. This simulates the conditions at the testing stage, where the classification of a new
unseen class is learned using only n data points from the new class as the support set.
For example, we can learn to classify images of animals in a few-shot scenario, and then
correctly classify photos of a new unseen class during training (e.g. an image of a lion),
using only a few (e.g. five images). The model therefore learns to classify images of
lions using only five examples. This capability is beneficial in domains where it is diffi-
cult to obtain data for new classes, but for which we already have ample data for other
classes or tasks. While training simulates the few-shot conditions at test time, training
still necessitates a lot of data from classes for which we already have data about.

In the chemoinformatics domain, instead of different classes we have different tasks
for an assay. For example the Tox21 dataset (refer to Section 2.3.1) contains 12 different
tasks. Each task consists of a binary classification problem where molecules are classi-

37

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

Figure 2.20: Meta-learning consisting of meta-training and meta-testing.
The classes/tasks in the meta-training and meta-testing phases are non-
overlapping. The light blue boxes represent the support sets, while the
green boxes represent the query sets. Reproduced from Bennequin (2019).

fied as either active molecules or inactives. Therefore, the way value is always two for
this study as we only have the active, and the inactive class.

A number of successful research undertakings (Finn et al., 2017; Koch et al., 2015;
Lake et al., 2015; Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016) have exploited
the meta-learning paradigm for the image domain. One-shot learning was first intro-
duced by Fei-Fei et al. (2006). It is worthwhile to note that the undertaken studies for the
state of the art research papers in few-shot learning are focused on the image domain,
for which the authors could make use of image augmentation to artificially increase the
size of the datasets through the use of affine transformations such as skewing, rotating
or stretching the images. These techniques help reduce overfitting and allow the model
to be more generalisable to unseen data. However, this cannot be done for molecu-
lar data as small changes to the molecule can lead to completely different properties.
This study will focus mainly on Siamese Networks (Koch et al., 2015) and Matching
Networks (Vinyals et al., 2016) in line with related work in the drug discovery domain
(Altae-Tran et al., 2017), which we develop further by applying prototypical (Snell et al.,
2017) and relation (Sung et al., 2018) networks to the problem domain.

2.5.2 | Siamese Networks
Siamese Networks were first proposed by Bromley et al. (1993) to solve a document
signature verification problem. A Siamese neural network is composed of twin neural

38

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

networks with shared weights. Such a network takes as input a pair of inputs, which
are embedded separately through each neural network. As the neural networks share
weights, the feature extraction is maintained to the same feature space for both inputs.
These identical sub-networks are finally connected in a final layer that acts as a distance
function for the two outputs. If the distance falls within a pre-determined threshold, the
signature passes as a match to the original one, and if not, marked as a fake. Siamese
Networks are always fed in pairs of inputs to compute the distance metric that identifies
how similar the samples are to each other. In fact, Siamese Networks do not learn in the
conventional end-to-end supervised learning approach. Instead, the model is trained to
differentiate between examples and will identify if two inputs belong to the same class.
The neural networks are trained to lift meaningful features to the feature space.

Siamese Networks have managed to achieve close to human accuracy on the Om-
niglot dataset (Koch et al., 2015). The Omniglot dataset is made up of images of charac-
ters from alphabets from all around the world. One character from each alphabet was
extracted for training. A common practice when training with images is to apply affine
transformations to augment the dataset and increase the training samples. However, re-
sults without these distortions are also presented by Koch et al. (2015) and the accuracy
merely drops from 93.42% to 91.63%. These results confirm that there is potential for
ML in low-data scenarios. Figure 2.21 illustrates a schematic of how Siamese Networks
can be used for molecular data, starting from the molecular representation generation,
passing this to a neural network and then finally a distance function.

Figure 2.21: High level schematic of a Siamese network for molecular net-
work.

39

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

2.5.3 | Matching Networks
Vinyals et al. (2016) propose Matching Networks, a non-parametric approach that draws
inspiration from attention (Bahdanau et al., 2014) and memory networks (Lake et al.,
2015). This technique is applied to ImageNet (Deng et al., 2009) datasets for classifying
images, and the Penn Treebank (Santorini, 1990) dataset for one-shot language mod-
elling. In their research, the authors stipulate a training precept where training and
testing conditions must match. This implies that training for rapid learning must emu-
late the same conditions as those during testing time. The authors remark that one-shot
learning is more effective if you train to perform one-shot learning, rather than train
on more samples to generalise the model further. This training method is achieved
through the use of episodes during training, where each training episode emulates the
test conditions by sub-sampling classes and the data points within each class to create a
mini-batch. The model is presented with n examples from k classes that will be used to
infer the query’s class. Matching Networks are able to predict new, unobserved classes
during training without any changes to the network by training a classifier that can
learn from a few number of examples. Using a support set S containing n labelled ex-
amples, the goal is to estimate the probability that a query example x̂ belongs to a given
class by taking the argmax argmaxyP(ŷ|x̂, S). The attention mechanism in Equation 2.15
specifies how similar x̂ is to each example x in S.

ŷ =
n

Â
i=1

a(x̂, xi)yi (2.15)

where

ŷ = output label
a = attention mechanism
x̂ = query example

Figure 2.5.3 illustrates the Matching Nets architecture. Embedding functions f and
g are CNNs, potentially being identical to each other, which lift the inputs to the fea-
ture space. The authors also propose full context embedding functions, which take as
input the whole support set with the element xi, thus resulting in g(xi, S). Full context
embeddings effectively modify how the element is embedded with respect to the whole
support set S. A bidirectional Long-Short Term Memory (LSTM) is used to encode xi

in the context of the support set. The attention mechanism a, at the end of the pipeline,
is the classifier. This mechanism takes a softmax over the cosine distance of the em-
beddings. The matching nets outperformed memory augmented neural network and
convolutional Siamese Networks in all instances.

40

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

Figure 2.22: Matching Networks Architecture. Reproduced from Vinyals
et al. (2016).

2.5.4 | Prototypical Networks
Snell et al. (2017) build upon the work of Vinyals et al. (2016), proposing Prototypical
Networks to address the few-shot classification problem. The authors show that Proto-
typical Networks afford the same level of performance as Matching Networks, but with
simpler design choices. Prototypical Networks learn a metric space, where classifica-
tion is performed by computing the distances between prototype representations of each
given class and finding the closest one. This method reflects a simpler inductive bias,
which is reported to be beneficial in the limited-data regime.

Prototypical Networks are based on the notion that an embedding exists in which
points cluster around a prototypical representation for each provided class. Data points
are embedded using a neural network, and the prototype ck is defined by taking a mean
of the support set in the resulting embedding space as shown in Equation 2.16.

ck =
1

|Sk| Â
(xi ,yi)2Sk

ff(xi) (2.16)

where

ff = embedding function with learnable parameters f

Sk = support set with k examples

In a one-shot learning scenario, Prototypical Networks are equivalent to Matching
Networks. However, in a few-shot scenario there are two main design differences. The

41

Chapter 2. Background & Literature Overview 2.5. Learning with Low Data

Figure 2.23: Few-shot learning scenario in Prototypical Networks where
prototypes ck are taken as the mean of embedded support examples for each
class. Reproduced from Snell et al. (2017).

squared Euclidean distance is used instead of the cosine distance used in Matching Net-
works. Snell et al. (2017) find that it is beneficial to train with a higher number of classes
than will be used to infer the queries at test time. This does not apply for the number
of samples selected for each class, as it is observed that these should match the test con-
ditions. Therefore, this episodic adaptation applies only to the way number. However,
this adaptation is not applicable for this study as we are always concerned with a 2-way
scenario as our problem is formulated as a binary classification problem. Using these
adaptations, Prototypical Networks achieve better results in the reported experiments
in the literature than Matching Networks (Vinyals et al., 2016).

2.5.5 | Relation Network

Sung et al. (2018) present the Relation Network, a framework for few-shot learning,
which could also be extended to zero-shot learning. The Relation Network learns a
non-linear distance metric to compare support and query examples. As opposed to
siamese, matching, and Prototypical Networks, this network uses a feed-forward neural
network to calculate the distance in feature space. After embedding the support and
query examples through an embedding function, each query example is concatenated
with each of the feature maps as illustrated in Figure 2.24. The resulting feature map
concatenations are processed using a convolutional neural network to output a relation
score vector, from which the class can be inferred. The authors utilise a mean-squared
error (MSE) objective function, regressing the relation score to the target label. Despite
the problem being a binary classification one, where the target label is a label from the

42

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

set 0, 1, the authors utilise an MSE function rather than cross entropy. They postulate
that predicting the relation score can be considered a regression problem.

Figure 2.24: Few-shot learning scenario in Relation Networks for a 5-way
1-shot learning task with one query as an example. Reproduced from Sung
et al. (2018).

2.6 | Molecular Machine Learning
Wu et al. (2018) remark that developing machine learning models for molecular data
comes with a number of issues, namely the limited amount of data, the large heterogene-
ity in molecular structures, and choosing appropriate learning algorithms. The authors
propose MoleculeNet, a benchmark for machine learning models on molecular data.
Wu et al. (2018) experiment with a number of molecular representations and machine
learning models. We go in further detail into molecular representations in subsequent
sections. Their machine learning models include graph convolutional networks, gradi-
ent boosted trees, random forests, kernel ridge regression and message passing neural
networks. However, they conclude that graph-based algorithms perform best overall,
with the exception of highly complex tasks in which data is scarce, or in datasets in
which there is heavy data imbalance. In such scenarios, conventional machine learn-
ing algorithms such as support vector machines or random forests perform better than
graph-based models. For the Tox21 dataset, Wu et al. (2018) report that the best model is
the graph convolutional one with a ROC-AUC score of 0.829. Meanwhile, for the MUV
dataset, a multitask model obtained the best results with a ROC-AUC value of 0.184.

43

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

Mayr et al. (2018) compare the performance of a number of machine learning meth-
ods across different molecular descriptors. The authors considered Support Vector Ma-
chines (SVMs), Random Forests (RFs), Naive bayes (NB) statistics, similarity ensem-
ble approaches (SEA), and K-nearest-neighbour (KNN), along with three types of deep
learning methods: (i) feed-forward neural networks, (ii) graph-based neural networks
(convolutional based), and (iii) recurrent neural networks. Experiments were conducted
on the ChemBL dataset (Gaulton et al., 2017), which is a large benchmark dataset con-
taining around 500,000 compounds and more than 1,000 assays. This particular dataset
was chosen as the authors report that most studies comprise only a single or a few as-
says or targets. Having a limited number of assays or targets in a dataset restricts the
choice of the method employed to that particular subset of chemical space. In this study,
target prediction was modelled as a binary classification problem, indicating whether a
certain compound inhibits a pathway, binds to a receptor or induces toxic effects. The
authors also demonstrate that the application of deep learning to activity against tar-
get prediction is comparable, and can outperform, in vitro assays. The authors observe
that feed-forward neural networks outperform other methods, followed by SVMs. It
is highlighted that these two methods outperform graph convolution networks in this
particular study.

2.6.1 | Molecular Representation
Before the molecules in our dataset can be processed using the aforementioned machine
learning models, we need to represent the molecules in computational space. A num-
ber of representations have been studied, including extended-connectivity fingerprints
(ECFP) (Rogers and Hahn, 2010), Coulomb matrices (Rupp et al., 2012), graph convolu-
tions (Duvenaud et al., 2015) and Weave featurisation (Kearnes et al., 2016). However,
our study will focus mainly on ECFPs and graph representations of molecules.

Molecules are complex structures, consisting of a combination of different atoms,
bonds, and conformations. One challenge in the field of small-molecule design is the
representation of the chemical composition of molecules for computer processing. The
classical notation of chemicals is the empirical formula, which is a form of the Hill nota-
tion. The formula of alanine, C3H7NO2, provides information about the atoms present
in the molecule. However, there is no information on how atoms are linked together
and as a result, the same empirical formula can refer to sarcosine and lactamide (David
et al., 2020).

The choice of molecular representations presupposes the choice of ML architecture
to be employed. Graph representations of molecules must be processed using graph

44

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

neural networks (GNNs) due to the nature of the data. On the other hand, given that
fingerprints are representations in vector forms, these can be processed using conven-
tional feed-forward neural networks. While it is difficult to have one single descriptor
that works best for all machine learning models, more studies are required as it is still
not clear which descriptors work best for different small-molecular design problems
(Vamathevan et al., 2019).

2.6.1.1 | SMILES Notation

Weininger (1988) initiated the SMILES notation, that represents the chemical structure
in a simple, text-based syntax. In the datasets discussed in Section 2.3, molecules are
supplied in the SMILES format. SMILES supports all the elements found in the periodic
table. Upper case letters denote non-aromatic atoms, while lower case letters refer to
aromatic ones. Bonds are single bonds by default and are not written in the SMILES no-
tation. Double bonds, triple bonds, aromatic and disconnected bonds are represented
by =, #, ⇤, and . respectively. SMILES notation is hydrogen-suppressed, meaning that
hydrogens (H) are excluded by default. However, they can also be explicitly defined.
Branches in the molecule are defined in SMILES by placing the SMILES symbols be-
tween parenthesis. Ring structures are represented through the use of a number to pin-
point the opening and closing of ring atoms. In Cyclohexane (C1CCCCC1), the first
carbon, followed by a 1, is connected by a single bond to the last carbon, which is also
followed by a 1. Table 2.1 illustrates 3 examples of SMILES representations, along with
their SMILES-based molecular construction using RDKit (refer to Section 2.6.2.1). Figure
2.25 illustrates the generation of SMILES notation in canonical order of Aspirin.

Figure 2.25: SMILES generation in canonical order of Aspirin. Reproduced
from Arús-Pous et al. (2019).

45

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

Molecule SMILES Structure Diagram

Toluene CC1CCCCC1

Ethylamine NCC

3-(1-aminoethyl)tetrahydrofuran C1OCC(C(N)C)C1

Table 2.1: Examples of SMILES representations. Structure diagrams are gen-
erated using RDKit (refer to Section 2.6.2.1).

2.6.1.2 | Extended Connectivity Fingerprints (ECFP)

Molecular fingerprints are fixed vectors which represent chemical molecules, histori-
cally utilised for substructure and similarity searching. ECFP are explicitly designed to
capture the relationship between the molecular features and the molecular activity. The
features captured by ECFPs describe both the presence (i.e., positive information), and
also the absence (i.e., negative information) of structural information. They are widely
used in LBVS, and can be used to distinguish between active and inactive molecules
using similarity methods. The generation of the fixed-length ECFP string is a three-step
process that can be executed efficiently. The generation of ECFP can be used to represent
any novel molecules, as the process is not a priori.

1. Initial assignment. Each non-hydrogen atom is assigned a 32-bit integer identi-
fier, capturing atomic information. ECFP uses Daylight atomic invariants rules,
which capture six atom properties. These include (i) number of immediate non-
hydrogen neighbouring atoms, (ii) the valence excluding hydrogens, (iii) atomic
number, (iv) atomic mass, (v) atomic charge, and (vi) number of attached hydro-
gens. An additional property capturing whether the atom is aromatic is included.

2. Iterative updating. Each atom identifier is updated to reflect the identifier of the
neighbours within the diameter set. The diameter is the number of bonds that are
included in each iteration, starting from one. It is a crucial parameter in ECFP
generation, and Rogers and Hahn (2010) suggest that diameters greater than three
or four are ideal for capturing molecular activity. Each iteration captures larger

46

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

neighbourhoods around each atom. These are encoded and hashed into integer
values. This process is based on the Morgan algorithm (Morgan, 1965).

3. Duplicate identifier removal. If neighbourhoods contain an identical set of bonds
or encoding, the values are reduced to one encoding (folding). The larger the length
of the ECFP, the decrease in likelihood of bit collision. Collisions occur when sub-
structures are represented by the same value. Information loss is reduced when
the occurrence of collisions is reduced, leading to better data quality and inter-
pretability. The identifiers are encoded into one fixed-length bit string, typically
of length 1024 bits.

(a) Iterative updating
by diameter. (b) Iterative updating per atom

(c) Fixed-length bit string generation

Figure 2.26: ECFP Iterative updating stage. In (a), the iteration starts from
the Carbon atom connected with a double bond to an Oxygen atom. The
same process is repeated for every atom, as shown in (b). The fixed-length
bit string generation process (folding) is illustrated in (c). Reproduced from
ChemAxon (2020).

2.6.1.3 | Molecular Graphs

Graphs are natural representations of molecules, where atoms are represented as nodes
and bonds as the edges. When representing molecules, the set of vertices V intuitively
refers to atoms within a molecule, while the set of edges E refers to the bonds that

47

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

connects two atoms together. As the bonds in a molecule are not directed, molecular
graph representations are undirected. Converting an abstract concept such as a graph
to a computer readable representation involves the use of matrices and arrays. Atom
connectivity in a molecule is represented through an adjacency matrix A (also referred
to as a connectivity matrix). The adjacency matrix contains the edges joining vi and vj

(Bondy and Murty, 1976). A consists of aij Boolean elements, where a one signifies a
bond between two atoms, and a zero the absence of one. Atom features are represented
in a node features matrix X. Each row xi of X, is the node feature vector of that atom.
Selected properties such as atomic number, atom type, charge, valences and other prop-
erties can be encoded in the node feature vector. These are typically one-hot encoded
in machine learning applications. Bond information is represented in the edge feature
matrix E, whose rows correspond to the edge feature vector eij, which maps edge infor-
mation between two atoms eij = (vi, vj). E consists of the possible bond types between
two atoms, namely single, double, triple, or aromatic bonds (David et al., 2020). These
three elements (the adjacency matrix, the node feature matrix, and the edge feature ma-
trix) are illustrated in Figure 2.27

Figure 2.27: Graph representation of acetic acid. (a) Structural diagram. (b)
Adjacency Matrix. (c) One-hot encoded atom features. (d) One-hot encoded
edge feature matrix. Reproduced from David et al. (2020).

As graphs are 2D data structures, molecular information such as delocalised bonds,
polycentric, ionic or metal-metal bonds cannot be represented well using pairwise re-
lationships between atoms in adjacency matrices. In real scenarios, molecules are con-
stantly changing in 3D space, and pairwise bonds can break and reform, essentially
rearranging the molecule (David et al., 2020). In this study, we assume a single molec-
ular graph representation without changing conformations. Wu et al. (2018) show that
graph convolutions are the best performing models as graph-based models outperform
conventional methods on 11/17 datasets.

48

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

2.6.1.4 | Graph Learned Embeddings

Graph neural networks can be used to learn molecular representations by applying con-
volutional operators and pooling layers on the molecular graphs (Jiang et al., 2021).
Embeddings learned through neural networks afford the construction of automated
features, rather than fixed fingerprints. Duvenaud et al. (2015) propose a method to
compute neural graph embeddings, which they report is an improvement over circular
fingerprints. A single layer neural network (refer to Section 2.4.1) is used to compute the
molecule vector by taking as input the molecule represented as a graph. Graph neural
networks are effective in transforming small molecules into real-valued vector repre-
sentations, which has been found to be a productive way of processing small molecules
within deep neural networks (Gómez-Bombarelli et al., 2018). By using a differentiable
method, Duvenaud et al. (2015) report that collisions of substructures are reduced and
the fingerprint can be optimised to contain only relevant features. Activity and simi-
larity of substructures is also captured, increasing the fingerprint’s interpretability. The
combination of atom and neighbourhood atoms through hashing in ECFP is replaced
by a layer of a neural network in neural fingerprint generation. Instead of encoding the
output vector through indexing, a softmax is used, essentially classifying each atom into
a category. The final fingerprint is produced from the sum of these classification label
vectors, which is analogous to the pooling operation in convolutional networks (refer to
Section 2.4.2).

When tested against ECFP, Duvenaud et al. (2015) report that learned embeddings
matched or outperformed ECFP in all experiments, which included solubility, drug effi-
cacy and organic photo-voltaic efficiency. However, this comes at a computational cost
as training is computationally more expensive than ECFP generation. Which approach
is deemed superior is still an unanswered question as the literature is conflicting. Wu
et al. (2018) demonstrate that convolution based models outperform fingerprint based
models, while Mayr et al. (2018) report otherwise. Wu et al. (2018) report that graph-
based models outperformed conventional machine learning models on most datasets,
except for those which have scarce data, or are heavily imbalanced. Under high imbal-
ance, graph-based models are reported to not be robust in controlling false positives.
This improvement in graph-based methods across the majority of datasets suggests that
a learned embedding is advantageous over other molecular representations. In our
study, we explore this further by comparing the performance of our best performing
few-shot learning architecture with both ECFP inputs and graph objects.

49

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

Figure 2.28: A typical pipeline for representing molecules using a learned
embedding function, which can be processed further using feed-forward
neural networks as shown. Reproduced from Jiang et al. (2021).

2.6.2 | Open-source Libraries
We make use of a number of open-source libraries in our study, however, the following
libraries are specifically developed for cheminformatics. The following sections provide
a brief overview of these libraries.

2.6.2.1 | RDKit

RDKit (RDKit, 2012) is an open-source cheminformatics software that can be used to
generate descriptors and fingerprints for machine learning. Molecular visualisations
can also be generated using this library. This library is frequently used in chemoinfor-
matics libraries. We mainly make use of RDKit to add atom descriptors to the graph
objects representing the molecules. In our molecular representation creation pipeline,
we make use of two other libraries, namely DGL-LifeSci (Mufei et al., 2021) and the
CheMBL Structure Pipeline (Bento et al., 2020). The former library is used to create
the atom descriptors, while the latter is used to standardise the input molecule. The
functions used from these libraries are based on RDKit, but are conveniently provided
through less complex APIs. We delve into more detail for our implementation in Chap-
ter 3.

50

Chapter 2. Background & Literature Overview 2.6. Molecular Machine Learning

2.6.2.2 | DeepChem

Ramsundar et al. (2019) initiated the DeepChem project, an open-source machine learn-
ing library to democratise deep learning for drug discovery, material science, quantum
chemistry, and biology. DeepChem allows users to integrate implementations with pop-
ular ML libraries such as Keras and Pytorch. For our study, the DeepChem library is
used to create ECFP molecular representations.

