
Grešová et al. BMC Genomic Data (2023) 24:25
https://doi.org/10.1186/s12863-023-01123-8

DATABASE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomic Data

Genomic benchmarks: a collection
of datasets for genomic sequence classification
Katarína Grešová1,2, Vlastimil Martinek1,2, David Čechák1,2, Petr Šimeček1*    and Panagiotis Alexiou1 

Abstract 

Background  Recently, deep neural networks have been successfully applied in many biological fields. In 2020, a
deep learning model AlphaFold won the protein folding competition with predicted structures within the error toler-
ance of experimental methods. However, this solution to the most prominent bioinformatic challenge of the past 50
years has been possible only thanks to a carefully curated benchmark of experimentally predicted protein structures.
In Genomics, we have similar challenges (annotation of genomes and identification of functional elements) but cur-
rently, we lack benchmarks similar to protein folding competition.

Results  Here we present a collection of curated and easily accessible sequence classification datasets in the field of
genomics. The proposed collection is based on a combination of novel datasets constructed from the mining of pub-
licly available databases and existing datasets obtained from published articles. The collection currently contains nine
datasets that focus on regulatory elements (promoters, enhancers, open chromatin region) from three model organ-
isms: human, mouse, and roundworm. A simple convolution neural network is also included in a repository and can
be used as a baseline model. Benchmarks and the baseline model are distributed as the Python package ‘genomic-
benchmarks’, and the code is available at https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks.

Conclusions  Deep learning techniques revolutionized many biological fields but mainly thanks to the carefully
curated benchmarks. For the field of Genomics, we propose a collection of benchmark datasets for the classification
of genomic sequences with an interface for the most commonly used deep learning libraries, implementation of the
simple neural network and a training framework that can be used as a starting point for future research. The main aim
of this effort is to create a repository for shared datasets that will make machine learning for genomics more compa-
rable and reproducible while reducing the overhead of researchers who want to enter the field, leading to healthy
competition and new discoveries.

Keywords  Genomics, Dataset, Benchmark, Deep learning, Convolutional neural network

Background
Recently, deep neural networks have been successfully
applied to identify functional elements in the genomes
of humans and other organisms, such as promoters [1],
enhancers [2], transcription factor binding sites [3], and
others. Neural network models have been shown to be
capable of predicting histone accessibility [4], RNA-pro-
tein binding [5], and accurately identify short non-coding
RNA loci within the genomic background [6].

However, deep neural network models are highly
dependent on large amounts of high-quality training data

*Correspondence:
Petr Šimeček
petr.simecek@ceitec.muni.cz
1 Centre for Molecular Medicine, Central European Institute of Technology
(CEITEC), Masaryk University, Brno, Czechia
2 National Centre for Biomolecular Research, Faculty of Science, Masaryk
University, Brno, Czechia

BMC

OI)
Chackfar
updates

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-023-01123-8&domain=pdf
http://orcid.org/0000-0002-2922-7183
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks

Page 2 of 9Grešová et al. BMC Genomic Data (2023) 24:25

[7]. Comparing the quality of various deep learning mod-
els can be challenging, as the authors often use different
datasets for evaluation, and quality metrics can be heav-
ily influenced by data preprocessing techniques and other
technical differences [8].

Many computational fields have developed established
benchmarks, for example, SQuAD for question answer-
ing [9], IMDB Sentiment for text classification [10], and
ImageNet for image recognition [11]. Benchmarks are
crucial in driving innovation. The annual competition
for object identification [12] catalyzed the boom in AI,
leading in just seven years to models that exceed human
capabilities.

In biology, a great challenge over the past 50 years has
been the protein folding problem. To compare different
protein folding algorithms, the community introduced
the Critical Assessment of protein Structure Prediction
(CASP) [13] challenge benchmark that provides research
groups with the opportunity to objectively test their
methods. In 2021, AlphaFold [14] won this competition
producing predicted structures within the error tolerance
of experimental methods. This carefully curated bench-
mark led to the solution of the most prominent bioinfor-
matic challenge of the past 50 years.

