An International Comparison of K-12 Computer Science
Education Intended and Enacted Curricula

Katrina Falkner
School of Computer Science
The University of Adelaide
Adelaide, South Australia, Australia
katrina.falkner@adelaide.edu.au

Sarah Barksdale
Department of Curriculum and
Instruction
University of Minnesota
Minneapolis, Minnesota, USA
barks016@umn.edu

Christine Liebe
Colorado School of Mines
Golden, Colorado, USA
cliebe@mines.edu

Sue Sentance
Raspberry Pi Foundation
Cambridge, England, UK

sue@raspberrypi.org

Leonard Busuttil
Department of Technology and
Entrepreneurship Education
University of Malta
Msida, Malta
leonard.busuttil@um.edu.mt

Francesco Maiorana
Department of Computer Science
Kansas State University
Kansas, Manhattan, USA
fmaioran@ksu.edu

Keith Quille
Department of Computing
TU Dublin
Tallaght, Dublin, Ireland
keith.quille@it-tallaght.ie

Rebecca Vivian
School of Computer Science
The University of Adelaide
Adelaide, South Australia, Australia
rebecca.vivian@adelaide.edu.au

Elizabeth Cole
School of Computer Science
University of Glasgow
Glasgow, UK
e.cole.2@research.gla.ac.uk

Monica M. McGill
Department of Computer Science
Knox College
Galesburg, Illinois, USA
mmmcgill@knox.edu

ABSTRACT

This paper presents an international study of K-12 Computer Sci-
ence implementation across Australia, England, Ireland, Italy, Malta,
Scotland and the United States. We present findings from a pilot
study, comparing CS curriculum requirements (intended curricu-
lum) captured through country reports, with what surveyed teach-
ers (n=244) identify as enacting in their classroom (the enacted cur-
riculum). We address the extent that teachers are implementing the
intended curriculum as enacted curriculum, exploring specifically
country differences in terms of programming languages and CS
topics implemented. Our findings highlight the similarities and dif-
ferences of intended and enacted CS curriculum within and across
countries and the value of such comparisons.

CCS CONCEPTS

« Social and professional topics — Computing education; K-
12 education; Adult education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Koli Calling °19, November 21-24, 2019, Koli, Finland

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06....$15.00

DOI: 10.1145/3364510.3364517

KEYWORDS

K-12 Computer Science Education, Teachers, Curriculum, Schools,
Programming, Topics, Intended Curriculum, Enacted Curriculum

ACM Reference Format:

Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard
Busuttil, Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica M.
McGill, and Keith Quille. 2019. An International Comparison of K-12 Com-
puter Science Education Intended and Enacted Curricula. In Proceedings of
Koli Calling ’19: 19th Koli Calling International Conference on Computing
Education Research (Koli Calling ’19). ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION

New primary and secondary school Computer Science (CS) cur-
ricula have recently been introduced to a number of countries
(e.g. [5, 9, 18, 19, 21, 37, 48]), leading to a number of national and
international efforts to develop, support and evaluate curriculum
development. While K-12 CS curricula is well entrenched in some
countries [4, 15, 23], it is a relatively new phenomenon in many.
This poses challenges not only in the development and implementa-
tion of new curricula, but also in preparing and supporting teachers
as they transition from initial teacher qualifications and experience
in other learning areas to the teaching of computing [13].

There is a difference between the intended curriculum, defined
by relevant standards, and the enacted or implemented curricu-
lum, which is taught by teachers in the classroom [42]. Nolet and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3364510.3364517&domain=pdf&date_stamp=2019-11-21

Koli Calling *19, November 21-24, 2019, Koli, Finland

McLaughlin [39] define the enacted curriculum as the operationali-
sation of intended curriculum, embodying the decisions teachers
make in terms of what actually is taught, and how. There have been
a number of initiatives aiming to identify and describe intended
curriculum in a comparable, standardised way, producing country
and regional reports that describe the CS curriculum standards,
topics and frameworks that outline the curriculum teachers are
expected to deliver [6, 25, 27, 36, 52-54]. However, with CS cur-
riculum implementation still in its infancy across many countries,
there has been little work in recording the enacted curriculum.

The enacted curriculum is defined by Porter and Smithson [42]
as "actual curricular content that students engage in the classroom",
and can be seen in what content is being delivered within the class-
room, as well as the pedagogical approaches adopted, and - with
particular relevance to CS curriculum - their use of technology,
physical computing devices and tools. Descriptions of classroom
practice enable us to better understand what is actually happening
within our classrooms in contrast to what we intend our curricu-
lum to be, and to identify where resources and support can be
most effectively targeted and are most urgently needed to increase
alignment. Careful analysis of the relationship of the intended and
enacted curriculum can inform the efforts of professional develop-
ment providers and pre-service teacher programs. Ultimately, the
conscious monitoring of efforts from intended curriculum stake-
holders and teachers enacting curriculum can facilitate robust K-12
CS education. Furthermore, there is a unique opportunity afforded
through the study of enacted curriculum within the K-12 CS cur-
riculum space. Due to its infancy, there is much that we do not
understand yet about K-12 CS pedagogical practice and suitability
of tools, programming languages, and physical computing. Thus,
an instrument that can assist in the evaluation of the intended and
enacted curriculum longitudinally and internationally will speed
the development of K-12 CS pedagogy.

In this paper, we present results captured by two instruments
designed to measure K-12 CS enacted and intended curriculum
developed as an outcome of a 2019 ITiCSE Working Group [22]
(report under review). We present results from a pilot study (n=244)
across seven countries (Australia, England, Ireland, Italy, Malta,
Scotland, and United States). We present our initial analysis of
intended versus enacted curriculum regarding two specific aspects:
programming language modality and motivation and CS topics
taught, along with year level alignment in intended curriculum.

2 LITERATURE
2.1 K-12 CS Implementation

There has been a growing body of work emerging about the learn-
ing and teaching of CS in K-12 across various countries. A number
of country and regional reports have been produced with the aim
of identifying and describing in a comparable, standardised way,
the intended curriculum, defined by Porter and Smithson [42] as
"such policy tools as curriculum standards, frameworks, or guide-
lines that outline the curriculum teachers are expected to deliver".
Gander [25] and Balanskat and Engelhardt [6] have explored K-
12 CS curriculum initiatives across Europe, while several reports
have been undertaken for initiatives in the UK [53, 54], the US [26],

Falkner, et al.

Wales [36] and Poland [52], as well as dedicated special journal
issues toward case studies in K-12 CS [27].

In 2011 an ITiCSE Working Group [29] collected and validated
research findings about secondary CS curricula from different coun-
tries, and in the process developed a category system (Darmstadt
Model) to support comparisons across regional and national bound-
aries. Expanding this work, a 2015 Working Group applied the
Darmstadt Model to analyse articles within two TOCE K-12 CS
education special issues [27]. This work sought to understand CS
curricula, goals and competencies, programming languages, tools
adopted, assessment practices and teacher training, however, the
authors acknowledged that the work is limited to the analysis of
selected journal publications.

A Working Group in 2013 investigated trends of CS as a subject
in schools by inviting CS education and teaching professionals
worldwide to complete an online questionnaire about the current
state of K-12 CS curriculum in their country [47]. Experts from 22
countries responded, addressing CS topics and goals covered as
well as teaching methods, however, a limitation was that results
were based on a small group of experts.