MoleculeNet

The datasets discussed in Section 2.3 are all publicly available. However, MoleculeNet
(Wu et al., 2018) aggregated multiple public databases to provide a full collection of
over 700,000 compounds. MoleculeNet is based on the DeepChem library, which was
introduced in the previous section. Figure 2.29 illustrates the different categories of data
found in MoleculeNet.

Figure 2.29: Different categories of datasets in MoleculeNet. Reproduced
from Wu et al. (2018).

In this study, we will focus on Biophysical and Physiological classification-based
datasets. While the Tox21 and MUV datasets are conveniently available through Molecu-
leNet, the DUD-E dataset is not. However, the addition of the DUD-E dataset to Molecu-
leNet is a work in progress by the authors of this study. The data contained in Molecu-
leNet for these three datasets is highlighted in the following list.

⌅ Tox21. Data on 8,014 compounds against 12 different NR and SR pathways is
available.

⌅ MUV. Data on circa 90,000 compounds for 17 different tasks.

MoleculeNet also includes data splitting methods namely random, scaffold, strati-
fied, and time-based splitting. Random splitting separates data randomly across train-
ing, validation and test groups. Scaffolding splits the data based on the RDKit based 2D

51

Chapter 2. Background & Literature Overview 2.7. Related Work

structural representation of the molecule. Stratified splitting sorts data points in order of
their label value in the case of continuously labelled datasets, such that each subgroup
contains the whole range of labels. Finally, time-based splitting divides data based on
the time, so training is performed on older data and tested on newer data.

MoleculeNet also provides featurisation functions to convert SMILES representa-
tions into better suited representations for machine learning. These include ECFP, Coulomb
Matrices, Grid Featurisation, Symmetry Functions, Graph Convolutions and Weave fea-
turisation. For the purposes of this study, only ECFP and Graph Convolutions will be
considered.

Finally, MoleculeNet tests the performance of machine learning models including lo-
gistic regression, support vector classification, kernel ridge regression, random forests,
gradient boosting, multitask networks, bypass networks, influence relevance voting,
graph convolutional models, weave models, directed acyclic graph models, deep ten-
sor neural networks, ANI-1 and message passing neural networks. These methods are
implemented as part of the DeepChem library.

2.6.2.3 | Deep Graph Library

Wang et al. (2019) propose a platform agnostic library called Deep Graph Library (DGL),
which easily integrates with tensor oriented frameworks such as PyTorch (Paszke et al.,
2019) to allow deep learning on graphs. DGL provides flexible and efficient APIs to
allow arbitrary message passing computations over graphs. This library conveniently
provides ready-made convolutional operations for GNNs implementations such as the
aforementioned Graph Convolutional Network (GCN), pooling layers, and readout
functions. This library is used for our graph-learned molecular embeddings. We load
the data, and process it using APIs provided from this library, but this is further ex-
plained in Chapter 3.

2.7 | Related Work
While the aforementioned few-shot learning is primarily studied for the computer vi-
sion domain to recognise images in previously unseen classes using only a small sup-
port set, in drug discovery, we aim to predict the activity of a molecule in a new ex-
perimental assay. In the case of drug discovery, we have limited information on the
new molecule assay, but we can make use of similar molecule assays (prior knowledge)
(Wang et al., 2020).

52

Chapter 2. Background & Literature Overview 2.7. Related Work

There have not been many studies around few-shot learning for low-data problems
in drug discovery. However, Altae-Tran et al. (2017) proposed a state of the art approach
for few-shot learning in this problem domain. The authors apply Siamese Networks
(Koch et al., 2015) for molecular datasets and further build on the concepts of Matching
Networks (Vinyals et al., 2016) to propose the Iterative-Refinement LSTM (IterRefLSTM)
networks.

Altae-Tran et al. (2017) build on meta-learning concepts, where they train a machine
learning model on molecular data from a set of targets reserved for training. The model
is then used to generalise for the activity of molecules in new, previously unseen exper-
imental assays using only a small support set from the new assay. These test assays are
related, but not identical, to the ones reserved for training. The support set is a small set
of molecules sampled from an experimental assay to train a machine learning model.
The number of molecules sampled for each class in the support set ranges from one,
to a maximum of ten molecules. In their work, the support and query molecules are
embedded using a graph convolutional network as shown in Figure 2.30. Bond infor-
mation and distinction between bond types was not considered in this study. The GCN
architecture used by the authors is tabulated in Table 2.2. We note that the pool layers
tabulated do not coarsen the graphs as explained in Section 2.4.4.2, but simply apply a
max function over neighbouring nodes. The gather layer is equivalent to a global pool-
ing or readout layer discussed in Section 2.4.4.5.

Figure 2.30: Embedding functions f 0 and g0, used to embed molecular
graphs from the support and query sets in latent space. Reproduced from
Altae-Tran et al. (2017).

To further process the resulting embeddings from the GCN, Altae-Tran et al. (2017)
utilise a bidirectional LSTM and an attention mechanism to eliminate the order depen-
dence of the LSTM. This model is referred to as the attentional LSTM (attnLSTM) in
the original work and utilises the support set to enhance the query embeddings. How-

53

Chapter 2. Background & Literature Overview 2.7. Related Work

layer conv pool conv pool conv pool dense gather

dimension 64 128 64 128
nonlinearity relu relu relu tanh tanh

Table 2.2: Graph Convolutional Network Architecture in Altae-Tran et al.
(2017).

ever, the model that provided the best results is the proposed iterative refinement LSTM
model (IterRefLSTM). In this implementation, the two embedding functions f (|̇S) and
g(|̇S) are developed simultaneously. Therefore, the embedding of the query is built it-
eratively with that of the support set, using information from both sets to enhance the
support and query embeddings. The iterative refinement process is visualised in Fig-
ure 2.31.

Figure 2.31: Iterative refinement of embeddings using an LSTM network.
The red and blue points depict the active and inactive/decoy class respec-
tively. The squares depict the original embedding from g0. Reproduced from
Altae-Tran et al. (2017).

Once the embeddings have been iteratively refined, the authors apply a metric-
based function to classify the queries using the support set embeddings. To emulate
the Matching Networks, the authors make use of the cosine distance to achieve this.

54

Chapter 2. Background & Literature Overview 2.7. Related Work

Figure 2.32 illustrates a one-shot learning scenario encapsulating the aforementioned
concepts.

Figure 2.32: Schematic of one-shot learning in drug discovery based on
the Matching Network (Vinyals et al., 2016) architecture. Reproduced from
Altae-Tran et al. (2017).

Their work is tested on the Tox21, the Side Effect Resource (SIDER) (Kuhn et al.,
2016), and MUV datasets. We provide an overview of the Tox2 and MUV datasets in
Section 2.3 as we make use of these datasets in our study. The SIDER dataset contains
information on side effects for marketed drugs, and is primarily used in the lead opti-
misation part of the drug-discovery pipeline (refer to Section 2.1). For every dataset, a
subset of the targets is reserved for training and the rest for testing. Training is carried
out as explained in the Matching Networks paper, in which training conditions match
those at test time (Vinyals et al., 2016). The authors make use of a random forest with
100 decision trees as a machine learning baseline model. They also utilise a conventional
GCN as an additional baseline model, which is trained using only a small support set
from the test targets. They then experiment with Siamese Networks (Koch et al., 2015),
Matching Networks (Vinyals et al., 2016), and an adaptation of the Matching Networks
by applying the iterative refinement concepts explained above.

The authors report ROC-AUC scores to report the performance of the models. Con-
sidering the extreme imbalance of the data in the utilised datasets, we note that the PR-
AUC score would be more appropriate. Section 2.4.5 explains the difference between
these two metrics in further detail, however, PR-AUC is based on the relationship be-
tween precision and recall. Therefore, this evaluation metric provides a clearer picture
into how the model performs when predicting the positive (active) class in the data. Pre-
dicting the active class correctly is of significant importance in virtual screening.

55

Chapter 2. Background & Literature Overview 2.8. Summary

On the Tox21 and SIDER datasets, the proposed machine learning architecture achieves
good ROC-AUC performance. The mean score for 10-shot learning on the median held-
out task on Tox21 achieves a score of 0.823± 0.002, while for one-shot learning the model
achieves a mean score of 0.827± 0.001. The reasons why one-shot learning achieved bet-
ter performance than 10-shot learning is uncertain, as we expect the model to perform
better with larger support sets. However, this might be attributed to variance in the
data between experiments. On MUV data, the baseline machine learning models out-
performed few-shot learning. The authors report that this is due to MUV data being
maximally informative, and therefore structural similarity cannot be utilised to gener-
alise for activity prediction.

The authors open-sourced the models developed in the DeepChem library. How-
ever, the implementations are now outdated and not executable with the DeepChem
library, which makes reproduction of results difficult. However, we study the open-
sourced implementation along with the implementation details in the original literature
to successfully reproduce this work. In Chapter 3, we provide further detail into how
we reproduced this work in order to reproduce results and develop the work further.
This study builds on the work of Altae-Tran et al. (2017) to further explore few-shot
learning for virtual screening.

2.8 | Summary
In this chapter, we provided a comprehensive overview of the relevant topics and a
theoretical foundation for the machine learning concepts required for this study. We
first introduced the various components of the drug discovery process, followed by
an overview of the three datasets to be used for this study. We introduce the relevant
machine learning concepts, and we build upon them by reviewing the literature on few-
shot machine learning. The chapter then moves to how molecules can be represented in
computational space, after which we introduce the relevant work in the field of few-shot
learning for low-data drug discovery.

56

3
Methodology

In this chapter, we elaborate on the methodology used to achieve the established aims
and objectives. We first introduce a schematic of the different components of our pipeline,
expanding upon each one to allow reproduction and further development of our work.
Where needed, we will present concise details on theoretical concepts, and link back to
sections in the Background and Literature Overview chapter to aid the reader. Section 3.8
provides an overview of the hardware specifications and library versions used through-
out this project.

3.1 | Overview
The machine learning pipeline for this study consists of seven main parts, which are
illustrated in Figure 3.1. We will elaborate on each part in subsequent sections, however,
the following list provides an overview of the whole process. For convenience and
efficiency, the output of the first four steps is loaded into a Pandas DataFrame and saved
to a Pickle file to avoid repeating the generation of molecular features and graphs before
every experiment. These remain unchanged throughout all experiments.

1. Data Acquisition. We utilise three main publicly available datasets for this study,
namely, the Tox21, MUV and the GPCR subset of the DUD-E. The data is provided
as SMILES strings with a Boolean value for the experimental assays in the dataset
recording whether the molecule is active or an inactive/decoy.

2. Standardise molecule. The SMILES strings are first standardised in order to trans-
form all molecular representations according to a set of well-defined and consis-
tent rules and conventions to ensure validity and uniformity.

57

Chapter 3. Methodology 3.1. Overview

3. Molecular features generation. The molecular graph generated from the stan-
dardised SMILES representation is enriched with atom descriptors to add infor-
mation to the molecular representation.

4. Molecular graphs generation. The molecular representations we have so far are
transformed into graph objects, consisting of nodes and edges representing atoms
and bonds respectively. The connectivity between atoms is represented via an
adjacency matrix.

5. Episode generation. Effective few-shot learning necessitates that conditions at
training match those at testing (Vinyals et al., 2016). Therefore, support sets and
queries are randomly sampled to form a series of episodes for training. The sup-
port sets are composed of a number of examples per class. The number of exam-
ples per class ranges from just one example, up to 10 examples.

6. Learning a molecular embedding. The sampled molecules in the episode are used
to learn a molecular embedding using a graph neural network.

7. Few-Shot Learning. The learned embeddings are processed using four different
meta-learning architectures namely Siamese, Matching, Prototypical and Relation
Networks. Iterative Refinement LSTMs (Altae-Tran et al., 2017) are used to enrich
the few-shot learning. A subset of experimental assays in each dataset is reserved
for training, while the rest are reserved for testing.

8. Testing. The trained models are subsequently used to test on new experimental
assays, unseen during training, to gauge the generalising capability of a model
trained for a low-data scenario. Support sets are randomly sampled and trained
on the remaining molecules in the dataset for 20 rounds, for which the mean and
standard deviation of the areas under the curve for PRC and ROC curves are cal-
culated to quantify performance.

9. Evaluation. Finally, we evaluate the results based on the Reciever Operator Char-
acteristic (ROC) and Precision Recall Curves (PRC) scores from the 20 test rounds.
We apply statistical analysis for results obtained across different experiments to
determine the best performing techniques for each support set composition. Con-
fusion matrices, ROC and PRC graphs for the experiment with the median ROC
score from the 20 rounds are generated after test completion.

58

Chapter 3. Methodology 3.1. Overview

Figure 3.1: Schematic of the machine learning pipeline designed for this
study. The changes across few-shot learning architectures lies in the ’Train
Few-Shot Learning Model’ component, otherwise, all other modules remain
identical.

59

Chapter 3. Methodology 3.2. Data Acquisition

3.2 | Data Acquisition
For this study, we have used three main public datasets, namely, Tox21, the Maximum
Unbiased Validation (MUV), and the Database of Useful (Docking) Decoys - Enhanced
(DUD-E) dataset. The data sources are listed in the following list.

⌅ Tox21. The dataset was obtained from the DeepChem AWS bucket1 in CSV format.

⌅ Maximum Unbiased Validation (MUV). The dataset was obtained from the
DeepChem AWS bucket2 in CSV format.

⌅ Database of Useful (Docking) Decoys — Enhanced (DUD-E). The data for the
GPCR subset was obtained directly from the DUD-E website.3 The actives and
decoys for the targets within the DUD-E subsets are provided as separate SMILES
files. These files are loaded using the Pandas library and aggregated in a CSV file
per subset. The script for performing this operation is provided in the GitHub
repository for this project (see Appendix A).

The targets used, along with the number of active and inactive/decoy molecules
and whether these were used for training or testing can be found in Table 3.1 and Table
3.2 for the Tox21 and MUV datasets respectively. For the DUD-E dataset, target classes
for two particular subsets, grouped by the data provider are used. These include seven
transmembrane helix receptors (GPCR), and nuclear hormone receptors (Nuclear). The
composition of the data for both these subsets can be found in Table 3.3. For the pur-
poses of this study, the rest of the targets in the DUD-E dataset were omitted. It is
important to highlight the inherent imbalance of the datasets used, in which the ratio
of actives to inactives is very low, having tens or hundreds of actives in contrast to the
thousands available inactives. Within Tables 3.1 - 3.3, the split column shows which tar-
gets are reserved for training and which are used for testing. The goal in this study is to
train a model on experimental assays by emulating the low-data conditions during test
time, and then using a small support set from unseen experimental assays to generalise
for the remaining data for the unseen experimental assay.

The format of the CSV files is identical across the three different datasets used. The
smiles column contains the molecules in SMILES notation. The rest of the columns are

1Accessed from: https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/tox21.csv.gz. Last
Accessed: 08 Nov 2021

2Accessed from: https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/muv.csv.gz. Last Ac-
cessed: 08 Nov 2021

3Accessed from: http://dude.docking.org/subsets. Last Accessed: 08 Nov 2021

60

Chapter 3. Methodology 3.3. Generating the Molecular Representation

Target Split Inactives Actives

NR-AR Training 6,956 309

NR-AR-LBD Training 6,521 237

NR-AhR Training 5,781 768

NR-Aromatase Training 5,521 300

NR-ER Training 5,400 793

NR-ER-LBD Training 6,605 350

NR-PPAR-gamma Training 6,264 186

SR-ARE Training 4,890 942

SR-ATAD5 Training 6,808 264

SR-HSE Testing 6,095 372

SR-MMP Testing 4,892 918

SR-p53 Testing 6,351 423

Total Training 54,746 4,149

Total Testing 17,338 1,713

Table 3.1: Tox21 Dataset Composition

named as the targets within the specific dataset or subset, in the case of the DUD-E.
The target columns contain boolean values {0, 1}, denoting whether the molecule is an
active or inactive/decoy against the target. Molecules for which no data exists about its
activity against a specific target are left blank. The Tox21 and MUV dataset also contain
a mol_id column, however, this can be omitted for the purpose of this study.

3.3 | Generating the Molecular Representation
The datasets used provide molecules as a string in SMILES notation. This string alone
provides limited information, but it can be converted to a molecular graph, which in
turn can be augmented with descriptors for its atoms. RDKit is an open source toolkit
for cheminformatics, and will be directly used to generate the molecule object from the
SMILES string. The molecule object is created using the MolFromSmiles() function from
the RDKit Chem module. A visualisation of an RDKit molecule can be seen in Figure 3.3.

61

Chapter 3. Methodology 3.3. Generating the Molecular Representation

Target Split Decoys Active Target Split Decoys Actives

MUV-466 Training 14,814 27 MUV-548 Training 14,705 29

MUV-600 Training 14,698 30 MUV-644 Training 14,593 30

MUV-652 Training 14,873 29 MUV-689 Training 14,572 29

MUV-692 Training 14,614 30 MUV-712 Training 14,383 28

MUV-713 Training 14,807 29 MUV-733 Training 14,654 28

MUV-737 Training 14,662 29 MUV-810 Training 14,615 29

MUV-832 Testing 14,637 30 MUV-846 Testing 14,681 30

MUV-852 Testing 14,622 29 MUV-858 Testing 14,745 29

MUV-859 Testing 14,722 24

Total Training 175,990 347 Total Testing 73,407 142

Table 3.2: MUV Composition from data provisioned by DeepChem.

Target Split Decoys Actives

aa2ar Training 31,550 482

drd3 Training 34,050 480

adrb1 Training 15,850 247

adrb2 Testing 15,000 231

cxcr4 Testing 3,406 40

Total Training GPCR Subset 99,856 347

Total Testing GPCR Subset 3,406 142

Table 3.3: Composition of the GPCR subset from the DUD-E dataset used
for this study.

Figure 3.2: Schematic of the steps in the molecular representation module.

62

Chapter 3. Methodology 3.3. Generating the Molecular Representation

Figure 3.3: Illustration of the conversion from an example SMILES string to
an RDKit Molecule, created using the MolFromSmiles() function and visu-
alised inside a Colab Notebook using the RDKit IPythonConsole from the
Chem.Draw module.

3.3.1 | Standardise SMILES Molecules
Before generating any features or molecular representation, the molecule from the SMILES
string must first be standardised. Standardisation of compounds according to a set of
well-defined and consistent rules and conventions is of utmost importance to main-
tain uniformity and integrity across the data being used. Bento et al. (2020) propose
an open source chemical structure curation pipeline based on RDKit for validating and
standardising chemical structures, which follow FDA/IUPAC guidelines (Brecher, 2006;
Food and Administration, 2007). The authors report that the mere loading of data can
also result in subtle changes in structural information, highlighting the importance of
standardisation in a cheminformatics pipeline. Their work is packaged in the ChEMBL
Structure Pipeline package4, which provides a Standardizer component for standardis-
ing molecules. The following list highlight the processes involved in the standardizer
with the utilised version (see Section 3.8 for full list of package versions).

1. Exclude organometallic and molecules with more than seven boron atoms from
the standardisation process.

2. Standardise unfamiliar stereochemistry.

3. Assign double bonds to the molecular graph using the delocalisation subgraph as
a guide. This process is referred to as kekulization.

4. Remove explicit hydrogen atoms except for instances where (i) an isotope is set,
(ii) the hydrogens have a dashed or wedged bond, (iii) they are chiral hydrogens,
(iv) they are bonded to atoms with three or more ring bonds, and (v) they are
bonded to atoms which have a charge of +1 and a valence one higher than the
default.

4Accessed from: https://github.com/chembl/ChEMBL_Structure_Pipeline. Last Accessed: 09 Nov
2021

63

Chapter 3. Methodology 3.3. Generating the Molecular Representation

Object Type Format Size

Graph Node Float32 Tensor 177

Table 3.4: Feature vector size for molecular graphs

5. Normalise the structure

a) Fixing of hypervalent nitro groups

b) Ensure halogens with no neighbours, trivalent (valence of three) Oxygens
and trivalent Sulfurs are charged.

c) Diazonium Nitrogens are standardised to N+

d) Sulphoxides are standardised to charge separated form.

e) Correct amides

f) Standardise KO to K+ O- and NaO to Na+ O-

g) Ensure quaternary Nitrogens are charged.

6. Neutralise the molecule by adding or removing hydrogen atoms to neutralise the
formal charge of the atom.

3.3.2 | Generate Molecular Features
So far, we have access to a molecule object with atoms and bonds, but we can enrich
this information by adding various descriptors of the atoms and bonds within each
molecule. Most of our experiments are run using only atom features, while omitting
bond information and regarding all bonds as identical bonds, as was carried out in the
state of the art by Altae-Tran et al. (2017).

All atom descriptors are obtained and one-hot encoded using the molecule featuri-
sation utility functions in the DGL LifeSci5 library, which uses RDKit under the hood to
obtain atom and bond descriptors. We loop over each atom in a molecule and featurise
each atom accordingly. The various descriptors are concatenated into a single vector
of size 177 bits using the DGL LifeSci ConcatFeaturizer as shown in Table 3.4. Each
atom’s concatenated feature vector is added to a PyTorch Tensor.

We consider the following descriptors for every atom. Each atom descriptor in the
list that follows is accompanied by the DGL LifeSci function used to generate the feature

5Accessed from: https://lifesci.dgl.ai/. Last Accessed: 09 Nov 2021

64

Chapter 3. Methodology 3.3. Generating the Molecular Representation

vector in snake case. These functions are found in the dgllife.utils module. To avoid
redundant statements in the list, all returned values are one-hot encoded.

⌅ Atom Type - atom_type_one_hot. Returns the type of atom from the default
set of atoms which include {C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe,
As, Al, I, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, H, Li, Ge,
Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb}.

⌅ Atomic Number - atomic_number_one_hot. Returns the number of protons found
in the nucleus of the atom.

⌅ Atom Degree - atom_degree_one_hot. Returns the number of directly bonded
neighbours to the current atom.

⌅ Explicit Valence - atom_explicit_valence_one_hot. Returns the explicit valence
of the atom. The valence relates to electrons involved in forming bonds. For ex-
ample, an oxygen atom has a valence of two, while hydrogen has a valence of
one. Two hydrogen atoms can bond with oxygen to form water (H2O) to create a
compound where all atoms have a full outer electron shell.

