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Abstract

In this paper, we first establish the very close link between stability
of graphs, a concept first introduced in [7] and studied most notably by
Surowski [10], [11] and Wilson [12] and two-fold automorphisms. The
concept of two-fold isomorphisms, as far as we know, first appeared in
literature in the form of isotopies of digraphs [13], [14], [15], [16] and
later studied formally in [3], [4] with a greater emphasis on undirected
graphs. We then turn our attention to the stability of graphs which
have every edge on a triangle, but with the fresh outlook provided by
TF-automorphisms. Amongst such graphs are strongly regular graphs
with certain parameters. The advantages of this fresh outlook are
highlighted when we ultimately present a method of constructing and
generating unstable graphs with large diameter having every edge lying
on a triangle. This was a rather surprising outcome.
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1 General Introduction and Notation

Let G and H be simple graphs, that is, undirected and without loops or mul-
tiple edges. Consider the edge {u, v} to be the set of arcs {(u, v), (v, u)}. A
two-fold isomorphism or TF-isomorphism from G to H is a pair of bijections
α, β: V(G) → V(H) such that (u, v) is an arc of G if and only if it is an
arc of H. When such a pair of bijections exist, we say that G and H are
TF-isomorphic and the TF-isomorphism is denoted by (α, β). The inverse of
(α, β), that is, (α−1, β−1) is a TF-isomorphism from H to G. Furthermore,
if (α1, β1) and (α2, β2) are both TF-isomorphisms from G to H then so is
(α1α2, β1β2). When α = β, the TF-isomorphism can be identified with the
isomorphism α.
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Figure 1: G and H are two non-isomorphic TF-isomorphic graphs.

The two graphs G, H in Figure 1, which have the same vertex set V(G) =
V(H), are non-isomorphic and yet they are TF-isomorphic. In fact (α, β)
where α = (2 5)(1 4)(3 6)(7) and β = (1 4)(3 6) is a TF-isomorphism from
G to H.

Some graph properties are preserved by a TF-isomorphism. Such is the
case with the degree sequence, as illustrated by Figure 1. We also know
that two graphs are TF-isomorphic if and only if that they have isomorphic
canonical double covers [3]. Alternating paths or Z-trails, which we shall
define in full below, are invariant under TF-isomorphism. For instance, the
alternating path 5 −→ 6 ←− 1 −→ 2 in G is mapped by (α, β) to the
similarly alternating path 2 −→ 3 ←− 1 −→ 2 which we shall later be
calling ”semi-closed”.

2 Notation

A mixed graph is a pair G = (V(G),A(G)) where V(G) is a set and A(G)
is a set of ordered pairs of elements of V(G). The elements of V(G) are
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called vertices and the elements of A(G) are called arcs. When referring to
an arc (u, v), we say that u is adjacent to v and v is adjacent from u. The
ordered pair (u, v) will often be denoted by uv. Sometimes we use u −→G v
or simply u −→ v to represent an arc (u, v) ∈ A(G). The vertex u is the
start-vertex and v is the end-vertex of a given arc (u, v). An arc of the form
(u, u), or equivalently uu is called a loop. A mixed graph cannot contain
multiple arcs, that is, it cannot contain the arc (u, v) more than once. A
mixed graph G is called bipartite if there is a partition of V(G) into two
sets X and Y , which we call colour classes, such that for each arc uv of
G the set {u, v} intersects both X and Y . A set S of arcs is self-paired if,
whenever (u, v) ∈ S, (v, u) is also in S. If S = {(u, v), (v, u)}, then we con-
sider S to be the unordered pair {u, v}; this unordered pair is called an edge.