Prior work has set a strong foundation for understanding the
state of K-12 CS curriculum and implementation efforts, however,
there is an opportunity to further expand this work to focus on
measuring and comparing what K-12 teachers are doing in class-
rooms across the world and how that compares to their intended
curriculum.

2.2 Studies of CS Enacted Curriculum

van Veen et al [57] identified early in the development of CS curricu-
lum the need for supporting both intended and enacted curriculum
in curriculum descriptions. However, there has been little work
within the CS domain on capturing and describing enacted modern
CS curriculum, less so in a generalisable and standardised manner.

Bienkowski and Snow [10] describe initial work on a mixed-
methods instrument to study curriculum enactment and teaching
quality, focusing on inquiry and computational thinking practices.
Rutstein et al [45] describe their evaluation instrument for cur-
riculum implementation within the content of the ECS (Exploring
Computer Science) program, aiming to characterise the relation-
ship between measures of curriculum implementation and student
learning outcome. In this work, enactment is defined purely as
"lessons modified, skipped, and added", however factors that impact
enactment are identified and captured within the analysis, includ-
ing the learning context, as aspects of human capital, social capital
and technical and resource capital. They describe the development
of a series of six surveys, encompassing background and teacher
professional development, with the remaining surveys addressing
specific units within the ECS curriculum. Prescott et al [43] explore
the experience of two middle school science teachers integrating
computational thinking concepts into their science class.

Bell et al [9] describe a rich case study of secondary computing
curriculum implementation in New Zealand. They discuss both
the intended curriculum and standards environment, as well as
a case study of enacted curriculum, analysing responses across
two survey periods for an unpublished survey, with n=91 [56] and
n=109 [55] respectively over the two periods. In their survey, they

An International Comparison of K-12 Computer Science Education Intended and Enacted Curricula

gather information on teacher motivation, background demograph-
ics, implementation of standards, programming language selection,
and confidence levels (including explanation of Math concepts).
Vivian and Falkner [58] conducted a survey of Australian Dig-
ital Technologies (Computer Science) teachers (n=113) to gather
information on enacted curriculum, with a focus on assessment
practices, reporting confidence and self-efficacy against teaching
and assessing a range of CS topics. Teachers were asked to describe
"any formative and summative assessment activities, processes, dia-
logue, instruments or resources" that they used with the context of
assessing a programming activity, providing a rich description of
enacted curriculum for this specific aspect of K-12 CS curriculum.
Curriculum change, either through curriculum reform or the
introduction of new curriculum, poses many challenges and may
take several years for full implementation to occur, particularly
with alignment between enacted and intended curriculum. Broadly,
teachers have identified lack of resources and time as key obsta-
cles in implementation of new curriculum [14], in addition to the
complexity of developing a clear understanding of curriculum stan-
dards [46]. There is a common confusion amongst teachers [59],
but also present in government and school leadership [9, 12] re-
garding the distinction between Information and Communications
Technology (ICT) literacy and CS, clearly indicating complexity
in understanding curriculum standards. The required degree of
technological awareness in CS curriculum is a further challenge,
with teachers’ lack of confidence and familiarity with CS tools and
physical devices leading to deviation from lesson plans [35]. Black
et al. [11] describe a related experience, with early adopters focus-
ing more on fun activities, engaging with impressive technology or
physical computing devices, rather than providing opportunities for
deep learning of computational thinking. Additionally, the plethora
of free scripted lesson plans allow CS teachers to disengage from
offering intentional pedagogy. Teachers unfamiliar with technol-
ogy, national curriculum or standards, may sacrifice their agency
as a teacher by duly following prescribed lesson plans or modules
that teach CS. Measuring the alignment between intended and
enacted curriculum helps elucidate teacher confusion, while also
identifying areas where greater alignment is sought, and hence re-
sourcing needed. The impact here can be significant, with Gamoran
et al. [24] and Kurz [32] identifying correlation between the align-
ment of intended and enacted curriculum with student performance.
Gamoran et al. study this alignment in the context of transition
Mathematics courses, analysing the performance of 882 students
across 42 courses, identifying that curriculum alignment accounted
for the majority of achievement difference between courses.
While intended curricula across the world specify a transition,
either through replacement or addition, from visual through to
text-based programming, there is little research as yet on this transi-
tion point, age- or developmental-appropriateness, or the potential
consequences on learners in engaging with different modalities or
paradigms at different points. Being able to identify what languages
(and modalities or paradigms) are taught in classrooms will assist
in identifying when this transition is being undertaken, if at all,
helping us target future research and resource development.
In their study of programming languages and environments for
novice programmers, Kelleher and Pausch [31] describe the wide
range of programming languages that have been introduced to

Koli Calling *19, November 21-24, 2019, Koli, Finland

lower barriers to learning programming, introducing a range of
visual programming languages and environments that aim to sim-
plify the mechanics of programming, and provide additional learner
support and motivation. While they identify that many have been
influenced by common general purpose programming languages,
and as such, present opportunities for translation between the two,
there is a need for further research in this area.

Lewis [33] explores a case study of fifth grade students, identify-
ing little difference in motivation, perceptions of ease of learning
and use, but did identify a higher confidence of learners in their
general purpose programming language treatment group. The most
extensive work in this area is that undertaken by Weintrop [61, 62],
exploring multiple studies within a high school setting contrasting
visual, text and hybrid programming languages, identifying differ-
ences in the development of understanding of core CS concepts, and
differences in student learning outcome and attitude that vary over
time dependent on language modality. However, Weintrop identi-
fies that there remain many open questions relating to how visual
programming languages are perceived, and whether they aid or
hinder subsequent transition to learning text-based programming
languages [60].

3 RESEARCH QUESTIONS

Enacted curriculum in classrooms should reflect the curriculum
policies of the state (the intended curriculum) [42]. This led us to
interrogate our data to investigate the following research questions:

e What are the similarities and differences across countries in
terms of intended CS curriculum topics and programming
requirements?

e To what extent are teachers addressing the intended CS
curriculum with their enacted curriculum in classrooms?

4 METHODS

Two instruments were developed by the 2019 ITICSE Working
Group [22] for this study: a country report template and a teacher
survey instrument. We briefly describe the instruments ! as the 2019
Working Group Report (in review) presents evidence of reliability
(internal consistency, and inter-rater) and validation (construct,
population and sampling) using the pilot results.

4.1 Country Report Instrument

Although primarily setting out to investigate the enacted curricu-
lum, we identified a need to capture broad curriculum information
to support analysis and comparisons [2]. Information about coun-
try demographics and their intended CS curriculum were captured
using a country report template. The country report template is to
be completed by the survey administrator for the particular country,
supported by a combination of their expert knowledge of the CS
curriculum and background research for their country.

Building on a number of country and regional reports (e.g. [1,
8, 16, 28, 29, 34, 54]), we defined the following as captured in the
country report template: 1) country demographics and information
relating to schools (e.g. such as total population, number of schools,

!https://csedresearch.org/tool/?id=185

Koli Calling *19, November 21-24, 2019, Koli, Finland

number of teachers); 2) CS curriculum state or country plan stan-
dards and requirements; 3) year level (with age for comparisons)
mapped to prescribed curriculum and programming requirements,
and; 4) general CS topics covered.