⌅ Hybridisation - atom_hybridization_one_hot. Returns the atom hybridisation
from a default set which includes SP, SP2, SP3, SP3D and SP3D2.

⌅ Formal Charge - atom_formal_charge_one_hot. Returns the formal charge of the
atom.

⌅ Radical Electrons - atom_num_radical_electrons_one_hot. Returns the number
of radical (i.e. unpaired) electrons in the atom.

⌅ Aromatic - atom_is_aromatic_one_hot. Returns a Boolean value showing if the
atom is aromatic.

3.3.3 | Molecular Graph Generation
Following the findings in Wu et al. (2018) and Altae-Tran et al. (2017), we choose to
mainly focus on graph representations of molecules for our few-shot learning architec-
tures. In order to learn a molecular embedding from molecular graphs, we need to gen-
erate a graph object with nodes (representing atoms) and edges (representing bonds).
The graph entities are created using Deep Graph Library’s (DGL) DGLGraph data struc-
ture. As we utilise the PyTorch backend for DGL, node and edge features are stored as
PyTorch tensors, in a ndata interface for node data. While nodes in a molecular graph

65

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Figure 3.4: DGL Graph visualised with NetworkX using the Kamada Kawai
Layout. The graph shows how bonds are bidirectional and contain self
loops to aggregate information to the node itself when performing message-
passing. Each node contains a feature vector with various atom descriptors.

can contain distinct data, they are of the same entity type, making them homogeneous
graphs. In the molecular graphs we create, the edges have no distinct direction as graph
information can flow in both directions. Unless explicitly defined, hydrogen atoms are
not added as nodes in the graph. The DGL Graph data structure is created using the
DGL LifeSci library using the mol_to_bigraph() function. This function creates a bi-
directed DGL Graph from an RDKit molecule object. The featurisers are passed into
this function to featurise the nodes and edges where applicable. Self loops are added
to every node in the generated graph so aggregation functions during message passing
consider the features of the node itself. The order of the atoms follows the canonical or-
der of the atoms assigned through RDKit. As the structure and number of atoms varies
between different molecules, the graph objects created come in different sizes. This non-
uniformity needs to be taken into consideration as the resulting adjacency matrices and
the atom features vary in size. Therefore, batching graphs is not a trivial task, but it can
be addressed using block-diagonal matrices, which is explained further in Section 3.4.2.

3.4 | Few-Shot Machine Learning
In this study, we utilise metric-based few-shot machine learning to address the low-data
problem for drug discovery. To achieve this, the low-data conditions during test time
are replicated repetitively during training through a series of episodes. The few-shot
learning model is trained by sampling a small support set (one to ten per class) and
predicting the probability of query examples as a function over the support set samples.
Figure 3.5 illustrates the main steps involved in the few-shot learning pipeline, which

66

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Figure 3.5: Schematic for episodic learning for our few-shot machine learn-
ing pipeline.

will be discussed in further detail in the following sections.

3.4.1 | Episodic Learning
Episodic learning is used to train a few-shot machine learning model. Vinyals et al.
(2016) suggest that conditions during training must match those during testing. The
conditions refer to the composition of the support set. Training consists of a sequence of
learning problems where the model is supplied with a support set and a corresponding
query set. The support set consists of a few molecules sampled from each class, in our
case representing the active molecules and the inactives/decoys. The aim during train-
ing is to train a model how to classify the molecules within the query set using only
the few data points in the support set. We consider N-way K-shot classification tasks,
where the support set contains N classes and K labelled molecules. In our scenario, N
is always assigned a value of two as we are attempting to solve a binary classification
problem, whereby the model tries to classify the query molecules as active or inactive
in a specific experimental assay. We experimented with a varying number of molecules
for the support sets, however the minimum limit was set to one compound per class,
while the maximum was set to 10 compounds per class. The 2-way N-shot formulation
is what the model is presented with at test time. As an example, in which N = 10, the
model is presented with 10 active and 10 inactive compounds as the support set for an
unseen target in an experimental assay. Using this support set, the model classifies the
presented queries.

The value for K is not always the same for both classes as we also experiment with

67

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Actives Inactives/Decoys Support Set Size

10 10 20

5 10 15

1 10 11

1 5 6

1 1 2

Table 3.5: Support set composition

using a different number of molecules sampled from each class to make up the support
set. Table 3.5 contains the composition of the support sets used for our experiments.
For each episode, we sample a total of 128 query molecules, which is composed of a
balanced combination of molecules from each class. If the active class for a specific
target contains less than 64 molecules, the active molecules are over-sampled such that
each query set contains 64 actives.

Episodes are generated using the developed create_episode module, which is in-
cluded in the Jupyter notebooks (see Appendix A). First, a task from the list of reserved
tasks for training is sampled at random. The support and query sets for this task are
sampled as explained previously, and training initiates as visualised in Figure 3.5.

Parameters for create_episode Module

⌅ n_support_pos - [Integer] - Specifies the number of active labelled compounds to
include in the support set.

⌅ n_support_neg - [Integer] - Specifies the number of inactive/decoy labelled com-
pounds to include in the support set.

⌅ n_query - [Integer] - Specifies the number of queries per class to include in each
episode during training.

⌅ data - [Pandas DataFrame] - The dataset including the labels and the generated
molecule representations

⌅ test - [Boolean] - Specifies whether the episode is for training or testing. If the
value is True, the module creates a support set, and includes all remaining molecules
as queries.

68

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Figure 3.6: Schematic for the main components in learning an embedding
from graphs using a graph neural network. Reproduced Figure.6

⌅ train_balanced - [Boolean] - If set to True, the queries returned will be balanced,
containing the same amount of actives and inactives. However, if this is set to
False, a minimum of one compound per class will be generated, and the rest
sampled at random. In this case, the queries will contain a higher ratio of inac-
tives/decoys due to the significantly imbalanced nature of the data.

3.4.2 | Learning a Molecular Embedding
A Graph Neural Network (GNN) is used to learn to embed the support and query
molecular graphs into latent space. The GNN is developed using the DGL libraries,
which provides modules based on PyTorch. The architecture is presented in Table 3.6.
Figure 3.6 shows an overview of the main components of a GNN.

1. Batch Graphs. As the end-goal in our few-shot learning models is to predict the
activity of a particular molecule in an experimental assay, training needs to be
done on graphs representing the molecules used for training. Processing indi-
vidual graphs is inefficient, so the graphs used in each episode can be batched
together to form a single batched graph as illustrated in Figure 3.7 using the DGL
GraphDataLoader function to batch graphs. This data loader inherits from the Py-
Torch dataloader. We set the pin_memory flag to True, which enables faster data
transfer to CUDA enabled GPUs. The structure and number of atoms varies be-
tween molecules. This non-uniformity therefore results in varying inputs for the

6Accessed from: https://docs.dgl.ai/guide/training-graph.html. Last Accessed: 09 Nov, 2021

69

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Figure 3.7: Batching of graphs to represent them as a single large graph for
more efficient training.

neural networks. Figure 3.7 also illustrates three adjacency matrices which repre-
sent the connectivity of three different graphs of different sizes.

2. Message Passing to update node features. The next step is to update the fea-
tures for nodes using message passing. We follow the work of Altae-Tran et al.
(2017) and propose a similar architecture using the DGL Library. Table 3.6 illus-
trates the architecture used. The two main components used for message passing
are the graph convolution (Kipf and Welling, 2016) layer, followed by a maximum
function aggregating the node features with the maximum value of its neighbours
and the node itself. Each graph convolution layer aggregates the neighbouring
features and transforms this aggregated representation using a linear projection,
over which we apply a non-linear function. The maximum pooling layer is ap-
plied after every convolutional layer, and we highlight that this is different from
the final read-out function. The maximum aggregation layer merely updates node
information through message passing, and does not apply any coarsening to our
graphs.

3. Readout function to aggregate node/edge features into graph-level representa-
tion. Sum pooling is applied as the read-out function, which sums over the node
features of the graph.

70

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Figure 3.8: Learning an embedding through a Graph Convolutional Net-
work (GCN). The molecule, represented as a graph object with nodes, edges
and atom features is processed using graph convolutions. Each convolu-
tion layer is followed by a max message passing function over the current
and neighbouring nodes. The convolution layers are tabulated in Table 3.6.
After this process, a sum readout is applied to aggregate all atom features
into one vector. A TanH function is applied to this vector, and the output is
processed using a dense linear layer. The resulting embedding is once again
applied a non-linear TanH function to yield the final learned molecular em-
bedding.

r =
Ni

Â
n=1

xn (3.1)

4. Linear Layer. A linear transformation is applied to the output from the read-out
layer, followed by a non-linear activation function, for which we use a hyperbolic
tangent function (Tanh), outputting the final molecule embedding.

71

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Layer Type Input Dimension Output Dimension Non-Linearity

GraphConv 177 64 ReLU

Max Pooling 64 64

GraphConv 64 128 ReLU

Max Pooling 128 128

GraphConv 128 64 ReLU

Max Pooling 64 64

SumPool Readout 64 64 TanH

Linear 64 128 TanH

Table 3.6: Graph Convolution Network Architecture

Figure 3.9: Graph processing layers in our GCN implementation. The graph
convolution layers apply operations on each individual node’s feature maps
based on neighbouring nodes. The ReLU function is applied after each con-
volutional layer, and the TanH function is applied after the final readout
layer. The resulting vector from the readout layer is further processed using
a neural network as shown in Figure 3.8.

72

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

3.4.3 | Training a Few-shot Machine Learning Model
The generated molecular embeddings from the GNN are passed to the few-shot learn-
ing architectures introduced in Chapter 2. The success of a few-shot learning model for
metric-based meta-learning is dependent on the effectiveness of the kernel kq , which
measures the similarity between data samples (see Equation 3.2) using a metric or dis-
tance function. The models discussed in this section, excluding the benchmark model,
use the embeddings generated from the GNN, presented in the support and query sets,
to learn the kernel function.

Pq(y|x, S) = Â
(xi ,yi)2S

kq(x, xi)yi (3.2)

where

Pq = Probability over a set of labels y
S = Support set
kq = Kernel function
xi = Data sample from S
yi = Data label from S
x = Query data sample

To be able to compare the model’s effectiveness objectively, the GNN architecture
presented in Section 3.4.2 remains unchanged in all experiments, including the bench-
mark. Training hyperparameters and optimisations are presented in Section 3.5.

3.4.3.1 | Benchmark Models

For the benchmark models, we make use of a random forest model and a graph convo-
lutional network trained through conventional supervised learning. The episodic learn-
ing explained previously is not used, but instead we sample a support set directly from
the test target and train a model using only the few molecules in the support set. The
trained model is then used to predict the activity of the remaining molecules against the
target being tested. The random forest model is trained on ECFPs with a size of 2048
bits, as opposed to graph representations, using an ensemble of 100 decision trees. The
Scikit-Learn library is used to build the random forest model. The architecture designed
for the graph convolution network is outlined in Table 3.7.

73

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

Layer Input Dimension Output Dimension Non-Linearity

GraphConv 177 64 Relu

Max Pooling 64 64

GraphConv 64 128 Relu

Max Pooling 64 64

GraphConv 128 64 Relu

Max Pooling 64 64

Sum Pooling 64 64 TanH

Linear 64 128 TanH

Linear 128 1 Sigmoid

Table 3.7: Benchmark Neural Network for Few-Shot Learning

3.4.3.2 | Siamese Networks

Siamese networks (Koch et al., 2015) are composed of two identical networks, with
shared weights and parameters, taking in a pair of data samples as inputs. The out-
puts from the networks are compared to learn the relationship between them. For the
Siamese Networks, the molecular embeddings in the support and query sets are not
created as explained previously with the GraphDataLoader as these need to be learned
in pairs. The following is the process employed for learning a classifier using Siamese
Networks. The process is repeated for all training tasks.

1. Generate a list of all possible pairs between training data. If both data samples in
the pair have the same target, the pair’s label is set to 1, and 0 if otherwise.

2. Create a twin network using the GNN architecture to embed two molecular graph
inputs into latent space.

3. Calculate the L1 distance between the molecule embeddings. This is achieved by
calculating the absolute difference between the embeddings |moli � molj|.

4. The distance between the two embeddings is passed through a linear feedforward
layer with 128 nodes and an output of 2, followed by a sigmoid function to output
the probability.

5. As we are dealing with binary classification, the binary cross entropy loss is calcu-
lated and back-propagated to the network.

74

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

In our implementation, the final sigmoid layer is not defined explicitly during train-
ing because this is applied automatically within the PyTorch BCEWithLogitsLoss func-
tion to compute the loss. Therefore, during testing, the sigmoid function is added ex-
plicitly to compute the probabilities of the outputs from the few-shot learning networks.

As a note on the three architectures that follow, training is done using the episodic learning
explained in Section 3.4.1, using the support set compositions in Table 3.5.

3.4.3.3 | Matching Networks

Matching Networks builds on Siamese Networks, but instead of learning a metric func-
tion over pairs of data, the classifier learns how to define a probability distribution of
output labels from query/test examples using a support set S. The classifier outputs a
sum of attention weighted labels from the support set to predict the similarity between
the test example and the samples from the support set. We use the same embedding
function for the support and query sets to compute the molecular embeddings. Sub-
sequently, the cosine similarity between pairs of data points between the support and
query sets is computed, which is then normalised by a softmax function. As proposed
in Vinyals et al. (2016), Fully Contextual Embeddings (FCE) are used in our implemen-
tation. Taking single data points to learn an embedding function limits the ability of
embedding the molecules effectively into latent space. Therefore, a bidirectional long-
short term memory (LSTM) is used, taking as input the whole support set to adjust the
embedding based on the other support samples.

Two functions are defined. gq(xi, S) encodes xi, a data sample from the support set,
in the context of the whole support set S, using a bidirectional LSTM. The LSTM trans-
forms our support set embeddings by adding the forward and backward activations to
the original support image embeddings. Subsequently, fq(x, S), encodes the query sam-
ple x and trains the LSTM with read attention over the support set. The hidden state is
updated over 10 processing "read" steps, until eventually the hidden state is equivalent
to the aforementioned fq(x, S). Throughout each iteration, the hidden state and the out-
put from the attention function are added together. To train the network using stochastic
gradient descent, the cross entropy loss is computed for each query prediction.

3.4.3.4 | Prototypical Networks

Prototypical Networks (Snell et al., 2017) have similarities to the Matching Networks
described above, but instead of considering the individual support set embeddings, the
mean vector of the embeddings for each class within the support set is taken. This mean

75

Chapter 3. Methodology 3.4. Few-Shot Machine Learning

vector for each class is referred to as the prototype. Another improvement the authors
of the original paper make over Matching Networks (Vinyals et al., 2016), is the use
of Euclidean distance rather than the Cosine distance. In order to classify query data
samples, the softmax of the inverse of the euclidean distances between each query and
each prototype is taken. To train the network through stochastic gradient descent, the
negative log likelihood loss is used.

3.4.3.5 | Relation Networks

For the Relation Networks (Sung et al., 2018), the classification of query samples is not
done directly in latent space from the embeddings. The embeddings for the support
and query samples are generated using the GNN. Following this step, the feature maps
concatenations are created by concatenating the query samples with each data sample
within the support set. The feature map concatenation therefore has a size double the
length of the embedding generated by the GNN.

The relationship between the queries and the different classes within the support
set is captured by passing these feature map concatenations through a feed forward
neural network gq([xi, xj]) to predict a relation score. [,] is the concatenation between
each support set data sample xi and the query data samples xj. The architecture of this
function is defined in Table 3.8. The loss function used is Mean Squared Error (MSE)
loss as proposed in the original paper.

Layer Type Input Dimension Output Dimension Non-Linearity

Linear 256 128 ReLU

Linear 128 64 ReLU

Linear 64 8 ReLU

Linear 8 2 Sigmoid

Table 3.8: The architecture for generating the relation score using function
gq .

3.4.4 | ECFPs vs GCNs Learned Embeddings Experiments
We also carry out a number of experiments to determine whether learned embeddings
through GCNs are superior to Extended-connectivity fingerprints (ECFP) (Rogers and
Hahn, 2010). ECFPs are generated from the SMILES strings using the DeepChem Cir-
cularFingerprint featuriser, with a radius of 2 and a size of 2048 bits. The featuriser

76

Chapter 3. Methodology 3.5. Training Process and Hyper-parameters

discards chirality information and considers bond order in the fingerprint generation.
The non-linear activation functions used emulate those used in the GCN architecture.
In fact, the last layer is also activated using a hyperbolic tangent function. The neural
network components used to process the ECFPs is tabulated in Table 3.9. We choose
the best performing few-shot learning technique and compare performance based on
ROC and PRC scores between the few-shot learning models when trained using ECFP
embeddings versus when trained on learned embeddings through a GCN. For the set
of ECFP experiments, we switch the Learn molecule embedding with GCN component in
Figure 3.5 with the neural network in Table 3.9.

Layer Type Input Dimension Output Dimension Non-Linearity

Linear 2,048 1,000 ReLU

Linear 1,000 500 ReLU

Linear 500 128 TanH

Table 3.9: Neural Network Architecture for ECFPs.

3.5 | Training Process and Hyper-parameters
This section outlines the parameters defined for training, along with optimisation tech-
niques to improve the training process. A list of parameters is available in Table 3.10.

Adam (Kingma and Ba, 2014) is used as an optimisation algorithm for stochastic
gradient descent. This optimiser combines properties from AdaGrad (Duchi et al., 2011)
and RMSProp (Hinton et al., 2012) algorithms, providing an algorithm which works
well with sparse gradients and does not require stationary objectives.

When learning stagnates, learning benefits from reducing the assigned learning rate.
For this, we make use of PyTorch’s ReduceLROnPlateau, which reduces the learning rate
when the loss value stops improving over a number of patience number of episodes.
The patience parameter is set to 200, which means that if the loss does not decrease
after 200 episodes, the learning rate is reduced by half.

3.5.1 | Performance Monitoring
All training is run in Jupyter Notebooks within Colab (see Appendix A). Monitoring
of epochs is carried out using the TQDM library, which can be configured to visualise
updates to the metrics during training. The progress bars are configured to showcase

77

Chapter 3. Methodology 3.6. Testing

Network Type Value

Siamese Nets Learning Rate 0.001

Siamese Nets Loss Function Binary Cross Entropy Loss

Matching Nets Learning Rate 0.01

Matching Nets Loss Function Binary Cross Entropy Loss

Prototypical Nets Learning Rate 0.001

Prototypical Nets Loss Function Negative likelihood Loss

Relation Nets Learning Rate 0.0001

Relation Nets Loss Function Binary Cross Entropy

All Optimizer Adam

All Scheduler ReduceLROnPlateau

All Max Episodes 10,000

All Query Samples 128

All N-Way 2

All ReduceLROnPlateau Patience 200

All ReduceLROnPlateau Factor 0.5

Table 3.10: Hyperparameters and Optimisation

the episode number, the loss value, the accuracy and the current learning rate. The
loss functions used to train through gradient descent are the same used in the respec-
tive work for Siamese, Matching, Prototypical and Relation Networks. Tensorboard7 is
a Tensorflow visualisation toolkit, however, it can be extended to be used in PyTorch
too. This toolkit provides visualisation for ML experiments, allowing us to track and
visualise metrics generated during training such as the loss improvement, highlighting
convergence points during training. The SummaryWriter module provided for PyTorch
by the Tensorboard library allows the creation of logs, which are consumed and visu-
alised by Tensorboard. Tensorboard was used to monitor loss graphs during training.

3.6 | Testing
All generated models are saved to a PyTorch state dictionary file (.pt). As is emphasised
by Vinyals et al. (2016) and Snell et al. (2017), training and testing conditions should
match when doing few-shot learning. Therefore, the same support set composition used

7https://www.tensorflow.org/tensorboard. Last Accessed: 11 Nov 2021.

78

Chapter 3. Methodology 3.7. Evaluation

to train the model is used during test time. For example, if during training we do 10-
shot learning, testing is carried out with 10-shot support sets. We remind the reader that
testing is carried out on a new, previously unseen target. Tables 3.1, 3.2, and 3.3 show
the targets reserved for testing. After the support set has been sampled, the rest of the
data for the target being tested is used as query/test data. This process is repeated 20
times, and the mean and standard deviation of the ROC and PRC scores from these 20
rounds are reported as the final classification result.

3.7 | Evaluation
The evaluation metrics used are the Receiver Operating Characteristic (ROC) curve, and
the Precision-Recall Curve (PRC). To determine the predictive power of our classifier,
we make use of the ROC Area under the curve (AUC) (ROC-AUC) as this provides a
clearer picture of the relationship between the true positive and the false positive rate.
The ROC-AUC affords a more nuanced approach than accuracy as it provides visibil-
ity into thresholds one can utilise to ameliorate predictions. While (Altae-Tran et al.,
2017) only report the ROC scores in their paper, we take into consideration the highly
imbalanced nature of the datasets used and also introduce the PRC metric. The PRC
is more robust at determining the effectiveness of the positive (active) class in a classi-
fier, as explained in Chapter 2 in Section 2.4.5. We make use of the Sci-kit Learn library
to compute the ROC-AUC, PR-AUC and overall accuracy using the roc_auc_score,
average_precision_score and accuracy_score modules. Confusion matrices, ROC
and PRC plots are generated for each experiment. These are generated using the results
from the round which obtained the median ROC score from the 20 test rounds. Confu-
sion matrices are beneficial as they provide insight into true or false positives and true
or false negatives.

