Assessing the Causality Relationship between the Geopolitical Risk Index and the Agricultural Commodity Markets.

Joseph Micallef

A dissertation submitted in partial fulfilment of the requirements for the Masters of Arts Degree in Insurance and Risk Management at the University of Malta.

September 2022

University of Malta Library – Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author's rights in respect of this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information contained in accordance with the Copyright Act provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder.

FACULTY OF ECONOMICS, ACCOUNTANCY AND MANAGEMENT

DECLARATIONS BY POSTGRADUATE STUDENTS

Student's ID : 22MISR004

Student's Name & Surname: Joseph Micallef

Course: Masters of Arts in Insurance and Risk Management

Title of Dissertation: Assessing the Causality Relationship between the Geopolitical Risk Index and the Agricultural Commodity Markets.

(a) Authenticity of Dissertation

I hereby declare that I am the legitimate author of this Dissertation and that it is my original work.

No portion of this work has been submitted in support of an application for another degree or qualification of this or any other university or institution of higher education.

(b) Research Code of Practice and Ethics Review Procedures

As a Master's student, as per Regulation 58 of the General Regulations for University Postgraduate Awards, I accept that should my dissertation be awarded a Grade A, it will be made publicly available on the University of Malta Institutional Repository.

I hold the University of Malta harmless against any third party claims with regard to copyright violation, breach of confidentiality, defamation and any other third party right infringement.

I declare that I have abided by the University's Research Ethics Review Procedures.

Signature of Student: _____

Date: 09th September 2022

Name of Student: JOSEPH MICALLEF

Due to the ongoing Russo – Ukrainian war, this dissertation is dedicated to all Ukrainians for their courage in defending their freedom and their motherland.

Abstract

Purpose: Geopolitics plays a key role in today's complex and globalised world. During the last two decades, the world witnessed various geopolitical events, which have led to an increase in geopolitical risk. Consequently, in recent years, there has been renewed interest in both geopolitics and geopolitical risk. In fact, Caldara and lacoviello's (2018) seminal work spawned several other works on the topic by clearly defining the notion of geopolitical risk and introducing an index to account for both geopolitical threats and acts.

Since the 1970s, the globalisation phenomenon has played a major role in the commodity market. Simultaneously, this phenomenon amplified the scarcity problem, leading to a war on resources, which eventually resulted in increased geopolitical risk. A growing body of literature suggests that geopolitical risk has implications on the commodity market, especially the crude oil industry and the precious metals industry. However, the implications of geopolitical risk on the agricultural industry have received little attention. Therefore, this study investigates the Granger causality between the Geopolitical Risk (GPR) sub-indices to examine the implications of geopolitical risk on 10 agricultural commodities categorised as either softs or grains.

Research design and the methodological approach: A quantitative methodological approach was adopted to investigate the Granger causality effects of geopolitical risk on the agricultural future commodity prices. For the purpose of this study, diagnostic tests were conducted to ensure that the data were stationary. In addition, other tests were conducted to ensure that the optimal lag length was selected and to limit the issue of serial correlation in the data. The author computed the Granger causality test to determine the causality relationship between the daily GPR sub-indices and the future prices of 10 essential agricultural commodities for the period from 31st March 2000 to 31st March 2022.

Findings: The study identifies that the Threat and Act GPR sub-indices Granger-cause the commodity prices of both wheat and oats. Moreover, these findings can also be related to the ongoing Russo–Ukrainian war, which has definitely impacted agricultural commodity prices since both nations are major agricultural producers. The empirical results also outline how the GPR Threat sub-index Granger causes the soybean oil, coffee, wheat, and oats future prices. On the other hand, the GPR Act sub-index Granger causes the oats future price only.

Research implications: It is evidently clear from the empirical findings that the GPR sub-indices impact the agricultural commodity market. Moreover, such findings highlight the predictive power of the GPR sub-indices in relation to changes in future commodity prices, as these contain information that can shed light on the course prices are likely to take following a particular geopolitical event.

Originality/value: These empirical results represent a step further towards understanding better the implications of geopolitical risk in the agricultural commodity market. This study should be of value to various economic actors, such as policymakers and national governments, who wish to understand and determine the effects of geopolitical risk and how it may impact national policies. Furthermore, this study can provide an opportunity for businesses and traders to implement risk management in order to limit the effects of geopolitical risk.

Keywords: Geopolitical Risk, Geopolitical Acts & Threats, Granger Causality, Uncertainty, Agricultural Commodities

۷

Acknowledgements

This dissertation started as a personal interest in various subjects such as geography, history, economics and international politics, as I was always intrigued about how these subjects interacted together. Besides, I am grateful to be given the opportunity to study INS 5004 - 'Geopolitical and Environmental Risk' as part of the Masters of Arts in Insurance and Risk Management.

Firstly, I would like to express my gratitude to Professor Simon Grima B. Com (Hons) (Melit.), M.Sc (Lond.), M.SC. (B.C.U), Ph.D. (Melit.) for his invaluable advice, in his capacity as a dissertation supervisor. Additionally, this dissertation would have not been possible without the contribution of Dr. Jonathan Spiteri B. Com (Hons) (Econ.) (Melit.), M.Sc. (Econ.) (Edin.), Ph. D (Edin.) for his expertise in the geopolitics field in order to develop further the dissertation topic.

My acknowledgements would have not been complete without thanking Ms. Elizabeth Cortis for her time and patience in proofreading this dissertation and my friends for their support and encouragement throughout the writing of this dissertation. Finally, my heartfelt thanks go to my family who always encourage me to further my academic studies and who has always been an unstinting source of support.

Table of Contents

Abstract	iv
Acknowledgements	vi
List of Abbreviations	x
List of Tables	xi
List of Appendices	xii
Chapter 1 – Introduction	2
1.1 Introduction	3
1.2 Background Information	4
1.2.1 The Rise of the Globalisation Phenomenon	5
1.2.2 A Historical Background on Geopolitics	7
1.3 The Importance of Power Struggles and Defence Expenditures	10
1.4 The Implications of Geopolitics on Developing Nations	12
1.5 The Interplay Between Geopolitics and the Commodity Markets	13
1.6 Problem Statement	14
1.7 Research Objectives	16
1.7.1 Research Question and Research Hypothesis	16
1.8 The Significance and Originality of the Study	17
1.9 The Outline of the Study	
1.9 The Outline of the Study Chapter 2 – Literature Review	
Chapter 2 – Literature Review	20
Chapter 2 – Literature Review	20
	20 21 21
Chapter 2 – Literature Review 2.1 Introduction 2.2 What is Geopolitical Risk?	20 21 21 21
Chapter 2 – Literature Review 2.1 Introduction 2.2 What is Geopolitical Risk? 2.3 Economic Implications Arising from Geopolitical Risk	20 21 21 21 25 26
Chapter 2 – Literature Review 2.1 Introduction 2.2 What is Geopolitical Risk? 2.3 Economic Implications Arising from Geopolitical Risk 2.4 The Relationship Between Uncertainty and Geopolitical Risk	20 21 21 25 26 28

2.6 Geopolitical Risks and the Commodity Markets	33
2.6.1 Geopolitical Risks, Macro-Economic Factors, and the Crude Oil Industry	33
2.6.2 The Interrelationship between the Energy and Agricultural Markets	34
2.7 What is Terrorism?	
2.7.1 The Impact of Terrorism on the Commodity Markets	38
2.8 Conclusion	41
Chapter 3 – Methodology	42
3.1 Introduction	43
3.2 Preliminary Research	43
3.3 The Research Framework	44
3.3.1 The Philosophical Research Approaches	44
3.4 The Research Design	45
3.5 Research Method: The Principal Tools Used and Data Collection	47
3.6 The Sampling Procedure	48
3.8 Limitations of the Model	54
3.9 Ethical Considerations within the Research Design	55
3.10 Conclusion	56
Chapter 4 – Findings, Analysis & Discussion	57
4.1 Introduction	58
4.2 Statistical Description of the Variables	58
4.3 Diagnostic Tests	61
4.3.1 Augmented Dickey-Fuller – Unit Root Test	61
4.3.2 Preliminary Tests: Determining the Optimal Lag Length and the Serial Correlation Test	62
4.3.3 The Causality Relationship between the Agricultural Commodity Prices and the GPR Sub Indices	
4.4 Discussion of Empirical Findings	72
4.4.1 Discussion of Findings within the Current Geopolitical Context: The Russo – Ukrainian W	ar 77

4.5 Conclusion	
Chapter 5 – Conclusion	79
5.1 Introduction	80
5.2 Summary of the Salient Findings	80
5.3 Significance of the Study	
5.5 Recommendations	
5.6 Areas for Further Research	
5.7 Concluding Remarks	
References	
Appendices	

List of Abbreviations

- ADF Augmented Dickey Fuller
- AIC Akaike Information Criterion
- **EPU** Economic Policy Uncertainty
- EU European Union
- FPE Final Prediction Error
- **GPR** Geopolitical Risk
- GPRD Geopolitical Risk Daily Index
- HQ Hannan Quinn information criterion
- ISO International Standard Organisation
- LM Lagrange Multiplier
- LR Likelihood Ratio
- SC Schwarz Information Criterion
- **US –** United States
- **UK –** United Kingdom
- **USSR -** Union of Soviet Socialist Republics
- VAR Vector Autoregression
- WEF World Economic Forum

List of Tables

Table 3.1: Sample Selected – Future Commodities	49
Table 4.1: Descriptive Statistics	60
Table 4.2: ADF Unit - Root Test - The Agricultural Commodities	61
Table 4.3: ADF Unit - Root Test - The GPR Sub-Indices	62
Table 4.4: VAR Lag Order Selection Criteria - Softs Agricultural Commodities	64
Table 4.5: VAR Lag Order Selection Criteria - Grains Agricultural Commodities	65
Table 4.6: Softs Agricultural Commodities - VAR Residual Serial Correlation LM Tests	67
Table 4.7: Grains Agricultural Commodities - VAR Residual Serial Correlation LM Tests	68
Table 4.8: Soft Agricultural Commodities - VAR Granger Causality	70
Table 4.9: Grains Agricultural Commodities - VAR Granger Causality	71

List of Appendices

Appendix A: Statistical Tests: Descriptive and Stationary Tests.	
Section I: Descriptive Statistics	122
Section II: Testing Stationarity - Unit - Root Test	129
Appendix B: Vector Autoregressive Model	
Section I: VAR Lag Order Selection Criteria	
Section II: VAR Residual Serial Correlation LM Test	161
Section III: VAR Estimates	
Section IV: VAR Granger Causality/ Block Exogeneity Wald Tests	

Chapter 1 – Introduction

1.1 Introduction

Over the years, non-financial events, such as the large-scale terrorist attacks of 11th September 2001, the rise of the Arab Spring, the annexation of Crimea from Ukraine, and the implications of Brexit, have left their mark on the globalised world. A common contributory factor to these events is the concept of geopolitics, and the world is constantly in a state of great disequilibrium concerning both the global economy and geopolitics (Bouoiyour et al., 2019). Indeed, Cowen and Smith (2009) acknowledge that "the language of geopolitics is everywhere" (p. 1). In times of an increase in geopolitical tension, uncertainty tends to prevail, which has serious repercussions on the economy and the financial markets. As a result, geopolitics has become an everyday concern for senior decision makers, especially when undertaking investment decisions, while ordinary citizens catch a glimpse of it in the press (Lee, 2020).

Jorion (2009) states that risk can be classified into three categories, namely known knowns, known unknowns, and unknown unknowns, which correspond to different levels of uncertainty. Geopolitical risk¹ can be categorised as a known unknown due to the rapid power shifts and the increase in uncertainty (Debs and Monteiro, 2014). On the other hand, Malmgren (2015) notes that geopolitical risk can be associated with both unknowns, but generally, this risk tends to be ignored completely as it is non-quantifiable and measuring it effectively can be a rather challenging task (p. 21). Even though investors are knowledgeable of geopolitical risk and try their best to manage it effectively, they are unaware of when it could occur, as geopolitical events generally come by surprise. Over the years, the concept of rare disaster risk has received notable attention (Barro, 2006; Gabaix, 2009; Berkman et al., 2011). In essence, rare disaster risk refers to a low probability event with a high economic impact (Pyo, 2021). Nguyen Huu (2021) acknowledges that geopolitical risk is one of the main risk factors of rare disaster risk apart from other risks, such as financial, natural, and technological risks.

¹ Throughout this dissertation, the author uses two important terms which are geopolitical risk and the GPR index. For the sake of consistency and clarity, the author will not abbreviate the term geopolitical risk, in order to distinguish it from the abbreviated term introduced by Caldara and Iacoviello (2018, 2021) the GPR index.

The recent rise in geopolitics has heightened the need for understanding better how geography, politics, international relations, and the economy interact together. Although the concept of risk has long been introduced, it is only recently that the notion of geopolitical risk has gained such momentum. Fägersten (2015) acknowledges that geopolitical risk has become more complex due to the lack of sovereign control as well as the power of the respective state. Sarpong (2021) indeed emphasises how in recent years, geopolitical actors have increased considerably and are influencing the geopolitical domain. However, the most influential factors affecting the increasing complexity of geopolitical risk include power relationships and rivalry, especially when considering physical space—the territory of a particular nation which encompasses various components like energy resources, raw materials, and trade routes (Howell and Sundberg, 2015; Lee, 2018). As a matter of fact, power struggle issues have been ongoing since time immemorial; however, nowadays, due to the globalisation phenomenon, it is increasingly evident that nations are competing for power and aspiring to take control over physical territories and resources (Sarpong, 2021). This was certainly made evident in the case of United States (US) President Trump through his proposal to build a wall bordering the US and Mexico; furthermore, his famous catchphrase "Make America Great Again" symbolises the aspirations of the US as a super-powerful nation (Lee, 2020). As a result, geopolitical tensions are generating divergence in advanced economies, whilst emerging economies remain vulnerable to a decrease in capital inflows and higher volatility in their stock markets (Hoque and Zaidi, 2020; Gosh, 2021).

1.2 Background Information

This section provides further insights to the reader on the salient features of geopolitics and how it evolved over time, taking into consideration the importance of the globalisation phenomenon, which paved the way for further economic growth and development. Additionally, power mutuality also plays a crucial role in a globalised and interconnected world. A shift in state power might bring about geopolitical tensions between nations, and as a result, various events might materialise. This was certainly reflected in the recent geopolitical tension caused by a trade spat between the US and Turkey (Mansour-Ichrakieh and Zeaiter, 2019). The relationship between the two countries started deteriorating when President Barack Obama assumed office in 2009; however, it significantly worsened when President Donald Trump was elected in 2016 (Matera, 2020). The main reason for this tension was the US sanctions on Iran due to its nuclear programme. Due to the fact that Iran is Turkey's main trading partner, Turkey resisted complying with the US sanctions on Iran, thus triggering serious economic implications (Matera, 2020). Geopolitical tensions between the US and Turkey escalated in July 2018, leading to a currency crisis where the Turkish Lira depreciated by 35% within a period of seven weeks, which also impacted the financial markets (Mansour-Ichrakieh and Zeaiter, 2019). In view of such geopolitical tensions, investors must assess any shifts in power that might affect their investment portfolios.

1.2.1 The Rise of the Globalisation Phenomenon

Sarpong (2021) refers to how past European explorers had the desire to explore new territories in their search for valuable natural resources. In the late 20th century, and even now in the 21st century, such expeditions are, in fact, being undertaken by corporate entities to secure resources (Sarpong, 2021). Since the 1970s, the globalisation phenomenon has played a crucial role worldwide as countries integrated and progressed culturally, politically, and socio-economically (Sezer and Çavusoglu, 2018). Undoubtedly, globalisation is a prominent subject matter in both economics and the international business field, and Levitt's (1983) pioneering work entitled The Globalisation of Markets remains crucial to our wider understanding of why the globalisation phenomenon is still relevant nowadays. Indeed, in his work, Levitt coins the term "globalisation" and highlights how the various technological advances have led to the internationalisation of corporate entities as well as the homogenisation of consumption habits (Levitt, 1983, as cited by Palan et al., 2020, p. 1859; Lecler, 2019). According to Sezer and Cavusoglu (2018), "globalisation means that the world shrinks and the planet becomes a globe as a whole" (p. 351). This phenomenon brought about significant changes as the world became more interconnected, which led to more opportunities also at a domestic level (Das, 2010). The circulation of both trade and capital increased significantly, as globalisation led to a favourable economic environment due to a decrease in transaction costs and the widespread introduction of communication technologies (Sezer and Çavusoglu, 2018). Das (2010) notes, however, that although globalisation ensured a period of economic growth across the world for at least three decades, the 2008 global financial crisis was a major turning point because globalisation has gone into a reversal.

Various nations across the globe began competing against each other so that multinational enterprises would set up and establish their operations in specific locations, such as South-East Asia. In the meantime, Western economies, such as the US and Europe, were automatically excluded (Pajunen, 2008). As a matter of fact, Asian countries benefitted widely from these foreign inflows since various labour-intensive industries situated in Europe and the US were transferred to numerous Asian nations, and the latter experienced the "flying geese" phenomenon. This term, which was coined by the Japanese economist Akamatsu (1962, as cited in Ruan and Zhang, 2014), refers to when less developed economies catch up with the industrialisation phenomenon (p. 1). Over time, these economies diversify their industries accordingly, leading to sustained economic growth (Ruan and Zhang, 2014). Japan also played a fundamental role in shifting its labourintensive industries to East Asian economies (Camarero et al., 2021). China and India were among the front runners to exploit the benefits of globalisation, while Vietnam followed suit (Das, 2010). Similarly, Latin American countries experienced a substantial increase in foreign investment related to the extraction of natural resources, regardless of their vulnerability to both below ground risks due to geological factors and above ground risks like weak institutions, political instability, and expropriations (Alvarado et al., 2017). On the other hand, while African economies did experience significant growth in foreign inflows, when compared with both Asia and Latin America, Africa still lags behind due to the nature of the extractive industries (Solomon and Ruiz, 2012). Indeed, during the last decade, African economies have been experiencing the capital flight phenomenon, whereby foreign investments outflow from the respective countries due to political and economic instability (Ndikumana and Sarr, 2019). In general, political conditions are not easily observable, especially for foreign investors, given that all private information is held by the host government, thus causing greater uncertainty. Consequently, foreign investors opt to invest in other nations (Bak, 2016).

Globalisation brought about decentralisation; whereby central government responsibilities are devolved to a number of political actors in the process of local economic development. Such political actors include local governments, non-governmental organisations, and international investors. As a result of globalisation and financial integration, countries are now more economically and also geopolitically dependent on each other (Mansour-Ichrakieh and Zeaiter, 2019). Although globalisation fostered various opportunities across different economic sectors, critics argue that such opportunities brought about risks on the agenda, such as the risk of inequality, which leads to poverty (Burgoon, 2012); the increase in environmental risk and climate change (Karlsson, 2017); and the rise of populist ideas that tend to favour anti-globalisation policies, which pose a significant threat to globalisation per se (Steenbergen and Siczek, 2017). In fact, one particular risk that hinders the globalisation phenomenon is the disruption emanating from the political environment (political risk) (Sezer and Çavusoglu, 2018). Due to the dynamics of globalisation, such political risk is also applicable at an international level and arises due to geopolitics (better known as geopolitical risk), which have intensified in recent years (Suárez-de Vivero and Rodríguez Mateos, 2017).

1.2.2 A Historical Background on Geopolitics

Geopolitics seems to be a straightforward concept. Geopolitical analysis starts with a map; however, it ends up leading to severe and complex issues (Granieri, 2019). The historical roots of geopolitics date back over a century when Rudolf Kjellén coined the term geopolitics, which refers to the "formation process of nation states through conflicts over territory and resources" (Lee, 2018, p. 1899). Geopolitics deals with spacespecific components, such as raw materials, commodities, trade routes, and territory, which are impacted by geopolitical events, such as war, terrorism, and conflicts (Lee, 2018). Very often, geopolitics is associated with negative consequences that hinder cooperation among states and ultimately impede trade and investment decisions within a business context (Lee, 2018; Nitoiu, 2020).

At the end of the 19th century, various politico-military thinkers, such as Alfred Thayer Mahan, Sir Halford Mackinder, Friedrich Ratzel, and Karl Haushofer, made significant contributions towards the development of geopolitics as a school of thought (Howell and Sundberg, 2015). The US naval officer Alfred Thayer Mahan heavily contributed to the development of geopolitics in relation to the maritime field. In his seminal work entitled *The Influence of Sea Power upon History*, Alfred Thayer Mahan argues that global power emanates from both naval power and maritime geographical related factors, such as, for instance, the nation's geographical position (Thayer Mahan, 1980, as cited in Klinke, 2021, p.357). Additionally, in 1901, Alfred Thayer Mahan coined the term "Middle East" with reference to the geographical boundaries surrounding the Gulf states, and it became widely acceptable in a geopolitical context (Hughes and Heley, 2015). Another major contributor to the geopolitical school of thought is Sir Halford Mackinder, who is considered to be one of the most influential theorists and the founding father of geopolitics and geostrategy (Hughes and Heley, 2015). In his various seminal works, Mackinder addresses numerous issues related to global politics in relation to history and its geographical setting, which are still highly relevant today due to the current global struggles (Sempra, 2015). Moreover, Sir Halford Mackinder (1919, as cited in Klinke, 2021) is renowned for the "heartland" concept, which implies that whoever rules Eastern Europe will eventually rule the world (p. 357).

Other politico-military thinkers were mainly concerned with understanding better the relationship between socio-politics and biogeography (Barua, 2018). Friedrich Ratzel's main contribution is not directly related to geopolitics; however, his work deals with nationalism and the expansion of imperialism within a geopolitical context (Halas, 2014). Nevertheless, after his death, Ratzel's work was mentioned in other seminal works, including Rudolf Kjellén's Geopolitik (1899), which deals with the importance of the state (Haggman, 1998; Klinke, 2021). Indeed, Ratzel's main contribution is the "Lebensraum" concept, which literally means living space. This concept focuses on how human beings struggle for survival and have to adapt to the conditions of their respective habitat (Chiantera-Stutte, 2018; Klinke and Bassin, 2018). Further to his contribution, Ratzel had strongly advocated the idea that Germany should colonise Africa as a new living space (Klinke and Bassin, 2018). Meanwhile, General Major Karl Haushofer is considered to be a controversial figure who was highly influenced by both the Anglo-American theorists Alfred Thayer Mahan and Sir Halford Mackinder, as well as Friedrich Ratzel. His main contributions were, in fact, influenced by Mackinder's heartland theory; however, he chose to focus on the Russo-Germanic alliance (Mackinder 1919, as cited in Klinke, 2021, p. 357). Following Ratzel's death, General Major Haushofer established the Institute of

Geopolitics (*Institut für Geopolitik*), which proved instrumental for Hitler's Nazi Party ideologies, especially since it introduced the *Lebensraum* concept, encouraging the Nazi Party to conquer Eastern Europe (Klinke, 2021). Indeed, the *Lebensraum* concept was put into practice when Germany invaded Poland, which led to the beginning of World War II (Murphy, 2014; Klinke 2021). These major yet controversial contributions were written during the late 19th and early 20th centuries, which included some of the darkest moments in history, such as World War II and the Vietnam War (Howell and Sundberg, 2015). Since then, geopolitics has developed as a school of thought of its own; however, such insightful contributions still remain also relevant in the 21st century (Sempa, 2015).

Geopolitics has evolved since then; over time, it has become a critical component within an international context. Granieri (2019) highlights that any geopolitical event is rooted in historical terms, influenced by the local culture, and embedded in the reality of geography. For instance, the tensions between the United States and the ex-Soviet Union, which went on over a long period of time, eventually led to a Cold War culture that has dramatically shaped today's geopolitical arena. Although the Cold War era was a long struggle for the US, it emerged victorious by the end of 1991 and subsequently, the Soviet Union was dissolved. As a result, most ex-Soviet communist countries experienced significant changes, such as regime changes, and parliamentary democracy was introduced (Lee, 2020).

Since the aftermath of the Cold War, the world has witnessed a number of geopolitical events, which include military confrontations and large-scale terrorist attacks, the impact of which has been intensifying in nature since 9/11. Ramiah et al., (2019) state that from 2001 to 2017, around 20 terrorist attacks had been carried out in major cities around the world, with serious repercussions on the financial markets. During the last decade, we have witnessed intense geopolitical tensions, which led to the Arab Spring and the Russo-Ukrainian conflict, which recently developed into a full – scale war between these neighbouring nations. The Arab Spring started off in Tunisia, with the main aim being to end the autocratic leadership of nations like Egypt and Libya, eventually spreading into Bahrain and Syria (Lee, 2020). However, the Arab Spring for both Libya and Syria ended up in an intense interstate war, especially the Syrian war, which is considered

an international proxy war (Lee, 2020). On the other hand, the recent Ukraine–Russia conflict emanated from the divide between pro-Russian and anti-Russian supporters and Russia's ambitions to heavily influence ex-Soviet Union countries. This conflict was the result of the three important factors outlined by Granieri (2019), namely historical roots, culture, and the dynamics of geographies.

Within a geopolitical context, the recent dominance of the Asian region has also grown stronger. Over the years, the Chinese government has undergone numerous economic reforms, and as a result, the People's Republic of China has emerged as another superpower, leaving its communist regime intact (Lee, 2020). Apart from being a major economic powerhouse, the People's Republic of China is also the main investor in various countries, with ambitious plans for the near future, such as the Belt and Road initiative, which was introduced in 2013 by the Chinese President Xi Jinping. In a nutshell, the Belt and Road initiative is comprised of two infrastructure projects influenced by China's historical past, namely the Maritime Silk Road and the Silk Road Economic Belt, with the aim of developing better connections (including port, railway, highway, and pipelines) with other Asian and European countries along both routes (Blanchard and Flint, 2017). These ambitious infrastructural projects will be completed by 2049 and will also be complemented with soft infrastructure, which includes the introduction of free trade agreements that can potentially transform the global geopolitical landscape (Blanchard and Flint, 2017; Jessop and Sum, 2018). Hence, China has become a serious threat to the Western world, especially to the US, a case in point being the recent US-China trade retaliation, which is considered to be an economic version of hegemony struggle (Lee, 2020). Undoubtedly, the world will experience geopolitical tensions in the near future; however, the intensification of such events will depend on two important factors, namely the power struggle and how willing nations are to commit budgets to their defence.

1.3 The Importance of Power Struggles and Defence Expenditures

Recently, the scholarly field of critical geopolitics has gained momentum, especially in today's interconnected and globalised world. In essence, critical geopolitics is distinct from international relations as it analyses the relationship between physical space and the exercise of political power (Howell and Sundberg, 2015). This relationship can be seen, for example, through how the disintegration of the Soviet Union and the globalisation phenomenon proved fundamental for various countries, especially developing nations, which experienced countless economic booms as a result. Subsequently, such economic events can lead to a shift in a nation's power dynamics, endowing it with the ability to either dominate and/or control other territories or valuable natural resources (Khan et al., 2020; Saprong, 2021).

In essence, state power is the ability to effectively affect other countries in multiple ways, such as by setting the political agenda or else, in extreme cases, through military action (Nye, 2004). Wilson (2008) classifies power into three categories, namely hard, soft, and smart power. Hard power refers to the military power of a particular country. Undoubtedly, North Korea fits perfectly within the definition of hard power since Kim Jong-Un invested heavily to strengthen his military power, especially with nuclear missiles, while engaging relatively less at an international level (Lee, 2020). On the other hand, soft power refers to a nation's ability to affect the preferences of others. For instance, in order to achieve both its international and economic goals, Denmark focuses more on soft power; indeed, it effectively implements the "hygge"² concept rather than using coercion (Howell and Sundberg, 2015). Meanwhile, the concept of smart power is the hybrid version combining both hard and soft power, which must be mutually reinforcing in order for a nation to advance politically in an effective and efficient manner (Wilson, 2008). For instance, China has effectively implemented the smart power approach as it has deployed its power resources strategically and pursued its doctrine to rise peacefully (Wilson, 2008). Obviously, power differs amongst countries, and generally, countries tend to prioritise their interest, eventually leading to conflicts and tensions (Debs and Monteiro, 2014; Tam and Kim, 2020).

Ever since the 9/11 large-scale terrorist attacks, countries have been seriously concerned about both the internal and external security and subsequently began increasing their defence expenditures. Khan et al., (2020) note that over a period of two decades (1998–2018), defence expenditure has increased tremendously to roughly around 2 trillion US dollars. In particular, emerging countries, such as Turkey, Israel,

² The Danish word "hygge" means cosiness.

Saudi Arabia, and India, are investing heavily in their defence equipment, which is being supplied by two superpower nations, namely China and Russia (Khan et al., 2020). Such an increase in defence expenditure is also linked to various ongoing conflicts, such as the Kurdish conflict in Turkey, the Palestine conflict in Israel, the effects of the Arab Spring in Saudi Arabia, and the ongoing tensions with China and Pakistan in India. Moreover, these emerging countries are strategically positioned across the globe, which further enhances both their political and economic dominance in order to exploit natural resources (Khan et al., 2020).

1.4 The Implications of Geopolitics on Developing Nations

Developing nations are geographically situated in every part of the world and tend to have distinctive characteristics, such for instance a less developed industrial base when compared to developed nations and a surge in population complemented by a rapid increase in urbanisation despite the prevalent lack of infrastructure (Mogaji et al., 2021). Undoubtedly, developing nations face a paradox; even though they are registering a substantial increase in their gross domestic product, these nations have the lingering problem of registering a lower value in the human development index when compared to developed nations (Lee and Lee, 2020; Resce, 2021). Over the years, developing nations have intensified both their economic and political potentials, leading to further integration with developed nations (Lee and Lee, 2020). It is envisaged that the fastest-growing emerging nations, namely Brazil, Russia, India, China, and South Africa (better known as BRICS), will dominate the global market in the nearby future (Gemechu, 2015). Mayer (2012) notes that commodities are crucial for the economies of developing nations; however, these nations are vulnerable to geopolitical risks, which could suddenly decrease both their international trade and capital flows, leading to increased uncertainty (Carrière-Swallow and Céspdes, 2013; Cheng and Chiu, 2018).

In 2013, Morgan Stanley, an international credit rating agency, coined the term "Fragile Five", which refers to the following nations: Brazil, India, Indonesia, Turkey, and South Africa (Chadwick, 2019).³ Unver and

³ Morgan Stanley rated these developing nations in line with six important factors, namely current account balance, forex reserves to external debt ratio, foreign holdings of government bonds, US dollar debt, inflation, and real rate differential.

Bulent (2015) highlight that these economies experience high inflation and a large amount of current account deficits. Although these economies experienced a rapid increase in foreign direct investment, especially post the global financial crisis, an increase in geopolitical tensions would result in a decrease in capital flows, diminishing their growth prospects (Hoque and Zaidi, 2020). Chadwick (2019) mentions that an outflow of capital shifts from these emerging economies was registered in 2015, whilst advanced economies benefitted from such capital flows. In view of this, Morgan Stanley created the "Trouble Ten" category, which includes countries like South Africa; Asian countries, such as Taiwan, Singapore, Russia, Thailand, and South Korea; and Latin American countries, such as Peru, Chile, Colombia, and Brazil (Chadwick, 2019).

1.5 The Interplay Between Geopolitics and the Commodity Markets

It is common knowledge that commodities are highly influenced by the law of supply and demand; however, geopolitical factors also play a significant role (Aloui and Hamida, 2021). In recent years, the war on resources has become prevalent in our globalised and interconnected world (Sarpong, 2021). Dalby (2015) acknowledges two valid reasons why such types of wars are taking place, namely due to the scalability of resources and the lack of good governance of a particular nation, thus encouraging the occurrence of such violence. This is certainly true in the case of the Middle East region, which has experienced the so-called resources war over the years, given that this particular region is rich in crude oil. Having access to such a resource can both impact the economies of Middle Eastern countries and cause major shocks to international markets (Dalby, 2015).

Another important factor to consider is scarcity, which has significantly intensified in recent years, and both crude oil and natural gas are under pressure due to the increase in demand and population (Gemechu et al., 2015). As a matter of fact, scarcity has always been a central problem of economic societies, as valuable resources tend to be limited in supply while demand is always on the increase. Brown (2012) believes that the world is in a transition phase from abundance to scarcity (p. 1). For instance, energy commodities have

become less abundant, and other commodities are also following suit (Klare, 2008). The issue of climate change, in particular, has recently amplified the belief that we are moving towards an "age of scarcity"; indeed, nations have become more concerned about food security and the lack of water resources, which also impacts agricultural commodities (Oliveira, 2016, p. 361). Yilanci and Kilci (2021) point out how, recently, the financial markets have begun to influence the commodity markets, and subsequently, investors have started to invest more in a variety of commodities.

Commodities are considered an alternative investment, distinctive from traditional investments like bonds and securities. In fact, financial investors (money managers and index traders) are trading in the commodity markets without necessarily investing in and owning the selected commodity. This is made evident when investors take long positions in different commodity futures, and as such, these positions are closed just in time when the futures contract expires, generally within three months. As a result, this investment strategy can be rolled on for the following contracts, leading to a substantial increase in commodity prices (Mayer, 2012). Another increase in commodity prices was witnessed between 2010 and 2011, especially due to the rise of the Arab Spring. As the two major emerging markets, China and India are highly influencing the rise in commodity prices (Yilanci and Kilci, 2021). Besides, this commodity boom led to a burden, especially on emerging markets, as these are heavily dependent on food and energy imports (Mayer, 2012; Sommerville et al., 2014). Indeed, such commodities are essential, especially the agricultural commodities, because these include the basic food products consumed in such emerging countries and are the currency of at least 2 billion people (Tadesse, 2014).

1.6 Problem Statement

Various prominent international organisations, intelligence agencies, and think tanks acknowledge that the topic of geopolitical risk is a key concern in today's globalised world (Suárez-de Vivero and Rodríguez Mateos, 2017). One such international organisation is the World Economic Forum (WEF), which actively monitors five categories of large-scale risks on a global level and publishes a yearly report entitled *Global*

Risk Report. Apart from geopolitical risk, the WEF monitors economic risk, environmental risk, societal risk, and technological risk. In their 2021 report, the WEF noted that the world's top geopolitical risks include interstate relations fracture, the proliferation of weapons of mass destruction, and large-scale terrorist attacks, amongst others. Interstate conflicts and the proliferation of weapons of mass destruction were assigned as having a higher likelihood and a higher impact, respectively. However, a slight variation in geopolitical risks was noted from previous reports (2016–2019); the 2021 WEF report also highlighted the failure of national governance and state collapse/crisis, which have intensified in recent years.

Any geopolitical tension between nations might have potential adverse implications, which could, in turn, affect both the macro-economic and financial cycle of a nation (Olasehinde-Williams and Balcilar, 2020). Furthermore, several strands of literature outline how geopolitical risks hinder various sectors, such as tourism (Neacsu et al., 2018; Balli, 2019; Demir et al., 2019; Chiang Lee et al., 2020), banking (Phan et al., 2021), the shipping industry (Kotcharin and Maneenop, 2020), and the stock markets (Balcilar et al., 2018; Bouri et al., 2019; Hoque and Zaidi, 2020; Smales, 2021), amongst other economic sectors. Additionally, since various nations are exerting both economic and political power to exploit numerous valuable resources, the commodities industry has gained particular attention within a geopolitical context, especially due to the increase in demand for the consumption of certain commodities as well as the impact of climate change across the sectors within the industry (Kolb, 2011). Recently, the commodities industry has also gained particular attention within a geopolitical context. It is common knowledge that various nations exert both their economic and political power to exploit different natural resources.

Over the years, several academics have conducted studies on the implications of geopolitical risk on commodity markets. Such studies focused on crude oil and the precious metals, which are considered to be the most important commodities in the world (Antonakakis et al., 2017; Abdel-Latif and El-Gamal, 2019; Bouoiyour et al., 2019; Das et al., 2019a; Su et al., 2019; Cuando et al., 2020; Qin et al., 2020). However, there are few studies related to the various types of agricultural commodities in order to assess the importance of food security and the supply of raw materials. Hence, the author believes that there is a clear gap in the literature concerning the subject of agricultural commodity markets within a geopolitical context.

In the following sections, the author explains the significance of this study, provides a detailed explanation of the research objectives, and outlines both the research question and research hypothesis posed.

1.7 Research Objectives

In view of the latest geopolitical developments across the world, an empirical analysis was carried out in order to assess how the GPR index affects the agricultural commodity markets. Apart from academic literature, the author also consulted various reports and documentation issued by prominent international organisations, such as the World Bank and the WEF. Through this study, the author aims to:

- i) improve the understanding of geopolitical risk and the concept of uncertainty within the context of geopolitics; and
- ii) investigate and confirm the Granger causality relationship between the GPR sub-indices and the agricultural future commodities.

1.7.1 Research Question and Research Hypothesis

Following the outline of the research objectives, the author now introduces the research question for this study. As stated in the previous section, limited research could be found on the overall relationship between geopolitical risk and agricultural commodities. Consequently, the author raises the following question:

Is there a causal relationship between the GPR sub-indices (GPR threat and GPR act) and the commodity prices when considering agricultural future commodities (grains and softs)?

In order to determine the causal relationship, the following null and alternative hypothesis are outlined as follows:

 $H_{0:}$ No causal relation between the GPR – sub index (GPR Act and GPR Threat) and the respective future commodity price.

 $H_{A:}$ There is a causal relation between the GPR – sub index (GPR Act and GPR Threat) and the respective future commodity price.

1.8 The Significance and Originality of the Study

It is common knowledge that geopolitics presents a plethora of risks. However, it seems that geopolitical risk is given secondary importance or else ignored completely as investors tend to underreact to political news (Malmgren, 2015; Hoque and Zaidi, 2020). In times of global tensions and uncertainty, geopolitical risk becomes the only risk that matters. Caldara and lacoviello (2018) emphasise that investment decisions are highly influenced by geopolitical risk. Indeed, geopolitical implications have been a current thematic issue both at a policy level as well as in academic discourse (Olasehinde-Williams and Balcilar, 2020). Since geopolitical risk as well. The monitoring and minimisation of geopolitical risk cannot be achieved without any adequate data being analysed and developed in this field. Moreover, from an academic point of view, only a few studies exist on the causal relationship between geopolitical risk and the commodity markets. The author opines that more research needs to be carried out to highlight the implications of geopolitical risk, and as far as the author is aware, no studies have been conducted on the causal relationship between the GPR sub - indices and agricultural commodity markets.

This study should prove useful for international businesses as it could help them develop a better understanding of the dynamics of geopolitical risks. As a result, international businesses would be able to undertake effective and informed decisions. Furthermore, this study could also assist professional investors as they can use it as a guide to adequately plan their strategies and diversify their investment portfolios in view of the increase in geopolitical risk. From an academic point of view, this study may be used for reference by university students and industry professionals both locally and abroad. Overall, this dissertation should offer considerable contributions to the geopolitical risk literature due to its emphasis on how geopolitical risk impacts various commodity markets and the various recommendations it provides on how geopolitical risk can be managed efficiently and efficiently.

1.9 The Outline of the Study

This dissertation is divided into five chapters as follows:

This introductory chapter provided a historical background on the rise of the globalisation phenomenon, as well as the origins of and recent developments in geopolitics. A detailed account was provided on how, at an international level, nations are struggling to maintain their power and have subsequently increased their defense expenditure. This chapter also presented the problem statement as well as the objectives of the study. The significance of the study was also discussed, the research question and hypothesis were outlined.

Chapter 2 provides an in-depth analysis of the literature available on geopolitical risk and the importance of the uncertainty concept, which matters in today's dynamic business environment. This chapter discusses the importance of effectively measuring geopolitical risk while also presenting a review of how geopolitical risk affects the commodity markets based on existing empirical research on the subject.

Chapter 3 outlines the methodology that was chosen by the author for the purpose of this study, focusing mainly on the deductive method used to conduct the study in order to answer the research question mentioned in this chapter. The limitations of the research approach used are also described in this chapter.

Chapter 4 presents the empirical results, along with a diagnostic checking of the data. The findings are discussed and compared with the findings from the literature presented in Chapter 2.

Lastly, Chapter 5 concludes this study by highlighting the most significant findings and listing any recommendations that could be put into practice so that international businesses could better manage geopolitical risks. A brief summary of the study is provided, and the dissertation concludes with further recommendations for any future research.

Chapter 2 – Literature Review

2.1 Introduction

It is worth noting that academic interest in geopolitical risk gained importance shortly after the 9/11 largescale terrorist attacks in the US. During the last decade, the world witnessed numerous geopolitical events, such as the Arab Spring in 2011, the Russo-Ukraine conflict in 2014, and the US–China trade retaliation in 2018, which have caused an increase in geopolitical risk and impacted both the financial and commodity markets. As a result, these recent events have stimulated further academic interest in exploring the dynamics of geopolitical risk. This chapter consists of a review of literature related to geopolitical risk; the concept of uncertainty, which arises due to the presence of risk; and how to effectively measure geopolitical risk, with the aim of expanding on the initial propositions highlighted in the introductory chapter.

2.2 What is Geopolitical Risk?

Prior to analysing the notion of geopolitical risk, it is important to understand better the concept of risk. Over the years, a number of definitions of the concept of risk were coined. However, the author notes that the International Standard Organisation (ISO)'s definition of risk is the most widely accepted, which presents risk as the "effect of uncertainty on objectives" (ISO, 2018). On the other hand, political risk is considered to be a broad concept and generally difficult to measure (John and Lawton, 2018; Yilanci and Kilci, 2018). Various academic researchers made considerable progress in defining the concept of political risk (Robock, 1971; Kobrin, 1979; Huang et al., 2015; John and Lawton, 2018). Yilanci and Kilci (2021) associate political risk with any unfavourable changes emanating from the political environment that could bring about instability as well as uncertainty, thus affecting asset prices. In contrast, John and Lawton (2018) provide a comprehensive definition of political risk that accounts for the importance of action or inaction within a political environment, which could regularly or episodically lead to either negative or positive changes. As outlined in the introductory chapter, geopolitical risk has intensified in recent years, mainly due to the globalisation phenomenon, and as a result, nations are facing a power struggle to control both their physical and space-specific territories (Howell and Sundberg, 2015). In view of this, various advanced and emerging nations have increased their defence expenditure to counteract any geopolitical threats (Khan et al., 2020).

Over the years, academic research made considerable progress in defining the concept of geopolitical risk. Bremmer and Keat (2010) define geopolitical risk as "the risk posed to economic actors and governments by the relative rise and decline of great powers and the impact of conventional wars on state and corporation" (p. 38). Bremmer and Keat (2010) undertook a broad conceptual approach to define the term geopolitical risk, solely focusing on two actors, namely the state and the government. Moreover, Bremmer and Keat (2010) highlight three principal factors, which are duration, bias, and complexity (p. 40). The duration factor concerning geopolitical risk refers to how it takes time for there to be either a rise or decline in state powers. A rise in state power is clearly illustrated in the case of China, which rose to power over the last five decades following the globalisation phenomenon. Such success cannot be attributed solely to hard power but also to soft power, which China employs to introduce global norms to the wider world (Cunningham-Cross, 2012). Besides, China has also proved to be a threat to the Western world due to its continuous growth, even following the 2008 global financial crisis, and how it managed to alter its development in accordance with both global and national imbalances (Dunford and Yeung, 2011). On the other hand, discontinuities as a result of terrorist attacks, violent conflicts, or trade retaliations that are difficult to anticipate or predict could lead to a decline in state power.

Meanwhile, the bias factor can be attributed to experts who are ready to sound the alarm on threats arising from other enemy states and other emerging threats that have recently intensified, such as terrorism and climate change (Bremmer and Keat, 2010). Enemy state threats increase considerably when the citizens of two or more neighbouring states endorse clashing beliefs. This is certainly true in the recent case of Nagorno-Karabakh, a region in Azerbaijan, which is mostly inhabited by ethnic Armenians. Since the disintegration of the Soviet Union, the Nagorno-Karabakh region witnessed numerous national conflicts and violence between Armenians and Azeri, the climax of which was reached with an intense war in 2019 (Radnitz, 2019). Governments, especially authoritarian regimes, are, in fact, considered to be another type of expert contributing to the bias factor; such governments are more likely to alert their own citizens against any threats, especially from the perceived enemy. Indeed, the leaders of both Russia and Belarus, two wellknown authoritarian regimes, acknowledged that such an enemy state rose from two sources, namely the Western world and the opposition leaders in their respective countries. In the meantime, President Vladimir Putin and President Alexander Lukashenko used their authoritarian power and their paternalistic image as stabilising forces to ensure that their citizens do not inspire any geopolitical change while targeting any opposing individuals to discipline or punish them (Kazharski and Makarychev, 2021).

Alongside political issues, the world has witnessed serious environmental concerns, such as global warming and climate change. However, these issues have not been adequately addressed by all the countries across the globe, and in view of this situation, the number of environmental experts has increased significantly over the years (Baiardi and Morani, 2021). During the last decade, the younger generation has taken the initiative to raise awareness of the ongoing environmental issues by organising numerous climate change protests. For instance, Greta Thunberg, a Swedish environmental activist, has been leading various environmental campaigns recently (Baiardi and Morani, 2021). One of her most popular campaigns criticised the ex-US President Donald Trump for pulling out from the 2015 Paris Agreement, which was signed by 197 countries in order to decrease and stabilise their carbon emission by 2050 (Liu et al., 2020; Hayes and O' Neill, 2021; Baiardi and Morana, 2021).

Lastly, geopolitical risks are deemed to be complex in nature as these can generate and mutually reinforce other types of risks. An increase in geopolitical risk can, for instance, increase the likelihood of economic risks as well as the exchange rate risk. This is certainly true in the case of the recent US sanctions against Venezuela and Turkey, two authoritarian regimes ruled by President Nicolás Maduro and President Recep Tayyip Erdogan, respectively. Nowadays, sanctions are becoming increasingly popular as a foreign policy tool; these involve actions by a single, group, or block of actors against one or more countries. The scope of a sanction is to punish the targets and make them obey important norms. Sanctions are issued unilaterally and multilaterally and can also target specific individuals, organisations, and regimes. In 2018, the US sanctioned Venezuela due to violations of human rights and also boycotted the country financially (Duan et al., 2021). Also in 2018, the US issued sanctions to various Turkish diplomats and tariffs on the Turkish economy, which led to a trade spat between the US and Turkey, leading the latter to deem the US as an enemy state. As a result, this led to a trade war with serious economic implications (Mansour- Ichrakieh and Zeaiter, 2019). These two distinctive geopolitical tensions led to an increase in economic risks, which also affected the stability of the respective currencies of the countries involved. Indeed, these geopolitical events resulted in a severe currency crisis for both the Venezuelan bolívar and the Turkish lira, leading to an international spillover (Arbaa and Varon, 2019; Mansour-Ichrakieh and Zeaiter, 2019; Duan et al., 2021).

In contrast to Bremmer and Keat (2010), Caldara and Iacoviello (2018) narrowly define geopolitical risk as being "associated with wars, terrorist acts, and tensions between states that affect the normal and peaceful course of international relations" (p. 6). Put differently, geopolitical events materialise due to the exertion of state power on other states. Nowadays, countries are exerting their influence on global affairs that impact their geopolitical imprint, thus increasing the chances that such risks materialise (Kyriazis and Economou, 2021). Caldara and lacoviello's (2018) definition is based on the historical term of geopolitics while also including the implications of terrorism, which has increased significantly following the 9/11 largescale terrorist attacks. In addition to this, any political tensions that may arise at a national level could create geopolitical instability (Caldara and Iacoviello, 2018). However, a distinction should be made between domestic political events and geopolitical events. For instance, the failed 2016 Turkish coup d'état against the state institutions and President Tayyip Erdogan falls within Caldara and lacoviello's definition of geopolitical risk as it had spillover implications in the Middle East region. On the other hand, the 2016 referendum in the United Kingdom to leave the European Union (EU) does not fall within the context of geopolitical risk, as the democratic referendum was accepted by the EU member states (Caldara and lacoviello, 2018). Although various geopolitical events may be evident, there are certain flashpoints that, very often, tend to be ignored. Furthermore, it is not always clear which aspects could lead to predictable surprises (Lee, 2019).

2.3 Economic Implications Arising from Geopolitical Risk

As the world became more globalised and interconnected, the relationships between countries have intensified. Yilanci and Kilci (2021) acknowledge that such relationships can be categorised into three: economic, political, and military. An economic relationship ensures that the respective countries benefit from further economic growth. Meanwhile, a political relationship depends on international relations and the exertion of power. On the other hand, the aim behind a military relationship between countries is to ensure peace and security. Whenever these relationships are under threat from an opponent country, both geopolitical risk and uncertainty increase (Yilanci and Kilci, 2021). In view of such global tensions, certain countries are strengthening their military power whilst increasing their defence budget to combat such conflicts (Khan et al. 2020).

Without a doubt, any changes in both the domestic and international political environments severely impact the economy, the markets, as well as the investor sentiment (Aloui and Hamida, 2021). Khan et al., (2020) emphasise that geopolitical risk is unpredictable in nature, and generally, it is difficult to manage it effectively. Furthermore, it is the main determinant that affects investment decisions (Caldara and lacoviello, 2018). Moreover, Alqahtani and Klein (2021) highlight that geopolitical risk has become a relevant factor and the main source of both uncertainty and risk, impacting both the commodity and energy markets. In response to an increase in geopolitical risk, market traders may redesign their hedging differently in order to reconsider other "safe haven" assets (Alou and Hamida, 2021, p. 468). In addition to this, Baur and Smales (2020) highlight that geopolitical risk is deemed to be a systematic risk that is very often difficult to diversify. Indeed, investors are often unable to diversify away geopolitical risks in cases of sudden increases (Apergis et al., 2018; Alqahtani and Klein, 2021). Another important implication is that geopolitical risk leads to panic selling by investors, which can make or break the financial markets (Alqahtani and Klein, 2021).

Olasehinde-Williams and Balcilar (2020) highlight that such geopolitical risks highly influence the macroeconomic perspective and financial cycles, leading to a considerable amount of risk and uncertainty. An increase in geopolitical risk also results in increased insecurity and political instability, which, in turn, affect private sector investment. Bilgin et al., (2020) conducted an empirical test using both fixed-effect estimation and the least squares dummy variable corrected model in order to analyse the relationship between geopolitical risks and government investment across 18 emerging countries for the period 1985 to 2015. In line with their augmented compensation hypothesis, Bilgin et al., (2020) noted that geopolitical risk is positively related to an increase in government investment due to the repercussions of such geopolitical events; as such, economic actors demand compensation in view of geopolitical risk.

2.4 The Relationship Between Uncertainty and Geopolitical Risk

Another important concept related to risk is the notion of uncertainty. One well-known early study related to both risk and uncertainty that is often cited in academic research is that of Frank Knight (1921). Risk is associated with a probability distribution related to an event, while uncertainty is the inability to appropriately forecast the likelihood that an event occurs (Knight, 1921 as cited by Bloom, 2014, p. 154). Bloom (2014) highlights that uncertainty is an amorphous concept because individuals perceive uncertainty about the future differently. Besides, it affects both micro- and macro-economic phenomena, as well as non-economic events that tend to cause uncertainty, such as war and climate change (Bloom, 2014). As the global economy has become more advanced and integrated, the degree of uncertainty in a business context has recently been amplified. Investors are susceptible to uncertainty as it matters to their investment decisions (Bilgin et al., 2020). Rational investors tend to undertake a decision based on either their past experience or their theoretical knowledge (Jackson and Orr, 2019). Uncertainty is always present, however, and investors cannot predict the future (Jackson and Orr, 2019). In certain instances, investors undertake evidently irrational investors pertaining to their portfolio following any unusual events, leading to a flight to quality, where investors sell risky investments (Caballero and Krishnamurthy, 2008).

Following the 2008 global financial crisis, there was a surge in academic interest in how uncertainty overall affects the economy, as well as the financial and commodity markets. Carney (2016) introduced the concept of "uncertainty trinity", which categorises three types of uncertainty, namely economic uncertainty, policy uncertainty, and geopolitical uncertainty (p. 3). By far, economic uncertainty is the most common type of uncertainty; it is associated with the operation economy and both public and private debt (Carney, 2016). Uncertainty is a critical factor both for the economy and the capital markets as it causes ambiguity, and as a result, investors adopt a wait-and-see approach by prolonging their investments until it becomes clear enough for them which investment decisions should be taken (Bloom, 2009; Yilanci and Kilaci, 2021). Government institutions play an important role as these set policies and frameworks within an economy. An increase in policy uncertainty emanates from the absence of such effective policies or the frequent changes of existing policies, leading to macro-economic instabilities (Carney, 2016; Yilanci and Kilci, 2021). In recent years, policy uncertainty has intensified, especially following the global financial crisis and the Eurozone crisis, which subsequently led to changes in both fiscal and monetary policies (Baker et al., 2016). Eventually, policy uncertainty impacts the economic growth of the respective country (Aisen and Veiga, 2013).

Geopolitical uncertainty creates an unfavourable economic prospect on the aforementioned types of uncertainty. Cuando et al., (2020) acknowledge that geopolitical uncertainty highly impacts the state of the economy. As a result, it hinders investors' confidence, especially in developed markets rather than in emerging markets (Hedström et al., 2020). Besides, uncertainty induced by the geopolitical environment has serious implications on international markets. Conversely, from an economic perspective, Bloom (2014) notes that uncertainty is significantly higher in developing countries than in advanced countries, primarily due to their less diverse economy and their focus on different commodities, which tend to be volatile. Overall, both geopolitical risk and uncertainties can result in harmful economic consequences that have negative implications on asset price dynamics (Bouoiyour et al., 2019).

27

2.4.1 Measuring Uncertainty

Uncertainty is a broad concept, and as a result, it can be challenging to measure (Bloom, 2014; Joëts et al., 2017). However, in their recent seminal work, Baker et al., (2016) make a major contribution to the uncertainty literature by constructing a proxy to measure uncertainty, this being the Economic Policy Uncertainty (EPU) index. In their empirical analysis, Baker et al., (2016) employed a text mining framework on terms related to uncertainty, such as monetary policy uncertainty, fiscal policy uncertainty, and government policy uncertainty, to reproduce a quantitative measure based on 10 US newspapers and over 12,000 newspaper articles.⁴ The EPU index was first computed for the US on a monthly basis for the sample period from 1985 to 2015. The most notable spike of uncertainty was related to the debt ceiling dispute, which occurred in 2011; it concerned the increased government spending due to the global financial crisis, the 9/11 large-scale terrorist attacks in 2001, and the Lehman Brothers bankruptcy and the subsequent trouble asset relief programme in 2008 (Baker et al., 2016). A historical EPU index dating back to the beginning of the 20th century was also computed, with the most notable spike occurring during the Great Depression period of the 1930s; however, the former historical event registered a spike lower than that of the 2011 debt ceiling crisis.

In their empirical study, Baker et al., (2016) constructed EPU indices for 12 major economies,⁵ including both advanced nations, such as the US, Germany, and Japan, as well as emerging nations like Russia, China, and India. This comprehensive study had to be adapted to include different terms related to the uncertainty policy of the respective nation being analysed. Since freedom of press is highly controlled in both the authoritarian regimes of China and Russia, these indices were highly dependent on a single newspaper. However, the Russian EPU index is a good illustration of the importance of uncertainty in authoritarian regimes; based on this index, the most notable spikes throughout the sample period (October 1992–April 2014) appeared due to the First Chechen War in 1995, the Russian financial crisis in 1998, Vladimir Putin's

⁴ A selection of the US newspapers consulted from across various states: USA Today, Miami Herald, Chicago Tribune, The New York Times, The Washington Post, Los Angeles Times, The Boston Globe, San Francisco Chronicle, and The Wall Street Journal.

⁵ The remaining major economies included: Italy, Spain, United Kingdom, France, Canada and South Korea.

election as prime minister in 1999, the Duma election fraud in 2011, and the annexation of Crimea from Ukraine in 2014 (Baker et al., 2016). Following this empirical study, Baker et al., (2016) constructed a total of 27 EPU indices for various countries across the world. The data generated through these indices are publicly available and constantly being updated.