There was a challenge in capturing implementation of CS topics
across countries, due to the differences in CS curricula and because
it was dependent on whether a specific CS curriculum was avail-
able. Therefore, it was decided that a comprehensive measure of
CS topics being implemented was a key consideration of the en-
acted curriculum and would be captured via the survey instrument.
However, as a broad comparison across countries, we reviewed
various curriculum analysis reports [8, 34, 48] as well as previously
mentioned country reports, and from here developed a list of broad
CS topics for a high-level country comparison. Future work will
refine this list based on the pilot teacher survey results.

4.2 Teacher Survey Instrument

The Working Group undertook a collaborative, iterative process
to develop an international teacher survey instrument based on
prior work and shared expertise. The Group developed and refined
a set of key survey categories that were of interest internation-
ally in terms of enacted CS education curriculum. Collaboratively,
members curated questions from surveys with evidence of reliabil-
ity and validity, resulting in 88 initial example questions from 11
sources [3, 7, 17, 20, 30, 38, 40-42, 44, 51]. Additional survey items
were developed based on shared group expertise and previous non-
validated studies where survey items did not exist. The developed
survey included 11 sections and a total of 53 questions. This pa-
per focuses on investigating the questions relating to curriculum
topics and programming languages enacted in the classroom for
comparison against intended curriculum requirements.

4.3 Sample

The final dataset included 244 responses. The majority of partici-
pants (68%) were from the USA (n=115) and England (n=52). Italy,
Ireland, and Scotland make up 24% of the sample, and Australia
and Malta represent 8% of the participants (table 1). Some 61% of
participants identified as female, 37% as male, 0.4% as other, with
1.6% preferring not to say. Over half of teachers were between the
ages of 40-59 (63%) and a little less than a quarter were between the
ages of 30-39 (24%). A small number (4.1%, n=10) of teachers self-
identified as having a disability. The majority of teachers had been
teaching for 12 or more years (49.6%, n=121), followed by 15.2%
(n=37) teaching for 8-11 years. Less than 2% of teachers identified
as having less than 3 years experience.

Most teachers reported working in public or government schools
(84.4%, n=206; 11.9%, n=29 private schools). Some 36% (n=88) of
teachers indicated that they were in a disadvantaged school (aver-
age socio-economic background of students is below the national
average). A total of 39.8% of teachers indicated their school had
less than 25% of low socio-economic students and 22.5% (n=55)
indicated they had 50% or more students from low socio-economic
backgrounds. Most of the teachers were located in urban (45.1%,
n=110) or metropolitan (19.7%, n=48) regions with 29.1% (n=71)
from rural or remote areas. Table 6 presents the breakdown of
teachers and year levels they teach across countries.

Falkner, et al.
Table 1: Participants per country

Country N %
Australia 14 6

England 52 21
Ireland 19 8

Ttaly 20 8
Malta 6 2
Scotland 18 7
USA 115 47
Total 244 100

5 INTENDED CURRICULUM

This section presents the results of the intended curriculum across
countries as captured by the country reports. However, first, to
contextualise the intended curriculum we present country demo-
graphics and additional information for each country.

5.1 Country Demographics

Tables 2-4 show a snapshot of the Working Group members view
of their country or state intended CS curriculum. Members also
provided key contextual information to expand their country/state
tabulated snapshot data (see Section 5.1.1).

Table 3 shows a set of initial CS curriculum concepts and whether
they are present in country/state curricula. Although starting with
a smaller set of general CS concepts for capturing intended curricu-
lum in the country report, we invited teachers in the accompanying
survey to respond to their implementation of a broader set of topics
(see Table 5). This was driven by our desire to capture topics that
may be taught by teachers as part of their conceptualisation of CS
but are not typically considered core in CS curricula. Table 3 shows
that for four out of the nine countries/states with a K-6 state plan,
all cover "computational thinking", "algorithms and programming"
and "impact of computing". In the 7 countries/states with a state
plan for students Grade 7 on-wards, curriculum content includes
"computational thinking", "computer systems", "
ternet”, "data and analysis", "algorithms and programming” and
"impact of computing” concepts are covered.

In our analysis, we identified that CS curricula could be cate-
gorised intro three broad types: those with a state plan for CS in
place, those with no state plan for CS in place and those whose CS
state plan is in development. CS guidance for those with a state
plan was through standalone or embedded across disciplines. All
teachers have flexibility of implementation within their state plan
curricula and the opportunity to plan the delivery of lessons and
resources (see Table 4). However, we do notice many variations
in pre-service and in-service teacher training requirements across
countries and this may impact on curriculum implementation, par-
ticularly as research has found teachers struggle with the complex-
ity of developing a clear understanding of curriculum standards [46]
and confusion amongst teachers about what CS is [59].

The choice of programming language to be used within a CS
curriculum is often left up to the individual teacher, with many

networks and in-

An International Comparison of K-12 Computer Science Education Intended and Enacted Curricula

curriculum standards silent on programming language, and - some-
times - modality and/or paradigm choice. This flexibility aids teach-
ers in that they are able to identify what best suits their immediate
context, however it also poses challenges in terms of development
and provision of suitable resources, assessment and professional
development, as well as increased expectations on teacher capabil-
ity and preparedness [9]. Programming languages for those coun-
tries/states with a state plan use visual programming, or block-
based, languages through K-6. From Grade 6/7 onwards, we observe
text-based programming being introduced, either as a transition
from, or in addition to, visual programming.

5.1.1 Additional context information. In capturing country report
data, it was identified there is a need to provide additional infor-
mation to expand on the data in the tables to explain some of the
intricacies and to provide supporting contextual information. We
include the descriptions for countries in this study below.

In Australia CS commences from the first year of school until
year 10. No national curriculum is mandated at the final stages
of secondary school (Grade 11 and Grade 12) because courses are
optional for students and align to final certification. CS curriculum
is at the early stages of implementation, with each state or territory
determining reporting requirements. As a result, reporting expec-
tations vary for both government and privately funded schools.
Formal pre-service training and in-service professional CS learning
varies in terms of requirements and availability.

England has a mandatory computing curriculum in state-funded
schools from age 5-16 (Year 1-11) which covers computer science,
information technology and digital literacy. This can be seen in
the representation of teaching year levels of teachers from England
who took the survey (see Table 6). At age 14, students can addition-
ally elect to take a GCSE in CS, and at age 16, an A Level in CS.
Postgraduate initial teacher training courses have been available,
with financial incentives, for secondary computing teachers since
2013. The government supported the Network of Excellence [50] for
in-service professional development of computing from 2013-2018
with a small amount of funding, and then massively increased the
amount of support by forming the National Centre for Computing
Education in 2018 to support in-service teachers [49].

In Ireland secondary school education is in two phases including
the Junior Cycle at age 12-15 followed by the Leaving Certificate
(which includes fifth and sixth year). These phases/years are manda-
tory across all schools. There is an optional year, TY (also known as
transition year or fourth year). In the Junior cycle students under-
take short courses across a range of subject areas which includes
an optional in coding. In 2018 Ireland finalised the pilot upper sec-
ondary CS curriculum and by September 2020 all schools will be
eligible to implement the CS curriculum at their own choosing. In
primary, the CS curriculum is under development and is expected
to be launched in 2022. The pilot phase involved a school choos-
ing their own concepts and content which will be used to develop
the curriculum. Although the secondary curriculum is optional
teachers have control to decide on resources and pedagogy.

