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a b s t r a c t

The detection and ranking of pornographic material is a challenging task, especially when it comes to
videos, due to factors such as the definition of what is pornographic and its severity level, the volumes of
data that need to be processed, as well as temporal ambiguities between the benign and pornographic
portions of a video.

In this paper we propose a video-based pornographic detection system consisting of a convolutional
neural network (CNN) for automatic feature extraction, followed by a recurrent neural network (RNN) in
order to exploit the temporal information present in videos. We describe how our system can be used for
both video-level labelling as well as for localising pornographic content within videos. Given porno-
graphic video segments, we describe an efficient method for finding sexual objects within the segments,
and how the types of detected sexual objects can be used to generate an estimate of the severity
(‘harmfulness’) of the pornographic content. This estimate is then utilised for ranking videos based on
their severity, a common requirement of law enforcement agencies (LEAs) when it comes to categorising
pornographic content.

We evaluate our proposed system against a benchmark dataset, achieving results on par with the state
of the art, while providing additional benefits such as ranking videos according to their severity level,
something which to the best of our knowledge has not been attempted before. We perform further
investigations into model generalisability by performing an out-of-distribution (o.o.d.) test, investigate
whether our model is making use of shortcut learning, and address the issue of explainability. The results
obtained indicate that our model is using strong learning, thus further validating our proposed approach
and the results obtained.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The field of pornography detection encompasses a wide and
varied set of applications and use cases, ranging from image and
video content filtering (Kelly et al., 2008; Behrad et al., 2012;
Moreira et al., 2016), automatic censoring of pornographic material
(via removing, obfuscating, or blurring the offending material)
(More et al., 2018; de Freitas et al., 2019; Mallmann et al., 2020), to
pornography type classification (Oronowicz-Jaskowiak, 2018).

With regards to content filtering, this can involve restricting
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access to pornographic material which though legal, is not suitable
for certain demographics, like minors, or for certain environments,
such as schools or workplaces (de Freitas et al., 2019; Zhelonkin and
Karpov, 2020). Another use case is the automatic detection of
pornographic material which is illegal, such as tools to assist LEAs
in detecting child sex abuse material (CSAM) (Gangwar et al., 2017;
Macedo et al., 2018; Lee et al., 2020; Laranjeira da Silva et al., 2022).

Although many advancements have been done in the field of
pornography detection, numerous challenges still remain. This is
mademore difficult by the fact that there is no universal agreement
of what differentiates pornographic from benign material, and this
normally depends on various factors such as culture, context and
the application domain (Short et al., 2012; McKee et al., 2020).
Much of the research work in pornography detection deals with
image content rather than video material (Oronowicz-Jaskowiak,
2018; Shen et al., 2018; Vitorino et al., 2018; Zhelonkin and
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1 Available at: https://www.kaggle.com/ljlr34449/porn-data.
2 Available at: http://human-pose.mpi-inf.mpg.de/.
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Karpov, 2020; Al Dahoul et al., 2021; Gangwar et al., 2021). Videos
present a number of additional challenges to pornography detec-
tion, due to the larger amounts of data involved, real-time oper-
ating constraints, and the typically more ambiguous nature of what
constitutes pornographic actions on a temporal scale. A commonly-
adopted approach is to reduce the task of video pornography
detection to an image-based one, by running pornography detec-
tion on a frame-by-frame basis, or on a selected subset of video
frames, typically the keyframes (Caetano et al., 2014; Moustafa,
2015; Jung et al., 2017; da Silva and Marana, 2019; Mallmann
et al., 2020). One disadvantage of this approach is that temporal
information present in videos is not exploited to the full.

In this paper, we propose a solution to tackle video-based
pornography detection that utilises the full video data available.
Our solution employs an efficient model that is able to run on low-
end hardware, operating at near real-time frame rate. We also
describe how our solution can go beyond a simple pornography/
benign classification, by including other functionality such as
pornographic segment localisation and video severity ranking in
order to support a wider range of applications. In the next section
we provide a brief literature review, and describe how our pro-
posed solution compares with the state of the art.

2. Literature review

Early works in pornography detection tackled mostly nudity
detection, using either skin colour or texture based techniques
(Zheng and Daoudi, 2004; Karavarsamis et al., 2013), or local fea-
tures combined with bag of visual words (BoVW) approaches
(Caetano et al., 2014; Valle et al., 2011; Avila et al., 2013). More
recently, deep learning (DL)-based approaches demonstrated a
marked improvement in accuracy, as well as the ability to work
with more challenging datasets (Moustafa, 2015; Wehrmann et al.,
2017; Perez et al., 2017; da Silva and Marana, 2019).

While image-based pornography detection is by far more
prevalent, a number of DL-based works have attempted pornog-
raphy detection on videos. A common way of doing this is to
perform pornography detection on each separate video frame (or
selected keyframes), and then combining the frame-wise results
into a video-level label via majority voting (Moustafa, 2015; Jung
et al., 2017; Qamar Bhatti et al., 2018).

In order not to lose important temporal/motion information,
other DL-based worksmake use of the full video data (or video clips
with multiple frames) (Wehrmann et al., 2017; Perez et al., 2017; da
Silva andMarana, 2019; Song and Kim, 2020). For example, Perez et
al. (2017) propose a two-stream CNN system, with one stream for
image-based features, while the second utilising motion features
(optical flow and MPEG motion vectors) across frames. da Silva and
Marana (2019) employ a 3D CNN to operate on the temporal data,
whileWehrmann et al. (2017),Song and Kim (2020), and Yousaf and
Nawaz (2022), use a CNN for feature extraction, followed by an RNN
for temporal reasoning.

For our solution, we adopt a similar approach to that of the last
three works, that is, a combination of CNN and RNN. Like them, we
make use of a majority voting scheme to arrive at the video-level
label. However, we then also localise the pornographic content
within videos and extract these segments for further processing,
something which to the best of our knowledge is not attempted by
any other pornography detection work.

On the extracted video segments we perform sexual object
detection (SOD), and then rank the video segments based on their
estimated severity of pornographic content. Several other DL-based
works have attempted SOD on image content (Shen et al., 2018;
Mallmann et al., 2020; Tabone et al., 2020, 2021). Both Shen et al.
(2018) and Mallmann et al. (2020) utilise a CNN-based object
2

detector to detect four and six sexual objects respectively, with the
latter work additionally employing a Bayesian network to exploit
the contextual information between the sexual objects. Tabone
et al. (2020) adopt a two-step approach: first performing detec-
tion to quickly distinguish pornographic images from benign ones,
then running an object detector to detect nine sexual objects. In our
work, we utilise the method of Tabone et al. (2020) for SOD.