We apply statistical analysis on the ROC and PRC scores from the 20 test rounds
for each experiment to establish whether there are significant differences between the
few-shot learning models. The scores are compared against those of the model that
obtained the best result for the same conditions. Comparing the results between two
models is carried out using the Mann-Whitney U-test, also referred to as the Wilcoxon
rank sum test (Mann and Whitney, 1947). This non-parametric technique is used to
test for differences between two independently sampled groups. Unlike the paramet-
ric t-test, non-parametric tests assume no particular distribution (McKnight and Najab,
2010). The Mann-Whitney U-test tests for the null hypothesis H0, stating that there is
equal probability for the values in X being greater than those in Y and the probability

79

Chapter 3. Methodology 3.8. System and Software Speci�cations

Package Version Description

PyTorch 1.9.0 Machine learning framework

Scikit-Learn 1.0.1 Machine Learning Library

Deep Graph Library (DGL) 0.7.2 Deep learning on graphs

DGL-LifeSci 0.2.8 Cheminformatics graph functions

RDKit 2021.09.2 Cheminformatics Toolkit

DeepChem 2.6.0.dev Cheminformatics Machine Learning

Pandas 1.1.5 Data manipulation and preparation

Numpy 1.19.5 Adds support for multi-dimensional arrays

ChemBL Structure Pipeline 1.0.0 Used to standardise molecules

NetworkX 2.6.3 Used to visualise graphs

TQDM 4.59 Progress bars library

SciPy 1.7.1 Statistical Analysis

Table 3.11: Python libraries utilised for this project.

for the values in Y to be greater than X. X and Y in our problem scenario represent the
ROC or PRC values obtained from two different few-shot learning models for a specific
support-set composition experiment. The SciPy library is used to compute the Mann-
Whitney U-tests. We set a significance level (a) to 0.05, so the corresponding confidence
level is 95%. If the resulting p-value is less than a, we reject the null hypothesis and
accept the alternate hypothesis, indicating that there is significant difference between
the two distributions. On the other hand, if the p-value is greater than a, we accept the
null hypothesis, indicating that there is no statistical significant difference between the
two distributions.

3.8 | System and Software Speci�cations
This research project was developed using Python 3.7. Most packages were installed
using Pip 21.0.1, however, Conda 4.10.3 was also used to install packages not found on
the Python Package Index (PyPi)8. Pip and Conda are package management systems
for Python, allowing users to conveniently install and run packages and their depen-
dencies.

8Accessed from: https://pypi.org/. Last Accessed: 07 Nov 2021

80

Chapter 3. Methodology 3.9. Summary

Type Model Details

CPU Intel (R) Xeon 2.20Ghz 4 Cores

GPU Nvidia Tesla P100 16GB using Cuda 11.1

RAM N/A 25GB

Table 3.12: Hardware provisioned in Google Colab.

All the experiments were run on Google Colaboratory9, Colab in short. Colab is a
hosted Jupyter notebook10 service, providing access to computational resources includ-
ing CPUs and GPUs to run Python code. These Colab notebooks can be accessed and
run in web-browsers such as Chrome, Firefox and Safari. For this study, we upgraded
from the free tier to Colab Pro to get access to faster GPUs, more memory and longer
runtimes without disconnecting.

3.9 | Summary
In this chapter, we explained in detail the methodology employed for this study. First,
we provided an overview of our few-shot machine learning architecture. This overview
was followed by an in-depth report of each component, allowing the reader to under-
stand the whole few-shot learning process. Our pipeline first starts from loading molec-
ular data, standardising SMILES strings and generating the corresponding molecular
graph or ECFP representations. The molecular representations are sampled to create
a series of support and query sets, which are used to recreate the conditions of few-
shot learning during training. The support and query sets are used to learn a molecu-
lar embedding using a graph convolutional network (GCN). The embeddings are then
processed using the Iterative-Refinement LSTM (IterRefLSTM) from the state of the art
work by Altae-Tran et al. (2017). The resulting embeddings are finally processed using
the few-shot learning technique of choice. We implemented Siamese, Matching, Pro-
totypical and Relation Networks for this component of our few-shot learning pipeline.
Testing is then carried out on new, unseen experimental assays, using only a small sup-
port set to generalise for the new target. Evaluation is carried out using ROC and PRC
scores, which are finally evaluated using the Mann-Whitney U-test. Results are pre-
sented and discussed in the following chapter.

9Accessed from: https://colab.research.google.com/. Last Accessed: 07 Nov 2021
10Accessed from: https://jupyter.org/. Last Accessed: 07 Nov 2021

81

4
Results & Evaluation

In this chapter, we present and discuss the results in accordance with the defined aims
and objectives around which this study is designed. First, we revisit the aims and ob-
jectives to set the scene for the results to follow. We then present the results for the
developed machine learning models for the three datasets, which include the following.

1. Tox21. Dataset mainly used for lead optimisation, containing toxicity data for 12
targets (NIH, 2014).

2. Maximum Unbiased Validation (MUV). Dataset based on PubChem BioAssays,
used for validating virtual screening techniques against 17 different targets (Rohrer
and Baumann, 2009).

3. Directory of Useful Decoys (Enhanced) (DUD-E). This dataset is used to bench-
mark virtual screening techniques by introducing a number of active compounds
against specific targets. For each active, a number of decoys with similar physical
properties but different topologies are made available. For this research study, we
made use of the GPCR subset of the DUD-E dataset rather than the whole dataset
(Mysinger et al., 2012).

All these datasets are highly imbalanced, where the inactive/decoys greatly out-
number the number of actives. This defining feature of these datasets presents a chal-
lenging problem, but is also further evidence that low-data machine learning is highly
beneficial in this domain. We first present the work we reproduced from Altae-Tran
et al. (2017), which we also test on a subset of the DUD-E dataset, which was not ex-
plored in the original study. The reproduced work includes Siamese Networks (Koch
et al., 2015) and the Matching Networks (Vinyals et al., 2016) with the Iterative Refine-
ment LSTM (IterRefLSTM), which obtained the best results in Altae-Tran et al. (2017).

83

Chapter 4. Results & Evaluation 4.1. Revisiting aims and objectives

This is followed by presentation and discussion of the results for two newly proposed
machine learning models in this domain, which are based on work of Vinyals et al.
(2016) for Matching Networks. These machine learning models include the Prototypical
(Snell et al., 2017) and Relation (Sung et al., 2018) Networks. Finally, we evaluate the
results with the state of the art, which is identified to be the work of Altae-Tran et al.
(2017).

4.1 | Revisiting aims and objectives
In Chapter 1, we presented the main aim of the study, which is to determine the efficacy
of low-data machine learning for LBVS for hit identification and lead optimisation in
the drug discovery process. The goal is to train a machine learning model that can
generalise well enough to classify the activity of molecules in a new experimental assay
using only a few training examples as the support set. We reiterate that this is not
simply an application of few-shot learning methods to molecular data. The analogous
learning task for such techniques would be to learn a classifier in a fixed experimental
assay that can predict the activity of molecules in a new molecular scaffold given only
a small support set form this scaffold. Altae-Tran et al. (2017) compare the analogous
learning challenge in few-shot learning for molecular data to training a computer vision
model to perform object recognition, and then performing object localisation at test time
given only a small amount of data. This method of training is also different from the
conventional supervised machine classification approach, where we have ample data
points for each class/target, which are used for training in order to correctly classify
unseen data points for the classes/targets we trained on. In this study, we attempt to
classify the activity of molecules in a new experimental assay, using only a small support
set from the previously unseen experimental assay. Training for few-shot learning is
carried out in a series of episodes, framed as N-way K-shot classification tasks. These
classification tasks match the conditions at training time with those during testing, as
proposed by Vinyals et al. (2016). The tasks in this research are binary classification
tasks, therefore N is always set to two to represent the active and the inactive/decoy
class respectively. Experiments with varying values of K are carried out to generate
the support sets, with a minimum of one data point, to a maximum of 10 data points
per class. The combinations for K active and inactive/decoy classes are not exhaustive,
but we follow the support set composition used in Altae-Tran et al. (2017) to directly
compare results with this study. The rest of the data is sampled as query data points.
In episode generation, 128 balanced queries (i.e. 64 actives and 64 inactive/decoys) are

84

Chapter 4. Results & Evaluation 4.2. Benchmark Machine Learning Models

sampled for training.
The rest of the chapter will introduce the results obtained for the developed machine

learning models, which are highlighted once again in Section 4.3. As per our objectives,
we also run a number of experiments using ECFPs rather than embeddings created from
graph convolutions to identify whether either one can ameliorate the generalisation of
few-shot learning models for the prediction of molecular activity in new, unseen exper-
imental assays.

Table 4.1 shows the excessive imbalance of the data used, highlighting the scarceness
of data on active compounds in this domain. Hence, the accuracy metric is disregarded
for the evaluation of results as this metric is not reliable when evaluating highly imbal-
anced datasets. In imbalanced scenarios, the model can easily classify the majority class,
thus achieving high levels of accuracy. However, looking deeper into the confusion ma-
trix usually uncovers the ineffectiveness of such models. Hence, we evaluate results
based on the confusion matrices, the Receiver Operator Characteristic (ROC) Area Un-
der the Curve (AUC) (ROC-AUC) score, and the Precision-Recall Curves (PRC) AUC
(PR-AUC) scores. We go into further detail in Section 2.4.5 about the advantages and
limitations of using the ROC-AUC and PR-AUC scores.

Dataset Actives Inactives/Decoys

Tox21 4,149 (7.04%) 54,746 (92.96%)

MUV 347 (0.20%) 175,990 (99.80%)

DUD-E (GPCR) 1,249 (1.45%) 84,856 (98.55%)

Table 4.1: Number of actives and inactives/decoys across all targets in the
datasets used. Figures in parentheses show the percentage of the total com-
pounds in the dataset. These figures highlight the excessive imbalance of
the data.

4.2 | Benchmark Machine Learning Models
Following the methodology of Altae-Tran et al. (2017), we made use of a Random Forest
model and a Graph Convolutional Network (GCN) to build a baseline to benchmark the
purpose-built few-shot learning models. For the random forest model, ECFP represen-
tations of the molecules of size 2048 bits are used for the classification task. Meanwhile,
the same GCN architecture used for the few-shot learning models is used for the bench-
mark. The only addition to the architecture is a final linear layer that takes as input 128

85

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

features, which is the size of the embedding used for the experiments to follow, and
outputs a feature of size one, onto which we apply a non-linear function, in this case a
Sigmoid function, to output the probabilities for a Boolean target (0, 1).

These two models are only trained on a small support set, sampled from the targets
assigned for testing. For example, the notation K+/K- used in the tables to follow signify
the sampling of N actives and N inactives/decoys, which are in turn used for training.
Testing is carried out on the remaining data for the designated target. For the benchmark
models, this process of sampling, training, and testing is repeated 20 times. The means
and standard deviation from these 20 runs are reported accordingly.

4.3 | Few-shot Machine Learning Results
In this section, we present the results obtained for the four machine learning models
tailored for few-shot learning. The following list provides a brief overview of each ma-
chine learning model used, however, refer to Section 2.5 for a more in-depth overview.
The first step in our research was the replication of the results of Altae-Tran et al. (2017)
through the implementation of the Matching Networks with Iterative Refinement LSTM
(IterRefLSTM), which was established to be the state of the art model in this domain. We
also reproduce the Siamese Networks, although the state of the art model affords supe-
rior performance as per the literature (Altae-Tran et al., 2017). After successful repli-
cation of the state of the art, we apply Prototypical Networks and Relation Networks,
previously applied for computer vision in the literature, for this problem domain. The
same IterRefLSTM is also applied to the embeddings in these two architectures, so we
are just changing the metric-based component in our architecture. We recapitulate the
few-shot learning architectures utilised in our experiments in the following list.

⌅ Siamese Networks (Koch et al., 2015). A network consisting of twin GCNs whose
outputs are connected and the distance between them is calculated to classify the
inputs. These networks are always fed in pairs of data points.

⌅ Matching Networks (Vinyals et al., 2016). Reproduction of the work by Vinyals
et al. (2016) and Altae-Tran et al. (2017). The former study proposes the Matching
Networks, while the latter proposes the established state of the art for low-data
drug discovery which is an improvement on the Matching Networks through the
introduction of IterRefLSTM. In Matching Networks, two embedding functions
embed the support and query data points. The LSTM uses softmax attention to
further enhance the support and query embeddings in the context of each other.

86

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

The cosine distance between the support and query data points is taken to classify
the queries.

⌅ Prototypical Networks (Snell et al., 2017). This type of network is similar to the
Matching Networks, but instead of comparing the query support to every sup-
port data point, a prototype is calculated, which takes all the support data points
per class and creates an embedding by averaging over the embeddings. The eu-
clidean distance between the query data points and the prototypes is calculated
for classification.

⌅ Relation Networks (Sung et al., 2018). A GCN creates embeddings for the sup-
port data points and the query data points. The query embeddings are then con-
catenated to the support embeddings, and these feature map concatenations are
passed through a neural network to compute a relation score, which is used to
classify the queries.

While the work of Altae-Tran et al. (2017) is open-sourced and made available in the
DeepChem library, at the time of writing of this study, all the code was deprecated and
proved problematic to run. In addition to being dependent on older versions of Tensor-
Flow, the relevant code is also coupled with other components of the DeepChem library,
which were in turn written for newer versions of libraries such as TensorFlow. As a re-
sult, rewriting the code to run it again directly in DeepChem proved to be difficult.
Therefore, we reproduced the work to the best of our abilities without tightly coupling
our work with the DeepChem library. We also joined DeepChem weekly developer
meetings in order to gain a better understanding of DeepChem and the outdated low-
data learning code.

4.3.1 | Evaluation Overview
Evaluation is carried out using ROC-AUC and Precision Recall Curve AUC (PR-AUC)
metrics. The original work of Altae-Tran et al. (2017) only reports ROC results, however,
this metric alone does not fully encompass the nature of the performance of the machine
learning models in this problem domain due to the imbalanced nature of the data. In
virtual screening, the detection of rare events (equivalent to our minority active class)
holds significant importance, as active compounds against a specific target should be
identified from the compound database. However, we do not disregard the importance
of correct classification of the majority inactive/decoy class as this is also important for
filtering out thousands of screened compounds. Table 4.1 highlights the imbalance of

87

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

the data used for this study. As the active class is the minority class, PRC are used to
evaluate how well the model can classify the active class. A high area under the PRC
indicates high recall and high precision.

⌅ High Precision is attributed by a low false positive rate, meaning compounds
classified as active when in fact they are inactive/decoys.

Precision =
True Positives

True Positives + False Positives

⌅ High Recall is related to a low false negative rate, meaning active compounds
incorrectly classified as inactive/decoys.

Recall =
True Positives

True Positives + False Negatives

The ideal scenario for predicting the minority active class is thus one where we
achieve high recall and high precision. As our data contains a lot of negative exam-
ples, there is a higher chance of these being predicted as false positives. On the other
hand, we have much fewer active examples which could be predicted as false negatives.
Given that the active class is in such a minority, even a small false positive rate could
result in high numbers of false positives, due to the high number of the negative class
examples. In this scenario, the precision will be low as we are predicting a lot of false
positives when compared to true positives. We can also have a scenario of high recall
with low precision. In this scenario, we have a high number of incorrect predictions as
the model returns a lot of false positives, but it correctly predicts most of the active class
as it has high recall. On the other hand, if we achieve high precision with low recall,
most of the predictions are correct as we have a high number of true positives when
compared to false positives.

Each model is evaluated 20 times per target, with a randomly sampled support set
from a specific test target per round. The rest of the data for the target is used for testing.
The tabulated results are the mean values from these 20 rounds, along with the standard
deviation for each mean. Where applicable, graphs and confusion matrices are pre-
sented for the median round based on the ROC-AUC metric from the 20 testing rounds.
The non-parametric Mann-Whitney U rank test, also referred to as the Mann-Whitney
Wilcoxon Test, is used to determine whether the results from the test rounds between
different machine learning models are significantly different. We report whether there
is a significant difference between the scores obtained between two different machine
learning models. The null hypothesis when comparing the results from two machine

88

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

learning models is that there is no significant difference between the two distributions.
We choose a significance level a of 0.05, which gives us a confidence level of 95% when
rejecting the null hypothesis and accept the alternative hypothesis, which resolves to
the distributions being significantly different.

4.3.2 | ROC-AUC and PR-AUC Scores
To evaluate the performance of our machine learning models, we make use of the ROC-
AUC and Average PR-AUC (labelled as PRC) for five different support set compositions,
tested with the two benchmark models, and four few-shot machine learning models. We
reiterate that for the support set composition (the number of examples per class), we fol-
low the same ones utilised by Altae-Tran et al. (2017). One limitation our results have is
for Siamese Networks. The nature of the architecture dictates that the model takes a pair
of samples as inputs, and outputs a Boolean value if the classes belong to the same class
or not. When combining queries with the data points in the support set, this leads to a
three class problem, rather than a binary classification one as per the rest of our study.
We have the following combinations (i) both inactive/decoys, (ii) one inactive and one
active or vice versa, and (iii) both active compounds. The literature (Altae-Tran et al.,
2017; Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016) suggests that the other pro-
posed architectures are superior to Siamese Networks. Adding to the fact that we assign
more importance to classifying the active class, we frame the Siamese Network data in-
puts for binary classification. Hence, if the input pairs are both inactive, they are still
assigned a value of zero, and the positive/True class is only assigned in the case where
both molecules are active. As a result, when comparing and evaluating results against
Siamese Networks, we mainly consider the PRC scores. However the other few-shot
learning models in our experiments outperform the Siamese Networks, as supported
by literature. In the tables to follow, the best performing metric is highlighted in bold,
excluding the ROC score for the Siamese Networks due to the aforementioned reasons.

4.3.2.1 | Few-Shot Learning on Tox21

For the Tox21 dataset, three targets were reserved for testing, namely SR-HSE, SR-MMP
and SR-p53. The rest of the targets (refer back to Chapter 3 Section 3.2 Table 3.1) are used
for training. The comparisons reported below are between Matching Networks (MN),
Prototypical Networks (PN) and Relation Networks (RN), as these three outperform the
Random Forest (RF), Graph Convolutional Networks (GCN), and Siamese Networks
(SN) significantly in ROC and PRC scores, taking into consideration our previous ob-
servation about ROC scores for Siamese Networks. A discussion on each target ensues

89

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

in the following sub-sections. We reiterate the number of actives and inactives for each
target, and then present the results for each support set composition. The support set
composition is denoted by K+/K-, where the K stands for the number of actives and
the number of inactives respectively. Figures 4.1 and 4.2 show the box plots for results
across targets for the 10+/10- support set composition for all machine learning models.

Figure 4.1: Box plots for Tox21 ROC scores for 10+/10- Support Set, showing
clear separation between benchmark models and few-shot learning models.

Figure 4.2: Box plots for Tox21 PRC scores for 10+/10- Support Set, showing
clear separation between benchmark models and SNs when compared to
MNs, PRs, and RNs.

SR-HSE - 372 Actives - 6,095 Inactives

Table 4.2 contains the tabulated results for the SR-HSE target. From the statistical anal-
ysis below, it is evident that the PN dominates in the PRC scores, followed by RN and

90

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

finally the MN. For ROC scores, the results are less clean-cut. For the largest support set,
the Matching Networks obtain the best results, while for one-shot learning, Prototypical
Networks outperform the other networks.

⌅ 10+/10-. Best ROC - MN. Best PRC - MN/PN/RN. The best ROC and PRC metrics
are obtained by the MN model. The ROC metric for MN is established to be sig-
nificantly different from both the PNs (U=297.00 and p=0.009) and RNs (U=400.00
and p=0.000).

However, there is no significant difference between PRC scores from both PN
(U=165.00 and p=0.351) and RN (U=167.00 and p=0.380).

⌅ 5+/10-. Best ROC - RN. Best PRC - PN/RN. The best ROC and PRC metrics are
obtained by the RN model. The ROC metric for RN is established to be signifi-
cantly different from both the MN (U=400.00 and p=0.000) and PN (U=399.00 and
p=0.000).

There is also significant difference between PRC scores from MN (U=307.00 and
p=0.004), but none from the PN (U=180.00 and p=0.598).

⌅ 1+/10-. Best ROC - MN. Best PRC - PN. The ROC score for MN is significantly
better than the score for PN (U=396.0 and p=0.000) and MN (U=400.0 and p=0.000),
however the PRC score for PN is significantly better than MN (U=400.0 and p=0.000)
and RN (U=391.0 and p=0.000).

⌅ 1+/5-. Best ROC - RN. Best PRC - PN. RN ROC score is significantly better than
both MN (U=400.0 and p=0.000) and PN (U=400.0 and p=0.000). However, the
PRC for PN is significantly better than both MN (U=381.0 and p=0.000) and RN
(U=382.0 and p=0.000).

⌅ 1+/1-. Best ROC - PN. Best PRC - PN/RN. For one-shot learning, PNs obtain
significantly better ROC scores than MN (U=369.0 and p=0.000) and RN (U=377.0
and p=0.000). On the other hand, while RN obtained the best PRC score, there is
no significant difference than those obtained through PN (U=217.0 and p=0.655).

SR-MMP - 918 Actives - 4,892 Inactives

Table 4.3 contains the tabulated results for the SR-MMP target. From the statistical anal-
ysis below, PNs are consistently PRC performant in all experiments. Meanwhile MNs
are ROC performant in most experiments, excluding the 1+/10- where PNs offer better
ROC performance.

91

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

TOX21
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

SR-HSE

10+/10-
ROC 0.563 ± 0.030 0.572 ± 0.049 0.780 ± 0.028 0.793 ± 0.002 0.782 ± 0.017 0.774 ± 0.004

PRC 0.078 ± 0.014 0.080 ± 0.022 0.133 ± 0.020 0.272 ± 0.015 0.271 ± 0.055 0.271 ± 0.021

5+/10-
ROC 0.546 ± 0.035 0.565 ± 0.047 0.777 ± 0.067 0.778 ± 0.002 0.772 ± 0.013 0.791 ± 0.003
PRC 0.074 ± 0.013 0.085 ± 0.020 0.117 ± 0.034 0.266 ± 0.012 0.278 ± 0.045 0.280 ± 0.031

1+/10-
ROC 0.518 ± 0.036 0.540 ± 0.058 0.778 ± 0.168 0.788 ± 0.001 0.780 ± 0.003 0.776 ± 0.001

PRC 0.064 ± 0.009 0.075 ± 0.019 0.052 ± 0.047 0.208 ± 0.007 0.283 ± 0.016 0.243 ± 0.007

1+/5-
ROC 0.515 ± 0.044 0.503 ± 0.061 0.801 ± 0.162 0.775 ± 0.002 0.773 ± 0.005 0.789 ± 0.001
PRC 0.064 ± 0.010 0.064 ± 0.013 0.064 ± 0.041 0.235 ± 0.017 0.270 ± 0.018 0.229 ± 0.005

1+/1-
ROC 0.521 ± 0.045 0.520 ± 0.066 0.769 ± 0.084 0.770 ± 0.006 0.779 ± 0.007 0.772 ± 0.001

PRC 0.066 ± 0.009 0.066 ± 0.015 0.125 ± 0.059 0.230 ± 0.024 0.266 ± 0.029 0.274 ± 0.008

Table 4.2: ROC-AUC and PR-AUC Scores for ML Models on TOX21 SR-HSE
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

⌅ 10+/10-. Best ROC - MN/PN/RN. Best PRC - MN/PN. While PN obtained the best
ROC score, there is no significant difference between those obtained from MN
((U=213.0 and p=0.735) and RN (U=230.0 and p=0.425). There is no significant
difference for the PRC score for MN when compared to that of PN (U=214.0 and
p=0.715), however, this result is better than that of RN (U=291.0 and p=0.014).