It is useful to consider two special cases of mixed graphs. A graph is
a mixed graph without loops whose arc-set is self-paired. The edge set of
a graph is denoted by E(G). A digraph is a mixed graph with no loops in
which no set of arcs is self-paired. The inverse G′ of a mixed graph G is
obtained from G by reversing all its arcs, that is V(G′) =V(G) and (v, u) is
an arc of G′ if and only if (u, v) is an arc of G. A digraph G may therefore be
characterised as a mixed graph for which A(G) and A(G′) are disjoint. Given
a mixed graph G and a vertex v ∈ V(G), we define the in-neighbourhood
Nin(v) by Nin(v) = {x ∈ V(G)|(x, v) ∈ A(G)}. Similarly we define the
out-neighbourhood Nout(v) by Nout(v) = {x ∈ V(G)|(v, x) ∈ A(G)}. The in-
degree ρin(v) of a vertex v is defined by ρin(v) = |Nin(v)| and the out-degree
ρout(v) of a vertex v is defined by ρout(v) = |Nout(v)|. When G is a graph,
these notions reduce to the usual neighbourhood N(v) = Nin(v) = Nout(v)
and degree ρ(v) = ρin(v) = ρout(v).

Let G be a graph and let v ∈ V(G). Let N(v) be the neighbourhood of
v. We say that G is vertex-determining if N(x) 6= N(y) for any two distinct
vertices x and y of G [7].

A set P of arcs is called an alternating trail or Z-trail if its elements
can be ordered in a sequence a1, a2, · · · , ak such that if ai = (u, v) or
ai+1 = (u,w), w 6= v or ai+1 = (w, v), w 6= u. Note that in a Z-trail
vertices may be repeated but arcs may not. If a1 = (p, q) and ak = (r, s)
we then say that the Z-trail joins p and s. A Z-trail can be open (when the
first and last vertex are different), semi-closed (when the first arc is uv and
the last arc is wu) or closed (when the first arc is uv and the last arc is
uw or the first arc is vu and the last arc is wu). Note that the ordering of
arcs described in the definition is not unique, but it is basically unique for
open and semi-closed Z-trails (one just chooses the beginning or the end),
while for closed Z-trails all vertices can be taken as the first vertex. Whether
a Z-trail is open, semi-closed or closed is determined by the first and last
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vertices. Open trails can have any number of arcs, semi-closed trails have
an odd number of arcs and closed trails have an even number of arcs.

Any other graph theoretical terms which we use are standard and can
be found in any graph theory textbook such as [1]. For information on au-
tomorphism groups, the reader is referred to [6].

Let G and H be two mixed graphs and suppose that α, β are bijections
from V(G) to V(H). The pair (α, β) is said to be a two-fold isomorphism
(or TF-isomorphism) if the following holds: (u, v) is an arc of G if and
only if (α(u), β(v)) is an arc of H. We then say that G and H are TF-
isomorphic and write G ∼=TF H. Note that when α = β the pair (α, β) is
a TF-isomorphism if and only if α itself is an isomorphism. If α 6= β, then
the given TF-isomophism (α, β) is essentially different from a usual isomor-
phism and hence we call (α, β) a non-trivial TF-isomorphism. If (α, β) is
a non-trivial TF-isomorphism from a mixed graph G to a mixed graph H,
the bijections α and β need not necessarily be isomorphisms from G to H.
This is illustrated by the graphs in Figure 1, examples found in [4], and also
others presented below.

When G = H, (α, β) is said to be a TF-automorphism and it is again
called non-trivial if α 6= β. The set of all TF-automorphisms of G with
multiplication defined by (α, β)(γ, δ) = (αγ, βδ) is a subgroup of SV (G) ×
SV (G) and it is called the two-fold automorphism group of G and is denoted
by AutTFG. Note that if we identify an automorphism α with the TF-
automorphism (α,α), then Aut(G) ⊆ AutTFG. When a graph has no non-
trivial TF-automorphisms, Aut(G) =AutTFG. It is possible for an asym-
metric graph G, that is a graph with |Aut(G)| = 1, to have non-trivial
TF-automorphisms. This was one of our main results in [4].