As regards to the ranking of video segments based on severity
(‘harmfulness’) of their pornographic content, limited work has
been attempted so far. Oronowicz-Jaskowiak (2018) classifies
pornographic images into seven different categories (BDSM; sexual
activities: individual, group, and animated; fetishisms: feet, knee
high socks, and paraphilic infantilism), but this is not used for
image ranking purposes or for estimating the severity of the
pornographic content. Tabone et al. (2021) also adopt a classifica-
tion approach, classifying images into 19 types and relying on the
class label description for a rudimentary ranking of the images.
Laranjeira da Silva et al. (2022) list nudity levels and age as ex-
amples of classification criteria. Vitorino et al. (2018), mention the
need for further research into automatic severity estimation of
CSAM based on the COPINE scale (Taylor et al., 2001), but little
follow-up research appears to have been done so far.

The rest of this paper is structured as follows: we first introduce
the datasets used in our experiments; then describe our proposed
approach, followed by the experimental analysis, and evaluation;
we finish off the paper with investigations into model generalisa-
tion and explainability, and finally the concluding remarks.

3. Datasets

Publicly-available video-based datasets for pornography detec-
tion are limited both in number and in size.

3.1. The NPDI dataset

The NPDI dataset (Avila et al., 2013), considered a benchmark
dataset, consists of nearly 80 h of 400 pornographic and 400 benign
videos, obtained from public websites. These videos are post-
processed to identify video shots, and then a key frame (the mid-
dle video frame) is extracted for each video shot. One limitation of
this dataset is that the key frames are sampled at a very low and
irregular rate. Furthermore, for many of the videos, only few key
frames are available: 126 out of the 800 videos (15.7%) consist of
only a single key frame.

3.2. The APD-VIDEO dataset

To address and overcome the limitations of existing datasets, we
created our own dataset, which we call APD-VIDEO (University of
Malta, 2021). We make this dataset publicly available.

3.2.1. Dataset creation
Videos taken from the Kaggle Thumbzilla pornography list1

constitute the positive videos. This is a publicly-available list of
191,532 videos, plus metadata. The Thumbzilla website is actually a
video aggregator, meaning that it collects and organises videos
from several other websites, thus ensuring diversity in content and
format. Since the number of videos available in this list is very large,
we only download a randomly sampled subset of these videos.

For the negative (benign) class, we take videos from the MPII
Human Pose dataset (Andriluka et al., 2014). The MPII dataset2 has

https://www.kaggle.com/ljlr34449/porn-data
http://human-pose.mpi-inf.mpg.de/


Table 1
APD-VIDEO dataset distribution.

Positive videos Negative videos

Kaggle Thumbzilla MPII dataset Youtube confusable

Total videos in 191,352 2821 (18,080 115
original dataset labelled activities)
Downloaded videos 4215 2435 115
Video segments 8201 7289 420
Total video frames 7,237,218 3,383,823 983,414
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410 different activities, some of which are of special interest to our
classification problem, such as: pilates, aerobic, calisthenics,
breastfeeding, gymnastics, massage, therapy, yoga, volleyball,
reclining, workouts, and boxing, among others.

We augment the negative set with a list of 115 publicly-available
YouTube videos (which we call ‘YouTube-confusable’), containing
videos that are easily confused with the positive class. For example,
we have film trailers of a sexually suggestive nature, fashion shows,
swimwear fashion shows, boxing, wrestling, yoga, bodybuilding
competitions, and sumowrestling. Table 1 gives a breakdown of the
number of videos downloaded for the positive and negative sets.
We attempt to keep the training portions of the two sets approxi-
mately equal (in terms of video frames), in order to get a balanced
dataset.

3.2.2. Video segments
For training purposes, we extract video segments of a pre-

defined length (30 s) from each downloaded video, sampled at 12
frames per second (FPS). For the Kaggle Thumbzilla videos and the
Youtube-confusable videos, we select random positions from
where we extract the video segments. In the case of the MPII
dataset, since this dataset comes with 18,080 labelled positions of
human activity segments, we randomly choose a subset of these
existing and labelled video segments.

3.2.3. Groundtruthing
For training and evaluation purposes, we perform framewise

labelling of the video segments and the test videos, in addition to
just using a single label for the whole video. For determining the
labels, we follow the definition of pornography as given by Short et
al. (2012).

At this stage, only one annotator labelled the video frames.
Other challenges encountered during framewise labelling arise
from temporal ambiguity (determining the exact boundary be-
tween a pornographic scene from a non-pornographic one), how to
label sexual activity interspersed with other shots (like close-up
shots of the face, background, or persons speaking), as well as the
general ambiguity associated with what constitutes pornography.
We thus acknowledge that the labels at frame level are noisy and
are prone to have annotation errors; later, in x4.2, we describe an
approach to mitigate this issue.

4. Proposed approach

Our proposed approach, illustrated in Fig. 1, consists of a
pipeline made up of four stages: the first stage performs
pornography detection on videos, classifying the videos into
pornographic or benign. In the second stage, the framewise re-
sults are used to locate segments within the videos that contain
pornographic content from other segments that do not. In the
third stage, sexual objects (private body parts) are detected and
classified within the positive video segments. While in the fourth
stage, the detected sexual objects are used to estimate the severity
3

of the pornographic content and to rank the videos according to
this severity measure.

4.1. Pornography detection

The first stage of our proposed solution consists of a CNN for
automatic feature extraction, working on a frame-by-frame basis,
followed by an RNN for temporal reasoning across video frames.
This is illustrated in Fig. 1 (top part). We make use of the con-
volutional base of the binary classifier of Tabone et al. (2020) for the
extraction of the CNN-based features. This CNN is composed of a
pre-trained MobileNetV2, with the weights fine-tuned by training
on a subset of the APD-2M pornographic image corpus (University
of Leon), with the addition of benign images taken from the
VOC2012 (Everingham et al., 2012), COCO (Lin et al., 2014), andMPII
datasets (Andriluka et al., 2014).

The MobileNetV2 architecture (Sandler et al., 2019) consists of a
relatively small CNN that makes use of depth-wise separable con-
volutions in order to achieve a lightweight and efficient model.
Thus, it is less reliant on needing a powerful GPU to run. The
MobileNetV2 architecture includes linear bottlenecks in between
layers to help preserve information as it traverses the network. The
output of this network consists of a vector x of 1024 CNN features
per video frame. Given a videowith L frames and the corresponding

set fxigL1 of CNN features, we employ a sliding window approach to
feed the features to the RNN. In our method, we use a sliding
window size of 60 video frames, and a window step size based on
the ratio of the original FPS of the video to the required processing
rate of the system (set to 12 FPS in our experiments).

