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Abstract. Hedge fund companies typically deal with huge liquid multi-asset portfolios, 
and modelling the risk of these investments can be challenging. Furthermore, their 
susceptibility to global market crashes makes modelling their risk even more important. 
Fitting multivariate models to such portfolios can be challenging given their size, while 
modelling them univariately runs the risk of ignoring dependencies between the different 
assets. In this study, a three-stage method for measuring risk on a hedge fund portfolio 
with many assets is proposed. The first step is that of performing dimension reduction 
using dynamic principal component analysis which yields orthogonal components that can 
then be modeled separately avoiding the need to consider multivariate models. This is 
followed by volatility modelling and forecasting of the individual principal components 
using a Bayesian generalized autoregressive conditional heteroscedastic (GARCH) model 
with t-distributed innovations. This allows one to construct a posterior predictive 
distribution for the whole portfolio. Finally, from this posterior predictive distribution, 
direct estimation of the risk of the portfolio is obtained using value at risk and expected 
shortfall.  To determine the optimal balance between dimension reduction and accurate 
forecasts, this method is applied on 4, 11, and 36 dynamic principal components cut-off 
points determined by the elbow method and the total variation accounted for. Cross-
validation over 135 trading days of the different modelling approaches is performed using 
log pseudo-maximum likelihood as measure of predictive ability. In this case study, it is 
found that the model with 11 dynamic principal components yields the most accurate 
forecasts, while the model with 4 principal components yields the least favourable ones. 
Keywords: Dimension reduction, dynamic principal components analysis, Bayesian 
GARCH models, risk measures. 
 
1  Introduction 

 
Over the past few decades, regulations surrounding financial markets have gone 
through substantial changes to match the pace of technological advancements as 
well as globalization. Nowadays, a country’s stock market can no longer be 
considered to function independently since a crash in one country has the potential 
to cause a significant domino effect all around the world. The US subprime 
mortgage crash in 2008, and China’s ‘Black Monday’ crash in 2015 are just two 
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of the many examples of such global market chain reactions that for the financial 
industry have been eye openers to the importance of employing an effective 
model to measure risk. One of the most commonly used tools for measuring the 
potential losses incurred by financial services as a result of market risk is the 
Value at Risk (VaR). However, VaR is often criticized for its lack of subadditivity 
and for the fact that it fails to say anything about the tail-behaviour of the 
distribution of losses. To overcome these shortfalls, Artzner et al. [5] introduced 
the concept of coherent measures. The simplest and most popular coherent 
measure is the expected shortfall (ES), sometimes referred to as conditional VaR. 
Hedge fund companies typically deal with huge liquid multi-asset portfolios and 
modelling the risk of these investments can be challenging. Furthermore, their 
susceptibility to global market crashes makes modelling their risk even more 
important. Fitting multivariate models to such portfolios can be challenging given 
their size, while modelling them univariately runs the risk of ignoring 
dependencies between the different assets. Many authors have extended GARCH 
models to multivariate GARCH (MGARCH) models (see Tsay [18]).  When  
applied to multi-asset portfolios, given the large number of parameters,  the 
likelihood function becomes flat and its optimization becomes increasingly 
difficult (Orskaug [17]). These difficulties can be overcome using a Bayesian 
approach. An extensive overview of  several Bayesian MGARCH models is 
provided by Virbickaite et al. [19]. Galeano and Ausín [12] note that most of the 
proposed multivariate models aim at describing the correlation of several return 
series, with features such as leverage getting very little attention.  
 
Since the univariate GARCH model has been extensively adapted to account for 
many different phenomena, many analysts prefer to operate in the univariate 
space. For this reason, Alexander [1] introduced the orthogonal GARCH (O-
GARCH) model. The O-GARCH model makes use of principal component 
analysis (PCA) to reduce the dimensions of the dataset, and then the univariate 
GARCH model is implemented on each principal component (PC) individually. 
This method contains a clear drawback - when performing PCA on a time series, 
although the covariance matrix of the PCs will be diagonal, it has been shown that 
the PCs still display lagged cross correlations, and thus, treating them as 
independent is inaccurate (Hörmann et al. [16]). This problem can be 
circumvented by applying dynamic principal component analysis (DPCA) instead 
of PCA. Contrary to classical PCA, which operates in the time domain, DPCA 
operates in the frequency domain and obtains the PCs using spectral analysis. As 
a result, once the PCs are transformed back into the time domain using the inverse 
discrete Fourier transform, they are uncorrelated across all lags. It is important to 
acknowledge that like many other techniques, performing DPCA has some 
disadvantages; the main one being its complexity. Classical PCA and more 
specifically, the time domain, tends to be much more comprehensible than DPCA 
and the frequency domain, especially for those that may not have a mathematical 
background. It is likely the reason why DPCA is not as popular as its classical 
counterpart. In this study, a method for measuring risk on a hedge fund portfolio 
with many assets consisting of three main steps is proposed: (1) perform 
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dimension reduction using DPCA which yields orthogonal components that can 
then be modeled separately avoiding the need to consider multivariate models; 
(2) model and forecast volatility of the individual principal components using a 
Bayesian GARCH model with t-distributed innovations; (3) reconstruct a 
posterior predictive distribution for the whole portfolio. From this posterior 
predictive distribution in the third step, direct estimation of the risk of the 
portfolio can be obtained using value at risk (VaR) and expected shortfall (ES). 
Finally, a method that mimics the ideas of the popular method of cross-validation 
is applied to compare the predictive ability of fitted models. Apart from the results 
given in this paper, supplementary results and material is found in Bonello et al. 
[7]. 
  