The main theme of this paper is stability of graphs, an idea introduced
by Marušič et al. [7] and studied extensively by others, most notably by
Wilson [12] and Surowski [10], [11]. Let G be a graph and let B(G) be its
canonical double cover or duplex. This means that V(B(G)) = V(G) × Z2

and if {(u, 0), (v, 1)} and {(u, 1), (v, 0)} are edges ofB(G) if and only if {u, v}
is an edge of G. One may think of the second entry in the notation used
for vertices of B(G), that is 0 or 1 as colours. Recall that the graph B(G)
is bipartite and we may denote its colour classes by V0 = V ×{0} and V1 =
V ×{1} containing vertices of the type (u, 0) and (u, 1) respectively. A graph
is said to be unstable if Aut(G)×Z2 is a proper subgroup of Aut B(G). The
elements of AutB(G) \ Aut(G)×Z2 will be called unexpected automorphisms
of B(G). In other words, a graph G is unstable if at least one element of
Aut B(G) is not a lifting of some element of Aut G. In this paper, we
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shall investigate the relationship between the stability of the graph G and
its two-fold automorphism group AutTFG.

3 Unstable Graphs and TF-automorphisms

Consider Aut B(G). Let Σ be the set-wise stabiliser of V0 in Aut B(G),
which of course coincides with the set-wise stabiliser of V1. Note that every
σ ∈ Σ also fixes V1 set-wise. We will show that it is the structure of Σ which
essentially determines whether B(G) has unexpected automorphisms which
cannot be lifted from automorphisms of G. The following result, which is
based on the first result in [8], Lemma 2.1 implies that these unexpected
automorphisms of B(G) arise if the action of σ on V0 is not mirrored by its
action of V1.

Lemma 3.1. Let f : Σ → Sym(V ) × Sym(V ) be defined by f : σ 7→ (α, β)
where α is such that (α(v), 0) = σ(v, 0) and (β(v), 1) = σ(v, 1), that is α, β
extract from σ its action on V0 and V1 respectively. Then:

1. f is a group homomorphism;

2. f is injective and therefore f : Σ→ f(Σ) is a group automorphism;

3. f(Σ) = {(α, β) ∈ Sym(V ) × Sym(V ) : x is adjacent to y in G if and
only if α(x) is adjacent to β(y) in G} that is, f(Σ)= AutTFG, that is,
(α, β) (the ordered pair of separate actions of σ on the two classes) is
a TF-automorphism of G.

Proof. The fact that f is a group homomorphism, that is, that f is a
structure preserving map from Σ to Sym(V )× Sym(V ) follows immediately
from the definition since for any σ1, σ2 ∈ Σ where f(σ1) = (α1, β1) and
f(σ2) = (α2, β2), f(σ1)f(σ2) = (α1β1)(α2β2) = (α1α2, β1β2) = f(σ1σ2).
This map is clearly injective and therefore f : Σ → f(Σ) is a group auto-
morphism.

Consider an arc ((u, 0), (v, 1)) and then note that since σ ∈ Σ ⊆ Aut B(G),
(σ(u), 0), (σ(v), 1)) is also an arc of B(G). By definition, this arc may be
denoted by (α(u), 0), β(v), 1) and, following the definition of B(G), it exists
if and only if (α(u), β(v)) is an arc of G. Hence f maps elements of Σ to
(α, β) which clearly take arcs of G to arcs of G. This implies that (α, β) is
a TF-automorphism of G and hence f(Σ) =AutTFG. �

As shown in [4], Proposition 3.1, if (α, β) ∈ AutTFG then (γ, γ−1) ∈
AutTFG where γ = αβ−1). This means that for any edge {x, y} of G,
{γ(x), γ−1(y)} is also an edge. A permutation γ of V (G) with this property
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is called an anti-automorphism. Such maps possess intriguing applications
to the study of cancellation of graphs in direct products with arbitrary
bipartite graphs, that is, the characterisation of those graphs G for which
G × C ≃ H × C implies G ≃ H, whenever C is a bipartite graph (see
[2] Chapter 9). The second part of Theorem 3.2 could be rephrased as
follows: “G is unstable if and only if it has an anti-automorphism of order
different from 2”. Note that the existence of an anti-automorphisms of order
2 does not imply instability since such a map corresponds to a trivial TF-
automorphisms.