In Italy the secondary schools vary in specialisation, including
academic, technical and vocational. CS is not mandatory in all types
of high school but it is delivered in secondary schools specialis-
ing in technology or science. Object orientated programming is

Koli Calling *19, November 21-24, 2019, Koli, Finland

mandatory in the higher stages of technical schools. CS is promoted
in primary and lower secondary, with CS guidance that includes
"computational thinking" concepts. Formal reporting takes place in
some secondary schools.

Since 2018-2019 in Malta, all pupils from year 7-11 follow an ICT
C3 certificate which includes CS education. In the primary years
Computational Thinking learning objectives are embedded in the
Digital Literacy cross-curricula theme and the teacher decides how
and when to implement them. These are not formally assessed. CS
is a standalone subject at year 9 comprised of two branches, one
being VET IT (based on networking and vocational/hands-on) and
the other Computing (including programming, databases, computer
architecture). Secondary schools formally report on CS in years
7-11. Pre-service CS training is compulsory for teachers delivering
CS from years 7-11.

In Scotland all pupils have an entitlement from pre-school up to
3rd year in secondary school to a Broad General Education (BGE).
Across the BGE computing science guidelines are organised into a
discrete subject. However, teachers and schools have ownership on
its delivery. Fourth year to 6th year computing science is optional
for qualifications. In 2016 the computing science curriculum K-10
Broad General Education for curriculum content for computing
science was refreshed.

In the United States (US) there is no national CS curriculum,
however, individual states can mandate their own CS curriculum
to be implemented. If there is no state or district wide curriculum
formally adopted then primary and secondary schools have au-
tonomy to implement CS curriculum and/or classes, often using
the Computer Science Teachers Association (CSTA) standards as a
framework. For the purposes of this paper, we have used the CSTA
standards to reflect on implementation due to the variances be-
tween states. State funding is sometimes available for CS in-service
professional development through various initiatives.

6 ENACTED CURRICULUM

This section presents results and discussion from the survey inves-
tigating what teachers are doing in classrooms, including CS topics
and programming languages.

6.1 Computer Science Topics

Figure 1 presents an overview of the total percentage of teachers,
across all countries, who indicated they are teaching particular CS
topics. We observe that topics mostly being taught are algorithms,
programming, computational thinking and data representation.
Topics taught less are Machine Learning and Artificial Intelligence.

Examining topic implementation more closely across countries,
Table 5 shows the total results for each country and the topics that
teachers have identified as implementing in the classroom. Topics
included within intended curriculum are highlighted with an as-
terisk and bold font. Although this is a pilot study, due to varied
response rates per country, this preliminary data illustrates the
usefulness of the instruments in helping to explore and visualise
differences in intended and enacted curriculum across countries.
For example, we can observe across the table, topics such as "Artifi-
cial Intelligence" and "robotics" are only included within intended

Koli Calling *19, November 21-24, 2019, Koli, Finland

Falkner, et al.

Table 2: Overall school-related demographic information for countries.

S e = a

= a

2 S = 2 8 £ Q= &

o (@) < Z O ~ < o Z =

[Q3 = < <IN Z 2 Ee Z= E =

225 24 22 g3 =28 &2 =22 Zz 98
COUNTRY/USA STATE << o2 SRS =) E= 92 =2 =52 32
Population (million) 25.09 5.69 55.62 4.70 60.50 12.7 0.47 5.6 5.44
No. of schools 9,477 1,900 29,972 3,961 8,636 4,266 170 2,066 2,400
No. of students 3,893,834 911,536 8,378,809 920,867 8,422,419 2,072,880 46,247 862,971 693,251
No. of teachers (FTE) 288,583 59,989 498,100 66,327 872,268 135,701 2,976 57,262 51,959

Table 3: CS concepts in curricula across pilot study states and countries: Explicit (v') Implicit (%) Not covered (X)

Concepts

Computational Thinking
Computer Systems

Networks and Internet

Data & Analysis

Algorithms and Programming
Impact of Computing

N % SN N K| AUS
N S % % | US-CO

NSNS SN N K| ENG
NSNS SN K IRL

NSNS ITA
X X X X X X]| US-IL
N SN % 5| MLT
X X X X X X| US-MN
NSNS KN K| seco

Table 4: Demographics of pilot study countries/states education systems.

(i) Yes (v') No (X) Additional information (+*)

(ii) Pre-service training - Varies(V) Compulsory (v'), Elective (E) "Date previous CS curriculum refreshed.

1%} 8 O = = % e}
COUNTRY/USA STATE = 3 Z BE3% 2 3% 3
CS State or country plan v X v X % X v X v
CS Curriculum k-6 standards defined v X v @ % X v X v
CS Curriculum: Y7+ standards defined v v v * % X/ X v
CS Guidelines - standalone subject v v v @ % X < <> v
CS Guidelines - across disciplines X X X X X < X
Teacher autonomy to implement state/country v v v X v < v
guidelines as standalone or cross discipline
CS Formal Reporting \% X x* X % X < < <>
CS in pre-service training Primary E E v E v E X X E
CS in pre-service training Secondary E E v E E E v X v
CS training for in-service Primary Vv v E A X v
CS training for in-service Secondary A% v E \Y v v/
Year endorsed 2015 2018 2013/14 X X X 2018 X 2016"

curriculum in a single country each, despite being included in the
enacted curriculum by teachers across a number of countries.
This illustrates, further, differences in alignment between in-
tended and enacted curriculum, with multiple examples of concepts
included in the intended curriculum with low rates of reporting in
enacted curriculum, e.g. "hardware" across Australia, Ireland and
Malta, and more starkly, "ethics" in Australia. In contrast, there are
concepts that feature strongly in the reported enacted curriculum,

e.g. "computational thinking" and "hardware" in England, and "ro-
botics" in Australia that may suggest concepts that teachers find
are useful or relevant to include or link to within the intended
curriculum. However, discrepancies between intended and enacted
curriculum may impact on student performance, as has been found
in previous research [24, 32].

An International Comparison of K-12 Computer Science Education Intended and Enacted Curricula Koli Calling *19, November 21-24, 2019, Koli, Finland

Topics

Table 5: Comparison of intended and enacted curriculum topics across countries. *Included in intended curriculum

CS Topics Australia England Ireland Italy Malta Scotland USA
Algorithms 79%" 100%* 68%" 70%" 33%* 100%* 82%*
Artificial Intelligence 7% 44% 32% 10% 0% 6% 30%"
Computational Thinking 57%" 96% 68% 45%* 17% 89%* 72%
Cybersecurity 71% 83% 16% 35% 17% 72%" 57%"
Data analysis and visualisation 29%* 44% 26% 25% 0% 11% 43%*
Data representation (e.g. digital data, binary) ~ 57%" 88%" 53%* 45%* 33%* 100% 68%"
Databases 14% 71% 42% 45%" 17%" 89% *27%
Design process (or Design Thinking) 86%* 54%" 58%* 20%* 17% 56% 72%
Ethics 29%" 88%* 58% 35% 0% 56%" 75%
Hardware 26%" 90% 68%" 55%" 50%* 94%* 61%"
Information Systems 50%* 58% 21% 30%* 33% 72%" 35%
Machine Learning 7% 23% 26% 5% 17% 11% 21%
Networks and Digital Systems 64%" 90% 16% 40% 17%" 39%"* 45%*
Privacy 64%* 77% 42% 40% 17%" 61%* 64%"
Programming skills and concepts 79%"* 100%* 100%* 80%" 50%" 100%* 87%"
Robotics 79% 33% 42% 40% 50%" 11% 47%
Web Systems 36% 62% 37%" 50%" 17% 94%* 38%
Total sample (n) 14 52 19 19 6 18 115

Table 6: Teaching year levels by country.