2 Dynamic Principal Component Analysis 
 
DPCA is applied in the frequency domain rather than the time domain and hence 
considers the spectral representation of a time series. The spectral representation 
of a stationary process 𝑋  decomposes the process into a sum of sinusoidal 
components with uncorrelated random coefficients, see e.g. Brockwell and Davis 
[10]). In this text it is assumed that the reader is familiar with the basic concepts 
of the frequency domain. Let 𝐗 = 𝑋 , , 𝑋 , , … , 𝑋 , ′  denote a p-variate asset 
vector at time t belonging to a stationary multivariate time series with mean vector 
𝟎 and covariance matrix function 𝚸𝐗𝐗(∙). The function 𝑓 (𝜔) =

∑ 𝜌 (ℎ)𝑒 , − ≤ 𝜔 ≤  is called the cross spectrum or cross 

spectral density of the time series 𝑋 ,  and 𝑋 ,  where 𝑚, 𝑛 ∈ {1,2, … , 𝑝} and 𝑚 ≠

𝑛, and 𝜌 (ℎ) refers to the covariance between the series 𝑋 ,  and 𝑋 ,  at lag ℎ. 
The 𝑝 × 𝑝 matrix  

𝐅𝐗𝐗(𝜔) = 𝚸𝐗𝐗(ℎ)𝑒 =
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is the spectral density matrix of 𝐗  at frequency 𝜔. For a fixed frequency 𝜔, it is 
desired to find a complex-valued univariate process 𝑌 (𝜔) such that the univariate 
spectral density 𝑓 (𝜔) is maximized. In other words the aim of DPCA is to find 
complex vector 𝐜(𝜔) of unit length such that: 

max
𝐜( ) 𝟎

𝐜(𝜔) 𝐅𝐗𝐗(𝜔)𝐜(𝜔)                                        (1) 

where 𝑓 (𝜔) = 𝐜(𝜔) 𝐅𝐗𝐗(𝜔)𝐜(𝜔). Brillinger [8] can be viewed as the pioneer of 

DPCA . The method that he proposed makes use of discrete Fourier transform 
(DFT) to jump from the time domain to the frequency domain and the inverse 
DFT to transform a time series that is represented in the frequency domain into 
the time domain. Further detail can be found in Brillinger [9]. The following is a 

brief overview.  Let 𝜆 (𝜔), 𝐞 (𝜔) , … , 𝜆 (𝜔), 𝐞 (𝜔)  denote the 

eigenvalue-eigenvector pairs 𝐅𝐗𝐗(𝜔). Then, the solution to equation (1) is 
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choosing 𝐜(𝜔) = 𝐞 (𝜔), in which case 𝑌 (𝜔) = 𝐞 (𝜔) 𝐗  maximises the 
spectral density 𝑓 (𝜔) = 𝜆 (𝜔). The first PC series is then defined as 𝑌 , =

∑ 𝐞 , ′𝐗  where 𝐞 (𝜔) = ∑ 𝐞 , 𝑒 . This process can be 
repeated for 𝑘 series such that 𝑘 ≤ 𝑝, where the 𝑘  dynamic PC series is 
formulated as follows: 

𝑌 , = ∑ 𝐞 , ′𝐗                                     (2) 
and the coherency between 𝑌 ,  and 𝑌 ,  for 𝑖 ≠ 𝑞 is zero. In this way, 𝐘 =

(𝑌 , , … , 𝑌 , )′  has spectral density 𝐅𝒀𝐘(𝜔) = 𝑑𝑖𝑎𝑔 𝜆 (𝜔), … , 𝜆 (𝜔) .  