Theorem 3.2. Let G be a graph. Then Aut B(G) = AutTFG ⋊ Z2. Fur-
thermore, G is unstable if and only if it has a non-trivial TF-automorphism.

Proof. From Lemma 3.1, f(Σ) = AutTFG which must have index 2 in
Aut B(G). The permutation δ(v, ε) 7→ (v, ε + 1) is an automorphism of
B(G) and δ 6∈ f(Σ). Then AutB(G) is generated by f(Σ) and δ. Further-
more, f(Σ) ∩ 〈δ〉 = id and f(Σ)⊳Aut B(G) being of index 2.

Since Aut B(G) = AutTFG ⋊ Z2, G is stable if and only if AutTFG =
Aut G. �

Figure 2: A stable and unstable graph which are TF-isomorphic.

It is natural to ask whether it can happen that a stable graph is TF-
isomorphic to an unstable one. The answer is yes and an example is shown
in Figure 2 with the Petersen graph being stable and the other graph which
is TF-isomorphic to it being unstable. Both graphs have the same bipartite
canonical double cover since they are TF-isomorphic. The reader may refer
to [9] to learn more about graphs having the same canonical double cover.
We should point out here (as noted by Surowski in [10]) that if a graph G is
stable, that is, AutB(G) = AutG ⋊ Z2, then the semi-direct product must
be a direct product because AutG is normal in AutB(G) since it has index
2 and also Z2 is normal since its generator commutes with every element
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of AutB(G), by stability. In fact, as Surowski comments, the stability of
G is equivalent to the centrality of Z2 in AutB(G), which is the lift of the
identity in AutG.

a

b

c

d

e

(a,0) (a,1)

(b,0) (b,1)

(c,0) (c,1)

(d,0) (d,1)

(e,0) (e,1)

G

B(G)

Figure 3: An example used to show how a TF-automorphism (α, β) of G
can be obtained from an automorphism σ of B(G).

It is worth noting that the ideas explored in the proof of Lemma 3.1 may
be used to extract TF-automorphisms of a graph G from automorphisms
of B(G) which fix the colour classes. In fact, let σ be such an automor-
phism. Define the permutations α and β of V(G) as follows: α(x) = y if
and only if σ(x, 0) = (y, 0) and β(x) = y if and only if σ(x, 1) = (y, 1).
Then (α, β) is a TF-automorphism of G. We remark that α and β are
not necessarily automorphisms of G as we shall show in the example shown
in Figure 3. The automorphism σ is chosen so that it fixes one compo-
nent of B(G) whilst being an automorphism of the other component. In
order to have a more concise representation, we denote vertices of B(G)
of the form (u, 0), that is, elements of the colour class V0 by u0 and sim-
ilarly denote vertices of the form (u, 1) in V1 by u1. Using this notation,
σ = (a0)(b1)(c0)(d1)(e)(a1 e1)(b0 d0)(c1). The permutations α and β of G
are extracted from σ as described in the proof of Lemma 3.1. For instance,
to obtain α, we restrict the action of σ to the elements of V0, that is, those
vertices of the form (v, 0) or v0 when using the new notation and then drop
the subscript. Similarly, the permutation β is obtained from the action of
σ restricted to V1. Therefore, α = (a)(c)(e)(b d) and β = (b)(d)(a e)(c).
Note that neither α nor β is an automorphism of G, but (α, β) is a TF-
automorphism of G which in turn can be lifted to the unexpected automor-
phism σ of B(G). This example illustrates Lemma 3.1 since the graph G is
unstable and has a non-trivial TF-automorphism.
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The result of Lemma 3.1 and the subsequent example lead us to other
questions regarding the nature of the permutations α and β which, as dis-
cussed in the preceding example given in Figure 3, may not be automor-
phisms of G.

If (α, id) is a non-trivial TF-automorphism of a graph G, then G is not
vertex-determining. In fact, since α 6= id then α(u) = v for some u 6= v
and the TF-automorphism (α, id) fixes the neighbours of u and takes u to v.
Hence u and v must have the same neighbourhood set, which implies that
G is not vertex-determining.