Country Pre-primary Junior Pri- Primary Upper Pri- Lower Sec- Secondary Senior Sec-
(3-5 years mary (6-7 (8-10 years mary(11-12 ondary (13-15 (16-17 years ondary (18-19
old) years old) old) years old) years old) old) years old)

USA 5 15 17 36 76 70 56

England 5 10 12 33 38 36 27

Ttaly 1 2 4 2 8 14 13

Ireland 2 5 7 13 13 8

Scotland 1 1 2 16 15 6

Australia 3 6 9 12 3 1

Malta 2 2 2 1 1

Total 15 38 49 101 156 150 111

Algorithms

Artificial Intelligence
Computational Thinking
Cybersecurity

Data analysis & visualisati...

Data representation

Databases
Design processes
Ethics
Hardware
Information Systems
Machine Learning
Networks & Digital Systems
Privacy
Prograrmming (skills, conc...
Robotics
Web Systems

0% 25% 50% 75% 100%

% implementing

Figure 1: Teachers’ implementation of CS topics across all
countries combined.

6.2 Programming Languages

In Figure 2 we present the overall reported usage of the mode/paradigm
of programming languages across student age groups. For this study
we have investigated programming language implementation ac-
cording to the following classifications:

e Unplugged: The use of embodied programming activities
or tangible sequence cards with no computers.

¢ Symbolic (no text block-based): Visual programming en-
vironments that utilise symbols with no text (e.g. ScratchJR).

¢ Visual (text block-based): Visual programming environ-
ments that include text within blocks with constructed syn-
tax and semantic (e.g. Scratch).

e Hybrid: Environments that include a combination of visual
and text-based programming (e.g. Pencil Code).

o Text-based: Programming languages in which text are used,
including the construction of syntax and semantics (e.g.
Python).

Koli Calling *19, November 21-24, 2019, Koli, Finland

B Unplugged programming [Symbolic (no text block-based) programming
Visual (text block-based) programming [Hybrid programming
B Text-based programming

60%

40%

20%
i .._II .I_II A |\
3-Dyears 6-7 year

8-10years 1

year

12 1315 16-17
5

[)
g ®
& B

©
w

Figure 2: Programming languages implemented across age
groups for all countries.

The graph demonstrates that teachers are using both unplugged
and visual programming increasingly from ages 10-17, with a grad-
ual increase in the number of teachers using text-based program-
ming from ages 11-19. Hybrid programming also feature somewhat
as being used through the transition period from visual to text-
based programming (8-19 years of age).

Further breaking this down by country, we see in Figure 3 com-
parison across countries for programming languages implemented
across age groups according to percentage of respondents from
those countries. The highlighted sections indicate where curricula
stipulates what type of programming language is to be used for
that particular age group (as identified through the country report
instrument). Table 6 shows the distribution of teaching year levels
within the sample as reported by country for cross-reference. What
we observe in Figure 3 is quite a number of differences between
intended and enacted programming languages, and in particular the
use of "unplugged programming" despite this only being explicitly
mentioned in Australia’s early years CS curriculum.

Table 7 shows the mean comparison across countries for agree-
ment towards reasons for selecting programming environments.
Overall, we observe that across countries there were strong con-
sistencies between teachers’ motivations for using programming
languages and environments, suggesting that regardless of curricu-
lum or location that teachers share similarities. What is interesting
to note here is that teachers’ motivations for using particular pro-
gramming environments is driven by student-focused reasons, such
as age appropriateness, stages in students’ learning development
and capabilities, scaffolding reasons, as well as factors relating to
resource availability and cost. On the other hand, we observe that
institutional factors, such as national and school determined cur-
riculum requirements do not play a large role in teachers’ decisions.

Although here teachers rated their confidence as only mildly
impacting on programming choice, prior work has found that that
confidence with CS tools and devices can result in deviations in
teaching [35]. Further work with a larger sample is required to

Falkner, et al.

Un Symbolic Visual B Text

Enmwtry:: | Ages. plugged (no text) (text) yield based
Australia 35 21% 21% 21% 14% T
&7 43% 435 43% 14% 14%

B-10 64% 4% 6% 14% 29%

11-12 79% 9% BE% 21% 43%

1315 14% ™ 21% o 14%

16-17 TH ™ 7% o T

18:19 [0% 0% [05

England 35 B B3 10 4% 10%
&7 17% 15% 1% 6% 13%

8-10 21% 17% 21% 6% 13%

11-13 60% A0% S4% 10% 58%

13-15 65% 7% SE% 10% 73%

16-17 63% 31% 5% B 7%

18-19 45% 1% k. 5. A8%

Ireland 35 o 0% 0% o 0%
&7 5% 1% 4% o 0%

810 16% 6% a% H 11%

11-12 21% E% 1% N 1%

1315 47% 10% 23% N 68%

16-17 47% 12% 23% % E8%

18-19 205 105 123 (1)) A42%

Italy 3-5 0% 0% 5% 0% 0%
&7 5% 5% 10% 0% 0%

8-10 15% 15% 20% 5% 10%

11-12 10% 10% 10% o 10%

13-15 30% 35% a0k 10% 0%

16-17 45% 555 55% 20% 65%

18-19 40% 5% SO 155 EO%

Malta 35 o 0% 0% o 0%
&7 o 17% 0% o 0%

8-10 o 0% 0% o 0%

11-12 17% 17% 3% 17% 7%
13-15 33% 335 1% 33% 3%

1617 17% 17% 0% 17% 17%
1810 D% 17% 17% iy o
Seotland | 35 6% 5% 0% 0% 0%
&7 6% 5% E% o &%
B10 11% B% 11% o 1%
1112 44% 17% 0% | 11% 50%
1315 83% 50% 8% | 17% B9%
1517 78% 505 3% 17% B3%
18-19 3% 225 3% 1% 3%
LIS, 35 % % a5 1% %
&7 | 10% B% a5 % 5%
210 10%) 10% bs) a5

11-12 28% 165 IE% 10% 19%
13-15 60% 31% G61% 23% 1%
16-17 56% 7% 35% 20% 1%

Figure 3: Comparison across countries for programming lan-
guages implemented across age groups.

determine if there are any notable relationships between teacher
confidence and access to PD and their implementation of CS topics,
programming languages, tools and resources.

7 CONCLUSIONS

This study presents pilot results from 244 participants across seven
countries. We have focused this paper on the alignment between
intended and enacted curriculum in the areas of topics taught and
programming languages used. We see these as critical areas for
further analysis and monitoring not only in terms of alignment
and its ensuing benefits, but also in relation to our assumptions as
tertiary educators on prerequisite knowledge and experience.