 
So far, DPCA has been reviewed in the context of a population. Next, a brief 
overview of the method for performing DPCA when dealing with observed data 
is provided. Given observations 𝐱 = 𝑥 , , … , 𝑥 , ′, equation (3) determines the 
empirical lagged covariances between 𝑥 ,  and 𝑥 , . More precisely, it determines 

𝜌𝒎𝒏(ℎ) for ℎ lags. For a sample of size 𝑣, set �̂� = ∑ 𝑥 ,  and �̂� =

∑ 𝑥 ,  such that 

𝜌 (ℎ) = ∑ 𝑥 , − �̂� 𝑥 , − �̂�                    (3) 

The spectral density 𝑓 is often estimated by a function of the form: 

𝑓 (𝜔) = ∑ 𝐾 𝜌 (ℎ)𝑒| |                       (4) 

where 𝜌(∙) is the sample autocovariance function, and 𝐾(𝑥) is a kernel smoother 
with window size 𝑞. By default, in the freqdom package in R which shall be used 
for DPCA ( Hörmann and Kidzinski [15]), 𝐾(𝑥) is the Bartlett kernel.This is 
calculated for all 𝑚, 𝑛 ∈ {1,2, … , 𝑝} and 𝑚 ≠ 𝑛, to estimate the 𝑝 × 𝑝 cross-

spectral matrix, 𝐅𝐗𝐗(𝜔). (4) is repeated for all 𝜔 = , 𝑗 = 1, … , 𝑛. Next, using 

singular value decomposition (SVD), one can retrieve the dynamic eigenvectors 
and eigenvalues of 𝐅𝐱𝐱(𝜔) for each 𝜔 . Denote the estimated dynamic 
eigenvectors as 𝛟 (𝜔), … , 𝛟 (𝜔). To obtain the linear filter, Hörmann et al. [16] 
use the Fourier inverse as follows: 

𝛟 , = ∫ 𝛟 (𝜔)𝑒 𝑑𝜔                                  (5) 

for |ℎ| < 𝑞 and 1 ≤ 𝑙 ≤ 𝑝. To reduce the dimensions, take 𝑘 < 𝑝  PCs. and 
calculate (5) for 1 ≤ 𝑙 ≤ 𝑘. In this way, 𝑘 vector-valued filters 𝛟 ,  of 
dimension 𝑝 × 1 are estimated for each ℎ, where −𝑞 ≤ ℎ ≤ 𝑞. Compute the 
estimated scores for each PC, 𝑌 , , … , 𝑌 , , using (2) with 𝑌 , =

∑ 𝛟 , ′𝐱 , 𝑘 = 1, … 𝑝. Finally, using these estimated scores the 
reconstruction of 𝐗  is performed using the dynamic Karhunen–Loève expansion: 

𝐗 = ∑ ∑ 𝑌 , 𝚽𝒍,                                  (6) 

Ultimately, the aim is to model the estimated 𝑌 , ’s using the Bayesian 
GARCH(1,1) model.  
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3  The Bayesian GARCH(1,1) Model  
 
Nowadays modelling and forecasting the volatility of the returns of a financial 
asset is crucial given that numerous asset-pricing models use volatility estimates 
to measure risk, and it is also known that financial time series are typically 
conditionally heteroscedastic in nature. In this section, the usefulness of the 
GARCH model in modelling portfolio risk shall be discussed. A detailed 
discussion is provided on how to infer the parameters of a GARCH(1,1) model 
with 𝑡-distributed innovations using Bayesian methods. Since the GARCH(1,1) 
model shall be used on the dynamic PCs, in the notation 𝑌  shall be used to denote 
the observed series. The classical 𝑡-distributed GARCH(1,1) model (Bollerslev, 
[16]) has the following formulation: 

where 𝑆(0,1, 𝑣) refers to a scaled Student 𝑡-distribution with mean zero, unit 
variance, and 𝑣 degrees of freedom. It is important to note that the standard 
Student 𝑡-distribution is not what is being used here, as that would have a variance 
of   which would skew the conditional variance. Ardia (2008) explains that the 

model described in  (7) has been shown to be problematic when considering 
Bayesian inference since it is hard to find proposal densities for the parameters 
when applying the Metropolis Hastings (MH) algorithm. To address this issue, 
Ardia and Hoogerheide [4] propose the following reparameterization: 

𝑌 = 𝑍
𝑣 − 2

𝑣
𝜔 𝜎 ; 𝑍 ~ 𝑁(0,1), 𝜔 ~ 𝐼𝐺

𝑣

2
,
𝑣

2
 

𝜎 = 𝛼 + 𝛼 𝜀 + 𝛽𝜎                                     (8) 
where 𝛼 > 0, 𝛼 , 𝛽 ≥ 0 and 𝑣 > 2; 𝑁(0,1) denotes the standard normal 

distribution and 𝐼𝐺 ,  denotes the inverted gamma distribution with shape and 

scale parameter equal to . A derivation of the equivalence of (7) and (8) can be 

found in Bonello et al. [7].  
 