It must be noted that Baker et al., (2016) made use of a transparent methodology by auditing the term policy of 12,000 newspaper articles covering both the sample period and the historical period in order to address effectively any issues related to accuracy and bias. For the purpose of the audit process, Baker et al., (2016) employed terms related to policy while considering the time period in question. Apart from the audit process, Baker et al., (2016) also compared the EPU index with the volatility index, whereby the latter takes into consideration the implied volatility of the US S&P 500 index. It was noted that the EPU index and the volatility index are both correlated; however, these indices vary accordingly over time, depending on the event in question. This is evident in the case of various financial crisis. On the other hand, the EPU index demonstrated a higher uncertainty impact with respect to the Gulf war in 1991, the terrorist attacks of 11th September 2001, various US presidential elections over the years, and the US government shutdown in 2013. Overall, both the audit process and the other comparisons proved to be beneficial as this empirical analysis can be extended to other countries and other specific indices (Baker et al., 2016).

2.4.2 The Implications of Uncertainty on the Commodity Markets

In recent years, there has been an increasing amount of literature concerning uncertainty as it is a key concern in today's globalised world. Wang et al., (2015) conducted an empirical analysis in order to understand the predictability of EPU and the respective changes of 23 commodity prices. A time-varying parameter model was employed for the sample period from January 1985 to December 2013 based on the World Bank's Commodity Price Index and the EPU index. Wang et al., (2015) concluded that commodity prices tend to predict EPU, which is vital for the development of an economy. Moreover, the seminal work by Baker et al., (2016) encouraged various academic researchers to conduct extensive research concerning the impact of uncertainty on the commodity markets, thus enriching the literature. In their recent empirical investigation, Bahloul et al., (2018) employed a nonparametric causality-in-quantiles approach to investigate the price movements with respect to 21 future markets dealing with various commodities like agricultural commodities, energy, metals, and livestock. A large sample period ranging from May 1992 to August 2016 was selected, specifically focusing on daily return data while also including three uncertainty indices, namely the volatility index, the equity market uncertainty index, and the EPU index. Overall, Bahloul et al., (2018) concluded that uncertainty can be predicted for most of the commodity markets sampled.

Another strand of the literature analysed how uncertainty affects the precious metals, with empirical studies on gold being the most popular (Balcilar et al., 2016; Gao et al., 2016; Jones and Sackley, 2016; Li and Lucey, 2017; Raza et al., 2018; Bilgin et al., 2018; Gozgor et al.,2019). Recently, Chai et al., (2019) investigated the impact of EPU on global prices on a global scale by employing a time-varying parameter structural vector autoregression (VAR) with stochastic volatility for the period August 2006 to December 2017. The rationale for employing this model was to assess the effects of EPU over different time periods with respect to 13 advanced and 7 developing nations. Chai et al., (2019) noted that following the global financial crisis, uncertainty had increased on a global scale and, as a result, impacted gold prices. Moreover, Chai et al., (2019) found that EPU severely impacted gold prices during the long-lasting European sovereign debt crisis and the US elections held in November 2016, whereby Donald Trump rose to power. Through their work, Chai et al., (2019) reveal that developing nations proved vulnerable to EPU shocks on gold prices and that Japan registered the largest EPU shock on gold prices from the investigated advanced nations.

Yilanci and Kilci (2021) employed a bootstrap causality test developed by Hacker and Hatemi – J (2012) to assess the effect of EPU in order to predict the prices of five precious metals. A large sample period from January 1995 to August 2020 was considered, which included the recent COVID-19 pandemic period where uncertainty intensified. The causality tests concluded that the majority of the prices of precious metals indicate unidirectional causality except for the price of gold (Yilanci and Kilci, 2021). In fact, this causality relationship was witnessed mostly post the global financial crisis, and recently due to the Brexit referendum and the US

elections held in 2016. Overall, Yilanci and Kilci's (2021) study reaffirms the empirical work carried out by Jones and Sackley (2016), Bahloul et al., (2018), and Chai et al., (2019).

2.5 Measuring Geopolitical Risk

Geopolitical risk is deemed to be unique in nature as it is distinct from any kind of political risk (Bremmer and Keat, 2010, p. 38). Undoubtedly, measuring geopolitical risk proved to be a challenging task, and as such, it used to be measured intuitively or else using crude macro-economic data, resulting in a subjective approach (Pyo, 2021). Lee (2019) admits that measuring geopolitical risk effectively tends to be objective and rather challenging. As geopolitical events have intensified over the last decade, academics have sought to develop a proxy to measure geopolitical risk (Caldara and lacoviello, 2018).

2.5.1 The Geopolitical Risk Index

The seminal study carried out by Caldara and Iacoviello (2018) offers an effective method of measuring geopolitical risk by accounting for the frequency of articles related to geopolitical risk. Within a short period of time, Caldara and Iacoviello's (2018) prominent work spawned considerable geopolitical risk literature, as similar studies are being conducted in relation to different economic sectors. Their study is rooted in various studies, such as Barro (2006), Gourio (2008), and Berkman et al., (2011); however, their methodological approach is based on the pioneering work of Baker et al., (2016) that established the EPU index, which is outlined in subsection 2.4.1. Caldara and Iacoviello (2018) computed a monthly index based on a number of geopolitical risk articles published by prominent newspapers in Canada, the United Kingdom, and the US.⁶ The index covers the period from 1985 to date; however, it also includes a historical index dating back

⁶ The selected newspapers include The Boston Globe, Chicago Tribune, The Washington Post, Los Angeles Times, The New York Times, The Wall Street Journal, and Financial Times, which are published in the US. On the other hand, The Globe and Mail is published in Canada, while The Daily Telegraph and The Guardian are published in the United Kingdom.

to the beginning of the 20th century, basing the data on three newspapers published in the US. The historical Geopolitical Risk (GPR) index illustrated a significant spike only during the World War I and II periods; however, the beginning of the 21st century was a major turning point as several significant spikes were noted.

Caldara and lacoviello (2018) reveal that the highest spike in geopolitical risk occurred during the US Iraq invasion, followed by the spike following the 9/11 large-scale terrorist attacks and that noted during the Gulf War at the beginning of the 1990s. Other notable spikes were noted following the terrorist attacks that occurred in various European cities over the years. Conversely, during the 2008 global financial crisis, the index did not register a significant spike when compared to the other outlined geopolitical events. Caldara and lacoviello's (2018) seminal work distinguish between the direct impact of geopolitical events (the GPR Act index) and the impact of geopolitical risks (the GPR Threat index). On the one hand, the GPR Act index deals with terrorist attacks and war-related attacks, while the GPR Threat index tackles tensions between countries, such as nuclear and military tensions. In addition to this, Caldara and lacoviello (2018) computed the GPR indices concerning 17 emerging markets in Asia, Latin America, and Africa.⁷ The GPR index is computed both on a monthly and daily basis in order to quantify geopolitical risk. The daily index is indeed crucial as it illustrates how a single event occurring on a particular day eventually leads to a significant spike in the GPR index. Since the year 2000, the GPR index was normalised to an average value of 100 from the year 2000 onwards for the rest of the sample, which is still being computed to this day (Caldara and lacoviello, 2018).

Caldara and lacoviello (2021) have recently enhanced their robust methodological approach by adopting a dictionary-based method. This method is based on a selection of words related to geopolitical risk, which are frequently used by journalists when writing about geopolitical events and threats. This methodological approach superseded the previously established methodology introduced in 2018. Caldara and lacoviello

⁷ Most of the selected emerging countries form part of the Asian continent. These include Turkey, Korea, Russia, India, Brazil, China, Indonesia, Saudi Arabia, Thailand, Israel, Malaysia, the Philippines, and Hong Kong. A number of the remaining emerging countries form part of Latin America, including Mexico, Colombia, and Venezuela. Only one African country is included in the GPR index: South Africa.

(2021) also adopted a broader definition of geopolitical risk by taking into consideration the geopolitical tensions emanating from both nation states as well as political actors. National governments are undoubtedly the most influential political actors; however, other political actors, including supranational and international institutions like the EU and the United Nations, are exerting significant power in today's globalised world (Rice and Zegart, 2018). Furthermore, due to the fact that the GPR index covers a long period of time, it was important for Caldara and Iacoviello (2021) to acknowledge that language evolves over time; indeed, they deemed it crucial that the GPR index covers the process of neologism to ensure an effective geopolitical risk measure.

2.6 Geopolitical Risks and the Commodity Markets

2.6.1 Geopolitical Risks, Macro-Economic Factors, and the Crude Oil Industry

For decades, the crude oil industry has been the most relevant commodity for the global economy (Cuando et al., 2020). However, the crude oil industry faces a paradox; while the demand for crude oil is always on the increase, the supply of the resource is scarce and therefore vulnerable to geopolitical uncertainty (Duan et al., 2021). Brandt and Gao (2019) adopted a distinctive approach by conducting a textual analysis of the crude oil market, which involved distinctively comparing macro-economic and geopolitical news from three information sources, namely the *Dow Jones Financial Wire, Barron's*, and *The Wall Street Journal*. When it comes to geopolitical news, Brandt and Gao (2019) considered the following event categories: terrorism, war and conflict, and civil unrest for the sample period of 13 years from January 2000 to the end of March 2013. Other event categories were related to the supply and demand of crude oil, economic growth, and entity-related information. Through their investigation, Brandt and Gao (2019) found that geopolitical news has a stronger immediate impact and tends to be unpredictable as uncertainty prevails; as a result, it leads to higher trading value in the commodity market.

Whenever oil prices increase, oil-exporting countries tend to benefit widely at the expense of oil-importing countries. Su et al., (2019) argue that the presence of geopolitical events does impact the commodity markets, especially crude oil prices. In their empirical study, Su et al., (2019) employed a wavelet approach in order to investigate the causality relationship between geopolitical risk, oil prices, and financial liquidity in terms of time and frequency. Monthly observations were noted for a sample period of 20 years (1998–2018), focusing on Saudi Arabia, one of the largest oil-exporting countries. Su et al., (2019) concluded that an increase in geopolitical risk affects both oil prices and financial liquidity. Besides, causality correlations were observed both in the short term and medium term when considering the frequency domain. This implies that oil prices are highly dependent on geopolitical risk, which would ultimately affect the financial liquidity of a country.

Similarly, Abdel-Latif and El-Gamal (2019) undertook a vector autoregressive analysis in order to investigate the dynamics of three crucial variables, namely oil prices, financial liquidity, and geopolitical risk on a global scale. Their empirical analysis is rooted in Jo (2014) and Ratti and Vespignani's (2013) studies. In contrast to Su et al., (2019), quarterly data for the period 1979 to 2017 was observed in relation to 70 countries. Moreover, Abdel-Latif and El-Gamal (2019) modified their model to factor in the assumption that the US influences all three aforementioned variables, adjusting the model to also cover the influence exerted by a number of countries on a collective basis. Abdel-Latif and El-Gamal (2019) postulate that low oil prices subsequently lead to an increase in geopolitical risk while making reference to the low prices in the late 1980s, which led to the first Iraq War at the beginning of the 1990s.

2.6.2 The Interrelationship between the Energy and Agricultural Markets

Over the years, various research academics have focused their attention on analysing the relationship between the energy and agricultural markets (Reboredo et al., 2012; Mensi et al., 2014; Koirala et al., 2015; Ghorbel et al., 2017; Jiang et al., 2018). Tiwari et al., (2021) draw our attention to the distinctive relationship between the energy and agricultural markets; however, they investigated the implications of geopolitical risks on crude oil and primary agricultural commodities, namely corn, soybean, wheat, and oats. For the purpose of their empirical investigation, Tiwari et al., (2021) employed a copula approach to analyse co-movements between the energy and agricultural commodity markets over a large sample period of 28 years (April 1990–February 2018), as well as the dependence between both the energy and commodity markets using Caldara and lacoviello's (2018) GPR index. In view of an increase in geopolitical risk, which has become prevalent in today's interconnected markets, a strong co-movement was noted between the energy market and the four aforementioned agricultural commodity markets. Indeed, the latter acted as a hedge against oil returns (Tiwari et al., 2021). Furthermore, the empirical investigation conducted by Tiwari et al., (2021) reaffirms the findings obtained by Cuando et al., (2020) through their time-varying analysis of crude oil prices in relation to geopolitical risk.

2.6.3 Geopolitical Risks and the Precious Metals

It has been widely acknowledged that during turbulent times, precious metals act as a safe haven and provide desirable diversification benefits (Hillier et al., 2006; Baur and Lucey, 2010; Baur and Mc Dermott, 2010). Qin et al., (2020) question whether gold should be stored in chaotic eras, especially in view of the recent increase in geopolitical events. A full and sub-sample bootstrap causality test was employed to examine the causal relationship between geopolitical risk and gold prices over the period January 1979 to December 2018. In the empirical analysis conducted by Qin et al., (2020), both positive and negative periods were noted. The results suggest that during positive periods, gold should be held, but, on the other hand, it was revealed that during negative periods, holding only gold is not sufficient. Qin et al., (2020) also concluded that gold prices could be a predictor of geopolitical risk.

In their pioneering study, Das et al., (2019a) analysed the impact of geopolitical risk on precious metals. A quantile regression analysis was used to study the sample period January 1985 to December 2017. Das et al., (2019a) noted a positive relationship based on the studied sample period; when geopolitical risk increased, gold return increased by 0.0029%. Besides, higher gold returns were registered when considering Caldara and Iacoviello's (2018) sub-index, namely in terms of geopolitical threats (Das et al., 2019a). In

contrast, a negative relationship was noted concerning the remaining precious metals, these being silver, platinum, and palladium; indeed, the latter tends to be vulnerable to geopolitical risk (Das et al., 2019a).

In the same vein, Baur and Smales (2020) undertook an econometric analysis to test whether various precious metals can act as a hedging mechanism in view of geopolitical risk. The sample period ranged from January 1985 to October 2018 and included the spot prices of four main precious metals, namely gold, palladium, platinum, and silver, due to their distinctive characteristics. An adjustment to Caldara and lacoviello's (2018) GPR index was made to take into consideration the time lag of when such geopolitical events are published. Furthermore, Baur and Smales (2020) included the analysis of the 10 geopolitical events registering the largest geopolitical shocks.⁸ Similar to the findings obtained by Das et al., (2019a), Baur and Smales (2020) noted that the return of precious metals is positively related to geopolitical risk; in particular, a stronger relationship was found when considering geopolitical threats. Additionally, both gold and silver illustrated a positive relationship to geopolitical risk. Baur and Smales (2020) also considered Caldara and lacoviello's (2018) GPR sub-indices and noted that commodity returns are affected by geopolitical threats but not by geopolitical acts. With respect to the safe haven principle, Baur and Smales (2020) highlight that this principle does not hold from a geopolitical perspective.

In another comprehensive study on precious metals, Yilanci and Kilci (2021) employed Hacker and Hatemi – J's (2012) bootstrap causality test as well as a time-varying bootstrap test to investigate the role of geopolitical risk in predicting the prices of precious metals for the period January 1995 to August 2020. In contrast to other empirical studies, such as Das et al., (2019a) and Baur and Smales (2020), Yilanci and Kilci (2021) took into consideration five precious metals, namely gold, palladium, platinum, silver, and rhodium, in order to detect any instabilities in the causality relationship. Yilanci and Kilci (2021) found that throughout the entire period, there appeared to be no causality relationship between geopolitical risk and the prices of metals. However, a causality relationship was present in some periods of the total sample period.

⁸ Such geopolitical events include the Gulf War, the Kuwait invasion, the US bombing of Libya, the large-scale terrorist attacks of 11th September 2001, the build-up to the Iraq War and the subsequent invasion by the US (including the events of both September 2002 and February and March 2003), the Paris terror attacks of November 2016, and the US–North Korea tensions of 2017–2018.

2.7 What is Terrorism?

Ever since the 9/11 large-scale terrorist attacks, such attacks have intensified due to the significant increase of terrorist organisations plotting various attacks in every corner of the world, which, in turn, receive widespread attention (Capone, 2016; Smales, 2021). Although there is a lack of consensus concerning the definition of terrorism, the raison d'être of a terrorist attack is to foster fear beyond the immediate victims and impact various economic sectors of a particular country (Capone 2016; Lee, 2018). Chesney et al., (2011) acknowledge that terrorism has three distinctive characteristics, namely the type of attack, the main target, and the place and time of occurrence. The nature of a terrorist attack varies; however, such attacks can involve suicide bombings as well as bombings in general, kidnapping, and armed assaults. Terrorists mainly target the military, high-government officials, oil-extracting companies, as well as the public in general. Therefore, the place and time of a terrorist attack are highly dependent on the chosen target.

Terrorism is distinctive from civil conflicts, as it can be carried beyond national borders and targets both military forces and civilians (Lee, 2018). Generally, countries are vulnerable to terrorist attacks due to their economic and political conditions. In fact, the higher civil liberties and economic openness enabled by the economic and political environments of developed nations make it easier for terrorist organisations to carry out such attacks when compared with emerging nations (Lee, 2018). However, developing nations are still vulnerable to terrorist attacks due to their lingering socio-economic problems (Piazza, 2006). Terrorist organisations act in a strategic manner, as made evident in the case of terrorist attacks in major cities across the world during the morning rush hours. Such attacks include the Madrid train bombings of 11th March 2004, the London bombings of 7th July 2005, the Moscow metro bombing of 29th March 2010, and the Brussels airport suicide bombing of 22nd March 2016 (Ramiah et al., 2019). The general public was, in fact, the main target for all the terrorist attacks mentioned here. On the other hand, the Charlie Hebdo attack of 7th January 2015 occurred during office hours; the Kouachi brothers killed 12 employees whilst injuring 11 others. The main target included journalists who worked for a satirical French magazine that had published numerous satirical cartoons related to Islam (Capone, 2016). The scope of the Charlie Hedbo attack was to silence secularism, which is a fundamental concept in Western cultures and values, especially in France.

Instead, the slogan "Je suis Charlie" quickly spread across social media platforms and the World Wide Web (Capone, 2016; Eroukhmanoff, 2019). Following the Charlie Hedbo attack, the EU adopted a directive on combating terrorism. This directive is broad in scope and takes into consideration the following four main pillars: the prevention of terrorist attacks, the protection of civilians in general, the pursuit of the organisation behind the attack, and the response to the attack in view of the ever-increasing terrorism threats (Capone, 2016).

2.7.1 The Impact of Terrorism on the Commodity Markets

Valdivia Orbaneja et al., (2018) acknowledge that the commodity markets are fragile to terrorism, which can lead to serious economic consequences. This is most evident in the crude oil industry during periods of economic stagnation, as terrorist organisations are incentivised to initiate attacks in oil-producing countries (Lee, 2018).

The first systematic study concerning the effects of terrorism on the financial markets, which include the stock, bond, and commodity markets, was conducted by Chesney et al.,(2011), who employed various models, such as an event study approach, a nonparametric approach, and the generalised autoregressive conditional heteroskedasticity (GARCH) extreme value theory approach, in order to analyse the impact of terrorist attacks on 17 well-known indices that also include the commodity indices.⁹ In total, 77 terrorist attacks that had taken place in various countries across the globe were analysed. A period covering 11 years from January 1994 to August 2005 was taken into consideration. Chesney et al., (2011) concluded that investing in the commodity indices is preferable over gold, as the main precious metal, since the former react negatively to terrorism. Besides, the commodity market illustrated a negative reaction to a number of terrorist events; however, this reaction was short lived. Finally, Chensey et al., (2011) suggest that the commodity

⁹ The Goldman Sachs Commodity Index, Goldman Sachs Commodity Index – Gold, and the Financial Times Stock Exchange, including both Europe/world oil and gas.

market might not be suitable as a good hedge for investment due to the market's reaction to that particular terrorist event.

Energy resources are a cause of major concern and are severely impacted by geopolitics (Colgan, 2013). Oil-producing countries are highly vulnerable to terrorism for two main reasons: firstly, crude oil is considered to be one of the most important commodities worldwide, and secondly, civilians from oil-producing countries do not benefit from the wealth created by the oil industry, which creates a negative sentiment leading to terrorist attacks. Lee (2018) undertook a large-N and small-N study to investigate the effects of terrorism on the oil industry, emphasising the importance of three mechanisms, namely the funding, targeting, and motivating mechanisms. In order to carry out their operations and successfully achieve their main objectives, terrorist organisations are highly dependent on funds, which are obtained through illegal activities as well as sponsorships. Furthermore, terrorist organisations are cognisant of the fact that the crude oil industry generates substantial profits; therefore, their main strategy is to specifically target oil-producing countries and oil infrastructures (Lee, 2018). Besides, terrorists are motivated to perform such attacks due to two important factors, namely the greed in the crude oil industry and the income disparities in oil-producing countries, since only the rich benefit from the industry, thus increasing the risk of violent conflicts. Through his study, Lee (2018) noted that the mechanisms of terrorism, as outlined in this paragraph, seem to be valid for both samples, and a positive relationship was evident; for instance, a unit increase in oil reserve results led to an increase of 17% during terrorist events. On the other hand, an increase in oil income led to an increase of 6.8% during terrorist events across national borders and a higher increase of 9.7% during domestic terrorist events. Furthermore, Lee (2018) postulates that oil-producing countries tend to sponsor terrorist groups, specifically whenever the oil-producing country in question is a US ally.

A different approach was undertaken by Ramiah et al., (2019), whereby the effects of terrorist attacks on the risk and returns of the commodity markets were analysed by undertaking an event study methodology complemented with various nonparametric techniques. In total, 20 worldwide terrorist attacks¹⁰ were

¹⁰ Terrorist attacks included various attacks and bombings namely: September 11 in 2001, Madrid train bombings in 2004, London bombings in 2005, Delhi bombings in 2005, Mumbai train bombings in 2006, Moscow metro bombings in 2006, Charlie Hedbo shooting and Paris attacks in 2015. However, during 2016, the world witnessed five major terrorist attacks namely: the Jakarta attacks, Brussels

included; these occurred over a 16-year period, starting with the large-scale terrorist attacks of 11th September 2001 and ending with the London Bridge attack of 3rd June 2017. Ramiah et al., (2019) studied the differences between the equity and commodity markets, concluding that the equity market immediately reacts to terrorist attacks, while the commodity markets witness a delay in reactions, which materialise after 120 days. In their empirical study, Ramiah et al., (2019) noted that contrary to the belief that terrorist activities lead to fear and panic, such activities generate positive abnormal returns, especially in the commodity market, although such an outcome depends on the sector. This is certainly true in the case of the Jakarta attacks, which occurred on 14th January 2016. These attacks led to positive abnormal returns in at least 27 agricultural commodity markets. Moreover, Ramiah et al., (2019) mention how, ever since the Paris attacks, which took place on 13th November 2015, terrorist attacks have intensified, affecting the risk structure of the commodity markets and causing greater uncertainty outcomes. In their comprehensive study, Ramiah et al., (2019) also noted the "v-shape risk" that was evident following the Brussels airport bombing of 22nd March 2016 (p. 22). This event coincided with the closing period of the March crude oil future contract when the spot and future prices would be converging, and thus, uncertainty would be minimised while nevertheless leading to a negative beta. Ramiah et al., (2019) also noted a "diamond shape" risk, which was evident following the Pukhrayan train derailment in India and both the terrorist attacks that occurred in Istanbul in 2017 (p. 22). This risk highlighted how the various sectors representing the respective market beta were affected differently (Ramiah et al., 2019, p. 22). In contrast to Chensey (2011), Ramiah et al., (2019) concluded that terrorist attacks do not have wide implications on the commodity markets as various commodities can satisfy basic human needs. Moreover, numerous commodities can be used to manufacture other goods and by-products, such as the agricultural commodities; furthermore, commodities like, for instance, gold and silver, can also act as a hedge against any abrupt changes in either an economic or financial context.

airport bombing, Nice attack, Pukhrayan train derailment and Istanbul nightclub attack. Similarly, in 2017, six major terrorist attacks occurred namely: Istanbul nightclub attack, Gao bombing, Quebec mosque shooting, Westminister attack, Stockholm truck attack, Manchester Arena attack and London bridge attack.

2.8 Conclusion

This chapter highlighted how geopolitical risk affects the globalised world by providing selective coverage of academic research that had been undertaken over the years. Studies that were conducted over the last decade were given special importance as during this period of time, geopolitical risk has intensified. As outlined in this chapter, various academics have contributed to the literature by introducing and explaining in detail the concepts related to geopolitical risk. Overall, these studies indicate that geopolitical risk should be given utmost importance, especially due to the intensified geopolitical events of today's globalised world. As a result, these events have serious implications on both the economy and the financial markets.

There is a growing body of literature that recognises the importance of acknowledging geopolitical risk in the financial markets. However, empirical research investigating how geopolitical risk affects the agricultural commodity market is limited. Generally, such studies only focus on the single most important commodity crude oil. Other available empirical studies consider the precious metals and the spill over effect from the crude oil to the agricultural commodities. Studies related to other commodity markets are limited in number. Thus, the author intends to contribute to the academic literature by taking into consideration commodities like, for instance, softs and grains commodities. Therefore, the purpose of this study is to investigate and confirm the causality relationship between Caldara and lacoviello's (2018) GPR sub - indices and the agricultural future commodity prices. In the following chapter, the author outlines in detail the methodology undertaken for this dissertation in order to reach the identified research objectives. Chapter 3 – Methodology

3.1 Introduction

This chapter provides a detailed account of the methodology employed in order to carry out this study. As outlined in the introductory chapter, the main aim of this dissertation was to investigate and confirm the causality relationship between the GPR sub-indices and the agricultural commodity market. Despite the fact that geopolitics has strong historical roots that date back to the 19th century, it was only recently that acknowledging the importance of risk emanating from geopolitics took such precedence.

Klin (2018) acknowledges that the geopolitical field is experiencing a renaissance. This was especially prevalent during the last decade when numerous empirical research studies were carried out by accounting for the implications of geopolitics on various economic sectors. As outlined in the previous chapters, the pioneering work of Caldara and Iacoviello (2018) spawned further literature on geopolitical risk. However, the author believes that this subject matter is still in its infancy, and consequently, additional research is required to develop further the knowledge in this field. In the following sections, the author describes the research process and the limitations of the model.

3.2 Preliminary Research

Prior to identifying the research objectives of this study, knowledge about geopolitical risk was gained through a review of various academic papers, peer-reviewed journals, articles, and monographs. In addition to this, consideration was also given to the dissertation topics submitted to the University of Malta, where it was noted that research on this area was limited. Initial discussions were held with the dissertation supervisor and resident academics who specialise in this area for further guidance on how to develop the subject matter further. As a result, a gap in the literature was identified due to the fact that most academics focus on the causality relationship between the GPR index and the two most researched commodity markets, namely the precious metals and the energy market. Once the preliminary research was carried out, the author drafted a research proposal highlighting in detail the problem statement, emphasising why geopolitical risk matters in today's globalised world. Besides, the author outlined the research objectives, these being primarily to understand and acknowledge the importance of geopolitical risk. Thereafter, the proposal was submitted to the Department of Insurance within the Faculty of Economics, Management and Accountancy, and it was subsequently approved by the faculty board.

3.3 The Research Framework

In essence, research involves the accumulation of knowledge concerning a particular subject matter in order to provide valuable insights to multiple users (Saunders et al., 2019). Undoubtedly, a researcher should take into consideration various factors prior to undertaking a research project, such as the methodological approach, time, and cost factors to carry out the research, for instance. However, Creswell and Creswell (2018) state that a research framework depends on three important components, namely: the philosophical approach, the research design, and the research methods, which are all interlinked.

3.3.1 The Philosophical Research Approaches

Research philosophy refers to how new knowledge is developed in a particular field (Saunders et al., 2019). Creswell and Creswell (2018) add that the philosophical approach assists the researcher in selecting the most appropriate research method in order to effectively conduct their study. Saunders et al., (2019) mention five types of research philosophies, namely: positivism, critical realism, interpretivism, postmodernism and pragmatism. Each research philosophy has its distinctive characteristics, and as such, the research philosophy impacts the chosen theoretical and methodological approaches as well as the strategies undertaken to carry out the study in question. Since this empirical study is quantitative in nature, the author will follow the doctrine of positivism.

Positivism has strong intellectual roots, dating back to the early years of the Greek philosopher Plato and the Greek mathematician Pythagoras (Hammond and Wellington, 2021). Nevertheless, positivism took precedence during the 18th century, better known as the Enlightenment period, when progress began to predominate over pre-established dogma, traditions, and beliefs (Hammond and Wellington, 2021). In particular, the French philosopher Auguste Comte significantly contributed to the field of positivism by distinguishing positivism from value-free science (Plé, 2000). In recent years, post - positivism has also flourished and is now considered to be another branch of positivist philosophy that challenges preestablished knowledge (Creswell and Creswell, 2018). Generally, when adopting the positivist research philosophy, researchers analyse a large sample of data by employing a deductive approach (Saunders et al., 2019).

3.4 The Research Design

Another important component of the research framework is the research design, which refers to the strategy undertaken by the researcher to select adequate tools with which to carry out their study in order to satisfactorily answer the research question posed in the introductory section. As a matter of fact, there are three main research methods that can be employed to carry out research, namely the qualitative, quantitative, or mixed-method approaches. Obviously, these research methods have distinctive characteristics; for instance, quantitative research is based on numerical data, while qualitative research is based on non-numerical data (Saunders et al., 2019).

Another principal distinction between these two research approaches is that while the qualitative research approach is subjective in nature as it depends on human participants, the quantitative research approach is objective in nature as it examines the relationship between variables (Saunders et al., 2019). As its name suggests, the mixed-method research approach is based on a combination of both the quantitative and qualitative research approaches. Indeed, Molina-Azorin et al., (2017) acknowledge that the mixed-method approach has become more popular as it allows researchers to benefit from the strengths of both the qualitative and quantitative research methods.

As part of the research strategy, the author undertook a comprehensive review of the literature available on geopolitical risk. As outlined in the introductory chapters, the author found that geopolitical risks have intensified over the years, especially during the last decade, causing serious repercussions. Furthermore, the literature review chapter outlined that such studies have traditionally employed a quantitative approach, especially during the last decade, which saw an intensification of such studies due to the significant increase in geopolitical events. Several academic researchers undertook empirical research to assess the implications of geopolitical risk in relation to various sectors like tourism (Neacsu et al., 2018; Balli, 2019; Demir et al., 2019; Chiang Lee et al., 2020), banking (Phan et al., 2021), the shipping industry (Kotcharin and Maneenop, 2020), and the stock markets (Balcilar et al., 2018; Bouri et al., 2019; Bouras et al., 2019; Hoque and Zaidi, 2020; Smales, 2021). In the case of this study, the problem statement outlined in the introductory chapter highlighted the need and importance to conduct research on the impact of geopolitical risk on the commodity markets. Similar to previously established literature, the author employed a quantitative research approach as the leading methodological choice based on the premise of the positivist philosophy that empirical data illustrate the objectivity and reliability of the study in question.

For the purpose of this study, the author carried out explanatory research in order to understand better the causality relationship between the GPR index and the commodity markets. As outlined previously in the literature review chapter, the majority of the recent empirical studies published during the last decade focused mainly on the precious metals and oil industries. In this study, the author took a different approach from other academic researchers by analysing how the GPR index affects agricultural commodities, focusing on the last decade from 2010 to 2020.

Another critical research component that was taken into consideration was the time horizon of the data collected. Saunders et al., (2019) state that there are two distinctive approaches, namely cross-sectional

studies and longitudinal studies. Cross-sectional studies involve the analysis of data at one particular point in time, while on the other hand, longitudinal studies require data to be collected repeatedly over a period of time. In line with the research question posed in the introductory chapter and due to the issue of time constraints, the author decided to conduct a cross-sectional study in order to analyse the causal relationship between the GPR index and the commodity markets at a particular point in time.

3.5 Research Method: The Principal Tools Used and Data Collection

Creswell and Creswell (2018) explain that the research method, which is the third and final component of the research framework, refers to the process of how the researcher collects, analyses, and interprets the data. In the subsequent sections, the author outlines in detail the data collection and analysis process to ensure that this study employs a highly structured methodology so that it can be replicated by other researchers in the future (Saunders et al., 2019).

In order to assess the causality relationship, the author obtained time-series data related to both geopolitical risk and the commodity prices. For the purpose of this study, the author used the primary data collected from Caldara and lacoviello's website entitled the Geopolitical Risk Index,¹¹ which publishes data on a daily and monthly basis. As previously described in the literature review chapter, GPR data are continuously being audited, with the most recent change in GPR methodology being implemented in November 2021. The author collected both the daily GPR – index and the GPR sub-indices data for the covering period 31st March 2000 - 31st March 2022 in order to measure the causality relationship between geopolitical risk and the agricultural commodity prices. Tiwari et al., (2021) suggest that the inclusion of the daily GPR sub-indices is crucial in order to understand the dynamics of the agricultural markets. Similarly, Baur and Smales (2020) acknowledge that the monthly GPR index data is an average of the geopolitical news occurring in that particular month. On the other hand, the agricultural commodity prices were obtained from Bloomberg LP

¹¹ Caldara, Dario and Iacoviello, Matteo (n.d.) Geopolitical Risk (GPR) index, available at:

https://www.matteoiacoviello.com/gpr.htm - data {accessed on 5th December 2021}.

for the daily future commodity prices. The rationale for selecting the daily prices is to ensure that such agricultural future commodities capture the respective price movements throughout the sample period.

The author collected the primary data, namely the commodity prices obtained from the aforementioned sources and the GPR index data, on 4th April 2022. The data were subsequently exported to a Microsoft Excel worksheet and arranged in order to carry out the necessary econometric tests. Since the scope of this research was an empirical one, the author used E-Views 12 Student Version to carry out a number of econometric tests. McKenzie and Takaoka (2012) indeed view E-Views as a user-friendly software program that analyses quantitative data in an efficient and effective manner. E-Views includes a plethora of tests related to time series, including various autoregressive integrated moving averages models, autoregressive conditional heteroskedasticity models, as well as structural VAR models. Different econometric tests were employed to investigate the Granger causality as further outlined in section 3.7 below.

3.6 The Sampling Procedure

Due to both time and data constraints, the researcher opted to base the empirical research on a selected sample. In this context, a sample refers to a segment of the total population, which is selected by the researcher based on either probability or non-probability sampling (Creswell and Creswell, 2018). The main distinction between probability and non-probability sampling depends on whether the sample is easily identifiable, which would require the probability sampling technique (Saunders et al., 2019). Prior to selecting the sample for this empirical research study, the author took into consideration: the research objectives, the research question and research hypothesis outlined in the introductory chapter. Besides, the author also considered the variables selected, namely the GPR sub-indices and the agricultural commodity prices.

According to Saunders et al., (2019), homogenous sampling refers to a particular sample that is made up of items sharing several characteristics. As outlined in the literature review, Caldara and Iacoviello (2018,

2021) publish the GPR index on a daily basis. In order to investigate the causality relationship between the GPR sub-indices and the commodity markets, the author also collected the daily future commodity prices, which are traded on a world-renown exchange, the Chicago Board of Trade (CBOT). With respect to the sample period selected, the author accounted for both the annual US holidays/events and the weekend as highlighted on Bloomberg LP. Since future commodities do not trade on such days, the respective daily GPR index and GPR sub-indices were adjusted to account for any US holidays/events and the weekends throughout that particular year. Similar to the previously selected sample, the author used the homogenous sampling technique in order to select ten future commodities related to grain and soft commodities, as outlined in Table 3.1 below.

Agricultural Sector	Future Commodities	<u>Ticker Symbol</u>		
Grains	Corn	ZC		
	Oats	ZO		
	Rough Rice	ZR		
	Soybean	ZS		
	Soybean Oil	ZL		
	Wheat	ZW		
Softs	Coffee	КС		
	Cotton	СТ		
	Сосоа	CJ		
	No. 11 Sugar	YO		

Table 3.1: Sample Selected –	Future	Commodities
------------------------------	--------	-------------

Source: Adapted from Bloomberg (n.d.).

3.7 Quantitative Data Analysis

In line with the theoretical foundations outlined in the previous chapters, this section provides a detailed overview of the empirical tests carried out to investigate the causality relationship between the GPR subindices and the agricultural future commodity prices. Recently, academics employed causality relationship in their empirical research on geopolitical risk for different types of commodities; however, such studies have failed to consider the causality relationship of the agricultural commodities (Li et al., 2020; Yilanci and Kilci., 2021; El – Khishin and El- Saeed., 2021).

This empirical research is rooted in the recent work of Yilanci and Kilci's (2021) in order to understand the role that the GPR sub-indices in predicting the prices of the agricultural commodities. However, various distinctions should be noted between Yilanci and Kilci's (2021) study and this research, such as for instance: the type of commodities investigated and the type of causality test employed. As outlined in the literature review chapter, Yilanci and Kilci (2021) employ both Hacker and Hatemi – J (2012) bootstrap causality and time – varying causality test to investigate the causality relationship on a monthly basis for both the global EPU index and the GPR index concerning the period January 1995 to August 2020. On the other hand, the author takes a different approach by employing a VAR Granger/Block Exogeneity Wald tests to assess the causality relationship between the GPR sub-indices and the daily agricultural future commodity prices for the period March 2000 to March 2022.

For the purpose of this study in order to investigate the aforementioned causality relationship, a number of statistical and econometric tests were also employed which will be discussed below. First and foremost, the date specification frequency was set as daily - five day a week, on E-Views since future commodities are not traded during the weekend. In order to ensure the reliability of the time-series data being analysed, a number of tests were carried out to assess the stationary. In essence, the concept of stationary refers to the distribution of the time-series data will not change over time (Stock and Watson, 2020). However, if the stationary properties are not employed, the causality relationship would be spurious. The Augmented Dickey-Fuller (ADF) (1979) test is one particular empirical test which was conducted is the unit-root test to check

whether all variables are stationary or need to be transformed. In total, three different Augmented Dickey – Fuller test are available which are: the ADF test with intercept and no trend; the ADT test with intercept and trend; and the ADF test with intercept and trend. However, for the purpose of this empirical research, the author employed the ADF test with no intercept and no trend on E-Views due to the type of data collected. Hill et al., (2018) acknowledges that the ADF test with no intercept and no trend no trend has the following specifications to test for the non – stationary:

$$\Delta y_t = \alpha + \gamma y_{t-1} + \sum_{s=1}^{p-1} a_s \Delta y_{t-s} + v_t$$

Equation (1)

Where:

- Δy_t refers to the difference of Y_t,
- α is the constant term,
- γ is the lagged term coefficient.
- t is the time variable.
- P refers to the number of the lagged terms in order to ensure that v_t is the white noise.

The null hypothesis denoted by (H₀) illustrates that the variable being tested is non – stationary, implying that unit-root is evident in such variable. Conversely, the alternative hypothesis denoted by (H_A) that the variable is stationary and the unit-root is not evident. When the null hypothesis is rejected for such test, it means that the variable is stationary. On the other hand, if the null hypothesis is accepted, the author had to carry out the second difference tests to assess whether the variables are still stationary.

The seminal work of Granger (1969) introduced the definition of causality relationship which examines the relationship between two variables x and y with respect to one period ahead. Fundamentally, the directional causality relationship occurs when one variable is able to predict the other variable, or simply denoted as "y is causing x" (Granger 1969). Conversely, a unidirectional causality is evident when one variable does not cause the other variable. While a bi-directional causality (also known as feedback) occurs whenever one

variable affects the other variable (Granger, 1969). Moreover, the innovative and seminal work of Sims (1980) pioneered a new approach to examine the Granger causality by introducing the concept of Vector Autoregression (VAR) model (Christiano 2012). In essence, the VAR model illustrates the dynamic relationship between the variables, whereby each variable accounts for their own lags and the lags of the other variables within the model (Cheng et al., 2012).

Once the stationarity property for both variables have been achieved, the VAR Lag Order Selection criteria test and the VAR Residual Serial Correlation Lagrange Multiplier (LM) test were run prior to specifying the VAR model. The scope of the VAR Lag Order Selection length criteria is to determine the optimal number of lags with respect to the independent variable. Clarke and Mirza (2006) acknowledge that such optimal lag length is required to avoid spurious causality. On the other hand, the VAR Residual Serial Correlation LM test depends on the aforementioned test, to ensure that the issue of serial correlation is eliminated at the chosen lag length from the respective variables.

Let us now consider the Granger causality concept in the context of the VAR model. Péguin – Feissolle et al., (2013) acknowledge that a causal relationship is evident when the second variable influences the variance of the prediction error's variance of the first variable. In fact, this has led to the introduction of the Granger non-causality concept whereby the null hypothesis of 'x does not cause y' for the respective time horizon. Indeed, for the purpose of this empirical study, the VAR equation was determined as follows:

$$y(t) = \gamma + B(L)y(t-1) + u(t)$$

Equation (2)

Where:

- Y refers to the set of variables included in the VAR.
- t denotes the time period such as for instance t = 1, ..., T.
- γ is the constant term
- B(L) refers to the matrix polynomial.

- u(t) refers to the Gaussian vector having a zero and variance – covariance matrix.

The VAR matrix model specification was set up to assess the relationship between the independent variable and the dependent variable:

Where:

- Y denotes the price of the future agricultural commodity.
- X and Z denote the GPR sub-indices: GPR Threat and GPR Act respectively.
- φ refers to the matrix polynomial, whereby the under scripts of the φ coefficients (x, y and z) are notation used to illustrate to which these variables belong.
- p denotes the lag length.

Moreover, the VAR matrix model can also be illustrated in terms of the lag operator denoted as (L):

$$\begin{pmatrix} Y_t \\ X_t \\ Z_t \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \varphi_{yy(L)} & \varphi_{yx(L)} & \varphi_{yz(L)} \\ \varphi_{xy(L)} & \varphi_{xx(L)} & \varphi_{xz(L)} \\ \varphi_{zy(L)} & \varphi_{zx(L)} & \varphi_{zz(L)} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \\ Z_{t-1} \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

Equation (4)

Where:

- Y denotes the price the agricultural future commodity price.
- X represents the GPR Act.

- Z represents the GPR Threat.

$$\varphi_{m,n} = \sum_{i=0}^{P} \varphi^i L^i$$

Where:

- $m = \{y, x, z\}.$
- $n = \{y, x, z\}.$
- P denotes the lag length.

Since the stationarity principle was satisfied, the VAR Granger Causality/Block Exogeneity Wald tests were run to determine the causality relationship between the independent and dependent variable. As outlined in the introductory chapter, the following null and alternative hypothesis are used for this test:

 $H_{0:}$ No causal relation between the GPR – sub index (GPR Act and GPR Threat) and the respective future commodity price.

 $H_{A:}$ There is a causal relation between the GPR – sub index (GPR Act and GPR Threat) and the respective future commodity price.

3.8 Limitations of the Model

It is important to highlight that commodity prices are affected by other macroeconomic variables, such as inflation, supply, and demand, which are not controlled in this model. Data related to these macroeconomic variables were not available; hence, these variables could not be included in the model. For instance, since the empirical study is based on the daily prices, the data in relation to inflation could not be included in this model as the latter is issued on a monthly and annual basis. Moreover, similar to previous studies, the author collected data related to the daily agricultural commodity prices and the GPR sub-indices. Therefore, the reader should keep in mind that the resulting Granger causality relationship solely captures the impact of geopolitical risk on the price of agricultural commodities.

Another limitation of the model is that the Johansen Cointegration test could not be performed since both the GPR sub-indices (GPR Threat and Act) were identified as stationary when conducting the difference level test. Overall, the scope of this test was to assess the long-term relationship between the GPR Act and Threat sub-indices and the respective agricultural commodity prices. However, while the GPR sub-indices were stationary, the agricultural commodity prices were non-stationary. Hence, the Johansen Cointegration test was not possible, so a distributed lag was adopted.

3.9 Ethical Considerations within the Research Design

Whenever a researcher is undertaking any research, issues related to data protection, such as privacy, confidentiality, and consent, should be given utmost priority, especially nowadays due to the existing rules and regulations (Creswell and Creswell, 2018). In particular, ethical consideration should be in line with the applicable regulation, the General Data Protection Regulation of the EU 2016/679. The main scope of this regulation is to empower individuals to have control over their personal data when such data are being collected and processed. Creswell and Creswell (2018) advocate that ethical issues are considered across the research types and throughout the research process.

As outlined in the previous section, the author conducted a quantitative study that did not involve any human respondents. In fact, the main variables used were the geopolitical risk measure, this being the GPR index, and the commodity prices, which are publicly available and easily accessible. As a result, there were no

significant issues related to ethical considerations, and ethical clearance was granted from the University of Malta prior to commencing the actual research.

3.10 Conclusion

This chapter outlined the methodology adopted for this study by providing a detailed assessment of how the study was carried out. The author explained the rationale behind choosing to conduct a quantitative study in order to assess the causality relationship between commodity prices and the GPR index. The author highlighted how the sample was defined and selected for this study and, subsequently, how the data were collected. The research limitations encountered during the research process were outlined, along with the mitigation measures adopted to control the limitations. In the following chapter, the author presents the findings of this study, followed by a comprehensive discussion of the results obtained. Chapter 4 – Findings, Analysis & Discussion

4.1 Introduction

This chapter provides a detailed presentation and analysis of the empirical data concerning the ten future commodities and two GPR sub-indices considered in this study, which were collected by employing the tests described in the previous chapter. Throughout this chapter, the author discusses the empirical findings by taking into consideration the research question posed in the introductory chapter and making reference to the results of other relevant empirical studies outlined in the literature review. For the sake of consistency, the author maintains the same presentation style when illustrating the data.

4.2 Statistical Description of the Variables

The main aim of this study was to assess the price movement effects of ten major agricultural future commodities for the sample period of 22 years from 31st March 2000 until 31st March 2022. Overall, this large sample takes into account a number of major geopolitical events that occurred during the last twenty-two years, which include the large-scale terrorist attacks of 11th September 2001, the US–Iraq war, the Arab Spring and the recent Russo–Ukrainian war. This empirical study recorded a grand total of 71,630 different points of data, which account for the data related to both the ten future commodities and the GPR sub-indices.

This empirical study made use of block exogeneity (i.e., VAR Granger causality) to test for the causality relationship between geopolitical risk and agricultural commodities. Table 4.1 outlines the main statistical properties which were obtained from the Descriptive Statistics function on E-Views Student Version No.12, with respect to the sample selected for this empirical study. The findings presented in the table show that cocoa has the highest mean and median among the agricultural commodity prices. Moreover, cocoa has the highest standard deviation, which means that its values are more spread out when compared to those of the other agricultural commodities. On the other hand, rough rice registered the lowest mean and median among the agricultural commodity prices. In addition to this, rough rice has the lowest standard deviation, which

means that its values are not as spread out when compared to those of the other agricultural commodities. Cocoa also has the largest range of values, while rough rice has the smallest range when considering the maximum and minimum values obtained. All variables are positively skewed, with the exception of cocoa and rough rice, which are negatively skewed. The Jarque–Bera test results were all positive, indicating that the data were not normally distributed.

Variable	Mean	Median	Maximum	Minimum	Standard Deviation	Skewness	Kurtosis	Jarque–Bera	Observations
Cocoa	2219.426	2305.000	3774.00	674.00	661.3955	(0.323891)	2.292837	211.1480	5510
Coffee	125.1446	119.7500	304.90	41.50	49.21488	0.888628	3.942000	928.8945	5510
Corn	390.5204	365.7500	831.25	174.75	155.5385	0.810066	2.855730	607.3953	5510
Cotton	69.96968	65.32000	215.15	28.52	24.51531	2.220562	10.88385	18798.00	5510
No.11 Sugar	34.64693	32.27000	35.31000	4.99000	13.192226	0.675241	2.840206	424.5771	5510
Oats	265.6213	254.5000	772.25	95.00	109.6390	1.439915	6.910046	5414.006	5510
Rough Rice	11.11643	11.57000	24.46	3.43	3.4300	(0.143381)	2.668749	44.07062	5510
Soybean	14.22566	13.23500	1771.00	418.00	5.753274	0.785632	3.381945	600.3037	5510
Soybean Oil	956.0087	945.3750	82.18	14.38	323.9262	0.210937	2.159180	203.1713	5510
Wheat	515.0902	497.2500	1425.25	233.5000	178.2246	0.690465	3.388311	472.4258	5510
Daily GPR	112.8891	99.51920	1045.604	9.491598	69.03425	4.641369	39.79286	330573.3	5510
Daily GPR Act	113.9453	93.47909	1627.428	0.0000	108.1768	6.133046	60.94185	805312.9	5510
Daily GPR Threat	112.5335	98.16797	811.5252	7.89	67.28846	3.064505	20.85715	81833.31	5510

Table 4.1: Descriptive Statistics

Source: Author's computation.

4.3 Diagnostic Tests

4.3.1 Augmented Dickey-Fuller – Unit Root Test

Stationarity is a desirable property when carrying out a time - series study in order to ensure that the mean and variance of the agricultural commodities do not change throughout the sample period. Before assessing the Granger causality, the first set of econometric tests was carried out to investigate the stationarity of the selected data. Although there are many statistical tests to assess stationarity, the Augmented Dickey–Fuller (ADF) test was carried out for both the agricultural commodities and the GPR sub-indices to test for the null hypothesis of the unit root. The following table presents the ADF unit root test results after being applied to both the level and the first difference of the variables used in the analysis.

Augmented Dickey - Fuller Test					
Agricultural Future Commodity	Difference Level (p-value)	1 st Difference (p-value)			
Сосоа	0.0535	0.0001			
Coffee	0.4522	0.0001			
Corn	0.5459	0.0001			
Cotton	0.3285	0.0001			
No.11 Sugar	0.1586	0.0001			
Oats	0.8837	0.0000			
Rough Rice	0.1498	0.0001			
Soybean	0.5211	0.0001			
Soybean Oil	0.7623	0.0001			
Wheat	0.2229	0.0000			

Table 4.2: ADF Unit - Root Test - The Agricultural Commodities

Source: Author's computation

For the purpose of the ADF test, the author took into consideration a 5% significance level (0.05). As can be seen from the resulting probability values (p-values), all agricultural commodity prices, are nonstationary and integrated of order one (i.e., become stationary when differenced). The following table displays the ADF unit root test concerning the GPR sub-indices.

Table 4.3: ADF Unit - Root Test - The GPR Sub-Indices

Augmented Dickey - Fuller Test					
GPR Sub - Index	Difference Level (p-value)				
GPR Act	0.0000				
GPR Threat	0.0000				

Source: Author's computation

As can be noted, contrary to the majority of the ADF unit root tests carried out for the agricultural future commodities, the null hypothesis concerning the presence of a unit root was rejected for both indices at the chosen level of significance.

4.3.2 Preliminary Tests: Determining the Optimal Lag Length and the Serial Correlation Test

Preliminary statistical tests were performed in order to examine the results of both the VAR model and the Granger causality test. A principal test related to the VAR model is the lag length test, which determines the optimal lag order for the VAR model underpinning the block exogeneity (VAR Granger causality) test. The scope of this test is to limit serial correlation whilst ensuring that the optimal degrees of freedom are also maintained. On the other hand, the main limitation of the optimal lag length test is the loss of observations when lagging the variables (i.e., the agricultural commodities) (Carter Hill et al., 2017). Therefore, the VAR lag order selection criteria test was performed to determine the optimal number of lags for the respective

agricultural commodities. Over the years, different types of information criteria were introduced, such as the Akaike information criterion (AIC), Schwarz information criterion (SC), and Hannan–Quinn information criterion (HQ), which can be applied to a time-series study. The likelihood ratio (LR) test has also proved to be beneficial when choosing the optimal number of lags in a VAR model (Hatemi-J & Hacker, 2009). Both tables 4.4 and 4.5 present the results of the only optimal lag length test selected for the VAR specification of the Granger causality test concerning the soft and grain commodities, respectively.¹² The optimal lag length was selected on the basis of the LR test.

The following table highlights the residual results, which correspond to the selected lag for the respective agricultural commodity prices model specification of the Granger test. The agricultural commodities were grouped into either softs or grains.¹³ Furthermore, the author carried out additional tests to assess the robustness of the obtained empirical findings. The VAR residual serial correlation Lagrange multiplier (LM) test was carried out for every agricultural commodity price model specification of the Granger test to assess the quality of the residuals. Due to the dynamics between the respective variables, which accounted for the geopolitical implications on the respective commodity market, it was noted that a lag of 29 was optimal for cocoa, wheat, and rough rice, while a lag of 22 was optimal for corn, soybean, and soybean oil. On the other hand, a lag of 24 was optimal for coffee, oats, as well as no. 11 sugar.

¹² Reference should be made to Appendix B for the respective VAR Residual Serial Correlation LM tests.

¹³ Vide Appendix – VAR residual correlation LM tests.

Table 4.4: VAR Lag Order Selection Criteria - Softs Agricultural Commodities

VAR Lag C	Order Selection Cr	iteria						
Sample: 3	Sample: 31/03/2000 – 31/03/2022							
Endogeno	ous variables: Coc	oa_Last_Price 1	. GPRD_ACT GP	PRD_THREAT				
	ıs variable: C, inclu		1	AIC	50			
Lag	LogL	LR	FPE	AIC	SC	HQ		
29	-86039.70	20.68267*	9.65e+09	31.50345	31.82188	31.61454		
Endogeno	ous variables: Coff	ee_Last_Price 1	GPRD_ACT GP	RD_THREAT				
Exogenou	ıs variable: C, inclu	uded observatio	ons: 5479					
Lag	LogL	LR	FPE	AIC	SC	HQ		
24	-71177.44	17.65453*	41792374	26.06185	26.32601	26.15401		
Endogeno	ous variables: Cott	on_Last_Price 1	L GPRD_ACT G	PRD_THREAT				
Exogenou	ıs variable: C, inclu	ided observatio	nc: 5/79					
Lag	LogL	LR	FPE	AIC	SC	HQ		
29	-67638.88	17.68253*	11675159	24.78660	25.10503	24.89769		
Endogeno	ous variables: No.	11 Sugar_Last_	Price 1 GPRD_	ACT GPRD_THR	EAT			
Exogenou	ıs variable: C, inclu	ided observatio	uns: 5479					
Lag	LogL	LR	FPE	AIC	SC	HQ		
28	-59577.45	24.97959*	613552.3	21.84064	22.14822	21.94795		
(*) indicat	tes lag order select	ted by the criter	ion.					
LR: Sequential modified LR test statistic (each test at a 5% level of significance)								
FPE: Final prediction error								
FPE: Final	FPE: Final prediction error AIC: Akaike information criterion							
		erion						
AIC: Akaik								

Source: Author's computation.

