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Abstract: Dentists could fail to notice periapical lesions (PLs) while examining panoramic radio-
graphs. Accordingly, this study aimed to develop an artificial intelligence (AI) designed to address
this problem. Materials and methods: a total of 18618 periapical root areas (PRA) on 713 panoramic
radiographs were annotated and classified as having or not having PLs. An AI model consisting of
two convolutional neural networks (CNNs), a detector and a classifier, was trained on the images.
The detector localized PRAs using a bounding-box-based object detection model, while the classifier
classified the extracted PRAs as PL or not-PL using a fine-tuned CNN. The classifier was trained
and validated on a balanced subset of the original dataset that included 3249 PRAs, and tested on
707 PRAs. Results: the detector achieved an average precision of 74.95%, while the classifier accuracy,
sensitivity and specificity were 84%, 81% and 86%, respectively. When integrating both detection and
classification models, the proposed method accuracy, sensitivity, and specificity were 84.6%, 72.2%,
and 85.6%, respectively. Conclusion: a two-stage CNN model consisting of a detector and a classifier
can successfully detect periapical lesions on panoramic radiographs.

Keywords: artificial intelligence; neural network; periapical lesion; panoramic radiographs

1. Introduction

Apical periodontitis is the consequence of root canal infection by bacteria that is
manifested as a periapical bone resorption that develops as a response of the host’s defense
against bacterial infection [1]. Apical periodontitis affects about 33 to 62% of the adult
population and it can have detrimental effects on both oral and systemic health [2]. Thus,
this condition should be diagnosed and treated without delay. Failure to treat might
lead to the spread of disease to the surrounding tissues, resulting in serious complication
for the patient [3]. While an initial diagnosis of acute apical periodontitis may be made
clinically, the detection of chronic apical periodontitis is made by radiographs used to
reveal characteristic periapical radiolucencies that are usually called apical lesions [4].
These apical lesions appear as a widened periodontal ligament space and are detected by
radiographic investigation of endodontically treated teeth [5,6].

Detection of apical lesions can be performed with several available radiological options,
e.g., cone beam computerized tomography (CBCT), periapical radiographs and panoramic
radiographs. CBCT demonstrates significantly higher discriminatory ability than periapical
radiographs [7], however, the associated costs and high radiation are major limitations that
restrict its use to very few indications. Periapical radiographs are usually considered as
the gold standard imaging techniques for diagnosis of apical lesions [8]. However, there
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could be inconsistency across dentists in their interpretation of such radiographs, and due
to radiation concerns, they cannot be routinely used for screening the entire dentition.
The radiographic appearance of endodontic pathosis in a periapical radiographs could be
subjective and they have shown limited discriminatory ability when compared against
histopathological analysis [6,9,10]. A previous study showed that interpreters were only
able to reach a 50% level of agreement on the assessment periapical lesions on periapical
radiographs. In addition, re-evaluation of radiographs by the same clinician showed
different interpretation of their own original diagnosis [10]. Thus, image interpretation by
dentists could sometimes be inconsistent [11].

Other techniques such as CBCT, MRI and echography can also be useful [8,12]. How-
ever, these methods cannot be used for routine screening because CBCT requires too much
radiation, MRI is very expensive and time consuming, and echography is ineffective in
lesions not affecting the cortical bone. In this context, OPG are better suited for screening.
However, even though dentists are supposed to make accurate screenings of periapical
lesions on OPGs, human errors occur and dentists can often miss obvious periapical lesions.
A tool to automate detection can help minimize these errors.

Panoramic radiographs are routinely used in dental practice because despite having
lower resolution, they are able to capture an extensive area of the oral cavity with signifi-
cantly lower doses of radiation compared to CBCT imaging [13,14]. They allow the easy
examination of the complete dentition including the alveolar bone, temporomandibular
joints, and adjacent structures providing a valuable screening opportunity [15,16]. Regard-
ing the diagnosis of periapical lesions on panoramic radiographs, experienced clinicians
can achieve high specificity (95.8%) but a low sensitivity (34.2%) compared to the use of
CBCT [17]. Moreover, there is considerable variability in the dental professionals’ abilities
to read panoramic radiographs, which is affected by their individual skills, experience, and
biases [18,19]. These limitations in the assessment of panoramic radiographs may lead to
misdiagnosis or mistreatment [18,20].