To begin to make inferences, define the observed values as 𝐲 ∶= (𝑦 , … , 𝑦 ) , and 
the vectors of parameters to be estimated 𝛚 ≔ (𝜔 , … , 𝜔 )   and 𝛂 ≔ (𝛼 , 𝛼 )′. 
The parameters are then grouped such that 𝛉 ≔ (𝛂 , 𝛽, 𝑣)′. Ultimately, it is 
desired to estimate 𝛉 and 𝛚. In other words, one wishes to find the posterior 
density 𝑃(𝛉, 𝛚 | 𝐲): 

where the denominator is a marginal likelihood. The priors used are the following: 
𝑃(𝛂) ∝ 𝜙 (𝛂 | 𝛍𝛂, 𝚺 ), 𝛂 ∈ R+

2; 𝑃(𝛽) ∝ 𝜙 𝛽 | 𝜇 , Σ , 𝛽 ∈ R+; 𝑃(𝛚 | 𝑣) =

Γ (∏ 𝜔 ) 𝑒
∑

;  𝑃(𝑣) = 𝜆𝑒 ( ); 𝑣 > 𝛿 - see Ardia 

 𝑌 = 𝑍 𝜎 ; 𝑍  ~  𝑆(0,1, 𝜈)  
 𝜎 = 𝛼 + 𝛼 𝜀 + 𝛽 𝜎   (7) 

 𝑃(𝛉, 𝛚 | 𝒚) =
ℒ(𝛉, 𝛚 | 𝒚). 𝑃(𝛉, 𝛚)

∫ ℒ(𝛉, 𝛚 | 𝒚). 𝑃(𝛉, 𝛚) 𝑑𝛉 𝑑𝛚
 (9) 
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& Hoogerheide [4]. Here 𝜙  is the 𝑑-dimensional truncated normal density on 
R+

d, 𝛍𝛂, 𝜇 , 𝚺  and Σ
∙
 are hyperparameters, and 𝑃(𝑣) is a translated exponential 

distribution with parameters 𝜆 > 0 and 𝛿 ≥ 2. Finally, the joint prior 𝑃(𝛉, 𝛚) =
𝑃(𝛂). 𝑃(𝛽). 𝑃(𝛚 | 𝑣). 𝑃(𝑣) is obtained. The posterior in (9) is estimated 
empirically using a MCMC simulator with the MH algorithm. Note that, the 
MCMC sampler for this model was created by Ardia [3], and consists of an 
algorithm where the GARCH parameters are not updated in one single block. 
Rather, the GARCH parameters are updated in two separate blocks: one block for 
𝛂 and another block for 𝛽. Further details on the MCMC procedure can be found 
in Ardia [3]. In the next section, the extraction of orthogonal dynamic PC 
components and the use of Bayesian Student-t GARCH model is discussed. Each 
of these dynamic PC components are modelled univariately and independently.  
 
4 Modelling a Portfolio with Many Assets 
 
The dataset being used in this study is comprised of 106 assets that are traded in 
various European exchanges. The original dataset is based on a typical portfolio 
provided to the authors by a risk management professional in an unnamed 
financial services company, with the intent of designing a procedure for quick and 
accurate measurements of risk on portfolios with many assets. The daily adjusted 
closing prices of each asset were observed for 5 years, from 10/09/2015 to 
10/09/2020. All data has been downloaded using Yahoo Finance. The prices are 
represented by (𝐏 ). One of the issues encountered was that since these assets 
operate in different exchanges, the assets experienced inconsistent trading days, 
which led to the observations of different time series being asynchronous in time. 
To overcome this problem, the trading days of all exchanges were compared and 
only those which were common to all were considered. Another issue encountered 
was that the assets included in the portfolio are being traded in multiple different 
currencies (EUR, GBX, SEK, NOK, CHF and DKK). It was opted to standardize 
the currencies of all assets by converting the value of all assets to EUR using the 
relevant exchange rates at the time. DPCA was applied to (𝐗 ), the log returns of 
these assets. Fig. 1 displays a scree plot, which provides a summary of the 
proportion of variation explained by each component in the data. A rule of thumb 
is to analyze the scree plot and determine the point from which the variance 
explained seems to level off, known as the “elbow”. The components to the left 
of this point should then be retained. For the given dataset, this seems to happen 
at around the 4th PC. However, when taking 4 PCs, these are only accounting for 
54.66% of the total variation in the original dataset. Thus, apart from the results 
obtained when using 4 PCs, results for when retaining 11 and 36 PCs shall also 
be obtained, which explain a minimum of 70% and 90% of the total variation in 
the original dataset respectively (71.46% and 90.27%, to be precise) shall be 
obtained for comparison purposes. It would have been ideal to analyse models 
every k in terms of predictive ability but alas this would have resulted in a very 
computationally expensive exercise. Given 𝑘, the resulting output will be 𝑘 