Table 4.5: VAR Lag Order Selection Criteria - Grains Agricultural Commodities

VAR Lag Order Selection Criteria						
Sample: 31/03/2	2000 – 31/03/20)22				
Endogenous var	riables: Corn_Lo	ast_Price 1 GPR	D_ACT GPRD_	THREAT		
Exogenous varia	able: C, included	d observations:	5479			
Lag	LogL	LR	FPE	AIC	SC	HQ
22	-77188.83	22.81940*	3.73e+08	28.24962	28.49206	28.33420
Endogenous var Exogenous varia	_	_		THREAT	-	_
Lag	LogL	LR	FPE	AIC	SC	HQ
24	-75938.40	26.28971*	2.38e+08	27.79974	28.06390	27.89190
Endogenous var Exogenous varia	-		_	SPRD_THREAT	L	<u> </u>
Lag	LogL	LR	FPE	AIC	SC	HQ
29	-56798.54	17.80199*	223222.3	20.82955	21.14798	20.94064
Endogenous var Exogenous varia	-		_	RD_THREAT	-	-
Lag	LogL	LR	FPE	AIC	SC	HQ
22	-80803.49	20.27593*	1.39e+09	29.56908	29.81152	29.65366
Endogenous var Exogenous varia	-			GPRD_THREA	Ť	-
Lag	LogL	LR	FPE	AIC	SC	HQ
22	-62739.28	36.18546	1907815	22.97510	23.21754	23.05968
Endogenous var	_	_	-	_THREAT		<u> </u>
Exogenous varia		1	1			1
Lag	LogL	LR	FPE	AIC	SC	HQ

29	-79420.32	20.65181*	8.61e+08	29.08718	29.40561	29.19827			
(*) indicates lag	(*) indicates lag order selected by the criterion.								
LR: Sequential m	LR: Sequential modified LR test statistic (each test at a 5% level of significance)								
FPE: Final predic	FPE: Final prediction error								
AIC: Akaike information criterion									
SC: Schwarz information criterion									
HQ: Hannan – Q	uinn informatio	n criterion							

Source: Author's computation

The main scope of the LM statistical test is to detect the presence of serial correlation at the chosen lag length. If the serial correlation is still present, the residuals are rendered less efficient. The null hypothesis for this test is that of no serial correlation at lag h. In fact, the results outlined in the tables 4.6 and 4.7 reveal that the null hypothesis of no serial correlation was not rejected at the critical value of 0.05 for the residuals of the underlying VAR with respect to all soft commodity prices. Similarly, the null hypothesis of no serial correlation was not rejected for all the grains commodities. Therefore, these results imply that the issue of serial correlation was omitted.
 Table 4.6: Softs Agricultural Commodities - VAR Residual Serial Correlation LM Tests

Null hype	othesis: No serial co	rrelation at lag	h			
		Cocoa (Incl	uded observat	ions: 5487)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
22	225.8812	198	0.0848	1.141859	(198, 16048.8)	0.0848
		Coffee (Inc	uded observat	ions: 5487)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
22	198.3033	198	0.4806	1.001591	(198, 16048.8)	0.4806
		Cotton (Inc	uded observat	ions: 5480)	1	1
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
29	249.2561	261	0.6889	0.954692	(261, 15905.3)	0.6890
		No. 11 Sugar (Included obser	vations: 5481)	
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
28	283.7904	252	0.0823	1.127319	(252, 15925.9)	0.0823

Source: Author's computation.

Table 4.7: Grains Agricultural Commodities - VAR Residual Serial Correlation LM Tests

-		31/03/2022				
Null hy	pothesis: No ser	ial correlation at	lag h			
		Corn (In	cluded observ	ations: 5487)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
22	181.2116	198	0.7981	0.914779	(198,16048.8	0.7982
		Oats (In	cluded observ	ations: 5485)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
24	225.3146	216	0.3178	1.043475	(216, 16008.1)	0.3179
		Rough Rice	e (included obs	ervations: 548	80)	<u> </u>
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
29	236.6769	261	0.8577	0.906155	(261, 15905.3)	0.8578
		Soybean (in	cluded observ	ations: 5487)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
22	185.3197	198	0.7316	0.935636	(198, 16048.8)	0.7316
		Soybean Oi	l (included obs	ervations: 548	37)	<u> </u>
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
22	206.0596	198	0.3325	1.041017	(198, 16048.8)	0.3325
		Wheat (i	ncluded observ	vations: 5480)		
Lag	LRE* stat	Degrees of Freedom	Probability	Rao F-stat	Degrees of Freedom	Probability
29	234.3727	261	0.8806	0.897269	(261, 15905.3)	0.8807

Source: Author's computation.

4.3.3 The Causality Relationship between the Agricultural Commodity Prices and the GPR Sub – Indices

As outlined in the introductory chapter, this study aimed to examine the Granger causality between the agricultural commodity prices and the respective GPR sub-indices. The estimated VAR model for all agricultural commodities was computed on the basis of the selected lag length, as outlined in subsection 4.3.2. The scope of the VAR model is to account for the dynamics and relationship between an independent variable (the agricultural commodity price) and a dependent variable (GPR sub-indices).¹⁴ Subsequently, the VAR Granger Causality/Block Exogeneity Wald test, which is also known as VAR Granger Causality test was employed to assess the causality relationship for all agricultural commodities. The VAR Granger causality test revealed the causality direction amongst the aforementioned variables and whether the causality relationship was unidirectional, bidirectional, or neutral. The employed null hypothesis states that the independent variable (i.e., agricultural commodity price) does not cause the dependent variable (i.e., GPR Daily Act and GPR Daily Threat). Table 4.8 presents the obtained empirical results, which indicate that the studied GPR sub-indices Granger cause changes in the agricultural commodity prices. Furthermore, the results also indicate whether both sub-indices jointly contain sufficient information to "predict" the future commodity price of the commodity in question.

¹⁴ Vide Appendix B: Vector Autoregressive Model – Section III: VAR Estimates.

Table 4.8: Soft Agricultural Commodities - VAR Granger Causality

VAR Granger Causality/Block Exogeneity Wald Test						
Sample: 31/03/2000 – 31	/03/2022					
Excluded	Chi-Square	Degrees of Freedom	Probability			
Depende	nt Variable: Cocoa Future Pr	rice (included observations	5487)			
GPRD _ Act	20.07076	22	0.5786			
GPRD _ Threat	19.24960	22	0.6299			
All	39.61217	44	0.6600			
Depender	nt Variable: Coffee Future P	rice (included observation	s 5487)			
GPRD _ Act	16.83384	22	0.7725			
GPRD _ Threat	43.46527	22	0.0041			
All	58.13955	44	0.0749			
Depender	nt Variable: Cotton Future P	rice (included observation	s 5480)			
GPRD _ Act	29.91529	29	0.4182			
GPRD _ Threat	19.89438	29	0.8962			
All	49.34170	58	0.7838			
Dependen	t Variable: No. 11 Sugar Fut	ure Price (included observ	ations 5481)			
GPRD_Act	21.77311	28	0.7917			
GPRD_Threat	26.18746	28	0.5627			
All	27.04766	56	0.7972			

Source: Author's computation

Since the critical p-value was set at 0.05, it can be concluded that the null hypothesis was not rejected for cocoa, cotton, and no. 11 sugar at all levels of significance. Although the null hypothesis concerning coffee was not rejected at all levels, it can be noted that the GPR Threat sub-index on its own Granger causes the price of coffee. A possible explanation for this might be that geopolitical event such as war and nuclear threats affect the price of coffee futures.

Table 4.9: Grains Agricultural Commodities - VAR Granger Causality

VAR Granger Causal	ity/Block Exogeneity Wa	ald Test	
Sample: 31/03/2000	0 - 31/03/2022		
Excluded	Chi-Square	Degrees of Freedom	Probability
Dep	endent Variable: Corn F	uture Price (included observati	ions 5487)
GPRD_Act	15.72131	22	0.8295
GPRD _ Threat	29.45956	22	0.1322
All	43.99508	44	0.4719
Dep	endent Variable: Oats F	uture Price (included observati	ions 5485)
GPRD _ Act	39.90133	24	0.0448
GPRD _ Threat	38.38025	24	0.0317
All	76.51345	48	0.0055
Depend	dent Variable: Rough Ric	e Future Price (included observ	vations 5480)
GPRD _ Act	17.43909	29	0.9549
GPRD _ Threat	31.71250	29	0.3326
All	50.10420	58	0.7601
Depe	endent Variable: Wheat	Future Price (included observa	tions 5480)
GPRD_Act	26.25644	29	0.6118
GPRD_Threat	78.53201	29	0.0000
All	100.0333	58	0.0005
Depe	ndent Variable: Soybear	n Future Price (included observ	ations 5487)
GPRD_Act	18.45569	22	0.6787
GPRD_Threat	28.10236	22	0.1723
All	46.82797	44	0.3572
Depe	endent Variable: Soybeau	n Oil Future Price (included obs	servations 5487)
GPRD_Act	12.85083	22	0.9372
GPRD_Threat	36.49668	22	0.0268
All	46.49765	44	0.3699

Source: Author's computation

In contrast, the grains commodities registered a different Granger causality result as outlined in Table 4.9. The null hypothesis concerning corn, rough rice, and soybean was not rejected. This implies that the GPR subindices do not Granger cause the change in price for these aforementioned commodities. However, on taking a closer look at the empirical results obtained for both oats and wheat at all significant levels, it can be noted that the null hypothesis was rejected at the critical value of 0.05. This implies that both GPR sub-indices Granger cause the change in prices for both oats and wheat in tandem. Nonetheless, it is important to highlight that the null hypothesis with respect to the GPR Act for the wheat futures was not rejected. On the other hand, the GPR Threat sub-index tends to Granger cause the soybean oil future commodity price. Overall, based on the empirical results obtained from the estimation models, a Granger causality relationship existed for certain agricultural commodities throughout the period 2000–2022.

4.4 Discussion of Empirical Findings

This empirical dissertation sought to analyse the Granger causality relationship between the GPR Threat and Act sub-indices and the prices of ten future commodities. Due to the fact that geopolitical risk has intensified, especially during the last decade, it is hoped that these empirical results can shed further insights into how geopolitics affects the agricultural industry. Although it is a known fact that commodity prices can be determined by a number of factors, such as the law of supply and demand, seasonality factors, and the weather, as outlined in the introductory chapter, geopolitical factors also play a significant role (Aloui and Hamida, 2021).

When comparing both geopolitical threats and geopolitical acts, the author noted that the GPR Threat subindex plays a more significant role as it impacts oats, wheat, soybean oil, and coffee. A plausible explanation for this Granger causality result might be due to the different categories of geopolitical threats. Indeed, in their seminal work, Caldara and Iacoviello (2021) identified five main categories of geopolitical threats for the establishment of the GPR Threat as a sub-index, which include war, military buildup, nuclear threats, terrorist threats, and peace threats. Another important finding was that a Granger causality relationship between the GPR Threat and the following commodities: coffee, soybean oil, wheat, oats. Perhaps the most compelling finding of this study is the Granger causal relationship between the GPR Act and oats. In essence, this means that the beginning and escalation of war affects the price of oats.

Another significant implication emanating from this study's findings is how the studied GPR sub-indices could provide information concerning the agricultural commodity prices. These findings, in fact, highlight the predictive power of the GPR sub-indices in relation to changes in future commodity prices, as these contain information that can shed light on the course prices are likely to take following a particular geopolitical event. The VAR Granger causality test employed for this empirical study suggests that changes in the agricultural future commodity prices are reflected within less than a month after a particular geopolitical event. For instance, changes in the commodity prices for both oats and wheat, for instance, occur within 24 days and 29 days, respectively. On the other hand, when each GPR sub-index is considered separately, it can be noted that the GPR Threat sub-index leads to a price change for both coffee and soybean oil within 22 days. Additionally, the same sub-index leads to a price change for wheat within 29 days. In contrast, the GPR Act only leads to a price change for oats within 24 days. Based on these findings, it can be concluded that the aforementioned commodities are vulnerable to the increase in geopolitical threats and the possibility of geopolitical conflicts affecting the food system on a global scale.

The causal relationship identified for both oats and wheat is pivotal to understanding better the "bigger picture" of how geopolitics influences both the production and the distribution of agricultural commodities. Over the years, agricultural commodities have become more vulnerable due to the intensification of geopolitical events. Indeed, the "food regime" concept coined by Friedmann and McMichael (1989) interprets how both economic and political issues have influenced the food system over the years, a theory whose relevance will likely remain in the foreseeable future. A possible explanation for the causality revealed by this study is that both oats and wheat are considered to be staple foods across the globe. Wheat, however, is a principal agricultural commodity as both emerging and under-developed nations are highly dependent on such import (Magnan, 2017).

As a matter of fact, wheat played a crucial role during both the first food regime period and second food regime period as both the UK and the US established and maintained a worldwide market for staple foods while simultaneously meeting their respective geopolitical goals. During the first food regime period (1870 -1930s), the UK stimulated the food production of both wheat and meat in various colonised countries which has lead access of basic food to other continents such as Asia, North and South America. As a result, industralisation flourished in the UK and also the finance of international trade operated by the city of London (McMichael, 2009 a). On the other hand, the second food regime period (1950 -1970s) was dominated by the US, as the emerging superpower whereby its government intervened in the food production to ensure that the US becomes the main food exporter. The US government donated such surplus to third world countries in order to ensure full support during the Cold War period (Magnan, 2017). Mc Michael (2009 b) acknowledges that third food regime period began in the late 1980s and it is still present till nowadays. Globalisation plays a dominant role in the third food regime period as emerging countries such as China and Brazil are heavily involved in numerous food supply chains.

Undoubtedly, geopolitical implications have impacted each food regime period differently. Nevertheless, it is evident that both emerging and developing nations are becoming highly vulnerable to food insecurity which poses a significant threat to the supply of various agricultural commodities across the globe. Eventually, the respective governments have to intervene in order to secure food supply to the whole nation. Also, any geopolitical event might lead to an abrupt change in the price of affected agricultural commodities, leading to an increase in geopolitical risk, which would also impact the volatility of the commodity prices. As a result, significant price increases may take place, which would result in commodity price inflation, also known as "agflation" (McMichael, 2009 b, p.285). For instance, this situation was evident in the case of the Arab Spring uprising, which was initiated due to an increase in various commodity prices in Tunisia in 2010–2011 and such geopolitical event spread particularly quickly across other Northern African and Middle Eastern neighbouring countries with serious economic repercussions.

These empirical findings have significant implications for the understanding of how the studied GPR subindices could provide information on agricultural commodity prices. Moreover, these empirical findings also highlight the predictive power of the indices when it comes to changes in future commodity prices; indeed, they may contain information that can shed light on the course prices are likely to take following a particular geopolitical event. It is important to note that such empirical findings highlight the commodities' vulnerability to both geopolitical acts and geopolitical threats. Eventually, such situations would intensify uncertainty in the agricultural commodity and would also impact the interrelationship between the agricultural and the energy commodity markets (Tiwari et al., 2021).

As outlined in the literature review, empirical studies concerning the implications of geopolitical risk on the commodity market only intensified following Caldara and Iacoviello's (2018) seminal work. Up to now, however, research on geopolitical risk has focused predominantly on the energy markets (Bouioyour et al., 2019; Cunado et al., 2020; Su et al., 2019;) and precious metals (Baur and Smales, 2020; Das et al., 2019a; Qin et al., 2020; Yilanci and Kilci, 2021) rather than on the agricultural market. The author notes that these empirical findings broadly support the work of other previous studies, which have demonstrated the importance of taking geopolitical risk into account when considering the commodity markets. Indeed, the author believes that this empirical study, which examined the agricultural commodity market, provides an indepth insight into current debated geopolitical events that have significantly impacted the price of agricultural commodities.

Previous empirical studies employed different methodological approaches and concentrated on different types of commodities, such as the energy and precious metals markets. Notwithstanding the relatively limited research on the agricultural market, the author undertook a compare – contrast approach to recent studies on the geopolitical implications on other commodities. On the same line of thoughts of this study, Bouoiyour et al., (2019) also questions whether geopolitical threats or geopolitical acts impact on oil future commodity prices. However, contrary to the empirical findings outlined above, the recent research by Bouioyour et al., (2019) outlined that geopolitical acts have significant impact on the oil market. On the other hand, this research outlined that various agricultural commodities prices are influenced mostly by geopolitical threats

rather than geopolitical acts, with the exception of wheat and oats which is impacted by both GPR Threat and GPR Act. Nevertheless, this difference between the two commodities markets is that the oil market tends to be more complex in nature when compared to the agricultural market. Moreover, Bouioyour et al., (2019) highlights several factors which affect the oil price which are categorised as geopolitical threats such as: the characteristics of the oil market whereby both the buyers and sellers have imperfect information, the impact of previous geopolitical events on supply disruption and the rise of populism across the globe. It seems possible that these factors are also applicable to the agricultural commodities markets and as such geopolitical threats are being witnessed lately.

Let us now consider the previous empirical research of geopolitical implications on precious metals. A key distinction between the agricultural and the precious metal commodities is that the latter act as a safe haven as well as a hedging instrument especially during periods when geopolitical risk intensifies (Qin 2020). Similar to the empirical findings outlined above, the comprehensive study of Baur and Smales (2020) confirms that in particular precious metals are impacted by the GPR Threats rather than the GPR Acts. A possible explanation for this might be that geopolitical event such as war and nuclear threats affect both the agricultural and the precious metals commodities. Conversely, this empirical research differs from the recent study of Yilanci and Kilci (2021) since the causality relationship is evident in certain periods concerning the precious metals market for the period January 1995 to August 2020. A plausible explanation of the causality instabilities identified by Yilanci and Kilci (2021) is due to the inclusion of monthly GPR data rather than the daily GPR index. Moreover, Yilanci and Kilci (2021) fail to account for the GPR sub-indices in order to understand better the causality relationship in the precious market.

4.4.1 Discussion of Findings within the Current Geopolitical Context: The Russo – Ukrainian War

From a practical perspective, these empirical findings are particularly relevant with respect to the ongoing Russo–Ukrainian war since much of the increase in agricultural commodity prices stems from the economic effects of war. It is important to note that the ongoing war is rooted in a series of geopolitical events which go beyond the geopolitical events that occurred in the last decade. Both Russia and Ukraine formed part of the Union of Soviet Socialist Republics (USSR) for several decades. Undoubtedly, the disintegration of the USSR in the early 1990s brought about significant changes in ex-Soviet states. Indeed, Ukraine and 14 other nations gained independence in 1991, and subsequently, Russia lost its dominance and global power (Dadak, 2010). Both nations began pursuing liberal market strategies in order for their economies to prosper (Moiso, 2022).

Over the years, Russia adopted various strategies to ensure that ex-Soviet states remain in Moscow's sphere of influence, for instance, by supporting pro-Russian presidents and favourable energy policies. Nevertheless, Ukraine's geopolitical positioning had also been shaped by Western politics, including the EU and North Atlantic Treaty Organisation. Following the Maidan uprising in Kyiv in 2014, Russia pursued its territorial geopolitical strategies by illegally annexing and occupying Crimea (Moisio, 2022). Russia has also proceeded to occupy other oblasts¹⁵ in eastern Ukraine, namely the Luhansk and Donetsk regions (better known as the Donbas region). Eventually, the eight-year conflict led up to a full-scale invasion (Kuzio, 2018; Krnjevic Miskovic, 2020; Moisio, 2022). The diplomatic relationship between Ukraine and Russia turned sour as the former failed to recognise the Donbas region as an independent, autonomous region. On 24th February 2022, Russian President Vladimir Putin announced Russia's special military operation, whereby Russia invaded Ukraine and the scope of this invasion was to take full control of Ukraine whilst introducing a pro-Russian government.

¹⁵ Oblasts is another term for regions of Russia and ex- USSR states.

Both Russia and Ukraine are major producers and exporters of various agricultural commodities, such as oats, corn, and wheat (World Bank, 2022). In fact, wheat is the most important commodity produced by both nations, with both of them jointly producing 30% of the wheat traded (Behnassi and El Haiba, 2022). With immediate effect, the Russian invasion of Ukraine accelerated the prices of various commodities, especially those concerning both energy and agriculture. The subsequent advancement of the Russian military force across Ukraine halted both the production and the exportation of grains since numerous Ukrainian ports had been closed for a period of time until the beginning of August 2022. Behnassi and El Haiba (2022) acknowledge that developing nations, such as Egypt, Lebanon, and Tunisia, are highly dependent on wheat imports originating from Ukraine. Thus, if the Russo–Ukrainian war persists, the world will face a food shortage crisis. Consequently, food security would not be guaranteed to all nations. This situation would bring about serious consequences in terms of the quantity and quality of food, with emerging and underdeveloped nations suffering the most (Behnassi and El Haiba, 2022; Jagtap et al., 2022).

4.5 Conclusion

Overall, these empirical results further highlight the importance of assessing the risk emanating from geopolitics. Over the last decade, the world has witnessed a significant number of geopolitical events in recent years, and consequently, uncertainty has intensified and taken precedence. Similar to previously established literature, this empirical study found that geopolitical risk also impacts the agricultural commodity market. Moreover, it is now understood that the GPR index plays an important role in determining agricultural commodity prices.

In the following chapter, the author concludes this dissertation by providing a summary of the salient findings of this study. The author puts forward various recommendations so that the economic actors can better manage geopolitical risks. As a result of this empirical study, suggestions for further research on the impact of geopolitical risk on agricultural commodities are also provided. Chapter 5 – Conclusion

5.1 Introduction

The previous four chapters provided a comprehensive explanation of the implications of geopolitical risks on the commodity markets. In the first chapter, the author introduced the concept of geopolitics, mainly discussing its historical roots and how it evolved over time, especially due to the globalisation phenomenon. The literature review section provided a comprehensive review of the literature available on geopolitical risk, measuring the risk and taking it into perspective across various commodity markets. Due to the increase in terrorist attacks over the years, the literature focused on the cause and effect of such terrorist attacks on the commodity markets. The third chapter outlined the methodological approach to carrying out this study as well as its limitations. Subsequently, the discussion of the empirical results and findings was presented in the fourth chapter.

This fifth and final chapter includes a summary of all the salient points of this dissertation. The aim of this study was to investigate the causality relationship between the GPR sub-indices and the agricultural future commodity prices. This chapter addresses the limitations pertaining to this study while discussing the respective mitigations implemented to overcome such limitations. As part of the concluding remarks, the author points out any potential research that can be undertaken in order to contribute to the growing literature on geopolitical risk.

5.2 Summary of the Salient Findings

As outlined in the introductory chapter, this study aimed to address the following research question: Is there a causal relationship between the GPR sub-indices (GPR threat and GPR act) and commodity prices when considering agricultural future commodities (grains and softs)? Consequently, a Granger causality test was employed for the sample period 31st March 2000–31st March 2022 in order to determine the causality

relationship between the GPR Threat and Act sub-indices and the agricultural commodity prices, thus answering the research question. The Granger causality analysis revealed that in tandem, the GPR subindices impact the prices of certain grain commodities, including wheat and oats. On the other hand, when each respective GPR sub-index was considered separately, it was noted that the GPR Threat had further implications when compared to the GPR Act.

Overall, this empirical study strengthens the idea that certain agricultural commodities, specifically grains, more than softs, are susceptible to geopolitical events during the period 2000 - 2022. Indeed, this sample period included several geopolitical events which occurred over the last 22 years. In fact, both the Arab Spring and the on-going Russo-Ukrainian war are two geopolitical events which have impacted the agricultural commodities market. These empirical findings highlight the predictive power of the GPR sub-indices in relation to changes in future commodity prices, as these contain information that can shed light on the course prices are likely to take following a particular geopolitical event. Overall, these empirical findings complement earlier studies on the implications of geopolitical risk on other commodity markets (see Baur and Smales, 2020; Bouioyour et al., 2019; Cunado et al., 2020; Das et al., 2019a; Su et al., 2019; Tiwari et al., 2021; Yilanci and Kilci, 2021).

5.3 Significance of the Study

As outlined in the introductory chapter, the scope of this empirical study was to shed further light on the implications of geopolitical risk on the agricultural commodity markets. Before this study, evidence on the implications of geopolitical risk concerning the agricultural commodity markets was limited, as outlined in the literature review chapter. Indeed, the findings from this study make several contributions to the current literature. Firstly, this research study appears to be the first study to investigate the Granger causality relationship between the GPR sub-indices (GPR Threat and GPR Act) and the agricultural

commodities (softs and grains). This study has gone some way towards enhancing our understanding of how the geopolitical acts and geopolitical threats impact the agricultural commodities' prices.

In fact, such research findings are envisaged to be beneficial to various economic stakeholders, such as policymakers, businesses, institutional investors. Undoubtedly, in today's uncertain world, geopolitical risks are significantly on the increase, generally materialising as either a threat or an act. First and foremost, this study on the effects of geopolitical risk on the commodity markets is of utmost importance to policymakers as they need to make effective decisions when faced with such an increase in geopolitical risk. Indeed, the primary function of policymakers is to undertake actions in the best possible way, especially during an unforeseeable crisis that could severely affect the overall economy. Corporate entities are also significantly dependent on the agricultural commodity market; therefore, this empirical study can assist these economic actors by providing them with adequate knowledge on how to deal with geopolitical risk. Ever since the financialisation of the commodity market took precedence, institutional investors only accounted for financial risks that involve market, credit, and liquidity risks. This empirical study, however, has clearly illustrated the importance of accounting for non-financial risks, namely geopolitical risks, when trading such commodities.

Overall, this empirical study should assist various actors in developing suitable strategies to better manage geopolitical risks while encouraging them not to underreact to geopolitical events but to counteract the situation of an increase in geopolitical risk. Yet, to a certain extent, geopolitical risk could prove uncontrollable, leading to serious economic repercussions. This issue is clearly illustrated in the current ongoing Russo-Ukrainian war and such impact could potentially spill over onto other commodities, with ordinary citizens bearing this additional cost.

82

5.4 Limitations of the Study

Primarily, the scope of this empirical research study was to build on previous similar empirical studies that considered the importance of acknowledging geopolitical risk in the commodity markets. However, this empirical study took a different approach from previously established literature by analysing the causality relationship between the GPR sub- indices and the agricultural commodity markets, rather than other popular commodities such as the crude oil market or the precious metals markets. However, as with any other study undertaken, this research project comes with a number of limitations as a result of the selected methodology.

One of the main research limitations is that this study focuses solely on agricultural commodities. Hence, in order to mitigate this limitation, the author selected a wide range of grains and soft future commodities, all of which are traded on the CBOT. In addition to this, the 22-year sample period used for the purpose of this study could also have led to bias, and as such, the results might not hold if a different time period is used. In view of this limitation, the chosen sample period considers various geopolitical events that occurred during these two decades, including the large-scale terrorist attacks in the US, the Arab Spring in 2011, the Ukraine–Russia conflict in 2014, and the US–China trade retaliation in 2018. Moreover, the author also taken into account, the current major geopolitical event: the Russo-Ukrainian war which began on 24th February 2022 and still the war has no sign of abating up until the writing of this dissertation. It is envisaged that this invasion will lead to further uncertainty and serious repercussions on the global commodity markets. Due to the time constraints, the author only included the first five weeks period of the war, until 31st March 2022. Therefore, the author acknowledges that a certain degree of bias might exist due to the geopolitical events associated with the researched sample period.

5.5 Recommendations

As outlined in the introductory chapter, the concept of geopolitics has strong historical roots, while the concept of risk gained significance following the 2008 financial crisis. Geopolitical risk is present and constantly changing, and it has direct implications on several economic actors, such as national governments, businesses, institutional investors, and ordinary citizens. Without a doubt, any geopolitical event brings about uncertainty, which could affect the respective economic actors from reaching their objectives. For instance, a sudden increase in geopolitical risk could impact a national government's objectives to lower inflation, especially in the long term. Such an increase in geopolitical risk could also lead to a decrease in business profits, effectively impacting the business strategies of the affected organisations. Perhaps one of the most fundamental processes that should be carried out by all economic actors is the implementation of risk management principles, especially since non-financial events have become common and widespread nowadays, in order to monitor and mitigate geopolitical risks more effectively. Another important recommendation is that all economic actors should pay attention to any abrupt changes in geopolitics that could hinder them from reaching their respective objectives.

Risk management is a cyclical process that highlights the importance of assessing both the vulnerability and the threats emanating from geopolitics. Essentially, national governments are the main actors responsible for managing and mitigating such risks; however, as the world has become more globalised and interconnected, other economic actors, such as institutional investors and corporate entities, are urged to implement risk management principles in order to effectively manage geopolitical risks. As a matter of fact, the ISO (2018) advocates the risk management process as an adequate tool to assess risk. Fundamentally, the assessment of risk and the treatment of risk are the core principles of the risk management process. The following paragraph provides an overview of the process from a geopolitical perspective.

The assessment of risk is dependent on three elements, namely identifying, analysing, and evaluating the risk. Primarily, international news is the main source from which to obtain information so as to develop effective risk management strategies. Therefore, the author recommends that all economic actors should be

more vigilant when monitoring the development of any international news story. As geopolitical events occur on a daily basis, economic actors should never underestimate international political news, which could potentially have long-lasting effects. Secondly, it is important that economic actors analyse their risk exposure from time to time. Ideally, a risk matrix is used to this end so as to outline both the likelihood that the geopolitical event will occur as well as its impact in order to determine the related severity to loss. Finally, it is important that such geopolitical risks are evaluated to ensure that they fall within the risk appetite of the respective economic actor.

Eventually, the treatment of risk is a crucial element which should be finally implemented by businesses in order to mitigate risks emanating from geopolitical events is to opt for political risk insurance. It is evident that geopolitical risk is complex as it can vary across different countries and economic sectors. Additionally, Baublyte et al., (2012) acknowledge that insurance underwriting can be a complicated process as geopolitics poses both unique and rare risks. In fact, political risk is only insurable if the following four main criteria are met: the separability of risks, the calculated probability of the event materialising is high or low, a significant number of identical risks are being insured, and the overall risk value is within the insurer's risk appetite (Baublyte et al., 2012). However, the geopolitical environment tends to change abruptly, leading to an amplification in uncertainty, which, in turn, could result in various actions that would not be covered by a comprehensive political risk insurance policy, such as government expropriation.

5.6 Areas for Further Research

This study provided an in-depth analysis of how geopolitical risk affects various agricultural commodity prices. As outlined in both the introduction and the literature review, the concept of geopolitical risk was introduced and comprehensively defined in recent years. Consequently, following an in-depth review of the literature available on geopolitical risk, the author considers research in the area to be still in its infancy stages. Without a doubt, geopolitics will continue to dominate, both in the near and distant future, as geopolitical threats and acts are constantly on the increase, thus resulting in greater uncertainty. This

highlights the importance of additional research in order to further develop the knowledge of geopolitics while acknowledging its constant changes. This study may act as a guide for any future studies that can be taken into consideration by other researchers in order to substantiate the literature on geopolitical risk. That said, further empirical studies should be carried out as follows:

First and foremost, further work is required to assess the causality relationship between geopolitical risk and the agricultural commodity market. Due to the fact that the financialisation of commodities has become more widespread in the financial industry, further studies should be undertaken to investigate in detail the implications of the GPR sub- indices for both the future and spot prices of agricultural commodities. Such an empirical study could provide a clearer understanding of how geopolitical risk impacts immediate prices in comparison to future prices. Besides, such a study could be applicable to a broad range of commodities, including precious metals, currencies and energy commodities.

In future investigations, it might be possible to use a different empirical approach by employing an event study in order to assess the impact of the geopolitical risk on the various commodity markets. The scope of an event study is to examine the impact caused by a particular event on commodity prices. For instance, one particular event that can be studied is the recent Russo-Ukrainian war, which started on 24th February 2022, in order to assess the impact of the geopolitical index on various commodity prices. Moreover, comparison can be made with the other events, such as the Russian annexation of Crimea from Ukraine in 2014.

One main theme that merits further research involves the implications of both uncertainty and geopolitical risk for the commodity markets. As outlined throughout this dissertation, uncertainty plays a crucial role within a geopolitical context, affecting both the commodity markets as well as the overall economy. Empirical studies should be undertaken by accounting for two indices, namely the EPU index and the GPR index, as well as their implications for the commodity markets. Since both indices are available for several advanced and emerging nations, a comparative study can be carried out to understand better how both advanced and emerging nations are affected by geopolitical risk and uncertainty, respectively. Similarly, another

empirical study involving both the EPU and GPR sub-indices can be carried out in order to assess the causality relationship between geopolitical risk and both spot and future commodity prices.

Since geopolitical risk is considered to be dynamic and constantly changing, it is recommended that another empirical study similar to this one is conducted in the near future, for instance, within five or ten years from now. Undoubtedly, due to the globalisation phenomenon, geopolitical risks will still be present. Moreover, in addition to the heightened geopolitical tensions, nations are also facing constant power struggles concerning both their physical and space-specific territory.

5.7 Concluding Remarks

This study has shown how geopolitical risk can be complex in nature and that it can impact various economic sectors, including the agricultural commodity market. Indeed, it is important to understand that geopolitical risk is constantly changing and should never be underestimated by various economic actors. Consequently, the findings of this empirical study should provide useful information to both policymakers and governments to help them acknowledge the importance of geopolitical risk when setting their national policies related to food security. Traders too can benefit from the findings of this study, especially due to the phenomenon of the financialisation of commodities.

References

Abdel- Latif., H., and El- Gamal., M. (2019). Antecedents of war: The geopolitics of low oil prices and decelerating financial liquidity. *Applied Economics Letters*, Vol.26, No. 9, pp.765-769.

Agnew., J. et al., (2020). Geopolitics at 25: An Editorial Journey through the Journal's History. Geopolitics, Vol. 25, No.5, pp.1199 -1227.

Aisen., A. and Veiga., F., J. (2013). How does political instability affect economic growth? European Journal of Political Economy, Vol. 29, pp.151-167.

Akaev., A. and Pantin., V. (2018). Central Asia as the economic and geopolitical tension nexus: Some implications for the world futures, World Futures, Vol.74, No.1, pp.36-46.

Akamatsu., K. (1962). Historical pattern of economic growth in developing countries. Developing *Economies.*, Vol.1, pp.3-25.

Aloui., C. and Hamida., H., B. (2021). Oil-stock Nexus in an Oil-rich Country: Does Geopolitical Risk Matter in Terms of Investment Horizons? Defence and Peace Economics. Vol.32, No.4, pp.468-488.

Alqahtani., A. et al., (2021). Relationship between different sources of geopolitical risks and stock markets in the GCC region: a dynamic correlation analysis. *Review of Behavioural Finance*, pp.1-21.

Alqahtani., A and Klein., T. (2021). Oil price changes, uncertainty, and geopolitical risks: On the resilience of GCC countries to global tensions. *Energy*, Vol.236, pp.1-12.

Alvarado., R et al., (2017). Foreign direct investment and economic growth in Latin America. Economic Analysis and Policy. Vol.56, pp.176 – 187. Anderson., E. W. (1999). Geopolitics: International boundaries as fighting places, The Journal of Strategic Studies, Vol. 22, No.2, pp.125 -136.

Anser., M., K. et al., (2021). Do Economic Policy Uncertainty and Geopolitical Risk Lead to Environmental Degradation? Evidence from Emerging Economies. *Sustainability*, 2021, Vol.13, pp. 1-15.

Antonakakis., N. et al., (2017). Geopolitical risks and the oil-stock nexus over 1899-2016, Finance Research Letters, No.23, pp.165-173.

Apergis., N. et al., (2018). Does geopolitical risks predict stock returns and volatility of leading defense companies? Evidence from a Nonparametric approach, Defence and Peace Economics, Vol.29, Iss.6, pp.684-696.

Arbaa., O. and Varon., E. (2019). Turkish currency crisis- Spillover effects on European banks. Borsa Istanbul Review, Vol.19, No.4, pp.372 – 378.

Ari., A. and Cergibozan., R. (2018). Currency crises in Turkey: An empirical assessment. Research in International Business and Finance, Vol. 46, pp. 281-293.

Azzopardi., L., M. (2019). Sparse Vector Autoregression with Application to Multivariate Cryptocurrency Time - series. University of Malta, Bachelor of Science (Honours).

Bachmann., V. and Moisio., S. (2020). Towards a constructive critical geopolitics – Inspirations from the Frankfurt School of critical theory. *EPC: Politics and Space*, Vol. 38, No.2, pp.251-268.

Bahloul., W. et al., (2018). The role of economic and financial uncertainties in predicting commodity futures returns and volatility: evidence from a nonparametric casuality-in quantiles test. Journal of Multinational Financial Management, Vol.45, pp.52-71.

Baiardi., D and Morana., C. (2021). Climate change awareness: Empirical evidence for the European Union. Energy Economics, Vol.96. pp.1-16. Bak., D. (2016). Political Investment Cycles in Democracies and Autocracies. *International Interactions*, Vol.42, No.5, pp.797-819.

Bakas., D. and Triantafyllou., A. (2018). The impact of uncertainty shocks on the volatility of commodity prices. *Journal of International Money and Finance*, Vol.87, pp.96-111.

Bakas., D. and Triantafyllou., A. (2020). Commodity price volatility and the economic uncertainty of pandemics. *Economic Letters*, Vol.193, pp.1-5.

Baker., M. and Schaltegger., S. (2015). Pragmatism and new directions in social and environmental accountability research.

Baker., S., R. et al., (2016). Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, Vol.131, Issue. 4, pp.1593-1636.

Balcilar., M. et al., (2016). Does uncertainty move the gold prices? New evidence from a non-parametric causality-in-quantiles test. Resources Policy, Vol.49, pp.74-80.

Balcilar., M. et al., (2018). Geopolitical risks and stock market dynamics of the BRICS. *Economic Systems*, Vol. 42, No. 2, pp. 295-306.

Balli., F. et al (2019). Geopolitical risk and tourism demand in emerging economies. *Tourism Economics*, Vol.25, No.6, pp.997-1005.

Barro., R., J. (2006). Rare Disasters and Asset Markets in the twentieth century. The Quarterly Journal of *Economics*, pp.823-866.

Barro., R., J. and Ursúa., J., F. (2012). Rare Macroeconomic Disasters. Annual Review of Economics, Vol.4, No.1, pp.83-109.

Barua., M. (2018). Ratzel's biogeography: a more – than-human encounter. Journal of Historical Geography, Vol.61, pp.102-108. Baublyte., L. et al., (2012). Risk selection in the London political risk insurance market: the role of tacit knowledge trust and heuristics. *Journal of Risk Research*, Vol. 15, No.9, pp.1101 -1116.

Baur., D., G. and Lucey., B., M. (2010). Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. *Financial Review*, Vol.45, No.2, pp.217-229.

Baur., D., G., and Mc Dermott., T., K. (2010). Is gold a safe haven? International Evidence, *Journal of Banking* and *Finance*, Vol.34, No.8, pp.1886-1898.

Baur., D., G. and Smales., L., A. (2020). Hedging geopolitical risk with precious metals. *Journal of Banking* and *Finance*, Vol.117, pp. 1-21.

Behnassi., M. and El Haiba., M. (2022). Implications of the Russia – Ukraine war for global food security. Nature Human Behaviour, Vol. 6, June, pp. 754-755.

Berazneva., J. and Lee., D. R. (2013). Explaining the African food riots of 2007-2008: An Empirical Analysis. Food Policy, Vol. 39, pp.28-39.

Berkman., H. et al., (2011). Time-varying rare disaster risk and stock returns. *Journal of Financial Economics,* Vol.101, No.2, pp.313-332.

Berkman., H. et al., (2017). Rare disaster risk and the expected equity risk premium. Accounting and Finance, Vol.57, pp.351-372.

Bhaskar., R. (2020). Critical realism and the ontology of persons. Journal of Critical Realism, Vol.19, pp.113-120.

Bilgin., M., H. et al., (2018). The effects of uncertainty measures on the price of gold. International Review of Financial Analysis, Vol.58, pp.1-7.

Bilgin., M., H. et al., (2020). How do Geopolitical Risks affect Government Investment? An Empirical Investigation, Defence and Peace Economics, Vol.31, No.5, pp.550 – 564.

Bird., G. et al., (2008). International Terrorism: Causes, Consequences and Cures. The World Economy, pp.255 – 274.

Blanchard., J., M., F. and Flint., C. (2017). The Geopolitics of China's Maritime Silk Road Initiative. Geopolitics, Vol. 22, No.2, pp.223-245.

Blomberg., S. et al., (2004). The Macroeconomic consequence of Terrorism, CESifo Working Paper, No.1151, Center for Economic Studies and ifo Institue (CESifo). Available at: https://www.econstor.eu/bitstream/10419/76482/1/cesifo_wp1151.pdf {September 21, 2021}.

Blomberg., B., et al., (2009). Terrorism and Returns to Oil. Economics and Politics, Vol.21, pp.409 – 432.

Blomberg., S., B. et al., (2013). Terrorism and the Invisible Hook. Southern Economic Journal, Vol.79, No.4, pp.849 – 863.

Bloom., N. (2009). The Impact of Uncertainty Shocks. Econometrica, Vol.77, No.3, pp.623-685.

Bloom., N. (2014). Fluctuations in Uncertainty. The Journal of Economic Perspectives, Volume 28, No.2, pp.153-175.

Bloom., N. (2017). Observations on Uncertainty. The Australian Economic Review, Vol.50, No.1, pp.79-84.

Boehm., H. et al., (2021). What drives the commodity – sovereign risk dependence in emerging market economies? Journal of International Money and Finance, Vol.111, pp.1-28.

Boungou., W. et al., (2022). The impact of the Ukraine – Russia war on world stock market returns., Economics Letters, No. 215, pp.1-3.

Bouoiyour., J. et al., (2019). What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats? *Energy Economics*, Vol. 84, pp.1-14. Bouras., C. et al., (2019). Geopolitical Risks, Returns, and Volatility in Emerging Stock Markets: Evidence from a Panel GARCH Model, *Emerging Markets Finance and Trade*, Vol.55, No.8, pp.1841-1856.

Bouri., E. et al., (2019). Geopolitical risks and movements in Islamic bond and equity markets: A note. Defence Peace Economics, Vol.30, No.3, pp.367-379.

Brandt., M., W. and Gao., L. (2019). Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil. *Journal of Empirical Finance*, Vol.51, pp.64-94.

Bremmer., I and Keat., P. (2010). The Fat Tail: The Power of Political Knowledge in an Uncertain World. Oxford: Oxford University Press.

Brown., R., L. (2012). Full planet, empty plates: the new geopolitics of food scarcity. New York: WW. Norton & Company.

Burgoon., B. (2012). Inequality and anti-globalization backlash by political parties. *European Union Politics,* Vol.14, No.3, pp.308-435.

Caballero., R., J. and Krishnamurthy., A. (2008). Collective Risk Management in a Flight to Quality Episode., The Journal of Finance, Vol. LXIII, No.5. pp. 2195 – 2230.

Caldara., D. et al., (2016). The macroeconomic impact of financial and uncertainty shocks. *European Economic Review, Vol.*88, pp.185-207.

Caldara., D. and lacoviello., M. (2012). Geopolitical Risk Index, St. Louis Federal Reserve Bank.

Caldara., D. and Iacoviello., M. (2018). Measuring Geopolitical Risk. Board of Governors of the Federal Reserve Board Working Paper, January 2018. Washington D.C: Federal Reserve Board of Governors.

Caldara., D. and Iacoviello., M. (2021). Measuring Geopolitical Risk. Board of Governors of the Federal Reserve Board Working Paper, November 2021, Washington D.C: Federal Reserve Board of Governors.

Camarero., M. et al., (2021). Japan's FDI drivers in a time of financial uncertainty. Japan & The World Economy, Vol.57, pp.1-22.

Capone., F. (2016). Nous Sommes Charlie: Discussing the EU reaction to the growing risk of terrorist attacks, Global Jurist, Vol.16, Iss. 3, pp.351-373.

Carney., M. (2016). Uncertainty, the economy, policy. Conference Speech, Bank of England, London, 30th June 2016. Available at: <u>https://www.bis.org/review/r160704c.pdf</u> [accessed on September 3, 2021].

Carrière – Swallow., Y. and Céspedes., L. F. (2013). The impact of uncertainty shocks in emerging markets. Journal of International Economics, Vol. 90, pp.316-325.

Carter Hill., R. et al., (2017). Principles of Econometrics, Wiley: Hoboken, 5th Edition.

Castelnuovo., E. et al., (2017). A Short Review of the Recent Literature on Uncertainty. *The Australian Economic Review*, Vol.50, No.1, pp.68-78.

Chai., G. et al., (2019). Dynamic response pattern of gold prices to economic policy uncertainty. *Transactions* of Nonferrous Metals Society of China. Vol. 29, pp.2667-2676.

Chadwick., M., G. (2019). Dependence of the "Fragile Five" and "Troubled Ten" emerging market financial systems on US monetary policy and monetary policy uncertainty. *Research in International Business and Finance*, Vol.49, pp.251-268.

Cheng., T., C. et al., (2012). Process Control for the Vector Autoregressive Model. Quality and Reliability Engineering International. Vol. 30, pp.57-81.

Cheng., C., H., J. and Chiu., C., W. (2018). How important are global geopolitical risks to emerging countries? International Economics, Vol. 156, pg. 305-325. Chesney., M. et al., (2011). The impact of terrorism on financial markets: An empirical study. *Journal of Banking & Finance*. Vol.35, pp.253-267.

Chiang., T., C. and Chen., X. (2021). Evidence of Policy Uncertainty and Geopolitical Risk on Chinese Stock Prices. Advances in Pacific Basin Business, Economic and Finance, Vol.9, pp.37-56.

Chiantera – Stutte., P. (2018). Ratzel's stone guest: The art of politics in the work of Friedrich Ratzel. *Journal* of Historical Geography, Vol.61, pp.91-96.

Christiano., L., J. (2012). Christopher A. Sims and Vector Autoregressions. The Scandinavian Journal of Economics, Vol. 114, No.4, pp.1082-1104.

Clance., M., W. et al., (2018). Geopolitical risks and recessions in a panel of advanced economies: evidence from over a century of data. *Applied Economic Letters*, Vol.26, No.16, pp.1317-1321.

Clarke., J., A. and Mirza., S. (2006). A comparison of some common methods for detecting Granger noncausality. *Journal of Statistical Computation and Simulation*. Vol. 76, No.3, pp.207-231.

Clem., R., S. (2017). Clearing the Fog of War: public versus official sources and geopolitical storylines in the Russia – Ukraine conflict. *Eurasian Geography and Economics*, Vol. 58, No. 6, pp.592-612.

Colgan., J., D. 2013. Fueling the Fire: Pathways from Oil to War. International Security, Vol.38, No.2, pp.147-180.

Cowen., D. and Smith., N. (2009). After Geopolitics? From the Geopolitical Social to Geoeconomics. *Antipode*. Vol. 41, No.1, pp.22-48.

Creswell., J., W. and Creswell., J., D. (2018). Research Design: Qualitative, Quantitative and Mixed Methods Approaches. Fifth Edition, Los Angeles: SAGE Publications Inc. Creti., A. (2017). Introduction to the special issue: "Energy commodities and geopolitics: Modeling issues". Energy Economics. Vol.64, pp.438-439.

Cunado., J. et al., (2020). Time- Varying Impact of Geopolitical Risks on Oil Prices, Defence and Peace Economics, Vol.31, No.6, pp.692-706.

Cunningham – Cross., L. (2012). Using the past to (re)write the future: Yan Xuetong, pre- Qin thought and China's rise to power. China Information, Vol.26, No. 2, pp.219 – 233.

Dabic., M. et al., (2021). An analysis of globalisation in international business research 1993-2018: rise of the sceptics. Critical Perspective on International Business, Vol.17, No.3, pp.444-462.

Dadak., C. (2010). A New "Cold War"?, The Independent Review, Summer 2010, Vol.15, No.1, pp. 89 – 107.

Dahl., R., E. et al., (2020). Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture. *Journal of Commodity Markets*, Vol.20, pp. 1-19.

Dalby., S. (2014). Rethinking Geopolitics: Climate Security in the Anthropocene. Global Policy, Volume 5, Issue.1, pp.1-9.

Dalby., S. (2015). Geoengineering: The Next Era of Geopolitics? Geography Compass, Vol.9, No.4, pp.190-201.

Das., D., K. (2010). Another perspective on globalisation. *Journal of International Trade Law and Policy*. Vol.9, No.1, pp.46-63.

Das., D. and Bhushan Kumar., S. (2018). International economic policy uncertainty and stock prices revisited: Multiple and Partial wavelet approach. *Economics Letters*, Vol.16, pp.100-108.

Das., D. et al., (2019 a). Geopolitical risk and precious metals. *Journal of Economic Research*, Vol.24, pp. 49-66.

Das., D. et al., (2019 b). Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike? North American Journal of Economics and Finance, Vol. 48, pp.1-19.

Davis., C., M. et al., (2016). The Ukraine conflict, economic – military power balances and economic sanctions. Post – Communist Economies, Vol.28, No.2, pp.167-198.

Debs., A. and Monteiro., N., P. (2014). Known Unknowns: Power Shifts, Uncertainty, and War. International Organisation, Vol.68, Winter 2014, pp.1-31.

Demir., E. et al., (2019). Do geopolitical risks matter for inbound tourism? *Eurasian Business Review*, Vol.19, No.2, pp.1-9.

Dickey., D and Fuller., W. (1979). Distributions of the estimators for autoregressive time - series with a unit root. Journal of American Statistical Association. Vol. 74, No.366), pp. 427.

Ding., Q. et al., (2021). The time-varying effects of financial and geopolitical uncertainties on commodity market dynamics. A TVP-SVAR-SV analysis. *Resources Policy*, Vol.72, pp. 1-16.

Ding., Z. and Zhang., X. (2021). The impact of geopolitical risk on systemic risk spillover in commodity market: an EMD-based network topology approach Dittmer., J and Dodds., K. (2008). Popular Geopolitics Past and Future: Fandom Identities and Audiences. Geopolitics, Vol.13, No.3, pp.437-457.

Dogan., E. et al., (2021). Analyzing the impacts of geopolitical risk and economic uncertainty on natural resources rents. *Resources Policy*, Vol.72, pp.1-8.

Duan., W. et al., (2021). How geopolitical risk drives exchange rate and oil prices? A wavelet-based analysis. *Energy Sources, Part B: Economics, Planning and Policy*, Vol.16, No. 9, pp.861-877.

Dufour., J. M. and Renault., E. (1998). Short Run and Long Run Causality in Time - series: Theory. *Econometrica*. Vol.66, No.5, pp. 1099 -1125.

Dunford., M. and Yeung., G. (2011). Towards global convergence: Emerging economies, the rise of China and western sunset? European Urban and Regional Studies, Vol.18, No.1, pp.22-46.

El-Khishin., S. and El- Saeed., J. (2021). The Twin Deficit Hypothesis in the MENA Region: Do Geopolitics Matter? Economics, Vol.9, No.124, pp.1-17.

Eroukhmanoff., C. (2019). Responding to terrorism with peace, love, and solidarity: 'Je suis Charlie', 'Peace' and 'I heart MCR', Journal of International Political Theory, Vol.15 (2), pp.167 – 187.

Fägersten., B. (2015). Political risk and the commercial sector – Aligning theory and practice. *Risk* Management, Vol. 17, No.1, pp. 23-39.

Feng., Y. et al., (2020) Research on the Time-Varying Impact of Economic Policy Uncertainty on Crude Oil Price Fluctuation. Sustainability, Vol.12, pp. 1-24.

Flint., C. (2016). Introduction to Geopolitics, 3rd Edition, New York: Routledge.

Flint., C. and Xiaotong., Z. (2019). Historical-Geopolitical Contexts and the Transformation of Chinese Foreign Policy. The Chinese Journal of International Politics, Vol.12, No.3, pp.295-331.

Foxall., A. (2018). Boundaries, and Central Asia Geopolitics, Vol.23, No.3, pp.743-746.

Freytag., A. et al., (2011). The origins of terrorism: Cross-country estimates of socio-economic determinants of terrorism. European Journal of Political Economy, Vol.27, pp.5-16.

Friedmann., H and McMichael., P., (1989). Agriculture and the State System: The Rise and Fall of National Agricultures, 1870 to the Present. Sociologia Ruralis, Vol. 29, No.2, pp.93-117.

Gabaix., X. (2009). Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance. The Quarterly Journal of Economics, Vol.127, Issue 2, pp.645-700.

Galea., C. (2019). The Macro Economic Impact of Immigration on the Maltese Economy: A VAR Approach. University of Malta, Degree of Master's of Science in Economics.

Gao., R et al., (2016). How does economic policy uncertainty drive gold-stock correlations? Evidence from the UK. Applied Economics, Vol. 48, No.33, pp.3081-3087.

Garrett., B. (2016). Modeling Geopolitical Risk. Modern Trader, p.34.

Gemechu., E., D. et al., (2015). Import-based Indicator for the Geopolitical Supply Risk of Raw Materials in Life Cycle Sustainability Assessments. *Journal of industrial Ecology*, Vol.20, No.1, pp.154-165.

Ghirelli., C. et al., (2021). Measuring economic and economic policy uncertainty and their macroeconomic effects: the case of Spain. *Empirical Economics*, Vol.60, pp.869-892.

Ghorbel., A. et al., (2017). Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies. *Journal of Applied Statistics*, Vol.44, No.9, pp. 1509-15042.

Ghosh., S. (2021). Geopolitical risk, economic growth, economic uncertainty and international inbound tourism: an Indian Illustration. *Review of Economics and Political Science*, pp.1-20.

Ghysels., E. et al., (2001). Essays in Econometrics: Collected Papers of Clive W. J. Granger, Volume II: Causality, Integration and Cointegration, and Long Memory. Cambridge: United Kingdom, Cambridge University Press.

Goldkuhl., G. (2012). Pragmatism vs interpretivism in qualitative information systems research. European Journal of Information Systems, Vol. 21, pp.135-146.

Gong., X. and Xu., J. (2022). Geopolitical risk and dynamic connectedness between commodity markets. Energy Economics, Vol. 110, pp.1-15.

Goodell., J., W. et al., (2020). Election uncertainty, economic policy uncertainty and financial market uncertainty: A prediction market election. *Journal of Banking and Finance*, Vol.110. pp. 1-15.

González – Esteban., Á., L., (2015). Patterns of world wheat trade, 1945 – 2010: The long hangover from the second food regime. *Journal of Agrarian Change*, pp.88 -111.

Gospodinov., N. and Jamali., I. (2018). Monetary policy uncertainty, positions of traders and changes in commodity futures prices. *Europe Finance Management*, Vol. 24, pp.239 – 260.

Gozgor., G. et al., (2019). The role of uncertainty measures on the returns of the gold. *Economics Letters*, Vol.185. pp.1-7.

Granger., C., W., J. (1969). Investigating Casual Relations by Econometric Models and Cross- spectral methods. *Econometrica*, Vol.37, No.3, pp. 424-438.

Granieri., R., J. (2015). What is geopolitics and why does it matter? Orbis, Fall 2015, pp. 491-504.

Gregory., R., P. (2020). Political uncertainty and the US market risk premium. *Managerial Finance*. Vol. 47, No.5, pp.621-634.

Guidolion., M and La Ferrara., E. (2010). The economic effects of violent conflict: Evidence from asset market reactions. Journal of Peace Research, Vol.47, No.6, pp.671-684.

Gupta., R. et al., (2019). Effects of geopolitical risks on trade flows: evidence from the gravity model. *Eurasian Economic Review*, Vol.9, pp.515-530.

Gurio., F. (2008). Disasters and Recoveries. American Economic Review, Vol.98, No.2, pp.68-73.

Gutierrez., R., G, (2010). Stata. Computational Statistics, Vol.2, No.6, p.728 - p.733.

Hacker., S. and Hatemi – J., A. (2012). A bootstrap test for causality with endogenous lag length choice: theory and application in finance. *Journal of Economic Studies*, Vol.39, No.2, pp.144-160.

Haggman., B. (1998). Rudolf Kjellén and modern Swedish geopolitics. Geopolitics. Vol.3, No.2, pp. 99-112.

Halas., M. (2014). Searching for the Perfect Footnote: Friedrich Ratzel and the Others at the Roots of Lebensraum. Geopolitics, Vol.19, pp.1-18.

Haldén., P. (2018). Geopolitics in the changing geography of the Baltic Sea Region: the challenges of climate change, *Global Affairs*, Vol.4, No.4-5, pp.537-549.

Hammond., M. and Wellington., J. (2021). Research Methods: The Key Concepts. 2nd Edition. Oxon: Routledge.

Hatemi -J., A. and Hacker., R., S. (2009). Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders? *Applied Economics*, Vol. 41, No: 9, pp.1121 – 1125.

Hayes., S. and O'Neill., S. (2021). The Greta effect: Visualising climate protest in UK media and the Getty images collections. Global Environmental Change, Vol.71, pp. 1-11.

Hedström., A. et al., (2020). Emerging Market Contagion Under Geopolitical Uncertainty, Emerging Markets Finance and Trade, Vol.56, No.6, pp.1377-1401.

Hillier., D. et al., (2006). Do precious metals shine? An investment perspective. *Financial Analysts Journal*, Vol.62, pp.98-106.