The adopted RNN architecture is illustrated in Fig. 2. This con-
sists of two layers of bi-directional gated recurrent units (GRUs)
(Cho et al., 2014), followed by three fully-connected layers serving
as the final binary classifier. The RNN architecture described here
was determined after running a number of model selection ex-
periments (described in x5.2). Dropout is used both within the RNN
layers, as well as for the first two fully-connected layers of the
classifier. Batch normalisation is applied in between the RNN layers
and the classifier. The first two fully-connected layers of the clas-
sifier use ReLU as the activation function, while the final classifi-
cation layer uses softmax. Binary cross-entropy is used as the loss
function for training the network.

The output of the RNN and the binary classifier consists of a set

of frame-wise class predictions fyigL1 and their associated confi-

dence scores fsigL1, indicating whether the frames up to frame i are
considered to be pornographic or not.

4.2. Label smoothing

Working with noisy labels can have a detrimental effect on deep
learning systems, as evidenced by several works (Chen et al., 2019;
Song et al., 2020). And although other works demonstrated marked
robustness to strong label noise (Rolnick et al., 2018), recent studies
suggest that deep learning systems achieve this via increased



Fig. 1. An overview of the pipeline of our proposed pornographic video detection system. Our system can support different video-based applications, ranging from classifying whole
videos into pornographic or benign, locating the pornographic content within a specific video, identifying sexual objects in video frames, and ranking videos in terms of a simple
severity measure based on the types of identified sexual objects within the video.

Fig. 2. The proposed RNN model consisting of two bi-directional GRUs, followed by the classifier consisting of three fully-connected layers.
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memorisation at the expense of strong learning (Arpit et al., 2017;
Karimi et al., 2020). One has to keep in mind that deep learning
4

models are able to memorise large datasets even when these have
completely randomised labels (Zhang et al., 2017).
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As discussed in x3.2.3, the labelling of the datasets used for this
workmay be considered to have a high level of noise, mainly due to
issues like subjectivity, temporally-related ambiguities, and also
compounded by the lack of multiple annotators. Thus we investi-
gate ways of dealing with such noisy labels.

Several different approaches have been proposed in the litera-
ture for training with noisy labels including amongst others: label
denoising and cleaning techniques, loss function modification, data
re-weighting, label smoothing, as well as curriculum learning (Song
et al., 2020; Karimi et al., 2020).

For our work, we consider label smoothing (Szegedy et al., 2016)
to be the most appropriate approach, due to its reported benefits
(backed by empirical evidence) of better generalisation and model
calibration (Muller et al., 2019; He et al., 2019), and the fact that we
can apply it across all the training samples without the need to
identify which specific labels are noisy and which are not. Label
smoothing (Szegedy et al., 2016) replaces the hard labels with a
softer version, consisting of a weighted combination of the labels
themselves and a uniform distribution over the full label set. In
essence, it introduces an element of uncertainty in the training
labels that reflects the underlying noise in the labelling process. The
hard labels are normally specified in terms of a one-hot encoded
vector representation as follows:

pðy j xiÞ ¼
�
1 if y ¼ yi
0 otherwise

(1)

where xi is the ith training data sample and its corresponding label
yi. The smoothed version of (1) consists of:

pðaÞðy j xiÞ ¼
�
1� εþ εUðy j xiÞ if y ¼ yi
εUðy j xiÞ otherwise (2)

where ε2½0;1� is the weighting factor, and Uðy j xiÞ ¼ 1
K is a uniform

distribution, with K being the number of class labels. In our solu-
tion, we apply label smoothing globally across all the training
samples via (2), with weighting factor ε chosen to be 0.2. Thus,
given the label pðy ¼ pornographicÞ2½0;1�, its smoothed version
becomes pðaÞ2½0:1;0:9�.

During the labelling of the datasets, we experienced increased
uncertainty when annotating frames at the boundary between the
pornographic and non-pornographic portions of many of the
videos. Thus we propose to add further smoothing at such points of
transition to reflect this higher labelling uncertainty. We do this by
first applying a smoothing factor prior to using (2), with this
additional factor given below:

pðbÞðy j xiÞ ¼ jy� fHðWÞ j (3)

where f2½0;1� controls the amount of additional smoothing done
in transitional regions, W is the temporal window of video frames
fed to the RNN at any given moment in time and centred on the
frame at position i with label y which needs smoothing, while Hð$Þ
measures the entropy over window W according to: HðWÞ ¼
HðpornÞ þ HðbenignÞ.
In other words, if the video frames in window W all have the

same label, then the entropy HðWÞ factor is 0 and (3) performs no
adjustment; if there is a mixture of labels (a transitional video
segment), then the adjustment amount will depend on the number
of pornographic to non-pornographic frames present in this tem-
poral window, reflecting the potential increased confusion of the
annotator in determining the boundary point.

Combining both smoothing factors (3) and (2) together, the final
smoothed label for our binary classification problem now becomes:
5

p0ðy j xiÞ ¼
�
1� fHðWÞ � ε=2 if y ¼ yi
fHðWÞ þ ε=2 otherwise

(4)
4.3. Model calibration

Deep learning models in general tend to be highly over-
confident in their predictions. This is mostly attributed to their
large capacity, and further compounded by how their training
strives to lower the cross-entropy loss (Guo et al., 2017;
Lakshminarayanan et al., 2017; Karimi et al., 2020). As can be ex-
pected, our model also suffers from the problem of over-

confidence: the frame-wise scores fsigL1 returned by our model
do not reflect the true probabilities of whether the video at frame
position i is pornographic or not. This miscalibration can be
observed in Fig. 3.

A perfectly calibrated classification model would return scores s
identical to the true probabilities p:

P
�
ypred ¼ ytrue j s¼p

�
¼ p cp2½0;1� (5)

In other words, given that the classifier generates N predictions
all with a confidence score s ¼ 0.7, we expect that 70% of these N
predictions are correct. From Fig. 3 (red curve) we can see that out
of N predictions with score s ¼ 0.7 generated by our model, only
40% of these are actually correct, implying an over-confidentmodel.

While an improperly calibrated model does not in general affect
its evaluation performance, the classification scores generated by
the model would lack interpretability. And if the scores are used for
ranking purposes (e.g. ranking videos in terms of their likelihood of
containing pornography), or to give an indication to the user or to a
downstream component in an application pipeline, it can lead to
incorrect or misleading results. It would also create problems if the
pornography classifier is used as part of an ensemble of models (for
example, an ensemble where each model considers different evi-
dences (Valle et al., 2011); or for example, when fusing video
classification with audio classification (Song and Kim, 2020)).