independent univariate time series represented by 𝒀 = 𝑌 , , 𝑌 , , … , 𝑌 , , where 
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𝑌 ,  refers to the score of the 𝑖  dynamic PC at time 𝑡 for 𝑖 = 1, … , 𝑘. As a 
comparison, one must note that the first PC explains 38.21% of the total variation 
in 𝐗 , while the 36th PC explains only 0.40% of the total variation in 𝐗 . After 
performing DPCA, one can use the dynamic Karhunen–Loève expansion 
illustrated in equation (6) to recover an estimation of 𝐗  from 𝒀 . One can then 
transform the estimated log returns, 𝐗 , into the estimated prices, 𝐏 . 
 

 
Fig. 1. Scree plot (top) and the cumulative variance (bottom) to display the 

variance captured by each dynamic PC 

When using DPCA on time series data, the dynamic PC obtained after reducing 
the dimensions are uncorrelated over time. As a result, each dynamic PC can be 
treated as a univariate time series, allowing one to model the volatility 
independently. The Bayesian GARCH model is now implemented on all the first 
36 dynamic PCs, and results are presented for 𝑘 = 1,4,11 and 36. Two chains of 
length 30000 with a burn-in period of 25000 are run, using the average of the two 
chains to estimate the empirical probability density function of the parameters. 
The credibility intervals presented are the highest posterior density (HPD) 
intervals.  For diffuse priors on 𝛂 and 𝛽, we take 𝛍𝛂 = (0,0) , 𝜇 = 0,  𝚺 =

𝑑𝑖𝑎𝑔{1000,1000} and Σ = 1000∙ On the other hand, for 𝑃(𝑣) we take 𝜆 = 0.01 
and 𝛿 = 2. The parameter 𝛼  is an intercept term which assures that the volatility 
is never equal to zero.  
 
In Table 1, one can discern that for larger 𝑘, the mean of 𝛼  shifts closer to 0. 
This is expected, as for larger 𝑘, 𝑌 ,  accounts for less and less of the total variation 
in the data. The role of 𝛼 , on the other hand, is to approximate the degree to 
which the conditional volatility reacts to market shocks. According to Alexander 
[2] (see Section III.4.5.6), when 𝛼  is around 0.1 or larger, then the volatility is 
said to be sensitive to market events. In Table 1 it can be seen that at least until 
the 11th PC, the mean for 𝛼  has a HPD interval which is greater than 0.1, 
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indicating that the earlier PCs are rather sensitive to market events. However, it 
can be seen that for 𝑘 = 36, the density of 𝛼  shifts closer to zero, indicating that 
for larger 𝑘, dynamic PCs lose their sensitivity. In fact, from the 31st PC onwards, 
(see Bonello et al. [7]) the HPD interval for 𝛼  lies completely below 0.1. Similar 
to the previous discussion, since the later PCs explain less of the total variation in 
the data, the variation due to market events becomes miniscule. In fact, for 
dimension reduction purposes, one hopes that such important variation is fully 
explained by a small number of the earlier PCs. 𝛽 represents the degree to which 
the volatility of the last period affects the next period’s volatility. As can be seen 
from Table 1, the HPD intervals for 𝑘 =  4 and 𝑘 =  11  are similar, with 
relatively high numbers. Interestingly, the HPD intervals for 𝛽 have similar 
ranges up until the 21st PC. The parameter 𝜈 is responsible for the heavy tails of 
the distribution and is a crucial component in accounting for the leptokurtosis that 
is present in financial data. In the model, the role of the degrees of freedom 
parameter 𝜈 is to magnify the effect of the conditional variance. In Table 1, it can 
be seen that for larger 𝑘, the HPD intervals become elongated and the 
corresponding empirical probability density function indicates more dispersion. 
For further inspection, trace plots and EPDF plots for these parameters can be 
found in Bonello et al. [7]. From the higher order PCs, it was found that the chains 
for 𝛽 do not converge, and so the resulting EPDF plot is not accurate. The chains 
also indicate instability for higher order PCs when it comes to 𝜈.  
  