In Genomics, we have similar challenges in annota-
tion of genomes and identification and classification of
functional elements, but currently we lack benchmarks
similar to CASP. Practically, machine learning tasks
in Genomics commonly involve the classification of
genomic sequences into several categories and/or con-
trasting them to a genomic background (a negative set).
For example, a well-studied question in Genomics is the
prediction of enhancer loci on a genome. For this ques-
tion, the benchmark situation is highly fragmented. As
an example, [15] proposed a benchmark dataset based
on the chromatin state from multiple cell lines. Both
enhancer and non-enhancer sequences were retrieved
from experimental chromatin information. The CD-HIT
software [16] was used to filter similar sequences, and the
benchmark dataset was made available as a pdf file. How-
ever, information stored in a pdf file is suitable for human
communication, but computers cannot easily extract data
from these files. Despite not being easily machine read-
able, it was used by many subsequent publications ([2,
17–26] or [27]) as a gold standard for enhancer predic-
tion, highlighting the need for benchmark datasets in this
field. Other common sources of enhancer data are the
VISTA Enhancer Browser [28], the FANTOM5 [29], the
ENCODE project [30], and the Roadmap Epigenomics
Project [31] which provide a wealth of positive samples
but no negatives. A researcher would need to implement
their own method of negative selection, thus introducing
individual selection biases to the samples.

Another highly studied question in Genomics is the
prediction of promoters. Benchmark situation in this
field has its own problems. For example, [32] extracted
positive samples from EPD [33] and the non-promoter
sequences were randomly extracted from coding regions
and non-coding regions, and used as two negative sets.
This method for creating a negative set is not an estab-
lished one. Other authors used only coding sequences
or only non-coding sequences as a negative set [34] or
combined coding and non-coding sequences as a one
negative set [35–37]. Even [32] are already pointing to the
problem of missing benchmarks and reproducibility, say-
ing that it is difficult to compare their results with other
published results due to differences in data and experi-
mental protocol. Several years later, [38] created their
own dataset and reported similar problems. They were
unable to compare the results with other published tools
because the datasets were derived from different sources,
used different proprocessing procedures, or were not
made available at all.

In this paper, we propose a collection of benchmark
datasets for the classification of genomic sequences,
focusing on ease of use for machine learning pur-
poses. The datasets are distributed as a Python package
’genomic-benchmarks’ that is available on GitHub1 and
distributed through The Python Package Index (PyPI)2.
The package provides an interface that allows the user to
easily work with the benchmarks using Python. Included
are utilities for data processing, cleaning procedures, and
summary reporting. Additionally, it contains functions
that make training a neural network classifier easier, such
as PyTorch [39] and TensorFlow [40] data loaders and
notebooks containing basic deep learning architectures
that can be used as templates for prototyping new meth-
ods. Importantly, every dataset presented here comes
with an associated notebook that fully reproduces the
dataset generation process, to ensure transparency and
reproducibility of benchmark generation in the future.

Construction and content
Overview of Datasets
The currently selected datasets are divided into three cat-
egories. There is a group of datasets focused on human
regulatory functional elements, either produced from
mining the Ensembl database, or from published data-
sets used in multiple articles. For promoters, we have
imported human non-TATA promoters [41]. For enhanc-
ers, we used human enhancers from [42] paper, Ensembl
human enhancers from the FANTOM5 Project [29] and

1  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks
2  https://​pypi.​org/​proje​ct/​genom​ic-​bench​marks/

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://pypi.org/project/genomic-benchmarks/

Page 3 of 9Grešová et al. BMC Genomic Data (2023) 24:25 	

drosophila enhancer [43]. We have also included open
chromatin regions and multiclass datasets composed
of three regulatory elements (enhancers, promoters,
and open chromatin regions), both constructed from
the Ensembl regulatory build [44]. The second category
consists of ’demo’ datasets that were computationally
generated for this project, and focus on classification of
genomic sequences between different species or types of
transcripts (protein coding vs non-coding). Finally, the
third category ’dummy’ has a single small dataset which
can be used for quick prototyping of methods due to its
small size. From the point of view of the model organ-
ism, our datasets include primarily human data, but also
mouse (Mus musculus), and roundworm (Caenorhabditis
elegans) and fruit fly (Drosophila melanogaster). An over-
view of available datasets is given in Table 1 and simple
code for listing all currently available datasets in Fig. 1.
Additional examples of usage can be found in the pro-
ject’s README (dataset info, downloading the dataset,
getting dataset loader), TensorFlow/PyTorch workflows
in ‘notebooks‘ folder and finally ‘experiments‘ folder con-
tains papermill runs for each combination of a dataset
and a framework.

The Human enhancers Cohn dataset was adapted
from [42]. Enhancers are genomic regulatory functional

elements that can be bound by specific DNA binding
proteins so as to regulate the transcription of a particular
gene. Unlike promoters, enhancers do not need to be in
a close proximity to the affected gene, and may be up to
several million bases away, making their detection a dif-
ficult task.