The over-confidence characteristic of a deep learning model can
carry over when such a model is applied to a different (but related)
domain, or when applied to out-of-distribution (o.o.d.) examples.
This can lead to apparent generalisation, i.e., the model still
outputting over-confident prediction scores even when faced with
more uncertain examples. This is exacerbated if the use of domain
adaptation between the source and target domains is not possible
or permissible. An example of this situation is a pornography
classifier, trained on adult pornography, which is intended for use
in detecting CSAM: A commonly-adopted approach for such an
application is to combine the adult pornography classifier with an
age detector (Jung et al., 2017; Macedo et al., 2018; Islam et al.,
2019; Al Nabki et al., 2020; Anda et al., 2020), since training on
the target domain data might often be problematic.

For the above reasons, we decided to calibrate our RNN-based
pornography classifier. Numerous techniques can be found in the
literature addressing model calibration, especially deep learning
ones (Guo et al., 2017). A group of techniques are based on either
reducing a model's capacity, or increasing its regularisation
(Pereyra et al., 2017). While thesemethods can help improvemodel
calibration, they also tend to suffer from some reduction in accu-
racy (Guo et al., 2017). More recently, focal loss (Lin et al., 2017) was
employed during training instead of cross-entropy loss, since this
was found to lead to better calibratedmodels (Mukhoti et al., 2020).
But some re-scaling of the model's output scores will still need to
be done after the classification stage.



Fig. 3. (Top) Reliability curve of our RNN model, prior (red) and after (blue) model re-calibration, showing a change from over-confident scores to values more in line with the true
classification probabilities (diagonal line). (Bottom) The corresponding confidence histogram before and after model calibration. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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In our work we settle for a model re-calibration technique
implemented as a post-processing operation, rather than
attempting calibration within the deep learning model itself or
during its training. We investigated a number of computationally-
efficient techniques including temperature scaling (Mozafari
et al., 2018), Platt scaling (Platt, 1999), and isotonic regression
(Niculescu-Mizil and Caruana, 2005), opting for Platt scaling based
on the empirical results obtained (see Fig. 3), and due to its opti-
mality characteristics (B€oken, 2021).

Platt scaling (Platt, 1999) operates by essentially fitting a logistic
regression to the output scores fsig of the classifier:

p z bp ¼ 1
1þ eAsþB

(6)

where p is the true probability, bp is the re-calibrated score, and A
and B are the parameters of the logistic regression. We fit the lo-
gistic regression using a hold out set (separate from the training,
validation and test sets), resulting in parameter A ¼ �0.7561 and
6

B ¼ 0.6573. Once the logistic regression model is generated, it is
then used to map (scale) the scores of the classifier to yield cali-
brated values that should now be closer to the true classification
probabilities. Fig. 3 shows the model's output confidence scores
after performing re-calibration via Platt scaling, while Table 2 gives
the reduction in model miscalibration that we obtained, as
measured in terms of standard metrics: ECE, MCE, and ACE (Guo
et al., 2017; Nixon et al., 2019). Another benefit of a calibrated
model is that the optimal threshold obtained from the receiver
operating characteristic (ROC) is now closer to 0.5.

4.4. Full video classification

The framewise results fyigL1 of the model are then mapped to a
video-level classification label by a majority voting scheme. An
alternative scheme could be employed, dependent on the appli-
cation's use case; for example, some law enforcement scenarios
might require that a video is classified as pornographic even if a
small number of frames are positive.



Table 2
Model re-calibration.

Metric Uncalibrated model Re-calibrated model

Expected calibration error (ECE) Y 0.0471 0.0119
Maximum calibration error (MCE) Y 0.3314 0.0841
Adaptive calibration error (ACE) Y 0.1828 0.0302

Fig. 4. Temporal action grouping (TAG) method used for the extraction and merging of video segments. In our case we use a single value for g, determined from the optimal point of
the ROC curve of the binary classifier.

3 Here video shot is a film editing term, referring to a continuous piece of footage
between two edits, transitions or cuts. In contrast the term video segment as used in
this paper refers to a portion of a video (made up of consecutive video frames) that
has been assigned the same classification label, e.g., a benign video segment, or a
pornographic video segment. Typically a pornographic video segment can be
decomposed into one or more video shots.
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4.5. Pornographic video segment extraction

To group the frame-wise results into video segments containing
pornographic content, we adopt a method inspired by the temporal
actionness grouping (TAG) scheme of Zhao et al. (2017).This
method utilises the classical watershed algorithm to identify the
video segments in the 1D signal formed by the probability output

(re-calibrated scores) of the classifier fbpigL1. This method is illus-
trated in Fig. 4: Given a flooding level specified by parameter g, the
corresponding catchment basins (video segments) shown in gray
are identified. This is followed by a basin growing (segment
merging) technique which joins segments together conditioned on
the ratio of their length to the total duration encompassed by the
segments being smaller than parameter t (merged basins outlined
in blue).

Zhao et al. (2017) perform a sweep over a range of values for
both the flooding parameter g and the grouping criterion t,
generating action proposals to be then fed to specific action rec-
ognisers. In our case, we fix the value of g and set it to the optimal
point of the classifier's ROC curve, since unlike Zhao et al. (2017)
we do not have another set of networks to assess the video seg-
ments. Then we perform a search for the optimal value of the
grouping criterion t using a validation set. The advantage of
adopting this approach, rather than a more rudimentary segment
grouping technique, is that minimal changes are required if for
future work we add specific pornographic action recognisers to
our system.

Once the positive video segments are located, a score for each
segment sj is computed from the framewise results;

scorej ¼ 1 þ
Psjð1Þ

sjð0ÞlnðbpiÞ
sjð1Þ � sjð0Þ

(7)

where sjð0Þ and sjð1Þ represent the starting and ending position of

video segment j specified in number of frames, and bpi is the cali-
brated score of frame i.
7

4.6. Sexual object detection

The third stage of our approach (refer to Fig. 1) operates on the
video segments classified as being pornographic by the previous
stage. For efficiency reasons, sexual object detection is not per-
formed on each and every frame of the positive video segments;
instead, video shot detection is performed first, followed by key-
frame selection, and finally sexual object detection is performed
only on the keyframes. The assumption behind this approach is that
the types of sexual objects should stay reasonably constant within
each video shot .3

We make use of the TransNet model of Souvcek and Lokovc
(2020) for video shot detection. This network achieves efficient
processing of large videos via its use of 3 � 3 dilated 3D CNN cells,
with dilation rates of up to 8 in the temporal dimension, leading to
an effective receptive field of 97 frames with just six cells.