Hoque., M., E. and Zaidi., M., A., S. (2020). Global and country-specific geopolitical risk uncertainty and stock return of fragile emerging economies. *Borsa Istanbul Review*, Vol.20, No.3, pp.197-213.

Howell., J., P. and Sundberg., T. (2015). Towards an Affective Geopolitics: Soft Power and the Danish Notion of "Hygge", *Environment Space Place*, pp. 97-120.

Huang., et al., (2015). Political risk and dividend policy: Evidence from international political crises. Journal of International Business Studies, Vol.46, pp.574 – 595.

Hughes., G., R. and Heley., J. (2015). Between Man and Nature: The Enduring Wisdom of Sir Halford J. Mackinder. Journal of Strategic Studies. Vol.38, Issue.6, pp.898 – 935.

Hui., H., C. (2020). The long-run effects of geopolitical risk on foreign exchange markets: evidence from some ASEAN countries. International Journal of Emerging Markets, pp.1-22.

lanchovichina., E., I. et al., (2014). How vulnerable are Arab Countries to Global Food Prices Shocks? The Journal of Development Studies, Vol. 50. No.9, pp.1302 -1319.

Ivanovski., K. and Hailemariam., A. (2022). Time-varying geopolitical risk and oil prices. International Review of Economic & Finance. Vol. 77, pp.206-221.

Jackson., C. and Orr., A. (2019). Investment decision-making under economic policy uncertainty. Journal of Property Research, Vol. 26, No.2, pp.153-185.

Jagtap., S. et al., (2022). The Russia – Ukraine Conflict: Its Implications for the Global Food Supply Chains. Foods, Vol.11, No. 2098, pp. 1-23.

Jarociński., M. and Maćkowiak., B. (2013). Granger – Causal – Priority and Choice of Variables in Vector Autoregressions. European Central Bank – Working Paper Series No. 1600. October 2013, pp.1-52.

Jessop., B. and Sum N., L. (2018). Geopolitics: Putting geopolitics in its place in cultural political economy, Environment and Planning A: Economy and Space. Vol. 50, No.2, pp.474-478.

Jiang., Y. et al., (2018). Dynamic linkages among global oil market, agricultural raw material markets and metal markets: an application of wavelet and copula approaches. *Physica A: Statistical Mechanics and its Applications*. Vol.508, pp.265-279. Jo., S. (2014). The Effects of Oil Price Uncertainty on Global and Real Economic Activity. *Journal of Money*, Credit and Banking, Vol.46, No.6, pp.1113-1135.

Joëts., M. et al., (2017). Does the volatility of commodity prices reflect macroeconomic uncertainty? *Energy Economics*, Vol.68, pp.313 -326.

John., A. and Lawton., T., C. (2018). International Political Risk Management: Perspectives, Approaches and Emerging Agendas. International Journal of Management Reviews, Vol. 20, pp.847-879.

Jones., A., T. and Sackley., H. W. (2016). An uncertain suggestion for gold-pricing models the effect of economic policy uncertainty on gold prices. *Journal of Economics and Finance*, Vol.40, No.2, p. 367-379.

Jorion., P. (2009). Risk Management Lesson from the Credit Crisis. European Financial Management, Vol.15, No. 5, pp.923 – 933.

Jurado., I. and León., S. (2021). Economic globalisation and decentralisation: A centrifugal or centripetal relationship? *Governance*, Vol. 34, pp.665-686.

Kamenonpoulous., S., N. and Agioutantis., Z. (2020). Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. *Mining, Metallurgy & Exploration,* Vol.37, pp.51-63.

Karlsson., R (2017). The Environmental Risks of Incomplete Globalisation, Globalizations, Vol.14, No.2, pp.550-562.

Kazharski., A and Makarychev., A. (2021). Belarus, Russia, and the escape from geopolitics. Political Geography, Vol.89, pp. 1-3.

Kelly., M., L. and Cordeiro., M. (2020). Three principles of pragmatism for research on organisational processes. *Methodological Innovations*: May-August, pp.1-10.

Khan., K. et al., (2020). Guns and Blood: A Review of Geopolitical Risk and Defence Expenditures, Defence and Peace Economics, pp.1-17.

Kilduff., M. and Mehra., A. (1997). Postmodernism and Organisational Research. The Academy of Management Review. Vol. 22, No. 2, pp.453-481.

Kim., S., Y. et al., (2019). Geopolitical Risk and Trading Patterns of Foreign and Domestic Investors: Evidence from Korea. Asia-Pacific Journal of Financial Studies. Vol.48, pp.269-298.

Kirikkaleli., D., and Yorucu., V., (2018). Economic Risk Linkages between Israel and Middle East Countries. Panoeconomicus, 2018, Vol.65, Iss.4, pp.427-440.

Klare., M., T. (2008). Rising Powers, Shrinking Planet: The New Geopolitics of Energy. New York: Metropolitan Books.

Klin., T. (2018). Conducting the Study of Geopolitics: Three Approaches. *Political Studies Review*, Vol.16, No.2, pp. 92-101.

Klinke., I. (2021). On the history of a subterranean geopolitics. Geoforum, Vol.127, pp.356-363.

Klinke., I. and Bassin., M. (2018). Introduction: Lebensraum and its discontents. Journal of Historical Geography. Vol.61, pp. 53-58.

Knight., F., H. (1921). Risk, Uncertainty and Profit. Boston, MA: Hart, Schaffner & Marx; Houghton Mifflin Company.

Kobrin., S. (1979). Political risk: a review and reconsideration. Journal of International Business Studies, Vol. 10, pp.67-80.

Koirala., K., H. et al., (2015). Energy prices and agricultural commodity prices: testing correlation using copulas method. *Energy*, Vol.81, pp. 430-436.

Koivula., A. et al., (2020). Risk response over time: political compartmentalization of terrorism risk perception, Journal of Risk Research, pp.1-15.

Kolb., R., W. (2011). Geopolitical Threats to World Energy Markets. The Journal of Social, Political and Economic Studies, Vol.36, Issue No.2, pp.154-196.

Kollias., C. et al., (2011). Terrorism and capital markets: The effects of the Madrid and London bomb attacks. International Review of Economics and Finance, Vol.20, pp.532-541.

Kotcharin., S. and Maneenop., S. (2020). Geopolitical risk and corporate cash holdings in the shipping industry. *Transportation Research Part E*, Vol. 136, pp. 1-17.

Krnjevic Miskovic., D. (2020). Back with a Vengeance: The Return of Rough and Tumble Geopolitics. Orbis, Winter 2021, pp.118 – 135.

Kuzio., T. (2018). Euromaidan revolution, Crimea and Russia – Ukraine war: why it is time for a review of Ukrainian – Russian studies, *Eurasian Geography and Economics*, Vol. 59, No: 3-4, pp.529-553.

Kyriazis., N., A. and Economou., E – M., L. (2021). The impacts of Geopolitical uncertainty on Turkish lira during Erdogan Administration, Defence and Peace Economics, Vol: 33, No.6, pp.731-750.

Le., A., T. and Tran., T., P. (2021). Does geopolitical risk matter for corporate investment? Evidence from emerging countries in Asia. *Journal of Multinational Financial Management*, pp.1-18.

Lecler., R. (2019). What makes globalisation really new? Sociological views on our current globalisation. Journal of Global History, Vol.14, Iss.3, pp.355-373.

Lee., C. (2018). Oil and Terrorism: Uncovering the Mechanisms. *Journal of Conflict Resolution*, Vol.62, No.5, pp.903-928.

Lee., C., C. and Lee., C., C. (2020). Insurance activity, real output, and geopolitical risk: Fresh evidence from BRICS. *Economic Modelling*, Vol.92, pp.207-215.

Lee., C., C. et al., (2020). Geopolitical risk and tourism: Evidence from dynamic heterogeneous panel models. The International Journal of Tourism Research, Vol.23, No.1, pp.26-38.

Lee., J., E. (2019). The world stock markets under geopolitical risks: Dependence structure. World Economics, Vol.42, pp.1898-1930.

Lee., J., E. (2020). Geopolitical Risks in the Post-Cold War Era: Make America Great Again Can Be Make the World Great Again. Defense and Peace Economics, Vol. 31. No.6, pp.707 -720.

Lee., C., C. (2021). Are geopolitical threats powerful enough to predict global oil price volatility? Environmental Science and Pollution Research, No.28, pp. 28720 – 28731.

Levitt., T. (1983). The Gloablisation of markets. Harvard Business Review, May-June.

Li., F. et al., (2020). Do tense geopolitical factors drive crude oil prices? Energies, Vol.13, pp. 1-19.

Li., S. and Lucey., B., M. (2017). Reassessing the role of precious metals as safe havens- what colour is your haven and why? *Journal of Commodity Markets, Vol.7, pp.1-14*.

Li., Y. (2021). Analyzing the time-frequency connectedness among oil, gold prices, and BRICS geopolitical risks. *Resources Policy*, No.73, pp.1-28.

Liu., W. et al., (2020). Global economic and environmental outcomes of the Paris Agreement. Energy Economics, Vol. 90, pp. 1-18.

Liu., Y. et al., (2021). The impact of geopolitical uncertainty on energy volatility. International Review of Financial Analysis, Vol.75, pp. 1-17.

Lo., G – D., et al., (2022). The Russo – Ukrainian war and financial markets: the role of dependence on Russian commodities. *Finance Research Letters*, Vol. 50, pp.1-10.

Lyotard., J., F. (1984). The Postmodern Condition: A Report on Knowledge (Bennington., G. and Massumi., B. Translated), Manchester, UK: Manchester University Press.

Lyu., Y. et al., (2021). Economic uncertainty shocks and China's commodity futures returns: A time-varying perspective. *Resources Policy*. Vol.70, pp. 1-12.

Mackinder., H. (1919). Democratic ideals and reality: A study in the politics of reconstruction, Faber and Faber: London.

Magnan., A. et al., (2017). Food regimes and the geopolitics of wheat. Nature Plant; Vol.3, Iss.12, pp.914-915.

Mahan., A.,T. 1890 (1980). The Influence of Sea Power upon History 1660 – 1805. Bison: London.

Malmgren., P. (2015). Geopolitics for Investors. The CFA Institute Research Foundation.

Månberger., A. and Johansson., B. (2019). The geopolitics of metals and metalloids used for the renewable energy transition. *Energy Strategy Reviews*. Vol. 26, pp.1-10.

Mansour-Ichrakieh., L. and Zeaiter., H. (2019). The role of geopolitical risks on the Turkish economy opportunity or threat. North American Journal of Economics and Finance, Vol.50, pp.1-15.

Margulis., M. E. (2014). Trading Out of the Global Food Crisis? The World Trade Organsiation and the Geopolitics of Food Security. *Geopolitics*, Vol.19, No.2, pp.322-350.

Matera., P. (2020). Under hegemonic pressure: 2018 American sanctions against Iran and Turkey's response. Digest of Middle East Studies. Vol.29, pp.183-199.

Mayer., J. (2012). The Growing Financialisation of Commodity Markets: Divergences between Index Investors and Money Managers. *Journal of Development Studies*, Vol.48, No.6, pp.751-767.

McKenzie., C., R. and Takaoka., S. (2012). Software Reviews: E- Views 7.2. Journal of Applied Econometrics, Vol. 27, pp.1205-1210.

Mc Michael., P. (2009a). A food regime genealogy. The Journal of Peasant Studies, Vol. 36, No.1 pp. 139 – 169.

Mc Michael., P. (2009b). A food regime analysis of the 'world food crisis', Agricultural Human Values, Vol. 26, pp.281-295.

Mc Michael., P. (2020). Does China's 'going out' strategy prefigure a new food regime? The Journal of Peasant Studies, Vol. 47, No. 1, pp.116-154.

Mei., D. et al., (2020). Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models. Energy Economics, Vol.86, pp.1-8.

Mensi., W. et al., (2017). Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. *Journal of Banking and Finance*, Vol.75, pp.258-279.

Mogaji., E. et al., (2021). Emerging-market consumers' interactions with banking chatbots. Telematics and Informatics, Vol.65, pp.1-16.

Moisio., S. (2022). Geopolitics of explaining Russia's invasion of Ukraine and the challenge of small states. Political Geography, Vol. 97, pp.1-3.

Molina – Azorin., J., F. et al., (2017). Mixed Methods in the Organisational Sciences: Taking Stock and Moving Forward. Organisational Research Methods, Vol. 20 (2), pp.179-192.

Mooi., E. et al., (2018). Market Research: The Process, Data and Methods Using Stata. Singapore: Springer.

Mostenska., L., T. et al., (2022). Economic affordability of food as a component of the economic security of Ukraine. PloS ONE, Vol. 17, No. 3, pp. 1-21.

Murphy., D., T. (2014). Hitler's Geostrategist?: The Myth of Karl Haushofer and the "Institut für Geopolitik". The Historian, Vol.76, pp.1-25. Nakamura., E. et al., (2013). Crises and Recoveries in an Empirical Model of Consumption Disasters. American Economic Journal: Macroeconomics., Vol. 2013, Vol.5, No.3, pp.35-74

Nally., D. (2014). Governing precarious lives: land grabs, geopolitics and 'food security'. The Geographical Journal, Vol.181, No.4, pp. 340 – 349.

Ndikumana., L and Sarr., M. (2019). Capital flight, foreign direct investment and natural resources in Africa. *Resources Policy*, No.63, pp. 1-13.

Neacsu., M. et al., (2018). The Impact of Geopolitical Risks on Tourism. *Amfiteatru Economic*, Vol.20, No.12, pp.870-884.

Newman., D. (1998). Geopolitics Renaissant: Territory, sovereignty and the world political map. Geopolitics, Vol.3, No.1. pp.1-16.

Nguyen-Huu., T. (2021). The impacts of rare disasters on asset returns and risk premiums in advanced economies (1870-2015). *Finance Research Letters*, pp.1-7.

Nitoiu., C. and Pasatoiu., F. (2020). Hybrid geopolitics in EU – Russia relations: understanding the persistence of conflict and cooperation, *East European Politics*, Vol. 36, No.4, pp.499-514.

Noguera – Santaella., J. (2016). Geopolitics and the oil price. Economic Modelling, Vol.52, Part B, pp. 301-309.

Nyamwanza., M., A. and Bhatasara., S. (2015). The utility of postmodern thinking in climate adaptation research. *Environmental Development and Sustainability*. Vol. 17, pp.1183-1196.

Nye., J., S. (2004). Soft power: The means to success in world politics. Public Affairs.

Nye., J., S. (2008). Public Diplomacy and soft power. The Annals of the American Academy of Political and Social Science, Vol.616, No.1, pp.94-109.

Olasehinde – Williams., G., O. and Balcilar., M. (2020). The effect of geopolitical risks on insurance premiums. *Journal of Public Affairs*, pp.1-12.

Oliveira., G. de L. T., (2016). The geopolitics of Brazilian soybeans. The Journal of Peasant Studies, Vol.43, No. 2, pp.348-372.

Özdemir., E. et al., (2019). Causality between Spot and Futures Markets of the Borsa Istanbul Index and the Dow Jones Industrial Average. International Journal of Finance, Insurance and Risk Management, Vol. IX, Issue 3-4, pp. 115-132.

Pajunen., K. (2008). Institutions and inflows of foreign direct investment: a fuzzy – set analysis. Journal of International Business Studies, Vol.39, pp.652-669.

Palan., N. et al., (2021). Measuring fifty years of trade globalisation. World Economy, Vol.44, No.6, pp.1859-1884.

Palermo., P. (2020). The Elephant in the Room: Ukraine between Decentralisation and Conflict. *Ethnopolitics*, Vol.19, No.4, pp.369 – 382.

Paliworda., S., J. and Slater., S. (2009). Globalisation through the kaleidoscope. International Marketing Review, Vol.26, No.4/5, pp.373-383.

Paparoditis., E. and Politis., N., D. (2018). The asymptotic size and power of the augmented Dickey – Fuller test for a unit root, Econometric Reviews, Vol.37, No. 9, pp.955 – 973.

Paparoditis., E. and Politis., D., N. (2018). The asymptotic size and power of the augmented Dickey – Fuller test for a unit root. *Econometric Reviews, Vol. 37, No.* 9

Pástor., L. and Veronesi., P. (2012). Uncertainty about Government Policy and Stock Prices. The Journal of Finance., Vol. LXVII, No.4, pp.1219 – 1264.

Pástor., L. and Veronesi., P. (2013). Political uncertainty and risk premia. *Journal of Financial Economics*, pp.520-545.

Péguin – Feissolle., A. et al., (2013). Testing the Granger Noncausality Hypothesis in Stationary Nonlinear Models of Unknown Functional Form. Communications in Statistics – Simulation and Computation. Vol. 42, No.5, pp. 1063 – 1087.

Phan., D., B., H. et al., (2021). Geopolitical risk and bank stability. Finance Research Letters, p.1-9.

Piazza, J., A. (2006). Rooted in Poverty? Terrorism, Poor Economic Development and Social Cleavages. Terrorism and Politicial Violence, Vol.18, No.1, pp.159-177.

Plakandaras., V. et al., (2019). Point and density forecasts of oil returns: The role of geopolitical risks. Resources Policy, Vol.62, pp.580-587.

Plé., B. (2000). Auguste Comte on Positivism and Happiness. Journal of Happiness Studies, Vol.1, pp.423-445.

Pyo., D., J. (2021). Does Geopolitical Risk Matter? Evidence from South Korea, Defence and Peace Economics, Vol.32, No.1, pp.87-106.

Qin., M. et al., (2020). Should gold be stored in chaotic eras? Economic Research – Ekonomska Istraživanja, Vol.33, No.1, pp.224-242.

Qin., Y. et al., (2020). Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions. *Energy Economics*. Vol. 2020, pp. 1-10.

Radnitz., S. (2019). Reinterpreting the enemy: Geopolitical beliefs and the attribution of blame in the Nagorno-Karabakh conflict. Political Geography, Vol.70, pp.64-73.

Ramiah., V. et al., (2019). The effects of recent terrorist attacks on risk and return in commodity markets. Energy Economics, Vol.77, pp.13-22.

Ratti., R. and Vespignani., J. (2013). Why are Crude Oil Prices High When Global Activity is Weak? Economics Letters, Vol.121, pp.133-136.

Raza., S., A. et al., (2018). Does economic policy uncertainty influence gold prices? Evidence from a nonparametric causality-in-quantiles approach. *Resources policy*, Vol.52, pp. 61-68.

Reboredo., J., C. (2012). Do food and oil prices co-move? Energy Policy, Vol.49, pp. 456- 467.

Ren., Y. et al., (2013). Two – step adaptive model selection for vector autoregressive processes. Journal of Multivariate Analysis, Vol.116, pp.349-364.

Reed., M. (2005). Reflection on the 'Realist Turn' in Organisation and Management Studies. Journal of Management Studies, Vol.42, No.8, pp.1621-1644.

Resce., G. (2021). Wealth-adjusted Human Development index. *Journal of Cleaner Production*, Vol.318, pp.1-13.

Retaillé., D. (2000). Geopolitics in history. Geopolitics, Vol. 5, No.2, pp.35-51.

Rice, C., and Zegart, A. 2018. Political Risk: How Businesses and Organisations Anticipate Global Insecurity. 1st Edition, New York. Twelve.

Robock., S., H. (1971). Political risk-identification and assessment. Columbia Journal of World Business, Vol. 6, pp.6-20.

Ruan., J. and Zhang., X. (2014). "Flying geese" in China: The textile and apparel industry's pattern of migration. *Journal of Asian Economics*, Vol.34, pp.79-91.

Ryan., G., S. (2017). Introduction to positivism, interpretivism and critical theory. Nurse Researcher. Vol. 25, Iss.4, pp. 17-20.

Salisu., A., A. et al., (2021). Historical geopolitical risk and the behaviour of stock returns in advanced economics. The European Journal of Finance, pp.1-14.

Sarpong., S. (2021). Geopolitics of Natural Resources. In: Growther., D. and Seifi., S. (eds), The Palgrave Handbook of Corporate Social Responsibility. Palgrave Macmillian: Cham.

Saunders et al., (2019). Research Methods for Business Students. Eight Edition, Pearson Education Limited, Harlow: United Kingdom.

Schmaus., W. (2020). From positivism to conventionalism: Comte, Renouvier and Poincaré. Studies in History and Philosophy of Science Part A, Vol.80, April 2020, pp.102-109.

Sempra., F., P. (2015). The Roots of Mackinder's Geopolitics. Orbis, pp.613 – 619.

Sezer., Ö and Çavusoglu., H. (2018). Assessment of the Globalisation and Local Development Relationship in Terms of Political Risk Factors. In Dincer., H. (eds) Strategic Design and Innovative Thinking in Business Operations: The Role of Business Culture and Risk Management, pp.349-371.

Sims., C., A. (1980). Macroeconomics and Reality. Econometrica. Vol. 48, pp. 1-48.

Sims., C., A. (1987). [Vector Autoregressions and Reality]: Comments. *Journal of Business & Economic Statistics*, Vol.5, No. 4, pp.443-449.

Sloan., G. (2020). Sir Halford Mackinder's Democratic Ideals and Reality: A Centennial Appreciation. Orbis, Vol.64, No.1, pp. 4-23.

Smales., L., A. (2016). The role of political uncertainty in Australian financial markets. Accounting and Finance, Vol.56, pp. 545- 575.

Smales., L., A. (2021). Geopolitical risk and volatility spillovers in oil and stock markets. The Quarterly Review of Economics and Finance, Vol.80, pp.358-386.

Solomon., B. and Ruiz., I. (2012). Political Risk, Macroeconomic Uncertainty, and the Patterns of Foreign Direct Investment, The International Trade Journal, Vol.26, No.2, pp. 181-198.

Sommerville., M. et al., (2014). The 'Global Food Crisis' and the Geopolitics of Food Security, Geopolitics, Vol.19, No.2, pp.239-265.

Su., C – W., et al., (2019). Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia. *Energy*, Vol.187, pp.1-13. Suárez-de Vivero., J., L. and Rodríguez Mateos., J. (2017). Forecasting geopolitical risks: Oceans as source of instability. *Marine Policy*, Vol. 75, pp.19-28.

Steenbergen., M., R. and Siczek., T. (2017). Better the devil you know? Risk-taking, globalization and populism in Great Britain. *European Union Policies*, Vol.18, No.1, pp.119-136.

Stock., J. H and Watson., M., W. (2020). Introduction to Econometrics. 4th Edition, Harlow: Pearson,

Stulz., R., M. (2005). The Limits of Financial Globalisation. The Journal of Finance, Vol. LX, No.4, pp.1595 – 1638.

Tadesse., G. et al., (2014). Drivers and triggers of international food price spikes and volatility. Food Policy, Vol.47, pp.117-128.

Tam., L. and Kim., S. (2020). The power of sharing power: Presidential character, power mutuality, and country reputation. *Public Relations Review*, Vol.46, pp.1-9.

Tang., K. and Xiong., W. (2012). Index Investment and the Financialization of Commodities. Financial Analysts Journal, Vol.68, No.6, pp. 54-74.

Toda., H., Y. and Phillips., P. C. B., (1993). Vector Autoregressions and Causality. *Econometrica*, Vol. 61, No. 6, pp. 1367 – 1393.

Tiwari., A., K. et al., (2021). Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks. *Energy*, Vol.21, pp.1-13.

Triki., M., B. and Maatoug., A. (2021). The gold market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk. Resources Policy, Vol.70, pp.1-13. Tuathail., G., O. (2008). Understanding critical geopolitics: Geopolitics and risk society. *Journal of Strategic Studies*, Vol. 22. No.2-3, pp.107-124.

Uddin., G. S. et al., (2018). The nexus between geopolitical uncertainty and crude oil markets: An entropy – based wavelet analysis. Physica A: Statistical Mechanics and its Applications, Vol. 495, pp.30-39.

Unver., M and Dogru., B. 2015. The Determinants of Economic Fragility Case of the Fragile Five Countries. MPRA Paper No.68734. Available at: <u>https://www.semanticscholar.org/paper/The-Determinants-of-Economic-Fragility%3A-Case-of-the-Unver-Dogru/eb20f5b7ce8ebdb444e1d340e74a9c7e63a2fa55</u> [Accessed on January 16, 2021].

Valdivia Orbaneja., J. R. et al., (2018). Terrorism and oil markets: A cross-sectional evaluation. *Finance* Research Letters, Vol.24, pp.42-48.

Van Robays., I. (2016). Macroeconomic Uncertainty and Oil Price Volatility. Oxford Bulletin of Economics and Statistics, Vol.78, No.5, pp.671-693.

Villaverde., J. and Maza., A. (2011). Globalisation, Growth and Convergence. *The World Economy*, pp.952-971.

Wang., Y. et al., (2022). Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. *Finance Research Letters*, Vol. 49, pp.1-20.

Wang., Y. et al., (2015). Commodity price changes and the predictability of economic policy uncertainty. *Economic Letters*, No.127, pp.39-42. Wang., Y. et al., (2020). Geopolitical Risk Revealed in International Investment and World Trade. Risk Management, Vol.23, pp.133 -154.

Williams., L. et al., (2017). Bringing critical realism to nursing practice: Roy Bhaskar's contribution. Nursing Philosophy., Vol. 18, pp.1-11.

Wilson., E., J. (2008). Hard power, soft power, smart power. The Annals of American Academy of Political and Social Science, Vol.616, No.1, pp.110-124.

World Bank., (2022). Russian invasion to shrink Ukraine Economy by 45 percent this year. Available at: https://www.worldbank.org/en/news/press-release/2022/04/10/russian-invasion-to-shrink-ukraine-economy-by-45-percent-this-year [accessed on May 8, 2021].

Xu., Z. (2019). Food Dependency and Global Food Crisis. International Critical Thought, Vol. 9, No.2, pp.269

Yang., C., et al., (2022). The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP – VAR – SV approach. *Resources Policy*, Vol. 76, pp.1-11.

Yilanci., V. and Kilci., E. N. (2021). The role of economic policy uncertainty and geopolitical risk in predicting price of precious metals: Evidence from a time-varying bootstrap causality test. *Resources Policy*, pp. 1-9.

Yildirim., Z. (2016). Global financial conditions and asset markets: Evidence from fragile emerging economies. *Economic Modelling*, Vol.57, pp.208-220.

Yinting., Y. (2020). Research on political instability, uncertainty and risk during 1953-2019: a scientometric review. Scientometrics, No.123, pp.1051-1076.

Yurteri., Kösedagli., B et al., (2021). The time-varying effects of oil prices on oil-gas stock returns of the fragile five countries. *Financial Innovation*, Vol.7, No.4, pp.1-22.

Zachariadis., M. et al., (2013). Methodological Implications of Critical Realism for Mixed – Methods Research. MIS Quarterly, Vol.37, No.3, pp.855-879.

Zhou., L. et al., (2020). The Impact of Geopolitical Risks on Financial Development: Evidence from Emerging Markets. *Journal of Competitiveness*, Vol.12, No.1, pp.93-107.

Zhu., H., et al., (2020). Does economic policy uncertainty matter for commodity market in China? Evidence from quantile regression. Applied Economics, Vol.52, No.21, pp.2292-2308.

Appendices

Appendix A: Statistical Tests: Descriptive and Stationary Tests.

This appendix outlines the outputs generated by EViews Student Version 12, to test the main variables. Reference should be made to Sections 4.1 and 4.2 in Chapter 4: Discussion and Analysis, for the interpretation of the statistical results.

Section I: Descriptive Statistics

EViews Output 1: Statistical Description – Cocoa

	COCOA_LAST_PRICE			
Mean	2219.426			
Median	2305.000			
Maximum	3774.000			
Minimum	674.0000			
Std. Dev.	661.3955			
Skewness	-0.323891			
Kurtosis	2.292837			
Jarque-Bera	211.1480			
Probability	0.000000			
Sum	12229037			
Sum Sq. Dev.	2.41E+09			
Observations	5510			

EViews Output 2: Variable Statistical Description - Coffee

	COFFEE_LAST_PRICE			
Mean	125.1446			
Median	119.7500			
Maximum	304.9000			
Minimum	41.50000			
Std. Dev.	49.21488			
Skewness	0.888628			
Kurtosis	3.942000			
Jarque-Bera	928.8945			
Probability	0.000000			
Sum	689546.9			
Sum Sq. Dev.	13343373			
Observations	5510			

EViews Output 3: Variable Statistical Description - Corn

CORN_LAST_PRICE				
390.5204				
365.7500				
831.2500				
174.7500				
155.5385				
0.810066				
2.855730				
607.3953				
0.000000				
2151768.				
1.33E+08				
5510				

EViews Output 4: Variable Statistical Description – Cotton

	COTTON_LAST_PRICE			
Mean	69.96968			
Median	65.32000			
Maximum	215.1500			
Minimum	28.52000			
Std. Dev.	24.51531			
Skewness	2.220562			
Kurtosis	10.88385			
Jarque-Bera	18798.00			
Probability	0.000000			
Sum	385533.0			
Sum Sq. Dev.	3310910.			
Observations	5510			

EViews Output 5: Variable Statistical Description - No.11 Sugar

	SUGAR_LAST_PRICE			
Mean	14.22566			
Median	13.23500			
Maximum	35.31000			
Minimum	4.990000			
Std. Dev.	5.753274			
Skewness	0.785632			
Kurtosis	3.381945			
Jarque-Bera	600.3037			
Probability	0.00000			
Sum	78383.36			
Sum Sq. Dev.	182348.8			
Observations	5510			

EViews Output 6: Variable Statistical Description – Oats

	OATS_LAST_PRICE			
Mean	265.6213			
Median	254.5000			
Maximum	772.2500			
Minimum	95.00000			
Std. Dev.	109.6390			
Skewness	1.439915			
Kurtosis	6.910046			
Jarque-Bera	5414.006			
Probability	0.000000			
Sum	1463574.			
Sum Sq. Dev.	66222056			
Observations	5510			

EViews Output 7: Variable Statistical Description – Rough Rice

	ROUGH_RICE_LAST_PRICE
Mean	11.11643
Median	11.57000
Maximum	24.46000
Minimum	3.430000
Std. Dev.	3.752489
Skewness	-0.143381
Kurtosis	2.668749
Jarque-Bera	44.07062
Probability	0.000000
Sum	61251.51
Sum Sq. Dev.	77573.17
Observations	5510

EViews Output 8: Variable Statistical Description – Soybean

	SOYBEAN_LAST_PRICE			
Mean	956.0087			
Median	945.3750			
Maximum	1771.000			
Minimum	418.0000			
Std. Dev.	323.9262			
Skewness	0.210937			
Kurtosis	2.159180			
Jarque-Bera	203.1713			
Probability	0.000000			
Sum	5267608.			
Sum Sq. Dev.	5.78E+08			
Observations	5510			

EViews Output 9: Variable Statistical Description – Soybean Oil

	SOYBEAN_OIL_LAST_PRICE
Mean	34.64693
Median	32.27000
Maximum	82.18000
Minimum	14.38000
Std. Dev.	13.19226
Skewness	0.675241
Kurtosis	2.840206
Jarque-Bera	424.5771
Probability	0.000000
Sum	190904.6
Sum Sq. Dev.	958763.0
Observations	5510

EViews Output 10: Variable Statistical Description – Wheat

	WHEAT_LAST_PRICE			
Mean	515.0902			
Median	497.2500			
Maximum	1425.250			
Minimum	233.5000			
Std. Dev.	178.2246			
Skewness	0.690465			
Kurtosis	3.388311			
Jarque-Bera	472.4258			
Probability	0.000000			
Sum	2838147.			
Sum Sq. Dev.	1.75E+08			
Observations	5510			

EViews Output 11: Variable Statistical Description – GPR Daily Index

	GPRD			
Mean	112.8891			
Median	99.51920			
Maximum	1045.604			
Minimum	9.491598			
Std. Dev.	69.03425			
Skewness	4.641369			
Kurtosis	39.79286			
Jarque-Bera	330573.3			
Probability	0.000000			
Sum	622019.2			
Sum Sq. Dev.	26254395			
Observations	5510			

EViews Out	put 12: Variable	Statistical Descri	ntion – GPR Dail	y Sub- Index: Act
EVICWS OVI	por 12. Vallable	Statistical Descri		y 500- mach. Aci

<u> </u>	GPRD_ACT				
Mean	113.9453				
Median	93.47909				
Maximum	1627.428				
Minimum	0.000000				
Std. Dev.	108.1768				
Skewness	6.133046				
Kurtosis	60.94185				
Jarque-Bera	805312.9				
Probability	0.000000				
Sum	627838.4				
Sum Sq. Dev.	64467582				
Observations	5510				

EViews Output 13: Variable Statistical Description - GPR Daily Sub- Index: Threat

	GPRD_THREAT				
Mean	112.5335				
Median	98.16797				
Maximum	811.5252				
Minimum	7.892561				
Std. Dev.	67.28846				
Skewness	3.064505				
Kurtosis	20.85715				
Jarque-Bera	81833.31				
Probability	0.00000				
Sum	620059.5				
Sum Sq. Dev.	24943306				
Observations	5510				

Section II: Testing Stationarity - Unit - Root Test

EViews Output 14: Augmented Dickey - Fuller Test - Cocoa (Difference Level Test)

Null Hypothesis: COCOA_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level		-2.834903 -3 431357	0.0535
	5% level 10% level	-2.861870 -2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COCOA_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:41 Sample (adjusted): 4/03/2000 5/13/2021 Included observations: 5509 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
COCOA_LAST_PRICE(-1) C	-0.002466 5.808078	0.000870 2.014206	-2.834903 2.883557	0.0046 0.0039
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001457 0.001276 42.69571 10038842 -28497.26 8.036677 0.004601	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.335814 42.72298 10.34644 10.34884 10.34727 1.991448

EViews Output 15: Augmented Dickey - Fuller Test – Cocoa (1st Difference Level Test)

Null Hypothesis: D(COCOA_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -73.96196 0.0001 Test critical values: 1% level -3.431357 5% level -2.861870 10% level -2.566988*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(COCOA_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:42 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments Variable Coefficient Std. Error t-Statistic Prob. D(COCOA_LAST_PRICE(-1)) -0.996741 0.013476 -73.96196 0.0000 0.575770 0.586493 0.5576 С 0.337685 0.002723 R-squared 0.498377 Mean dependent var Adjusted R-squared 0.498286 S.D. dependent var 60.32595

42.72994

10053119

-28496.50

5470.371

0.000000

Akaike info criterion

Hannan-Quinn criter.

Durbin-Watson stat

Schwarz criterion

10.34804

10.35044

10.34888

2.000047

S.E. of regression

Log likelihood

Prob(F-statistic)

F-statistic

Sum squared resid

130

EViews Output 16: Augmented Dickey - Fuller Test – Coffee (Difference Level Test)

Null Hypothesis: COFFEE_LAST_PRICE has a unit root

Exogenous: Constant Lag Length: 0 (Automati)		
		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level		-1.659016 -3.431357 -2.861870 -2.566988	0.4522

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COFFEE_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:43 Sample (adjusted): 4/03/2000 5/13/2021 Included observations: 5509 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
COFFEE_LAST_PRICE(-1) C	-0.001285 0.183024	0.000774 0.104116	-1.659016 1.757888	0.0972 0.0788
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000500 0.000318 2.827626 44031.05 -13542.19 2.752334 0.097170	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.022273 2.828076 4.917115 4.919516 4.917953 2.025123

EViews Output 17: Augmented Dickey - Fuller Test - Coffee (1st Difference Level Test)

Null Hypothesis: D(COFFEE_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-75.20516	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COFFEE_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:44 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(COFFEE_LAST_PRICE(-1)) C	-1.013625 0.022859	0.013478 0.038109	-75.20516 0.599837	0.0000 0.5486
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.506711 0.506622 2.828243 44042.25 -13540.94 5655.816 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	nt var terion rion n criter.	0.001117 4.026489 4.917551 4.919953 4.918389 1.999744

EViews Output 18: Augmented Dickey - Fuller Test - Corn (Difference Level)

Lag Length: 0 (Automatic - based on SIC, maxlag=32)						
			t-Statistic	Prob.*		
Augmented Dickey-Fuller	test statistic		-1.476073	0.5459		
Test critical values:	1% level		-3.431357			
	5% level		-2.861870			
	10% level		-2.566988			
*MacKinnon (1996) one-si	ided p-values					
Augmented Dickey-Fuller Test Equation Dependent Variable: D(CORN_LAST_PRICE) Method: Least Squares Date: 05/07/02_Time: 19:46						
Dependent Variable: D(CC Method: Least Squares	DRN_LAST_P					
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 - Time: 19: Sample (adjusted): 4/03/2	DRN_LÅST_P 46 000 5/13/202	RICE)				
Dependent Variable: D(C(DRN_LÅST_P 46 000 5/13/202	RICE)	t-Statistic	Prob.		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable	DRN_LÅST_P 46 000 5/1 3/202 09 after adjus	RICE) 1 stments	t-Statistic -1.476073	Prob. 0.1400		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 - Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable	DRN_LÀST_P 46 000 5/1 3/202 09 after adjus Coefficient	RICE) 1 stments Std. Error				
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable CORN_LAST_PRICE(-1) C	DRN_LAST_P 46 000 5/13/202 09 after adjus Coefficient -0.001079	RICE) 1 stments Std. Error 0.000731 0.307113	-1.476073 1.674432	0.1400 0.0941		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable CORN_LAST_PRICE(-1) C	DRN_LAST_P 46 000 5/13/202 09 after adjus Coefficient -0.001079 0.514240	RICE) 1 stments Std. Error 0.000731	-1.476073 1.674432 lent var	0.1400 0.0941 0.093075		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable CORN_LAST_PRICE(-1) C R-squared Adjusted R-squared	DRN_LAST_P 46 000 5/13/202 09 after adjus Coefficient -0.001079 0.514240 0.000395	RICE) 1 stments Std. Error 0.000731 0.307113 Mean depend	-1.476073 1.674432 lent var ent var	0.1400		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable CORN_LAST_PRICE(-1) C R-squared Adjusted R-squared S.E. of regression	DRN_LAST_P 46 000 5/13/202 09 after adjus Coefficient -0.001079 0.514240 0.000395 0.000214	RICE) 1 stments Std. Error 0.000731 0.307113 Mean depend S.D. depende	-1.476073 1.674432 lent var ent var iterion	0.1400 0.0941 0.093075 8.433043		
Dependent Variable: D(CC Method: Least Squares Date: 05/27/22 Time: 19: Sample (adjusted): 4/03/2 Included observations: 55 Variable CORN_LAST_PRICE(-1)	DRN_LAST_P 46 000 5/13/202 09 after adjus Coefficient -0.001079 0.514240 0.000395 0.000214 8.432141	RICE) 1 stments Std. Error 0.000731 0.307113 Mean depende S.D. depende Akaike info cr	-1.476073 1.674432 tent var ent var iterion rion in criter.	0.1400 0.0941 0.093075 8.433043 7.102341		

EViews Output 19: Augmented Dickey - Fuller Test - Corn (1st Difference Level Test)

Null Hypothesis: D(CORN_LAST_PRICE) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-72.36043	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CORN_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:46 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CORN_LAST_PRICE(-1)) C	-0.975009 0.091132	0.013474 0.113620	-72.36043 0.802077	0.0000 0.4225
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.487434 0.487341 8.431904 391460.1 -19557.69 5236.032 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.002269 11.77637 7.102285 7.104687 7.103123 1.998352

EViews Output 20: Augmented Dickey - Fuller Test - Cotton (Difference Level)

Null Hypothesis: COTTON_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller t Test critical values:	est statistic 1% level 5% level 10% level	-1.908803 -3.431357 -2.861870 -2.566988	0.3285

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COTTON_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:59 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
COTTON_LAST_PRICE(-1) D(COTTON_LAST_PRICE(-1)) C	-0.001562 0.125415 0.121484	0.000819 0.013390 0.060663	-1.908803 9.366103 2.002601	0.0563 0.0000 0.0453
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.016089 0.015731 1.487102 12174.16 -9999.750 45.00797 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion ın criter.	0.014034 1.498939 3.632081 3.635683 3.633337 2.000009

EViews Output 21: Augmented Dickey - Fuller Test – Cotton (1st Difference Level)

Null Hypothesis: D(COTTON_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-65.43819	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COTTON_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:59 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(COTTON_LAST_PRICE(-1)) C	-0.875666 0.012190	0.013382 0.020043	-65.43819 0.608177	0.0000 0.5431
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.437483 0.437381 1.487459 12182.22 -10001.57 4282.156 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion 'ion n criter.	-0.000799 1.983070 3.632379 3.634781 3.633217 1.999635

EViews Output 22: Augmented Dickey - Fuller Test - No.11 Sugar (Difference Level)

Null Hypothesis: SUGAR_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ler test statistic 1% level 5% level 10% level	-2.342656 -3.431357 -2.861870 -2.566988	0.1586

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SUGAR_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 20:01 Sample (adjusted): 4/03/2000 5/13/2021 Included observations: 5509 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SUGAR_LAST_PRICE(-1) C	-0.001870 0.029061	0.000798 0.012246	-2.342656 2.373222	0.0192 0.0177
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000996 0.000814 0.340767 639.4859 -1885.189 5.488037 0.019182	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	nt var terion rion n criter.	0.002467 0.340906 0.685129 0.687531 0.685967 2.023238

EViews Output 23: Augmented Dickey - Fuller Test – No.11 Sugar (1st Difference)

Null Hypothesis: D(SUGAR_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-75.13607	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SUGAR_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 20:02 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SUGAR_LAST_PRICE(-1)) C	-1.012503 0.002496	0.013476 0.004594	-75.13607 0.543381	0.0000 0.5869
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.506252 0.506162 0.340941 640.0230 -1887.659 5645.429 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	1.82E-06 0.485163 0.686151 0.688552 0.686988 2.000303

EViews Output 24: Augmented Dickey - Fuller Test - Oats (Difference Level)

Null Hypothesis: OATS_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.526267	0.8837
Test critical values:	1% level 5% level	-3.431357 -2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(OATS_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:50 Sample (adjusted): 4/06/2000 5/13/2021 Included observations: 5506 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OATS_LAST_PRICE(-1) D(OATS_LAST_PRICE(-1)) D(OATS_LAST_PRICE(-2)) D(OATS_LAST_PRICE(-3)) C	-0.000440 0.083146 -0.039060 -0.043346 0.226767	0.000836 0.013489 0.013528 0.013535 0.239765	-0.526267 6.163861 -2.887415 -3.202434 0.945792	0.5987 0.0000 0.0039 0.0014 0.3443
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.010378 0.009659 6.756349 251111.0 -18329.29 14.42218 0.000000	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	lent var ent var iterion rion n criter.	0.109880 6.789215 6.659750 6.665756 6.661845 2.002041

EViews Output 25: Augmented Dickey - Fuller Test – Oats (1st Difference)

Null Hypothesis: D(OATS_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller		-44.73665	0.0000
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(OATS_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:51 Sample (adjusted): 4/06/2000 5/13/2021 Included observations: 5506 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(OATS_LAST_PRICE(-1)) D(OATS_LAST_PRICE(-1),2) D(OATS_LAST_PRICE(-2),2) C	-1.000405 0.083175 0.043763 0.110047	0.022362 0.018262 0.013511 0.091081	-44.73665 4.554436 3.239015 1.208236	0.0000 0.0000 0.0012 0.2270
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.461443 0.461149 6.755905 251123.7 -18329.43 1571.394 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.000499 9.203419 6.659437 6.664242 6.661113 2.002089

EViews Output 26: Augmented Dickey - Fuller Test - Rough Rice (Difference Level)

Null Hypothesis: ROUGH_RICE_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.371991	0.1498
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ROUGH_RICE_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:52 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ROUGH_RICE_LAST_PRICE(-1) D(ROUGH_RICE_LAST_PRICE(-1)) C	-0.001750 0.129522 0.021083	0.000738 0.013364 0.008655	-2.371991 9.692001 2.435953	0.0177 0.0000 0.0149
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.017559 0.017202 0.205338 232.1115 905.6861 49.19502 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	0.001866 0.207127 -0.327773 -0.324170 -0.326516 1.999696

EViews Output 27: Augmented Dickey - Fuller Test – Rough Rice (1st Difference)

Null Hypothesis: D(ROUGH_RICE_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-65.19745	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ROUGH_RICE_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:52 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(ROUGH_RICE_LAST_PRICE(-1)) C	-0.871335 0.001631	0.013365 0.002768	-65.19745 0.589194	0.0000 0.5558
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.435670 0.435568 0.205424 232.3487 902.8729 4250.708 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion ın criter.	3.63E-05 0.273430 -0.327114 -0.324713 -0.326277 1.999442

EViews Output 28: Augmented Dickey - Fuller Test – Soybean (Difference Level)

Null Hypothesis: SOYBEAN_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.524896	0.5211
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOYBEAN_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:53 Sample (adjusted): 4/03/2000 5/13/2021 Included observations: 5509 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOYBEAN_LAST_PRICE(-1) C	-0.001035 1.183929	0.000679 0.684910	-1.524896 1.728591	0.1273 0.0839
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000422 0.000241 16.31004 1464958. -23195.85 2.325308 0.127342	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion ın criter.	0.194727 16.31200 8.421802 8.424203 8.422640 1.957866

EViews Output 29: Augmented Dickey - Fuller Test – Soybean (1st Difference)

Null Hypothesis: D(SOYBEAN_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller te		-72.69681	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOYBEAN_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:54 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SOYBEAN_LAST_PRICE(-1)) C	-0.980224 0.190565	0.013484 0.219805	-72.69681 0.866971	0.0000 0.3860
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.489752 0.489659 16.31178 1465004. -23192.23 5284.826 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	-0.008488 22.83343 8.422015 8.424416 8.422853 1.998566

EViews Output 30: Augmented Dickey - Fuller Test – Soybean Oil (Difference Level)

Null Hypothesis: SOYBEAN_OIL_LAST_PRICE has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.980515	0.7623
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOYBEAN_OIL_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 19:57 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOYBEAN_OIL_LAST_PRICE(-1) D(SOYBEAN_OIL_LAST_PRICE(-1)) C	-0.000605 0.042998 0.029880	0.000617 0.013491 0.022875	-0.980515 3.187223 1.306194	0.3269 0.0014 0.1915
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001978 0.001615 0.603563 2005.407 -5032.998 5.454581 0.004300	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.009332 0.604051 1.828612 1.832214 1.829868 1.998340

EViews Output 31: Augmented Dickey - Fuller Test – Soybean Oil (1st Level)

Null Hypothesis: D(SOYBEAN_OIL_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-71.01937	0.0001
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SOYBEAN_OIL_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 19:57 Sample (adjusted): 4/04/2000 5/13/2021 Included observations: 5508 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SOYBEAN_OIL_LAST_PRICE(-1)) C	-0.957478 0.008916	0.013482 0.008134	-71.01937 1.096159	0.0000 0.2731
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.478092 0.477997 0.603561 2005.758 -5033.479 5043.751 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000456 0.835381 1.828424 1.830825 1.829261 1.998239

EViews Output 32: Augmented Dickey - Fuller Test – Wheat (Difference Level)

Null Hypothesis: WHEAT_LAST_PRICE has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.155904	0.2229
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(WHEAT_LAST_PRICE) Method: Least Squares Date: 05/27/22 Time: 15:17 Sample (adjusted): 4/06/2000 5/13/2021 Included observations: 5506 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
WHEAT_LAST_PRICE(-1) D(WHEAT_LAST_PRICE(-1)) D(WHEAT_LAST_PRICE(-2)) D(WHEAT_LAST_PRICE(-3)) C	-0.002102 0.053951 0.017998 -0.070057 1.218915	0.000975 0.013457 0.013477 0.013476 0.530935	-2.155904 4.008967 1.335424 -5.198541 2.295787	0.0311 0.0001 0.1818 0.0000 0.0217
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008844 0.008123 12.83957 906864.5 -21864.41 12.27151 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	0.136170 12.89204 7.943848 7.949854 7.945943 2.001884

EViews Output 33: Augmented Dickey - Fuller Test - Wheat (1st Difference)

Null Hypothesis: D(WHEAT_LAST_PRICE) has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-44.75045	0.0000
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(WHEAT_LAST_PRICE,2) Method: Least Squares Date: 05/27/22 Time: 15:14 Sample (adjusted): 4/06/2000 5/13/2021 Included observations: 5506 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(WHEAT_LAST_PRICE(-1)) D(WHEAT_LAST_PRICE(-1),2) D(WHEAT_LAST_PRICE(-2),2) C	-1.001910 0.054671 0.071433 0.136785	0.022389 0.018536 0.013466 0.173120	-44.75045 2.949480 5.304829 0.790112	0.0000 0.0032 0.0000 0.4295
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.476344 0.476058 12.84382 907630.8 -21866.74 1668.299 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion 'ion n criter.	-0.003950 17.74406 7.944329 7.949134 7.946005 2.002064

EViews Output 34: Augmented Dickey - Fuller Test – GPR Daily ACT (Difference Level)

Null Hypothesis: GPRD_ACT has a unit root Exogenous: Constant Lag Length: 4 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-9.557421	0.0000
Test critical values:	1% level	-3.431357	
	5% level	-2.861870	
	10% level	-2.566988	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GPRD_ACT) Method: Least Squares Date: 05/27/22 Time: 15:22 Sample (adjusted): 4/07/2000 5/13/2021 Included observations: 5505 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GPRD_ACT(-1) D(GPRD_ACT(-1)) D(GPRD_ACT(-2)) D(GPRD_ACT(-3)) D(GPRD_ACT(-3)) C	-0.067870 -0.443835 -0.239259 -0.152670 -0.101284 7.803750	0.007101 0.014257 0.015174 0.014952 0.013430 1.075312	-9.557421 -31.13009 -15.76787 -10.21088 -7.541699 7.257196	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.214340 0.213626 52.56762 15195686 -29619.62 300.0426 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watsc	lent var ent var iterion rion n criter.	0.029942 59.27939 10.76317 10.77038 10.76568 2.001470

EViews Output 35: Augmented Dickey - Fuller Test – GPR Daily Threat (Difference Level)

Null Hypothesis: GPRD_THREAT has a unit root Exogenous: Constant Lag Length: 5 (Automatic - based on SIC, maxlag=32)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1 % level 5% level 10% level	- <u>11.80195</u> -3.431358 -2.861870 -2.566988	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GPRD_THREAT) Method: Least Squares Date: 05/27/22 Time: 15:23 Sample (adjusted): 4/10/2000 5/13/2021 Included observations: 5504 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GPRD_THREAT(-1) D(GPRD_THREAT(-1))	-0.128727 -0.492915	0.010907 0.015823	-11.80195 -31.15142	0.0000 0.0000
D(GPRD_THREAT(-2)) D(GPRD_THREAT(-3))	-0.301504 -0.218675	0.016696 0.016527	-18.05879 -13.23155	0.0000 0.0000
D(GPRD_THREAT(-4)) D(GPRD_THREAT(-5))	-0.164360 -0.057560 14.60159	0.015748 0.013492 1.368699	-10.43695 -4.266273	0.0000
C 	0.284342	Mean depend	10.66823	0.0000
R-squared Adjusted R-squared S.E. of regression	0.284342 0.283561 45.06950	S.D. depende	ent var	53.24675 10.45556
Sum squared resid	43.00330 11165833 -28766.70	Akaike info criterion Schwarz criterion Hannan-Quinn criter.		10.46397
F-statistic Prob(F-statistic)	364.0074 0.000000	Durbin-Watso		2.002252

Appendix B: Vector Autoregressive Model

This appendix outlines the outputs generated by EViews Student Version 12, in order to set up the VAR estimation model to carry out the VAR Granger Causality/Block Exogeneity Wald test. Reference should be made to Sections 4.3.2 onwards for the interpretation of the statistical results.