⌅ 5+/10-. Best ROC - MN/PN. Best PRC - MN/PN. While PN obtained the best ROC
scores, there is no statistical significance between those obtained by PN (U=250.0
and p=0.181), but there is a significant improvement over those obtained by RN
(U=361.0 and p=0.000). PNs obtain the highest PRC, however there is no sig-
nificant difference with those obtained through MN (U=243.0 and p=0.250). In
contrast, there is a significant improvement from PRC scores obtained from RN
(U=328.0 and p=0.001).

⌅ 1+/10-. Best ROC - PN. Best PRC - PN. For this support set combination, PNs
outperform MN (ROC U=366.0 and p=0.000) (PRC U=386.0 and p=0.000) and RN
(ROC U=337.0 and p=0.000) (PRC U=378.0 and p=0.000) significantly in both ROC
and PRC scores.

⌅ 1+/5-. Best ROC - MN. Best PRC - PN. MNs significantly outperform PN (U=400.0
and p=0.000) and RN (U=400.0 and p=0.000) in the ROC scores. On the other hand,

92

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

PNs outperform MNs (U=274.0 and p=0.047) and RNs (U=380.0 and p=0.000) in
the PRC scores.

⌅ 1+/1-. Best ROC - MN. Best PRC - MN/PN. For one-shot learning, MNs obtain
significantly better results from PNs (U=297.0 and p=0.009) and RNs (U=361.0 and
p=0.000). However, there is no significant difference in PRC scores between MN
and PN (U=361.0 and p=0.000), but a noticeable improvement from RN (U=329.0
and p=0.001).

TOX21
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

SR-MMP

10+/10-
ROC 0.679 ± 0.047 0.654 ± 0.068 0.860 ± 0.025 0.844 ± 0.005 0.845 ± 0.015 0.842 ± 0.007

PRC 0.296 ± 0.052 0.270 ± 0.066 0.371 ± 0.029 0.511 ± 0.017 0.510 ± 0.032 0.496 ± 0.023

5+/10-
ROC 0.647 ± 0.055 0.652 ± 0.056 0.858 ± 0.055 0.853 ± 0.007 0.846 ± 0.014 0.842 ± 0.007

PRC 0.268 ± 0.044 0.273 ± 0.059 0.303 ± 0.064 0.519 ± 0.031 0.527 ± 0.029 0.494 ± 0.038

1+/10-
ROC 0.613 ± 0.063 0.587 ± 0.081 0.876 ± 0.068 0.842 ± 0.002 0.849 ± 0.005 0.844 ± 0.002

PRC 0.236 ± 0.054 0.221 ± 0.050 0.158 ± 0.124 0.444 ± 0.005 0.508 ± 0.025 0.470 ± 0.011

1+/5-
ROC 0.539 ± 0.078 0.592 ± 0.095 0.815 ± 0.172 0.853 ± 0.001 0.846 ± 0.005 0.846 ± 0.001

PRC 0.188 ± 0.035 0.226 ± 0.059 0.179 ± 0.099 0.499 ± 0.011 0.508 ± 0.025 0.470 ± 0.007

1+/1-
ROC 0.580 ± 0.060 0.572 ± 0.128 0.845 ± 0.055 0.851 ± 0.008 0.847 ± 0.003 0.840 ± 0.004

PRC 0.209 ± 0.034 0.219 ± 0.075 0.311 ± 0.084 0.511 ± 0.037 0.506 ± 0.018 0.471 ± 0.022

Table 4.3: ROC-AUC and PR-AUC Scores for ML Models on TOX21 SR-
MMP Target. Values are mean values with standard deviation over 20
rounds of testing. Best values are highlighted in bold text. The first col-
umn shows the composition of the support set as explained in text.

SR-p53 - 423 Actives - 6,351 Inactives

Table 4.4 contains the tabulated results for the SR-p53 target. Statistical analysis on the
results show that for this target, PNs outperform all other models in both ROC and PRC
scores, excluding the ROC scores for one-shot learning.

⌅ 10+/10-. Best ROC - PN. Best PRC - PN. PNs significantly outperform MNs (ROC
U=400 and p=0.000) (PRC U=392 and p=0.000) and RNs (ROC U=399 and p=0.000)
(PRC U=364 and p=0.000) in both ROC and PRC scores.

⌅ 5+/10-. Best ROC - PN. Best PRC - PN. PNs significantly outperform MNs (ROC
U=325 and p=0.001) (PRC U=326 and p=0.001) and RNs (ROC U=384 and p=0.000)
(PRC U=366 and p=0.000) in both ROC and PRC scores.

93

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

⌅ 1+/10-. Best ROC - PN. Best PRC - PN. PNs significantly outperform MNs (ROC
U=375 and p=0.000) (PRC U=400 and p=0.000) and RNs (ROC U=400 and p=0.000)
(PRC U=397 and p=0.000) in both ROC and PRC scores.

⌅ 1+/5-. Best ROC - PN. Best PRC - PN. PNs significantly outperform MNs (ROC
U=380 and p=0.000) (PRC U=315 and p=0.002) and RNs (ROC U=380 and p=0.000)
(PRC U=400 and p=0.000) in both ROC and PRC scores.

⌅ 1+/1-. Best ROC - MN. Best PRC - PN. In contrast to the rest of the experiments
for this target, MNs outperform PNs (U=311 and p=0.003) and RNs (U=382 and
p=0.000) in ROC scores. However, PNs still outperform MNs (U=350 and p=0.000)
and RNs (U=383 and p=0.000) in PRC scores.

TOX21
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

SR-p53

10+/10-
ROC 0.610 ± 0.033 0.635 ± 0.048 0.835 ± 0.029 0.834 ± 0.003 0.850 ± 0.004 0.826 ± 0.011

PRC 0.101 ± 0.011 0.101 ± 0.022 0.172 ± 0.027 0.317 ± 0.007 0.369 ± 0.027 0.313 ± 0.039

5+/10-
ROC 0.614 ± 0.033 0.614 ± 0.054 0.848 ± 0.060 0.842 ± 0.003 0.852 ± 0.009 0.834 ± 0.002

PRC 0.102 ± 0.014 0.098 ± 0.023 0.151 ± 0.045 0.323 ± 0.014 0.358 ± 0.042 0.291 ± 0.028

1+/10-
ROC 0.558 ± 0.069 0.548 ± 0.083 0.855 ± 0.148 0.837 ± 0.001 0.848 ± 0.005 0.824 ± 0.001

PRC 0.084 ± 0.019 0.081 ± 0.023 0.088 ± 0.061 0.249 ± 0.004 0.361 ± 0.030 0.262 ± 0.007

1+/5-
ROC 0.548 ± 0.070 0.582 ± 0.088 0.805 ± 0.154 0.833 ± 0.001 0.840 ± 0.005 0.822 ± 0.001

PRC 0.083 ± 0.022 0.093 ± 0.028 0.076 ± 0.057 0.283 ± 0.012 0.310 ± 0.023 0.257 ± 0.003

1+/1-
ROC 0.549 ± 0.064 0.553 ± 0.103 0.840 ± 0.061 0.838 ± 0.004 0.834 ± 0.003 0.827 ± 0.001

PRC 0.079 ± 0.016 0.085 ± 0.027 0.160 ± 0.046 0.316 ± 0.022 0.346 ± 0.021 0.279 ± 0.015

Table 4.4: ROC-AUC and PR-AUC Scores for ML Models on TOX21 SR-p53
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

4.3.2.2 | Few-Shot Learning on MUV

For the MUV dataset, five targets were reserved for testing, namely MUV-832, MUV-
846, MUV-852, MUV-858, and MUV-859. The rest of the targets (refer back to Chap-
ter 3 Section 3.2 Table 3.2) are used for training. The imbalance in this data is more
pronounced and MUV data is more complex as during the generation of the dataset,
MUV chooses decoys which are closely embedded to the actives. Hence, siamese (SN),
Matching (MN), Prototypical (PN), and Relation (RN) Networks struggle in ROC and

94

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

PRC performance, as opposed to the Tox21 experiments. As a result, the Random Forest
(RF) models excelled in performance based on ROC and PRC scores when compared
to few-shot learning models. The following subsections present these results in further
detail.

MUV-832 - 30 Actives - 14,637 Decoys

Table 4.5 contains the tabulated results for the MUV-832 target.

⌅ 10+/10-. Best ROC - RF. Best PRC - RF. The RF model outperformed all other
models significantly, in both ROC and PRC scores - (i) GCN (ROC - U=310.0 and
p=0.003) (PRC U=395.0 and p=0.000), (ii) SN (PRC U=400 and p=0.000) (iii) MN
(ROC U=356.0 and p=0.000) (PRC U=356.0 and p=0.000), (iv) PN (ROC U=356.0
and p=0.000) (PRC U=396.0 and p=0.000), and (v) RN (ROC U=400.0 and p=0.000)
(PRC U=400.0 and p=0.000). From the few-shot learning models, the MN out-
performed SN (PRC U=400.0 and p=0.000), PN (ROC U=396.0 and p=0.000) (PRC
U=270.0 and p=0.060) and RN (ROC U=399.0 and p=0.000) (PRC U=374.0 and
p=0.000) in performance.

⌅ 5+/10-. Best ROC - RF. Best PRC - RF. The RF model outperformed all other
models significantly, in both ROC and PRC scores - (i) GCN (ROC - U=293 and
p=0.012) (PRC U=378 and p=0.000), (ii) SN (PRC U=398 and p=0.000) (iii) MN
(ROC U=346 and p=0.000) (PRC U=367 and p=0.000), (iv) PN (ROC U=350 and
p=0.000) (PRC U=372 and p=0.000), and (v) RN (ROC U=377 and p=0.000) (PRC
U=399 and p=0.000). From the few-shot learning models, the PNs perform best,
however, the ROC and PRC scores are not significantly different than MNs (ROC
U=213 and p=0.735) (PRC U=137 and p=0.091). However, they are significantly
better than SNs (PRC U=381 and p=0.000) and RNs (ROC U=316 and p=0.002)
(PRC U=396 and p=0.000).

⌅ 1+/10-. Best ROC - RN. Best PRC - RF. This is the only instance for this target
where a few-shot learning model, in this case the RN, outperforms the RF bench-
mark significantly in the ROC scores (U=364 and p=0.000). However, the RF still
out-performs all other models in PRC performance - (i) GCN (PRC U=321 and
p=0.001) (ii) SN (PRC U=363 and p=0.000) (iii) MN (PRC U=343 and p=0.000) (iv)
PN (PRC U=318 and p=0.001) (v) RN (PRC U=303 and p=0.006).

⌅ 1+/5-. Best ROC - RF/GCN/PN. Best PRC - RF. The RF model once again obtains
the best ROC and PRC scores. However, the ROC scores are not significantly

95

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

different than those obtained through GCN (U=219 and p=0.617) and PN (U=194
and p=0.882). On the other hand, the PRC scores from RFs clearly out-perform all
other machine learning models.

⌅ 1+/1-. Best ROC - RF/GCN/RN. Best PRC - RF. The RF model once again ob-
tains the best ROC and PRC scores. The ROC scores are not significantly bet-
ter than those obtained through GCNs (U=194 and p=0.882) or RNs (U=243 and
p=0.250). However, as observed in other support set sizes, the PRC score from RF
out-performs all other machine learning models significantly.

MUV
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

MUV-832

10+/10-
ROC 0.824 ± 0.068 0.753 ± 0.073 0.608 ± 0.019 0.720 ± 0.043 0.585 ± 0.041 0.566 ± 0.050

PRC 0.069 ± 0.047 0.006 ± 0.004 0.001 ± 0.000 0.005 ± 0.001 0.004 ± 0.003 0.003 ± 0.001

5+/10-
ROC 0.747 ± 0.072 0.683 ± 0.080 0.561 ± 0.039 0.651 ± 0.031 0.656 ± 0.021 0.561 ± 0.105

PRC 0.122 ± 0.058 0.012 ± 0.017 0.001 ± 0.002 0.008 ± 0.001 0.007 ± 0.001 0.003 ± 0.001

1+/10-
ROC 0.601 ± 0.060 0.556 ± 0.076 0.722 ± 0.136 0.615 ± 0.026 0.607 ± 0.014 0.683 ± 0.010
PRC 0.035 ± 0.034 0.007 ± 0.009 0.003 ± 0.004 0.004 ± 0.001 0.006 ± 0.000 0.007 ± 0.000

1+/5-
ROC 0.579 ± 0.071 0.551 ± 0.115 0.773 ± 0.084 0.514 ± 0.012 0.570 ± 0.021 0.500 ± 0.000

PRC 0.036 ± 0.033 0.005 ± 0.003 0.003 ± 0.003 0.003 ± 0.000 0.004 ± 0.001 0.002 ± 0.000

1+/1-
ROC 0.582 ± 0.089 0.567 ± 0.155 0.768 ± 0.079 0.496 ± 0.028 0.517 ± 0.010 0.577 ± 0.011

PRC 0.039 ± 0.038 0.006 ± 0.009 0.005 ± 0.003 0.003 ± 0.000 0.005 ± 0.001 0.004 ± 0.000

Table 4.5: ROC-AUC and PR-AUC Scores for ML Models on MUV MUV-832
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

MUV-846 - 30 Actives - 14,681 Decoys

Table 4.6 presents the results for the MUV-846 target. For this target, the benchmark
models excel once again. The benchmark models outperform the few-shot learning
models significantly, with the RFs having overall better performance than GCNs. The
Mann-Whitney U Rank test is reported for the machine learning model which obtained
the closest results to the model that obtained the best performance.

⌅ 10+/10-. Best ROC - RF/GCN. Best PRC - RF/GCN. The RF model obtains the
best ROC and PRC scores. However, upon a closer look with statistical analysis,

96

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

we observe that there is no significant difference between the ROC scores of RF
and GCN (U=268 and p=0.068).

⌅ 5+/10-. Best ROC - RF. Best PRC - RF. The best ROC and PRC results are obtained
by RF. The closest results are those from GCNs, however, the results from RF are
significantly better (ROC U=349 and p=0.000) (PRC U=328 and p=0.001).

⌅ 1+/10-. Best ROC - RF/GCN. Best PRC - RF/GCN. While the RF once again ob-
tains the best ROC and PRC results, the results are not significantly better than
those obtained from GCNs (ROC U=210 and p=0.797) (PRC U=249 and p=0.190).

⌅ 1+/5-. Best ROC - RF/GCN. Best PRC - RF. GCNs obtain the best ROC scores,
however those obtained by RFs are statistically similar (U=250 and p=0.181). On
the other hand, RFs obtain the best PRC score, and also outperform GCNs (U=299
and p=0.008).

⌅ 1+/1-. Best ROC - RF/GCN. Best PRC - RF. GCNs obtain the best ROC scores,
however, these are not stochastically greater than those obtained by RFs (U=235
and p=0.351). The PRC scores obtained by RFs and GCNs are not different from
each other (U=262 and p=0.096), however, due to the standard deviation of the
two samples, we utilised a one-sided analysis on RFs to determine if the values
are stochastically greater than those obtained through GCNs, and this hypothesis
was confirmed (U=262 and p=0.048).

MUV-852 - 29 Actives - 14,622 Decoys

Table 4.7 presents the results for the MUV-852 target. For this target, the benchmark
models excel once again. The benchmark models outperform the few-shot learning
models significantly, with the RFs having overall better performance than GCNs. The
Mann-Whitney U Rank test is reported for the closest performer below.

⌅ 10+/10-. Best ROC - RF/GCN Best PRC - RF. GCNs obtain the best ROC scores,
however, the distributions are statistically similar within our confidence range to
the RFs ROC scores (U=231 and p=0.409). RFs outperform all other machine learn-
ing models in PRC scores.

⌅ 5+/10-. Best ROC - RF/GCN. Best PRC - RF. RFs obtain the best ROC scores, but
their distribution is close to that of GCNs (U=221 and p=0.579). RFs outperform
all other machine learning models in PRC scores.

97

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

MUV
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

MUV-846

10+/10-
ROC 0.876 ± 0.048 0.849 ± 0.045 0.594 ± 0.024 0.715 ± 0.048 0.719 ± 0.036 0.482 ± 0.035

PRC 0.115 ± 0.053 0.025 ± 0.019 0.001 ± 0.000 0.022 ± 0.012 0.003 ± 0.001 0.001 ± 0.000

5+/10-
ROC 0.833 ± 0.042 0.754 ± 0.065 0.555 ± 0.056 0.453 ± 0.024 0.560 ± 0.033 0.549 ± 0.047

PRC 0.088 ± 0.055 0.038 ± 0.029 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/10-
ROC 0.676 ± 0.104 0.656 ± 0.123 0.711 ± 0.104 0.437 ± 0.026 0.490 ± 0.017 0.556 ± 0.008

PRC 0.024 ± 0.031 0.012 ± 0.012 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/5-
ROC 0.661 ± 0.093 0.690 ± 0.124 0.688 ± 0.171 0.388 ± 0.011 0.441 ± 0.012 0.500 ± 0.000

PRC 0.039 ± 0.034 0.014 ± 0.013 0.001 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/1-
ROC 0.624 ± 0.123 0.642 ± 0.159 0.647 ± 0.094 0.518 ± 0.029 0.456 ± 0.025 0.490 ± 0.008

PRC 0.031 ± 0.040 0.011 ± 0.010 0.009 ± 0.021 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

Table 4.6: ROC-AUC and PR-AUC Scores for ML Models on MUV MUV-846
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

⌅ 1+/10-. Best ROC - RF/GCN. Best PRC - RF/GCN. RFs obtain the best ROC and
PRC scores, however with a notable standard deviation. Upon closer investiga-
tion, we observe that there is no significant difference between the distributions
to those from the scores obtained through GCNs (ROC U=187 and p=0.735) (PRC
U=260 and p=0.108).

⌅ 1+/5-. Best ROC - RF/GCN. Best PRC - RF/GCN. RFs obtain the best ROC and
PRC scores, however, upon closer investigation, we observe that there is no sig-
nificant difference between the distributions to those from the scores obtained
through GCNs (ROC U=218 and p=0.636) (PRC U=250 and p=0.181).

⌅ 1+/1-. Best ROC - RF/GCN. Best PRC - RF/GCN. GCNs obtain the best ROC
scores, however, we observe that there is no significant difference between the dis-
tributions to those from the scores obtained through RFs (U=182 and p=0.636). The
same applies for PRC scores, with the greatest value obtained through RFs, with
no stochastic difference to those obtained through GCNs (U=250 and p=0.181).

MUV-858 - 29 Actives - 14,745 Decoys

Table 4.8 presents the results for the MUV-858 target. For this target, the benchmark
models excel once again. The benchmark models outperform the few-shot learning

98

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

MUV
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

MUV-852

10+/10-
ROC 0.790 ± 0.048 0.803 ± 0.054 0.574 ± 0.019 0.647 ± 0.035 0.639 ± 0.052 0.515 ± 0.042

PRC 0.137 ± 0.086 0.010 ± 0.004 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.001

5+/10-
ROC 0.787 ± 0.041 0.779 ± 0.031 0.612 ± 0.031 0.564 ± 0.033 0.592 ± 0.032 0.453 ± 0.026

PRC 0.130 ± 0.093 0.021 ± 0.023 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/10-
ROC 0.665 ± 0.103 0.654 ± 0.156 0.741 ± 0.129 0.556 ± 0.020 0.591 ± 0.022 0.594 ± 0.008

PRC 0.036 ± 0.044 0.007 ± 0.005 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.003 ± 0.000

1+/5-
ROC 0.639 ± 0.145 0.607 ± 0.168 0.665 ± 0.126 0.485 ± 0.020 0.523 ± 0.017 0.500 ± 0.000

PRC 0.052 ± 0.062 0.007 ± 0.006 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/1-
ROC 0.621 ± 0.114 0.674 ± 0.174 0.673 ± 0.099 0.462 ± 0.014 0.506 ± 0.020 0.510 ± 0.008

PRC 0.034 ± 0.050 0.007 ± 0.005 0.006 ± 0.011 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

Table 4.7: ROC-AUC and PR-AUC Scores for ML Models on MUV MUV-852
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

models significantly, however, MNs obtain the highest ROC scores in one-shot learning.
Despite this being the highest score, the ROC scores in general for this target are quite
low. Figure 4.3 illustrates how the ROC scores don’t have a strong predictive capacity.
PRC scores for this target are very low and hence we do report the Mann-Whitney U
rank results for these values. The Mann-Whitney U Rank test is reported for the closest
performer below.

⌅ 10+/10-. Best ROC - RF/GCN. Best PRC - RF/GCN. GCNs obtain the highest
ROC scores, however, there is no significant difference between the ROC values
obtained through RFs (U=257 and p=0.126).

⌅ 5+/10-. Best ROC - RF/GCN. Best PRC - RF. GCNs obtain the highest ROC
scores, however, there is no significant difference between the ROC values ob-
tained through RFs (U=227 and p=0.473).

⌅ 1+/10-. Best ROC - RF/GCN. Best PRC - RF. GCNs obtain the highest ROC
scores, however, there is no significant difference between the ROC values ob-
tained through RFs (U=232 and p=0.394).

⌅ 1+/5-. Best ROC - RF/GCN. Best PRC - RF/GCN. GCNs obtain the highest ROC
scores, however, there is no significant difference between the ROC values ob-
tained through RFs (U=220 and p=0.598).