Once a video segment sj is partitioned into one or more video
shots fvslg, we apply a keyframe selection scheme on each video
shot. We evaluated a number of different schemes, eventually
opting for a uniform keyframe sampling scheme:

�
vslð0Þ þ

i
K
vslð1Þ

�K�1

i¼1
(8)

where parameter K determines the number of keyframes extracted
per video shot and ½vslð0Þ; vslð1Þ � represents the start and end po-
sition of the lth video shot.

Each keyframe is then fed to a sexual object detector;we employ
the sexual object detector developed by Tabone et al. (2020), which
utilises the YOLO v3 architecture (Redmon and Farhadi, 2018) for
object detection and localisation. This detector was trained on a



Table 3
Sexual object detection.

SOD class label Severity ranking

Female breast 1
Female buttock 2
Male buttock 2
Female genitalia posing 2
Female genitalia sexually active 3
Male genitalia 3
Sex toys 3
Coitus 4
Anal 4

Fig. 5. The adopted training schedule with initial learning rate warm-up, followed by
learning rate decay.
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subset of the APD-2M image corpus (University of Leon), and can
recognise the sexual objects listed in Table 3 (first column).

For each video segment, we keep track of the types of sexual
objects detected and their occurrence frequencies, as well as their
spatial locations in the frames and confidence scores.

4.7. Severity estimation and ranking of pornographic videos

In the final stage of our pipeline (see Fig. 1, lower part), we
attempt to capture the semantic content of pornographic video
segments based on the presence or absence of sexual objects. And
we use this to assign a severity estimate to each segment for the
purpose of ranking them in order of severity.

Our idea bears some similarity to Shen et al. (2018)'s use of
‘semantic components’, but while they used this information to aid
the object inference process (via contextual information provided
by the co-presence of sexual objects) and applied it solely to
pornographic image data, we use the semantic information pro-
vided by the sexual objects for the purpose of ranking video data.
We also employ a finer-grained sexual object classification, when
compared to that of Shen et al. (2018).

There appears to be a lack of consensus in general when it comes
to grading pornographic material based on the severity or gravity of
its content (excluding the basic categorisation into ‘softcore’ and
‘hardcore’). In the field of social sciences, the problem of ranking
adult pornography is more concerned with studying the con-
sumption patterns of such material, its arousal properties, addic-
tion and related effects (Levitt, 1969; Laughton and Rensleigh,
2008). A number of taxonomies have been developed for the pur-
pose of bibliographic access system (Dilevko and Gottlieb, 2002),
but these typically lack the element of specifying the severity of
pornographic material. And from a legal perspective, one can find
works and legislation distinguishing extreme pornography (subject
to criminal prosecution) from other types of legal pornography
(The Crown Prosecution Service). In particular, in the area of child
pornography, one finds the COPINE scale (Taylor et al., 2001) for
ranking CSAM.

In this work, we constrain the problem of estimating the
severity of the pornographic content of videos to a simple scheme
based on the types of detected sexual objects. We adopt the
severity scale given in Table 3, ranging from 1 (low severity) to 4
(more severe). We then rank video segments based on a combi-
nation of the severity class as described here, together with the
video segment score given by Equation (7).

5. Experimental analysis

In this sectionwe describe the experiments performed using our
proposed solution, including model selection, training and
4 The authors will make the source code publicly available upon publication.
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optimisation. The TensorFlow library (Abadi et al., 2015) is used in
the implementation of our DL models.4
5.1. RNN training

The RNN is trained using mini-batch stochastic gradient descent
(SGD) with Adam optimiser (Kingma and Ba, 2015). Batch size is set
to 16. The learning rate is varied over 50 epochs according to the
training schedule shown in Fig. 5. This schedule includes an initial
warm-up period: for the first two epochs, we start with a learning
rate much smaller than the target learning rate of 0.001, and then
increase it linearly during the warm-up period until the target
learning rate is reached. This strategy is known to help reduce early
over-fitting (Liu et al., 2020). We also make use of early stopping as
a form of implicit regularisation: we terminate training if the cross-
entropy loss on the validation set does not improve over 10 epochs.
The RNN is trained with a total of 15,910 video segments, parti-
tioned into two folds (via stratified sampling), containing 80%
(12,728 video segments) for training and 20% (3182 segments) for
validation.
5.2. Model selection and hyperparameter tuning

Due to an inherent degree of non-determinism experienced
when training deep neural networks, and in order to compare
models in a statistically sound manner, multiple training runs need
to be performed for each particular model and its set of hyper-
parameter values, and then an accuracy measure or loss value
determined from these multiple runs. A traditional way of per-
forming this in the machine learning literature is via the use of N-
fold cross validation, followed by a paired Student t-test for model
comparison and selection (Vanwinckelen and Blockeel, 2012;
Reimers and Gurevych, 2018).

A problem with this approach is that the overlapping use of the
training data in the multiple training runs violates the assumption
of each data sample being used only once. A different approach is to
split the training data into separate folds, with each fold used for
only one experiment. But this tends to become impractical when
the dataset is relatively small, since the number of training exam-
ples in each fold will not be sufficient for training a deep learning
model. As a result, we choose the notion of stochastic dominance for
determining if a deep learning model is statistically superior to



Table 4
Hyperparameter tuning.

Hyperparameter Search range Optimal value ASO score

RNN hidden units ½16…128� 88 0.046
RNN dropout f0:1;0:2;0:3; 0:4;0:5;0:6g 0.3 0.014
fc layer 1 hidden units ½2…48� 32 0.124
fc layer 2 hidden units ½2…24� 16 0.368
fc layer dropout f0:1;0:2;0:3; 0:4;0:5g 0.3 0.755
SGD batch size f4*2ng8n¼1

16 0.005

Table 5
Ablation studies.

Component Training loss Difference ASO score

Full model 0.13628 e e

without Batch normalisation 0.15857 �0.02229 (�16.4%) 1.0
without RNN dropout 0.16012 �0.02384 (�17.5%) 0.935
without fc dropout 0.18536 �0.04908 (�36.0%) 0.999

Table 6
Video-level classification results (APD-VIDEO dataset).

Precision Recall F1 score support

Benign 98.86% 96.11% 97.46% 175
Pornographic 96.67% 99.02% 97.83% 210
Accuracy 97.66% 385

Table 7
Frame-level classification results (APD-VIDEO dataset).