Section I: VAR Lag Order Selection Criteria

EViews Output 36: VAR Lag Order Selection Criteria - Cocoa

VAR Lag Order Selection Criteria Endogenous variables: COCOA_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:08 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	sc	НQ
0	-92038.48	NA	7.83e+10	33.59791	33.60153	33.59918
1	-87132.13	9805.532	1.31e+10	31.81023	31.82471	31.81528
2	-86559.86	1143.088	1.07e+10	31.60462	31.62995	31.61346
з	-86413.04	293.1063	1.01e+10	31.55431	31.59050	31.56694
4	-86347.25	131.2614	9.94e+09	31.53358	31.58062	31.54999
5	-86271.41	151.2335	9.70e+09	31.50919	31.56708*	31.52938*
6	-86252.07	38.55896	9.67e+09	31.50541	31.57416	31.52939
7	-86239.03	25.96316	9.65e+09	31.50394	31.58354	31.53171
8	-86229.61	18.76144	9.65e+09	31.50378	31.59425	31.53534
9	-86217.15	24.79993	9.64e+09	31.50252	31.60384	31.53786
10	-86197.39	39.29062	9.60e+09	31.49859	31.61077	31.53772
11	-86186.85	20.94730	9.59e+09	31.49803	31.62106	31.54095
12	-86181.48	10.66202	9.61e+09	31.49935	31.63324	31.54606
13	-86170.99	20.82165	9.60e+09	31.49881	31.64355	31.54931
14	-86161.33	19.17975	9.60e+09	31.49857	31.65417	31.55285
15	-86145.82	30.76537	9.58e+09*	31.49619*	31.66264	31.55426
16	-86141.42	8.710755	9.59e+09	31.49787	31.67518	31.55973
17	-86137.48	7.817381	9.61e+09	31.49972	31.68788	31.56536
18	-86130.74	13.34043	9.62e+09	31.50054	31.69956	31.56997
19	-86124.53	12.29269	9.63e+09	31.50156	31.71144	31.57478
20	-86110.31	28.11020	9.61e+09	31.49966	31.72039	31.57666
21	-86103.28	13.90670	9.62e+09	31.50037	31.73196	31.58117
22	-86086.74	32.67014	9.59e+09	31.49762	31.74007	31.58220
23	-86082.89	7.604237	9.61e+09	31.49950	31.75280	31.58787
24	-86074.68	16.19956	9.61e+09	31.49979	31.76395	31.59195
25	-86069.96	9.298308	9.63e+09	31.50136	31.77637	31.59730
26	-86061.13	17.40802	9.63e+09	31.50142	31.78728	31.60115
27	-86055.78	10.54615	9.64e+09	31.50275	31.79947	31.60626
28	-86050.21	10.96320	9.65e+09	31.50400	31.81158	31.61130
29	-86039.70	20.68267*	9.65e+09	31.50345	31.82188	31.61454
30	-86033.81	11.58619	9.66e+09	31.50458	31.83387	31.61946

* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

EViews Output 37: VAR Lag Order Selection Criteria - Coffee

VAR Lag Order Selection Criteria Endogenous variables: COFFEE_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:15 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-77155.72	NA	3.42e+08	28.16526	28.16887	28.16652
1	-72246.79	9810.694	57253627	26.37663	26.39111	26.38168
2	-71676.60	1138.914	46648530	26.17178	26.19711	26.18062
3	-71529.12	294.4204	44349094	26.12123	26.15742	26.13386
4	-71462.82	132.2855	43431112	26.10032	26.14736	26.11673
5	-71387.47	150.2519	42391921	26.07610	26.13400*	26.09630
6	-71368.03	38.75779	42230581	26.07229	26.14104	26.09627*
7	-71355.90	24.15957	42182383	26.07114	26.15075	26.09892
8	-71344.09	23.52145	42139069	26.07012	26.16058	26.10168
9	-71330.82	26.39917	42073482	26.06856	26.16988	26.10391
10	-71312.98	35.46492	41938041	26.06533	26.17751	26.10447
11	-71302.27	21.30136	41911766	26.06471	26.18774	26.10763
12	-71297.25	9.961167	41972792	26.06616	26.20005	26.11287
13	-71291.72	10.98465	42025955	26.06743	26.21217	26.11792
14	-71279.57	24.11167	41977649	26.06628	26.22188	26.12056
15	-71264.96	28.97328	41891795	26.06423	26.23068	26.12230
16	-71259.96	9.905440	41953056	26.06569	26.24300	26.12755
17	-71255.63	8.572497	42024687	26.06740	26.25556	26.13304
18	-71236.41	38.07084	41868086	26.06366	26.26268	26.13309
19	-71229.71	13.24594	41903361	26.06451	26.27438	26.13772
20	-71216.55	26.03442	41839736	26.06299	26.28372	26.13999
21	-71208.28	16.33548	41850992	26.06325	26.29484	26.14405
22	-71190.39	35.35935	41715290*	26.06001*	26.30245	26.14459
23	-71186.39	7.895755	41791534	26.06183	26.31513	26.15020
24	-71177.44	17.65453*	41792374	26.06185	26.32601	26.15401
25	-71173.12	8.521871	41863843	26.06356	26.33857	26.15950
26	-71168.33	9.438065	41928285	26.06510	26.35096	26.16483
27	-71165.96	4.676183	42029855	26.06752	26.36424	26.17103
28	-71160.49	10.75683	42084184	26.06881	26.37638	26.17611
29	-71154.58	11.63732	42131658	26.06993	26.38837	26.18102
30	-71149.07	10.84153	42185368	26.07121	26.40049	26.18608

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 38: VAR Lag Order Selection Criteria - Corn

VAR Lag Order Selection Criteria Endogenous variables: CORN_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:18 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-83148.07	NA	3.05e+09	30.35265	30.35626	30.35391
1	-78230.94	9827.084	5.09e+08	28.56103	28.57550	28.56608
2	-77661.71	1137.001	4.15e+08	28.35653	28.38186	28.36537
3	-77514.92	293.0512	3.94e+08	28.30623	28.34242	28.31886
4	-77446.54	136.4437	3.86e+08	28.28455	28.33160	28.30097
5	-77371.73	149.1689	3.77e+08	28.26053	28.31843*	28.28073*
6	-77355.27	32.81936	3.76e+08	28.25781	28.32656	28.28179
7	-77341.18	28.05221	3.75e+08	28.25595	28.33556	28.28373
8	-77331.42	19.43331	3.75e+08	28.25568	28.34614	28.28724
9	-77315.96	30.77372	3.74e+08	28.25332	28.35463	28.28866
10	-77298.83	34.05484	3.73e+08	28.25035	28.36252	28.28948
11	-77290.91	15.74009	3.73e+08	28.25074	28.37378	28.29367
12	-77277.30	27.04574	3.72e+08	28.24906	28.38295	28.29577
13	-77269.89	14.70270	3.73e+08	28.24964	28.39438	28.30014
14	-77258.54	22.52366	3.72e+08	28.24878	28.40438	28.30307
15	-77242.54	31.73105	3.71e+08*	28.24623*	28.41268	28.30430
16	-77238.51	7.995240	3.72e+08	28.24804	28.42535	28.30990
17	-77230.34	16.17464	3.72e+08	28.24835	28.43651	28.31399
18	-77223.89	12.77115	3.72e+08	28.24928	28.44830	28.31871
19	-77214.57	18.45182	3.72e+08	28.24916	28.45903	28.32238
20	-77204.11	20.69505	3.72e+08	28.24862	28.46936	28.32563
21	-77200.38	7.365874	3.73e+08	28.25055	28.48214	28.33134
22	-77188.83	22.81940*	3.73e+08	28.24962	28.49206	28.33420
23	-77185.81	5.952258	3.73e+08	28.25180	28.50510	28.34017
24	-77178.30	14.83153	3.74e+08	28.25234	28.51650	28.34450
25	-77174.78	6.945995	3.74e+08	28.25434	28.52935	28.35029
26	-77169.95	9.518961	3.75e+08	28.25587	28.54173	28.35560
27	-77165.49	8.785628	3.76e+08	28.25752	28.55425	28.36104
28	-77162.87	5.161494	3.76e+08	28.25985	28.56743	28.36716
29	-77157.32	10.91045	3.77e+08	28.26111	28.57955	28.37220
30	-77155.14	4.298476	3.78e+08	28.26360	28.59289	28.37848

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 39: VAR Lag Order Selection Criteria – Cotton

VAR Lag Order Selection Criteria Endogenous variables: COTTON_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:22 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-73679.99	NA	96290278	26.89651	26.90013	26.89777
1	-68729.94	9892.860	15859006	25.09288	25.10735	25.09793
2	-68159.81	1138.808	12921691	24.88805	24.91338	24.89689
3	-68013.51	292.0637	12290039	24.83793	24.87412	24.85055
4	-67948.61	129.4885	12041808	24.81753	24.86457	24.83394
5	-67871.42	153.9367	11745754	24.79263	24.85053*	24.81283*
6	-67853.22	36.28171	11706358	24.78927	24.85803	24.81326
7	-67837.20	31.90212	11676419	24.78671	24.86632	24.81449
8	-67824.46	25.36764	11660482	24.78535	24.87581	24.81691
9	-67811.46	25.86638	11643471	24.78389	24.88521	24.81923
10	-67793.47	35.78256	11605312	24.78060	24.89278	24.81974
11	-67782.11	22.56062	11595360	24.77975	24.90278	24.82267
12	-67775.20	13.74503	11604172	24.78051	24.91439	24.82721
13	-67768.62	13.06215	11614433	24.78139	24.92613	24.83189
14	-67755.16	26.69334	11595574	24.77976	24.93536	24.83405
15	-67738.64	32.76683	11563781*	24.77702*	24.94347	24.83509
16	-67733.58	10.04346	11580398	24.77845	24.95576	24.84031
17	-67723.23	20.48903	11574726	24.77796	24.96613	24.84361
18	-67714.88	16.53417	11577473	24.77820	24.97722	24.84763
19	-67709.73	10.20322	11593733	24.77960	24.98948	24.85282
20	-67699.97	19.29110	11590546	24.77933	25.00006	24.85633
21	-67687.55	24.55998	11576069	24.77808	25.00967	24.85887
22	-67676.07	22.66687	11565626	24.77718	25.01962	24.86176
23	-67673.36	5.354188	11592210	24.77947	25.03277	24.86784
24	-67663.42	19.62266	11588223	24.77913	25.04328	24.87128
25	-67660.31	6.131229	11613178	24.78128	25.05629	24.87722
26	-67654.51	11.42839	11626768	24.78245	25.06831	24.88217
27	-67651.83	5.274415	11653642	24.78475	25.08147	24.88827
28	-67647.87	7.807379	11675088	24.78659	25.09417	24.89389
29	-67638.88	17.68253*	11675159	24.78660	25.10503	24.89769
30	-67634.41	8.792805	11694488	24.78825	25.11754	24.90313

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 40: VAR Lag Order Selection Criteria – No.11 Sugar

VAR Lag Order Selection Criteria Endogenous variables: SUGAR_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:45 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-65570.32	NA	4988304.	23.93624	23.93986	23.93750
1	-60664.04	9805.395	834803.9	22.14858	22.16306	22.15363
2	-60093.70	1139.224	680134.5	21.94368	21.96901	21.95251
3	-59948.02	290.8431	647031.8	21.89378	21.92997	21.90641
4	-59882.78	130.1661	633884.7	21.87325	21.92029	21.88966
5	-59802.18	160.7167	617533.4	21.84712	21.90502*	21.86732*
6	-59785.92	32.41193	615898.5	21.84447	21.91322	21.86845
7	-59772.56	26.62101	614918.2	21.84288	21.92248	21.87065
8	-59762.58	19.86837	614698.3	21.84252	21.93298	21.87408
9	-59745.68	33.61732	612929.4	21.83964	21.94096	21.87498
10	-59721.88	47.33400	609626.7	21.83423	21.94641	21.87337
11	-59709.11	25.37652	608789.0	21.83286	21.95589	21.87578
12	-59704.38	9.408314	609737.4	21.83441	21.96830	21.88112
13	-59695.86	16.91883	609843.9	21.83459	21.97933	21.88508
14	-59686.62	18.32930	609791.3	21.83450	21.99010	21.88878
15	-59668.24	36.44197	607708.1*	21.83108*	21.99753	21.88915
16	-59659.96	16.41874	607867.2	21.83134	22.00865	21.89320
17	-59654.59	10.62997	608674.3	21.83267	22.02083	21.89831
18	-59648.63	11.81706	609348.4	21.83377	22.03279	21.90321
19	-59640.52	16.03594	609548.0	21.83410	22.04398	21.90732
20	-59630.30	20.21207	609276.9	21.83366	22.05439	21.91066
21	-59623.61	13.23569	609789.8	21.83450	22.06608	21.91529
22	-59612.99	20.97833	609429.8	21.83391	22.07635	21.91849
23	-59611.47	2.996325	611096.9	21.83664	22.08994	21.92501
24	-59603.97	14.79999	611432.0	21.83719	22.10134	21.92934
25	-59600.31	7.218950	612625.3	21.83913	22.11414	21.93508
26	-59594.17	12.10479	613265.4	21.84018	22.12604	21.93991
27	-59590.13	7.951755	614378.0	21.84199	22.13871	21.94551
28	-59577.45	24.97959*	613552.3	21.84064	22.14822	21.94795
29	-59570.50	13.67718	614012.0	21.84139	22.15983	21.95248
30	-59562.00	16.70826	614125.7	21.84158	22.17086	21.95645

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 41: VAR Lag Order Selection Criteria – Oats

VAR Lag Order Selection Criteria Endogenous variables: OATS_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:26 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-81958.28	NA	1.98e+09	29.91833	29.92195	29.91960
1	-77024.19	9860.969	3.27e+08	28.12053	28.13500	28.12558
2	-76448.58	1149.744	2.66e+08	27.91370	27.93903	27.92254
3	-76297.78	301.0501	2.53e+08	27.86194	27.89812	27.87456
4	-76230.37	134.5038	2.48e+08	27.84062	27.88766	27.85703
5	-76153.13	154.0334	2.41e+08	27.81571	27.87360*	27.83590
6	-76133.05	40.01988	2.40e+08	27.81166	27.88041	27.83565*
7	-76120.21	25.56802	2.40e+08	27.81026	27.88987	27.83803
8	-76106.73	26.84762	2.40e+08	27.80862	27.89909	27.84018
9	-76092.95	27.41896	2.39e+08	27.80688	27.90820	27.84223
10	-76070.04	45.55036	2.38e+08	27.80180	27.91398	27.84094
11	-76053.74	32.40869	2.37e+08	27.79914	27.92217	27.84206
12	-76047.10	13.17931	2.38e+08	27.80000	27.93389	27.84671
13	-76039.74	14.61080	2.38e+08	27.80060	27.94534	27.85110
14	-76027.29	24.71130	2.38e+08	27.79934	27.95494	27.85362
15	-76014.38	25.60762	2.37e+08*	27.79791*	27.96436	27.85598
16	-76010.03	8.613023	2.38e+08	27.79961	27.97692	27.86147
17	-76005.15	9.671227	2.38e+08	27.80111	27.98928	27.86676
18	-75997.77	14.61303	2.38e+08	27.80170	28.00072	27.87114
19	-75987.59	20.13860	2.38e+08	27.80128	28.01115	27.87449
20	-75974.13	26.62134	2.38e+08	27.79965	28.02038	27.87665
21	-75965.22	17.62611	2.38e+08	27.79968	28.03126	27.88047
22	-75954.42	21.31781	2.37e+08	27.79902	28.04147	27.88360
23	-75951.72	5.333873	2.38e+08	27.80132	28.05462	27.88969
24	-75938.40	26.28971*	2.38e+08	27.79974	28.06390	27.89190
25	-75930.72	15.15462	2.38e+08	27.80023	28.07523	27.89617
26	-75923.29	14.63777	2.38e+08	27.80080	28.08667	27.90053
27	-75919.51	7.444136	2.38e+08	27.80271	28.09943	27.90622
28	-75914.49	9.893978	2.39e+08	27.80416	28.11173	27.91146
29	-75907.00	14.74238	2.39e+08	27.80471	28.12314	27.91580
30	-75902.59	8.671557	2.39e+08	27.80638	28.13567	27.92126

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 42: VAR Lag Order Selection Criteria – Rough Rice

VAR Lag Order Selection Criteria Endogenous variables: ROUGH_RICE_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:35 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-62840.47	NA	1841571.	22.93976	22.94338	22.94102
1	-57886.60	9900.508	302883.3	21.13473	21.14921	21.13978
2	-57317.00	1137.761	246832.2	20.93010	20.95543	20.93893
3	-57171.43	290.5973	234829.3	20.88025	20.91643	20.89287
4	-57103.81	134.9176	229857.8	20.85885	20.90589	20.87526
5	-57026.85	153.4806	224225.4	20.83404	20.89194*	20.85424*
6	-57010.56	32.46287	223629.7	20.83138	20.90013	20.85536
7	-56997.39	26.23490	223289.5	20.82986	20.90946	20.85763
8	-56988.60	17.50672	223306.4	20.82993	20.92039	20.86149
9	-56968.80	39.38117	222428.5	20.82599	20.92731	20.86134
10	-56942.55	52.21574	221031.8	20.81969	20.93187	20.85883
11	-56932.20	20.56888	220923.0	20.81920	20.94223	20.86212
12	-56927.63	9.076635	221280.6	20.82082	20.95470	20.86753
13	-56923.58	8.044977	221680.7	20.82262	20.96737	20.87312
14	-56913.33	20.32630	221580.1	20.82217	20.97777	20.87645
15	-56893.78	38.78548	220728.0*	20.81832*	20.98477	20.87639
16	-56887.84	11.77708	220974.6	20.81943	20.99674	20.88129
17	-56884.29	7.030249	221414.8	20.82142	21.00959	20.88707
18	-56880.74	7.025836	221855.9	20.82341	21.02243	20.89284
19	-56874.16	13.01982	222052.1	20.82430	21.03417	20.89751
20	-56865.93	16.27937	222114.5	20.82458	21.04531	20.90158
21	-56857.69	16.29229	222176.0	20.82485	21.05644	20.90565
22	-56847.02	21.07048	222041.1	20.82425	21.06669	20.90883
23	-56844.83	4.331261	222593.5	20.82673	21.08003	20.91510
24	-56829.81	29.63909	222105.1	20.82453	21.08869	20.91669
25	-56823.63	12.17473	222334.5	20.82556	21.10057	20.92151
26	-56814.75	17.50908	222344.2	20.82561	21.11147	20.92534
27	-56810.39	8.598952	222720.9	20.82730	21.12402	20.93081
28	-56807.59	5.506772	223225.9	20.82956	21.13714	20.93687
29	-56798.54	17.80199*	223222.3	20.82955	21.14798	20.94064
30	-56795.85	5.288801	223737.4	20.83185	21.16114	20.94673

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 43: VAR Lag Order Selection Criteria – Soybean

VAR Lag Order Selection Criteria Endogenous variables: SOYBEAN_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:38 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-86761.58	NA	1.14e+10	31.67168	31.67530	31.67295
1	-81851.69	9812.603	1.91e+09	29.88271	29.89719	29.88776
2	-81282.12	1137.693	1.55e+09	29.67809	29.70342	29.68692
3	-81138.14	287.4279	1.48e+09	29.62882	29.66500	29.64144
4	-81069.07	137.8053	1.45e+09	29.60689	29.65393	29.62330
5	-80993.26	151.1887	1.41e+09	29.58250	29.64040*	29.60270
6	-80973.84	38.69486	1.41e+09	29.57870	29.64745	29.60268*
7	-80960.40	26.76960	1.41e+09	29.57708	29.65669	29.60485
8	-80943.72	33.21528	1.40e+09	29.57427	29.66474	29.60583
9	-80923.31	40.61822	1.40e+09	29.57011	29.67143	29.60545
10	-80905.01	36.39519	1.39e+09	29.56671	29.67889	29.60585
11	-80894.92	20.04918	1.39e+09	29.56631	29.68935	29.60924
12	-80890.71	8.361706	1.39e+09	29.56806	29.70195	29.61477
13	-80885.17	10.98963	1.39e+09	29.56933	29.71407	29.61982
14	-80873.76	22.64916	1.39e+09	29.56845	29.72404	29.62273
15	-80856.13	34.96592	1.39e+09*	29.56530*	29.73175	29.62337
16	-80851.02	10.13356	1.39e+09	29.56672	29.74402	29.62857
17	-80844.23	13.44666	1.39e+09	29.56752	29.75569	29.63317
18	-80837.74	12.85326	1.39e+09	29.56844	29.76746	29.63787
19	-80829.96	15.39030	1.39e+09	29.56888	29.77876	29.64210
20	-80820.65	18.42199	1.39e+09	29.56877	29.78950	29.64578
21	-80813.76	13.61356	1.39e+09	29.56954	29.80113	29.65033
22	-80803.49	20.27593*	1.39e+09	29.56908	29.81152	29.65366
23	-80799.11	8.651886	1.40e+09	29.57077	29.82406	29.65913
24	-80791.64	14.74376	1.40e+09	29.57132	29.83548	29.66348
25	-80783.67	15.72787	1.40e+09	29.57170	29.84671	29.66764
26	-80775.39	16.31722	1.40e+09	29.57196	29.85783	29.67169
27	-80774.03	2.679733	1.40e+09	29.57475	29.87147	29.67827
28	-80770.44	7.058136	1.40e+09	29.57673	29.88430	29.68403
29	-80765.27	10.18286	1.41e+09	29.57812	29.89656	29.68921
30	-80764.56	1.393840	1.41e+09	29.58115	29.91044	29.69603

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 44: VAR Lag Order Selection Criteria – Soybean Oil

VAR Lag Order Selection Criteria Endogenous variables: SOYBEAN_OIL_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:41 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-68703.54	NA	15655369	25.07996	25.08357	25.08122
1	-63787.71	9824.483	2610843.	23.28881	23.30329	23.29386
2	-63218.49	1136.987	2127985.	23.08432	23.10965	23.09315
3	-63072.71	291.0265	2024347.	23.03439	23.07057	23.04701
4	-63005.02	135.0493	1981443.	23.01297	23.06001	23.02938
5	-62931.86	145.9032	1935572.	22.98954	23.04744*	23.00974*
6	-62915.89	31.82443	1930655.	22.98700	23.05575	23.01099
7	-62901.91	27.84295	1927151.	22.98518	23.06479	23.01296
8	-62891.18	21.37453	1925930.	22.98455	23.07501	23.01611
9	-62873.70	34.76942	1919982.	22.98146	23.08278	23.01680
10	-62852.51	42.14885	1911455.	22.97701	23.08918	23.01614
11	-62839.22	26.41481	1908464.	22.97544	23.09847	23.01836
12	-62835.08	8.211224	1911857.	22.97722	23.11110	23.02392
13	-62827.98	14.10282	1913182.	22.97791	23.12265	23.02840
14	-62817.65	20.49597	1912254.	22.97742	23.13302	23.03171
15	-62798.21	38.55218	1904982.*	22.97361*	23.14007	23.03168
16	-62794.99	6.380309	1909006.	22.97572	23.15303	23.03758
17	-62786.29	17.24363	1909213.	22.97583	23.16400	23.04148
18	-62781.64	9.214455	1912245.	22.97742	23.17644	23.04685
19	-62772.08	18.91408	1911856.	22.97721	23.18709	23.05043
20	-62762.34	19.25008	1911345.	22.97695	23.19768	23.05395
21	-62757.59	9.387080	1914314.	22.97850	23.21008	23.05929
22	-62739.28	36.18546*	1907815.	22.97510	23.21754	23.05968
23	-62735.78	6.905778	1911652.	22.97711	23.23040	23.06547
24	-62728.35	14.66927	1912747.	22.97768	23.24183	23.06983
25	-62721.80	12.91850	1914459.	22.97857	23.25358	23.07451
26	-62716.77	9.905175	1917240.	22.98002	23.26589	23.07975
27	-62710.17	12.99979	1918923.	22.98090	23.27762	23.08441
28	-62705.10	9.996852	1921674.	22.98233	23.28991	23.08963
29	-62698.70	12.58537	1923504.	22.98328	23.30171	23.09437
30	-62696.06	5.187232	1927978.	22.98560	23.31489	23.10048

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

EViews Output 45: VAR Lag Order Selection Criteria – Wheat

VAR Lag Order Selection Criteria Endogenous variables: WHEAT_LAST_PRICE1 GPRD_ACT GPRD_THREAT Exogenous variables: C Date: 05/27/22 Time: 20:49 Sample: 3/31/2000 3/03/2022 Included observations: 5479

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-85469.74	NA	7.12e+09	31.20012	31.20374	31.20138
1	-80544.34	9843.602	1.18e+09	29.40549	29.41996	29.41054
2	-79977.59	1132.043	9.66e+08	29.20190	29.22723	29.21073
3	-79815.63	323.3295	9.13e+08	29.14606	29.18225	29.15868
4	-79748.78	133.3819	8.94e+08	29.12494	29.17198	29.14135
5	-79669.45	158.2102	8.71e+08	29.09927	29.15717*	29.11947*
6	-79652.06	34.64959	8.69e+08	29.09621	29.16496	29.12019
7	-79631.95	40.05369	8.65e+08	29.09215	29.17176	29.11993
8	-79622.42	18.99082	8.65e+08	29.09196	29.18242	29.12352
9	-79605.90	32.86366	8.63e+08	29.08921	29.19053	29.12456
10	-79586.21	39.15203	8.59e+08	29.08531	29.19749	29.12445
11	-79576.10	20.09717	8.59e+08	29.08491	29.20794	29.12783
12	-79571.35	9.434889	8.60e+08	29.08646	29.22034	29.13317
13	-79565.19	12.23780	8.61e+08	29.08749	29.23223	29.13799
14	-79551.20	27.74567	8.60e+08	29.08567	29.24127	29.13996
15	-79533.54	35.02909	8.57e+08	29.08251	29.24897	29.14058
16	-79526.55	13.84861	8.58e+08	29.08325	29.26056	29.14510
17	-79516.72	19.47979	8.57e+08	29.08294	29.27111	29.14859
18	-79512.52	8.320633	8.59e+08	29.08469	29.28371	29.15413
19	-79503.93	16.99462	8.59e+08	29.08484	29.29472	29.15806
20	-79492.97	21.66714	8.58e+08	29.08413	29.30486	29.16114
21	-79485.74	14.30761	8.59e+08	29.08477	29.31636	29.16557
22	-79466.22	38.56509	8.56e+08	29.08093	29.32338	29.16551
23	-79455.99	20.18504	8.55e+08*	29.08049*	29.33378	29.16885
24	-79447.86	16.05646	8.55e+08	29.08080	29.34496	29.17296
25	-79443.99	7.628931	8.57e+08	29.08267	29.35768	29.17862
26	-79438.67	10.48228	8.58e+08	29.08402	29.36988	29.18375
27	-79434.54	8.129575	8.60e+08	29.08580	29.38252	29.18931
28	-79430.81	7.347858	8.61e+08	29.08772	29.39530	29.19502
29	-79420.32	20.65181*	8.61e+08	29.08718	29.40561	29.19827
30	-79416.22	8.063509	8.62e+08	29.08896	29.41825	29.20384

* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion

Section II: VAR Residual Serial Correlation LM Test

EViews Output 46: VAR Residual Serial Correlation LM Test – Cocoa

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:12 Sample: 3/31/2000 3/03/2022 Included observations: 5487

=

Null hypo	Null hypothesis: No serial correlation at lag h									
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.				
1	7.933438	9	0.5409	0.881524	(9, 13178.8)	0.5409				
2	9.822516	9	0.3650	1.091507	(9, 13178.8)	0.3650				
3	14.05891	9	0.1202	1.562519	(9, 13178.8)	0.1202				
4	11.30507	9	0.2554	1.256324	(9, 13178.8)	0.2554				
5	25.24804	9	0.0027	2.807281	(9, 13178.8)	0.0027				
6	16.25945	9	0.0617	1.807240	(9, 13178.8)	0.0617				
7	17.53144	9	0.0410	1.948716	(9, 13178.8)	0.0410				
8	12.30991	9	0.1964	1.368043	(9, 13178.8)	0.1964				
9	19.38829	9	0.0221	2.155267	(9, 13178.8)	0.0221				
10	12.12485	9	0.2064	1.347467	(9, 13178.8)	0.2064				
11	14.97284	9	0.0917	1.664152	(9, 13178.8)	0.0917				
12	10.53446	9	0.3090	1.170653	(9, 13178.8)	0.3090				
13	20.76065	9	0.0138	2.307943	(9, 13178.8)	0.0138				
14	16.38377	9	0.0593	1.821066	(9, 13178.8)	0.0593				
15	13.57828	9	0.1381	1.509074	(9, 13178.8)	0.1381				
16	17.42012	9	0.0425	1.936334	(9, 13178.8)	0.0425				
17	12.14989	9	0.2050	1.350252	(9, 13178.8)	0.2050				
18	12.50183	9	0.1865	1.389382	(9, 13178.8)	0.1865				
19	6.468492	9	0.6923	0.718707	(9, 13178.8)	0.6923				
20	13.39297	9	0.1456	1.488468	(9, 13178.8)	0.1456				
21	5.894679	9	0.7504	0.654937	(9, 13178.8)	0.7504				
22	4.841682	9	0.8479	0.537921	(9, 13178.8)	0.8479				
23	10.36107	9	0.3221	1.151377	(9, 13178.8)	0.3221				

_

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	7.933438	9	0.5409	0.881524	(9, 13178.8)	0.5409
2	17.85579	18	0.4652	0.992048	(18, 15307.9)	0.4652
3	29.60873	27	0.3320	1.096779	(27, 15797.7)	0.3320
4	38.37751	36	0.3622	1.066187	(36, 15973.4)	0.3622
5	54.52956	45	0.1561	1.212202	(45, 16051.7)	0.1561
6	61.90371	54	0.2148	1.146717	(54, 16090.7)	0.2148
7	81.20310	63	0.0611	1.289744	(63, 16110.8)	0.0611
8	90.26154	72	0.0716	1.254418	(72, 16120.7)	0.0716
9	99.15709	81	0.0833	1.224923	(81, 16124.8)	0.0833
10	109.5833	90	0.0786	1.218403	(90, 16125.1)	0.0786
11	121.1001	99	0.0651	1.224143	(99, 16123.0)	0.0651
12	127.0786	108	0.1014	1.177417	(108, 16119	0.1014
13	136.7149	117	0.1028	1.169284	(117, 16114	0.1028
14	144.1116	126	0.1288	1.144450	(126, 16108	0.1288
15	157.4007	135	0.0910	1.166806	(135, 16102	0.0910
16	170.3475	144	0.0661	1.184001	(144, 16095	0.0661
17	181.8958	153	0.0553	1.189991	(153, 16088	0.0553
18	185.6342	162	0.0984	1.146791	(162, 16080	0.0984
19	196.8182	171	0.0858	1.151966	(171, 16073	0.0858
20	203.8551	180	0.1074	1.133425	(180, 16065	0.1074
21	215.3282	189	0.0918	1.140291	(189, 16057	0.0918
22	225.8812	198	0.0848	1.141859	(198, 16048	0.0848
23	235.4378	207	0.0852	1.138440	(207, 16040	0.0853

Null hypothesis: No serial correlation at lags 1 to h

*Edgeworth expansion corrected likelihood ratio statistic.

EViews Output 47: VAR Residual Serial Correlation LM Test - Coffee

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:16 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Null hypothesis: No serial correlation at lag h								
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.		
1	4.929871	9	0.8404	0.547720	(9, 13178.8)	0.8404		
2	17.54737	9	0.0408	1.950488	(9, 13178.8)	0.0408		
3	12.29695	9	0.1971	1.366602	(9, 13178.8)	0.1971		
4	11.93813	9	0.2168	1.326708	(9, 13178.8)	0.2168		
5	6.812738	9	0.6566	0.756965	(9, 13178.8)	0.6566		
6	16.81315	9	0.0517	1.868823	(9, 13178.8)	0.0517		
7	9.216978	9	0.4175	1.024195	(9, 13178.8)	0.4175		
8	10.69777	9	0.2970	1.188808	(9, 13178.8)	0.2970		
9	6.160071	9	0.7238	0.684430	(9, 13178.8)	0.7238		
10	18.04670	9	0.0346	2.006029	(9, 13178.8)	0.0346		
11	16.39573	9	0.0591	1.822397	(9, 13178.8)	0.0591		
12	9.998598	9	0.3506	1.111082	(9, 13178.8)	0.3506		
13	10.43266	9	0.3166	1.159335	(9, 13178.8)	0.3166		
14	8.942322	9	0.4426	0.993665	(9,13178.8)	0.4426		
15	9.650424	9	0.3795	1.072377	(9, 13178.8)	0.3795		
16	16.69053	9	0.0538	1.855185	(9, 13178.8)	0.0538		
17	6.559502	9	0.6829	0.728821	(9, 13178.8)	0.6829		
18	9.849901	9	0.3628	1.094552	(9, 13178.8)	0.3628		
19	5.468641	9	0.7917	0.607592	(9,13178.8)	0.7917		
20	15.47372	9	0.0787	1.719854	(9, 13178.8)	0.0787		
21	5.609121	9	0.7783	0.623203	(9, 13178.8)	0.7783		
22	4.807448	9	0.8508	0.534116	(9, 13178.8)	0.8508		
23	11.21598	9	0.2612	1.246419	(9, 13178.8)	0.2612		

Null hypothesis: No serial correlation at lag h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	4.929871	9	0.8404	0.547720	(9, 13178.8)	0.8404
2	23.93630	18	0.1571	1.330139	(18, 15307.9)	0.1571
3	30.98437	27	0.2718	1.147786	(27, 15797.7)	0.2718
4	41.35681	36	0.2482	1.149064	(36, 15973.4)	0.2482
5	43.95605	45	0.5161	0.976830	(45, 16051.7)	0.5161
6	51.05234	54	0.5888	0.945385	(54, 16090.7)	0.5888
7	59.89932	63	0.5875	0.950749	(63, 16110.8)	0.5875
8	70.10463	72	0.5413	0.973677	(72, 16120.7)	0.5413
9	75.96732	81	0.6373	0.937778	(81, 16124.8)	0.6373
10	78.65962	90	0.7977	0.873741	(90, 16125.1)	0.7977
11	91.11197	99	0.7014	0.920152	(99, 16123.0)	0.7014
12	99.00797	108	0.7204	0.916539	(108, 16119	0.7204
13	109.1378	117	0.6851	0.932628	(117, 16114	0.6851
14	121.8382	126	0.5882	0.966901	(126, 16108	0.5882
15	134.9832	135	0.4842	0.999932	(135, 16102	0.4842
16	141.6562	144	0.5396	0.983707	(144, 16095	0.5397
17	157.2039	153	0.3912	1.027667	(153, 16088	0.3912
18	169.2026	162	0.3331	1.044750	(162, 16080	0.3332
19	173.6966	171	0.4282	1.015908	(171, 16073	0.4282
20	179.0551	180	0.5059	0.994773	(180, 16065	0.5059
21	183.5702	189	0.5978	0.971157	(189, 16057	0.5978
22	198.3033	198	0.4806	1.001591	(198, 16048	0.4806
23	205.7742	207	0.5110	0.994089	(207, 16040	0.5111

Null hypothesis: No serial correlation at lags 1 to h

*Edgeworth expansion corrected likelihood ratio statistic.

EViews Output 48: VAR Residual Serial Correlation LM Test - Corn

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:21 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Lag LRE* stat df Prob. Rao F-stat df Prob						
Lag		ui	FIUN.	Nau F-Stat	u	FTUD.
1	6.022128	9	0.7377	0.669100	(9, 13178.8)	0.7377
2	14.79989	9	0.0966	1.644919	(9,13178.8)	0.0966
3	9.023302	9	0.4351	1.002666	(9,13178.8)	0.4351
4	9.005122	9	0.4368	1.000645	(9,13178.8)	0.4368
5	8.721489	9	0.4634	0.969118	(9,13178.8)	0.4634
6	8.574885	9	0.4774	0.952822	(9, 13178.8)	0.4774
7	15.17424	9	0.0863	1.686549	(9,13178.8)	0.0863
8	6.157265	9	0.7241	0.684119	(9,13178.8)	0.7241
9	7.293474	9	0.6066	0.810395	(9, 13178.8)	0.6066
10	10.40118	9	0.3190	1.155836	(9, 13178.8)	0.3190
11	15.65013	9	0.0746	1.739474	(9,13178.8)	0.0746
12	12.72918	9	0.1752	1.414661	(9,13178.8)	0.1752
13	11.93624	9	0.2169	1.326497	(9,13178.8)	0.2169
14	8.122186	9	0.5219	0.902504	(9,13178.8)	0.5219
15	5.489363	9	0.7897	0.609894	(9, 13178.8)	0.7897
16	6.129047	9	0.7269	0.680983	(9,13178.8)	0.7269
17	5.141571	9	0.8218	0.571245	(9,13178.8)	0.8218
18	11.38241	9	0.2504	1.264923	(9, 13178.8)	0.2504
19	5.130475	9	0.8228	0.570012	(9,13178.8)	0.8228
20	6.360830	9	0.7033	0.706742	(9,13178.8)	0.7033
21	5.752943	9	0.7644	0.639186	(9,13178.8)	0.7644
22	8.601765	9	0.4748	0.955810	(9, 13178.8)	0.4748
23	10.30560	9	0.3263	1.145210	(9,13178.8)	0.3263

Null hypothesis: No serial correlation at lag hi

				-		
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	6.022128	9	0.7377	0.669100	(9, 13178.8)	0.7377
2	19.84433	18	0.3417	1.102601	(18, 15307.9)	0.3417
3	24.87658	27	0.5814	0.921351	(27, 15797.7)	0.5814
4	32.58470	36	0.6318	0.905090	(36, 15973.4)	0.6318
5	40.65463	45	0.6564	0.903370	(45, 16051.7)	0.6564
6	44.36254	54	0.8222	0.821333	(54, 16090.7)	0.8222
7	55.40527	63	0.7408	0.879295	(63, 16110.8)	0.7408
8	59.90217	72	0.8448	0.831713	(72, 16120.7)	0.8448
9	64.95508	81	0.9035	0.801564	(81, 16124.8)	0.9035
10	68.33590	90	0.9569	0.758824	(90, 16125.1)	0.9569
11	81.29797	99	0.9021	0.820790	(99, 16123.0)	0.9021
12	85.40974	108	0.9467	0.790324	(108, 16119	0.9467
13	96.18846	117	0.9202	0.821642	(117, 16114	0.9202
14	106.4115	126	0.8965	0.844072	(126, 16108	0.8965
15	115.2760	135	0.8894	0.853423	(135, 16102	0.8894
16	123.5205	144	0.8906	0.857285	(144, 16095	0.8906
17	140.2226	153	0.7622	0.916175	(153, 16088	0.7622
18	150.1087	162	0.7390	0.926305	(162, 16080	0.7390
19	157.7147	171	0.7585	0.921977	(171, 16073	0.7586
20	162.5990	180	0.8194	0.902888	(180, 16065	0.8194
21	166.8664	189	0.8752	0.882330	(189, 16057	0.8753
22	181.2116	198	0.7981	0.914779	(198, 16048	0.7982
23	188.8497	207	0.8123	0.911848	(207, 16040	0.8124

Null hypothesis: No serial correlation at lags 1 to h

*Edgeworth expansion corrected likelihood ratio statistic.

EViews Output 49: VAR Residual Serial Correlation LM Test – Cotton

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:24 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Null hypothesis: No serial correlation at lag h							
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.	
1	6.408462	9	0.6984	0.712035	(9, 13110.7)	0.6984	
2	10.05041	9	0.3464	1.116842	(9, 13110.7)	0.3464	
3	7.622849	9	0.5726	0.847003	(9, 13110.7)	0.5726	
4	12.23183	9	0.2006	1.359363	(9, 13110.7)	0.2006	
5	7.421485	9	0.5933	0.824623	(9, 13110.7)	0.5933	
6	13.27347	9	0.1506	1.475182	(9, 13110.7)	0.1506	
7	1.572975	9	0.9966	0.174739	(9,13110.7)	0.9966	
8	6.589546	9	0.6798	0.732160	(9,13110.7)	0.6798	
9	6.955120	9	0.6418	0.772790	(9, 13110.7)	0.6418	
10	8.906221	9	0.4460	0.989652	(9,13110.7)	0.4460	
11	7.524737	9	0.5827	0.836099	(9,13110.7)	0.5827	
12	7.979305	9	0.5362	0.886623	(9,13110.7)	0.5362	
13	9.207228	9	0.4184	1.023111	(9,13110.7)	0.4184	
14	17.50792	9	0.0413	1.946104	(9,13110.7)	0.0413	
15	8.681621	9	0.4672	0.964686	(9,13110.7)	0.4672	
16	3.650600	9	0.9329	0.405570	(9,13110.7)	0.9329	
17	5.935371	9	0.7464	0.659459	(9,13110.7)	0.7464	
18	3.361692	9	0.9482	0.373470	(9,13110.7)	0.9482	
19	3.673790	9	0.9315	0.408147	(9,13110.7)	0.9315	
20	7.811657	9	0.5532	0.867989	(9,13110.7)	0.5532	
21	5.843690	9	0.7555	0.649270	(9,13110.7)	0.7555	
22	9.772352	9	0.3692	1.085932	(9,13110.7)	0.3692	
23	8.278450	9	0.5063	0.919873	(9,13110.7)	0.5063	
24	20.59145	9	0.0146	2.289125	(9,13110.7)	0.0146	
25	14.91681	9	0.0932	1.657923	(9,13110.7)	0.0932	
26	6.514887	9	0.6875	0.723863	(9,13110.7)	0.6875	
27	1.995115	9	0.9915	0.221637	(9,13110.7)	0.9915	
28	8.131146	9	0.5210	0.903500	(9, 13110.7)	0.5210	
29	9.357176	9	0.4050	1.039780	(9,13110.7)	0.4050	
30	11.43947	9	0.2468	1.271268	(9, 13110.7)	0.2468	

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	6.408462	9	0.6984	0.712035	(9, 13110.7)	0.6984
2	13.21852	18	0.7784	0.734295	(18, 15228.7)	0.7784
3	21.98017	27	0.7384	0.814002	(27, 15715.9)	0.7384
4	29.93347	36	0.7517	0.831379	(36, 15890.6)	0.7517
5	32.90994	45	0.9096	0.731101	(45, 15968.5)	0.9096
6	42.38450	54	0.8737	0.784662	(54, 16007.3)	0.8737
7	46.08267	63	0.9460	0.731130	(63, 16027.2)	0.9460
8	61.84044	72	0.7978	0.858675	(72, 16037.1)	0.7978
9	70.13524	81	0.8001	0.865627	(81, 16041.0)	0.8001
10	71.71836	90	0.9218	0.796465	(90, 16041.3)	0.9218
11	79.63257	99	0.9236	0.803932	(99, 16039.2)	0.9236
12	89.14167	108	0.9067	0.824950	(108, 16035.4)	0.9067
13	97.59477	117	0.9036	0.833688	(117, 16030.5)	0.9036
14	116.0560	126	0.7262	0.920847	(126, 16024.7)	0.7262
15	132.4918	135	0.5450	0.981400	(135, 16018.4)	0.5450
16	139.1200	144	0.5993	0.966018	(144, 16011.5)	0.5993
17	149.4289	153	0.5665	0.976604	(153, 16004.3)	0.5666
18	158.8625	162	0.5550	0.980590	(162, 15996.8)	0.5550
19	163.2691	171	0.6511	0.954611	(171, 15989.0)	0.6511
20	170.4546	180	0.6833	0.946738	(180, 15981.1)	0.6833
21	181.4192	189	0.6409	0.959712	(189, 15973.0)	0.6409
22	191.5951	198	0.6148	0.967507	(198, 15964.8)	0.6148
23	202.0924	207	0.5833	0.976190	(207, 15956.5)	0.5833
24	214.6881	216	0.5124	0.993933	(216, 15948.1)	0.5125
25	221.7751	225	0.5483	0.985614	(225, 15939.7)	0.5483
26	235.1271	234	0.4670	1.004897	(234, 15931.1)	0.4671
27	241.1561	243	0.5214	0.992398	(243, 15922.6)	0.5215
28	245.5789	252	0.6021	0.974365	(252, 15913.9)	0.6022
29	249.2561	261	0.6889	0.954692	(261, 15905.3)	0.6890
30	257.9627	270	0.6904	0.955095	(270, 15896.6)	0.6905

Null hypothesis: No serial correlation at lags 1 to h

*Edgeworth expansion corrected likelihood ratio statistic.

EViews Output 50: VAR Residual Serial Correlation LM Test - No.11 Sugar VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:45 Sample: 3/31/2000 3/03/2022 Included observations: 5481

Null hypothesis: No serial correlation at lag h	
---	--

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.	
1	12.13877	9	0.2056	1.349017	(9,13120.4)	0.2056	
2	15.34852	9	0.0818	1.705934	(9, 13120.4)	0.0818	
3	20.83340	9	0.0134	2.316043	(9, 13120.4)	0.0134	
4	19.57824	9	0.0207	2.176403	(9, 13120.4)	0.0207	
5	10.26739	9	0.3293	1.140963	(9, 13120.4)	0.3293	
6	14.90256	9	0.0936	1.656339	(9, 13120.4)	0.0936	
7	10.00556	9	0.3500	1.111856	(9, 13120.4)	0.3500	
8	13.87719	9	0.1268	1.542314	(9, 13120.4)	0.1268	
9	12.09215	9	0.2082	1.343833	(9, 13120.4)	0.2082	
10	4.272140	9	0.8926	0.474633	(9, 13120.4)	0.8926	
11	9.557537	9	0.3875	1.062052	(9, 13120.4)	0.3875	
12	13.67781	9	0.1343	1.520143	(9, 13120.4)	0.1343	
13	10.13565	9	0.3396	1.126318	(9, 13120.4)	0.3396	
14	10.22277	9	0.3328	1.136003	(9, 13120.4)	0.3328	
15	12.39634	9	0.1919	1.377655	(9, 13120.4)	0.1919	
16	14.92964	9	0.0929	1.659351	(9, 13120.4)	0.0929	
17	4.275303	9	0.8924	0.474984	(9, 13120.4)	0.8924	
18	13.25234	9	0.1515	1.472833	(9, 13120.4)	0.1515	
19	16.37948	9	0.0594	1.820593	(9, 13120.4)	0.0594	
20	7.182029	9	0.6182	0.798009	(9, 13120.4)	0.6182	
21	6.835204	9	0.6543	0.759462	(9, 13120.4)	0.6543	
22	12.38755	9	0.1923	1.376677	(9, 13120.4)	0.1923	
23	10.23521	9	0.3318	1.137385	(9, 13120.4)	0.3318	
24	21.32851	9	0.0113	2.371129	(9, 13120.4)	0.0113	
25	13.60128	9	0.1372	1.511633	(9,13120.4)	0.1372	
26	10.96248	9	0.2783	1.218237	(9,13120.4)	0.2783	
27	18.98793	9	0.0253	2.110734	(9,13120.4)	0.0253	
28	12.02206	9	0.2121	1.336040	(9,13120.4)	0.2121	
29	11.32677	9	0.2540	1.258737	(9, 13120.4)	0.2540	

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	12.13877	9	0.2056	1.349017	(9, 13120.4)	0.2056
2	29.47285	18	0.0429	1.638104	(18, 15240.1)	0.0429
3	35.92675	27	0.1169	1.331082	(27, 15727.6)	0.1169
4	44.75047	36	0.1503	1.243488	(36, 15902.4)	0.1503
5	52.51674	45	0.2057	1.167385	(45, 15980.4)	0.2057
6	65.38594	54	0.1378	1.211355	(54, 16019.2)	0.1379
7	66.46056	63	0.3587	1.055108	(63, 16039.1)	0.3587
8	77.45666	72	0.3089	1.076035	(72, 16049.0)	0.3089
9	94.18737	81	0.1500	1.163354	(81,16053.0)	0.1500
10	103.7849	90	0.1519	1.153728	(90, 16053.3)	0.1519
11	107.3781	99	0.2655	1.084974	(99, 16051.2)	0.2655
12	115.9959	108	0.2822	1.074366	(108, 16047.4)	0.2822
13	120.2595	117	0.3995	1.028023	(117, 16042.5)	0.3995
14	128.3091	126	0.4260	1.018458	(126, 16036.7)	0.4260
15	140.2345	135	0.3613	1.039002	(135, 16030.3)	0.3613
16	157.7607	144	0.2046	1.096091	(144, 16023.5)	0.2046
17	165.2465	153	0.2357	1.080514	(153, 16016.3)	0.2358
18	179.5768	162	0.1635	1.109166	(162, 16008.7)	0.1636
19	191.1652	171	0.1387	1.118687	(171, 16001.0)	0.1388
20	200.7180	180	0.1384	1.115878	(180, 15993.1)	0.1384
21	211.7756	189	0.1227	1.121358	(189, 15985.0)	0.1228
22	223.9533	198	0.0995	1.132049	(198, 15976.8)	0.0995
23	228.6592	207	0.1441	1.105434	(207, 15968.5)	0.1442
24	238.3011	216	0.1423	1.104066	(216, 15960.1)	0.1424
25	246.3048	225	0.1573	1.095467	(225, 15951.7)	0.1574
26	261.7458	234	0.1028	1.119591	(234, 15943.1)	0.1029
27	277.6947	243	0.0625	1.144065	(243, 15934.6)	0.0625
28	283.7904	252	0.0823	1.127319	(252, 15925.9)	0.0823
29	289.0387	261	0.1122	1.108444	(261, 15917.3)	0.1123

_

Null hypothesis: No serial correlation at lags 1 to h

=

EViews Output 51: VAR Residual Serial Correlation LM Test - Oats

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:29 Sample: 3/31/2000 3/03/2022 Included observations: 5485

Null hypothesis: No serial correlation at lag h Lag LRE* stat df Prob. Rao F-stat df Prob. 1 13.43124 9 0.1440 1.492724 (9, 13159.4)0.1440 2 9 0.0254 2.109536 (9, 13159.4)0.0254 18.97718 3 9 0.1955 12.32751 1.370000 (9, 13159.4) 0.1955 4 5.160463 9 0.8201 0.573345 (9, 13159.4)0.8201 5 9 0.3075 10.55478 1.172912 (9,13159.4) 0.3075 6 11.81645 9 0.2239 1.313179 (9, 13159.4)0.2239 7 9 0.3671 (9, 13159.4)9.798231 1.088808 0.3671 9 8 2.696248 0.9751 0.299534 (9, 13159.4)0.9751 9 8.958602 9 0.4411 0.995474 (9,13159.4) 0.4411 9 0.0210 10 19.53024 2.171060 (9, 13159.4)0.0210 11 11.49127 9 0.2435 1.277026 (9, 13159.4) 0.2435 9 12 13.37315 0.1464 1.486266 (9, 13159.4)0.1464 9 (9,13159.4) 13 0.1733 1.419079 0.1733 12.76891 14 9 12.21261 0.2016 1.357225 (9, 13159.4)0.2016 15 9.189854 9 0.4199 1.021180 (9, 13159.4)0.4199 16 9 0.0911 1.666378 (9, 13159.4)14.99285 0.0911 9 17 23.41937 0.0053 2.603776 (9, 13159.4) 0.0053 18 9 0.1579 13.10428 1.456369 (9, 13159.4) 0.1579 9 0.1711 19 12.81523 1.424229 (9, 13159.4)0.171120 8.245546 9 0.5096 0.916215 (9, 13159.4)0.5096 9 0.4315 21 9.063251 1.007107 (9, 13159.4) 0.4315 9 22 4.078382 0.9062 0.453103 (9, 13159.4)0.9062 23 9 21.08501 0.0123 2.344032 (9, 13159.4)0.0123 24 17.59003 9 0.0402 1.955234 (9, 13159.4)0.0402 25 9 (9, 13159.4) 15.96633 0.0676 1.774642 0.0676

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	13.43124	9	0.1440	1.492724	(9, 13159.4)	0.1440
2	26.80170	18	0.0828	1.489509	(18, 15285.3)	0.0828
3	35.34922	27	0.1302	1.309659	(27, 15774.3)	0.1302
4	39.44248	36	0.3186	1.095811	(36, 15949.7)	0.3186
5	44.17159	45	0.5069	0.981626	(45, 16028.0)	0.5069
6	50.44247	54	0.6124	0.934074	(54, 16066.8)	0.6124
7	60.89666	63	0.5517	0.966609	(63, 16086.9)	0.5517
8	65.05849	72	0.7061	0.903450	(72, 16096.8)	0.7061
9	70.97589	81	0.7792	0.876026	(81, 16100.8)	0.7793
10	77.29176	90	0.8278	0.858510	(90, 16101.2)	0.8278
11	89.34483	99	0.7460	0.902256	(99, 16099.1)	0.7460
12	106.2362	108	0.5300	0.983672	(108, 16095.3)	0.5300
13	112.0749	117	0.6114	0.957814	(117, 16090.4)	0.6114
14	126.3969	126	0.4733	1.003220	(126, 16084.7)	0.4733
15	133.1134	135	0.5298	0.986023	(135, 16078.3)	0.5298
16	144.4938	144	0.4728	1.003501	(144, 16071.4)	0.4728
17	154.9172	153	0.4415	1.012646	(153, 16064.2)	0.4415
18	170.3039	162	0.3119	1.051586	(162, 16056.7)	0.3119
19	175.2078	171	0.3968	1.024795	(171, 16049.0)	0.3968
20	188.0120	180	0.3259	1.044825	(180, 16041.0)	0.3260
21	198.4975	189	0.3034	1.050615	(189, 16033.0)	0.3034
22	210.0329	198	0.2656	1.061222	(198, 16024.8)	0.2656
23	215.8321	207	0.3225	1.043004	(207, 16016.5)	0.3226
24	225.3146	216	0.3178	1.043475	(216, 16008.1)	0.3179
25	229.7053	225	0.4007	1.021109	(225, 15999.6)	0.4007

Null hypothesis: No serial correlation at lags 1 to h

EViews Output 52: VAR Residual Serial Correlation LM Test – Rough Rice VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:36 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.	
1	5.392034	9	0.7989	0.599078	(9, 13110.7)	0.7989	
2	6.310787	9	0.7085	0.701180	(9, 13110.7)	0.7085	
3	6.658770	9	0.6726	0.739854	(9, 13110.7)	0.6726	
4	6.677922	9	0.6706	0.741982	(9, 13110.7)	0.6706	
5	10.19437	9	0.3350	1.132846	(9, 13110.7)	0.3350	
6	8.768127	9	0.4589	0.974302	(9, 13110.7)	0.4589	
7	10.43785	9	0.3162	1.159913	(9, 13110.7)	0.3162	
8	4.484611	9	0.8767	0.498242	(9, 13110.7)	0.8767	
9	7.093881	9	0.6273	0.788212	(9, 13110.7)	0.6273	
10	7.658600	9	0.5689	0.850977	(9, 13110.7)	0.5689	
11	14.57424	9	0.1033	1.619828	(9, 13110.7)	0.1033	
12	3.199226	9	0.9559	0.355418	(9, 13110.7)	0.9559	
13	10.31121	9	0.3259	1.145835	(9, 13110.7)	0.3259	
14	15.75637	9	0.0721	1.751292	(9, 13110.7)	0.0721	
15	23.06012	9	0.0061	2.563805	(9, 13110.7)	0.0061	
16	10.42322	9	0.3173	1.158286	(9, 13110.7)	0.3173	
17	5.647875	9	0.7746	0.627509	(9, 13110.7)	0.7746	
18	11.07494	9	0.2706	1.230740	(9, 13110.7)	0.2706	
19	8.331053	9	0.5012	0.925719	(9, 13110.7)	0.5012	
20	5.301158	9	0.8073	0.588979	(9, 13110.7)	0.8073	
21	9.164542	9	0.4222	1.018366	(9, 13110.7)	0.4222	
22	11.73714	9	0.2285	1.304362	(9, 13110.7)	0.2285	
23	7.720414	9	0.5625	0.857847	(9, 13110.7)	0.5625	
24	13.61626	9	0.1366	1.513299	(9, 13110.7)	0.1366	
25	12.42506	9	0.1904	1.380848	(9, 13110.7)	0.1904	
26	9.817467	9	0.3655	1.090947	(9, 13110.7)	0.3655	
27	6.948153	9	0.6425	0.772016	(9, 13110.7)	0.6425	
28	7.946317	9	0.5396	0.882956	(9, 13110.7)	0.5396	
29	9.128788	9	0.4255	1.014392	(9, 13110.7)	0.4255	
30	5.663055	9	0.7731	0.629196	(9, 13110.7)	0.7731	

Null hypothesis: No serial correlation at lag h

	Lag	LRE* stat	df	Prob.	Rao F-stat	df
-	1	5.392034	9			(9, 13110.7)
	2	11.45277 15.76307	18	0.8742		(18, 15228.7) (27, 15715.9)

_

Prob.