Recent years have seen an increased use of artificial intelligence in all branches of
medicine and dentistry. These computer programs can take over human tasks imitating
intelligent human behavior, performing complex activities such as decision-making, solving
problems, and even recognizing objects and words [21,22]. Neural networks (NNs) are
a type of artificial intelligence algorithm which, through a process of deep learning with
extensive amounts of data, can enable a computer to present with the capacity to learn to
think on its own and make decisions and solve problems in a similar way to humans [23,24].

Convolutional neural networks have been used to detect periapical lesions on different
radiographic modalities [11,25] including panoramic radiographs. This could make the
interpretation more objective, and help the dentists save time and focus more on the
treatment and identifying the problem at an early stage and avoid further complications.
However, even though the performance of these algorithms is promising, there is need for
improvement in order to meet the requirements for clinical application [5,26,27]. Thus, the
aim of this study was to develop an AI able to detect PL on panoramic radiographs. This
was done using CNN in a two-step approach that involved the use of a detector followed by
a classifier. We hypothesized that an AI tool trained on healthy and non-healthy periapical
areas in panoramic radiographs could detect the periapical regions of the teeth and classify
them into healthy apices and apices with periapical lesions.

2. Materials and Methods
2.1. Dataset and Preprocessing

This retrospective diagnostic cohort study was conducted after obtaining approval
from the Institutional Research Board (IRB) of the University of Sao Paolo. The approved
protocol was given the Ethics Committee number 3.239.265. We collected 713 panoramic
radiographs (width: 2879, height: 1563 pixels) from patients treated by Dr Claudio Costa
and Dr Arthur Cortes using a panoramic imaging system (Cranex D, Soredex, Tuusula,
Finland) set-up with the following parameters: 85 kVp, 10 mA, exposure time 17.6 s,
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CCD sensor size 48 micrometer, and focal spot size 0.5 mm. We de-identified patients’
information by cropping the panoramic radiographs to size 2250, 1000 pixels) to include
only the dental radiograph and exclude patient information registered on the image. We
excluded images with unacceptable quality, containing severe artifacts, and radiographs
of mixed dentition and edentulous patients. Three examiners (A. D., E.A., and R. BH)
independently annotated the Periapical Root Areas (PRAs) as having Periapical Lesion
(PL) or not having periapical lesion (Healthy (H)) in duplicate; a fourth examiner (S.O.)
settled discrepancies between examiners. At the time of the conduction of the study all
above-mentioned examiners had more than 15 years of clinical experience. The examiners
were calibrated on 10 OPGs to address discrepancies between them, and then, recalibrated
using 20 OPGs and a Kappa index for inter examiner agreement in detecting PLs of 90%
was achieved. Upon labeling, only 5% of the cases need the consultation of the fourth
examiner to settle discrepancies. We labelled 18,618 PRAs, which contained 1732 unhealthy
PRAs (PL), and 16,886 of healthy PRA (H).

The exact location of the PRAs and its labeling as PL or H was done by drawing a
bounding box at each PRA using labelImg, an open-source annotation tool that allows
annotations in xml Pascal VOC format. We converted the annotation format from xml
to coco format as a compatibility requirement to use the Detectron2 framework. In all
experiments, we shuffled our dataset once and followed 80–20 sampling split for training
and testing datasets, respectively. We dedicated 10% of the training dataset for validation
to prevent overfitting when tuning the network hyper-parameters. Table 1 summarizes the
applied data preparation methods.

Table 1. Summary of Applied Data Preprocessing Techniques.

Model Type/Format Offline
Preparation Online Preparation Resolution

Detector Dental panoramas
JPG images Cropping

Normalize
Standardize

Random Flipping
1333 × 800

Classifier PRAs JPG images Cropping
Normalize

Random rotation
Random zoom

75 × 75

2.2. Proposed Method

The proposed method consisted of two main CNNs: a detector that we called Periapi-
cal Root Area Detection Model, and a classifier that we called Periapical Lesion Classifica-
tion Model. Our model accepts a panoramic radiograph as input and outputs the location
of the detected periapical lesion on the given panoramic image. The detector localized
PRAs using a bounding-box-based object detection model, while the classifier classified
the extracted PRAs as PL or H. We developed our model on GoogleColab PRO + notebook
using Python.