Precision Recall F1 score support

Benign 92.23% 88.68% 90.42% 984,700
Pornographic 94.57% 96.34% 95.45% 2,013,534
Accuracy 93.83% 2,998,234
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another (Heathcote et al., 2010; del Barrio et al., 2018). In particular
we use Dror et al. (2019)'s stochastic dominance method which is
based on stochastic order (SO): They propose a relaxation method,
called approximate stochastic order (ASO), which apart from telling
whether the performance of a model is statistically superior to that
of another (to the required significance level), it can still provide a
relative ordering for models even when their performance differ-
ence is not statistically significant.

We perform a number of model selection experiments in order
to choose amongst the different gated units available for the RNN:
GRUs or long short-term memorys (LSTMs), the number of RNN
layers, and whether each layer is bidirectional or not. In total we
compare 12 different models using the ASO method described
above, choosing the 2-layer bidirectional GRU as the best model
(which is found to be statistically superior to 8 of the other models
with 95% confidence, and statistically better than the 3 remaining
models when approximate statistical ordering is considered).

Table 4 summarises the results of hyperparameter tuning, while
Table 5 gives the results of the ablation studies we conducted. For
both cases, multiple training runs were performed to measure the
statistical significance of the optimal hyperparameter value
(compared to the other values in the search range) and of the
ablation studies. Due to lack of space, only the ASO scores are re-
ported in the respective table. The results of the ablation studies
show that dropout (both within the RNN and fully-connected
layers), and to a slightly lesser extent batch normalisation, all
contribute positively to the overall model.

6. Evaluation

We now evaluate our model against the datasets introduced in
x3. Starting with the APD-VIDEO dataset, the results obtained for
both video-level and frame-level classification are given in Tables 6
and 7 respectively, while Fig. 6 shows the confusion matrices. As
expected, video-level accuracy is higher than frame-level accuracy,
since for the former a majority-voting scheme is applied (as
described in x4.4), which tends to smoothen the frame-wise results.
From both confusion matrices, we can observe that the incidence of
false positives (FPs) (1.8%, 3.7%) is slightly higher than that for the
false negatives (FNs) (0.5%, 2.5%).

Unfortunately, we were not able to compare our results on the
APD-VIDEO dateset with the state of the art, as none of the
reviewed papers made their trained models or source code publicly
available. We hope that by making our model and the APD-VIDEO
dataset publicly available, can help in the evaluation of future
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systems on a larger and temporally richer dataset than what is
currently available.

Moving on to the NPDI dataset, the currently de facto bench-
mark dataset, we train our model using the official training fold as
providedwith this dataset in order to perform comparative analysis
with the state of the art. We utilise the full videos during training,
and then test against the selected key frames forming part of the
test fold.The results for the NPDI dataset are given in Table 8. As can
be observed, our proposed solution achieves performance on par
with the state of the art, with only a marginal 0.1% difference be-
tween our system and the best result achieved (Perez et al., 2017).
In addition, compared to Perez et al.'s (2017) two-stream model
with its roughly 13.6M trainable parameters, our baseline model is
more efficient, with just 3.5M parameters. It is also worth pointing
out that we train only the RNN portion of our model on the NPDI
dataset, without performing any fine-tuning of the CNN layers
(fine-tuning the last CNN layers could potentially increase the ac-
curacy). This shows that our model generalises well.

Fig. 7 shows some representative output obtained from our
system after performing sexual object detection and video severity
ranking. In the case of Fig. 7 (c) some sexual objects are not detected
mainly due to partial occlusion, resulting in an incorrect severity
class assignment. While no sexual objects are detected in the
keyframe of the video segment shown in Fig. 7 (a), and thus
correctly assigned a severity class of 0, the segment has a non-zero
(albeit small) ranking due to some of the framewise results being
labelled as pornographic by the RNN. Overall, despite some sexual
object mis-detections and severity class mis-categorisations, it can
be seen that the video ranking scores reflect the true severity of the
videos.

7. Investigations into model generalisation, memorisation
and shortcut learning

7.1. Out-of-distribution (o.o.d.) generalisation test

As alluded to in x4.2, deep neural models have the capacity to
memorise large datasets if given the chance (Zhang et al., 2017).



Fig. 6. Confusion matrices of classification results (APD-VIDEO dataset).

Table 8
Classification results (NPDI dataset).

Work Approach Params y Accuracy

Moustafa (2015) CNN ensemble (AGNet) (72M) 94.1%
Ou et al. (2017) Multi-context DL framework (DMCNet) e 85.3%
Jung et al. (2017) CNN ensemble e 94.0%
Wehrmann et al. (2017) CNN þ RNN (LSTM) (60M) 95.6%
Perez et al. (2017) Two-stream CNN (image þ motion features) 13.6M 97.9%
Shen et al. (2018) CNN ensemble þ Bayesian net (23M) 94.7%
Da Silva and Marana (2019) Spatiotemporal (VGG-3CD) CNNs (11.1M) 95.1%
Our proposed solution CNN þ RNN architecture 3.5M 97.8%

y Number of trainable parameters: “d” means not specified in the original paper; figures in brackets are our estimates derived from the number of parameters of the base
network used, e.g. the 60M parameters of ResNet-152 used by Wehrmann et al. (2017) as the convolutional base of their ACORDE model.

Fig. 7. Example results of sexual object detection and video severity ranking. On the left hand side is a representative keyframe from each video segment, and on the right hand side
is the list of sexual objects (and their confidences) detected in the given keyframe (SOD list; also outlined in red). This is followed by the severity class and ranking score assigned to
the video segment. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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This is mostly due to their large number of trainable parameters.
Arpit et al. (2017) suggest a spectrum for the learning abilities of

deep neural models, ranging from complete memorisation at one
end (as demonstrated by the experiments of Zhang et al. (2017)
with randomised labels), to strong learning at the opposite end.
As regards to the point on this spectrum where a particular deep
learning system resides at, Arpit et al. (2017) attribute this to a
combination of factors, including: the model architecture used, the
training procedure adopted (including the use and types of regu-
larisation), the nature and richness of the training data, and the
amount of label noise present in the training data. Jiang et al. (2020)
are in agreement with this interpretation, and show how deep
learning models can memorise rare and irregular training samples,
but then generalise across training samples that share common
10
patterns or structures. In a series of experiments Carlini et al. (2019)
try to measure howmuchmodels generalise (quantified in terms of
model perplexity - how useful a model is), versus how much they
memorise of the training data (quantified in terms of model
exposure). A main finding of their work is that memorisation is not
overfitting: memorisation starts while a model is still actively
learning (i.e., it has not yet started to overfit).