0.7989

Null hypothesis: No serial correlation at lags 1 to h

2	11.45277	18	0.8742	0.636170	(18, 15228.7)	0.8742
3	15.76307	27	0.9573	0.583646	(27, 15715.9)	0.9573
4	27.37791	36	0.8486	0.760339	(36, 15890.6)	0.8486
5	33.55209	45	0.8954	0.745381	(45, 15968.5)	0.8954
6	43.62876	54	0.8425	0.807728	(54, 16007.3)	0.8425
7	51.82645	63	0.8416	0.822406	(63, 16027.2)	0.8416
8	69.80192	72	0.5515	0.969464	(72, 16037.1)	0.5515
9	77.71351	81	0.5829	0.959386	(81, 16041.0)	0.5829
10	92.46054	90	0.4085	1.027479	(90, 16041.3)	0.4085
11	105.8349	99	0.3008	1.069330	(99, 16039.2)	0.3008
12	115.9870	108	0.2824	1.074284	(108, 16035	0.2824
13	126.1724	117	0.2650	1.078767	(117, 16030	0.2650
14	134.8619	126	0.2785	1.070689	(126, 16024	0.2785
15	146.6013	135	0.2336	1.086389	(135, 16018	0.2336
16	150.0241	144	0.3485	1.042088	(144, 16011	0.3485
17	154.8328	153	0.4434	1.012092	(153, 16004	0.4434
18	166.0675	162	0.3970	1.025293	(162, 15996	0.3970
19	170.0643	171	0.5058	0.994552	(171, 15989	0.5059
20	175.2939	180	0.5851	0.973763	(180, 15981	0.5852
21	179.2384	189	0.6832	0.948111	(189, 15973	0.6832
22	185.0771	198	0.7358	0.934403	(198, 15964	0.7358
23	195.8229	207	0.7008	0.945721	(207, 15956	0.7008
24	202.8921	216	0.7296	0.938976	(216, 15948	0.7297
25	218.4005	225	0.6113	0.970514	(225, 15939	0.6114
26	228.1534	234	0.5955	0.974880	(234, 15931	0.5955
27	230.4410	243	0.7086	0.947986	(243, 15922	0.7087
28	232.9500	252	0.7998	0.923893	(252, 15913	0.7999
29	236.6769	261	0.8577	0.906155	(261, 15905	0.8578
30	244.7057	270	0.8634	0.905636	(270, 15896	0.8634

EViews Output 53: VAR Residual Serial Correlation LM Test – Soybean VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:40 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	7.810653	9	0.5533	0.867877	(9, 13178.8)	0.5533
2	13.95855	9	0.1238	1.551360	(9, 13178.8)	0.1238
3	10.04661	9	0.3467	1.116419	(9, 13178.8)	0.3467
4	8.111254	9	0.5230	0.901288	(9, 13178.8)	0.5230
5	5.745053	9	0.7651	0.638309	(9, 13178.8)	0.7651
6	7.424235	9	0.5930	0.824928	(9, 13178.8)	0.5930
7	10.02894	9	0.3481	1.114454	(9, 13178.8)	0.3481
8	4.534201	9	0.8729	0.503753	(9, 13178.8)	0.8729
9	5.529428	9	0.7859	0.614347	(9, 13178.8)	0.7859
10	10.21474	9	0.3334	1.135109	(9, 13178.8)	0.3334
11	12.32844	9	0.1954	1.370104	(9, 13178.8)	0.1954
12	6.260401	9	0.7136	0.695581	(9, 13178.8)	0.7136
13	13.06448	9	0.1597	1.451943	(9, 13178.8)	0.1597
14	3.551406	9	0.9384	0.394549	(9, 13178.8)	0.9384
15	10.95929	9	0.2785	1.217881	(9, 13178.8)	0.2785
16	5.040491	9	0.8308	0.560013	(9, 13178.8)	0.8308
17	5.314047	9	0.8061	0.590412	(9, 13178.8)	0.8061
18	7.719351	9	0.5627	0.857729	(9, 13178.8)	0.5627
19	15.35372	9	0.0817	1.706509	(9, 13178.8)	0.0817
20	7.628010	9	0.5720	0.847577	(9, 13178.8)	0.5720
21	7.424679	9	0.5930	0.824978	(9, 13178.8)	0.5930
22	4.575527	9	0.8696	0.508345	(9, 13178.8)	0.8696
23	13.15637	9	0.1557	1.462161	(9, 13178.8)	0.1557

Null hypothesis: No serial correlation at lag h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	7.810653	9	0.5533	0.867877	(9, 13178.8)	0.5533
2	19.97222	18	0.3344	1.109712	(18, 15307.9)	0.3344
3	31.40166	27	0.2550	1.163260	(27, 15797.7)	0.2550
4	42.42750	36	0.2136	1.178852	(36, 15973.4)	0.2136
5	52.10376	45	0.2171	1.158189	(45, 16051.7)	0.2171
6	57.72983	54	0.3391	1.069260	(54, 16090.7)	0.3391
7	68.08668	63	0.3083	1.080977	(63, 16110.8)	0.3083
8	70.65485	72	0.5228	0.981336	(72, 16120.7)	0.5228
9	74.15059	81	0.6919	0.915300	(81, 16124.8)	0.6919
10	78.12539	90	0.8098	0.867792	(90, 16125.1)	0.8098
11	90.39472	99	0.7199	0.912889	(99, 16123.0)	0.7199
12	96.99981	108	0.7672	0.897893	(108, 16119.3)	0.7672
13	111.3449	117	0.6301	0.951554	(117, 16114.4)	0.6301
14	115.8160	126	0.7315	0.918937	(126, 16108.6)	0.7315
15	120.8392	135	0.8032	0.894763	(135, 16102.3)	0.8032
16	131.1886	144	0.7700	0.910721	(144, 16095.4)	0.7700
17	141.0894	153	0.7457	0.921863	(153, 16088.2)	0.7457
18	147.1862	162	0.7917	0.908189	(162, 16080.7)	0.7917
19	161.7158	171	0.6827	0.945484	(171, 16073.0)	0.6827
20	167.0701	180	0.7464	0.927843	(180, 16065.0)	0.7464
21	175.8332	189	0.7451	0.930002	(189, 16057.0)	0.7451
22	185.3197	198	0.7316	0.935636	(198, 16048.8)	0.7316
23	190.5558	207	0.7875	0.920135	(207, 16040.5)	0.7875

Null hypothesis: No serial correlation at lags 1 to h

EViews Output 54: VAR Residual Serial Correlation LM Test – Soybean Oil

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:42 Sample: 3/31/2000 3/03/2022 Included observations: 5487

_

Null hypothesis: No serial correlation at lag h								
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.		
1	6.775204	9	0.6605	0.752794	(9, 13178.8)	0.6605		
2	14.58941	9	0.1028	1.621512	(9, 13178.8)	0.1028		
3	14.45270	9	0.1071	1.606310	(9, 13178.8)	0.1071		
4	10.47172	9	0.3137	1.163678	(9, 13178.8)	0.3137		
5	10.52082	9	0.3100	1.169136	(9, 13178.8)	0.3100		
6	9.667889	9	0.3780	1.074319	(9, 13178.8)	0.3780		
7	17.12751	9	0.0468	1.903788	(9, 13178.8)	0.0468		
8	6.668317	9	0.6716	0.740915	(9, 13178.8)	0.6716		
9	8.325128	9	0.5017	0.925061	(9,13178.8)	0.5017		
10	31.04596	9	0.0003	3.452699	(9, 13178.8)	0.0003		
11	11.97508	9	0.2147	1.330816	(9, 13178.8)	0.2147		
12	13.37846	9	0.1462	1.486856	(9, 13178.8)	0.1462		
13	10.42198	9	0.3174	1.158148	(9,13178.8)	0.3174		
14	6.778151	9	0.6602	0.753122	(9,13178.8)	0.6602		
15	9.577207	9	0.3858	1.064238	(9,13178.8)	0.3858		
16	15.27142	9	0.0837	1.697357	(9,13178.8)	0.0837		
17	4.158080	9	0.9007	0.461959	(9, 13178.8)	0.9007		
18	13.99359	9	0.1226	1.555256	(9, 13178.8)	0.1226		
19	14.46959	9	0.1066	1.608188	(9, 13178.8)	0.1066		
20	6.917406	9	0.6457	0.768598	(9,13178.8)	0.6457		
21	9.992616	9	0.3511	1.110417	(9, 13178.8)	0.3511		
22	11.28236	9	0.2568	1.253800	(9, 13178.8)	0.2568		
23	7.966832	9	0.5375	0.885236	(9, 13178.8)	0.5375		

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	6.775204	9	0.6605	0.752794	(9, 13178.8)	0.6605
2	20.88240	18	0.2854	1.160318	(18, 15307.9)	0.2854
3	32.80976	27	0.2034	1.215476	(27, 15797.7)	0.2034
4	38.93465	36	0.3391	1.081685	(36, 15973.4)	0.3391
5	52.70423	45	0.2007	1.171558	(45, 16051.7)	0.2007
6	64.16420	54	0.1621	1.188674	(54, 16090.7)	0.1621
7	74.12085	63	0.1595	1.176999	(63, 16110.8)	0.1595
8	79.07105	72	0.2656	1.098516	(72, 16120.7)	0.2656
9	85.28142	81	0.3509	1.053060	(81, 16124.8)	0.3509
10	90.43767	90	0.4672	1.004936	(90, 16125.1)	0.4672
11	104.2907	99	0.3385	1.053676	(99, 16123.0)	0.3385
12	113.7517	108	0.3337	1.053505	(108, 16119.3)	0.3337
13	122.7348	117	0.3400	1.049262	(117, 16114.4)	0.3400
14	129.9177	126	0.3874	1.031276	(126, 16108.6)	0.3874
15	134.3096	135	0.5006	0.994921	(135, 16102.3)	0.5006
16	150.9696	144	0.3287	1.048685	(144, 16095.4)	0.3288
17	158.2484	153	0.3689	1.034528	(153, 16088.2)	0.3690
18	170.1730	162	0.3144	1.050773	(162, 16080.7)	0.3144
19	177.7583	171	0.3458	1.039795	(171, 16073.0)	0.3458
20	187.2846	180	0.3395	1.040759	(180, 16065.0)	0.3395
21	194.9112	189	0.3688	1.031518	(189, 16057.0)	0.3688
22	206.0596	198	0.3325	1.041017	(198, 16048.8)	0.3325
23	207.9128	207	0.4691	1.004487	(207, 16040.5)	0.4691

Null hypothesis: No serial correlation at lags 1 to h

EViews Output 55: VAR Residual Serial Correlation LM Test – Wheat

VAR Residual Serial Correlation LM Tests Date: 05/27/22 Time: 20:50 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Null hypo	Null hypothesis: No serial correlation at lag h								
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.			
1	7.719246	9	0.5627	0.857718	(9, 13110.7)	0.5627			
2	4.201421	9	0.8977	0.466775	(9, 13110.7)	0.8977			
3	4.577358	9	0.8695	0.508548	(9, 13110.7)	0.8695			
4	13.58835	9	0.1377	1.510196	(9, 13110.7)	0.1377			
5	8.430329	9	0.4914	0.936754	(9, 13110.7)	0.4914			
6	14.37630	9	0.1096	1.597816	(9, 13110.7)	0.1096			
7	4.876304	9	0.8450	0.541768	(9, 13110.7)	0.8450			
8	5.841066	9	0.7557	0.648979	(9, 13110.7)	0.7557			
9	9.203139	9	0.4187	1.022657	(9, 13110.7)	0.4187			
10	13.03563	9	0.1610	1.448736	(9, 13110.7)	0.1610			
11	9.609062	9	0.3831	1.067780	(9, 13110.7)	0.3831			
12	4.948986	9	0.8387	0.549844	(9, 13110.7)	0.8387			
13	4.107686	9	0.9042	0.456359	(9, 13110.7)	0.9042			
14	11.79616	9	0.2250	1.310924	(9, 13110.7)	0.2250			
15	11.49402	9	0.2434	1.277332	(9, 13110.7)	0.2434			
16	6.655566	9	0.6729	0.739498	(9, 13110.7)	0.6729			
17	3.976425	9	0.9130	0.441774	(9, 13110.7)	0.9130			
18	9.777024	9	0.3688	1.086451	(9, 13110.7)	0.3688			
19	2.941007	9	0.9666	0.326728	(9, 13110.7)	0.9666			
20	3.248905	9	0.9536	0.360938	(9, 13110.7)	0.9536			
21	4.562844	9	0.8706	0.506935	(9, 13110.7)	0.8706			
22	12.81770	9	0.1710	1.424505	(9, 13110.7)	0.1710			
23	15.83056	9	0.0705	1.759543	(9, 13110.7)	0.0705			
24	13.59240	9	0.1376	1.510646	(9, 13110.7)	0.1376			
25	8.426452	9	0.4918	0.936323	(9, 13110.7)	0.4918			
26	2.660009	9	0.9763	0.295508	(9, 13110.7)	0.9763			
27	4.842789	9	0.8478	0.538043	(9, 13110.7)	0.8478			
28	6.346965	9	0.7048	0.705201	(9, 13110.7)	0.7048			
29	7.026915	9	0.6343	0.780769	(9, 13110.7)	0.6343			
30	8.730730	9	0.4625	0.970145	(9, 13110.7)	0.4625			

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	7.719246	9	0.5627	0.857718	(9, 13110.7)	0.5627
2	13.01643	18	0.7906	0.723064	(18, 15228.7)	0.7906
3	18.82057	27	0.8764	0.696921	(27, 15715.9)	0.8764
4	28.40235	36	0.8126	0.788815	(36, 15890.6)	0.8126
5	36.15422	45	0.8238	0.803255	(45, 15968.5)	0.8238
6	43.43999	54	0.8475	0.804229	(54, 16007.3)	0.8475
7	49.98486	63	0.8830	0.793137	(63, 16027.2)	0.8830
8	68.64638	72	0.5902	0.953380	(72, 16037.1)	0.5902
9	81.12956	81	0.4751	1.001664	(81, 16041.0)	0.4751
10	89.51968	90	0.4945	0.994708	(90, 16041.3)	0.4945
11	94.71177	99	0.6032	0.956613	(99, 16039.2)	0.6032
12	97.04643	108	0.7662	0.898325	(108, 16035.4)	0.7662
13	102.2298	117	0.8328	0.873409	(117, 16030.5)	0.8328
14	115.0158	126	0.7488	0.912564	(126, 16024.7)	0.7488
15	122.3601	135	0.7745	0.906066	(135, 16018.4)	0.7745
16	130.1462	144	0.7894	0.903454	(144, 16011.5)	0.7895
17	131.4417	153	0.8956	0.858567	(153, 16004.3)	0.8956
18	134.8891	162	0.9408	0.831991	(162, 15996.8)	0.9409
19	145.9001	171	0.9183	0.852595	(171, 15989.0)	0.9183
20	155.2398	180	0.9090	0.861823	(180, 15981.1)	0.9090
21	164.2155	189	0.9033	0.868238	(189, 15973.0)	0.9033
22	172.4571	198	0.9048	0.870345	(198, 15964.8)	0.9048
23	182.5407	207	0.8887	0.881210	(207, 15956.5)	0.8888
24	186.5168	216	0.9273	0.862750	(216, 15948.1)	0.9274
25	196.2633	225	0.9170	0.871539	(225, 15939.7)	0.9170
26	198.7365	234	0.9544	0.848405	(234, 15931.1)	0.9544
27	210.4539	243	0.9354	0.865223	(243, 15922.6)	0.9354
28	222.0493	252	0.9132	0.880361	(252, 15913.9)	0.9133
29	234.3727	261	0.8806	0.897269	(261, 15905.3)	0.8807
30	238.7667	270	0.9148	0.883492	(270, 15896.6)	0.9148

Section III: VAR Estimates

EViews Output 56: VAR Estimates – Cocoa

Vector Autoregression Estimates Date: 05/27/22 Time: 20:12 Sample (adjusted): 5/03/2000 5/13/2021 Included observations: 5487 after adjustments Standard errors in () & t-statistics in []

	COCOA_LA	GPRD_ACT	GPRD_THR
COCOA_LAST_PRICE1	0.001470	-0.002039	-0.010642
	(0.01358)	(0.01669)	(0.01411)
	[0.10825]	[-0.12216]	[-0.75445]
COCOA_LAST_PRICE1	0.026382	0.015269	-0.002812
	(0.01358)	(0.01668)	(0.01410)
	[1.94333]	[0.91516]	[-0.19941]
COCOA_LAST_PRICE1	0.024025	0.002365	0.009196
	(0.01357)	(0.01668)	(0.01410)
	[1.77024]	[0.14180]	[0.65245]
COCOA_LAST_PRICE1	-0.015564	0.004919	0.007712
	(0.01357)	(0.01668)	(0.01410)
	[-1.14660]	[0.29484]	[0.54700]
COCOA_LAST_PRICE1	-0.000811	-0.021127	-0.019847
	(0.01357)	(0.01668)	(0.01409)
	[-0.05978]	[-1.26674]	[-1.40812]
COCOA_LAST_PRICE1	-0.025829	-0.010978	0.021335
	(0.01357)	(0.01668)	(0.01410)
	[-1.90308]	[-0.65815]	[1.51351]
COCOA_LAST_PRICE1	0.011446	-0.002258	0.015597
	(0.01358)	(0.01669)	(0.01410)
	[0.84283]	[-0.13532]	[1.10581]
COCOA_LAST_PRICE1	0.005057	-0.003661	-0.013566
	(0.01358)	(0.01669)	(0.01411)
	[0.37230]	[-0.21932]	[-0.96167]
COCOA_LAST_PRICE1	-0.009502	-0.009047	0.008796
	(0.01358)	(0.01669)	(0.01410)
	[-0.69975]	[-0.54207]	[0.62365]
COCOA_LAST_PRICE1	-0.027399	-0.010226	-0.011823
	(0.01357)	(0.01667)	(0.01409)
	[-2.01971]	[-0.61336]	[-0.83912]

COCOA_LAST_PRICE1	0.005921	0.013793	0.035169
	(0.01357)	(0.01668)	(0.01409)
	[0.43632]	[0.82707]	[2.49539]
COCOA_LAST_PRICE1	-0.014008	0.011332	0.004543
	(0.01358)	(0.01669)	(0.01410)
	[-1.03179]	[0.67916]	[0.32216]
COCOA_LAST_PRICE1	-0.042305	0.018543	0.003019
	(0.01358)	(0.01669)	(0.01410)
	[-3.11557]	[1.11115]	[0.21404]
COCOA_LAST_PRICE1	-0.006621	-0.005551	0.008378
	(0.01359)	(0.01670)	(0.01412)
	[-0.48718]	[-0.33231]	[0.59355]
COCOA_LAST_PRICE1	-0.024969	-0.001107	0.007344
	(0.01359)	(0.01670)	(0.01411)
	[-1.83738]	[-0.06626]	[0.52029]
COCOA_LAST_PRICE1	-0.011777	0.000274	-0.009116
	(0.01359)	(0.01671)	(0.01412)
	[-0.86643]	[0.01642]	[-0.64574]
COCOA_LAST_PRICE1	-0.000700	0.009417	0.006652
	(0.01359)	(0.01670)	(0.01411)
	[-0.05153]	[0.56399]	[0.47141]
COCOA_LAST_PRICE1	-0.005184	-0.025195	-0.006811
	(0.01359)	(0.01670)	(0.01411)
	[-0.38159]	[-1.50895]	[-0.48269]
COCOA_LAST_PRICE1	-0.005620	-0.004067	-0.014020
	(0.01358)	(0.01670)	(0.01411)
	[-0.41369]	[-0.24359]	[-0.99365]
COCOA_LAST_PRICE1	-0.040004	0.001829	0.018147
	(0.01358)	(0.01669)	(0.01411)
	[-2.94507]	[0.10956]	[1.28632]
COCOA_LAST_PRICE1	-0.017804	-0.022814	-0.020156
	(0.01359)	(0.01670)	(0.01411)
	[-1.31013]	[-1.36596]	[-1.42805]
COCOA_LAST_PRICE1	-0.017126	0.003031	0.049013
	(0.01360)	(0.01671)	(0.01412)
	[-1.25964]	[0.18138]	[3.47101]

GPRD_ACT(-1)	0.006313	0.484467	0.058133
	(0.01146)	(0.01408)	(0.01190)
	[0.55107]	[34.4073]	[4.88554]
GPRD_ACT(-2)	0.010578	0.197475	0.009687
	(0.01266)	(0.01556)	(0.01315)
	[0.83566]	[12.6938]	[0.73683]
GPRD_ACT(-3)	-0.022086	0.089769	0.009648
	(0.01286)	(0.01580)	(0.01336)
	[-1.71766]	[5.68038]	[0.72245]
GPRD_ACT(-4)	0.009922	0.052100	0.022946
	(0.01291)	(0.01587)	(0.01341)
	[0.76827]	[3.28248]	[1.71070]
GPRD_ACT(-5)	-0.016183	0.080016	0.005619
	(0.01293)	(0.01589)	(0.01343)
	[-1.25168]	[5.03563]	[0.41847]
GPRD_ACT(-6)	0.021879	0.009656	0.009449
	(0.01296)	(0.01592)	(0.01346)
	[1.68887]	[0.60645]	[0.70225]
GPRD_ACT(-7)	-0.002143	-0.019712	-0.019454
	(0.01296)	(0.01593)	(0.01346)
	[-0.16539]	[-1.23771]	[-1.44538]
GPRD_ACT(-8)	-0.016873	-0.007351	-0.018172
	(0.01296)	(0.01593)	(0.01346)
	[-1.30189]	[-0.46150]	[-1.34998]
GPRD_ACT(-9)	-0.004710	-0.014216	-0.022185
	(0.01297)	(0.01593)	(0.01347)
	[-0.36329]	[-0.89217]	[-1.64755]
GPRD_ACT(-10)	-0.000750	0.031964	-0.008541
	(0.01296)	(0.01593)	(0.01346)
	[-0.05787]	[2.00697]	[-0.63460]
GPRD_ACT(-11)	0.002444	0.029741	0.009737
	(0.01296)	(0.01593)	(0.01347)
	[0.18851]	[1.86649]	[0.72308]
GPRD_ACT(-12)	0.019228	-0.012396	-0.014777
	(0.01296)	(0.01593)	(0.01346)
	[1.48339]	[-0.77815]	[-1.09764]

GPRD_ACT(-13)	-0.008547	0.006295	-0.015084
	(0.01296)	(0.01593)	(0.01346)
	[-0.65949]	[0.39522]	[-1.12058]
GPRD_ACT(-14)	-0.003966	-0.004359	0.000595
	(0.01296)	(0.01593)	(0.01346)
	[-0.30598]	[-0.27361]	[0.04422]
GPRD_ACT(-15)	-0.005743	0.015882	-0.012282
	(0.01296)	(0.01593)	(0.01346)
	[-0.44306]	[0.99686]	[-0.91228]
GPRD_ACT(-16)	0.001077	-0.006934	-0.014502
	(0.01298)	(0.01595)	(0.01348)
	[0.08296]	[-0.43467]	[-1.07572]
GPRD_ACT(-17)	0.026483	-0.030691	-0.015131
	(0.01299)	(0.01597)	(0.01349)
	[2.03841]	[-1.92209]	[-1.12136]
GPRD_ACT(-18)	-0.014612	0.005805	0.008360
	(0.01298)	(0.01595)	(0.01348)
	[-1.12566]	[0.36390]	[0.62009]
GPRD_ACT(-19)	0.013096	0.007519	0.003006
	(0.01297)	(0.01594)	(0.01347)
	[1.00977]	[0.47175]	[0.22315]
GPRD_ACT(-20)	-0.012149	0.011768	0.016823
	(0.01293)	(0.01589)	(0.01343)
	[-0.93946]	[0.74040]	[1.25248]
GPRD_ACT(-21)	0.004366	0.050794	0.016336
	(0.01275)	(0.01567)	(0.01324)
	[0.34242]	[3.24156]	[1.23366]
GPRD_ACT(-22)	-0.002959	-0.043272	-0.034855
	(0.01156)	(0.01421)	(0.01201)
	[-0.25587]	[-3.04463]	[-2.90203]
GPRD_THREAT(-1)	0.003446	0.009127	0.337150
	(0.01354)	(0.01664)	(0.01406)
	[0.25456]	[0.54853]	[23.9767]
GPRD_THREAT(-2)	-0.016116	0.043004	0.171786
	(0.01428)	(0.01756)	(0.01484)
	[-1.12820]	[2.44956]	[11.5788]

GPRD_THREAT(-3)	0.020280	-0.021013	0.065541
	(0.01444)	(0.01775)	(0.01500)
	[1.40402]	[-1.18371]	[4.36885]
GPRD_THREAT(-4)	-0.017142	-0.017897	0.030312
	(0.01448)	(0.01780)	(0.01504)
	[-1.18388]	[-1.00567]	[2.01554]
GPRD_THREAT(-5)	0.006213	0.042754	0.081044
	(0.01449)	(0.01781)	(0.01505)
	[0.42870]	[2.40047]	[5.38451]
GPRD_THREAT(-6)	0.003929	-0.015419	0.033380
	(0.01453)	(0.01786)	(0.01509)
	[0.27038]	[-0.86340]	[2.21176]
GPRD_THREAT(-7)	0.006800	-0.004037	0.015938
	(0.01454)	(0.01787)	(0.01510)
	[0.46777]	[-0.22597]	[1.05563]
GPRD_THREAT(-8)	0.016801	-0.000966	-0.003046
	(0.01452)	(0.01785)	(0.01508)
	[1.15695]	[-0.05414]	[-0.20196]
GPRD_THREAT(-9)	-0.003950	0.028508	0.022375
	(0.01456)	(0.01789)	(0.01512)
	[-0.27135]	[1.59355]	[1.48001]
GPRD_THREAT(-10)	-0.006827	0.003067	0.045112
	(0.01456)	(0.01790)	(0.01513)
	[-0.46875]	[0.17134]	[2.98215]
GPRD_THREAT(-11)	-0.002491	-0.035365	0.012839
	(0.01457)	(0.01791)	(0.01513)
	[-0.17093]	[-1.97472]	[0.84831]
GPRD_THREAT(-12)	0.009401	-0.011302	-0.027518
	(0.01461)	(0.01796)	(0.01518)
	[0.64345]	[-0.62938]	[-1.81333]
GPRD_THREAT(-13)	-0.005918	-0.048049	-0.021600
	(0.01461)	(0.01795)	(0.01517)
	[-0.40520]	[-2.67677]	[-1.42391]
GPRD_THREAT(-14)	-0.018926	0.038007	0.012997
	(0.01462)	(0.01797)	(0.01518)
	[-1.29467]	[2.11546]	[0.85604]

GPRD_THREAT(-15)	0.019167	0.022428	0.051708
	(0.01463)	(0.01798)	(0.01519)
	[1.31027]	[1.24746]	[3.40330]
GPRD_THREAT(-16)	-0.009583	-0.002200	0.013021
	(0.01466)	(0.01802)	(0.01523)
	[-0.65357]	[-0.12208]	[0.85496]
GPRD_THREAT(-17)	-0.004051	-0.011738	-0.002157
	(0.01465)	(0.01801)	(0.01522)
	[-0.27645]	[-0.65183]	[-0.14171]
GPRD_THREAT(-18)	-0.016853	-0.004060	-0.001101
	(0.01462)	(0.01797)	(0.01519)
	[-1.15231]	[-0.22588]	[-0.07248]
GPRD_THREAT(-19)	-0.023377	-0.002786	0.017158
	(0.01462)	(0.01797)	(0.01518)
	[-1.59908]	[-0.15504]	[1.13003]
GPRD_THREAT(-20)	0.004250	0.012428	0.043205
	(0.01459)	(0.01793)	(0.01515)
	[0.29134]	[0.69320]	[2.85154]
GPRD_THREAT(-21)	0.025873	-0.026959	-0.016987
	(0.01445)	(0.01775)	(0.01500)
	[1.79111]	[-1.51855]	[-1.13223]
GPRD_THREAT(-22)	-0.004080	0.024518	0.040756
	(0.01381)	(0.01697)	(0.01434)
	[-0.29545]	[1.44464]	[2.84161]
С	1.340443	5.094642	9.520030
	(1.48698)	(1.82753)	(1.54440)
	[0.90145]	[2.78773]	[6.16421]

R-squared	0.015482	0.767779	0.570577
Adj. R-squared	0.003494	0.764951	0.565348
Sum sq. resids	9893097.	14943314	10671892
S.E. equation	42.72347	52.50780	44.37323
F-statistic	1.291433	271.5120	109.1148
Log likelihood	-28354.31	-29485.81	-28562.21
Akaike AIC	10.35951	10.77194	10.43529
Schwarz SC	10.44022	10.85265	10.51600
Mean dependent	0.342264	114.2376	112.7700
S.D. dependent	42.79830	108.3040	67.30542
Determinant resid covarian	ce (dof adj.)	9.21E+09	
Determinant resid covarian	се	8.88E+09	
Log likelihood		-86202.29	
Akaike information criterion		31.49382	
Schwarz criterion		31.73596	
Number of coefficients		201	

EViews Output 57: VAR Estimates – Coffee

Vector Autoregression Estimates Date: 05/27/22 Time: 20:16 Sample (adjusted): 5/03/2000 5/13/2021 Included observations: 5487 after adjustments Standard errors in () & t-statistics in []

	COFFEE_LA	GPRD_ACT	GPRD_THR
COFFEE_LAST_PRICE	-0.014387	0.057438	-0.140598
	(0.01356)	(0.25242)	(0.21371)
	[-1.06063]	[0.22755]	[-0.65788]
COFFEE_LAST_PRICE	-0.007234	0.333065	0.326033
	(0.01356)	(0.25239)	(0.21369)
	[-0.53335]	[1.31965]	[1.52573]
COFFEE_LAST_PRICE	0.033388	-0.046375	-0.030527
	(0.01356)	(0.25234)	(0.21365)
	[2.46203]	[-0.18378]	[-0.14288]
COFFEE_LAST_PRICE	-0.007971	0.053632	0.347835
	(0.01357)	(0.25250)	(0.21378)
	[-0.58741]	[0.21241]	[1.62706]
COFFEE_LAST_PRICE	-0.015527	-0.323297	0.112661
	(0.01354)	(0.25187)	(0.21325)
	[-1.14710]	[-1.28359]	[0.52830]
COFFEE_LAST_PRICE	0.001908	-0.526087	0.262787
	(0.01354)	(0.25190)	(0.21327)
	[0.14095]	[-2.08851]	[1.23217]
COFFEE_LAST_PRICE	-0.008971	-0.065513	0.061030
	(0.01354)	(0.25196)	(0.21333)
	[-0.66252]	[-0.26001]	[0.28608]
COFFEE_LAST_PRICE	-0.001711	0.577081	0.217512
	(0.01354)	(0.25191)	(0.21328)
	[-0.12642]	[2.29085]	[1.01983]
COFFEE_LAST_PRICE	-0.012706	0.097084	-0.076586
	(0.01355)	(0.25205)	(0.21341)
	[-0.93800]	[0.38517]	[-0.35888]
COFFEE_LAST_PRICE	0.004220	0.007939	0.025685
	(0.01355)	(0.25209)	(0.21344)
	[0.31153]	[0.03149]	[0.12034]

COFFEE_LAST_PRICE	0.006454	-0.306164	0.253885
	(0.01355)	(0.25205)	(0.21341)
	[0.47645]	[-1.21468]	[1.18968]
COFFEE_LAST_PRICE	-0.007539	0.145157	0.316843
	(0.01355)	(0.25222)	(0.21355)
	[-0.55620]	[0.57552]	[1.48372]
COFFEE_LAST_PRICE	-0.001225	0.034596	0.417608
	(0.01356)	(0.25228)	(0.21360)
	[-0.09035]	[0.13714]	[1.95512]
COFFEE_LAST_PRICE	-0.005824	-0.030046	0.340819
	(0.01356)	(0.25233)	(0.21364)
	[-0.42947]	[-0.11907]	[1.59531]
COFFEE_LAST_PRICE	-0.008579	0.068054	0.197676
	(0.01356)	(0.25232)	(0.21363)
	[-0.63266]	[0.26971]	[0.92532]
COFFEE_LAST_PRICE	-0.025357	0.131700	0.106468
	(0.01356)	(0.25239)	(0.21369)
	[-1.86951]	[0.52181]	[0.49823]
COFFEE_LAST_PRICE	-0.014158	-0.102721	-0.020675
	(0.01357)	(0.25243)	(0.21372)
	[-1.04365]	[-0.40693]	[-0.09674]
COFFEE_LAST_PRICE	-0.056194	-0.198977	0.196620
	(0.01358)	(0.25266)	(0.21392)
	[-4.13869]	[-0.78754]	[0.91915]
COFFEE_LAST_PRICE	0.021926	0.177846	0.091587
	(0.01360)	(0.25305)	(0.21425)
	[1.61231]	[0.70281]	[0.42748]
COFFEE_LAST_PRICE	-0.021695	-0.256749	0.384557
	(0.01359)	(0.25295)	(0.21417)
	[-1.59595]	[-1.01501]	[1.79559]
COFFEE_LAST_PRICE	-0.033143	0.000595	-0.212829
	(0.01361)	(0.25320)	(0.21438)
	[-2.43572]	[0.00235]	[-0.99277]
COFFEE_LAST_PRICE	-0.032126	-0.439350	-0.102784
	(0.01361)	(0.25326)	(0.21442)
	[-2.36044]	[-1.73480]	[-0.47935]

GPRD_ACT(-1)	0.000721 (0.00076) [0.95258]	0.484501 (0.01408) [34.4038]	0.058259 (0.01192) [4.88608]	
GPRD_ACT(-2)	-0.000362 (0.00084) [-0.43322]	0.198053 (0.01556) [12.7286]	0.010342 (0.01317) [0.78506]	
GPRD_ACT(-3)	-0.001116 (0.00085) [-1.31449]	0.090804 (0.01580) [5.74534]	0.009217 (0.01338) [0.68877]	
GPRD_ACT(-4)	0.000943 (0.00085) [1.10547]	0.051743 (0.01587) [3.25999]	0.021605 (0.01344) [1.60772]	
GPRD_ACT(-5)	7.21E-05 (0.00085) [0.08442]	0.078918 (0.01589) [4.96622]	0.006644 (0.01345) [0.49380]	
GPRD_ACT(-6)	9.48E-05 (0.00086) [0.11084]	0.008306 (0.01592) [0.52166]	0.009207 (0.01348) [0.68299]	
GPRD_ACT(-7)	9.74E-05 (0.00086) [0.11389]	-0.020323 (0.01592) [-1.27653]	-0.017554 (0.01348) [-1.30224]	
GPRD_ACT(-8)	-0.002044 (0.00086) [-2.38874]	-0.007234 (0.01592) [-0.45431]	-0.017943 (0.01348) [-1.33098]	
GPRD_ACT(-9)	0.000607 (0.00086) [0.70925]	-0.013856 (0.01593) [-0.86975]	-0.021091 (0.01349) [-1.56360]	
GPRD_ACT(-10)	0.000314 (0.00086) [0.36642]	0.033871 (0.01593) [2.12673]	-0.008700 (0.01348) [-0.64520]	
GPRD_ACT(-11)	0.001373 (0.00086) [1.60304]	0.029204 (0.01593) [1.83279]	0.008690 (0.01349) [0.64416]	
GPRD_ACT(-12)	-0.001144 (0.00086) [-1.33563]	-0.012074 (0.01593) [-0.75781]	-0.015306 (0.01349) [-1.13470]	

GPRD_ACT(-13)	0.000787	0.006149	-0.013524
	(0.00086)	(0.01593)	(0.01349)
	[0.91916]	[0.38603]	[-1.00276]
GPRD_ACT(-14)	-0.000591	-0.005095	0.000223
	(0.00086)	(0.01593)	(0.01349)
	[-0.69031]	[-0.31982]	[0.01653]
GPRD_ACT(-15)	9.44E-05	0.015775	-0.013099
	(0.00086)	(0.01593)	(0.01349)
	[0.11025]	[0.99038]	[-0.97131]
GPRD_ACT(-16)	0.000106	-0.006113	-0.015370
	(0.00086)	(0.01595)	(0.01350)
	[0.12402]	[-0.38340]	[-1.13848]
GPRD_ACT(-17)	0.000573	-0.031111	-0.016584
	(0.00086)	(0.01595)	(0.01351)
	[0.66894]	[-1.95025]	[-1.22788]
GPRD_ACT(-18)	-0.000121	0.006358	0.009482
	(0.00086)	(0.01593)	(0.01349)
	[-0.14189]	[0.39906]	[0.70291]
GPRD_ACT(-19)	0.000382	0.006803	0.001768
	(0.00086)	(0.01592)	(0.01348)
	[0.44655]	[0.42738]	[0.13115]
GPRD_ACT(-20)	0.000517	0.011563	0.017988
	(0.00085)	(0.01587)	(0.01344)
	[0.60592]	[0.72853]	[1.33863]
GPRD_ACT(-21)	-0.000659	0.051168	0.016627
	(0.00084)	(0.01564)	(0.01325)
	[-0.78370]	[3.27060]	[1.25522]
GPRD_ACT(-22)	-0.000728	-0.043414	-0.035390
	(0.00076)	(0.01419)	(0.01202)
	[-0.95461]	[-3.05866]	[-2.94483]
GPRD_THREAT(-1)	-0.002311	0.008580	0.332904
	(0.00089)	(0.01663)	(0.01408)
	[-2.58514]	[0.51579]	[23.6377]
GPRD_THREAT(-2)	0.000481	0.044569	0.171377
	(0.00094)	(0.01754)	(0.01485)
	[0.51016]	[2.54094]	[11.5399]

GPRD_THREAT(-3)	0.000886 (0.00095) [0.93003]	-0.021374 (0.01773) [-1.20579]	0.067075 (0.01501) [4.46924]	
GPRD_THREAT(-4)	0.000571 (0.00096) [0.59789]	-0.018605 (0.01777) [-1.04680]	0.029223 (0.01505) [1.94201]	
GPRD_THREAT(-5)	0.001022 (0.00096) [1.06915]	0.043904 (0.01778) [2.46870]	0.082343 (0.01506) [5.46860]	
GPRD_THREAT(-6)	-0.001742 (0.00096) [-1.81778]	-0.016462 (0.01783) [-0.92300]	0.031654 (0.01510) [2.09623]	
GPRD_THREAT(-7)	0.000121 (0.00096) [0.12645]	-0.004574 (0.01785) [-0.25629]	0.015422 (0.01511) [1.02061]	
GPRD_THREAT(-8)	0.000989 (0.00096) [1.03214]	0.000233 (0.01783) [0.01308]	-0.002517 (0.01509) [-0.16674]	
GPRD_THREAT(-9)	-0.000310 (0.00096) [-0.32261]	0.030792 (0.01787) [1.72351]	0.022173 (0.01513) [1.46585]	
GPRD_THREAT(-10)	-0.000911 (0.00096) [-0.94858]	0.002632 (0.01788) [0.14722]	0.043652 (0.01514) [2.88409]	
GPRD_THREAT(-11)	-4.98E-05 (0.00096) [-0.05179]	-0.035601 (0.01788) [-1.99060]	0.015460 (0.01514) [1.02097]	
GPRD_THREAT(-12)	-6.78E-05 (0.00096) [-0.07030]	-0.013710 (0.01794) [-0.76435]	-0.027702 (0.01519) [-1.82411]	
GPRD_THREAT(-13)	-0.001236 (0.00096) [-1.28215]	-0.047854 (0.01793) [-2.66851]	-0.021545 (0.01518) [-1.41902]	
GPRD_THREAT(-14)	0.001688 (0.00096) [1.75023]	0.039976 (0.01795) [2.22716]	0.014760 (0.01520) [0.97126]	

GPRD_THREAT(-15)	0.000490	0.021046	0.052663
	(0.00097)	(0.01797)	(0.01521)
	[0.50766]	[1.17138]	[3.46190]
GPRD_THREAT(-16)	-0.000544	-0.002011	0.013709
	(0.00097)	(0.01801)	(0.01525)
	[-0.56220]	[-0.11169]	[0.89899]
GPRD_THREAT(-17)	0.002153	-0.012838	-0.002274
	(0.00097)	(0.01800)	(0.01524)
	[2.22622]	[-0.71334]	[-0.14921]
GPRD_THREAT(-18)	-0.003132	-0.003687	-0.000611
	(0.00097)	(0.01798)	(0.01522)
	[-3.24131]	[-0.20510]	[-0.04013]
GPRD_THREAT(-19)	-0.001635	-0.003505	0.018098
	(0.00097)	(0.01798)	(0.01523)
	[-1.69131]	[-0.19487]	[1.18852]
GPRD_THREAT(-20)	0.000101	0.015248	0.042988
	(0.00096)	(0.01795)	(0.01519)
	[0.10490]	[0.84968]	[2.82930]
GPRD_THREAT(-21)	0.000580	-0.027967	-0.016336
	(0.00096)	(0.01777)	(0.01505)
	[0.60751]	[-1.57374]	[-1.08573]
GPRD_THREAT(-22)	0.002561	0.024233	0.039885
	(0.00091)	(0.01698)	(0.01438)
	[2.80609]	[1.42704]	[2.77409]
С	0.073194	5.025028	9.409274
	(0.09813)	(1.82597)	(1.54599)
	[0.74590]	[2.75198]	[6.08625]

R-squared 0.019868 0.768206 0.569752 Adj. R-squared 0.007932 0.765384 0.564513 Sum sq. resids 43077.25 14915790 10692376 S.E. equation 2.819190 52.45942 44.41580 F-statistic 1.664616 272.1646 108.7485 Log likelihood -13439.01 -29480.75 -28567.47 Akaike AIC 4.922912 10.77009 10.43720 Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance 38634976 10.9125.18 Akaike information criterion 26.05656 5chwarz criterion 26.29871 Number of coefficients 201 201 201				
Sum sq. resids43077.251491579010692376S.E. equation2.81919052.4594244.41580F-statistic1.664616272.1646108.7485Log likelihood-13439.01-29480.75-28567.47Akaike AIC4.92291210.7700910.43720Schwarz SC5.00362610.8508110.51792Mean dependent0.024048114.2376112.7700S.D. dependent2.830438108.304067.30542Determinant resid covariance38634976Log likelihood-71285.18Akaike information criterion26.05656Schwarz criterion26.29871	R-squared	0.019868	0.768206	0.569752
S.E. equation 2.819190 52.45942 44.41580 F-statistic 1.664616 272.1646 108.7485 Log likelihood -13439.01 -29480.75 -28567.47 Akaike AIC 4.922912 10.77009 10.43720 Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 08.34976 Log likelihood -71285.18 4kaike information criterion 26.05656 Schwarz criterion 26.29871 26.29871	Adj. R-squared	0.007932	0.765384	0.564513
F-statistic 1.664616 272.1646 108.7485 Log likelihood -13439.01 -29480.75 -28567.47 Akaike AIC 4.922912 10.77009 10.43720 Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 108.3040 67.30542 Log likelihood -71285.18 26.05656 26.05656 26.05656 Schwarz criterion 26.29871 26.29871 26.29871	Sum sq. resids	43077.25	14915790	10692376
Log likelihood -13439.01 -29480.75 -28567.47 Akaike AIC 4.922912 10.77009 10.43720 Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 08634976 Log likelihood -71285.18 4kaike information criterion 26.05656 Schwarz criterion 26.29871 26.29871	S.E. equation	2.819190	52.45942	44.41580
Akaike AIC 4.922912 10.77009 10.43720 Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 108.3040 67.30542 Determinant resid covariance 38634976 10.21285.18 108.05656 Log likelihood -71285.18 26.05656 26.29871	F-statistic	1.664616	272.1646	108.7485
Schwarz SC 5.003626 10.85081 10.51792 Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 67.30542 Determinant resid covariance 38634976 10.51792 Log likelihood -71285.18 26.05656 Schwarz criterion 26.29871 26.29871	Log likelihood	-13439.01	-29480.75	-28567.47
Mean dependent 0.024048 114.2376 112.7700 S.D. dependent 2.830438 108.3040 67.30542 Determinant resid covariance (dof adj.) 40085533 67.30542 Determinant resid covariance 38634976 112.7700 Log likelihood -71285.18 26.05656 Schwarz criterion 26.29871	Akaike AIC	4.922912	10.77009	10.43720
S.D. dependent2.830438108.304067.30542Determinant resid covariance (dof adj.)40085533Determinant resid covariance38634976Log likelihood-71285.18Akaike information criterion26.05656Schwarz criterion26.29871	Schwarz SC	5.003626	10.85081	10.51792
Determinant resid covariance (dof adj.)40085533Determinant resid covariance38634976Log likelihood-71285.18Akaike information criterion26.05656Schwarz criterion26.29871	Mean dependent	0.024048	114.2376	112.7700
Determinant resid covariance38634976Log likelihood-71285.18Akaike information criterion26.05656Schwarz criterion26.29871	S.D. dependent	2.830438	108.3040	67.30542
Log likelihood-71285.18Akaike information criterion26.05656Schwarz criterion26.29871	Determinant resid covar	iance (dof adj.)	40085533	
Akaike information criterion26.05656Schwarz criterion26.29871	Determinant resid covar	iance	38634976	
Schwarz criterion 26.29871	Log likelihood		-71285.18	
	Akaike information criter	ion	26.05656	
Number of coefficients 201	Schwarz criterion		26.29871	
	Number of coefficients		201	

EViews Output 58: VAR Estimates - Corn

Vector Autoregression Estimates Date: 05/27/22 Time: 20:21 Sample (adjusted): 5/03/2000 5/13/2021 Included observations: 5487 after adjustments Standard errors in () & t-statistics in []

	CORN_LAS	GPRD_ACT	GPRD_THR
CORN_LAST_PRICE1(-1)	0.027926	0.093925	0.108948
	(0.01359)	(0.08481)	(0.07179)
	[2.05536]	[1.10746]	[1.51755]
CORN_LAST_PRICE1(-2)	-0.028820	0.005207	-0.004093
	(0.01360)	(0.08487)	(0.07184)
	[-2.11961]	[0.06136]	[-0.05698]
CORN_LAST_PRICE1(-3)	0.013558	0.049289	0.080795
	(0.01360)	(0.08489)	(0.07185)
	[0.99701]	[0.58066]	[1.12442]
CORN_LAST_PRICE1(-4)	-0.018883	-0.090355	-0.000149
	(0.01359)	(0.08485)	(0.07182)
	[-1.38921]	[-1.06492]	[-0.00208]
CORN_LAST_PRICE1(-5)	0.009403	-0.000822	-0.062592
	(0.01359)	(0.08482)	(0.07180)
	[0.69196]	[-0.00969]	[-0.87176]
CORN_LAST_PRICE1(-6)	-0.000172	-0.089967	-0.082241
	(0.01359)	(0.08480)	(0.07178)
	[-0.01267]	[-1.06093]	[-1.14569]
CORN_LAST_PRICE1(-7)	0.033743	0.029309	0.013828
	(0.01359)	(0.08481)	(0.07179)
	[2.48346]	[0.34558]	[0.19261]
CORN_LAST_PRICE1(-8)	-0.005724	0.029508	0.054022
	(0.01359)	(0.08481)	(0.07179)
	[-0.42127]	[0.34793]	[0.75248]
CORN_LAST_PRICE1(-9)	0.028214	0.044854	0.043537
	(0.01359)	(0.08483)	(0.07181)
	[2.07614]	[0.52876]	[0.60631]
CORN_LAST_PRICE1(0.004015	-0.031538	-0.011405
	(0.01359)	(0.08485)	(0.07182)
	[0.29537]	[-0.37170]	[-0.15879]

CORN_LAST_PRICE1(-0.001772	-0.059828	0.013633
	(0.01358)	(0.08478)	(0.07177)
	[-0.13048]	[-0.70566]	[0.18996]
CORN_LAST_PRICE1(-0.055401	0.025795	0.103941
	(0.01360)	(0.08488)	(0.07185)
	[-4.07407]	[0.30390]	[1.44659]
CORN_LAST_PRICE1(0.014858	-0.001163	0.114274
	(0.01364)	(0.08513)	(0.07206)
	[1.08949]	[-0.01366]	[1.58585]
CORN_LAST_PRICE1(0.013908	0.143450	0.093668
	(0.01366)	(0.08528)	(0.07219)
	[1.01799]	[1.68209]	[1.29752]
CORN_LAST_PRICE1(0.033942	-0.036669	-0.002334
	(0.01367)	(0.08530)	(0.07221)
	[2.48372]	[-0.42987]	[-0.03232]
CORN_LAST_PRICE1(0.009381	-0.040469	-0.019448
	(0.01367)	(0.08533)	(0.07223)
	[0.68623]	[-0.47425]	[-0.26923]
CORN_LAST_PRICE1(-0.029048	-0.131832	0.084876
	(0.01368)	(0.08536)	(0.07226)
	[-2.12419]	[-1.54442]	[1.17465]
CORN_LAST_PRICE1(-0.034240	0.012619	-0.016967
	(0.01369)	(0.08543)	(0.07231)
	[-2.50184]	[0.14772]	[-0.23463]
CORN_LAST_PRICE1(0.023871	-0.062373	-0.071693
	(0.01369)	(0.08544)	(0.07233)
	[1.74395]	[-0.73001]	[-0.99125]
CORN_LAST_PRICE1(-0.030654	0.022190	0.030984
	(0.01369)	(0.08542)	(0.07231)
	[-2.23991]	[0.25976]	[0.42849]
CORN_LAST_PRICE1(0.004834	0.033084	0.078459
	(0.01368)	(0.08542)	(0.07231)
	[0.35320]	[0.38730]	[1.08505]
CORN_LAST_PRICE1(-0.023198	-0.021444	-0.013486
	(0.01367)	(0.08534)	(0.07224)
	[-1.69685]	[-0.25129]	[-0.18668]

GPRD_A	CT(-1)	-0.000705 (0.00226) [-0.31250]	0.484888 (0.01408) [34.4388]	0.057703 (0.01192) [4.84149]	
GPRD_A	CT(-2)	0.002948 (0.00249) [1.18270]	0.196964 (0.01556) [12.6592]	0.009418 (0.01317) [0.71507]	
GPRD_A	(CT(-3)	-0.001396 (0.00253) [-0.55117]	0.090767 (0.01581) [5.74285]	0.009872 (0.01338) [0.73785]	
GPRD_A	\CT(-4)	-0.006322 (0.00254) [-2.48631]	0.051950 (0.01587) [3.27327]	0.023175 (0.01343) [1.72504]	
GPRD_A	\CT(-5)	0.001966 (0.00255) [0.77210]	0.079561 (0.01590) [5.00450]	0.006688 (0.01346) [0.49694]	
GPRD_A	(CT(-6)	0.001015 (0.00255) [0.39777]	0.008568 (0.01593) [0.53803]	0.008633 (0.01348) [0.64038]	
GPRD_A	(CT(-7)	-0.001606 (0.00255) [-0.62930]	-0.020396 (0.01593) [-1.28069]	-0.018762 (0.01348) [-1.39170]	
GPRD_A	(CT(-8)	0.003405 (0.00255) [1.33451]	-0.006757 (0.01593) [-0.42420]	-0.018148 (0.01348) [-1.34597]	
GPRD_A	(CT(-9)	-0.002507 (0.00255) [-0.98233]	-0.014042 (0.01593) [-0.88141]	-0.022161 (0.01349) [-1.64327]	
GPRD_A	CT(-10)	0.001565 (0.00255) [0.61311]	0.032366 (0.01593) [2.03198]	-0.008140 (0.01348) [-0.60370]	
GPRD_A	CT(-11)	0.002684 (0.00255) [1.05135]	0.029216 (0.01594) [1.83329]	0.009371 (0.01349) [0.69467]	
GPRD_A	CT(-12)	-0.001304 (0.00255) [-0.51081]	-0.011500 (0.01593) [-0.72179]	-0.015448 (0.01349) [-1.14541]	

GPRD_ACT(-13)	-0.002002	0.006522	-0.013484
	(0.00255)	(0.01593)	(0.01348)
	[-0.78465]	[0.40943]	[-1.00005]
GPRD_ACT(-14)	1.50E-05	-0.003728	-0.001399
	(0.00255)	(0.01593)	(0.01349)
	[0.00589]	[-0.23403]	[-0.10371]
GPRD_ACT(-15)	-0.000136	0.015869	-0.011883
	(0.00255)	(0.01593)	(0.01349)
	[-0.05348]	[0.99615]	[-0.88119]
GPRD_ACT(-16)	0.000817	-0.007494	-0.014577
	(0.00256)	(0.01595)	(0.01350)
	[0.31985]	[-0.46981]	[-1.07954]
GPRD_ACT(-17)	0.000410	-0.030381	-0.014624
	(0.00256)	(0.01597)	(0.01352)
	[0.16016]	[-1.90280]	[-1.08203]
GPRD_ACT(-18)	-0.001506	0.006544	0.009752
	(0.00255)	(0.01594)	(0.01350)
	[-0.58958]	[0.41045]	[0.72265]
GPRD_ACT(-19)	0.000278	0.007913	0.001520
	(0.00255)	(0.01593)	(0.01348)
	[0.10898]	[0.49678]	[0.11271]
GPRD_ACT(-20)	-0.001070	0.009850	0.016716
	(0.00254)	(0.01588)	(0.01344)
	[-0.42067]	[0.62021]	[1.24341]
GPRD_ACT(-21)	0.001204	0.051758	0.018103
	(0.00251)	(0.01565)	(0.01325)
	[0.48007]	[3.30646]	[1.36616]
GPRD_ACT(-22)	0.000370	-0.044526	-0.035723
	(0.00228)	(0.01420)	(0.01202)
	[0.16279]	[-3.13501]	[-2.97133]
GPRD_THREAT(-1)	0.006470	0.008325	0.334473
	(0.00267)	(0.01664)	(0.01408)
	[2.42752]	[0.50039]	[23.7497]
GPRD_THREAT(-2)	-0.003426	0.043952	0.173298
	(0.00281)	(0.01756)	(0.01486)
	[-1.21811]	[2.50331]	[11.6603]

GPRD_THREAT(-3)	0.005241 (0.00284) [1.84235]	-0.020434 (0.01776) [-1.15073]	0.066592 (0.01503) [4.43013]	
GPRD_THREAT(-4)	-0.000501 (0.00285) [-0.17548]	-0.019292 (0.01781) [-1.08339]	0.027657 (0.01507) [1.83479]	
GPRD_THREAT(-5)	-0.003181 (0.00285) [-1.11415]	0.044761 (0.01782) [2.51195]	0.081857 (0.01508) [5.42673]	
GPRD_THREAT(-6)	0.002349 (0.00286) [0.82067]	-0.016566 (0.01786) [-0.92734]	0.032782 (0.01512) [2.16786]	
GPRD_THREAT(-7)	0.001034 (0.00286) [0.36116]	-0.003553 (0.01787) [-0.19877]	0.017143 (0.01513) [1.13309]	
GPRD_THREAT(-8)	-0.004547 (0.00286) [-1.58939]	-0.000397 (0.01786) [-0.02222]	-0.002228 (0.01512) [-0.14738]	
GPRD_THREAT(-9)	0.005386 (0.00287) [1.87836]	0.029482 (0.01790) [1.64731]	0.022559 (0.01515) [1.48906]	
GPRD_THREAT(-10)	-0.000811 (0.00287) [-0.28247]	0.001520 (0.01791) [0.08485]	0.042025 (0.01516) [2.77195]	
GPRD_THREAT(-11)	-0.000352 (0.00287) [-0.12277]	-0.036484 (0.01792) [-2.03628]	0.015347 (0.01517) [1.01189]	
GPRD_THREAT(-12)	0.000719 (0.00288) [0.24976]	-0.012727 (0.01797) [-0.70833]	-0.028281 (0.01521) [-1.85946]	
GPRD_THREAT(-13)	-0.003559 (0.00288) [-1.23689]	-0.047238 (0.01796) [-2.62999]	-0.023052 (0.01520) [-1.51617]	
GPRD_THREAT(-14)	0.003490 (0.00288) [1.21171]	0.039364 (0.01798) [2.18963]	0.014073 (0.01522) [0.92479]	

GPRD_THREAT(-15)	-0.000666	0.020190	0.050517
	(0.00288)	(0.01799)	(0.01523)
	[-0.23101]	[1.12203]	[3.31653]
GPRD_THREAT(-16)	-0.003397	-0.000723	0.014489
	(0.00289)	(0.01804)	(0.01527)
	[-1.17557]	[-0.04008]	[0.94905]
GPRD_THREAT(-17)	0.003704	-0.013198	-0.002984
	(0.00289)	(0.01802)	(0.01526)
	[1.28301]	[-0.73234]	[-0.19562]
GPRD_THREAT(-18)	0.001091	-0.003134	-0.002125
	(0.00288)	(0.01800)	(0.01523)
	[0.37835]	[-0.17417]	[-0.13948]
GPRD_THREAT(-19)	-0.006255	-0.002631	0.018422
	(0.00288)	(0.01799)	(0.01523)
	[-2.17066]	[-0.14628]	[1.20994]
GPRD_THREAT(-20)	-0.000105	0.014441	0.042819
	(0.00288)	(0.01795)	(0.01520)
	[-0.03651]	[0.80440]	[2.81766]
GPRD_THREAT(-21)	-0.000652	-0.028128	-0.017232
	(0.00285)	(0.01778)	(0.01505)
	[-0.22881]	[-1.58182]	[-1.14479]
GPRD_THREAT(-22)	0.002010	0.025562	0.040118
	(0.00272)	(0.01698)	(0.01437)
	[0.73895]	[1.50575]	[2.79172]
С	-0.150968	5.020542	9.763290
	(0.29297)	(1.82874)	(1.54802)
	[-0.51530]	[2.74535]	[6.30697]

R-squared	0.020350	0.767810	0.569196
Adj. R-squared	0.008421	0.764982	0.563950
Sum sq. resids	383473.9	14941317	10706194
S.E. equation	8.411400	52.50429	44.44449
F-statistic	1.705916	271.5592	108.5021
Log likelihood	-19437.06	-29485.44	-28571.01
Akaike AIC	7.109188	10.77180	10.43849
Schwarz SC	7.189903	10.85252	10.51921
Mean dependent	0.092400	114.2376	112.7700
S.D. dependent	8.447042	108.3040	67.30542
Determinant resid cova	riance (dof adj.)	3.58E+08	
Determinant resid covar	riance	3.45E+08	
Log likelihood		-77291.59	
Akaike information criter	rion	28.24589	
Schwarz criterion		28.48803	
Number of coefficients		201	

EViews Output 59: VAR Estimates – Cotton

Vector Autoregression Estimates Date: 05/27/22 Time: 20:25 Sample (adjusted): 5/12/2000 5/13/2021 Included observations: 5480 after adjustments Standard errors in () & t-statistics in []