The overall proposed system workflow is shown in Figure 1. The entire panoramic
radiograph is used as an input to the presented system. The PRA Detection Model with
Faster R-RCNN processes the panoramic radiograph to detect and define the boundaries
of each PRA by a bounding box. The proposed system then crops all predicted bounding
boxes, which are the PRAs extracted by the system, and then feeds them to the PL Classifier
with Inception v3. The PL Classifier in turn classifies each cropped PRA as Periapical
Lesion (PL) or Healthy (H). The system finally outputs in red only the bounding boxes
corresponding to Periapical Lesions with a confidence score. A confidence score is a
percentage calculated by the AI, indicating how sure the AI is that the output is correct.
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Figure 1. Proposed System Architecture and Workflow of the AI developed in this study. Input:
Panoramic radiograph. The system first performs ROI extraction on the input images using the
“Faster RCNN” algorithm. Then, the system classifies the extracted PRAs into two possible categories:
apices with periapical lesion (PL) or healthy apices (H); this was done using the “Inception v3”
algorithm. The final output: the detected periapical lesions depicted by red bounding boxes with the
system confidence score depicted on them.

2.2.1. Periapical Root Area (PRA) Detection Model

We employed the Faster R-CNN object detection model using the Detectron2 detection
platform for localizing the region of interest (ROI), which is the PRA on a panoramic
radiograph. Detectron2 provides state-of-the-art detection algorithms, such as object
detection, semantic, instance, and panoptic segmentation. We tested Detectron2 implemen-
tation of Faster R-CNN using different backbone models and configurations. The results
showed that Faster R-CNN ResNet X101 base model achieved the highest detection rates
on panoramic radiographs.

We performed training, validation and testing experiments with NVIDIA Tesla P100
and T4 on GoogleColab notebook. We used Detectron2’s default data preprocessing settings
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for image flipping and resizing (to 1333/800 pixels). Aspect ratios were maintained while
resizing. We used 513 panoramic radiographs for training, 57 images for validation, and
143 images for testing. We selected a batch size of 4 due to the high-resolution images.
We initialized the Faster R-CNN base model from the ResNet101 pretrained ImageNet
classifier. We initially used a learning rate of 0.001, but we decreased the learning by half at
epoch 1000 because learning stagnated. We trained until convergence. The model achieved
the best performance on iteration 1500.

During the inference time, we fed the entire panoramic radiograph, with
2250 × 1000 resolution, as input to our detection model. The detector then localized
all PRAs on a given panoramic radiograph by drawing a bounding box on each detected
PRA. We used Detectron2 default Intersection over Union (IoU) and Non-Maximum Sup-
pression (NMS) thresholds, which by default set to 0.5. On average, it took 0.57 s per image
using NVIDIA Tesla T4 to detect all PRAs in a given panoramic image. We developed a
custom function that returned the detected PRA coordinates, crops, and processes each
detected PRA to prepare it for the lesion classification task.

2.2.2. Periapical Lesion Classification Model

Before feeding the cropped PRA images into the classification model for training
purpose, we applied the below data preprocessing augmentation techniques to increase
our training dataset since we have limited number of unhealthy samples:

1. Normalized pixel values of each image to range (0, 1)
2. Resize images to 75 × 75
3. Random image rotation between 0–20◦

4. Random zoom ranging between 0.8 to 1.2
5. Shuffle images

We employed a fine-tuned Inception v3 classification model for classifying detected
PRAs as healthy (H) or lesion (PL) using Keras framework. We used a balanced subset
of the original dataset, which included 3249 PRAs, 1593 of unhealthy PRAs (PLs) and
1656 of healthy PRAs (H). We divided this dataset into training, and testing following
the 80:20 ratio. We initialized the model from an ImageNet pretrained inception weights
excluding the classification layer. For feature extraction, we froze all layers, stacked and
trained only the classification layer. We optimized the network parameters using the Adam
optimizer with an initial learning rate of 1 × 10− 5. We decreased the learning rate by half
when learning stagnated. We selected a dropout rate of 0.2 to avoid overfitting. We trained
for 100 epochs. We then unfroze and re-trained the top layers to fine-tune the network. We
optimized the network using Adam optimizer with learning rate of 1 × 10− 7 and trained
for another 100 epochs.