99

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

⌅ 1+/1-. Best ROC - MN/GCN. Best PRC - RF/GCN/MN/PN. MNs obtain the high-
est ROC scores, and upon closer investigation, we notice that there is no significant
difference between the values obtained from GCNs (U=266 and p=0.076). How-
ever, upon performing a one-sided Mann-Whitney U rank test, the null hypothe-
sis that the ROC values from MN are stochastically greater than those from GCN
(U=169 and p=0.0.038) is accepted.

MUV
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

MUV-858

10+/10-
ROC 0.609 ± 0.079 0.644 ± 0.071 0.533 ± 0.031 0.545 ± 0.057 0.539 ± 0.041 0.489 ± 0.052

PRC 0.004 ± 0.003 0.003 ± 0.001 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.001 ± 0.000

5+/10-
ROC 0.573 ± 0.070 0.598 ± 0.054 0.529 ± 0.036 0.446 ± 0.036 0.562 ± 0.026 0.469 ± 0.026

PRC 0.011 ± 0.013 0.003 ± 0.002 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/10-
ROC 0.537 ± 0.058 0.556 ± 0.052 0.527 ± 0.162 0.405 ± 0.009 0.488 ± 0.014 0.477 ± 0.008

PRC 0.005 ± 0.008 0.003 ± 0.001 0.000 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/5-
ROC 0.534 ± 0.065 0.550 ± 0.071 0.514 ± 0.140 0.440 ± 0.016 0.482 ± 0.014 0.500 ± 0.000

PRC 0.005 ± 0.008 0.003 ± 0.002 0.001 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

1+/1-
ROC 0.521 ± 0.065 0.505 ± 0.069 0.558 ± 0.103 0.554 ± 0.017 0.526 ± 0.014 0.437 ± 0.014

PRC 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000

Table 4.8: ROC-AUC and PR-AUC Scores for ML Models on MUV MUV-858
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

MUV-859 - 24 Actives - 14,722 Decoys

Table 4.9 contains the results for the MUV-859 target. Results are once again not con-
vincing and the predictive performance of the classifier, based on ROC and PRC is low.
PRC scores for this target are extremely low, while ROC scores show that the classifier
is close to having no predictive skill. Hence, we do report the Mann-Whitney U rank
results for the results from this target. Unlike previous targets, we also do not provide
a discussion on separate support set composition experiments as all results are close to
random performance.

4.3.2.3 | Few-Shot Learning on DUD-E GPCR Subset

For the DUD-E dataset, we make use of the GPCR subset, which contains five targets.
The imbalance of the data is significant in this dataset too, however, not as pronounced

100

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

Figure 4.3: ROC Scores for Matching Networks for target MUV-858, show-
ing how this model does not have a strong predictive capacity.

MUV
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

MUV-859

10+/10-
ROC 0.539 ± 0.077 0.517 ± 0.057 0.499 ± 0.018 0.516 ± 0.042 0.513 ± 0.041 0.398 ± 0.053

PRC 0.003 ± 0.005 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000

5+/10-
ROC 0.538 ± 0.066 0.515 ± 0.067 0.492 ± 0.020 0.464 ± 0.023 0.510 ± 0.024 0.481 ± 0.052

PRC 0.002 ± 0.001 0.002 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.005 ± 0.004

1+/10-
ROC 0.517 ± 0.081 0.504 ± 0.060 0.539 ± 0.109 0.446 ± 0.015 0.522 ± 0.011 0.427 ± 0.014

PRC 0.002 ± 0.001 0.002 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000

1+/5-
ROC 0.524 ± 0.064 0.527 ± 0.057 0.426 ± 0.121 0.480 ± 0.013 0.453 ± 0.013 0.500 ± 0.000

PRC 0.002 ± 0.001 0.002 ± 0.002 0.000 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.002 ± 0.000

1+/1-
ROC 0.517 ± 0.064 0.499 ± 0.061 0.455 ± 0.072 0.504 ± 0.016 0.522 ± 0.009 0.406 ± 0.014

PRC 0.002 ± 0.001 0.002 ± 0.001 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.001 ± 0.000

Table 4.9: ROC-AUC and PR-AUC Scores for ML Models on MUV MUV-859
Target. Values are mean values with standard deviation over 20 rounds of
testing. Best values are highlighted in bold text. The first column shows the
composition of the support set as explained in text.

as in the MUV dataset. Two targets are reserved for testing, in which ADRB2 con-
tains decoys that are auto-generated against a set of known active ligands, while for the
CXCR4 target these are hand-picked. The rest of the targets (refer back to Chapter 3
Section 3.2 Table 3.3) are used for training.

For the ADRB2 target, the few-shot learning models achieve stellar performance
based on ROC and PRC scores (see Table 4.10). The results are close to a perfect classifier,

101

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

which raises concerns about the underlying data. Our hypothesis is that the underlying
data contains an inherent bias, which is confirmed by further research on the matter.
Some studies indicate that the DUD-E dataset has limited chemical space and bias from
the decoy compound selection process (Smusz et al., 2013; Wallach and Heifets, 2018).
Chen et al. (2019) investigate this further to establish the effect these characteristics have
on CNN models. The authors conclude that there is analogue bias within the set of
actives within the targets (intra-target analogue bias), and also between the actives of
different targets (inter-target analogue bias). They also provide evidence that there is
also bias in decoy selection through the selection criteria for decoys.

DUD-E GPCR
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

adrb2

10+/10-
ROC 0.969 ± 0.018 0.914 ± 0.038 0.998 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.500 ± 0.000

PRC 0.806 ± 0.103 0.311 ± 0.099 0.963 ± 0.014 0.986 ± 0.002 0.997 ± 0.001 0.015 ± 0.000

5+/10-
ROC 0.948 ± 0.022 0.875 ± 0.043 0.998 ± 0.005 0.996 ± 0.000 1.000 ± 0.000 0.999 ± 0.000

PRC 0.729 ± 0.088 0.230 ± 0.102 0.959 ± 0.047 0.982 ± 0.003 0.996 ± 0.001 0.970 ± 0.003

1+/10-
ROC 0.842 ± 0.055 0.748 ± 0.072 0.998 ± 0.001 0.999 ± 0.000 0.998 ± 0.000 0.998 ± 0.000

PRC 0.339 ± 0.135 0.099 ± 0.056 0.909 ± 0.117 0.975 ± 0.002 0.966 ± 0.009 0.974 ± 0.000

1+/5-
ROC 0.842 ± 0.088 0.744 ± 0.080 0.998 ± 0.000 0.995 ± 0.000 0.996 ± 0.000 0.997 ± 0.000
PRC 0.339 ± 0.142 0.095 ± 0.059 0.913 ± 0.131 0.953 ± 0.005 0.993 ± 0.001 0.917 ± 0.005

1+/1-
ROC 0.776 ± 0.122 0.731 ± 0.088 0.998 ± 0.001 0.996 ± 0.000 0.997 ± 0.000 0.998 ± 0.000
PRC 0.227 ± 0.180 0.058 ± 0.032 0.909 ± 0.052 0.981 ± 0.003 0.982 ± 0.006 0.964 ± 0.002

Table 4.10: ROC-AUC and PR-AUC Scores for ML Models on DUD-E GPCR
adrb2 Target. Values are mean values with standard deviation over 20
rounds of testing. Best values are highlighted in bold text. The first col-
umn shows the composition of the support set as explained in text.

On the other hand, for the hand-picked decoys for the CXCR4 target, the RF model
excels and outperforms the few-shot learning models (see Table 4.11). The benchmark
models are not trained on other targets, but are instead only trained on a small support
set from the same target. As expected, performance decreases with a decrease in support
set size. However, the performance of the RF model still outperforms that of few-shot
learning models. Seeing that the GCN benchmark model also performed significantly
better than few-shot learning models, this implies that there is a clear benefit of training
on the same data from the target, as opposed to the few-shot learning models which
are trained on other targets instead. The fantastic performance obtained from training
on such a small dataset raises questions about the biases within the data as explained
previously.

102

Chapter 4. Results & Evaluation 4.3. Few-shot Machine Learning Results

DUD-E GPCR
Metric RF Graph Conv SiameseNet MatchingNet ProtoNet RelationNet

cxcr4

10+/10-
ROC 0.994 ± 0.005 0.965 ± 0.020 0.570 ± 0.028 0.801 ± 0.030 0.631 ± 0.045 0.500 ± 0.000

PRC 0.938 ± 0.043 0.697 ± 0.134 0.014 ± 0.002 0.085 ± 0.022 0.107 ± 0.020 0.009 ± 0.000

5+/10-
ROC 0.968 ± 0.019 0.927 ± 0.062 0.525 ± 0.038 0.693 ± 0.025 0.685 ± 0.130 0.701 ± 0.018

PRC 0.794 ± 0.141 0.626 ± 0.188 0.031 ± 0.012 0.029 ± 0.003 0.122 ± 0.054 0.077 ± 0.006

1+/10-
ROC 0.866 ± 0.086 0.828 ± 0.108 0.520 ± 0.087 0.764 ± 0.021 0.684 ± 0.032 0.734 ± 0.018

PRC 0.380 ± 0.140 0.361 ± 0.162 0.039 ± 0.066 0.066 ± 0.027 0.041 ± 0.009 0.108 ± 0.009

1+/5-
ROC 0.874 ± 0.081 0.781 ± 0.094 0.520 ± 0.084 0.707 ± 0.082 0.590 ± 0.087 0.700 ± 0.007

PRC 0.417 ± 0.092 0.347 ± 0.111 0.050 ± 0.082 0.079 ± 0.037 0.045 ± 0.017 0.063 ± 0.005

1+/1-
ROC 0.833 ± 0.088 0.689 ± 0.150 0.545 ± 0.040 0.593 ± 0.034 0.732 ± 0.022 0.496 ± 0.010

PRC 0.375 ± 0.124 0.174 ± 0.151 0.091 ± 0.102 0.041 ± 0.008 0.104 ± 0.012 0.035 ± 0.005

Table 4.11: ROC-AUC and PR-AUC Scores for ML Models on DUD-E GPCR
cxcr4 Target. Values are mean values with standard deviation over 20
rounds of testing. Best values are highlighted in bold text. The first col-
umn shows the composition of the support set as explained in text.

4.3.3 | ECFP vs GCN Learned Embeddings on Tox21

In line with our objectives, we also ran an experiment to test whether the molecular
representation affects the performance in few-shot learning. These experiments were
run on the Tox21 dataset, using Prototypical Networks as these performed consistently
well in the main experiments. ECFPs are based on the topology and a number of atom
descriptors, in which the molecule is fragmented into local neighbourhoods and hashed
into a vector. On the other hand, graph-learned embeddings are guided by gradient
descent during training to produce a more relevant latent space embedding for the
molecule. ECFPs are processed through a neural network with three layers as outlined
in Chapter 3 Section 3.4.4. The neural network was used to learn a differentiable molec-
ular embedding of the same size (a vector of size 128) as the one produced by the GCN.
The same TanH activation function is used as the final non-linearity function in both
neural networks. The results obtained using an embedding generated through GCNs
outperform the ones in which an ECFP with a neural network was used. The Mann-
Whitney U rank test is used to determine whether the ROC and PRC scores obtained
through a GCN are statistically different. Table 4.12 contains results for the SR-HSE,
SR-MMP, and SR-p53 targets. This table also contains the p-value in the two-sided
Mann-Whitney U Rank test. As the p-values are less than 0.05, we reject the null hy-
pothesis that the ROC and PRC distributions between results obtained from Prototyp-
ical Networks trained with embeddings generated through ECFPs versus training on

103

Chapter 4. Results & Evaluation 4.4. Machine Learning Models Training Run Times

embeddings generated through GCNs, are statistically similar. All results show a clear
advantage of using embeddings generated through GCNs, with one exception in PRC
scores for the 1+/5- support set experiment on the SR-p53 target.

4.4 | Machine Learning Models Training Run Times
Training times vary between machine learning models. Figure 4.4 shows the training
times for all machine learning models on the Tox21 dataset for the 10+/10- support
set. This is representative of the rest of the datasets as the training time just varies
accordingly with the size of the dataset. The RF and GCN benchmark model run very
efficiently on the hardware utilised, which is outlined in Chapter 3 Section 3.8 Table
3.12. This is followed by PNs and RNs, which take on average the same amount of time
to run, and then by SNs, which take longer to run than the former two networks. The
network which takes the most time to run is the Matching Networks, which takes much
longer than all other networks when run on the same hardware. Comparable results can
be obtained using a network such as the Prototypical Networks, which takes a fraction
of the time to train.

4.5 | Discussion
In line with the main aim of this study, we explore the effectiveness of few-shot learn-
ing algorithms for virtual screening through four few-shot techniques, namely, Siamese
Networks, Matching Networks, Prototypical Networks, and Relation Nets. The atten-
tion based bi-directional LSTM, coined as the iterative refinement LSTM (IterRefLSTM),
developed by Altae-Tran et al. (2017) is reproduced and applied to all embeddings gen-
erated through GCNs in our experiments. The choice of datasets were the Tox21, MUV
and the GPCR subset of the DUD-E dataset, on which we applied two baseline machine
learning models in addition to the few-shot learning models. RFs and GCNs are used as
a benchmark test, in which a support set is sampled from the test target and a model is
trained using only these few data points. This technique differs from few-shot learning
training, as in the latter, we train over a set of molecular scaffolds reserved for training.
Training consists of a set of episodes that replicate the conditions at test time, in which
an N-way K-shot support set is sampled and tested against a set of queries. Our problem
formulation was limited to a binary classification task so we always assume a value of
two for N as we are trying to predict whether a molecule is active or not, or whether it
is an inactive or decoy, depending on the dataset. Our choice of the K for the number

104

Chapter 4. Results & Evaluation 4.5. Discussion

Tox21 Target Support Set Metric ECFP Graphs p-value

SR-HSE 10+/10- ROC 0.751 ± 0.017 0.782 ± 0.017 0.000
PRC 0.227 ± 0.042 0.271 ± 0.055 0.004

SR-HSE 5+/10- ROC 0.741 ± 0.016 0.772 ± 0.013 0.000
PRC 0.202 ± 0.045 0.278 ± 0.045 0.000

SR-HSE 1+/10- ROC 0.665 ± 0.156 0.780 ± 0.003 0.000
PRC 0.148 ± 0.062 0.283 ± 0.016 0.000

SR-HSE 1+/5- ROC 0.715 ± 0.102 0.773 ± 0.005 0.000
PRC 0.181 ± 0.060 0.270 ± 0.018 0.000

SR-HSE 1+/1- ROC 0.641 ± 0.168 0.779 ± 0.007 0.000
PRC 0.163 ± 0.081 0.266 ± 0.029 0.000

SR-MMP 10+/10- ROC 0.793 ± 0.022 0.845 ± 0.015 0.000
PRC 0.477 ± 0.044 0.510 ± 0.032 0.015

SR-MMP 5+/10- ROC 0.765 ± 0.046 0.846 ± 0.014 0.000
PRC 0.425 ± 0.049 0.527 ± 0.029 0.000

SR-MMP 1+/10- ROC 0.763 ± 0.080 0.849 ± 0.005 0.000
PRC 0.444 ± 0.109 0.508 ± 0.025 0.021

SR-MMP 1+/5- ROC 0.736 ± 0.156 0.846 ± 0.005 0.000
PRC 0.445 ± 0.121 0.508 ± 0.025 0.002

SR-MMP 1+/1- ROC 0.647 ± 0.219 0.847 ± 0.003 0.000
PRC 0.355 ± 0.151 0.506 ± 0.018 0.000

SR-p53 10+/10- ROC 0.793 ± 0.013 0.850 ± 0.004 0.000
PRC 0.309 ± 0.051 0.369 ± 0.027 0.000

SR-p53 5+/10- ROC 0.782 ± 0.022 0.852 ± 0.009 0.000
PRC 0.278 ± 0.068 0.358 ± 0.042 0.000

SR-p53 1+/10- ROC 0.780 ± 0.087 0.848 ± 0.005 0.000
PRC 0.279 ± 0.086 0.361 ± 0.030 0.000

SR-p53 1+/5- ROC 0.770 ± 0.036 0.840 ± 0.005 0.000
PRC 0.273 ± 0.087 0.310 ± 0.023 0.323

SR-p53 1+/1- ROC 0.753 ± 0.116 0.834 ± 0.003 0.000
PRC 0.274 ± 0.089 0.346 ± 0.021 0.001

Table 4.12: ROC-AUC and PR-AUC Scores for Prototypical Networks on
Tox21 with ECFP or GCN embeddings. Values are mean values with stan-
dard deviation over 20 runs. Best values are highlighted in bold text. A
Mann-Whitney U Rank p-value less than 0.05 indicates significant differ-
ence of the GCN Embeddings over ECFPs.

105

Chapter 4. Results & Evaluation 4.5. Discussion

Figure 4.4: Training Times in seconds for the Machine Learning Models on
the Tox21 Dataset for the 10+/10- support set experiments.

of examples per class that make up the support set follows the methodology of Altae-
Tran et al. (2017), taking into consideration 10+/10-, 5+/10-, 1+/10-, 1+/5- and 1+/1-
support sets. Interestingly, Altae-Tran et al. (2017) experiment with imbalanced support
sets where the number of actives in the support set is not always equal to the number of
the negative class. Therefore, the choice of support sets in our experiments ranges from
few-shot learning to one-shot learning, where the latter only uses one example per class
to train and test the machine learning model.

Tox21. When testing the machine learning models on the Tox21 dataset, the few-shot
learning models outperform the baseline models. This performance is in line with that
reported by Altae-Tran et al. (2017). In Table 4.13, we present the best results obtained

106

Chapter 4. Results & Evaluation 4.5. Discussion

by their work for each Tox21 target. In the same table, we report our highest ROC score
and tabulate the best identified few-shot learning models. These models are identified
by comparing the highest obtained scores from 20 rounds of testing, with those obtained
by other few-shot learning models using the Mann-Whitney U rank test. In line with
the established state of the art, the MN with IterRefLSTM perform well and obtain the
best ROC results in a number of experiments. The fact that the same implementation
for the Matching Networks obtained better results than the state of the art work, can be
attributed to the set of atom descriptors used for the initial graph representations. Our
few-shot learning architecture implementation is identical to their work, but different
hyperparameters in the implementation which were not clear in the original work could
also contribute to variations in results. Hence, we focus mainly on the performance of
how our implementations performed against each other. Our implementation of the
state of the art, labelled as MN for Matching Networks, have the edge on the SR-MMP
target, performing comparably well in 10-shot learning and the 5+/10- support set to
PN and RN in the former and to PN in the latter. They obtain the best ROC performance
on the 1+/5- support set experiments and in one-shot learning for the SR-MMP target.
Meanwhile, performance is mixed for the SR-HSE ROC scores, as MN obtained the best
ROC results for the 10+/10- and 1+/5- support set experiments, RNs obtained the best
results on the 5+/10- support sets and finally PNs obtained the best results in one-shot
learning. For the SR-p53 target, PNs outperform other models consistently, except for
one-shot learning in which MNs take the advantage.

Results for one-shot learning are mixed between our implementations for MNs and
PNs with the IterRefLSTM. They both achieve comparable performance on Tox21 targets
for one-shot learning. The performance of MNs for this scenario is consistent with the
state of the art work. Based on the underlying theories of both architectures, the results
are consistent with our expectations. In a one-shot learning scenario, MNs and PNs are
conceptually similar. The prototypes in PNs are a mean of all embeddings for each class
in the support set. The euclidean distance between the prototypes and each embedding
from the query set is calculated to predict the activity of the query. As in one-shot learn-
ing we only have one example per class, the prototypes are equivalent to the embedding
for each class, making this identical to MNs. The difference in our implementation is
that for MNs we use the cosine distance, while for PNs, we make use of the euclidean
distance, as proposed in the literature which introduced these two techniques.

We remind the reader that while we also report the PR-AUC score from our experi-
ments, this metric is not available in the study by Altae-Tran et al. (2017). For the PRC
metrics, PNs consistently performed well, obtaining the best PRC scores throughout
all Tox21 targets. Using statistical analysis, MNs and RNs also match the performance

107

Chapter 4. Results & Evaluation 4.5. Discussion

Figure 4.5: PRC plot for Tox21
SR-HSE - 10+/10- support set.

Figure 4.6: PRC plot for Tox21
SR-HSE - 1+/1- support set.

Figure 4.7: PRC plot for Tox21
SR-MMP - 10+/10- support set.

Figure 4.8: PRC plot for Tox21
SR-MMP - 1+/1- support set.

Figure 4.9: PRC plot for Tox21
SR-HSE - 10+/10- support set.

Figure 4.10: PRC plot for Tox21
SR-HSE - 1+/1- support set.

108

Chapter 4. Results & Evaluation 4.5. Discussion

Figure 4.11: Confusion Matrix
for Tox21 SR-HSE - 10+/10-
support set.

Figure 4.12: Confusion Matrix
for Tox21 SR-HSE - 1+/1- sup-
port set.

Figure 4.13: Confusion Matrix
for Tox21 SR-MMP - 10+/10-
support set.

Figure 4.14: Confusion Ma-
trix for Tox21 SR-MMP - 1+/1-
support set.

Figure 4.15: Confusion Matrix
for Tox21 SR-HSE - 10+/10-
support set.

Figure 4.16: Confusion Matrix
for Tox21 SR-HSE - 1+/1- sup-
port set.