Table 1. Mean, standard deviation, and HPD interval for the 5,000 realisations 

generated from the posterior distribution of 𝛼 , 𝛼 , 𝛽 and 𝜈 for the PCs 𝑌 , , 𝑌 , , 
and 𝑌 , . Full results for all PCs can be found in Bonello et al. [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4th PC 11th PC 36th PC 
Mean (𝛼 ) 15.87 × 10  6.73 × 10  6.67 × 10  

Standard Deviation 
(𝛼 ) 

4.11 × 10  2.22 × 10  1.80 × 10  

95% HPD L.B. (𝛼 ) 8.46 × 10  2.98 × 10  3.07 × 10  

95% HBD U.B. (𝛼 ) 23.68 × 10  
11.06
× 10  

9.60 × 10  

Mean (𝛼 ) 0.1605 0.1286 0.0327 
Standard Deviation 

(𝛼 ) 
0.0279 0.0287 0.0254 

95% HPD L.B. (𝛼 ) 0.1132 0.0777 1.07 × 10  
95% HPD U.B. (𝛼 ) 0.2210 0.1878 0.0819 

Mean (𝛽) 0.7578 0.7654 0.2671 
Standard Deviation (𝛽) 0.0382 0.0541 0.1834 

95% HPD L.B. (𝛽) 0.6834 0.6598 0.0002 
95% HPD U.B. (𝛽) 0.8271 0.8579 0.6174 

Mean (𝜈) 10.9650 24.2921 23.1302 
Standard Deviation (𝜈) 2.8084 23.4420 17.8266 

95% HPD L.B. (𝜈) 6.5518 6.6321 6.8372 
95% HPD U.P. (𝜈) 16.7609 76.1065 61.0999 
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Now that an MCMC sample for each parameter has been generated, it is possible 
to move on to constructing forecasts for the given portfolio. First, however, the 
theoretical framework for these forecasts is first provided in Section 5. 
 
5 Forecasting and Risk Estimation 
 
In this section, the procedure for obtaining forecasts for each PC is introduced, 
which are then transformed into forecasts for log returns of each asset. Finally, 
these are converted to asset prices and ultimately, the value of the portfolio. One 
can then apply the ‘direct’ approach on these forecasts to estimate VaR and ES. 

Consider 𝐺 estimated MCMC realizations. Then for each 𝛼( ), 𝛼
( ), 𝛽( ), and 

𝜈( ), one can obtain the following forecasts for the dynamic PCs: 𝑌 ,
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 for 𝑔 = 1, 2, … , 𝐺 and 𝑚 =

1, 2, … , 𝑀, where 𝑌 ,
( )

≡ 𝑌 , . Furthermore, from 𝑌 ,
( ) , the forecasts 

𝑋 ,
( )

, 𝑚 = 1, … , 𝑀 of the log returns of the original assets are retrieved for a 
specified number of dynamic PCs using the Karhunen–Loève expansion in (6). 

Consequently, from these, the forecasts of the prices 𝑃 ,
( )

, 𝑚 = 1, … , 𝑀 are 
easily recovered. Finally, one can obtain forecasts for the value of the portfolio 
by assigning the relevant weightings, 𝜏 , … , 𝜏 , to each asset:  
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for 𝑚 = 1, … , 𝑀. . The simulated sample of size 𝐺 of the given portfolio’s value 

at time 𝑇 + 𝑚 are combined into a vector i.e. 𝐕 ≔ 𝑉
( )

, 𝑉
( )

, … , 𝑉
( )

′ 
for 𝑚 = 1, … , 𝑀, with which one can calculate the 𝑚-step ahead Bayesian 
estimation of VaR and ES. The direct approach in Hoogerheide and van Dijk [14] 
is used. This approach involves obtaining the forecasted loss at time 𝑇 + 𝑚. In 

order to do this one may simply calculate 𝐿( )
= 𝑉

( )
− 𝑉  for all 𝑔 = 1, … 𝐺. 