We have identified that both visual and text-based programming
languages are being used across K-12 by some teachers, warrant-
ing further research into potential impact on student learning and
motivations. We also identify that unplugged activities are com-
monly used across K-12, extending into senior years despite this

An International Comparison of K-12 Computer Science Education Intended and Enacted Curricula

Koli Calling *19, November 21-24, 2019, Koli, Finland

Table 7: Mean comparison across countries for agreement towards reasons for selecting programming environments.

Reason for use Australia England Ireland Italy Malta Scotland US All
Appropriateness for age 4.1 4.2 4.1 4.2 4.0 4.1 42 41
Cost or availability 4.1 4.1 4.1 4.1 4.2 4.1 41 4.1
Devices available 3.8 3.8 3.8 3.8 3.8 3.8 3.8 38
Stage in students’ learning 4.1 4.0 4.0 4.0 4.0 4.0 41 4.1
Scaffolding learners 4.1 4.0 4.0 4.0 4.0 4.0 41 4.1
School determined 2.8 2.8 2.7 2.7 2.6 2.7 27 28
Curriculum determined 3.2 3.2 3.1 3.1 3.2 3.2 32 32
Supporting resources available 3.6 3.6 3.5 3.6 3.6 3.5 3.6 3.6
My confidence level 3.7 3.8 3.7 3.7 3.7 3.7 3.7 37
Purpose of the activity (e.g. robotics) 3.8 3.9 3.8 3.9 3.7 3.8 39 338
What students can do (tutorial/open) 3.9 3.9 3.8 3.9 3.8 3.8 39 39

not being explicitly defined in intended curricula. Furthermore, we
notice teachers’ motivations for programming language choice is
consistent across countries. Interestingly we expected that curricu-
lum would drive teachers’ motivations for selecting programming
languages, however, our results discovered this isn’t the case and
that student-driven factors motivate selection.

A limitation of this study is that results are based on a small
pilot sample size, particularly for some countries, however, future
work will seek to survey a larger sample across multiple countries.
Nevertheless, this study demonstrates the value in investigating
intended versus enacted curricula in terms of recording teachers’
curriculum enactment and in identifying differences with curricu-
lum alignment across countries. These insights can potentially be
used to guide further curriculum reform, or the development of tar-
geted resources and/or professional development to better support
teachers in implementing and delivering new CS curricula.

This paper has focused exclusively on the aspects of CS topics
and programming languages implemented, however, there are op-
portunities to explore other forms of enacted curriculum such as CS
resources used and pedagogy. A further limitation is that we have
focused our analysis and presentation of results on K-12 broadly,
with future research warranting a breakdown of analysis into pri-
mary and secondary years to determine if there are differences, as
well as other factors that impact on programming language and
CS topic implementation. We recommend ongoing research to con-
tinue to survey and monitor the landscape to determine whether
enacted curriculum implementation changes over time as intended
curriculum implementation in countries matures.

REFERENCES

[1] 2018. 2018 State of Computer Science Education. Technical Report.
//code.org/files/2018{ }state{_}of{_}cs.pdf

J Ainley and R Carstens. 2018. Teaching and Learning International Survey
(TALIS) 2018 Conceptual Framework. (2018), 2018 pages. https://doi.org/10.
1787/799337c2-en

[3] John Ainley and Ralph Carstens. 2018. Teaching and Learning International
Survey (TALIS) 2018 Conceptual Framework. 187 (2018). https://doi.org/https:
//doi.org/10.1787/799337c2-en

Mansour M. Al-Sulaiman. 1999. A Computing Curriculum for Technical High
Schools in the Kingdom of Saudi Arabia. J. King Saud Univ. Comput. Inf. Sci. 11
(Jan. 1999), 85-104. https://doi.org/10.1016/S1319-1578(99)80005-6

Australian Curriculum, Assessment and Reporting
(ACARA). 2015. Australian Curriculum: Digital

http://www.australiancurriculum.edu.au/.
Anja Balanskat and Katja Engelhardt. 2014. Computing our future Computer

programming and coding - Priorities, school curricula and initiatives across Europe.

https:

(2]

(4]

[5

=

Authority
Technologies.

Technical Report. https://doi.org/10.1111/§.1465-7295.200

A. Bandura. 2006. Guide for Constructing Self-Efficacy Scales. Age Information
Publishing, Greenwich. 307-337 pages.

Erik Barendsen, NataAga Grgurina, and Jos Tolboom. 2016. A new informatics
curriculum for secondary education in The Netherlands. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-46747-4{_}9
T. Bell, P. Andreae, and A. Robins. 2014. A case study of the introduction of
Computer Science in NZ schools. ACM Transactions on Computing Education 14
(2014), 1-31.

Marie Bienkowski and Eric Snow. 2017. Studying Implementation of Secondary
Introductory Computer Science: Pilot Results (Abstract Only). In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 703-703. https://doi.org/10.1145/3017680.3022432

[10

[11

Myketiak, Peter Mcowan, and Laura R. Meagher. 2013. Making computing
interesting to school students: Teachers’ perspectives. Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, 255-260.
https://doi.org/10.1145/2462476.2466519
Neil C. Brown, Michael Kélling, Tom Crick, Simon Peyton Jones, Simon
Humphreys, and Sue Sentance. 2013. Bringing computer science back into
schools: lessons from the UK. In 44th ACM technical symposium on Computer
Science education. ACM, Denver, Colorado, USA, 269-274.
Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The Resurgence of Computer Science in UK Schools. ACM Trans. Comput. Educ.
14, 2, Article 9 (June 2014), 22 pages. https://doi.org/10.1145/2602484
Charalambos Y. Charalambous and George N. Philippou. 2010. Teachers’ con-
cerns and efficacy beliefs about implementing a mathematics curriculum reform:
integrating two lines of inquiry. Educational Studies in Mathematics 75, 1 (01 Sep
2010), 1-21. https://doi.org/10.1007/s10649-010-9238-5
Valentina Dagiené. 2008. Teaching Information Technology and Elements of
Informatics in Lower Secondary Schools: Curricula, Didactic Provision and Im-
plementation. In Proceedings of the 3rd International Conference on Informatics in
Secondary Schools - Evolution and Perspectives: Informatics Education - Supporting
Computational Thinking (ISSEP ’08). Springer-Verlag, Berlin, Heidelberg, 293-304.
https://doi.org/10.1007/978-3-540-69924-8_27
Valentina Dagiene, T Jevsikova, Carsten Schulte, Sue Sentance, and N Thota. 2013.
A comparison of current trends within Computer Science teaching in school
in Germany and the UK. In International Conference on Informatics in Schools
(ISSEP), Ira Diethelm (Ed.). Oldenburg, Germany, 63-75.
[17] Joy-Anne D’Anca. 2017. Mindset and Resilience: An Analysis and Intervention
for School Administrators. Ph.D. Dissertation. St. John’s University (New York),
School of Education and Human Services.

[12]

[13

[14

(15]

[16

[18] Department for Education. 2013. The National Curriculum in England. Department
for Education Government of UK, Crown, Cheshire.

[19] Directorate for Learning and Assessment Pro-
grammes. 2019. SEC Syllabus (2019): Computing.

https://www.um.edu.mt/__data/assets/pdf file/0017/292310/SEC09.pdf.

Carol S. Dweck. 2008. Mindset: The new psychology of success. Random House
Digital, Inc.