We shall use this idea to prove some results below. An alternative way
of looking at this is to consider Lemma 3.1 and to note that a graph G is
stable if and only if given σ(v, 0) = (α(v), 0), there exists no β 6= α such
that (β(v), 1)) = σ(v, 0). Hence, as implied by Theorem 3.2 a graph G is
stable if and only if f(Σ) ⊆ ∆V where ∆V is the diagonal group of (α, β),
α, β automorphisms of G, with α = β.

Proposition 3.3. If (α, β) is a non-trivial TF-automorphism of a graph G
but α and β are automorphisms of G, then G is not vertex-determining.

Proof. Since α is an automorphism of G, then (α, β) is a TF-automorphism,
so the group AutTFG must also contain (α, β)(α−1, α−1) = (id, βα−1). Since
αβ−1 6= id, let u be a vertex such that v = αβ−1(u) is different from u. Then
for each neighbour w of u the arc (w, u) is taken to the arc (w, v), so that
N(u) is contained in N(v) and vice versa. Therefore u and v have the same
neighbourhood, so G is not vertex-determining. �

Proposition 3.4. If (α, β) is a non-trivial TF-automorphism of a graph G
and α, β have a different order, then G is not vertex-determining.

Proof. Let (α, β) be an element of AutTFG with the orders of α and β being
p and q respectively and assume without loss of generality that p < q. Since
AutTFG is a group, (α, β)p = (αp, βp) = (id, βp) must also be in AutTFG.
The same argument used in the proof of Proposition 3.3 holds since βp 6= id.
Hence G is not vertex-determining. �

Proposition 3.3 and Proposition 3.4 are equivalent to their counterparts
in [7] in which they are stated in terms of adjacency matrices. In [7], it is
shown that if a graph G is unstable but vertex-determining and (α, β) is
a non-trivial TF-automorphism of G, then α and β must not be automor-
phisms of G and must have the same order. This then gives us information
about automorphisms σ of B(G) which are liftings of TF-automorphisms of
G.
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4 Triangles

In this section we shall study the behaviour of a non-trivial TF-automorphism
of a graph G acting on a subgraph of G isomorphic to K3 with the intent of
obtaining information regarding the stability of graphs which have triangles
as a basic characteristic of their structure. Strongly regular graphs in which
every pair of adjacent vertices have a common neighbour are an example.
The stability of such graphs has been studied by Surowski [10]. We believe
that this section is interesting because it is a source of simple examples of
unstable graphs and also because a detailed analysis of what happens to
triangles can throw more light on TF-automorphisms of graphs.

α(1)

α(2) =

α(3)

β(3)

β(1)

  β(2)

β(2)

α(1)

α(2)α(3)

β(3)

β(1)1

2 3

β(2)

α(1)

α(2)α(3)

β(3)

β(1)

α(1) = β(1) 

β(1)

α(2) = β(2) α(3) = β(3) α(2) = β(2) α(3) = β(3) 

α(1)

β(1)

"Isomorphism"

(a) (b)

(c) (d)

Figure 4: The configurations of possible images of a triangle under the action
of a non-trivial TF-automorphism as described in Proposition 4.1.
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Proposition 4.1. Let (α, β) be a TF-isomorphisms from a graph G to a
graph G′. The action of (α, β) on some subgraph H ∼= K3 yields either (a)
a closed Z-trail of length 6 with no repeated vertices, (b) a pair of oriented
Z-connected triangles with exactly one common vertex, (c) a pair of oriented
triangles with exactly two common vertices or (d) an undirected triangle as
illustrated in Figure 4(a),(b),(c) and (d) respectively.