109

Chapter 4. Results & Evaluation 4.5. Discussion

Target Support Set SOTA SOTA ROC Best ROC Best Networks

SR-HSE 10+/10- MN 0.772 ± 0.002 0.793 ± 0.002 MN

SR-HSE 5+/10- MN 0.771 ± 0.002 0.791 ± 0.003 RN

SR-HSE 1+/10- MN 0.671 ± 0.007 0.788 ± 0.001 MN

SR-HSE 1+/5- MN 0.729 ± 0.003 0.789 ± 0.001 RN

SR-HSE 1+/1- MN 0.767 ± 0.001 0.779 ± 0.007 PN

SR-MMP 10+/10- MN 0.838 ± 0.001 0.845 ± 0.015 MN/PN/RN

SR-MMP 5+/10- MN 0.847 ± 0.001 0.853 ± 0.007 MN/PN

SR-MMP 1+/10- SN 0.809 ± 0.020 0.849 ± 0.005 PN

SR-MMP 1+/5- MN 0.799 ± 0.002 0.853 ± 0.001 MN

SR-MMP 1+/1- MN 0.835 ± 0.001 0.851 ± 0.008 MN

SR-p53 10+/10- MN 0.823 ± 0.002 0.850 ± 0.004 PN

SR-p53 5+/10- MN 0.830 ± 0.001 0.852 ± 0.009 PN

SR-p53 1+/10- SN 0.726 ± 0.173 0.848 ± 0.005 PN

SR-p53 1+/5- MN 0.795 ± 0.005 0.840 ± 0.005 PN

SR-p53 1+/1- MN 0.827 ± 0.001 0.838 ± 0.004 MN

Table 4.13: Comparison of our best ROC-AUC scores against the state of
the art (SOTA) results from Altae-Tran et al. (2017) on the Tox21 dataset.
The best networks reported are based on the statistical analysis carried out
in Section 4.3.2.1. Values are mean values with standard deviation over 20
rounds of testing. Best values are highlighted in bold text.

in some cases, as reported in Section 4.3.2.1. The PRC is used to determine how well
the model predicts active compounds, as it is the ratio of true positives divided by the
sum of true positives and false positives. Therefore, we strongly believe that in machine
learning experiments for virtual screening, this metric should be used in addition to
ROC scores. Figures 4.5 - 4.10 show the PRC curves for the Tox21 targets for the 10+/10-
support sets. The PRC curves show high precision and low recall, which is confirmed
by the confusion matrices in Figures 4.11 - 4.16. This indicates that we have a good
number of true positives, but due to the imbalance and nature of our data we have a
low recall due to the number of false negatives predicted by the model. In this problem
domain, the negative data points greatly exceed the positive examples. By observing
the confusion matrices for 10-shot and 1-shot learning on PNs in Figures 4.11 - 4.16, we
see that the model manages to predict a good proportion of the active class, indicating

110

Chapter 4. Results & Evaluation 4.5. Discussion

good precision. As the PRC plots indicate, the confusion matrices also indicate a bigger
number of false negatives when compared to true positives, which results in a low re-
call. Given the complexity and imbalance of the tasks at hand, the PRC scores obtained
are acceptable.

Figure 4.17: ROC plot for
MUV-832, trained and tested
with a 1+/10- support set com-
position. The plot is for the me-
dian ROC score obtained from
20 rounds of testing.

Figure 4.18: Confusion Ma-
trix for MUV-832, trained and
tested with a 1+/10- support
set composition. The plot is
for the median ROC score ob-
tained from 20 rounds of test-
ing.

MUV. Each active in the MUV dataset is structurally distinct from the other, making
each data sample maximally informative. Therefore, structural similarities cannot be ex-
ploited on unseen active molecules. In fact, the dataset obtained the worst results, since
the baseline benchmark tests consistently outperformed few-shot learning techniques.
Altae-Tran et al. (2017) report that the results obtained through the GCNs baseline also
struggle in performance, however, from our tests and statistical analysis we find that
this is not the case for all MUV targets. For most targets, there is no significant dif-
ference between the scores obtained through the RFs and GCNs baselines. RNs obtain
the best ROC scores in one instance on the MUV-832 target when trained with a 1+/10-
support set, obtaining a mean ROC-AUC score of 0.683 ± 0.010. However, this result is
not consistent and the performance is only observed in this single instance. The confu-
sion matrix in Figure 4.18 shows that predictive power for active compounds is still not
reliable. The ROC curve for the median ROC score obtained over 20 rounds of testing
is shown in Figure 4.17. Other than this rare instance, our results are consistent with
the conclusion from Altae-Tran et al. (2017) that baseline machine learning outperforms

111

Chapter 4. Results & Evaluation 4.6. Summary

few-shot machine learning techniques on the MUV dataset. As the models for few-shot
learning do not hold any predictive power, both in the state of the art and our experi-
ments, we do not tabulate the best performing ROC scores with that of Altae-Tran et al.
(2017).

DUD-E. Results obtained from the DUD-E dataset are not conclusive. The CXCR4
target returned results similar to the MUV targets, where the baseline models outper-
formed all few-shot learning ones. On the other hand, the few-shot machine learning
models returned stellar performance on the ADRB2 target. However, as discussed pre-
viously in Section 4.3.2.3, this is evidence for bias within the data as reported by Chen
et al. (2019). Having such mixed results on two different targets within the same sub-
set of the dataset does not give us a conclusive picture of whether few-shot learning is
effective on this dataset.

Training Times. From the results on the Tox21 dataset, MNs, PNs and RNs obtain
good predictive performance, however, it is evident from the presented result that the
two latter networks are much faster to train on the same hardware. From our experi-
ments on the three Tox21 targets, MNs and PNs were the most consistent in results. As
the decrease in training times is significant, by over 150% between MNs and both PNs
and RNs, we believe that this puts the latter two networks at an advantage. Faster train-
ing times allow faster turnaround of results from datasets, while requiring less intense
use of computer hardware. This increase in efficiency also allows scientists to perform
a more rigorous hyperparameter search on various datasets in a shorter time.

ECFPs versus GCN learned embeddings. In their research paper, Altae-Tran et al.
(2017) suggest that future work might investigate the performance of fingerprints with
learned embeddings. This was one of the motivations for our objectives. The results
presented in Section 4.3.3 clearly show that learned embeddings are advantageous for
few-shot learning when compared to using ECFPs. This shows that augmenting molec-
ular structures with features and then learning an embedding based on the problem
domain adds meaningful information to the embeddings.

4.6 | Summary
In this chapter, we present and discuss the results from the designed experiments, which
we introduce in Chapter 3 for the few-shot learning techniques on the Tox21, MUV and
the GPCR subset of the DUD-E datasets. We first revisit the aims and objectives of our
study before delving into the results obtained. The results obtained across the three
different datasets do not provide a clear-cut conclusion as performance is highly depen-

112

Chapter 4. Results & Evaluation 4.6. Summary

Figure 4.19: ROC-AUC scores
when using ECFP versus GCN
embeddings on Tox21 with
Prototypical Networks trained
with 10-shot support sets.

Figure 4.20: PR-AUC scores
when using ECFP versus GCN
embeddings on Tox21 with
Prototypical Networks trained
with 10-shot support sets.

dent on the nature of the data. On the Tox21 dataset, we conclude that the Prototypical
Networks models obtain the best performance overall, with Matching Networks (the
state of the art), being a close contender. Results on the MUV and DUD-E datasets
are not conclusive as the few-shot learning models do not perform well and are out-
performed by our baseline models. On one DUD-E target, performance is exceptional,
but we note that this could be attributed to an inherent bias within the data. We also per-
formed experiments to compare the performance of one of the best performing architec-
tures, the Prototypical Networks, when using ECFP versus using learned embeddings
through GCNs. The latter proved to be superior in all cases. Training times between
models are also evaluated and we find that the proposed few-shot learning models,
which obtain comparable performance to the state of art, take a fraction of the time to
train. This improvement in training efficiency affords further experiments on Prototyp-
ical and Relation Networks when using the same hardware. The results obtained from
our work are compared and evaluated with that of the state of the art work by Altae-
Tran et al. (2017). We find that our findings are consistent with those from the state
of the art, with Prototypical and Relation Networks performing better in a number of
experiments on the Tox21 dataset.

113

5
Conclusions

Human beings exhibit a remarkable ability to quickly and effectively learn from expo-
sure to just a few examples. After seeing a cat for the first time, a child can correctly iden-
tify cats upon future encounters. Conventional supervised deep learning techniques re-
quire a plethora of data to train a model. In order to bridge this gap between human
learning and machine learning, the meta-learning domain aims to train a model to learn
how to learn. By training on a small number of data points from a set of related, but not
identical tasks, a machine learning model can be trained to generalise using only a few
examples sampled from previously unseen tasks to classify new data points from these
new tasks. This method of learning affords invaluable capabilities especially for areas
in which data is not easily available, such as the drug discovery process.

The drug discovery process is a resource-intensive and time-consuming process. The
whole process takes years to complete from a drug’s original conception to launch. Ad-
ditionally, data acquisition is not only expensive, but also difficult to obtain. The main
goal in drug discovery is to find small molecules which activate or exhibit a therapeutic
effect against biological targets. This study focuses on ligand based virtual screening
(LBVS), which uses information from known ligands to identify new ones, effectively
using known ligands as a "template". Datasets used for virtual screening are based
around a number of experimental assays and supply a number of active and inactive or
decoy compounds for a number of biological targets. For this study we explore a tox-
icology dataset, the Toxicology for the 21st Century (Tox21) dataset which is typically
used for lead optimisation to identify toxicology effects of molecules. The Tox21 dataset
is composed of active and inactive molecules against 12 biological targets. We also make
use of two other datasets, the Maximum Unbiased Validation (MUV) and the G-protein-
coupled receptors (GPCR) subset of the Database of Useful Decoys: Enhanced (DUD-E),

115

Chapter 5. Conclusions

which are used for hit identification in virtual screening. These two datasets consist of
actives and decoys against a number of biological targets. Decoys differ from inactives
in that it is presumed that they are inactive against a biological target based on physical
properties, and are not validated to be truly inactive. These datasets contain a signif-
icant imbalance between the number of actives and inactives/decoys, with the latter
far exceeding the number of actives. As the number of actives is limited and difficult
to obtain, it would be significantly advantageous if a machine learning model could
generalise using merely a few examples.

Hence, in this study, we explore the application of few-shot machine learning tech-
niques for lead optimisation and hit identification in virtual screening. Few-shot learn-
ing is a type of meta-learning technique and has been effectively applied in domains
such as computer vision and natural language processing. One commonly used tech-
nique is metric-based few-shot machine learning, in which the model learns to embed
inputs and computes a distance function over these embeddings to classify them. In
chronological order, this has been accomplished through Siamese (Koch et al., 2015),
matching (Vinyals et al., 2016), Prototypical (Snell et al., 2017), and Relation (Sung et al.,
2018) Networks. These neural networks need to take in the molecules in the designated
datasets as inputs. However molecules, which are provided in SMILES format, first
need to be represented in computational space. Based on existing literature, we mainly
focus on graph representations, but we also explore the use of extended-connectivity
fingerprint (ECFP) molecular representations. Graphs are a natural representation for
molecules as they are made up of a set of nodes and edges, which correspond to atoms
and bonds in molecules. Atom descriptors are added to the nodes to add further in-
formation to the graph. These graph objects are processed using a graph convolutional
network (GCN) to map the molecular graph to a learned embedding in latent space.

For effective few-shot machine learning, the conditions during training must match
those at test time. Firstly, a subset of the targets within the dataset are reserved for train-
ing, and the rest for testing. Training the model is achieved by repeatedly emulating
the conditions at test by sampling a small number of examples from a training target,
referred to as the support set, and attempting to generalise for the activity of a number
of sampled query molecules, referred to as the query set, using only the small support
set. This is done through episodic learning, where the learning problem is framed as
a series of N-way, K-shot tasks. N always assumes a value of two as our problem is
a binary classification one, in which we are trying to predict whether a molecule is ac-
tive or an inactive/decoy for a biological target. K is the value of examples sampled
from every class in our dataset to make up the support set. For our few-shot learning
methodology, K assumes a maximum value of 10, and a minimum of one example per

116

Chapter 5. Conclusions 5.1. Revisiting this Study’s Aims and Objectives

class. We also experiment with an imbalanced support set in which we sample more of
the inactive/decoy class than the active class. This support set emulates the conditions
at test time. During test time, we sample the support set randomly from a previously
unseen target, and the trained model uses this new information to generalise for the rest
of the query molecules in this new target.

Altae-Tran et al. (2017) explore the application of few-shot learning for the drug dis-
covery domain. The authors develop the aforementioned Matching Networks further
by expanding on concepts such as attention and bi-directional long-short term memory
(LSTM) networks to propose the Iterative Refinement LSTM (IterRefLSTM). Their work
preserves the context-awareness of Matching Networks, but eliminates order depen-
dencies and embeds the support and query sets simultaneously using information from
both sets. For the purposes of this study and to the best of our knowledge, their work
is the state of the art in this field at the time of writing. In this study, we build on their
work by first reproducing their work and results, and then also applying Prototypical
Networks and Relation Networks, which, to the best of our knowledge, have previ-
ously been unexplored for this problem domain. We augment these networks through
the use of IterRefLSTMs from Altae-Tran et al. (2017), in order to objectively compare
and contrast results. We reiterate from Altae-Tran et al. (2017) that this is not merely
an application of past work on one-shot learning to molecular data. One application
of few-shot learning to the computer vision domain is to explore object recognition in
computer vision for new image classes when provided with only a few data points for
each class. The equivalent learning challenge would be to generalise for the activity of
compounds in a new molecular scaffold using only a few data points, for a fixed experi-
mental assay. In our study, the machine learning techniques proposed should be able to
train a model that can generalise the activity of molecules for new experimental assays,
which are related, but not the same as the experimental assays used for training.

5.1 | Revisiting this Study’s Aims and Objectives
The main aim of this study is to explore the efficacy of few-shot learning for low-data
LBVS, which was guided by two research questions, namely:

1. Since we have limited active data, a model that can generalise using only a few
examples is highly advantageous. Therefore, are few-shot machine learning tech-
niques effective for low-data ligand-based virtual screening?

2. Do Prototypical (Snell et al., 2017) and Relation Networks (Sung et al., 2018) af-

117

Chapter 5. Conclusions 5.1. Revisiting this Study’s Aims and Objectives

ford better performance for ligand-based virtual screening than the Matching Net-
works (Vinyals et al., 2016) component in the established state of the art (Altae-
Tran et al., 2017)?

The work of Altae-Tran et al. (2017), established to be the state of the art for this
problem domain, served as the foundation for our study. After a thorough review of
few-shot machine learning techniques and setting up two conventional machine learn-
ing pipelines as a baseline, we reproduced the state of the art by implementing the
proposed IterRefLSTM, which expands on Matching Networks. Our experiments are
run on three datasets, namely the Tox21, MUV and the GPCR subset of the DUD-E
dataset. Besides from reproducing the models and results in the state of the art, we
also report Precision-Recall Area under the Curve (PR-AUC) scores in addition to the
Receiver-Operator Characteristic (ROC) scores, aiming to add further insight into the
performance of few-shot learning models. We strongly believe that the introduction of
PRC is crucial in this problem domain due to the high imbalance inherent to the datasets
used, and the importance of correctly identifying active compounds. Furthermore, we
also apply Prototypical and Relation Networks, previously explored architectures for
computer vision, and which to the best of our knowledge have not been applied to this
problem domain before. Besides the standard implementation of these two networks,
the support and query learned embeddings from the GCNs are also processed using the
IterRefLSTM component, which is reproduced from the state of the art.

Our implementation of the work by Altae-Tran et al. (2017) matched their perfor-
mance based on the provided ROC scores in their study. However, the results for the
chosen datasets do not provide us with a clear-cut answer to our first research ques-
tion. Our results are consistent with the state of the art results, where we see few-shot
learning models able to generalise and predict molecular activity against new unseen
targets in the Tox21 data using only a small support set. Results from few-shot learning
models on Tox21 data consistently perform better than our baseline machine learning
approaches. The same generalising capabilities is not achieved on MUV data due to the
nature of the data available within this dataset. The results on the DUD-E data does not
give a clear indication of performance, and the excellent results obtained on one DUD-
E target raises questions about hidden bias within the data. Therefore, we conclude
that few-shot machine learning is effective for low-data ligand-based virtual screening
depending on the nature of the data used. For data such as MUV, in which active com-
pounds per target are scarce and each compound is structurally distinct from all others,
the few-shot learning models struggle to generalise well.

For our second research question, we find that on the Tox21 datasets, the Proto-

118

Chapter 5. Conclusions 5.2. Critique and Limitations

typical network is the best performing network, with much faster training times than
our implementation of the Matching Networks. Prototypical Networks dominate all
other networks in PRC scores, and also have a slight edge when comparing ROC scores
compared to the state of the art. The state of the art and Prototypical Networks perform
significantly better than our implementation of Relation Networks. Hence, we conclude
that Prototypical Networks offer better generalising capabilities for few-shot learning in
ligand-based virtual screening than the Matching Networks component in the state of
the art.

To further explore the efficacy of few-shot machine learning, we also run experi-
ments to investigate the performance of low-data learning with different molecular em-
beddings. This experiment was limited to comparing the performance of using ECFPs
against learned embeddings from GCNs. Our results show that the latter is superior in
all the tests we carry out.

5.2 | Critique and Limitations
Having carried out the main objectives set out for this study and answered our research
questions, we now highlight some limitations in our work.

This study focused on few-shot learning architectures and therefore, we did not do a
comprehensive analysis into how learned embeddings are created through GCNs. The
architecture for the utilised GCN was motivated from Altae-Tran et al. (2017), and we
did not carry out any further exploratory work into other implementations. For the
purposes of this study, we did not attempt to perform a comprehensive implementation
of meta-learning techniques for this problem domain. We focused our efforts around
metric-based implementations to build on the state of the art contributions. In the next
sub-section, we propose other fields of interest in the meta-learning domain such as
optimisation-based techniques as opposed to metric-based ones. One difficulty we en-
countered was that the state of the art implementation was based on deprecated code.
As a result, the implementations were reproduced so as to avoid unnecessary bias when
evaluating with our other implementations. This might lead to having slight variations
in the implementation itself, even though our results lead us to believe otherwise as
they are consistent with those published in literature. Additionally, our work focused
on implementing the machine-learning architectures for ligand-based data and we did
not do an extensive hyper parameter search.

We report that Prototypical Networks obtain better performance than Relation Net-
works. Further exploration could go into the processing of the feature map concatena-

119

Chapter 5. Conclusions 5.3. Future Work

tions in Relation Networks to establish whether this could improve performance. To
create feature map concatenations, the query embeddings are replicated and appended
to the embeddings of the support set. These feature map concatenations are then further
processed through a feed-forward neural network with dense layers. In the original
paper, (Sung et al., 2018) further process the feature maps using convolutional neural
networks, before processing through a feed-forward neural network. Hence, one could
say that the equivalent implementation for graph data would be to process the feature
maps using graph neural networks before processing through the final dense layers of
the neural network. However, appending graphs together is not as trivial as append-
ing two images; as the order of the nodes in both graphs is arbitrary and new edges
are needed between the nodes of two individual graphs. Additionally, to obtain graph
embeddings, we would have needed to change our GCN architecture to output a graph
rather than a vectorised embedding, resulting in comparing the results of Relation Net-
works with other networks using a different GCN architecture. Hence, we opted for
creating feature maps with the vectorised embeddings. Future work could possibly ex-
plore the feature map concatenations of two molecular graphs.

5.3 | Future Work

In this study we explored the application of metric-based few-shot machine learning
techniques, mainly with GCNs, and augmented with the IterRefLSTM (Altae-Tran et al.,
2017) to improve the support and query embeddings. For this section, we start at the
start of our machine learning pipeline and propose ideas for further exploratory work.

Our machine learning pipeline starts from the conversion of SMILES molecular rep-
resentations to a graph structure with nodes and edges representing atoms and bonds
respectively. In our study, atoms are featurised with atomic properties outlined in Chap-
ter 3. More atomic properties such as chirality and atom mass could be added to the
graph data structures. Additionally, bond properties, such as bond type and conjuga-
tion, were not utilised for the purposes of this study. These additions could augment
the embeddings created from the GCNs by possibly adding more valuable information.

For the purposes of our study, we have focused mainly on the few-shot learning
architectures for the learned embeddings. As the exploration of the GCN architecture
itself was out of the scope of this study, we only carried out experiments with one GCN
architecture, based on the work of Altae-Tran et al. (2017). Further work could go into
experimenting with different GCN architectures such as GINs (Xu et al., 2018), Graph-

120

Chapter 5. Conclusions 5.3. Future Work

SAGE (Hamilton et al., 2017) or Relational-GCNs (Schlichtkrull et al., 2018). The GCNs
create the embeddings that we use further down the pipeline. These embeddings are
processed with the IterRefLSTM and then ultimately through the few-shot learning ar-
chitecture. Hence, the information that the learned embeddings contain is valuable for
the few-shot learning paradigm. Our experiments have shown an improvement from
using learned embeddings over ECFPs, highlighting the importance of the embedding
used for the techniques employed. Another interesting area of research for considera-
tion is the inclusion of 3D structural information in the molecular embedding. So far, we
have only considered 2D molecular graphs, encoding only the atom features in a GCN.
Stärk et al. (2021) propose 3D Infomax, which pre-trains a graph neural network to en-
code 3D structural information in the latent vector representations. Once this process is
complete, the pre-trained GNNs can be transferred and used in datasets which do not
contain 3D information to produce latent 3D information from 2D molecular graphs.

Vinyals et al. (2016), in their work proposing Matching Networks, have highlighted
the fact that conditions during training and testing must match. What this effectively
means is that the task formulation, N-way K-shot during training should match the sup-
port set composition that will be available during inference time. To the best of our
knowledge, this has not been explored for molecular data and a more in depth investi-
gation will lead to further insight into the way the data available is organised for train-
ing. Additionally, to our knowledge, no study has been done about the amount of data
on different targets needed to build a well-performing model.

In this study we focused mainly on metric-based learning augmented with LSTMs.
The field of meta-learning is extensive and has gained a lot of momentum over the past
years. Finn et al. (2017) proposed an optimisation-based model-agnostic meta-learning
(MAML) technique that performs better than Matching Networks in their reported re-
sults. Nichol and Schulman (2018) propose Reptile, another meta-learning optimisa-
tion algorithm that is model-agnostic, similar to MAML. The goal of these techniques is
to find the optimal initialisation of weights so that training on similar tasks converges
through gradient descent as fast as possible. Munkhdalai and Yu (2017) also propose
Meta-Networks, which achieves better performance than Matching Networks on the
Omniglot dataset. Meta-Networks are model-based meta-learners whose goal is rapid
generalisation by updating weights through a few training steps.