	COTTON_L	GPRD_ACT	GPRD_THR
COTTON_LAST_PRICE	0.129912	0.046225	-0.519869
	(0.01363)	(0.48262)	(0.40890)
	[9.53256]	[0.09578]	[-1.27138]
COTTON_LAST_PRICE	0.008420	-0.190864	0.462244
	(0.01375)	(0.48691)	(0.41254)
	[0.61243]	[-0.39199]	[1.12049]
COTTON_LAST_PRICE	-0.032456	-0.208985	0.049220
	(0.01375)	(0.48709)	(0.41269)
	[-2.35965]	[-0.42905]	[0.11927]
COTTON_LAST_PRICE	0.003847	-0.576282	-0.126871
	(0.01376)	(0.48738)	(0.41293)
	[0.27953]	[-1.18241]	[-0.30724]
COTTON_LAST_PRICE	0.028603	0.389584	0.167454
	(0.01377)	(0.48770)	(0.41321)
	[2.07693]	[0.79882]	[0.40525]
COTTON_LAST_PRICE	-0.035708	-0.133624	0.129229
	(0.01377)	(0.48762)	(0.41314)
	[-2.59328]	[-0.27403]	[0.31280]
COTTON_LAST_PRICE	0.017703	0.346648	0.326880
	(0.01378)	(0.48784)	(0.41333)
	[1.28507]	[0.71057]	[0.79085]
COTTON_LAST_PRICE	-0.029696	-0.341231	-0.599625
	(0.01377)	(0.48776)	(0.41325)
	[-2.15601]	[-0.69959]	[-1.45098]
COTTON_LAST_PRICE	0.005106	0.412483	0.233169
	(0.01376)	(0.48735)	(0.41291)
	[0.37102]	[0.84637]	[0.56469]
COTTON_LAST_PRICE	0.000231	-0.035318	-0.208472
	(0.01377)	(0.48752)	(0.41305)
	[0.01679]	[-0.07244]	[-0.50471]

_

COTTON_LAST_PRICE	0.001838	-0.229885	-0.698441
	(0.01377)	(0.48756)	(0.41308)
	[0.13351]	[-0.47151]	[-1.69080]
COTTON_LAST_PRICE	-0.017760	-0.450542	0.442006
	(0.01376)	(0.48732)	(0.41288)
	[-1.29063]	[-0.92453]	[1.07054]
COTTON_LAST_PRICE	-0.006344	1.086461	0.528384
	(0.01375)	(0.48692)	(0.41254)
	[-0.46142]	[2.23130]	[1.28080]
COTTON_LAST_PRICE	0.041702	-0.082661	0.152499
	(0.01375)	(0.48710)	(0.41270)
	[3.03184]	[-0.16970]	[0.36952]
COTTON_LAST_PRICE	-0.023756	0.287318	0.030568
	(0.01378)	(0.48786)	(0.41334)
	[-1.72440]	[0.58893]	[0.07395]
COTTON_LAST_PRICE	0.029108	-0.510614	0.031659
	(0.01379)	(0.48820)	(0.41363)
	[2.11146]	[-1.04591]	[0.07654]
COTTON_LAST_PRICE	-0.045144	0.461273	0.150471
	(0.01379)	(0.48841)	(0.41380)
	[-3.27331]	[0.94444]	[0.36363]
COTTON_LAST_PRICE	-0.030697	-0.279882	-0.310009
	(0.01380)	(0.48883)	(0.41416)
	[-2.22386]	[-0.57256]	[-0.74853]
COTTON_LAST_PRICE	-0.002385	0.222728	0.161782
	(0.01380)	(0.48884)	(0.41417)
	[-0.17276]	[0.45562]	[0.39061]
COTTON_LAST_PRICE	-0.001200	-0.316624	0.231617
	(0.01381)	(0.48905)	(0.41435)
	[-0.08686]	[-0.64743]	[0.55899]
COTTON_LAST_PRICE	0.059554	-0.784700	-0.208263
	(0.01381)	(0.48907)	(0.41437)
	[4.31223]	[-1.60447]	[-0.50261]
COTTON_LAST_PRICE	-0.025894	0.325913	0.271440
	(0.01384)	(0.49014)	(0.41527)
	[-1.87084]	[0.66494]	[0.65364]

COTTON_LAST_PRICE	0.015518	-0.392209	-0.021944
	(0.01385)	(0.49042)	(0.41551)
	[1.12057]	[-0.79974]	[-0.05281]
COTTON_LAST_PRICE	0.031585	0.065626	0.597148
	(0.01384)	(0.49014)	(0.41527)
	[2.28203]	[0.13389]	[1.43797]
COTTON_LAST_PRICE	-0.003482	0.053545	-0.094014
	(0.01384)	(0.49017)	(0.41530)
	[-0.25158]	[0.10924]	[-0.22638]
COTTON_LAST_PRICE	-0.000554	0.101633	0.103090
	(0.01384)	(0.49014)	(0.41527)
	[-0.04006]	[0.20735]	[0.24825]
COTTON_LAST_PRICE	0.016570	-0.106339	0.413079
	(0.01383)	(0.48994)	(0.41510)
	[1.19770]	[-0.21705]	[0.99513]
COTTON_LAST_PRICE	0.009967	-0.163244	-0.673416
	(0.01384)	(0.49011)	(0.41525)
	[0.72017]	[-0.33307]	[-1.62171]
COTTON_LAST_PRICE	0.010551	-0.427697	0.865477
	(0.01372)	(0.48574)	(0.41154)
	[0.76926]	[-0.88051]	[2.10301]
GPRD_ACT(-1)	-0.000335	0.487525	0.058890
	(0.00040)	(0.01412)	(0.01196)
	[-0.83954]	[34.5251]	[4.92233]
GPRD_ACT(-2)	0.000478	0.193349	0.009845
	(0.00044)	(0.01563)	(0.01324)
	[1.08232]	[12.3683]	[0.74334]
GPRD_ACT(-3)	-0.000365	0.091845	0.011315
	(0.00045)	(0.01587)	(0.01344)
	[-0.81521]	[5.78794]	[0.84164]
GPRD_ACT(-4)	-0.000388	0.050443	0.020552
	(0.00045)	(0.01593)	(0.01350)
	[-0.86298]	[3.16663]	[1.52279]
GPRD_ACT(-5)	0.000696	0.078907	0.006274
	(0.00045)	(0.01595)	(0.01351)
	[1.54530]	[4.94864]	[0.46444]

GPRD_ACT(-6)	0.000326	0.009571	0.009067
	(0.00045)	(0.01597)	(0.01353)
	[0.72263]	[0.59930]	[0.67015]
GPRD_ACT(-7)	-0.001361	-0.021063	-0.019621
	(0.00045)	(0.01596)	(0.01353)
	[-3.01852]	[-1.31939]	[-1.45066]
GPRD_ACT(-8)	0.000389	-0.008332	-0.017196
	(0.00045)	(0.01597)	(0.01353)
	[0.86305]	[-0.52155]	[-1.27048]
GPRD_ACT(-9)	0.000701	-0.012968	-0.021013
	(0.00045)	(0.01597)	(0.01353)
	[1.55492]	[-0.81218]	[-1.55325]
GPRD_ACT(-10)	-0.000722	0.031184	-0.006462
	(0.00045)	(0.01598)	(0.01354)
	[-1.60055]	[1.95175]	[-0.47735]
GPRD_ACT(-11)	0.001100	0.030370	0.008141
	(0.00045)	(0.01599)	(0.01355)
	[2.43660]	[1.89968]	[0.60103]
GPRD_ACT(-12)	-0.000425	-0.012423	-0.014864
	(0.00045)	(0.01600)	(0.01356)
	[-0.94057]	[-0.77632]	[-1.09635]
GPRD_ACT(-13)	-0.000284	0.006227	-0.012906
	(0.00045)	(0.01600)	(0.01356)
	[-0.62759]	[0.38919]	[-0.95215]
GPRD_ACT(-14)	-0.000480	-0.004054	-0.003115
	(0.00045)	(0.01600)	(0.01356)
	[-1.06243]	[-0.25335]	[-0.22976]
GPRD_ACT(-15)	0.000482	0.015813	-0.011028
	(0.00045)	(0.01600)	(0.01356)
	[1.06585]	[0.98832]	[-0.81355]
GPRD_ACT(-16)	9.20E-05	-0.008355	-0.014153
	(0.00045)	(0.01602)	(0.01357)
	[0.20343]	[-0.52160]	[-1.04292]
GPRD_ACT(-17)	0.000337	-0.029534	-0.014489
	(0.00045)	(0.01602)	(0.01358)
	[0.74541]	[-1.84328]	[-1.06731]

GPRD_ACT(-18)	-0.000391 (0.00045) [-0.86396]	0.002185 (0.01604) [0.13618]	0.008535 (0.01359) [0.62787]
GPRD_ACT(-19)	-0.000104 (0.00045) [-0.22990]	0.008922 (0.01604) [0.55620]	0.002351 (0.01359) [0.17295]
GPRD_ACT(-20)	4.68E-06 (0.00045) [0.01033]	0.010213 (0.01603) [0.63698]	0.016260 (0.01358) [1.19698]
GPRD_ACT(-21)	-0.000157 (0.00045) [-0.34760]	0.050742 (0.01604) [3.16316]	0.016849 (0.01359) [1.23968]
GPRD_ACT(-22)	0.000130 (0.00045) [0.28703]	-0.047458 (0.01607) [-2.95398]	-0.034850 (0.01361) [-2.56027]
GPRD_ACT(-23)	-0.000161 (0.00045) [-0.35529]	0.026466 (0.01608) [1.64565]	-0.012860 (0.01363) [-0.94383]
GPRD_ACT(-24)	-0.000346 (0.00045) [-0.76210]	-0.042624 (0.01609) [-2.64963]	0.010667 (0.01363) [0.78262]
GPRD_ACT(-25)	0.000109 (0.00045) [0.23931]	0.028625 (0.01607) [1.78132]	0.013469 (0.01361) [0.98929]
GPRD_ACT(-26)	8.10E-05 (0.00045) [0.17862]	-0.002738 (0.01605) [-0.17056]	-0.015088 (0.01360) [-1.10922]
GPRD_ACT(-27)	9.23E-05 (0.00045) [0.20422]	-0.011671 (0.01601) [-0.72887]	0.002075 (0.01357) [0.15292]
GPRD_ACT(-28)	-0.000226 (0.00045) [-0.50773]	-0.005216 (0.01579) [-0.33042]	-0.004968 (0.01338) [-0.37147]
GPRD_ACT(-29)	0.000535 (0.00040) [1.32587]	0.021887 (0.01429) [1.53176]	0.002703 (0.01211) [0.22327]

GPRD_THREAT(-1)	0.000164	0.008306	0.334991
	(0.00047)	(0.01667)	(0.01412)
	[0.34846]	[0.49834]	[23.7212]
GPRD_THREAT(-2)	-0.000180	0.044810	0.174008
	(0.00050)	(0.01758)	(0.01489)
	[-0.36332]	[2.54895]	[11.6826]
GPRD_THREAT(-3)	0.000124	-0.021050	0.063582
	(0.00050)	(0.01780)	(0.01508)
	[0.24721]	[-1.18255]	[4.21598]
GPRD_THREAT(-4)	-1.56E-06	-0.014539	0.030761
	(0.00050)	(0.01784)	(0.01512)
	[-0.00309]	[-0.81485]	[2.03476]
GPRD_THREAT(-5)	-0.000408	0.042648	0.081330
	(0.00050)	(0.01785)	(0.01513)
	[-0.80866]	[2.38888]	[5.37691]
GPRD_THREAT(-6)	-1.09E-05	-0.012866	0.030967
	(0.00051)	(0.01789)	(0.01516)
	[-0.02155]	[-0.71905]	[2.04276]
GPRD_THREAT(-7)	0.000276	-0.002631	0.013576
	(0.00051)	(0.01790)	(0.01516)
	[0.54650]	[-0.14701]	[0.89529]
GPRD_THREAT(-8)	-0.000108	-0.001344	-0.001940
	(0.00051)	(0.01789)	(0.01516)
	[-0.21289]	[-0.07516]	[-0.12797]
GPRD_THREAT(-9)	-0.000302	0.030388	0.021928
	(0.00051)	(0.01793)	(0.01519)
	[-0.59587]	[1.69443]	[1.44312]
GPRD_THREAT(-10)	0.000355	0.003663	0.039848
	(0.00051)	(0.01793)	(0.01519)
	[0.70067]	[0.20430]	[2.62280]
GPRD_THREAT(-11)	-0.000397	-0.035283	0.014988
	(0.00051)	(0.01794)	(0.01520)
	[-0.78347]	[-1.96630]	[0.98590]
GPRD_THREAT(-12)	0.000449	-0.012217	-0.029342
	(0.00051)	(0.01800)	(0.01525)
	[0.88362]	[-0.67882]	[-1.92423]

GPRD_THREAT(-13)	0.000383	-0.048428	-0.022969
	(0.00051)	(0.01800)	(0.01525)
	[0.75300]	[-2.68976]	[-1.50576]
GPRD_THREAT(-14)	-0.000273	0.040076	0.013906
	(0.00051)	(0.01802)	(0.01527)
	[-0.53572]	[2.22374]	[0.91075]
GPRD_THREAT(-15)	0.000461	0.021897	0.051229
	(0.00051)	(0.01802)	(0.01527)
	[0.90670]	[1.21512]	[3.35539]
GPRD_THREAT(-16)	-0.000144	0.001506	0.015993
	(0.00051)	(0.01807)	(0.01531)
	[-0.28239]	[0.08335]	[1.04488]
GPRD_THREAT(-17)	0.000795	-0.013164	-0.005320
	(0.00051)	(0.01806)	(0.01530)
	[1.55901]	[-0.72888]	[-0.34769]
GPRD_THREAT(-18)	-0.000618	-0.002470	0.000575
	(0.00051)	(0.01806)	(0.01530)
	[-1.21171]	[-0.13678]	[0.03758]
GPRD_THREAT(-19)	-0.000159	0.001053	0.017758
	(0.00051)	(0.01805)	(0.01530)
	[-0.31221]	[0.05835]	[1.16102]
GPRD_THREAT(-20)	0.000877	0.016087	0.039641
	(0.00051)	(0.01805)	(0.01529)
	[1.72097]	[0.89137]	[2.59242]
GPRD_THREAT(-21)	-2.79E-05	-0.021399	-0.016388
	(0.00051)	(0.01806)	(0.01530)
	[-0.05475]	[-1.18506]	[-1.07118]
GPRD_THREAT(-22)	0.000145	0.029640	0.037553
	(0.00051)	(0.01809)	(0.01532)
	[0.28364]	[1.63868]	[2.45050]
GPRD_THREAT(-23)	-0.000202	0.006822	0.005046
	(0.00051)	(0.01813)	(0.01536)
	[-0.39463]	[0.37635]	[0.32858]
GPRD_THREAT(-24)	-0.000206	-0.007769	-0.032618
	(0.00051)	(0.01811)	(0.01534)
	[-0.40242]	[-0.42897]	[-2.12580]

GPRD_THREAT(-25)	0.000528	0.002814	0.005288
	(0.00051)	(0.01814)	(0.01537)
	[1.03137]	[0.15508]	[0.34399]
GPRD_THREAT(-26)	-0.000577	-0.034950	0.012431
	(0.00051)	(0.01813)	(0.01536)
	[-1.12767]	[-1.92741]	[0.80913]
GPRD_THREAT(-27)	-0.000737	-0.005849	-0.004507
	(0.00051)	(0.01815)	(0.01538)
	[-1.43699]	[-0.32221]	[-0.29307]
GPRD_THREAT(-28)	0.000718	0.026977	0.019264
	(0.00051)	(0.01800)	(0.01525)
	[1.41234]	[1.49897]	[1.26337]
GPRD_THREAT(-29)	-0.000454	-0.031093	0.020032
	(0.00049)	(0.01720)	(0.01457)
	[-0.93520]	[-1.80785]	[1.37470]
C	-0.019883	5.808746	8.588016
	(0.05450)	(1.93008)	(1.63527)
	[-0.36481]	[3.00958]	[5.25175]
R-squared	0.040685	0.769058	0.570617
Adj. R-squared	0.025206	0.765331	0.563689
Sum sq. resids	11849.83	14860793	10667596
S.E. equation	1.482454	52.49840	44.47934
F-statistic	2.628442	206.3886	82.36272
Log likelihood	-9888.895	-29436.52	-28528.16
Akaike AIC	3.641203	10.77537	10.44385
Schwarz SC	3.747330	10.88150	10.54998
Mean dependent	0.013405	114.2487	112.8077
S.D. dependent	1.501498	108.3724	67.33801
Determinant resid covariar Determinant resid covariar Log likelihood Akaike information criterior Schwarz criterion Number of coefficients	nce	11125960 10598526 -67650.21 24.78621 25.10459 264	

EViews Output 60: VAR Estimates – No.11 Sugar

Vector Autoregression Estimates Date: 05/27/22 Time: 20:45 Sample (adjusted): 5/11/2000 5/13/2021 Included observations: 5481 after adjustments Standard errors in () & t-statistics in []

	SUGAR_LA	GPRD_ACT	GPRD_THR
SUGAR_LAST_PRICE1(-0.008710	0.410824	-0.710394
	(0.01359)	(2.09700)	(1.77832)
	[-0.64109]	[0.19591]	[-0.39947]
SUGAR_LAST_PRICE1(-0.008972	1.070154	-0.142843
	(0.01358)	(2.09661)	(1.77799)
	[-0.66047]	[0.51042]	[-0.08034]
SUGAR_LAST_PRICE1(0.025228	1.044580	-1.100485
	(0.01359)	(2.09682)	(1.77817)
	[1.85693]	[0.49817]	[-0.61889]
SUGAR_LAST_PRICE1(-0.011144	-0.264734	-0.010506
	(0.01359)	(2.09756)	(1.77879)
	[-0.81999]	[-0.12621]	[-0.00591]
SUGAR_LAST_PRICE1(-0.046813	-0.803883	-3.153750
	(0.01359)	(2.09726)	(1.77854)
	[-3.44500]	[-0.38330]	[-1.77323]
SUGAR_LAST_PRICE1(-0.012024	-2.372895	-0.781568
	(0.01361)	(2.10002)	(1.78088)
	[-0.88366]	[-1.12994]	[-0.43887]
SUGAR_LAST_PRICE1(0.007901	-1.588901	1.186136
	(0.01361)	(2.09996)	(1.78083)
	[0.58068]	[-0.75663]	[0.66606]
SUGAR_LAST_PRICE1(0.012638	1.882364	1.192255
	(0.01360)	(2.09881)	(1.77985)
	[0.92938]	[0.89687]	[0.66986]
SUGAR_LAST_PRICE1(-0.037547	0.067320	0.809502
	(0.01360)	(2.09887)	(1.77990)
	[-2.76103]	[0.03207]	[0.45480]
SUGAR_LAST_PRICE1(0.033768	0.680477	0.186869
	(0.01361)	(2.10044)	(1.78124)
	[2.48127]	[0.32397]	[0.10491]

SUGAR_LAST_PRICE1(-0.017546	0.234214	1.997393
	(0.01361)	(2.10099)	(1.78170)
	[-1.28895]	[0.11148]	[1.12106]
SUGAR_LAST_PRICE1(0.002162	0.141433	-0.140917
	(0.01362)	(2.10152)	(1.78215)
	[0.15878]	[0.06730]	[-0.07907]
SUGAR_LAST_PRICE1(0.016400	0.662339	0.954959
	(0.01360)	(2.09920)	(1.78019)
	[1.20578]	[0.31552]	[0.53644]
SUGAR_LAST_PRICE1(0.004737	-2.779223	-1.515524
	(0.01360)	(2.09929)	(1.78026)
	[0.34829]	[-1.32389]	[-0.85129]
SUGAR_LAST_PRICE1(-0.004651	0.832810	-1.209920
	(0.01360)	(2.09887)	(1.77991)
	[-0.34204]	[0.39679]	[-0.67977]
SUGAR_LAST_PRICE1(0.006706	1.454168	-2.097273
	(0.01360)	(2.09839)	(1.77949)
	[0.49323]	[0.69299]	[-1.17858]
SUGAR_LAST_PRICE1(-0.058250	-0.875938	0.602682
	(0.01360)	(2.09919)	(1.78017)
	[-4.28272]	[-0.41728]	[0.33855]
GPRD_ACT(-1)	7.69E-05	0.487018	0.059124
	(9.1E-05)	(0.01412)	(0.01197)
	[0.84009]	[34.4902]	[4.93743]
GPRD_ACT(-2)	-0.000150	0.194344	0.009006
	(0.00010)	(0.01563)	(0.01325)
	[-1.48160]	[12.4364]	[0.67960]
GPRD_ACT(-3)	4.21E-05	0.092535	0.010398
	(0.00010)	(0.01586)	(0.01345)
	[0.40918]	[5.83337]	[0.77299]
GPRD_ACT(-4)	-8.85E-06	0.051348	0.021284
	(0.00010)	(0.01593)	(0.01351)
	[-0.08577]	[3.22365]	[1.57568]
GPRD_ACT(-5)	-5.55E-05	0.077937	0.006170
	(0.00010)	(0.01593)	(0.01351)
	[-0.53764]	[4.89152]	[0.45666]

GPRD_ACT(-6)	0.000165	0.010855	0.009299
	(0.00010)	(0.01596)	(0.01354)
	[1.59541]	[0.68002]	[0.68691]
GPRD_ACT(-7)	-3.65E-05	-0.023591	-0.019136
	(0.00010)	(0.01596)	(0.01353)
	[-0.35284]	[-1.47823]	[-1.41396]
GPRD_ACT(-8)	-0.000235	-0.006226	-0.016557
	(0.00010)	(0.01595)	(0.01353)
	[-2.27083]	[-0.39034]	[-1.22407]
GPRD_ACT(-9)	8.41E-05	-0.013990	-0.022386
	(0.00010)	(0.01596)	(0.01354)
	[0.81345]	[-0.87648]	[-1.65386]
GPRD_ACT(-10)	0.000126	0.031903	-0.007401
	(0.00010)	(0.01596)	(0.01354)
	[1.21846]	[1.99830]	[-0.54666]
GPRD_ACT(-11)	-1.19E-06	0.030071	0.009033
	(0.00010)	(0.01597)	(0.01354)
	[-0.01154]	[1.88325]	[0.66708]
GPRD_ACT(-12)	-0.000138	-0.012403	-0.014580
	(0.00010)	(0.01597)	(0.01354)
	[-1.33603]	[-0.77677]	[-1.07672]
GPRD_ACT(-13)	1.58E-05	0.007124	-0.015103
	(0.00010)	(0.01597)	(0.01354)
	[0.15307]	[0.44615]	[-1.11537]
GPRD_ACT(-14)	-6.02E-05	-0.004963	-0.001820
	(0.00010)	(0.01596)	(0.01354)
	[-0.58234]	[-0.31091]	[-0.13443]
GPRD_ACT(-15)	7.59E-05	0.015489	-0.009246
	(0.00010)	(0.01596)	(0.01353)
	[0.73426]	[0.97070]	[-0.68333]
GPRD_ACT(-16)	0.000113	-0.007351	-0.015459
	(0.00010)	(0.01597)	(0.01354)
	[1.08811]	[-0.46038]	[-1.14168]

GPRD_ACT(-17)	-1.70E-05	-0.029234	-0.014493
	(0.00010)	(0.01599)	(0.01356)
	[-0.16457]	[-1.82863]	[-1.06901]
GPRD_ACT(-18)	-5.86E-05	0.002498	0.008658
	(0.00010)	(0.01600)	(0.01357)
	[-0.56552]	[0.15614]	[0.63808]
GPRD_ACT(-19)	4.04E-05	0.009258	0.001550
	(0.00010)	(0.01600)	(0.01357)
	[0.38972]	[0.57870]	[0.11427]
GPRD_ACT(-20)	0.000156	0.008737	0.015902
	(0.00010)	(0.01600)	(0.01357)
	[1.50455]	[0.54615]	[1.17224]
GPRD_ACT(-21)	-0.000127	0.050142	0.016710
	(0.00010)	(0.01601)	(0.01358)
	[-1.22708]	[3.13171]	[1.23069]
GPRD_ACT(-22)	-7.01E-05	-0.045070	-0.033643
	(0.00010)	(0.01603)	(0.01360)
	[-0.67488]	[-2.81088]	[-2.47427]
GPRD_ACT(-23)	0.000135	0.026669	-0.013604
	(0.00010)	(0.01605)	(0.01361)
	[1.29860]	[1.66198]	[-0.99972]
GPRD_ACT(-24)	-3.54E-05	-0.041223	0.012743
	(0.00010)	(0.01601)	(0.01358)
	[-0.34082]	[-2.57494]	[0.93859]
GPRD_ACT(-25)	-1.64E-06	0.028779	0.013413
	(0.00010)	(0.01602)	(0.01359)
	[-0.01576]	[1.79616]	[0.98716]
GPRD_ACT(-26)	2.33E-05	3.72E-05	-0.015594
	(0.00010)	(0.01598)	(0.01355)
	[0.22505]	[0.00233]	[-1.15058]
GPRD_ACT(-27)	-9.73E-05	-0.009153	0.001858
	(0.00010)	(0.01576)	(0.01336)
	[-0.95332]	[-0.58096]	[0.13908]
GPRD_ACT(-28)	1.96E-05	0.004806	-0.001958
	(9.2E-05)	(0.01427)	(0.01210)
	[0.21180]	[0.33678]	[-0.16177]

GPRD_THREAT(-1)	5.85E-06	0.008632	0.334324
	(0.00011)	(0.01665)	(0.01412)
	[0.05421]	[0.51844]	[23.6782]
GPRD_THREAT(-2)	8.19E-05	0.043290	0.174411
	(0.00011)	(0.01756)	(0.01489)
	[0.72000]	[2.46556]	[11.7137]
GPRD_THREAT(-3)	2.87E-05	-0.021415	0.065161
	(0.00012)	(0.01778)	(0.01508)
	[0.24953]	[-1.20457]	[4.32213]
GPRD_THREAT(-4)	-0.000112	-0.015273	0.031083
	(0.00012)	(0.01782)	(0.01512)
	[-0.97036]	[-0.85685]	[2.05631]
GPRD_THREAT(-5)	6.21E-06	0.042670	0.080908
	(0.00012)	(0.01783)	(0.01512)
	[0.05378]	[2.39351]	[5.35170]
GPRD_THREAT(-6)	-0.000105	-0.012898	0.030547
	(0.00012)	(0.01787)	(0.01516)
	[-0.90809]	[-0.72168]	[2.01541]
GPRD_THREAT(-7)	8.60E-05	-0.002458	0.015253
	(0.00012)	(0.01787)	(0.01516)
	[0.74235]	[-0.13754]	[1.00642]
GPRD_THREAT(-8)	8.37E-05	-0.001239	-0.003697
	(0.00012)	(0.01787)	(0.01516)
	[0.72274]	[-0.06932]	[-0.24392]
GPRD_THREAT(-9)	-0.000208	0.029974	0.022489
	(0.00012)	(0.01790)	(0.01518)
	[-1.79593]	[1.67416]	[1.48118]
GPRD_THREAT(-10)	0.000182	0.004280	0.042205
	(0.00012)	(0.01792)	(0.01520)
	[1.56370]	[0.23883]	[2.77742]
GPRD_THREAT(-11)	9.60E-05	-0.036606	0.013564
	(0.00012)	(0.01794)	(0.01521)
	[0.82614]	[-2.04078]	[0.89173]
GPRD_THREAT(-12)	1.46E-05	-0.013668	-0.028823
	(0.00012)	(0.01799)	(0.01525)
	[0.12501]	[-0.75982]	[-1.88943]

GPRD_THREAT(-13)	-0.000155	-0.048428	-0.022471
	(0.00012)	(0.01799)	(0.01526)
	[-1.33166]	[-2.69206]	[-1.47297]
GPRD_THREAT(-14)	9.85E-05	0.039239	0.014140
	(0.00012)	(0.01799)	(0.01526)
	[0.84525]	[2.18067]	[0.92667]
GPRD_THREAT(-15)	-0.000183	0.021296	0.051632
	(0.00012)	(0.01801)	(0.01527)
	[-1.57176]	[1.18258]	[3.38097]
GPRD_THREAT(-16)	7.91E-05	0.001695	0.015244
	(0.00012)	(0.01805)	(0.01531)
	[0.67639]	[0.09389]	[0.99567]
GPRD_THREAT(-17)	8.77E-05	-0.011539	-0.004399
	(0.00012)	(0.01804)	(0.01530)
	[0.75043]	[-0.63950]	[-0.28747]
GPRD_THREAT(-18)	-7.27E-05	-0.003015	-0.000996
	(0.00012)	(0.01805)	(0.01531)
	[-0.62199]	[-0.16700]	[-0.06508]
GPRD_THREAT(-19)	-7.84E-05	-0.000765	0.019396
	(0.00012)	(0.01804)	(0.01530)
	[-0.67049]	[-0.04237]	[1.26765]
GPRD_THREAT(-20)	0.000124	0.014595	0.039637
	(0.00012)	(0.01804)	(0.01530)
	[1.05853]	[0.80893]	[2.59063]
GPRD_THREAT(-21)	-0.000144	-0.021757	-0.017294
	(0.00012)	(0.01805)	(0.01531)
	[-1.23086]	[-1.20544]	[-1.12988]
GPRD_THREAT(-22)	6.37E-05	0.028116	0.037467
	(0.00012)	(0.01808)	(0.01533)
	[0.54380]	[1.55492]	[2.44341]
GPRD_THREAT(-23)	-5.24E-05	0.006053	0.005879
	(0.00012)	(0.01811)	(0.01536)
	[-0.44618]	[0.33427]	[0.38282]
GPRD_THREAT(-24)	0.000137	-0.008843	-0.030876
	(0.00012)	(0.01807)	(0.01533)
	[1.17079]	[-0.48932]	[-2.01464]

GPRD_THREAT(-25)	2.00E-06	0.001157	0.005593
	(0.00012)	(0.01813)	(0.01537)
	[0.01705]	[0.06379]	[0.36376]
GPRD_THREAT(-26)	-0.000198	-0.036175	0.012528
	(0.00012)	(0.01809)	(0.01534)
	[-1.68677]	[-1.99942]	[0.81651]
GPRD_THREAT(-27)	0.000271	-0.010579	0.001080
	(0.00012)	(0.01800)	(0.01526)
	[2.31985]	[-0.58785]	[0.07080]
GPRD_THREAT(-28)	-0.000174	0.018579	0.024983
	(0.00011)	(0.01719)	(0.01457)
	[-1.55919]	[1.08105]	[1.71412]
с	0.008486	5.608811	8.933978
	(0.01244)	(1.91955)	(1.62783)
	[0.68227]	[2.92194]	[5.48826]
R-squared	0.025230	0.769159	0.570036
Adj. R-squared	0.010055	0.765565	0.563343
Sum sq. resids	623.5875	14854289	10682545
S.E. equation	0.339948	52.46745	44.49399
F-statistic	1.662656	214.0404	85.16527
Log likelihood	-1820.578	-29440.19	-28536.71
Akaike AIC	0.695340	10.77365	10.44397
Schwarz SC	0.797833	10.87614	10.54647
Mean dependent	0.002346	114.2470	112.8015
S.D. dependent	0.341670	108.3625	67.33346
Determinant resid covarian Determinant resid covarian Log likelihood Akaike information criterion Schwarz criterion Number of coefficients	nce	585362.2 558548.7 -59596.91 21.83978 22.14726 255	

EViews Output 61: VAR Estimates – Oats

Vector Autoregression Estimates Date: 05/27/22 Time: 20:29 Sample (adjusted): 5/05/2000 5/13/2021 Included observations: 5485 after adjustments Standard errors in () & t-statistics in []

	OATS_LAST	GPRD_ACT	GPRD_THR
OATS_LAST_PRICE1(-1)	0.083745	-0.132708	-0.112072
	(0.01361)	(0.10611)	(0.08973)
	[6.15536]	[-1.25066]	[-1.24897]
OATS_LAST_PRICE1(-2)	-0.040671	-0.024846	0.045186
	(0.01366)	(0.10654)	(0.09010)
	[-2.97721]	[-0.23320]	[0.50152]
OATS_LAST_PRICE1(-3)	-0.041380	-0.038230	-0.047964
	(0.01370)	(0.10686)	(0.09037)
	[-3.02006]	[-0.35774]	[-0.53076]
OATS_LAST_PRICE1(-4)	-0.017768	0.014235	0.003025
	(0.01371)	(0.10693)	(0.09043)
	[-1.29591]	[0.13312]	[0.03345]
OATS_LAST_PRICE1(-5)	-0.005168	0.041002	-0.165888
	(0.01374)	(0.10713)	(0.09059)
	[-0.37626]	[0.38274]	[-1.83117]
OATS_LAST_PRICE1(-6)	0.023686	0.060579	0.043444
	(0.01374)	(0.10718)	(0.09063)
	[1.72365]	[0.56523]	[0.47934]
OATS_LAST_PRICE1(-7)	0.010247	-0.162736	-0.016560
	(0.01374)	(0.10716)	(0.09062)
	[0.74578]	[-1.51865]	[-0.18275]
OATS_LAST_PRICE1(-8)	-0.019273	0.172257	-0.130094
	(0.01374)	(0.10715)	(0.09061)
	[-1.40284]	[1.60761]	[-1.43573]
OATS_LAST_PRICE1(-9)	-0.005242	0.037459	0.017504
	(0.01377)	(0.10740)	(0.09082)
	[-0.38066]	[0.34878]	[0.19272]
OATS_LAST_PRICE1(-10)	-0.030943	-0.009693	0.079059
	(0.01377)	(0.10742)	(0.09084)
	[-2.24671]	[-0.09024]	[0.87035]

OATS_LAST_PRICE1(-11)	-0.028205	-0.119872	0.197921
	(0.01379)	(0.10753)	(0.09093)
	[-2.04573]	[-1.11475]	[2.17654]
OATS_LAST_PRICE1(-12)	-0.003857	0.117941	0.124698
	(0.01379)	(0.10758)	(0.09098)
	[-0.27962]	[1.09627]	[1.37064]
OATS_LAST_PRICE1(-13)	-0.037389	-0.072913	0.006963
	(0.01388)	(0.10824)	(0.09153)
	[-2.69402]	[-0.67361]	[0.07606]
OATS_LAST_PRICE1(-14)	0.009869	-0.017753	0.229305
	(0.01388)	(0.10827)	(0.09156)
	[0.71089]	[-0.16397]	[2.50446]
OATS_LAST_PRICE1(-15)	-0.002693	0.020400	0.060131
	(0.01388)	(0.10822)	(0.09152)
	[-0.19409]	[0.18850]	[0.65703]
OATS_LAST_PRICE1(-16)	0.018488	-0.054728	-0.014661
	(0.01388)	(0.10828)	(0.09157)
	[1.33172]	[-0.50544]	[-0.16012]
OATS_LAST_PRICE1(-17)	-0.026566	-0.022934	-0.032550
	(0.01388)	(0.10827)	(0.09156)
	[-1.91367]	[-0.21182]	[-0.35551]
OATS_LAST_PRICE1(-18)	0.002179	0.032710	0.090792
	(0.01389)	(0.10831)	(0.09159)
	[0.15693]	[0.30201]	[0.99129]
OATS_LAST_PRICE1(-19)	0.018770	0.091531	0.109658
	(0.01389)	(0.10834)	(0.09162)
	[1.35124]	[0.84485]	[1.19692]
OATS_LAST_PRICE1(-20)	-0.035666	-0.052751	0.057772
	(0.01389)	(0.10831)	(0.09159)
	[-2.56831]	[-0.48705]	[0.63078]
OATS_LAST_PRICE1(-21)	-0.044426	0.058323	-0.059804
	(0.01389)	(0.10833)	(0.09161)
	[-3.19842]	[0.53837]	[-0.65282]

OATS_LAST_PRICE1(-22)	0.015216	-0.011560	-0.008156
	(0.01390)	(0.10840)	(0.09167)
	[1.09471]	[-0.10663]	[-0.08898]
OATS_LAST_PRICE1(-23)	-0.002634	0.115483	0.115359
	(0.01392)	(0.10860)	(0.09183)
	[-0.18914]	[1.06342]	[1.25617]
OATS_LAST_PRICE1(-24)	0.020879	-0.075925	0.253804
	(0.01393)	(0.10864)	(0.09187)
	[1.49892]	[-0.69886]	[2.76259]
GPRD_ACT(-1)	-0.003291	0.487117	0.057712
	(0.00181)	(0.01411)	(0.01193)
	[-1.81956]	[34.5331]	[4.83820]
GPRD_ACT(-2)	0.005379	0.194594	0.009400
	(0.00200)	(0.01561)	(0.01320)
	[2.68665]	[12.4623]	[0.71186]
GPRD_ACT(-3)	-0.002070	0.091565	0.010206
	(0.00203)	(0.01585)	(0.01340)
	[-1.01863]	[5.77646]	[0.76135]
GPRD_ACT(-4)	-0.001614	0.050915	0.022764
	(0.00204)	(0.01591)	(0.01345)
	[-0.79131]	[3.20119]	[1.69247]
GPRD_ACT(-5)	-0.003583	0.079863	0.006299
	(0.00204)	(0.01592)	(0.01346)
	[-1.75517]	[5.01586]	[0.46783]
GPRD_ACT(-6)	0.002426	0.008050	0.006034
	(0.00205)	(0.01596)	(0.01350)
	[1.18526]	[0.50425]	[0.44693]
GPRD_ACT(-7)	0.000187	-0.019847	-0.016671
	(0.00205)	(0.01597)	(0.01350)
	[0.09159]	[-1.24306]	[-1.23473]
GPRD_ACT(-8)	0.004711	-0.008692	-0.017518
	(0.00205)	(0.01596)	(0.01350)
	[2.30158]	[-0.54450]	[-1.29768]
GPRD_ACT(-9)	-0.000726	-0.010807	-0.021408
	(0.00205)	(0.01598)	(0.01351)
	[-0.35439]	[-0.67634]	[-1.58440]

GPRD_ACT(-10)	-0.005849	0.031267	-0.008729
	(0.00205)	(0.01598)	(0.01351)
	[-2.85495]	[1.95676]	[-0.64597]
GPRD_ACT(-11)	0.005328	0.029486	0.007972
	(0.00205)	(0.01599)	(0.01353)
	[2.59800]	[1.84351]	[0.58943]
GPRD_ACT(-12)	2.15E-05	-0.013483	-0.014338
	(0.00205)	(0.01600)	(0.01353)
	[0.01047]	[-0.84277]	[-1.05977]
GPRD_ACT(-13)	0.000159	0.008388	-0.013352
	(0.00205)	(0.01600)	(0.01353)
	[0.07759]	[0.52426]	[-0.98680]
GPRD_ACT(-14)	0.001182	-0.004043	-0.003453
	(0.00205)	(0.01599)	(0.01353)
	[0.57657]	[-0.25279]	[-0.25527]
GPRD_ACT(-15)	-0.000577	0.017183	-0.011603
	(0.00205)	(0.01599)	(0.01352)
	[-0.28147]	[1.07490]	[-0.85830]
GPRD_ACT(-16)	0.000161	-0.007394	-0.013802
	(0.00205)	(0.01600)	(0.01353)
	[0.07846]	[-0.46216]	[-1.02012]
GPRD_ACT(-17)	0.000466	-0.032865	-0.014345
	(0.00205)	(0.01601)	(0.01354)
	[0.22717]	[-2.05227]	[-1.05928]
GPRD_ACT(-18)	-0.001477	0.005547	0.008125
	(0.00205)	(0.01603)	(0.01355)
	[-0.71879]	[0.34611]	[0.59953]
GPRD_ACT(-19)	0.000166	0.010293	0.002386
	(0.00205)	(0.01603)	(0.01355)
	[0.08078]	[0.64230]	[0.17603]
GPRD_ACT(-20)	-0.001838	0.010480	0.015577
	(0.00205)	(0.01598)	(0.01351)
	[-0.89683]	[0.65581]	[1.15272]

GPRD_	_ACT(-21)	-0.000826 (0.00205) [-0.40313]	0.048835 (0.01597) [3.05707]	0.017380 (0.01351) [1.28656]	
GPRD_	_ACT(-22)	0.001119 (0.00205) [0.54713]	-0.043539 (0.01595) [-2.72928]	-0.035672 (0.01349) [-2.64432]	
GPRD_	_ACT(-23)	-0.002105 (0.00202) [-1.04294]	0.030450 (0.01574) [1.93417]	-0.012304 (0.01331) [-0.92422]	
GPRD_	_ACT(-24)	0.002569 (0.00183) [1.40537]	-0.029250 (0.01426) [-2.05161]	0.015229 (0.01206) [1.26312]	
GPRD_T	HREAT(-1)	0.005660 (0.00214) [2.64725]	0.008130 (0.01668) [0.48753]	0.332146 (0.01410) [23.5535]	
GPRD_T	HREAT(-2)	-0.004236 (0.00226) [-1.87817]	0.044425 (0.01759) [2.52538]	0.175626 (0.01488) [11.8060]	
GPRD_T	HREAT(-3)	0.002896 (0.00228) [1.26825]	-0.022750 (0.01781) [-1.27759]	0.065311 (0.01506) [4.33719]	
GPRD_T	HREAT(-4)	0.003402 (0.00229) [1.48617]	-0.015244 (0.01785) [-0.85387]	0.028933 (0.01510) [1.91648]	
GPRD_T	HREAT(-5)	-0.003812 (0.00229) [-1.66580]	0.045092 (0.01785) [2.52672]	0.081088 (0.01509) [5.37309]	
GPRD_T	HREAT(-6)	0.002232 (0.00229) [0.97276]	-0.015591 (0.01789) [-0.87129]	0.034769 (0.01513) [2.29768]	
GPRD_T	HREAT(-7)	0.000614 (0.00230) [0.26733]	-0.005402 (0.01791) [-0.30167]	0.016617 (0.01514) [1.09729]	
GPRD_T	HREAT(-8)	-0.000693 (0.00230) [-0.30191]	0.000450 (0.01791) [0.02512]	-0.003178 (0.01514) [-0.20988]	

GPRD_THREAT(-9)	-0.000412	0.027329	0.024717
	(0.00230)	(0.01796)	(0.01518)
	[-0.17884]	[1.52196]	[1.62778]
GPRD_THREAT(-10)	0.000331	0.004328	0.043818
	(0.00230)	(0.01795)	(0.01518)
	[0.14390]	[0.24114]	[2.88724]
GPRD_THREAT(-11)	-0.002083	-0.035959	0.017061
	(0.00230)	(0.01795)	(0.01518)
	[-0.90520]	[-2.00338]	[1.12405]
GPRD_THREAT(-12)	-0.003485	-0.014869	-0.030403
	(0.00231)	(0.01800)	(0.01522)
	[-1.51038]	[-0.82619]	[-1.99776]
GPRD_THREAT(-13)	-0.002376	-0.047736	-0.024309
	(0.00231)	(0.01800)	(0.01523)
	[-1.02944]	[-2.65136]	[-1.59659]
GPRD_THREAT(-14)	0.001670	0.040294	0.016934
	(0.00231)	(0.01803)	(0.01524)
	[0.72276]	[2.23543]	[1.11093]
GPRD_THREAT(-15)	0.001664	0.021052	0.051491
	(0.00231)	(0.01803)	(0.01525)
	[0.71987]	[1.16753]	[3.37689]
GPRD_THREAT(-16)	-9.35E-05	-0.004046	0.014329
	(0.00232)	(0.01806)	(0.01528)
	[-0.04038]	[-0.22399]	[0.93799]
GPRD_THREAT(-17)	0.004611	-0.010697	-0.005240
	(0.00231)	(0.01805)	(0.01527)
	[1.99233]	[-0.59255]	[-0.34324]
GPRD_THREAT(-18)	-0.002767	-0.001193	-0.000611
	(0.00232)	(0.01806)	(0.01527)
	[-1.19515]	[-0.06605]	[-0.04001]
GPRD_THREAT(-19)	-0.005949	-0.001046	0.020970
	(0.00231)	(0.01805)	(0.01526)
	[-2.57086]	[-0.05799]	[1.37407]
GPRD_THREAT(-20)	0.003071	0.013072	0.041890
	(0.00231)	(0.01802)	(0.01524)
	[1.32885]	[0.72530]	[2.74857]

GPRD_THREAT(-19)	-0.005949	-0.001046	0.020970
	(0.00231)	(0.01805)	(0.01526)
	[-2.57086]	[-0.05799]	[1.37407]
GPRD_THREAT(-20)	0.003071	0.013072	0.041890
	(0.00231)	(0.01802)	(0.01524)
	[1.32885]	[0.72530]	[2.74857]
GPRD_THREAT(-21)	-0.002542	-0.024720	-0.016856
	(0.00231)	(0.01802)	(0.01524)
	[-1.10003]	[-1.37160]	[-1.10593]
GPRD_THREAT(-22)	0.001138	0.027854	0.042121
	(0.00231)	(0.01803)	(0.01524)
	[0.49233]	[1.54515]	[2.76308]
GPRD_THREAT(-23)	0.002349	0.002378	0.012686
	(0.00230)	(0.01792)	(0.01515)
	[1.02248]	[0.13269]	[0.83720]
GPRD_THREAT(-24)	-0.001049	-0.016353	-0.020067
	(0.00219)	(0.01710)	(0.01446)
	[-0.47854]	[-0.95620]	[-1.38753]
c	0.114601	5.451575	9.628978
	(0.23796)	(1.85595)	(1.56947)
	[0.48159]	[2.93735]	[6.13519]
R-squared	0.033689	0.768263	0.570821
Adj. R-squared	0.020833	0.765180	0.565111
Sum sq. resids	245147.6	14912037	10663730
S.E. equation	6.730308	52.49157	44.38903
F-statistic	2.620541	249.1954	99.97382
Log likelihood	-18203.95	-29470.31	-28550.70
Akaike AIC	6.664338	10.77240	10.43708
Schwarz SC	6.752308	10.86037	10.52505
Mean dependent	0.109025	114.2411	112.7874
S.D. dependent	6.801529	108.3234	67.31107
Determinant resid covariar Determinant resid covariar Log likelihood Akaike information criterior Schwarz criterion Number of coefficients	ice	2.28E+08 2.19E+08 -76014.11 27.79694 28.06085 219	

EViews Output 62: VAR Estimates - Rough Rice

Vector Autoregression Estimates Date: 05/27/22 Time: 20:37 Sample (adjusted): 5/12/2000 5/13/2021 Included observations: 5480 after adjustments Standard errors in () & t-statistics in []

	ROUGH_RI	GPRD_ACT	GPRD_THR
ROUGH_RICE_LAST_P	0.128277	1.498717	3.902282
	(0.01361)	(3.48517)	(2.95340)
	[9.42646]	[0.43003]	[1.32128]
ROUGH_RICE_LAST_P	-0.001155	4.704457	2.577643
	(0.01372)	(3.51388)	(2.97772)
	[-0.08416]	[1.33882]	[0.86564]
ROUGH_RICE_LAST_P	-0.003926	-5.012800	-1.586746
	(0.01371)	(3.51249)	(2.97655)
	[-0.28626]	[-1.42713]	[-0.53308]
ROUGH_RICE_LAST_P	-0.024897	0.073744	-2.034631
	(0.01371)	(3.51199)	(2.97612)
	[-1.81556]	[0.02100]	[-0.68365]
ROUGH_RICE_LAST_P	-0.027249	4.535361	-4.406107
	(0.01371)	(3.51198)	(2.97612)
	[-1.98710]	[1.29140]	[-1.48049]
ROUGH_RICE_LAST_P	0.012622	-5.228257	0.738796
	(0.01371)	(3.51058)	(2.97493)
	[0.92080]	[-1.48929]	[0.24834]
ROUGH_RICE_LAST_P	-0.000668	4.687108	4.486344
	(0.01371)	(3.51138)	(2.97561)
	[-0.04873]	[1.33483]	[1.50771]
ROUGH_RICE_LAST_P	-0.001020	-3.485591	-2.860888
	(0.01371)	(3.51201)	(2.97614)
	[-0.07435]	[-0.99248]	[-0.96127]
ROUGH_RICE_LAST_P	-0.032883	-0.781478	-4.878294
	(0.01371)	(3.51001)	(2.97445)
	[-2.39928]	[-0.22264]	[-1.64007]
ROUGH_RICE_LAST_P	-0.054521	0.297108	1.662389
	(0.01372)	(3.51271)	(2.97673)
	[-3.97506]	[0.08458]	[0.55846]

_

ROUGH_RICE_LAST_P	0.017179	-4.306572	1.971724
	(0.01373)	(3.51722)	(2.98055)
	[1.25091]	[-1.22443]	[0.66153]
ROUGH_RICE_LAST_P	-0.015308	1.646525	2.013462
	(0.01374)	(3.51985)	(2.98278)
	[-1.11381]	[0.46778]	[0.67503]
ROUGH_RICE_LAST_P	-0.004045	-2.703759	-0.500265
	(0.01376)	(3.52290)	(2.98537)
	[-0.29405]	[-0.76748]	[-0.16757]
ROUGH_RICE_LAST_P	-0.011368	-1.241455	1.501796
	(0.01375)	(3.52099)	(2.98375)
	[-0.82688]	[-0.35259]	[0.50332]
ROUGH_RICE_LAST_P	-0.033648	-1.314071	3.305718
	(0.01373)	(3.51729)	(2.98062)
	[-2.45008]	[-0.37360]	[1.10907]
ROUGH_RICE_LAST_P	0.008086	0.550004	0.475038
	(0.01374)	(3.51927)	(2.98229)
	[0.58841]	[0.15628]	[0.15929]
ROUGH_RICE_LAST_P	-0.010117	-0.708312	0.347998
	(0.01374)	(3.51912)	(2.98217)
	[-0.73630]	[-0.20128]	[0.11669]
ROUGH_RICE_LAST_P	0.000546	1.453935	1.547880
	(0.01374)	(3.51900)	(2.98207)
	[0.03974]	[0.41317]	[0.51906]
ROUGH_RICE_LAST_P	0.014402	-0.891578	2.473864
	(0.01374)	(3.51838)	(2.98154)
	[1.04834]	[-0.25341]	[0.82973]
ROUGH_RICE_LAST_P	-0.001414	0.659658	-0.250367
	(0.01372)	(3.51339)	(2.97731)
	[-0.10309]	[0.18776]	[-0.08409]
ROUGH_RICE_LAST_P	-0.032570	-3.030142	-3.217403
	(0.01371)	(3.51008)	(2.97451)
	[-2.37641]	[-0.86327]	[-1.08166]
ROUGH_RICE_LAST_P	-0.014422 (0.01371) [-1.05162]		3.897939 (2.97636) [1.30964]

ROUGH_RICE_LAST_P	0.004665	0.939899	-2.685765
	(0.01373)	(3.51527)	(2.97891)
	[0.33989]	[0.26738]	[-0.90159]
ROUGH_RICE_LAST_P	0.039676	-6.412620	-0.529266
	(0.01373)	(3.51551)	(2.97911)
	[2.89047]	[-1.82409]	[-0.17766]
ROUGH_RICE_LAST_P	0.017949	-1.367548	-1.056308
	(0.01373)	(3.51760)	(2.98088)
	[1.30684]	[-0.38877]	[-0.35436]
ROUGH_RICE_LAST_P	0.009311	-2.948438	1.890931
	(0.01373)	(3.51621)	(2.97970)
	[0.67816]	[-0.83853]	[0.63460]
ROUGH_RICE_LAST_P	0.030134	1.598993	-1.135360
	(0.01373)	(3.51657)	(2.98001)
	[2.19464]	[0.45470]	[-0.38099]
ROUGH_RICE_LAST_P	0.010434	0.146726	-2.138455
	(0.01374)	(3.51820)	(2.98139)
	[0.75957]	[0.04170]	[-0.71727]
ROUGH_RICE_LAST_P	-0.042060	-0.111485	-0.276261
	(0.01363)	(3.49076)	(2.95814)
	[-3.08583]	[-0.03194]	[-0.09339]
GPRD_ACT(-1)	-7.54E-05	0.487794	0.058671
	(5.5E-05)	(0.01413)	(0.01197)
	[-1.36737]	[34.5299]	[4.90100]
GPRD_ACT(-2)	5.37E-05	0.193101	0.009806
	(6.1E-05)	(0.01564)	(0.01326)
	[0.87932]	[12.3438]	[0.73972]
GPRD_ACT(-3)	-3.92E-05	0.090853	0.011018
	(6.2E-05)	(0.01588)	(0.01346)
	[-0.63186]	[5.72160]	[0.81878]
GPRD_ACT(-4)	0.000100	0.052254	0.021923
	(6.2E-05)	(0.01594)	(0.01351)
	[1.61278]	[3.27820]	[1.62302]
GPRD_ACT(-5)	-4.18E-05	0.077349	0.006053
	(6.2E-05)	(0.01596)	(0.01352)
	[-0.67084]	[4.84674]	[0.44759]

GPRD_ACT(-6)	1.18E-05	0.010597	0.007214
	(6.2E-05)	(0.01598)	(0.01354)
	[0.18957]	[0.66329]	[0.53281]
GPRD_ACT(-7)	9.22E-06	-0.021400	-0.017766
	(6.2E-05)	(0.01597)	(0.01353)
	[0.14795]	[-1.34015]	[-1.31289]
GPRD_ACT(-8)	-1.55E-05	-0.007572	-0.017287
	(6.2E-05)	(0.01596)	(0.01353)
	[-0.24880]	[-0.47430]	[-1.27785]
GPRD_ACT(-9)	-3.50E-06	-0.013605	-0.021244
	(6.2E-05)	(0.01596)	(0.01352)
	[-0.05621]	[-0.85268]	[-1.57114]
GPRD_ACT(-10)	-4.73E-05	0.031170	-0.008660
	(6.2E-05)	(0.01596)	(0.01353)
	[-0.75852]	[1.95297]	[-0.64026]
GPRD_ACT(-11)	7.50E-05	0.029439	0.009670
	(6.2E-05)	(0.01597)	(0.01353)
	[1.20221]	[1.84362]	[0.71466]
GPRD_ACT(-12)	-1.70E-05	-0.011663	-0.014800
	(6.2E-05)	(0.01598)	(0.01354)
	[-0.27229]	[-0.73002]	[-1.09319]
GPRD_ACT(-13)	-1.55E-05	0.004871	-0.013672
	(6.2E-05)	(0.01597)	(0.01354)
	[-0.24919]	[0.30495]	[-1.01007]
GPRD_ACT(-14)	7.36E-05	-0.003929	-0.002790
	(6.2E-05)	(0.01598)	(0.01354)
	[1.18039]	[-0.24590]	[-0.20604]
GPRD_ACT(-15)	-1.29E-05	0.016548	-0.010775
	(6.2E-05)	(0.01598)	(0.01354)
	[-0.20638]	[1.03584]	[-0.79589]
GPRD_ACT(-16)	-5.95E-05	-0.009401	-0.013819
	(6.2E-05)	(0.01599)	(0.01355)
	[-0.95269]	[-0.58791]	[-1.01982]
GPRD_ACT(-17)	3.30E-05	-0.028006	-0.015708
	(6.2E-05)	(0.01600)	(0.01356)
	[0.52753]	[-1.75042]	[-1.15852]