Proof. Since α 6= β, there exists some vertex 1 such that α(1) 6= β(1).
Consider the triangle H such that V(H) = {1, 2, 3}. The semi-closed Z-
trails covering H must be taken to the Z-trails α(1) −→ β(2) ←− α(3) −→
β(1) and β(1) ←− α(2) −→ β(3) ←− α(1) which together form a closed
Z-trail of length 6. Vertices in Z-trails can be repeated and this has to
be considered when studying the embedding of the given Z-trail within the
graph. If no vertex is repeated then clearly we have a closed Z-trail of
length 6 covering a subgraph isomorphic to C6. If not, we have to consider
all options. We are already assuming that α(1) 6= β(1). Then, we can have
α(2) = β(2) or α(3) = β(3) as in Figure 4(b) or both as shown in Figure
4(c) or, if α(1) = β(1), α(2) = β(2) and α(3) = β(3), we have an internal
isomorphism as shown in Figure 4 (d). �

In general, when a TF-automorphism (α, β) acts on the arcs of G it maps
any triangle H into another triangle if α(x) = β(x) for every vertex x of the
triangle or it fits one of the other configurations described by Proposition
4.1 which are illustrated in Figure 4. If a graph G in which every edge lies
in a triangle is unstable, then it must have a non-trivial TF-automorphism
which follows one of these configurations.
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β(2)

α(1)

α(2)α(3)

β(3)

β(1)

1

2 3

β(5)

α(4)

α(5)α(6)

β(6)

β(4)

4

5 6

Figure 5: Two triangles mapped to a C6.

β(2)

α(1)

α(2)α(3)

β(3)

β(1)

1

2 3

β(9)

α(4)

α(6)α(8)

β(5)

β(7)

9 

4

68

5

7

Figure 6: A triangle and one closed Z-trail of length 6 covering the edges of
a C6 mapped to a C6.
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Proposition 4.2. Let (α, β) be a TF-isomorphism from G to G′. When
the TF-isomorphism acting on K3, a subgraph of G, yields a closed Z-trail
of length 6 with no repeated vertices as shown in figure 4(a), either two
triangles with no common vertex or a triangle and a closed Z-trail of length
6 are mapped to a subgraph isomorphic to C6. In the cases when the TF-
isomorphism acting on a K3 yields the images illustrated in Figure 4 (b), (c),
the pair of triangles which are either mapped to two triangles with exactly
one common vertex or to two triangles with exactly one common edge must
be connected.

Proof. Refer to Figure 4. In the case illustrated in Figure 4(a) the arcs of
one closed Z-trail P of length 6 can be the co-domain the arcs of a triangle
H. The Z-trail P ′ obtained by reversing the arcs of P can be the co-domain
of another triangle K. We claim that H and K are vertex disjoint. In
fact, suppose not and assume that the two triangles have a common vertex
u. The pair of vertices α(u) and β(u) where α(u) 6= β(u) are in both P
and P ′ and this is contradiction as the in-degree of α(u) and similarly the
out-degree of β(u) must be zero and this makes it impossible to identify
arcs of P with arcs of P ′ to form the edges of a C6. Figure 5 shows an
example where setting α(1) = β(5), β(2) = α(6), α(1) = β(4), β(3) = α(5),
α(2) = β(6), β(1) = α(4) would be one way of associating one directed
C6 with the other so that the alternating connected circuits form an undi-
rected C6. The other possibility is illustrated in Figure 6. In this example
β(1) = α(4), α(2) = β(5), β(3) = α(6), α(1) = β(7), β(2) = α(8) and
α(3) = β(9) so that a closed Z-trail of length 6 covering a K3 is mapped
to a closed Z-trail of length 6 covering half of the arcs of an undirected C6

whilst the rest of the arcs come from a Z-trail of length 6 covering half of
the arcs of another subgraph isomorphic to C6. The K3 and the C6 in the
domain of the TF-isomorphism cannot have a common vertex and the proof
is analogous to the one concerning the former case.