For the drug-discovery domain, Guo et al. (2021) recently proposed the Meta-MGNN,
a meta-learning framework for model optimisation, designed for molecular graph neu-
ral networks to address the low-data requirement of training a model to predict the
property of a molecule. The authors report that they obtain better results than MAML
and other methods. Additionally, Wang et al. (2021) build further on Meta-MGNN and

121

Chapter 5. Conclusions 5.4. Final Remarks

propose the Property-Aware Relation Networks (PAR) to handle few-shot learning in
molecular property prediction. We note that this is different from the Relation Net-
works we explored in this study. PAR attempts to propagate information across similar
molecules and the authors report better results than the work of Altae-Tran et al. (2017).
However, in the PAR study, the authors utilise bond information, and use a different
graph convolution network based on the work of Xu et al. (2018). Therefore, the re-
sults are not directly comparable and further work is needed as they do not reproduce
the work of Altae-Tran et al. (2017) and thus it is difficult to quantify whether the im-
provement in results is due to the technique employed in PAR or other aforementioned
factors.

5.4 | Final Remarks

In this study we explored how a machine learning model can learn how to learn and
generalise using only a few examples. This research project builds on the work from
Altae-Tran et al. (2017), who have set important foundations for this problem domain.
Their work has been one of our principal starting points, and we developed their work
further. First and foremost, we reproduce their work effectively and provide deeper
insight into the study by introducing PRC reporting, over and above the ROC scores.
Secondly, we also introduce two new few-shot machine learning models and explore
their performance against the state of the art. The Prototypical and Relation Networks
have been previously explored for the computer vision domain, but to our knowledge,
have never been applied to the drug discovery domain. While our results vary across
the datasets used, they are consistent with the work of Altae-Tran et al. (2017). The Pro-
totypical Networks we introduce to this problem domain perform better on the Tox21
dataset based on ROC performance, while outperforming all other machine learning
models in PRC performance. We believe that this is a valuable contribution as, in addi-
tion to obtaining better results than the state of the art, given the nature of the data used,
the PRC provides more reliable insight into the performance of the models. We also find
that making use of learned embeddings through GCNs, as opposed to ECFPs, consis-
tently results in better ROC and PRC performance. For datasets in which the ligands
provided are structurally distinct, holding no relationship whatsoever between them,
the conventional machine learning techniques, used as a baseline in our experiments,
perform better.

122

Chapter 5. Conclusions 5.4. Final Remarks

During the COVID-19 pandemic, at the time during which this dissertation was
written, the general public developed an appreciation for advancements in the phar-
maceutical industry for relatively rapid development of new drugs. Machine learning
can be an effective enabler for such developments, as it can ameliorate and refine com-
ponents of the drug discovery process. The results obtained through such techniques
can only be verified experimentally, but they can drive research and innovation in the
industry forward. Having motivated the reasons behind the need for few-shot learn-
ing approaches, we hope that our contributions inspire further research in this problem
domain. Tackling the low-data problem in virtual screening can lead to more efficient
drug development, leading to faster access to medicine, which can directly and posi-
tively impact the lives of many around the world.

123

A
Running Jupyter Notebooks

We open-source the developed code for this study, which is made available on GitHub1.
The developed code is contained within Jupyter notebooks, which are run on Google
Colab. To successfully run the projects, Google Drive needs to be mounted to the Colab
environment. Running all the code blocks will mount your Google Drive automatically.
We made use of the Colab Pro paid plan, which supplies faster GPUs, more memory
and longer runtimes. The notebooks can also be run locally by installing all the required
packages.

Data can be downloaded from the links in Chapter 3 and saved to the ./data/raw/
directory as CSV files. The raw data can be processed directly by each of the machine
learning pipelines contained in the provided notebooks. The code was tested with
Tox21, MUV and the GPCR subset of the DUD-E datasets.

The Github repository contains empty file structures, which are used to save outputs
from the Jupyter notebooks. Each network is contained within its own notebook. The
folder structure must be uploaded to your Google Drive if running the notebooks on
Google Colab. The following Jupyter notebooks are available:

⌅ Create Dataset. Can be used to create a dataset to be used for further processing
by the developed machine learning models.

⌅ Random Forest Benchmark. Contains the code to run the random forest baseline
machine learning model.

⌅ GCN Benchmark. Contains the code to run the random forest baseline machine
learning model.

1Accessed From: https://github.com/danielvlla/Few-Shot-Learning-for-Low-Data-Drug-Discovery

125

Appendix A. Running Jupyter Notebooks

⌅ Siamese Nets. Contains the code to run the Siamese network few-shot learning
model.

⌅ Matching Nets. Contains the code to run the Matching network few-shot learning
model with the iterative-refinement LSTM.

⌅ Prototypical Nets. Contains the code to run the Prototypical network few-shot
learning model with the iterative-refinement LSTM.

⌅ Relation Nets. Contains the code to run the Relation network few-shot learning
model with the iterative-refinement LSTM.

⌅ Prototypical Nets Tox21 ECFP. Contains the code for training and testing proto-
typical networks on the Tox21 dataset with ECFP embeddings, rather than GCN
learned embeddings.

⌅ Create DUD-E Dataset. Contains functions for amalgamating the actives and de-
coys from the targets downloaded from the DUD-E website, into a CSV file.

The notebooks containing machine learning models contain a code block nested un-
der the Initiate Training and Testing markdown header that contains setting of variables to
match your environment. The other variables are hyperparameters you can experiment
with. Default set values are the ones used for this study.

⌅ drive_path. Set to "/content/drive/MyDrive/{DIRECTORY_NAME}".

⌅ method_dir. Needs to match the directory name from the supplied directory struc-
ture. If not, make sure that the directory name matches this variables’ string.

⌅ dataset. Takes on the values of tox21, muv or dude-gpcr

Outputs from the models will be saved to each specific directory. Loss plots will be
saved to the loss_plots directory and ROC-AUC, PR-AUC and confusion matrices will
be saved in the graphs directory.

126

References

Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V. Low data drug discovery with one-shot learning. ACS central
science, 3(4):283–293, 2017.

An, W. F. and Tolliday, N. Cell-based assays for high-throughput screening. Molecular biotechnology, 45(2):180–186, 2010.

Arús-Pous, J., Johansson, S. V., Prykhodko, O., Bjerrum, E. J., Tyrchan, C., Reymond, J.-L., Chen, H., and Engkvist, O.
Randomized smiles strings improve the quality of molecular generative models. Journal of cheminformatics, 11(1):1–13,
2019.

Arya, H. and Coumar, M. S. Chapter 4 - lead identification and optimization. In Bhatt, T. K. and Nimesh, S., editors, The
Design Development of Novel Drugs and Vaccines, pages 31–63. Academic Press, 2021. ISBN 978-0-12-821471-8.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bennequin, E. Meta-learning algorithms for few-shot computer vision. arXiv preprint arXiv:1909.13579, 2019.

Bento, A. P., Hersey, A., Félix, E., Landrum, G., Gaulton, A., Atkinson, F., Bellis, L. J., De Veij, M., and Leach, A. R. An
open source chemical structure curation pipeline using rdkit. Journal of Cheminformatics, 12(1):1–16, 2020.

Bissantz, C., Folkers, G., and Rognan, D. Protein-based virtual screening of chemical databases. 1. evaluation of different
docking/scoring combinations. Journal of medicinal chemistry, 43(25):4759–4767, 2000.

Bondy, J. A. and Murty, U. S. R. Graph theory with applications, Volume 290. Macmillan London, 1976.

Brecher, J. Graphical representation of stereochemical configuration (iupac recommendations 2006). Pure and applied
chemistry, 78(10):1897–1970, 2006.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., and Shah, R. Signature verification
using a “siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7
(04):669–688, 1993.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges. arXiv preprint arXiv:2104.13478, 2021.

Brown, F. Chapter 35. chemoinformatics: What is it and how does it impact drug discovery. volume 33 of. Annual Reports
in Medicinal Chemistry, pages 375–384.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. Listen, attend and spell: A neural network for large vocabulary conversational
speech recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

127

References References

4960–4964. IEEE, 2016.

ChemAxon. Extended connectivity fingerprint ECFP, 2020. URL https://docs.chemaxon.com/display/docs/
extended-connectivity-fingerprint-ecfp.md. [Last Accessed 2021-04-25].

Chen, L., Cruz, A., Ramsey, S., Dickson, C. J., Duca, J. S., Hornak, V., Koes, D. R., and Kurtzman, T. Hidden bias in the
dud-e dataset leads to misleading performance of deep learning in structure-based virtual screening. PloS one, 14(8):
e0220113, 2019.

Chung, F. R. and Graham, F. C. Spectral graph theory. Number 92. American Mathematical Soc., 1997.

David, L., Thakkar, A., Mercado, R., and Engkvist, O. Molecular representations in ai-driven drug discovery: a review
and practical guide. Journal of Cheminformatics, 12(1):1–22, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral
filtering. Advances in neural information processing systems, 29:3844–3852, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In
2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A., and Adams,
R. P. Convolutional networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292, 2015.

Eckert, H. and Bajorath, J. Molecular similarity analysis in virtual screening: foundations, limitations and novel ap-
proaches. Drug discovery today, 12(5-6):225–233, 2007.

Fawcett, T. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–874, 2006.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning of object categories. IEEE transactions on pattern analysis and
machine intelligence, 28(4):594–611, 2006.

Ferreira, L. G., Dos Santos, R. N., Oliva, G., and Andricopulo, A. D. Molecular docking and structure-based drug design
strategies. Molecules, 20(7):13384–13421, 2015.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In International
Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

Food, F. and Administration, D. Substance definition manual. Standard Operating Procedure, “Substance Definition Man-
ual,” Version 5c, 94, 2007.

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., and
Cibrián-Uhalte, E. The chembl database in 2017. Nucleic acids research, 45(D1):D945–D954, 2017.

Geppert, H., Vogt, M., and Bajorath, J. Current trends in ligand-based virtual screening: molecular representations, data
mining methods, new application areas, and performance evaluation. Journal of chemical information and modeling, 50
(2):205–216, 2010.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-
Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.

Gori, M., Monfardini, G., and Scarselli, F. A new model for learning in graph domains. In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., Volume 2, pages 729–734. IEEE, 2005.

128

https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md
https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md

References References

Graves, A., Wayne, G., and Danihelka, I. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

Guo, Z., Zhang, C., Yu, W., Herr, J., Wiest, O., Jiang, M., and Chawla, N. V. Few-shot graph learning for molecular
property prediction. In Proceedings of the Web Conference 2021, pages 2559–2567, 2021.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. Advances in neural information
processing systems, 30, 2017.

Hamza, A., Wei, N.-N., and Zhan, C.-G. Ligand-based virtual screening approach using a new scoring function. Journal
of chemical information and modeling, 52(4):963–974, 2012.

Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., and Rosenthal, J. Clinical development success rates for
investigational drugs. Nature biotechnology, 32(1):40–51, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Hinton, G., Srivastava, N., Swersky, K., Tieleman, T., and Mohamed, A. Coursera: Neural networks for machine learn-
ing. Lecture 9c: Using noise as a regularizer, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. Meta-learning in neural networks: A survey. arXiv preprint
arXiv:2004.05439, 2020.

Huang, N., Shoichet, B. K., and Irwin, J. J. Benchmarking sets for molecular docking. Journal of medicinal chemistry, 49
(23):6789–6801, 2006.

Huang, R., Xia, M., Nguyen, D.-T., Zhao, T., Sakamuru, S., Zhao, J., Shahane, S. A., Rossoshek, A., and Simeonov, A.
Tox21challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure
to environmental chemicals and drugs. Frontiers in Environmental Science, 3:85, 2016.

Hughes, J. P., Rees, S., Kalindjian, S. B., and Philpott, K. L. Principles of early drug discovery. British journal of pharma-
cology, 162(6):1239–1249, 2011.

James, G., Witten, D., Hastie, T., and Tibshirani, R. Statistical learning. In An introduction to statistical learning, pages
15–57. Springer, 2021.

Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., Shen, C., Cao, D., Wu, J., and Hou, T. Could graph neural
networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and
graph-based models. Journal of cheminformatics, 13(1):1–23, 2021.

Johnson, M. A. and Maggiora, G. M. Concepts and applications of molecular similarity. Wiley, 1990.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. Molecular graph convolutions: moving beyond finger-
prints. Journal of computer-aided molecular design, 30(8):595–608, 2016.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., and Yu, B. Pubchem in
2021: new data content and improved web interfaces. Nucleic acids research, 49(D1):D1388–D1395, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Koch, G., Zemel, R., and Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In ICML deep
learning workshop, Volume 2. Lille, 2015.

129

References References

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. Supervised machine learning: A review of classification techniques.
Emerging artificial intelligence applications in computer engineering, 160(1):3–24, 2007.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. Ad-
vances in neural information processing systems, 25:1097–1105, 2012.

Kuhn, M., Letunic, I., Jensen, L. J., and Bork, P. The sider database of drugs and side effects. Nucleic acids research, 44
(D1):D1075–D1079, 2016.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. One shot learning of simple visual concepts. In Proceedings of
the annual meeting of the cognitive science society, Volume 33, 2011.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. Human-level concept learning through probabilistic program
induction. Science, 350(6266):1332–1338, 2015.

Lavecchia, A. and Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Current medicinal
chemistry, 20(23):2839–2860, 2013.

LeCun, Y. and Bengio, Y. Convolutional networks for images, speech, and time series. The handbook of brain theory and
neural networks, 3361(10):1995, 1995.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature, 521(7553):436–444, 2015.

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. A survey of convolutional neural networks: analysis, applications, and
prospects. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Maggiora, G. M. On outliers and activity cliffs why QSAR often disappoints, 2006.

Malin, B. A., Emam, K. E., and O’Keefe, C. M. Biomedical data privacy: problems, perspectives, and recent advances,
2013.

Mann, H. B. and Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other.
The annals of mathematical statistics, pages 50–60, 1947.

Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J. K., Ceulemans, H., Clevert, D.-A., and Hochreiter, S.
Large-scale comparison of machine learning methods for drug target prediction on chembl. Chemical science, 9(24):
5441–5451, 2018.

McKnight, P. E. and Najab, J. Mann-whitney u test. The Corsini encyclopedia of psychology, pages 1–1, 2010.

Micheli, A. Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20(3):
498–511, 2009.

Mitchell, T. M. Machine Learning. McGraw-Hill, New York, 1997.

Morgan, H. L. The generation of a unique machine description for chemical structures-a technique developed at chemical
abstracts service. Journal of Chemical Documentation, 5(2):107–113, 1965.

Mufei, L., Jinjing, Z., Jiajing, H., Wenxuan, F., Yangkang, Z., Yaxin, G., and George, K. Dgl-lifesci: An open-source toolkit
for deep learning on graphs in life science. arXiv preprint arXiv:2106.14232, 2021.

Munkhdalai, T. and Yu, H. Meta networks. In International Conference on Machine Learning, pages 2554–2563. PMLR,
2017.

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. Directory of useful decoys, enhanced (dud-e): better ligands
and decoys for better benchmarking. Journal of medicinal chemistry, 55(14):6582–6594, 2012.

Nichol, A. and Schulman, J. Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999, 2(3):4, 2018.

NIH. Tox21 data challenge 2014, 2014. Accessed on 20.08.2021.

Pal, U. Interaction of proteins with small molecules and peptides. PhD thesis, Doctoral dissertation, Jadavpur University,

130

References References

2016., 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

Prakash, N. and Gareja, D. Cheminformatics. J Proteomics Bioinform, 3:249–252, 2010.

Ramsundar, B., Eastman, P., Walters, P., and Pande, V. Deep learning for the life sciences: applying deep learning to genomics,
microscopy, drug discovery, and more. " O’Reilly Media, Inc.", 2019.

RDKit. Open-source cheminformatics. https://www.rdkit.org, 2012. Last Accessed on 25/11/2021.

Réau, M., Langenfeld, F., Zagury, J.-F., Lagarde, N., and Montes, M. Decoys selection in benchmarking datasets:
overview and perspectives. Frontiers in pharmacology, 9:11, 2018.

Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H., and Sastry, G. N. Virtual screening in drug discovery-a computational
perspective. Current Protein and Peptide Science, 8(4):329–351, 2007.

Rogers, D. and Hahn, M. Extended-connectivity fingerprints. Journal of chemical information and modeling, 50(5):742–754,
2010.

Rohrer, S. G. and Baumann, K. Maximum unbiased validation (muv) data sets for virtual screening based on pubchem
bioactivity data. Journal of chemical information and modeling, 49(2):169–184, 2009.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. nature, 323
(6088):533–536, 1986.

Rupp, M., Tkatchenko, A., Müller, K.-R., and Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization
energies with machine learning. Physical review letters, 108(5):058301, 2012.

Saito, T. and Rehmsmeier, M. The precision-recall plot is more informative than the roc plot when evaluating binary
classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.

Sandryhaila, A. and Moura, J. M. Discrete signal processing on graphs. IEEE transactions on signal processing, 61(7):
1644–1656, 2013.

Santorini, B. Part-of-speech tagging guidelines for the Penn Treebank Project. Technical report, Department of Computer
and Information Science, University of Pennsylvania, 1990.

Sarle, W. S. Neural networks and statistical models. Citeseer, 1994.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and Welling, M. Modeling relational data with graph
convolutional networks. In European semantic web conference, pages 593–607. Springer, 2018.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11):
2673–2681, 1997.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing
magazine, 30(3):83–98, 2013.

Smusz, S., Kurczab, R., and Bojarski, A. J. The influence of the inactives subset generation on the performance of machine
learning methods. Journal of cheminformatics, 5(1):1–8, 2013.

Snell, J., Swersky, K., and Zemel, R. S. Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175, 2017.

Spitzer, G. M., Heiss, M., Mangold, M., Markt, P., Kirchmair, J., Wolber, G., and Liedl, K. R. One concept, three im-
plementations of 3d pharmacophore-based virtual screening: distinct coverage of chemical search space. Journal of

131

References References

chemical information and modeling, 50(7):1241–1247, 2010.

Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Günnemann, S., and Liò, P. 3D infomax improves GNNs for
molecular property prediction. arXiv preprint arXiv:2110.04126, 2021.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. Learning to compare: Relation network for
few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1199–1208,
2018.

Thrun, S. and Pratt, L. Learning to learn. Springer Science & Business Media, 2012.

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., and Spitzer,
M. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6):
463–477, 2019.

Van De Waterbeemd, H. and Gifford, E. Admet in silico modelling: towards prediction paradise? Nature reviews Drug
discovery, 2(3):192–204, 2003.

Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T., Murray, C. W., Taylor, R. D., and Watson, P. Virtual screening
using protein- ligand docking: avoiding artificial enrichment. Journal of chemical information and computer sciences, 44
(3):793–806, 2004.

Vinyals, O., Blundell, C., Lillicrap, T., and Wierstra, D. Matching networks for one shot learning. Advances in neural
information processing systems, 29:3630–3638, 2016.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. Deep learning for computer vision: A brief review.
Computational intelligence and neuroscience, 2018, 2018.

Wallach, I. and Heifets, A. Most ligand-based classification benchmarks reward memorization rather than generaliza-
tion. Journal of chemical information and modeling, 58(5):916–932, 2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li,
J., and Zhang, Z. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. Generalizing from a few examples: A survey on few-shot learning. ACM
Computing Surveys (CSUR), 53(3):1–34, 2020.

Wang, Y., Abuduweili, A., and Dou, D. Property-aware relation networks for few-shot molecular property prediction.
In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen, R. M., Pairaudeau, G., Pennie, W. D.,
Pickett, S. D., and Wang, J. An analysis of the attrition of drug candidates from four major pharmaceutical companies.
Nature reviews Drug discovery, 14(7):475–486, 2015.

Weininger, D. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules.
Journal of chemical information and computer sciences, 28(1):31–36, 1988.

Wong, C. H., Siah, K. W., and Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics, 20
(2):273–286, 2019.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., and Pande, V. Moleculenet: a
benchmark for molecular machine learning. Chemical science, 9(2):513–530, 2018.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1):4–24, 2020.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

132

References References

Yan, S., Xiong, Y., and Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In
Thirty-second AAAI conference on artificial intelligence, 2018.

Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent trends in deep learning based natural language processing.
ieee Computational intelligenCe magazine, 13(3):55–75, 2018.

Zang, R., Li, D., Tang, I.-C., Wang, J., and Yang, S.-T. Cell-based assays in high-throughput screening for drug discovery.
International Journal of Biotechnology for Wellness Industries, 1(1):31–51, 2012.

Zhu, X. and Goldberg, A. B. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and
machine learning, 3(1):1–130, 2009.

133

	Introduction
	Motivation
	Aims and Objectives
	Approach
	Document Structure

	Background & Literature Overview
	Drug Discovery Process
	Virtual Screening
	Structure-based Virtual Screening (SBVS)
	Ligand-based Virtual Screening (LBVS)

	Small-Molecule Databases
	Toxicology in the 21st Century (Tox21)
	Maximum Unbiased Validation (MUV)
	Directory of Useful Decoys - Enhanced (DUD-E)

	Machine Learning
	Feed-forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Graph Neural Networks (GNNs)
	Evaluation Metrics

	Learning with Low Data
	Problem Definition
	Siamese Networks
	Matching Networks
	Prototypical Networks
	Relation Network

	Molecular Machine Learning
	Molecular Representation
	Open-source Libraries

	Related Work
	Summary

	Methodology
	Overview
	Data Acquisition
	Generating the Molecular Representation
	Standardise SMILES Molecules
	Generate Molecular Features
	Molecular Graph Generation

	Few-Shot Machine Learning
	Episodic Learning
	Learning a Molecular Embedding
	Training a Few-shot Machine Learning Model
	ECFPs vs GCNs Learned Embeddings Experiments

	Training Process and Hyper-parameters
	Performance Monitoring

	Testing
	Evaluation
	System and Software Specifications
	Summary

	Results & Evaluation
	Revisiting aims and objectives
	Benchmark Machine Learning Models
	Few-shot Machine Learning Results
	Evaluation Overview
	ROC-AUC and PR-AUC Scores
	ECFP vs GCN Learned Embeddings on Tox21

	Machine Learning Models Training Run Times
	Discussion
	Summary

	Conclusions
	Revisiting this Study's Aims and Objectives
	Critique and Limitations
	Future Work
	Final Remarks

	Running Jupyter Notebooks
	References