Education Scotland. 2017. Benchmark Technologies.
tion.gov.scot/improvement/documents/technologiesbenchmarkspdf.pdf.
Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busuttil,
Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica M. McGill, and
Keith Quille. 2019. An International Benchmark Study of K-12 Computer Science
Education in Schools. In Proceedings of the 2019 ACM Conference on Innovation

[20]
[21] educa-

[22

Jonathan Black, Jo Brodie, Paul Curzon, Chrhttps://www.overleaf.com/project/5d2843014a4c0d57d25:

https://code.org/files/2018{_}state{_}of{_}cs.pdf
https://code.org/files/2018{_}state{_}of{_}cs.pdf
https://doi.org/10.1787/799337c2-en
https://doi.org/10.1787/799337c2-en
https://doi.org/https://doi.org/10.1787/799337c2-en
https://doi.org/https://doi.org/10.1787/799337c2-en
https://doi.org/10.1016/S1319-1578(99)80005-6
https://doi.org/10.1111/j.1465-7295.200
https://doi.org/10.1007/978-3-319-46747-4{_}9
https://doi.org/10.1145/3017680.3022432
https://doi.org/10.1145/2462476.2466519
https://doi.org/10.1145/2602484
https://doi.org/10.1007/s10649-010-9238-5
https://doi.org/10.1007/978-3-540-69924-8_27

Koli Calling *19, November 21-24, 2019, Koli, Finland

[23]

[24]

[25]

[26]

[27

[28

[29

[30]

[31

[32

[33

[34]

[35

[36]

[37

[38

[39]

[40

[41]

and Technology in Computer Science Education (ITiCSE °19). ACM, New York, NY,
USA, 257-258. https://doi.org/10.1145/3304221.3325535

Judith Gal-Ezer, Catriel Beeri, David Harel, and Amiram Yehudai. 1995. A High
School Program in Computer Science. Computer 28, 10 (Oct. 1995), 73-80. https:
//doi.org/10.1109/2.467599

Adam Gamoran, Andrew C. Porter, John Smithson, and Paula A. White. 1997.
Upgrading High School Mathematics Instruction: Improving Learning Oppor-
tunities for Low-Achieving, Low-Income Youth. Educational Evaluation and
Policy Analysis 19, 4 (1997), 325-338. https://doi.org/10.3102/01623737019004325
arXiv:https://doi.org/10.3102/01623737019004325

W Gander, A Petit, G Berry, B Demo,] Vahrenhold, A McGettrick, R Boyle, M
Drechsler, A Mendelson, C Stephenson, C Ghezzi, and B Meyer. 2013. Informatics
Education: Europe Cannot Afford to Miss the Boat. Technical Report. Association
for Computing Machinery &, Joint Informatics Europe ACM Europe Working
Group on Informatics Education, New York. 1-21 pages.

Hai Hong, Jennifer Wang, and Sepehr Hejazi Moghadam. 2016. K-12 computer
science education across the U.S.. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
https://doi.org/10.1007/978-3-319-46747-4{_}12

Peter Hubwieser, Michal Armoni, and Michail N. Giannakos. 2015. How to
Implement Rigorous Computer Science Education in K-12 Schools? Some An-
swers and Many Questions. ACM Transactions on Computing Education (2015).
https://doi.org/10.1145/2729983

Peter Hubwieser, Michail N. Giannakos, Marc Berges, Torsten Brinda, Ira Di-
ethelm, Johannes Magenheim, Yogendra Pal, Jana Jackova, and Egle Jasute. 2015.
A Global Snapshot of Computer Science Education in K-12 Schools. In ITiCSE
Working Group Reports. ACM, Vilnius, Lithuani, 65-83. https://doi.org/10.1145/
2858796.2858799

Peter Hubwieser, Sigrid Schubert, Michal Armoni, Torsten Brinda, Valentina
Dagiene, Ira Diethelm, Michail N. Giannakos, Maria Knobelsdorf, Johannes
Magenheim, and Roland Mittermeir. 2011. Computer science/informatics in
secondary education. In Proceedings of the 16th annual conference reports on In-
novation and technology in computer science education - working group reports -
ITiCSE-WGR ’11. https://doi.org/10.1145/2078856.2078859

Ilkka Jormanainen. 2018. On Computer Science Major Students’ Motivation in
a Practically Oriented Robotics Course. In Proceedings of the 18th Koli Calling
International Conference on Computing Education Research (Koli Calling ’18). ACM,
New York, NY, USA, Article 29, 2 pages. https://doi.org/10.1145/3279720.3279749
Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (June 2005), 83-137. https://doi.org/10.
1145/1089733.1089734

Alexander Kurz, Stephen Elliott, Joseph H. Wehby, and John Smithson. 2010.
Alignment of the Intended, Planned, and Enacted Curriculum in General and
Special Education and Its Relation to Student Achievement. The Journal of Special
Education 44 (11 2010), 131-145. https://doi.org/10.1177/0022466909341196
Colleen M. Lewis. 2010. How Programming Environment Shapes Perception,
Learning and Goals: Logo vs. Scratch. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE ’10). ACM, New York, NY,
USA, 346-350. https://doi.org/10.1145/1734263.1734383

Linda Mannila, Valentina Dagiene, Barbara Demo, Natasa Grgurina, Claudio
Mirolo, Lennart Rolandsson, and Amber Settle. 2014. Computational Thinking
in K-9 Education. In Proceedings of the Working Group Reports of the 2014 on
Innovation & Technology in Computer Science Education Conference - ITICSE-WGR
’14. https://doi.org/10.1145/2713609.2713610

Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2010.
Learning Computer Science Concepts with Scratch. In Proceedings of the Sixth
International Workshop on Computing Education Research (ICER ’10). ACM, New
York, NY, USA, 69-76. https://doi.org/10.1145/1839594.1839607

F. Moller and T. Crick. 2016. A National Engagement Model for Developing
Computer Science Education in Wales. In The 9th International Conference on
Informatics in Schools,. Munster, Germany, 1-13.

National Council for Curriculum and Assessment. 2018. Computer Science
Curriculum Specification. https://www.curriculumonline.ie/Senior-cycle/Senior-
Cycle-Subjects/Computer-Science.

National Network of Education Research Practice Partnerships. 2019. Research-
Practice Partnerships (RPP) for CS common data collection 9-12. Personal com-
munication.

Victo Nolet and Margaret J. McLaughlin. 2000. Accessing the general curriculum:
Including students with disabilities in standards-based reform. Thousand Oaks,
CA: Corwin Press, Inc.

Outlier Research & Evaluation. 2017. BASICS Study ECS Teacher Implementation
and Contextual Factor Questionnaire Measures [Measurement scales]. http:
//outlier.uchicago.edu/basics/resources/MeasuresTeacherImplementation/

Paul R. Pintrich, David A. F. Smith, Teresa Garcia, and Wilbert J. McKeachie. 1991.
A Manual for the use of the Motivated Strategies for Learning Questionnaire
(MSLQ). Mediterranean Journal of Social Sciences 6, 1 (1991), 156—164.

[42

[43

[44

[46

[47

[48

N
)

[50

[51

[52

o
&

(54

[55

[56

[58

[59

[60

(62]

Falkner, et al.

Andrew C. Porter and John L. Smithson. 2001. Defining, Developing and Using
Curriculum Indicators. CPRE Research Reports, 12-2001.