GPRD_ACT(-18)	5.47E-06 (6.3E-05) [0.08744]	0.002251 (0.01602) [0.14050]	0.009762 (0.01358) [0.71894]	
GPRD_ACT(-19)	-3.62E-05 (6.3E-05) [-0.57854]	0.009635 (0.01602) [0.60158]	0.001914 (0.01357) [0.14105]	
GPRD_ACT(-20)	-2.46E-05 (6.3E-05) [-0.39334]	0.008909 (0.01601) [0.55652]	0.016128 (0.01357) [1.18882]	
GPRD_ACT(-21)	1.53E-05 (6.3E-05) [0.24433]	0.050714 (0.01602) [3.16594]	0.016428 (0.01357) [1.21020]	
GPRD_ACT(-22)	6.68E-05 (6.3E-05) [1.06551]	-0.046606 (0.01604) [-2.90479]	-0.034265 (0.01360) [-2.52017]	
GPRD_ACT(-23)	-5.52E-05 (6.3E-05) [-0.88057]	0.025415 (0.01606) [1.58245]	-0.012623 (0.01361) [-0.92752]	
GPRD_ACT(-24)	-2.03E-05 (6.3E-05) [-0.32308]	-0.040757 (0.01606) [-2.53749]	0.010695 (0.01361) [0.78573]	
GPRD_ACT(-25)	-8.07E-05 (6.3E-05) [-1.28913]	0.028999 (0.01604) [1.80808]	0.014258 (0.01359) [1.04908]	
GPRD_ACT(-26)	0.000158 (6.3E-05) [2.52628]	-0.002358 (0.01603) [-0.14711]	-0.015726 (0.01358) [-1.15781]	
GPRD_ACT(-27)	-6.13E-05 (6.2E-05) [-0.98106]	-0.014252 (0.01599) [-0.89115]	0.001318 (0.01355) [0.09722]	
GPRD_ACT(-28)	4.95E-06 (6.2E-05) [0.08037]	-0.002531 (0.01577) [-0.16048]	-0.005322 (0.01336) [-0.39827]	
GPRD_ACT(-29)	-2.03E-05 (5.6E-05) [-0.36496]	0.020345 (0.01428) [1.42514]	0.003592 (0.01210) [0.29689]	

GPRD_THREAT(-1)	3.33E-05	0.007936	0.333428
	(6.5E-05)	(0.01668)	(0.01413)
	[0.51156]	[0.47592]	[23.5952]
GPRD_THREAT(-2)	-0.000105	0.045594	0.176257
	(6.9E-05)	(0.01759)	(0.01490)
	[-1.52800]	[2.59269]	[11.8276]
GPRD_THREAT(-3)	6.41E-05	-0.021949	0.064654
	(7.0E-05)	(0.01781)	(0.01510)
	[0.92196]	[-1.23203]	[4.28268]
GPRD_THREAT(-4)	2.64E-05	-0.014902	0.028178
	(7.0E-05)	(0.01786)	(0.01513)
	[0.37835]	[-0.83440]	[1.86192]
GPRD_THREAT(-5)	1.69E-05	0.042681	0.080862
	(7.0E-05)	(0.01787)	(0.01514)
	[0.24223]	[2.38861]	[5.34017]
GPRD_THREAT(-6)	1.50E-05	-0.013975	0.031679
	(7.0E-05)	(0.01791)	(0.01518)
	[0.21381]	[-0.78038]	[2.08747]
GPRD_THREAT(-7)	-7.40E-06	-0.000203	0.015375
	(7.0E-05)	(0.01791)	(0.01518)
	[-0.10580]	[-0.01133]	[1.01288]
GPRD_THREAT(-8)	4.23E-05	-0.003180	-0.003477
	(7.0E-05)	(0.01790)	(0.01517)
	[0.60570]	[-0.17765]	[-0.22923]
GPRD_THREAT(-9)	-0.000126	0.031391	0.022503
	(7.0E-05)	(0.01795)	(0.01521)
	[-1.80083]	[1.74921]	[1.47970]
GPRD_THREAT(-10)	8.44E-05	0.005045	0.043113
	(7.0E-05)	(0.01795)	(0.01521)
	[1.20460]	[0.28111]	[2.83459]
GPRD_THREAT(-11)	-5.39E-05	-0.034645	0.013180
	(7.0E-05)	(0.01796)	(0.01522)
	[-0.76863]	[-1.92899]	[0.86601]
GPRD_THREAT(-12)	-3.32E-05	-0.013110	-0.030111
	(7.0E-05)	(0.01801)	(0.01526)
	[-0.47269]	[-0.72782]	[-1.97258]

GPRD_THREAT(-13)	-2.84E-05	-0.047079	-0.021912
	(7.0E-05)	(0.01802)	(0.01527)
	[-0.40368]	[-2.61257]	[-1.43491]
GPRD_THREAT(-14)	-4.54E-06	0.040542	0.014585
	(7.0E-05)	(0.01803)	(0.01528)
	[-0.06442]	[2.24799]	[0.95436]
GPRD_THREAT(-15)	0.000168	0.019695	0.050872
	(7.0E-05)	(0.01803)	(0.01528)
	[2.38912]	[1.09224]	[3.32929]
GPRD_THREAT(-16)	-0.000167	0.000311	0.014420
	(7.1E-05)	(0.01809)	(0.01533)
	[-2.35755]	[0.01721]	[0.94075]
GPRD_THREAT(-17)	8.74E-05	-0.013486	-0.003099
	(7.1E-05)	(0.01809)	(0.01533)
	[1.23777]	[-0.74539]	[-0.20214]
GPRD_THREAT(-18)	-2.84E-05	-0.000412	-0.002106
	(7.1E-05)	(0.01809)	(0.01533)
	[-0.40264]	[-0.02276]	[-0.13735]
GPRD_THREAT(-19)	-3.96E-05	-0.000534	0.018160
	(7.1E-05)	(0.01809)	(0.01533)
	[-0.56023]	[-0.02950]	[1.18461]
GPRD_THREAT(-20)	-3.07E-05	0.016354	0.041299
	(7.1E-05)	(0.01809)	(0.01533)
	[-0.43417]	[0.90415]	[2.69441]
GPRD_THREAT(-21)	8.43E-05	-0.021146	-0.018068
	(7.1E-05)	(0.01808)	(0.01532)
	[1.19381]	[-1.16930]	[-1.17897]
GPRD_THREAT(-22)	7.56E-06	0.028512	0.037547
	(7.1E-05)	(0.01812)	(0.01536)
	[0.10691]	[1.57348]	[2.44521]
GPRD_THREAT(-23)	5.73E-05	0.007330	0.003765
	(7.1E-05)	(0.01815)	(0.01538)
	[0.80881]	[0.40378]	[0.24475]
GPRD_THREAT(-24)	-0.000170	-0.009005	-0.030959
	(7.1E-05)	(0.01814)	(0.01537)
	[-2.40122]	[-0.49649]	[-2.01422]

GPRD_THREAT(-25)	0.000135	0.003427	0.003692
	(7.1E-05)	(0.01818)	(0.01540)
	[1.90147]	[0.18854]	[0.23970]
GPRD_THREAT(-26)	-1.04E-05	-0.034453	0.013629
	(7.1E-05)	(0.01817)	(0.01540)
	[-0.14670]	[-1.89588]	[0.88499]
GPRD_THREAT(-27)	9.58E-06	-0.007280	-0.002998
	(7.1E-05)	(0.01819)	(0.01542)
	[0.13489]	[-0.40017]	[-0.19447]
GPRD_THREAT(-28)	8.40E-05	0.026500	0.017794
	(7.0E-05)	(0.01804)	(0.01529)
	[1.19192]	[1.46883]	[1.16385]
GPRD_THREAT(-29)	-4.82E-05	-0.029074	0.019745
	(6.7E-05)	(0.01723)	(0.01460)
	[-0.71564]	[-1.68716]	[1.35207]
c	-0.002831	5.864424	8.597220
	(0.00753)	(1.92973)	(1.63529)
	[-0.37569]	[3.03899]	[5.25731]
R-squared	0.040661	0.769081	0.570491
Adj. R-squared	0.025182	0.765355	0.563561
Sum sq. resids	226.5431	14859291	10670717
S.E. equation	0.204975	52.49575	44.48585
F-statistic	2.626879	206.4158	82.32050
Log likelihood	953.6523	-29436.24	-28528.96
Akaike AIC	-0.315931	10.77527	10.44415
Schwarz SC	-0.209804	10.88140	10.55028
Mean dependent	0.001991	114.2487	112.8077
S.D. dependent	0.207605	108.3724	67.33801
Determinant resid covariar Determinant resid covariar Log likelihood Akaike information criterior Schwarz criterion Number of coefficients	nce	212720.5 202636.4 -56807.87 20.82915 21.14753 264	

EViews Output 63: VAR Estimates – Soybean

Vector Autoregression Estimates Date: 05/27/22 Time: 20:40 Sample (adjusted): 5/03/2000 5/13/2021 Included observations: 5487 after adjustments Standard errors in () & t-statistics in []

	SOYBEAN_L	GPRD_ACT	GPRD_THR
SOYBEAN_LAST_PRIC	0.017119	0.050120	0.030390
	(0.01359)	(0.04380)	(0.03704)
	[1.25962]	[1.14431]	[0.82043]
SOYBEAN_LAST_PRIC	0.005334	0.018993	0.021209
	(0.01359)	(0.04379)	(0.03704)
	[0.39253]	[0.43368]	[0.57264]
SOYBEAN_LAST_PRIC	0.013697	-0.001891	-0.006858
	(0.01358)	(0.04378)	(0.03702)
	[1.00829]	[-0.04320]	[-0.18524]
SOYBEAN_LAST_PRIC	-0.015172	-0.067395	0.009721
	(0.01359)	(0.04381)	(0.03705)
	[-1.11619]	[-1.53846]	[0.26239]
SOYBEAN_LAST_PRIC	-0.022913	-0.001176	-0.012461
	(0.01359)	(0.04380)	(0.03704)
	[-1.68593]	[-0.02686]	[-0.33641]
SOYBEAN_LAST_PRIC	-0.019186	-0.057474	-0.039398
	(0.01359)	(0.04379)	(0.03704)
	[-1.41198]	[-1.31242]	[-1.06378]
SOYBEAN_LAST_PRIC	0.012811	-0.018392	-0.015028
	(0.01359)	(0.04381)	(0.03705)
	[0.94251]	[-0.41985]	[-0.40565]
SOYBEAN_LAST_PRIC	0.047202	-0.050906	-0.085540
	(0.01358)	(0.04378)	(0.03703)
	[3.47466]	[-1.16275]	[-2.31031]
SOYBEAN_LAST_PRIC	0.036828	0.035625	0.107065
	(0.01361)	(0.04386)	(0.03709)
	[2.70613]	[0.81227]	[2.88650]
SOYBEAN_LAST_PRIC	0.000575	-0.048889	-0.023262
	(0.01363)	(0.04391)	(0.03714)
	[0.04217]	[-1.11337]	[-0.62641]

SOYBEAN_LAST_PRIC	-0.022787	-0.035605	-0.012094
	(0.01363)	(0.04392)	(0.03714)
	[-1.67219]	[-0.81073]	[-0.32562]
SOYBEAN_LAST_PRIC	-0.003217	0.003978	0.018733
	(0.01363)	(0.04392)	(0.03714)
	[-0.23606]	[0.09057]	[0.50439]
SOYBEAN_LAST_PRIC	-0.018208	-0.000399	0.046493
	(0.01363)	(0.04393)	(0.03715)
	[-1.33589]	[-0.00909]	[1.25159]
SOYBEAN_LAST_PRIC	0.003758	0.074470	0.071500
	(0.01362)	(0.04390)	(0.03713)
	[0.27586]	[1.69631]	[1.92578]
SOYBEAN_LAST_PRIC	0.028164	-0.050076	0.033706
	(0.01361)	(0.04387)	(0.03710)
	[2.06911]	[-1.14152]	[0.90853]
SOYBEAN_LAST_PRIC	0.003910	0.000601	0.024800
	(0.01362)	(0.04389)	(0.03712)
	[0.28713]	[0.01370]	[0.66817]
SOYBEAN_LAST_PRIC	-0.024878	-0.017070	0.053300
	(0.01361)	(0.04386)	(0.03710)
	[-1.82782]	[-0.38915]	[1.43682]
SOYBEAN_LAST_PRIC	-0.027859	-0.016976	0.003922
	(0.01361)	(0.04388)	(0.03711)
	[-2.04619]	[-0.38689]	[0.10568]
SOYBEAN_LAST_PRIC	0.011944	0.008678	0.064207
	(0.01361)	(0.04387)	(0.03710)
	[0.87746]	[0.19783]	[1.73063]
SOYBEAN_LAST_PRIC	0.017766	0.027981	0.021271
	(0.01361)	(0.04388)	(0.03711)
	[1.30493]	[0.63773]	[0.57326]
SOYBEAN_LAST_PRIC	0.026254	-0.011811	0.024839
	(0.01362)	(0.04388)	(0.03711)
	[1.92827]	[-0.26917]	[0.66935]
SOYBEAN_LAST_PRIC	-0.000282	-0.010680	0.031288
	(0.01362)	(0.04389)	(0.03712)
	[-0.02073]	[-0.24333]	[0.84287]

GPRD_ACT(-1)	-0.005724	0.484780	0.057838
	(0.00437)	(0.01408)	(0.01191)
	[-1.31036]	[34.4367]	[4.85816]
GPRD_ACT(-2)	0.008597	0.196983	0.009824
	(0.00483)	(0.01556)	(0.01316)
	[1.78095]	[12.6622]	[0.74673]
GPRD_ACT(-3)	-0.002960	0.090179	0.010766
	(0.00490)	(0.01580)	(0.01337)
	[-0.60352]	[5.70603]	[0.80550]
GPRD_ACT(-4)	-0.009513	0.051842	0.022340
	(0.00492)	(0.01587)	(0.01342)
	[-1.93205]	[3.26709]	[1.66475]
GPRD_ACT(-5)	-0.000259	0.079574	0.007336
	(0.00493)	(0.01589)	(0.01344)
	[-0.05251]	[5.00711]	[0.54586]
GPRD_ACT(-6)	0.010664	0.009758	0.009276
	(0.00494)	(0.01592)	(0.01347)
	[2.15841]	[0.61284]	[0.68885]
GPRD_ACT(-7)	-0.005023	-0.021522	-0.019178
	(0.00494)	(0.01593)	(0.01347)
	[-1.01620]	[-1.35104]	[-1.42350]
GPRD_ACT(-8)	0.002102	-0.006755	-0.018593
	(0.00494)	(0.01593)	(0.01347)
	[0.42515]	[-0.42394]	[-1.37983]
GPRD_ACT(-9)	-0.005433	-0.013721	-0.020780
	(0.00494)	(0.01593)	(0.01347)
	[-1.09887]	[-0.86116]	[-1.54217]
GPRD_ACT(-10)	0.003207	0.033388	-0.007644
	(0.00494)	(0.01593)	(0.01347)
	[0.64890]	[2.09607]	[-0.56742]
GPRD_ACT(-11)	0.001268	0.028029	0.008599
	(0.00495)	(0.01594)	(0.01348)
	[0.25648]	[1.75871]	[0.63802]
GPRD_ACT(-12)	0.001289	-0.012004	-0.016310
	(0.00494)	(0.01593)	(0.01348)
	[0.26081]	[-0.75337]	[-1.21041]

GPRD_ACT(-13)	-0.001442 (0.00494) [-0.29181]	0.007281 (0.01593) [0.45707]	-0.012248 (0.01347) [-0.90921]	
GPRD_ACT(-14)	0.001826 (0.00494) [0.36939]	-0.003650 (0.01593) [-0.22911]	-0.000943 (0.01347) [-0.06999]	
GPRD_ACT(-15)	-0.003567 (0.00494) [-0.72168]	0.015129 (0.01593) [0.94967]	-0.013756 (0.01347) [-1.02105]	
GPRD_ACT(-16)	0.003995 (0.00495) [0.80716]	-0.007191 (0.01595) [-0.45074]	-0.014768 (0.01349) [-1.09460]	
GPRD_ACT(-17)	-0.001706 (0.00496) [-0.34426]	-0.030848 (0.01597) [-1.93154]	-0.016063 (0.01351) [-1.18932]	
GPRD_ACT(-18)	-0.000478 (0.00495) [-0.09657]	0.007212 (0.01595) [0.45226]	0.011207 (0.01349) [0.83098]	
GPRD_ACT(-19)	-0.005162 (0.00494) [-1.04412]	0.006769 (0.01593) [0.42484]	0.001270 (0.01348) [0.09425]	
GPRD_ACT(-20)	0.000475 (0.00493) [0.09638]	0.011064 (0.01589) [0.69633]	0.017109 (0.01344) [1.27329]	
GPRD_ACT(-21)	0.005055 (0.00486) [1.04030]	0.051962 (0.01566) [3.31793]	0.016790 (0.01324)	
GPRD_ACT(-22)	0.000855 (0.00441) [0.19395]	-0.044820 (0.01421) [-3.15477]	-0.034692 (0.01202)	
GPRD_THREAT(-1)	0.008143 (0.00516) [1.57665]	0.009227 (0.01664) [0.55433]	0.334531 (0.01408) [23.7656]	
GPRD_THREAT(-2)	0.004235 (0.00545)	0.043978 (0.01756)	0.171574 (0.01485)	
	[0.77728]	[2.50478]	[11.5549]	

GPRD_THREAT(-3)	0.004082	-0.022418	0.064943
	(0.00551)	(0.01775)	(0.01501)
	[0.74105]	[-1.26272]	[4.32533]
GPRD_THREAT(-4)	-0.001553	-0.018437	0.029170
	(0.00552)	(0.01780)	(0.01505)
	[-0.28123]	[-1.03606]	[1.93829]
GPRD_THREAT(-5)	-0.008916	0.043265	0.080809
	(0.00553)	(0.01781)	(0.01506)
	[-1.61366]	[2.42975]	[5.36614]
GPRD_THREAT(-6)	0.004303	-0.013211	0.033527
	(0.00554)	(0.01786)	(0.01510)
	[0.77658]	[-0.73982]	[2.22011]
GPRD_THREAT(-7)	0.002944	-0.004944	0.016929
	(0.00554)	(0.01787)	(0.01511)
	[0.53106]	[-0.27671]	[1.12049]
GPRD_THREAT(-8)	-0.002865	-0.000370	-0.003148
	(0.00554)	(0.01785)	(0.01509)
	[-0.51741]	[-0.02075]	[-0.20856]
GPRD_THREAT(-9)	0.007018	0.029277	0.025213
	(0.00555)	(0.01789)	(0.01513)
	[1.26424]	[1.63644]	[1.66644]
GPRD_THREAT(-10)	-0.000775	0.002176	0.042254
	(0.00556)	(0.01791)	(0.01514)
	[-0.13944]	[0.12151]	[2.79027]
GPRD_THREAT(-11)	-0.004381	-0.036304	0.015116
	(0.00556)	(0.01791)	(0.01515)
	[-0.78822]	[-2.02666]	[0.99780]
GPRD_THREAT(-12)	-0.004778	-0.011649	-0.028471
	(0.00558)	(0.01797)	(0.01520)
	[-0.85707]	[-0.64835]	[-1.87368]
GPRD_THREAT(-13)	-0.003120	-0.046736	-0.022637
	(0.00557)	(0.01796)	(0.01519)
	[-0.55975]	[-2.60163]	[-1.48998]
GPRD_THREAT(-14)	-0.001902	0.039427	0.015980
	(0.00558)	(0.01797)	(0.01520)
	[-0.34120]	[2.19419]	[1.05156]

GPRD_THREAT(-15)	0.012322	0.020058	0.050197
	(0.00558)	(0.01797)	(0.01520)
	[2.21010]	[1.11637]	[3.30344]
GPRD_THREAT(-16)	-0.011497	-0.002702	0.012691
	(0.00559)	(0.01802)	(0.01524)
	[-2.05662]	[-0.15000]	[0.83300]
GPRD_THREAT(-17)	0.011265	-0.010973	-0.002310
	(0.00559)	(0.01801)	(0.01523)
	[2.01609]	[-0.60934]	[-0.15167]
GPRD_THREAT(-18)	-0.004163	-0.005166	-0.002160
	(0.00558)	(0.01799)	(0.01521)
	[-0.74587]	[-0.28721]	[-0.14199]
GPRD_THREAT(-19)	-0.004086	-0.000459	0.018318
	(0.00558)	(0.01798)	(0.01520)
	[-0.73250]	[-0.02555]	[1.20484]
GPRD_THREAT(-20)	0.002007	0.011657	0.041722
	(0.00557)	(0.01794)	(0.01517)
	[0.36069]	[0.64987]	[2.75039]
GPRD_THREAT(-21)	-0.009930	-0.026681	-0.016982
	(0.00551)	(0.01777)	(0.01502)
	[-1.80140]	[-1.50187]	[-1.13032]
GPRD_THREAT(-22)	0.003075	0.024517	0.040175
	(0.00527)	(0.01697)	(0.01435)
	[0.58382]	[1.44453]	[2.79900]
С	0.229472	5.052859	9.741348
	(0.56650)	(1.82569)	(1.54400)
	[0.40507]	[2.76764]	[6.30917]

R-squared	0.017962	0.767937	0.570232
Adj. R-squared	0.006004	0.765111	0.564999
Sum sq. resids	1437769.	14933129	10680457
S.E. equation	16.28714	52.48990	44.39104
F-statistic	1.502052	271.7532	108.9615
Log likelihood	-23062.80	-29483.94	-28564.41
Akaike AIC	8.430764	10.77125	10.43609
Schwarz SC	8.511479	10.85197	10.51680
Mean dependent	0.192728	114.2376	112.7700
S.D. dependent	16.33625	108.3040	67.30542
Determinant resid covariar	nce (dof adj.)	1.34E+09	
Determinant resid covariar		1.29E+09	
Loq likelihood		-80911.58	
Akaike information criterior	ו	29.56537	
Schwarz criterion		29.80751	
Number of coefficients		201	

EViews Output 64: VAR Estimates – Soybean Oil

Vector Autoregression Estimates Date: 05/27/22 Time: 20:42 Sample (adjusted): 5/03/2000 5/13/2021 Included observations: 5487 after adjustments Standard errors in () & t-statistics in []

	SOYBEAN	GPRD_ACT	GPRD_THR
SOYBEAN_OIL_LAST_P	0.040457	1.580436	2.003876
	(0.01358)	(1.18335)	(1.00035)
	[2.97856]	[1.33556]	[2.00318]
SOYBEAN_OIL_LAST_P	0.009774	0.063013	0.727594
	(0.01360)	(1.18468)	(1.00147)
	[0.71880]	[0.05319]	[0.72653]
SOYBEAN_OIL_LAST_P	-0.006380	0.413762	1.349807
	(0.01360)	(1.18459)	(1.00139)
	[-0.46919]	[0.34929]	[1.34793]
SOYBEAN_OIL_LAST_P	-0.006852	-0.902465	1.033137
	(0.01361)	(1.18567)	(1.00230)
	[-0.50351]	[-0.76115]	[1.03076]
SOYBEAN_OIL_LAST_P	-0.001070	0.302664	0.094346
	(0.01361)	(1.18592)	(1.00252)
	[-0.07864]	[0.25521]	[0.09411]
SOYBEAN_OIL_LAST_P	0.012938	-0.811770	-0.648012
	(0.01361)	(1.18540)	(1.00208)
	[0.95087]	[-0.68481]	[-0.64667]
SOYBEAN_OIL_LAST_P	0.016257	-0.811095	-1.155861
	(0.01361)	(1.18608)	(1.00265)
	[1.19414]	[-0.68385]	[-1.15280]
SOYBEAN_OIL_LAST_P	0.012755	-1.560413	-1.067085
	(0.01361)	(1.18556)	(1.00221)
	[0.93729]	[-1.31618]	[-1.06473]
SOYBEAN_OIL_LAST_P	-0.000715	-0.326523	3.223548
	(0.01362)	(1.18634)	(1.00287)
	[-0.05252]	[-0.27524]	[3.21431]
SOYBEAN_OIL_LAST_P	0.001141	-1.749469	-0.596604
	(0.01365)	(1.18883)	(1.00497)
	[0.08359]	[-1.47159]	[-0.59365]

SOYBEAN_OIL_LAST_P	-0.026860	-0.467833	0.497514
	(0.01365)	(1.18964)	(1.00566)
	[-1.96709]	[-0.39326]	[0.49471]
SOYBEAN_OIL_LAST_P	0.006833	-0.094455	1.077080
	(0.01365)	(1.18893)	(1.00506)
	[0.50072]	[-0.07945]	[1.07165]
SOYBEAN_OIL_LAST_P	-0.026342	0.702863	-0.942874
	(0.01373)	(1.19625)	(1.01125)
	[-1.91844]	[0.58755]	[-0.93238]
SOYBEAN_OIL_LAST_P	-0.010282	0.842998	1.260431
	(0.01378)	(1.20023)	(1.01461)
	[-0.74638]	[0.70236]	[1.24228]
SOYBEAN_OIL_LAST_P	0.041903	-1.293098	-0.952080
	(0.01378)	(1.20072)	(1.01503)
	[3.04038]	[-1.07693]	[-0.93798]
SOYBEAN_OIL_LAST_P	0.008750	0.341079	0.464952
	(0.01379)	(1.20181)	(1.01595)
	[0.63433]	[0.28380]	[0.45765]
SOYBEAN_OIL_LAST_P	-0.032705	-0.790344	0.997329
	(0.01379)	(1.20154)	(1.01572)
	[-2.37141]	[-0.65777]	[0.98189]
SOYBEAN_OIL_LAST_P	-0.018112	-1.267783	-0.207353
	(0.01381)	(1.20283)	(1.01682)
	[-1.31189]	[-1.05400]	[-0.20392]
SOYBEAN_OIL_LAST_P	0.031080	-0.054363	1.428227
	(0.01381)	(1.20293)	(1.01689)
	[2.25094]	[-0.04519]	[1.40450]
SOYBEAN_OIL_LAST_P	-0.021463	0.719125	0.490407
	(0.01382)	(1.20432)	(1.01807)
	[-1.55267]	[0.59712]	[0.48170]
SOYBEAN_OIL_LAST_P	0.022452	0.052118	1.061162
	(0.01383)	(1.20518)	(1.01880)
	[1.62303]	[0.04324]	[1.04158]
SOYBEAN_OIL_LAST_P	-0.051340	0.534263	1.460330
	(0.01386)	(1.20710)	(1.02042)
	[-3.70545]	[0.44260]	[1.43110]

GF	PRD_ACT(-1)	4.92E-05 (0.00016) [0.30463]	0.483941 (0.01408) [34.3688]	0.058086 (0.01190) [4.87986]	
GF	PRD_ACT(-2)	0.000154 (0.00018) [0.86488]	0.197064 (0.01555) [12.6706]	0.009825 (0.01315) [0.74726]	
GF	PRD_ACT(-3)	-8.09E-05 (0.00018) [-0.44610]	0.090106 (0.01580) [5.70337]	0.009657 (0.01336) [0.72306]	
GF	PRD_ACT(-4)	-0.000331 (0.00018) [-1.81742]	0.052428 (0.01586) [3.30495]	0.022563 (0.01341) [1.68253]	
GF	PRD_ACT(-5)	-0.000109 (0.00018) [-0.60043]	0.080001 (0.01589) [5.03613]	0.006936 (0.01343) [0.51654]	
GF	PRD_ACT(-6)	0.000206 (0.00018) [1.12813]	0.009158 (0.01592) [0.57536]	0.009173 (0.01346) [0.68175]	
GF	PRD_ACT(-7)	-0.000190 (0.00018) [-1.03787]	-0.020893 (0.01592) [-1.31247]	-0.018514 (0.01346) [-1.37576]	
GF	PRD_ACT(-8)	-3.87E-05 (0.00018) [-0.21169]	-0.006779 (0.01592) [-0.42575]	-0.018001 (0.01346) [-1.33746]	
GF	PRD_ACT(-9)	-5.39E-05 (0.00018) [-0.29468]	-0.013249 (0.01592) [-0.83204]	-0.020539 (0.01346) [-1.52582]	
GP	RD_ACT(-10)	6.14E-05 (0.00018) [0.33600]	0.032561 (0.01592) [2.04554]	-0.008191 (0.01346) [-0.60868]	
GP	RD_ACT(-11)	8.68E-05 (0.00018) [0.47483]	0.029282 (0.01593) [1.83869]	0.009085 (0.01346) [0.67481]	
GP	RD_ACT(-12)	6.48E-05 (0.00018) [0.35463]	-0.012529 (0.01592) [-0.78686]	-0.015287 (0.01346) [-1.13566]	

G	PRD_ACT(-13)	-4.26E-05 (0.00018) [-0.23325]		-0.012802 (0.01346) [-0.95141]
G	PRD_ACT(-14)	7.62E-05 (0.00018) [0.41686]	-0.004470 (0.01592) [-0.28082]	-0.001186 (0.01346) [-0.08810]
G	PRD_ACT(-15)	2.24E-05 (0.00018) [0.12258]	0.015129 (0.01592) [0.95041]	-0.013198 (0.01346) [-0.98075]
G	PRD_ACT(-16)		-0.007563 (0.01594) [-0.47436]	-0.014874 (0.01348) [-1.10366]
G	PRD_ACT(-17)	6.95E-05 (0.00018) [0.37905]	-0.030500 (0.01596) [-1.91057]	-0.016205 (0.01350) [-1.20083]
G	PRD_ACT(-18)	-0.000135 (0.00018) [-0.73547]	0.006349 (0.01594) [0.39835]	0.010103 (0.01347) [0.74978]
G	PRD_ACT(-19)	9.03E-05 (0.00018) [0.49398]	0.007538 (0.01593) [0.47329]	0.002301 (0.01346) [0.17094]
G	PRD_ACT(-20)	0.000103 (0.00018) [0.56580]	0.011595 (0.01588) [0.73021]	0.016499 (0.01342) [1.22909]
G	PRD_ACT(-21)	7.38E-05 (0.00018) [0.41059]	0.051442 (0.01565) [3.28624]	0.017240 (0.01323) [1.30281]
G	PRD_ACT(-22)	-0.000152 (0.00016) [-0.93142]	-0.044217 (0.01420) [-3.11304]	-0.035133 (0.01201) [-2.92597]
GPI	RD_THREAT(-1)	0.000197 (0.00019) [1.03167]	0.009760 (0.01665) [0.58608]	0.334883 (0.01408) [23.7883]
GPI	RD_THREAT(-2)	9.64E-05 (0.00020) [0.47793]	0.042839 (0.01756) [2.43894]	0.171859 (0.01485) [11.5743]

GPRD_THREAT(-3)	0.000283	-0.021680	0.065319
	(0.00020)	(0.01776)	(0.01501)
	[1.38875]	[-1.22061]	[4.35040]
GPRD_THREAT(-4)	0.000242	-0.018844	0.030799
	(0.00020)	(0.01780)	(0.01505)
	[1.18653]	[-1.05839]	[2.04635]
GPRD_THREAT(-5)	0.000258	0.044107	0.079140
	(0.00020)	(0.01782)	(0.01506)
	[1.26300]	[2.47524]	[5.25368]
GPRD_THREAT(-6)	-0.000109	-0.014343	0.031920
	(0.00021)	(0.01787)	(0.01510)
	[-0.52910]	[-0.80281]	[2.11344]
GPRD_THREAT(-7)	4.11E-05	-0.003918	0.015051
	(0.00021)	(0.01787)	(0.01511)
	[0.20019]	[-0.21919]	[0.99612]
GPRD_THREAT(-8)	-7.09E-05	-0.000969	-0.004936
	(0.00020)	(0.01785)	(0.01509)
	[-0.34577]	[-0.05426]	[-0.32708]
GPRD_THREAT(-9)	0.000146	0.030408	0.024625
	(0.00021)	(0.01789)	(0.01512)
	[0.71140]	[1.69975]	[1.62835]
GPRD_THREAT(-10)	-0.000260	0.001682	0.042563
	(0.00021)	(0.01790)	(0.01513)
	[-1.26327]	[0.09396]	[2.81267]
GPRD_THREAT(-11)	-0.000476	-0.035178	0.015939
	(0.00021)	(0.01791)	(0.01514)
	[-2.31731]	[-1.96418]	[1.05277]
GPRD_THREAT(-12)	8.34E-05	-0.011034	-0.026946
	(0.00021)	(0.01797)	(0.01519)
	[0.40423]	[-0.61393]	[-1.77348]
GPRD_THREAT(-13)	-0.000242	-0.046721	-0.023665
	(0.00021)	(0.01797)	(0.01519)
	[-1.17426]	[-2.59988]	[-1.55780]
GPRD_THREAT(-14)	-0.000315	0.039855	0.015706
	(0.00021)	(0.01797)	(0.01519)
	[-1.52868]	[2.21795]	[1.03396]

GPRD_THREAT(-15)	0.000121	0.021491	0.052297
	(0.00021)	(0.01798)	(0.01520)
	[0.58551]	[1.19513]	[3.44028]
GPRD_THREAT(-16)	-5.32E-05	-0.001008	0.013481
	(0.00021)	(0.01802)	(0.01523)
	[-0.25698]	[-0.05595]	[0.88493]
GPRD_THREAT(-17)	0.000427	-0.012314	-0.002327
	(0.00021)	(0.01801)	(0.01522)
	[2.06774]	[-0.68381]	[-0.15287]
GPRD_THREAT(-18)	2.36E-05	-0.006293	-0.003596
	(0.00021)	(0.01799)	(0.01520)
	[0.11433]	[-0.34989]	[-0.23650]
GPRD_THREAT(-19)	-0.000168	-0.002100	0.018287
	(0.00021)	(0.01798)	(0.01520)
	[-0.81422]	[-0.11681]	[1.20341]
GPRD_THREAT(-20)	-0.000119	0.012461	0.042195
	(0.00021)	(0.01794)	(0.01516)
	[-0.57761]	[0.69476]	[2.78286]
GPRD_THREAT(-21)	-0.000113	-0.028590	-0.019018
	(0.00020)	(0.01776)	(0.01502)
	[-0.55569]	[-1.60958]	[-1.26653]
GPRD_THREAT(-22)	0.000155	0.024512	0.042110
	(0.00019)	(0.01699)	(0.01436)
	[0.79526]	[1.44311]	[2.93262]
С	0.002758 (0.02103) [0.13118]	5.004669 (1.83203) [2.73176]	

R-squared	0.019838	0.767844	0.570422
Adj. R-squared	0.007902	0.765017	0.565191
Sum sq. resids	1968.194	14939119	10675746
S.E. equation	0.602607	52.50043	44.38124
F-statistic	1.662053	271.6113	109.0458
Log likelihood	-4972.901	-29485.04	-28563.20
Akaike AIC	1.837033	10.77166	10.43565
Schwarz SC	1.917748	10.85237	10.51636
Mean dependent	0.009428	114.2376	112.7700
S.D. dependent	0.605002	108.3040	67.30542
Determinant resid covaria	ance (dof adj.)	1832566.	
Determinant resid covaria	ance	1766252.	
Log likelihood		-62820.67	
Akaike information criterion		22.97127	
Schwarz criterion		23.21341	
Number of coefficients		201	

EViews Output 65: VAR Estimates – Wheat

Vector Autoregression Estimates Date: 05/27/22 Time: 20:50 Sample (adjusted): 5/12/2000 5/13/2021 Included observations: 5480 after adjustments Standard errors in () & t-statistics in []

	WHEAT_LA	GPRD_ACT	GPRD_THR
WHEAT_LAST_PRICE1(0.043687	-0.010713	0.100144
	(0.01361)	(0.05607)	(0.04752)
	[3.21092]	[-0.19108]	[2.10738]
WHEAT_LAST_PRICE1(0.013390	-0.024312	0.014898
	(0.01363)	(0.05615)	(0.04759)
	[0.98275]	[-0.43301]	[0.31307]
WHEAT_LAST_PRICE1(-0.077919	0.094981	0.000287
	(0.01363)	(0.05617)	(0.04760)
	[-5.71692]	[1.69111]	[0.00602]
WHEAT_LAST_PRICE1(-0.025064	-0.036460	-0.008959
	(0.01368)	(0.05636)	(0.04777)
	[-1.83260]	[-0.64691]	[-0.18755]
WHEAT_LAST_PRICE1(-0.021449	0.051984	0.021386
	(0.01369)	(0.05640)	(0.04780)
	[-1.56725]	[0.92177]	[0.44742]
WHEAT_LAST_PRICE1(0.000877	-0.096385	-0.047645
	(0.01369)	(0.05640)	(0.04780)
	[0.06411]	[-1.70896]	[-0.99670]
WHEAT_LAST_PRICE1(-0.023212	0.003266	0.102064
	(0.01368)	(0.05635)	(0.04776)
	[-1.69734]	[0.05796]	[2.13683]
WHEAT_LAST_PRICE1(0.014899	0.005220	0.006138
	(0.01366)	(0.05629)	(0.04771)
	[1.09080]	[0.09275]	[0.12866]
WHEAT_LAST_PRICE1(0.003784	0.068768	0.089271
	(0.01366)	(0.05630)	(0.04772)
	[0.27696]	[1.22142]	[1.87073]
WHEAT_LAST_PRICE1(-0.003086	-0.009148	-0.023142
	(0.01367)	(0.05635)	(0.04776)
	[-0.22571]	[-0.16236]	[-0.48458]

WHEAT_LAST_PRICE1(-0.058690	-0.034623	-0.018894
	(0.01457)	(0.06006)	(0.05090)
	[-4.02691]	[-0.57648]	[-0.37117]
WHEAT_LAST_PRICE1(-0.057896	-0.058477	-0.012546
	(0.01464)	(0.06033)	(0.05114)
	[-3.95433]	[-0.96923]	[-0.24534]
WHEAT_LAST_PRICE1(0.025362	-0.027165	-0.022802
	(0.01473)	(0.06069)	(0.05144)
	[1.72214]	[-0.44762]	[-0.44330]
WHEAT_LAST_PRICE1(0.004326	-0.061368	-0.017327
	(0.01479)	(0.06095)	(0.05166)
	[0.29247]	[-1.00680]	[-0.33539]
WHEAT_LAST_PRICE1(0.014763	0.040275	-0.001107
	(0.01481)	(0.06104)	(0.05174)
	[0.99662]	[0.65980]	[-0.02140]
WHEAT_LAST_PRICE1(-0.027456	-0.004320	0.007863
	(0.01482)	(0.06105)	(0.05175)
	[-1.85323]	[-0.07076]	[0.15196]
WHEAT_LAST_PRICE1(0.013362	0.026144	-0.055018
	(0.01483)	(0.06111)	(0.05180)
	[0.90095]	[0.42779]	[-1.06215]
WHEAT_LAST_PRICE1(-0.026007	-0.068462	0.018811
	(0.01483)	(0.06111)	(0.05179)
	[-1.75383]	[-1.12034]	[0.36319]
GPRD_ACT(-1)	-0.001880	0.487137	0.059201
	(0.00343)	(0.01412)	(0.01197)
	[-0.54862]	[34.4929]	[4.94578]
GPRD_ACT(-2)	0.003308	0.194405	0.010180
	(0.00379)	(0.01563)	(0.01325)
	[0.87218]	[12.4401]	[0.76855]
GPRD_ACT(-3)	-0.003319	0.092684	0.010661
	(0.00385)	(0.01587)	(0.01345)
	[-0.86212]	[5.84182]	[0.79283]
GPRD_ACT(-4)	-0.006162	0.050473	0.020126
	(0.00387)	(0.01593)	(0.01350)
	[-1.59395]	[3.16856]	[1.49067]

GPRD_ACT(-5)	-0.000591	0.076980	0.007833
	(0.00387)	(0.01595)	(0.01352)
	[-0.15284]	[4.82749]	[0.57956]
GPRD_ACT(-6)	0.003374	0.009014	0.007842
	(0.00387)	(0.01597)	(0.01353)
	[0.87073]	[0.56459]	[0.57946]
GPRD_ACT(-7)	-0.002683	-0.019706	-0.018338
	(0.00387)	(0.01596)	(0.01353)
	[-0.69254]	[-1.23455]	[-1.35548]
GPRD_ACT(-8)	0.001027	-0.007115	-0.016424
	(0.00387)	(0.01596)	(0.01353)
	[0.26506]	[-0.44579]	[-1.21417]
GPRD_ACT(-9)	-0.002716	-0.012573	-0.022050
	(0.00387)	(0.01596)	(0.01352)
	[-0.70139]	[-0.78802]	[-1.63054]
GPRD_ACT(-10)	0.002901	0.029164	-0.006962
	(0.00387)	(0.01596)	(0.01353)
	[0.74903]	[1.82745]	[-0.51472]
GPRD_ACT(-11)	0.001100	0.029590	0.008381
	(0.00387)	(0.01597)	(0.01353)
	[0.28402]	[1.85337]	[0.61935]
GPRD_ACT(-12)	-0.003292	-0.011901	-0.014276
	(0.00388)	(0.01597)	(0.01354)
	[-0.84934]	[-0.74516]	[-1.05465]
GPRD_ACT(-13)	0.002088	0.006449	-0.013151
	(0.00387)	(0.01596)	(0.01353)
	[0.53883]	[0.40398]	[-0.97191]
GPRD_ACT(-14)	0.005602	-0.003948	-0.001757
	(0.00388)	(0.01597)	(0.01354)
	[1.44544]	[-0.24721]	[-0.12982]
GPRD_ACT(-15)	0.000418	0.015101	-0.012277
	(0.00388)	(0.01597)	(0.01353)
	[0.10780]	[0.94569]	[-0.90711]

GPRD_ACT(-16)	0.003173	-0.007964	-0.013879
	(0.00388)	(0.01598)	(0.01355)
	[0.81828]	[-0.49833]	[-1.02466]
GPRD_ACT(-17)	0.001556	-0.031055	-0.015995
	(0.00388)	(0.01599)	(0.01355)
	[0.40110]	[-1.94214]	[-1.18018]
GPRD_ACT(-18)	-0.000871	0.004463	0.009305
	(0.00389)	(0.01601)	(0.01357)
	[-0.22421]	[0.27872]	[0.68553]
GPRD_ACT(-19)	-0.004510	0.008345	0.002358
	(0.00389)	(0.01601)	(0.01357)
	[-1.16066]	[0.52116]	[0.17371]
GPRD_ACT(-20)	0.001605	0.008934	0.015093
	(0.00388)	(0.01601)	(0.01357)
	[0.41323]	[0.55812]	[1.11251]
GPRD_ACT(-21)	0.000789	0.050002	0.017040
	(0.00389)	(0.01601)	(0.01357)
	[0.20302]	[3.12316]	[1.25573]
GPRD_ACT(-22)	-0.006101	-0.045165	-0.035097
	(0.00389)	(0.01603)	(0.01359)
	[-1.56805]	[-2.81692]	[-2.58263]
GPRD_ACT(-23)	0.001226	0.024642	-0.013950
	(0.00390)	(0.01605)	(0.01361)
	[0.31472]	[1.53505]	[-1.02530]
GPRD_ACT(-24)	0.005488	-0.040275	0.011340
	(0.00390)	(0.01606)	(0.01361)
	[1.40860]	[-2.50848]	[0.83331]
GPRD_ACT(-25)	-0.000534	0.028404	0.013548
	(0.00389)	(0.01604)	(0.01360)
	[-0.13715]	[1.77053]	[0.99638]
GPRD_ACT(-26)	0.000827	-0.002577	-0.016395
	(0.00389)	(0.01603)	(0.01359)
	[0.21269]	[-0.16075]	[-1.20676]
GPRD_ACT(-27)	-0.007658	-0.011505	0.001181
	(0.00388)	(0.01599)	(0.01355)
	[-1.97394]	[-0.71970]	[0.08717]

GPRD_ACT(-28)	0.005348	-0.003783	-0.003943
	(0.00383)	(0.01577)	(0.01336)
	[1.39780]	[-0.23994]	[-0.29507]
GPRD_ACT(-29)	-0.001906	0.019996	0.004083
	(0.00347)	(0.01428)	(0.01210)
	[-0.55006]	[1.40013]	[0.33732]
GPRD_THREAT(-1)	0.014921	0.008608	0.333758
	(0.00404)	(0.01667)	(0.01413)
	[3.68879]	[0.51643]	[23.6249]
GPRD_THREAT(-2)	0.002433	0.042616	0.172169
	(0.00427)	(0.01759)	(0.01491)
	[0.57006]	[2.42261]	[11.5475]
GPRD_THREAT(-3)	0.011742	-0.019176	0.064654
	(0.00432)	(0.01781)	(0.01509)
	[2.71713]	[-1.07683]	[4.28350]
GPRD_THREAT(-4)	0.008100	-0.016142	0.029011
	(0.00434)	(0.01786)	(0.01514)
	[1.86843]	[-0.90360]	[1.91609]
GPRD_THREAT(-5)	-0.006953	0.044555	0.080313
	(0.00434)	(0.01788)	(0.01516)
	[-1.60234]	[2.49174]	[5.29934]
GPRD_THREAT(-6)	0.002403	-0.016217	0.030080
	(0.00435)	(0.01792)	(0.01519)
	[0.55259]	[-0.90482]	[1.98014]
GPRD_THREAT(-7)	-0.005387	-0.001072	0.016075
	(0.00435)	(0.01793)	(0.01520)
	[-1.23815]	[-0.05978]	[1.05784]
GPRD_THREAT(-8)	-0.001533	-0.002687	-0.004533
	(0.00435)	(0.01792)	(0.01519)
	[-0.35250]	[-0.14993]	[-0.29842]
GPRD_THREAT(-9)	-0.006203	0.031608	0.022467
	(0.00436)	(0.01797)	(0.01523)
	[-1.42257]	[1.75913]	[1.47527]

GPRD_THREAT(-10)	-0.006023	0.006726	0.041603
	(0.00436)	(0.01797)	(0.01523)
	[-1.38133]	[0.37432]	[2.73189]
GPRD_THREAT(-11)	-0.002628	-0.035530	0.012999
	(0.00436)	(0.01798)	(0.01524)
	[-0.60227]	[-1.97595]	[0.85296]
GPRD_THREAT(-12)	0.003025	-0.011271	-0.028459
	(0.00437)	(0.01803)	(0.01528)
	[0.69149]	[-0.62526]	[-1.86264]
GPRD_THREAT(-13)	-0.004915	-0.048325	-0.024431
	(0.00438)	(0.01803)	(0.01528)
	[-1.12326]	[-2.68003]	[-1.59860]
GPRD_THREAT(-14)	-0.002920	0.039861	0.015685
	(0.00438)	(0.01805)	(0.01530)
	[-0.66684]	[2.20886]	[1.02547]
GPRD_THREAT(-15)	-0.003874	0.022188	0.051409
	(0.00438)	(0.01805)	(0.01530)
	[-0.88462]	[1.22952]	[3.36111]
GPRD_THREAT(-16)	-0.003096	-0.000557	0.016061
	(0.00439)	(0.01809)	(0.01533)
	[-0.70517]	[-0.03081]	[1.04743]
GPRD_THREAT(-17)	0.005683	-0.012207	-0.002335
	(0.00439)	(0.01809)	(0.01533)
	[1.29475]	[-0.67486]	[-0.15230]
GPRD_THREAT(-18)	0.000918	-0.002611	-0.000275
	(0.00439)	(0.01808)	(0.01533)
	[0.20916]	[-0.14437]	[-0.01794]
GPRD_THREAT(-19)	-0.003832	0.001064	0.018544
	(0.00439)	(0.01808)	(0.01533)
	[-0.87322]	[0.05882]	[1.21002]
GPRD_THREAT(-20)	0.001410	0.017277	0.043152
	(0.00439)	(0.01808)	(0.01532)
	[0.32137]	[0.95563]	[2.81618]
GPRD_THREAT(-21)	0.003325	-0.024860	-0.017296
	(0.00439)	(0.01808)	(0.01533)
	[0.75775]	[-1.37480]	[-1.12853]

GPRD_THREAT(-22)	0.003631	0.030871	0.040039
	(0.00439)	(0.01811)	(0.01535)
	[0.82640]	[1.70485]	[2.60887]
GPRD_THREAT(-23)	-0.005428	0.005818	0.005712
	(0.00440)	(0.01814)	(0.01538)
	[-1.23307]	[0.32072]	[0.37153]
GPRD_THREAT(-24)	-0.000408	-0.007114	-0.031563
	(0.00440)	(0.01813)	(0.01536)
	[-0.09278]	[-0.39241]	[-2.05426]
GPRD_THREAT(-25)	0.004855	0.001857	0.004410
	(0.00440)	(0.01815)	(0.01538)
	[1.10225]	[0.10232]	[0.28669]
GPRD_THREAT(-26)	0.001068	-0.035105	0.011071
	(0.00440)	(0.01814)	(0.01538)
	[0.24256]	[-1.93517]	[0.72006]
GPRD_THREAT(-27)	0.006319	-0.006739	-0.002932
	(0.00441)	(0.01816)	(0.01539)
	[1.43428]	[-0.37117]	[-0.19056]
GPRD_THREAT(-28)	0.002957	0.028668	0.017409
	(0.00437)	(0.01800)	(0.01526)
	[0.67689]	[1.59257]	[1.14106]
GPRD_THREAT(-29)	-0.010735	-0.031389	0.018332
	(0.00418)	(0.01721)	(0.01459)
	[-2.57043]	[-1.82394]	[1.25684]
с	-0.563900	5.865145	8.519906
	(0.47261)	(1.94755)	(1.65069)
	[-1.19316]	[3.01154]	[5.16143]

R-squared	0.043815	0.769241	0.570636
Adj. R-squared	0.028387	0.765517	0.563709
Sum sq. resids	874436.4	14849016	10667118
S.E. equation	12.73471	52.47759	44.47834
F-statistic	2.839988	206.6015	82.36919
Log likelihood	-21674.36	-29434.34	-28528.04
Akaike AIC	7.942468	10.77458	10.44381
Schwarz SC	8.048596	10.88071	10.54994
Mean dependent	0.134124	114.2487	112.8077
S.D. dependent	12.91941	108.3724	67.33801
		8.21E+08	
Determinant resid covar	riance	7.82E+08	
Log likelihood		-79434.21	
Akaike information crite	rion	29.08694	
Schwarz criterion		29.40532	
Number of coefficients		264	

Section IV: VAR Granger Causality/ Block Exogeneity Wald Tests

EViews Output 66: VAR Granger Causality/ Block Exogeneity Wald Tests - Cocoa

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:13 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Dependent variable: COCOA_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	20.07076 19.24960	22 22	0.5786 0.6299
All	39.61217	44	0.6600

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
COCOA_LAST_PRICE1 GPRD_THREAT	10.59303 39.54939	22 22	0.9801 0.0122
All	51.10773	44	0.2146

Excluded	Chi-sq	df	Prob.
COCOA_LAST_PRICE1 GPRD_ACT	34.53911 119.9085	22 22	0.0433 0.0000
All	153.5507	44	0.0000

EViews Output 67: VAR Granger Causality/ Block Exogeneity Wald Tests - Coffee

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:17 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Dependent variable: COFFEE_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	16.83384 43.46527	22 22	0.7725 0.0041
All	58.13955	44	0.0749

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
COFFEE_LAST_PRICE1 GPRD_THREAT	20.61397 41.88020	22 22	0.5447 0.0065
All	61.20343	44	0.0439

Excluded	Chi-sq	df	Prob.
COFFEE_LAST_PRICE1 GPRD_ACT	24.08939 120.7201	22 22	0.3426 0.0000
All	142.8730	44	0.0000

EViews Output 68: VAR Granger Causality/ Block Exogeneity Wald Tests - Corn

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:22 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Dependent variable: CORN_LAST_PRICE1

-

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	15.72131 29.45956	22 22	0.8295 0.1322
All	43.99508	44	0.4719

_

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
CORN_LAST_PRICE1 GPRD_THREAT	11.31862 41.28192	22 22	0.9699 0.0076
All	51.83874	44	0.1947

Excluded	Chi-sq	df	Prob.
CORN_LAST_PRICE1 GPRD_ACT	17.06297 119.0431	22 22	0.7599 0.0000
All	135.6932	44	0.0000

EViews Output 69: VAR Granger Causality/ Block Exogeneity Wald Tests – Cotton

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:25 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Dependent variable: COTTON_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	29.91529 19.89438	29 29	0.4182 0.8962
All	49.34170	58	0.7838

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
COTTON_LAST_PRICE1 GPRD_THREAT	16.62066 50.76171	29 29	0.9677 0.0075
All	66.65310	58	0.2039

Excluded	Chi-sq	df	Prob.
COTTON_LAST_PRICE1 GPRD_ACT	22.56794 123.5320	29 29	0.7959 0.0000
All	146.1232	58	0.0000

EViews Output 70: VAR Granger Causality/ Block Exogeneity Wald Tests – No.11 Sugar

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:46 Sample: 3/31/2000 3/03/2022 Included observations: 5481

Dependent variable: SUGAR_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	21.77311 26.18746	28 28	0.7917 0.5627
All	47.04766	56	0.7972

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
SUGAR_LAST_PRICE1 GPRD_THREAT	23.12817 46.89714	28 28	0.7266 0.0140
All	70.14642	56	0.0968

Excluded	Chi-sq	df	Prob.
SUGAR_LAST_PRICE1 GPRD_ACT	17.58601 122.7153	28 28	0.9361 0.0000
All	140.2735	56	0.0000

EViews Output 71: VAR Granger Causality/ Block Exogeneity Wald Tests - Oats

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:34 Sample: 3/31/2000 3/03/2022 Included observations: 5485

Dependent variable: OATS_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	36.90133 38.38025	24 24	0.0448 0.0317
All	76.51345	48	0.0055

_

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
OATS_LAST_PRICE1 GPRD_THREAT	12.57169 41.12736	24 24	0.9727 0.0161
All	54.03658	48	0.2548

Excluded	Chi-sq	df	Prob.
OATS_LAST_PRICE1 GPRD_ACT	35.17141 119.4318	24 24	0.0659 0.0000
All	154.4422	48	0.0000

EViews Output 72: VAR Granger Causality/ Block Exogeneity Wald Tests – Rough Rice

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:37 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Dependent variable: ROUGH_RICE_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	17.43909 31.71250	29 29	0.9549 0.3326
All	50.10420	58	0.7601

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
ROUGH_RICE_LAST GPRD_THREAT	17.16749 49.90528	29 29	0.9595 0.0092
All	67.20498	58	0.1910

Excluded	Chi-sq	df	Prob.
ROUGH_RICE_LAST GPRD_ACT	20.98404 123.8057	29 29	0.8597 0.0000
All	144.5031	58	0.0000

EViews Output 73: VAR Granger Causality/ Block Exogeneity Wald Tests – Soybean

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:40 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Dependent variable: SOYBEAN_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	18.45569 28.10236	22 22	0.6787 0.1723
All	46.82797	44	0.3572

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
SOYBEAN_LAST_PRI GPRD_THREAT	14.29681 39.93292	22 22	0.8906 0.0110
All	54.83914	44	0.1267

Excluded	Chi-sq	df	Prob.
SOYBEAN_LAST_PRI GPRD_ACT	30.16467 121.0399	22 22	0.1145 0.0000
All	149.0808	44	0.0000

EViews Output 74: VAR Granger Causality/ Block Exogeneity Wald Tests – Soybean Oil

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:43 Sample: 3/31/2000 3/03/2022 Included observations: 5487

Dependent variable: SOYBEAN_OIL_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	12.85083 36.49668	22 22	0.9372 0.0268
All	46.49765	44	0.3699

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
SOYBEAN_OIL_LAST GPRD_THREAT	12.11792 40.52309	22 22	0.9549 0.0094
All	52.64400	44	0.1743

Excluded	Chi-sq	df	Prob.
SOYBEAN_OIL_LAST GPRD_ACT	32.57016 119.9060	22 22	0.0682 0.0000
All	151.5388	44	0.0000

EViews Output 75: VAR Granger Causality/ Block Exogeneity Wald Tests – Wheat

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/27/22 Time: 20:51 Sample: 3/31/2000 3/03/2022 Included observations: 5480

Dependent variable: WHEAT_LAST_PRICE1

Excluded	Chi-sq	df	Prob.
GPRD_ACT GPRD_THREAT	26.25644 78.53201	29 29	0.6118 0.0000
All	100.0333	58	0.0005

Dependent variable: GPRD_ACT

Excluded	Chi-sq	df	Prob.
WHEAT_LAST_PRICE1 GPRD_THREAT	20.91056 51.33681	29 29	0.8624 0.0065
All	70.98268	58	0.1177

Excluded	Chi-sq	df	Prob.
WHEAT_LAST_PRICE1 GPRD_ACT	22.81075 125.5436	29 29	0.7851 0.0000
All	146.3715	58	0.0000