During inference time, we fed the detected PRAs as input to the classifier; which
in turn labeled each PRA as H or PL. On average, it took 5 milliseconds to classify a
PRA from our test dataset. We developed a custom visualization function to visualize
PRAs, which our classifier labeled as PL by drawing a bounding box around the detected
periapical lesion.

2.3. Evaluation Criteria

We divided the evaluation metrics of the proposed method into two main groups:
accuracy of PRA detection and accuracy of periapical lesion classification.

2.3.1. Accuracy of PRA Detector

Average Precision (AP) is commonly used to measure the accuracy of object detection
models. We used an IoU of 0.5 to calculate AP, which is also known as AP50. Average
precision considers both the precision and recall detection performance. A detection is
considered successful using the IoU by checking whether a bounding box overlaps with
the corresponding groundtruth box by a minimum of 50%.



Appl. Sci. 2023, 13, 1516 6 of 11

2.3.2. Accuracy of Periapical Lesion Classifier

We used accuracy, sensitivity, and specificity to measure the performance of the
periapical lesion classifier. These classification metrics were calculated as below:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

3. Results

Our proposed solution consisted of two main CNNs: PRA detector and lesion classifier.
First, the entire panoramic radiograph was used as an input to the presented system. Then
the detection model (i.e., detector) was used to process the panoramic radiograph to
localized and define the boundaries of each PRA by a bounding box. Finally, the PRAs
extracted by the system, were fed them to the PL Classifier. The PL Classifier in turn
classified each cropped PRA as Periapical Lesion (PL) or Healthy (H). To automate the
process of periapical lesion localization and classification, our proposed solution combined
the detection and classification models as shown in Figure 1. The system final output was
an image showing the periapical lesion on the OPG.

Our proposed detector identified the PRAs using a custom function based on the
model aster R-RCNN. We tested two strategies to train our detector. In the first strategy
(method 1) we only included unhealthy PRA (PL) for the training, while for the second
strategy (method 2) we included both healthy (H) and unhealthy (PL). We trained for
1000 iterations and evaluated the detection performance of both methods based on Average
Precision (AP) calculated at intersection-over-union (IOU) =0.5 on a test set of 143 images.
Method 1 achieved AP50 of 38.5% while method 2 achieved AP50 of 74.95% at iteration
1000. We observed that training the detector on PRAs including H and PL classes achieved
faster convergence and higher detection rates. We therefore adopted this approach in our
further experiments. The proposed system then cropped and normalized all predicted
bounding boxes that were then submitted to the classifier model. Figure 2 shows one
example of the output of the detection model. The detector was able to adapt to the size
and extension of the periapical region automatically depending on the size and extension
of the roots and the lesions. This was demonstrated by the high AP50 of the algorithm.
Each periapical area was labeled independently regardless of whether it was found on
single rooted or multi rooted teeth.

The periapical lesion classifier was responsible to label the bounding box of each
detected PRAs as PL or H using a fine-tuned CNN. We trained and validated three classifi-
cation models (VGG16, Inception v3, and Xception) on a balanced subset of the original
dataset consisted of 3249 PRAs. As a baseline, all models were initialized from the Ima-
geNet pre-trained weights and trained for 50 epochs. We calculated the accuracy, sensitivity,
and specificity on a test set of 707 PRA to assess the performance of these classifiers at
epoch 50 as shown in Table 2. Our findings showed that Inception v3 outperformed both
VGG16 and Xception in all metrics. Therefore, we selected Inception v3 as the classification
model in the proposed architecture. We resumed training until convergence. Figure 3
shows Inception v3’s learning curves and error rates, where it shows that the model con-
verged on epoch 100. The final performance results of the Inception model are shown in
Table 3. In this test evaluating the performance of the final model, a total of 312 PRAs
were successfully classified as H, and 282 PRAs were successfully classified as PL. While
48 PRAs were incorrectly classified as PL and 65 PRAs were incorrectly labelled as H. The
classifier accuracy, sensitivity, and specificity were 84, 81, and 86, respectively.
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Figure 2. Detection of periapical areas (PRA) on panoramic radiograph by clinicians and by the AI.
First image: OPG showing the PRA annotated by the expert clinician. Second image: OPG showing
the proposed PRA generated by the detection model for the same image. All PRAs were detected by
the proposed model (Faster RCNN).