The proof for the remaining cases may be carried over along the same
lines as the above. Refer to Figure 4. We observe that we that the Z-
trail P1 described by β(3) ←− α(2) −→ β(1), the Z-trail P2 described by
α(1) −→ β(2) ←− α(3) and the Z-trails P ′

1 and P ′

2 obtained by the arcs of
P1 and P2 respectively would imply by the conservation of Z-trails, that in
the pre-image of the subgraph, there are four Z-trails passing through the
vertex labelled 2. This can only be possible if the triangles in the pre-image
have a common vertex. �
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α(1)

α(2) =

α(3)

β(3)

β(1)

  β(2)

1

2

3

4 5

α(5)

α(4)

β(4)

β(5)

α(2) =  β(2)

Figure 7: An example to illustrate the result of Proposition 4.2 where α(1) =
β(4), β(3) = α(5), α(3) = β(5) and β(1) = α(4).

α(1) = β(4)

KH

α(3) = β(5) α(4) = β(1)

α(2) = β(2)

α(5) = β(3)α(1) = β(4)

α(3) = β(5) α(4) = β(1)

α(2) = β(2)

α(5) = β(3)

Figure 8: The smallest unstable graphs where a triangle is taken to a two
directed triangles sharing a vertex.

α(1) = β(4)

α(4) = β(1)

���� = β(	� ���� = β(3)

1

2 3

4

Figure 9: The smallest unstable graph which has a TF-automorphism taking
a triangle to the mixed graph illustrated in Figure 4(c).
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Figure 8 shows the smallest unstable graphs which have a TF-automorphism
which takes a triangle to a pair of directed triangles with a common vertex
as illustrated in figure 4(b). Figure 9 shows the smallest graph which has
a nontrivial TF-automorphism which maps a triangle to the mixed graph
illustrated in Figure 4(c).

5 Unstable graphs of arbitrarily large diameter

In this section, we present a method of constructing unstable graphs of an
arbitrarily high diameter.

If H, K are graphs, let [H,K] be the graph whose vertex set is the union
V(H)∪ V(K) and whose edge set is the union of E(H), E(K) plus the edges
of the complete bipartite graph with classes V(H) and V(K). More gener-
ally, if H0, H1, ..., Hm−1 are graphs (where the labels are in Zm, where
m > 1 is an integer), let G = [H0, H1, ..., Hm−1] be the graph whose
vertex set is the union of all V(Hi) and whose edge set is the union of all
E([Hi,H(i+1)]). In other words, G contains all vertices and edges of the
graphs Hi, plus all edges of the complete bipartite graph connecting two
consecutive Hi’s.

Now, assume that none of the Hi has isolated vertices. Let (αi, βi) :
Hi → Hi+1 be TF-isomorphisms as i runs over Zm. Assume that the product

(α0, β0)(α1, β1)...(αm−1, βm−1) = (id, id).

Note that the latter assumption is not a restriction, because one can always
take (α0, β0) as the inverse of the product of the remaining TF-isomorphisms.

Theorem 5.1. With the above assumptions, let G = [H0, H1, ..., Hm−1].
Define two permutations α, β of V(G) as follows. For v ∈ V(G), let i be
such that v ∈ V(Hi); then set α(v) = αi(v) and β(v) = βi(v).

Then the following hold:

1. (α, β) is a TF-automorphisms of G;

2. diam G = k = (m+ e)/2, where e = 0 if m is even and e = 1 if m is
odd;

3. Each edge of G belongs to a triangle;

13



4. Letting m = 2k + e, whenever d(v,w) = k − 1, there is a vertex u
adjacent to w such that d(v, u) = k.

Proof. First note that if uv is an arc of G and both u, v belong to the same
Hi, then the image of uv is an arc of Hi+1, hence of G, because (α, β) acts
like (αi, βi) in Hi. If u, v do not belong to the same Hi, then they belong to
consecutive graphs, say Hi, Hi+1, so α(u) and β(u) belong to the consecu-
tive graphs Hi+1, Hi+2, and are adjacent because all the arcs between these
two graphs belong to G. This proves (1).

Concerning distance, a path from u in H0 to v in Hs, where s = (m− e)/2,
must pass through all graphsH1, H2, ..., Hs−1 or elseHm−1, Hm−2, ..., Hs+1.
Since such a path can be found, d(u, v) = s. For two vertices in, say, Hi

and Hj with i 6= j, the same argument shows that d(u, v) cannot exceed s.
Finally, if u, v lie in the same Hi, they have a common neighbour in Hi+1,
then d(u, v) is less or equal than 2 (regardless to their distance within Hi).
This proves (2).