Thus, at confidence level 𝛼 ∈ (0,1), the 𝑚-step ahead estimate for the VaR of the 
given portfolio will be obtained through the sample 𝛼-quantile 𝑞  obtained from 
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, … , 𝐿
( ) :  𝑉𝑎𝑅 (𝐋 ) = −𝑞 𝐋 . The 𝑚-step 

ahead estimate for the ES of the given portfolio will be obtained as follows: 
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The implementation of the forecast of the value of the portfolio for 𝑘 = 4, 𝑘 = 11 
and 𝑘 = 36 shall now be seen. Consequently, the value at risk and expected 
shortfall for different time horizons is estimated. Due to space limitations, the 

forecasts of 𝜎 ,

( )
 and 𝑃 ,

( )  shall not be displayed neither here nor on 
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Bonello et al. [7], but can be requested to the authors if needed. The typical 
portfolio weightings which were provided to the authors by a hedge fund 
company also included the number of units to invest into each asset, and these 
can also be accessed in the same link. These weightings are a combination of buy 
and short positions. A short position means that one is borrowing the asset from 
a financial institution such that a fall in the price of the asset which one has shorted 
will increase the value of the given portfolio. In total, on 10/09/2015, -
€111,992,327 have been invested in this portfolio. To gain some insight on the 
portfolio, the reader is referred to Fig. 2 which portrays how the value of the 
portfolio varied over the 5 years. Note that a huge spike was experienced in the 
value during the beginning of 2016, which is a direct result of the fluctuations of 
one particular asset which has a very large weighting in the given portfolio, 
namely SPMR.MI in which a short position of -750,003 units is held, however it 
is relatively stable otherwise. 

 
Fig. 2. The value of the given portfolio over the past 5 years. 

Table 2. Mean, standard deviation, and HPD interval for the 5,000 realisations 
of the 1 and 5 step ahead value of the given portfolio when taking 𝑘 = 4, 𝑘 =

11 and 𝑘 = 36 dynamic PCs. 

Table 2 displays the descriptive statistics for the distributions of 𝐕  and 
𝐕 , respectively. EPDF plots for 𝑉  for 𝑚 = 1, … ,5 when taking 𝑘 =
4, 𝑘 = 11 and 𝑘 = 36 are provided in Bonello et al. [7]. Furthermore, as one takes 
more PCs, more variation in the dataset is being accounted for. As a result, the 
standard deviation of the forecasted portfolio value increases with the number of 

𝐕  𝑘 = 4 𝑘 = 11 𝑘 = 36 
Mean −30,598,530 −30,598,530 −30,598,530 

Standard 
Deviation 

87,127.01 142,472.90 226,486.40 

95% HPD L.B. −30,766,041 −30,670,470 −30,744,850 
95% HPD U.B. −30,425,646 −30,112,297 −29,866,495 

𝐕  𝑘 = 4 𝑘 = 11 𝑘 = 36 
Mean −30,826,255 −30,459,983 −30,320,170 

Standard 
Deviation 

321,099 473,519 609,058 

95% HPD L.B. −31,491,554 −31,356,762 −31,498,444 
95% HPD U.B. −30,222,764 −29,515,981 −29,141,408 
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PCs, capturing the true variation of the portfolio. Finally, in Table 3, measures of 
risk at different time horizons are estimated. To do this, the losses/gains 
experienced for each MCMC realization when compared to 𝑉  are extracted, 
and 𝑉𝑎𝑅 (𝐋 ) and  𝐸𝑆 (𝐋 ) are extracted. When analysing Table 3, a clear 
discrepancy between the estimations using different 𝑘’s is noticed, however this 
is not surprising. Models with a higher number of dynamic PCs account for more 
variation of the original portfolio, which consequently increases VaR and ES. 
 

Table 3. Estimated 1-, 5-, 10-, 50-, and 100-day ahead 𝑉𝑎𝑅 .  and ES when 
taking 𝑘 = 4, 𝑘 = 11 and 𝑘 = 36 dynamic PCs. The percentages reflect the 

estimated fluctuations from the last observed value of the portfolio, i.e. 𝑉 . 

In the following section, the different models shall be put to the test by comparing 
them with actual future values, and checking the performance between difference 
number of dynamic PCs. 
 
6 Measuring Predictive Ability 
 
Since the main aim of the analysis here is to find a model that can adequately 
predict future risk one needs to evaluate the predictive ability of the Bayesian 
models fitted. This was done by applying a method which mimics the idea of 
cross-validation methods popularly applied in non-time series statistical models. 
Recall from the previous section that we have fitted the different models on a 
portfolio whose assets were observed between 10/09/2015 to 10/09/2020 we shall 
refer to these series as the training set. As the validation set, the observations 
between 11/09/2020 to 04/05/2021 shall be taken, where all assets in the portfolio 
were simultaneously observed for a total of 135 days. The models for  𝑘 = 4, 𝑘 =
11 and 𝑘 = 36 shall be forward-tested and compared. The models fitted are used 