Table 2. Evaluation of the performance of the different classification models tested.

Metric Inception v3 VGG16 Xception

Accuracy% 82 79 78
Sensitivity% 86 76 77
Specificity% 79 82 79

Figure 3. Graph depicting the learning curves and error rates of the Inception v3 model we used to
classify the periapical areas. The graph shows the training accuracy (Train Acc.), the training loss
(Train Loss), the validation accuracy (Val. Acc.) and the validation loss (Val. Loss) as a function of
epochs. Training and validation loss decreased over time and stabilized at epoch 100. Training and
validation accuracy on the other hand increased over time and stabilized at epoch 100. This indicated
the convergence of the model after 100 epochs.
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Table 3. Confusion matrix and classification metrics assessing the final performance of Inception v3
on the test set.

Predicted H Predicted PL

Actual H 312 48
Actual PL 65 282

Accuracy% 84
Sensitivity% 81
Specificity% 86

The detection and classification models were combined in order to produce our overall
solution that was able to automatically identify the periapical lesions in the OPGs with red
bounding boxes corresponding to Periapical Lesions. These boxes included a confidence
score that represented a percentage calculated by the AI indicating how sure the AI was the
output is correct. The overall solution was tested on a test set of 299 PL on 143 panoramic
radiographs. The accuracy, sensitivity, and specify of the overall solution were 84.6%,
72.2%, and 85.6%, respectively. Figure 4 shows representative examples of the final output
generated by the proposed method. This final tool was designed to detect periapical areas
and ignore anything else in the radiograph, thus it was not affected by the presence of
distractors and artifacts such as implants and crowns, also, the size of the detection box
was able to adapt to the actual PRA, and it discriminated between different apices on the
same tooth. On average, the proposed combined AI system took 2.3 s to detect and classify
all PRAs as H or PL on a panoramic radiograph.

Figure 4. Performance of the proposed AI system for periapical lesion detection. This figure shows
OPGs of three different cases (a–c) labeled by the clinician (left) and the AI (right). For each row,
the OPG on the left shows the boxes annotated by the expert including PL and healthy PRAs,
while on the right, we show the same OPG labeled by the AI with red boxes indicating the PL
detected by the AI. The confidence score calculated by the AI system can be found on top of each red
boxes. Case “(a)” shows a periapical lesion detected in a multirooted tooth (#36). Case “(b)” shows
two periapical lesions in teeth with root canal treatments and crowns in a patient with dental implants.
Case “(c)” shows a case with a single PL in a multirooted tooth (#26).
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4. Discussion

The experimental results of this study showed the effectiveness of the proposed model
to detect periapical lesions on panoramic radiographs. This model could be useful in clinical
application for quick and easy detection of periapical lesions; on average, the proposed AI
system takes 2.3 s to detect and classify all PRAs as H or PL on a panoramic radiograph.

In the present study, we proposed a two-stage deep learning architecture for periapi-
cal lesion detection on panoramic radiographs. We employed Faster-RCNN to localize
PRAs and Inception v3 to classify PRA as PL or H. Breaking the task of PL detection into
two steps, detection and classification, presented a faster learning convergence and higher
detection rates (AP50 74.95%) compared to the baseline model in which we trained purely
on PL samples (AP50 38.5%) The Inception-v3 classifier achieved the highest performance
compared to other models (VGG16, Xception). When merging both detection and classi-
fication models, the overall accuracy, sensitivity, and specificity were 84.6%, 72.2%, and
85.6%, respectively.