While there is ongoing research into trying to come up with
metrics or estimates to measure the generalisability of a model
(e.g., C-score (Jiang et al., 2020), model perplexity and exposure
(Carlini et al., 2019), etc.), Geirhos et al. (2020) propose the use of an
out-of-distribution (o.o.d.) dataset as the ideal test for generalisa-
tion. This is in contrast to the test set coming from the same dataset,
which can be termed as an independent and identically distributed



Table 9
o.o.d. generalisation test results.

Test type Training set Test set Accuracy

i.i.d. APD-VIDEO APD-VIDEO 97.76%
o.o.d. APD-VIDEO NPDI 94.12% (-3.54%)
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(i.i.d.) test.
While we can not attest as to the position where our model

resides on the memorisation-generalisation continuum, we believe
that a number of techniques described in the previous sections,
should help minimise the amount of memorisation in our model.
These include the use of label smoothing to address noisy labels
(one of the factors mentioned by Arpit et al. (2017)), as well as a
number of implicit and explicit regularisations used in our model
and its training (early stopping, dropout, batch normalisation, etc.).

We also follow Geirhos et al. (2020)'s suggestion of performing
an o.o.d. generalisation test. Since to the best of our knowledge
there are no standard benchmark o.o.d. datasets in the domain of
pornography detection, we employ a scheme whereby we train our
model on our APD-VIDEO dataset (x3.2) and then evaluate its per-
formance on the NPDI dataset (x3.1). A cursory glance at these two
datasets strongly suggests that there is a distribution shift between
the two, thus in our opinion qualifying the NPDI dataset as an o.o.d.
test. In particular, the majority of the NPDI benign videos contain
text or come from Portuguese-speaking sources, while our
pornography dataset is mainly sourced from English-speaking
sources.5 The NPDI benign videos also exhibit a higher incidence
of children, while a number of the NPDI positive videos consist of
animated movies, something which is missing from our pornog-
raphy dataset.

From Table 9, we can observe that although the accuracy of the
o.o.d. test is lower than that for the i.i.d. test, at 94.12% it is still high.
To put this difference in perspective, other studies have reported
drops in accuracy of more than 10% where models failed to
generalise to external data (Zech et al., 2018; Mårtensson et al.,
2020). We can therefore reasonably conclude that our model is
able to generalise satisfactorily to o.o.d. data.

Fig. 8 gives some qualitative results, with mis-classified frames
highlighted in red. Of particular interest are the results obtained for
the animated videos (Fig. 8 (b) and (f)). When presented with these
o.o.d. samples, the model is still able to classify several parts of
these videos correctly. The probability chart also shows that the
confidence level of the model is lower than for samples it has been
trained on (e.g. Fig. 8 (d)), which indicates that our model is well-
calibrated.

7.2. Shortcut learning tests

We next investigate whether the good performance results of
our model are really due to shortcut learning or not. Shortcut
learning (Geirhos et al., 2020) is the process viawhich a deep neural
network identifies the simplest solution (a ‘shortcut’) for classifying
the given input data. This often takes the form of ‘cheating’, i.e., the
model exploits unintended signals or confounding information in
the data instead of learning the true patterns. When learning in
such a manner, a network may demonstrate deceptively good re-
sults. But then it can exhibit unintuitive failures when faced with
o.o.d. cases.

Shortcut opportunities can come from background cues or scene
5 While our proposed solution does not use the audio stream of videos, the
difference in language is apparent visually in many of the videos in terms of logo
texts, titles, sub-titles and captions.
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biases in the dataset being used to recognise the primary objects
(He et al., 2016; Zhu et al., 2017; Beery et al., 2018). Cues arising
from the source or acquisition/preparation method of the data
samples might also creep into the dataset (Dawson et al., 2019;
Mårtensson et al., 2020). Alternatively, the model can learn from
the presence or absence of ancillary tokens present in images; for
example, from the placement of metal tokens in the corners of
radiographs (Zech et al., 2018), or learning that skin lesions with a
ruler placed next to them are more likely to be malignant (Narla
et al., 2018).

A clear shortcut opportunity that exists in pornography datasets
is the presence of logos indicating the pornographic sites from
where the videos are sourced from. These logos typically appear in
a corner of the video frames and remain present throughout the
duration of the videos. Such logos appear in both datasets used in
our experimental work. We therefore perform a number of in-
vestigations to determine whether our model is utilising these
unintended cues during classification.

We first extract logos from both the pornographic and benign
samples of the APD-VIDEO dataset. We apply a simple automatic
procedure to do this, relying on the temporal stability of the pixel
values where the logos are located: first a motion energy image
(MEI) is accumulated from all the video frames of a video; then an
adaptive thresholding method is applied to find the temporally-
stable pixels (low MEI values), followed by morphological opera-
tions, and finally extracting contiguous regions conditioned on
some basic region size filtering. A final manual-based checking is
performed to eliminate incorrectly extracted logos. Table 10 gives a
breakdown of the number of extracted logos from the videos of our
dataset, indicating a prevalence for logos in pornographic videos;
and Fig. 9 shows a sample of the extracted logos for both classes.

For our first experiment, we generate new test videos by
superimposing the logos extracted from pornographic videos on to
the benign videos and vice versa. Fig. 10 shows such an example.
The logos are placed in the video frame at the same original posi-
tion in which they were found. The aim of this experiment is to
investigate whether benign video frames are incorrectly classified
by ourmodel as being pornographic solely based on the presence of
the superimposed logos mormally found in pornographic videos. A
large reduction in accuracy would indicate that the model is taking
a shortcut by memorising logos.

In our second experiment, we investigate whether the model is
basing its classification decision on the spatial placement of the
logos in the video frames (rather than, or in conjunction to,
memorising the logos). We noticed that there is a certain spatial
bias in where logos appear in the video frames depending on
whether they are pornographic or benigne this is evident from the
heatmaps shown in Fig. 11 (a) and (b). To test whether this bias is
being utilised by our model, we create a second set of synthetic
videos where this time, wemask out the areawhere logos are likely
to be found e see Fig. 11 (c) for an example.

For both experiments, 200 videos were generated and the
original unaltered videos are used as the control experiment.
Training of the RNN-based model is conducted as described in x5.1,
and the results obtained are given in Table 11.

We can observe that the overall reduction in accuracy is mini-
mal for both experiments. In the case of the second experiment, we
attribute the slightly larger decrease in accuracy to the fact that
more of the image content is lost by the masking operation. Fig. 12
shows the difference in accuracies for each individual video used in
the logo superimposition experiment. We notice that most of the
variations occur for videos where the model was not confident in
its prediction in the first place. And surprisingly, a number of videos
exhibit a net gain in accuracy.