Paige Prescott, Irene A. Lee, and Kersti Tyson. 2019. Teacher Beliefs in Student
Capabilities As a Mediating Factor in a Novel Understanding of Enactment of CT
Curriculum. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York, NY, USA, 1277-1277. https:
//doi.org/10.1145/3287324.3293841

Keith Quille and Susan Bergin. 2019. CS1 : how will they do ? How can we help
? A decade of research and practice research and practice. Computer Science
Education 29 (2019), 254-282. https://doi.org/10.1080/08993408.2019.1612679
Daisy W. Rutstein, Yuning Xu, Kevin McElhaney, and Marie Bienkowski. 2019.
Developing Implementation Measures for K-12 Computer Science Curriculum
Materials. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York, NY, USA, 321-327. https:
//doi.org/10.1145/3287324.3287424

Alan Schoenfield. 2011. How We Think. New York: Routledge. https://doi.org/10.
4324/9780203843000

Carsten Schulte, Malte Hornung, Sue Sentance, Valentina Dagiene, Tatjana
Jevsikova, Neena Thota, Anna Eckerdal, and Anne-Kathrin Peters. 2012. Com-
puter science at school/CS teacher education - Koli working-group report on
CS at school. In International Conference on Computing Education Research, Koli
Calling 2012. https://doi.org/10.1145/2401796.2401800

Deborah Seehorn, Stephen Carey, Brian Fuschetto, Irene Lee, Daniel Moix, Di-
anne O’Grady-Cunniff, Barbara Boucher Owens, Chris Stephenson, and Anita
Verno. 2011. CSTA K-12 Computer Science Standards, Computer Science Teachers
Association. ACM, New York.

Sue Sentance. 2019. Moving to mainstream: developing computing for all. In
Proceedings of the 14th Workshop in Primary and Secondary Computing Education
(WiPSCE ’19). ACM. https://doi.org/10.1145/3361721.3362117

Sue Sentance, Simon Humphreys, and Mark Dorling. 2014. The network of
teaching excellence in computer science and master teachers. In Proceedings of
the 9th Workshop in Primary and Secondary Computing Education. ACM, 80-88.
Robert H. Stupnisky, Allison BrckaLorenz, Bridget Yuhas, and Frédéric Guay.
2018. Faculty members’ motivation for teaching and best practices: Testing a
model based on self-determination theory across institution types. Contemporary
Educational Psychology 53 (2018), 15-26.

Maciej M. Systo and Anna Beata Kwiatkowska. 2015. Introducing a new computer
science curriculum for all school levels in Poland. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). https://doi.org/10.1007/978-3-319-25396-1{_}13

The Royal Society. 2012. Shut down or restart? The way forward for computing
in UK schools. Technical Report. London. https://royalsociety.org/~/media/
education/computing-in-schools/2012-01-12-computing-in-schools.pdf

The Royal Society. 2017. After the reboot: Computing education in UK schools.
Technical Report. The Royal Society, London, United Kingdom. 1-116 pages.
royalsociety.org/computing-education

David Thompson and Tim Bell. 2013. Adoption of New Computer Science High
School Standards by New Zealand Teachers. In Proceedings of the 8th Workshop
in Primary and Secondary Computing Education (WiPSE ’13). ACM, New York,
NY, USA, 87-90. https://doi.org/10.1145/2532748.2532759

David Thompson, Tim Bell, Peter Andreae, and Anthony Robins. 2013. The Role
of Teachers in Implementing Curriculum Changes. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 245-250. https://doi.org/10.1145/2445196.2445272

Maarten van Veen, Fred Mulder, and Karel Lemmen. 2004. What is Lacking
in Curriculum Schemes for Computing/Informatics?. In Proceedings of the 9th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITiCSE "04). ACM, New York, NY, USA, 186-190. https://doi.org/10.
1145/1007996.1008046

Rebecca Vivian and Katrina Falkner. 2018. A Survey of Australian Teachers’
Self-efficacy and Assessment Approaches for the K-12 Digital Technologies Cur-
riculum. In Proceedings of the 13th Workshop in Primary and Secondary Com-
puting Education (WiPSCE ’18). ACM, New York, NY, USA, Article 5, 10 pages.
https://doi.org/10.1145/3265757.3265762

Rebecca Vivian, Katrina Falkner, and Nickolas Falkner. 2014. Addressing the
challenges of a new digital technologies curriculum: MOOCs as a scalable solution
for teacher professional development. Research in Learning Technology 22 (Aug.
2014). https://doi.org/10.3402/rlt.v22.24691

David Weintrop. 2019. Block-based Programming in Computer Science Education.
Commun. ACM 62, 8 (July 2019), 22-25. https://doi.org/10.1145/3341221

David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and Diana Franklin.
2018. Starting from Scratch: Outcomes of Early Computer Science Learning
Experiences and Implications for What Comes Next. In Proceedings of the 2018
ACM Conference on International Computing Education Research (ICER ’18). ACM,
New York, NY, USA, 142-150. https://doi.org/10.1145/3230977.3230988

David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM Trans. Comput.
Educ. 18, 1, Article 3 (Oct. 2017), 25 pages. https://doi.org/10.1145/3089799

https://doi.org/10.1145/3304221.3325535
https://doi.org/10.1109/2.467599
https://doi.org/10.1109/2.467599
https://doi.org/10.3102/01623737019004325
http://arxiv.org/abs/https://doi.org/10.3102/01623737019004325
https://doi.org/10.1007/978-3-319-46747-4{_}12
https://doi.org/10.1145/2729983
https://doi.org/10.1145/2858796.2858799
https://doi.org/10.1145/2858796.2858799
https://doi.org/10.1145/2078856.2078859
https://doi.org/10.1145/3279720.3279749
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1177/0022466909341196
https://doi.org/10.1145/1734263.1734383
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1145/1839594.1839607
http://outlier.uchicago.edu/basics/resources/MeasuresTeacherImplementation/
http://outlier.uchicago.edu/basics/resources/MeasuresTeacherImplementation/
https://doi.org/10.1145/3287324.3293841
https://doi.org/10.1145/3287324.3293841
https://doi.org/10.1080/08993408.2019.1612679
https://doi.org/10.1145/3287324.3287424
https://doi.org/10.1145/3287324.3287424
https://doi.org/10.4324/9780203843000
https://doi.org/10.4324/9780203843000
https://doi.org/10.1145/2401796.2401800
https://doi.org/10.1145/3361721.3362117
https://doi.org/10.1007/978-3-319-25396-1{_}13
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
royalsociety.org/computing-education
https://doi.org/10.1145/2532748.2532759
https://doi.org/10.1145/2445196.2445272
https://doi.org/10.1145/1007996.1008046
https://doi.org/10.1145/1007996.1008046
https://doi.org/10.1145/3265757.3265762
https://doi.org/10.3402/rlt.v22.24691
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/3089799

	Abstract
	1 Introduction
	2 Literature
	2.1 K-12 CS Implementation
	2.2 Studies of CS Enacted Curriculum

	3 Research Questions
	4 Methods
	4.1 Country Report Instrument
	4.2 Teacher Survey Instrument
	4.3 Sample

	5 Intended Curriculum
	5.1 Country Demographics

	6 Enacted Curriculum
	6.1 Computer Science Topics
	6.2 Programming Languages

	7 Conclusions
	References