 No. of PCs Estimated 𝑉𝑎𝑅 .  Estimated ES 

one-day 
ahead 

4 −4.64% −4.79% 
11 −5.65% −5.91% 
36 −6.62% −7.03% 

five-day 
ahead 

4 −5.31% −5.85% 
11 −7.55% −8.26% 
36 −9.30% −10.31% 

10-day 
ahead 

4 −6.01% −6.85% 
11 −9.49% −10.71% 
36 −11.45% −13.08% 

50-day 
ahead 

4 −10.44% −12.48% 
11 −16.31% −19.37% 
36 −21.97% −25.93% 

100-day 
ahead 

4 −13.26% −16.06% 
11 −21.11% −25.06% 
36 −28.37% −33.65% 
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to obtain simulated paths, denoted by 𝕍 = 𝐕 , … , 𝐕 , and these are 
compared to the actual values making up the validation set, denoted by 𝐕 =
{𝑉 , … , 𝑉 }. Fig. 6 displays 𝕍 and 𝐕 for all models. 

 
Fig. 6. The red, blue and green coloured paths represent the 5000 simulated 

paths forecasted till 04/05/2021 when taking 𝑘 = 4, 𝑘 = 11 and 𝑘 = 36 
dynamic PCs. The black path represents the true value of the given portfolio 

from 10/09/2020 to 04/05/2021 

Table 4. Displaying the log PsML for the model when taking taking 𝑘 = 4, 𝑘 =
11 and 𝑘 = 36 dynamic PCs. 

Using the terminology given in Gelfand et al. [13], the posterior probability of 
observing 𝑉  is referred to as the conditional predictive ordinate (CPO). One 
can denote the CPO as 𝑝 𝑉 𝐕  for 𝑚 = 1, … ,135. Higher CPO 
values are an indication of a better predictive ability. To measure the predictive 
ability of the entire model, Congdon [11] suggests to look at the product of the 
CPOs �̂�(𝐕) = ∏ 𝑝 𝑉 |𝐕 . This is referred to as the 
pseudomarginal likelihood (PsML). It may sometimes be easier to calculate the 
log PsML, given by log �̂�(𝐕) = ∑ log 𝑝 𝑉 |𝐕  where the larger 
the log PsML, the better the predictive ability. By comparing the spread of the 
paths when taking different PCs in Fig. 6, it is observed that the more PCs one 

 4 PCs 11 PCs 36 PCs 
log PsML -2338.27 -2210.67 -2213.38 
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takes, the more conservative the model becomes, with the paths taking on a larger 
spread. As a result, during stable market conditions, one should expect a lower 
PC model to still perform well. Table 4 displays the log PsML for the different 
models. Since the log PsML is lowest when 4 PCs are taken, one may conclude 
that it has the worst predictive ability. The fact that the 4 PC model performed the 
worst on the validation set (not used in the model fit) even though the value of 
the portfolio did not experience any extreme variation allows one to conclude that 
not enough variation of the original dataset is being accounted for when taking 
few PCs. Interestingly, the 11 PC model slightly outperforms the 36 PC model, 
when compared to the true observations. While this may simply be due to the fact 
that the 135 observation validation set does not represent any unstable market 
conditions, it is a possibility that the additional PCs did not represent a significant 
source of variation and may have therefore caused only a slight detrimental effect 
to the model. However, it must also be noted that the difference between log 
PsML when 𝑘 = 11 and log PsML when 𝑘 = 36 is marginal, compared to the 
considerably inferior log PsML when 𝑘 = 4 case. Of course, this result is valid 
only for this particular validation set, and considering different time periods and 
different portfolios may yield different outcomes. However, it is encouraging that 
one may still get higher predictive ability with a much-reduced dimension.  
 
7 Conclusion 
 
In this study, a Bayesian approach to measuring risk on portfolios with many 
assets is taken. The idea behind this study is that of going for a dimension 
reduction approach whereby the orthogonal series can be modelled 
independently, rather than deal with the dependency dynamics of multivariate 
approaches which can become unwieldy when dealing with a large number of 
assets. Inevitably, however, when dealing with a model in reduced dimension, 
some of the variation of the original portfolio may be lost. We have seen that this 
may not necessarily lead to an inferior model – indeed, it was found that for the 
validation dataset, the best predictive ability was that of the model considering 11 
dynamic PCs. The model considering 36 dynamics PCs, on the other hand, was 
only marginally inferior. Furthermore, the MCMC algorithm was found to be less 
stable when modelling dynamic PCs of a higher order, though this was not 
expected to have a major impact on the results, as higher order PCs account for a 
very small proportion of the variation. Further research within this direction that 
can be undertaken is to consider Bayesian models (of GARCH type or otherwise) 
which take into account asymmetry in the distribution when it comes to positive 
and negative shocks, as the Bayesian GARCH(1,1) does not, and to look into 
whether the above methodology of modelling many assets can be extended to the 
portfolio optimization problem. 
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