These results lead us to conclude that our model is not relying



Fig. 8. Result samples from the NPDI o.o.d. test. Three frames are shown for each video segment, while the plots on the right of the frames display the model's probability output
over the entire segment, with the position of the three frames indicated by the dashed vertical lines. Mis-labeled video frames are shown with a red border. Several of these video
segments (e.g., the animated videos) are considered as o.o.d. samples, since the model was trained with a dataset that lacked such examples. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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Table 10
Distribution of logos in the APD-VIDEO dataset.

Class Total video segments Video segments with logos

Pornographic 8201 4943 (60.27%)
Benign 7426 1230 (16.56%)
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on the presence of logos or their position in the video frame to
classify videos. Possible reasons may include the diversity of logos
present in the dataset, and that there are other elements in the
videos apart from logos that are temporally stable over long por-
tions of the video such as background elementsewe think that this
may make logos less of a prominent signal for the network to
exploit as a shortcut during its training.

8. Explainability

To help us investigate further our deep neural model's behav-
iour, we ran a number of explainability tests. More specifically, we
apply the occlusion sensitivity method (Zeiler and Fergus, 2014) on
the CNN base of our model, in order to determine the region(s) in
Fig. 9. A sample of logos extracted from (left)

Fig. 10. An example of a synthetic test video created by s

Fig. 11. Heatmaps indicating the likelihood of having a logo at the given position for (a) po
logos to be placed in the lower-right corner for pornographic videos. (c) An example of a syn
pornographic videos (left: the original frame with a logo (white text) in the bottom-right c
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the video frame that our model is paying attention to when
deciding between pornographic and benign material. Occlusion
sensitivity uses a rectangular window to hide a portion of the video
frame and measure the resulting change in the confidence of the
classification result. By sliding this window across the frame, a
heatmap is generated, like the examples shown in Fig. 13.

Fig. 13 (a)e(c) highlight the regions our model focuses on to
generate correct predictions. In particular, (b) shows the behaviour
of our model when dealing with almost fully-clothed persons
engaged in sexual activity. Fig. 13 (d)e(f) show incorrectly-
classified examples and the regions which influenced the model's
decision. In the case of (d) and (e), the model appears to focus
mostly on skin and skin-coloured clothing respectively. While in
the case of Fig. 13 (f) it is harder to relate the areas of interest with
the classification decision taken.
9. Inference speed optimisation

9.1. SOD execution

As mentioned in x4.6, for efficiency reasons SOD is not per-
formed on each video frame, but instead it is run on a small set of
pornographic and (right) benign videos.

uperimposing a logo belonging to the opposite class.

rnographic and (b) benign videos in the APD-VIDEO dataset, showing a prevalence for
thetic video frame generated by masking out the area where logos tend to be found in
orner; right: video frame with masked out areas).



Table 11
Results of shortcut learning investigations.

Experiment Frame-level
accuracy

Diff. Video-level
accuracy

Diff.

Control test (200
videos)

91.62% e 93.5% e

Superimposed logos 90.86% ¡0.76% 92.97% ¡0.53%
Logo areas masked

out
89.53% ¡2.09% 92.69% ¡0.81%
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keyframes extracted from each video shot of pornographic seg-
ments. In our next experiment, we measure how many sexual ob-
ject detections are missed by our approach, comparing against the
number of detections obtained when running against each video
Fig. 13. Some results from the model explainability investigations. (Left) Normalised heatma
of most interest to our model; (Right) the original video frame corresponding to the heatma
the reader is referred to the Web version of this article.)

Fig. 12. Differences in accuracy per video for the logo superimposition experiment. Differenc
(For interpretation of the references to color in this figure legend, the reader is referred to
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frame as a baseline. Fig. 14 shows the results obtained. We can
observe that for many of the SOD classes the reduction in de-
tections is not overly significant. To put this into perspective, in
these same tests, we determined that on average, SOD is performed
on just 9.0% of the video frames (median of 5.3%) which offers a
significant speedup in execution.

9.2. Model pruning

Finally we report on investigations into ways of improving the
efficiency of model inference. We adopt a model pruning technique
(Zhu and Gupta, 2018): during training, based on a pre-determined
sparsity connection setting, weights which are less salient than
others are gradually reduced to 0, thus enabling their pruning from
the model once the model is trained. This pruning technique
ps obtained by running the occlusion sensitivity method, with red indicating the areas
p shown on the left. (For interpretation of the references to color in this figure legend,

es shown in green indicate a net gain in accuracy; red indicates a reduction in accuracy.
the Web version of this article.)



Fig. 14. The reductions in detections when running SOD on key frames, compared to when running SOD on all frames of a video (the baseline, 100%). For a number of classes, the
difference is minimal. The vertical black lines indicate variations (95% confidence interval) in the results across the videos used in this test.

Table 12
Model pruning results.

Model Parameters Sparsity Accuracy Speedup

Baseline model 3,465,378 e 95.45% e

Pruned model 3,370,772 40% 95.38% (�0.07%) �2.1
3,347,121 50% 95.10% (�0.35%) �2.4
3,323,469 60% 94.98% (�0.47%) �2.6
3,299,764 70% 94.81% (�0.64%) �2.9
3,276,164 80% 94.02% (�1.43%) �3.3
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normally gives rise to a more efficient model (less parameters),
often accompanied with minimal degradation in performance.

While several different methods exist for determining the sa-
liency of the weight parameters (Zhu and Gupta, 2018; Blalock
et al., 2020), we opt for a magnitude-based weight pruning strat-
egy (Janowsky, 1989) mainly due to its computational efficiency.
Table 12 shows the resulting speedup and loss of performance for
increasing levels of sparsity. We can observe minimal degradation
in performance, even for large values of sparsity, while at the same
time getting a speed improvement during inference of more than
double when compared to the unpruned model.

10. Conclusion

In this paper, we proposed a pornographic detection system
consisting of a CNN for automatic feature extraction, followed by a
bi-directional GRU RNN. We described how our system can be used
for both video-level labelling as well as for localising pornographic
content within videos. Given pornographic video segments, we
described an efficient method for finding sexual objects within the
segments, and how the types of the detected sexual objects can be
used to generate an estimate of the severity (‘harmfulness’) of the
pornographic content. This estimate can be utilised for ranking
videos based on their severity. We evaluated our proposed system
against a benchmark dataset, achieving results on par with the state
of the art. Investigations into model generalisability, shortcut
learning, and explainability, suggest that our model is using strong
learning.

As future work, we plan to investigate the use of multiple mo-
dalities (such as the audio stream or optical flow), as well as better
and more semantically meaningful ways of estimating the severity
of pornographic content.
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