Few studies addressed the problem of periapical lesions detection on panoramic
radiographs using deep learning. Ekert et al. [5] proposed a classification model using a
small dataset (85 panoramic radiographs). The model was not sensitive enough to be used
clinically, and was limited in its ability to automate the detection of the region of interest,
PRAs, as it was trained on manually cropped patches of the individual teeth.

In our study, we proposed an AI architecture that can automatically detect and classify
PL on an entire panoramic radiograph without the need for manual processing. Auto-
matic evaluation of panoramic radiological images was also explored in another study that
assessed the reliability of a CNN based automatic software “Diagnocat” [26]. Upon evalua-
tion of thirty panoramic radiographs, their CNN based automatic protocol showed very
high sensitivity with respect to dental fillings, endodontically treated teeth, residual roots,
periodontal bone loss, missing teeth, and prosthetic restorations. However, the reliability
obtained for caries and periapical lesions assessments was unacceptable (ICC = 0.681 and
0.619, respectively).

Two other studies followed a segmentation approach to localize PL on panoramic
radiographs [27,28]. Endres et al. [27] presented a deep learning-based model trained on
2902 de-identified panoramic radiographs. In order to validate the algorithm 24 oral and
maxillofacial surgeons assessed the presence or appearance of periapical radiolucencies
on a separate set of panoramic radiographs. The findings of this study showed that the
developed model outperformed 14 out of 24 surgeons. Their model achieved a precision of
67% and sensitivity of 51% on a test set of 102 radiographs. Bayrakdar et al. [28] employed
a UNet model trained on 470 panoramic radiographs to segment PLs. The model was
tested on a small dataset consisting of 63 PL on 47 panoramic radiographs. The sensitivity,
precision, and F1-score of UNet were 0.92, 0.84, and 0.88, respectively [28]. Our study was
validated in a much larger sample of 299 PL on 143 panoramic radiographs, and still we
achieved high accuracy, sensitivity, and specificity (84.6%, 72.2%, and 85.6%, respectively).

In addition to OPG, other radiographic modalities have also been investigated for
automated diagnosis of PL. In one study, CBCT images of 153 periapical lesions were
evaluated by deep CNN, which detected 142 periapical lesions, along with the location and
volume of lesions [29]. Another study used using CNN on periapical radiographs showed
the possibility of automatically identifying and judging periapical lesions with a success
rate of as high as 92.75% [11].

Diagnosing and documenting pathologies on dental radiographs is time-consuming
and even though general and specialist dentists are well trained to do this, they are
not exempt of human error. In fact, most complications in dental practice stem from
misdiagnosis, which often involves missing out on noticing periapical lesions [30]. In
this sense, the proposed technology could help clinicians fill dental charts, and minimize
diagnosis errors in the detection of periapical lesions. In fact, a previous study has already
demonstrated that AI could outperform dental specialists in detection of apical lesions [27].
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This study has several limitations. It is based on panoramic radiographs from a single
source restricted to patients from Brazil. Even though our model achieved excellent image
recognition and detection results, data collection from multiple other sources and sites
would be required in the future to increase the robustness of the algorithm and establish
generalization of the applicability of the model across different sites. Another limitation
of this study was the use of panoramic radiographs of only permanent dentition. Even
though our study included panoramic radiographs for patients with a wide range of ages
(between 11 and 84 years of age), mixed dentition was excluded, thus future studies would
be needed to address an optimized algorithm for both permanent and mixed dentition.
Another limitation of our study was that the OPGs used for training were only diagnosed
visually by inspection of the radiograph; more accurate diagnosis necessitates the inclusion
of clinical data such as percussion, thermal and electric pulp tests, which have not been
taken into account here. Thus, future studies could further improve the performance of
the algorithms by training them on images with diagnoses confirmed by a wider range of
diagnostic techniques.

5. Conclusions

In the present study, the proposed AI tool based on “Faster-RCNN” and Inception-v3
was able to detect the periapical region of the teeth on panoramic radiographs and classify
them into healthy and periapical lesions achieving an accuracy of 84.6%.
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