What about triangles? If uv is an edge of some Hi then letting w ∈ Hi+1

the vertex w is adjacent to both u and v, hence uvw is a triangle. If uv is an
edge of some [Hi, Hi+1], say with u ∈ Hi and v ∈ Hi+1, take any neighbour
w of u in Hi (recall the assumption about no isolated vertices) and get the
triangle uvw. This proves (3).

Finally, since m = 2k + e, diam G is at least k + e. Let us remark that
if d(v,w) = k − 1 and, say, v ∈ V(Hi), then w ∈ V(Hj) where j is either
i+2 or i− 2. Take u in Hi+3 or Hi−3, respectively. Then d(v, u) = k. This
proves (4). Note that the structure of the single Hi’s is immaterial here,
because two vertices at distance at least k − 1 from each other must come
from a different Hi. �

Until now, we did not mention that the concerned TF-isomorphisms are
non-trivial, so all the above would work fine for the case of isomorphisms
too. But adding the hypothesis that at least one of them is non-trivial, the
obtained graph G has a non-trivial TF-isomorphism, namely (α, β) as de-
scribed above. The statements (1)-(3) show that there are unstable graphs
of arbitrarily high diameter, where each edge belongs to a triangle.

Surowski [10], [11] proved various results concerning graph stability. In
[10] Proposition 2.1, he claims that if G is a connected graph of diameter
d ≥ 4 in which every edge lies in a triangle, then G is stable. However, by
taking m ≥ 7 in Theorem 5.1 we get infinitely many counterexamples to
this claim by taking all the Hi isomorphic to the same vertex-determining
bipartite graph, because such a vertex-transitive graph is unstable, therefore
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Figure 10: A graph constructed using Theorem 5.1.

one can find a non-trivial TF-isomorphism from Hi to Hi+1, and since these
Hi are isomorphic, the resulting graph G is vertex-determining, and has
diameter k ≥ 4 and unstable.

One of these counterexamples is illustrated in Figure 10.

We detected one possible flaw in Surowski’s proof. It is claimed in [10]
that whenever an automorphism of B(G) fixes (v, 1) it also fixes (v,−1).
We have not seen a proof of this result. Besides, in our last example, G has
a non-trivial fixed-point-free TF-automorphism, which implies that B(G)
has a fixed-point-free automorphism that that fixes the colour classes. This
claim is also used in [10] Proposition 2.2 which states that if G is a strongly
regular graph with k > µ 6= λ ≥ 1, then G is stable. Hence, we believe that
at this point, the stability of strongly regular graphs with these parameters
requires further investigation.
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6 Concluding Remarks

The use of TF-isomorphisms in the study of stability of graphs provides a
fresh outlook which allows us to view facts within a more concrete framework
and also provides tools to obtain new results. For instance, we can inves-
tigate the structure of the given graph without actually requiring to lift
the graph to its canonical double cover, but only having to reason within
the original graph. Furthermore, the insights that we already have about
TF-isomorphisms of graphs may be considered to be new tools added to a
limited toolkit. In particular, let us mention the idea of graph invariants
under the action of TF-isomorphisms, such as Z-trails, a topic which we
have started to study in [5]. To be able to find out how the subgraphs of a
graph are related to other subgraphs within the graph itself in the case of
unstable graphs fills a gap in our understanding of graph stability and using
TF-isomorphisms appears to be a promising approach in this sense. We be-
lieve that this paper substantiates these claims. Furthermore, it motivates
us to carry out further investigations. Some pending questions such as those
concerning the stability of certain strongly regular graphs have already been
indicated. The study of how TF-isomorphisms act on common subgraphs
such as triangles is another useful lead. Nevertheless, the more ambitious
aim would be the classification of unstable graphs in terms of the types of
TF-automorphisms which they admit.
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