The Drosophila enhancers Stark dataset was adapted
from [43]. These enhancers were experimentally validated
and we excluded the weak ones. Original coordinates
referred to the dm3 [45] assembly of the D. melanogaster
genome. We used pyliftover3 tool to map coordinates to
the dm6 assembly [46]. Negative sequences are randomly
generated from drosophila genome dm6 to match lengths
of positive sequences and to not overlap them.

The Human enhancers Ensembl dataset was con-
structed from Human enhancers from The FANTOM5
project [29] accessed through the Ensembl database [47].
Negative sequences have been randomly generated from
the Human genome GRCh38 to match the lengths of
positive sequences and not overlap them.

The Human non-TATA promoters dataset was adapted
from [41]. These sequences are of length 251bp: from

Table 1  Description of datasets in genomic benchmark package. Several pieces of information are provided about each dataset: a)
Name is unique identification of dataset in genomic benchmark package b) # of sequences is combined count of all sequences from
all classes c) # of classes is count of all classes in a dataset d) Class ratio is a ratio between number of sequences in a biggest class
and number of sequences in a smallest class e) Median length is computed for all sequences from all classes in a dataset f) Standard
deviation is also computed for all sequences from all classes in a dataset

Name # of sequences # of classes Class ratio Median length Standard
deviation

dummy_mouse_enhancers_ensembl 1210 2 1.0 2381 984.4

demo_coding_vs_intergenomic_seqs 100000 2 1.0 200 0.0

demo_human_or_worm 100000 2 1.0 200 0.0

drosophila_enhancers_stark 6914 2 1.0 2142 285.5

human_enhancers_cohn 27791 2 1.0 500 0.0

human_enhancers_ensembl 154842 2 1.0 269 122.6

human_ensembl_regulatory 289061 3 1.2 401 184.3

human_nontata_promoters 36131 2 1.2 251 0.0

human_ocr_ensembl 174756 2 1.0 315 108.1

Fig. 1  Python code for listing all available dataset in the Genomic benchmarks package

3  https://​github.​com/​konst​antint/​pylif​tover

>>> from genomic_benchmarks.data_check import list_datasets
>>>
>>> list_datasets()
['dummy_mouse_enhancers_ensembl' , 'demo_coding_vs_intergenomic_seqs' ,
'demo_human_or_worm' , 'drosophila_enhancers_stark' , 'human_enhancers_cohn' ,
'human_enhancers_ensembl' , 'human_ensembl_regulatory' , 'human_nontata_promoters' ,
'human_ocr_ensembl']

https://github.com/konstantint/pyliftover

Page 4 of 9Grešová et al. BMC Genomic Data (2023) 24:25

-200 to +50bp around transcription start site (TSS). To
create non-promoters sequences of length 251bp, the
authors of the original paper used random fragments of
human genes located after first exons.

The Human ocr Ensembl dataset was constructed
from the Ensembl database [47]. Positive sequences are
Human Open Chromatin Regions (OCRs) from The
Ensembl Regulatory Build [44]. Open chromatin regions
are regions of the genome that can be preferentially
accessed by DNA regulatory elements because of their
open chromatin structure. In the Ensembl Regulatory
Build, this label is assigned to open chromatin regions,
which were experimentally observed through DNase-seq,
but covered by none of the other annotations (enhancer,
promoter, gene, TSS, CTCF, etc.). Negative sequences
were generated from the Human genome GRCh38 to
match the lengths of positive sequences and not overlap
them.

The Human regulatory Ensembl dataset was con-
structed from Ensembl database [47]. This dataset has
three classes: enhancer, promoter and open chromatin
region from The Ensembl Regulatory Build [44]. Open
chromatin region sequences are the same as the positive
sequences in the Human ocr Ensembl dataset.

Reproducibility
The pre-processing and data cleaning process we fol-
lowed is fully reproducible. We provide a Jupyter note-
book that can be used to recreate each given dataset, and
can be found in the docs folder of the GitHub reposi-
tory4. All dependencies are provided, and a fixed random
seed is set so that the notebook will always produce the
same data splits.

Each dataset is divided into training and testing sub-
sets. For some datasets, which contain only positive sam-
ples, we had to generate appropriate negative samples
(dummy mouse enhancers Ensembl, drosophila enhanc-
ers stark, human enhancers Ensembl and human open
chromatin region Ensembl dataset). Negative samples
were selected from the same genome as the positive sam-
ples. For each positive sample, we generated a random

interval in the genome with the same length as a given
sample. We picked only those intervals not overlapping
with any of the positive samples.

Data format
All samples were stored as genomic coordinates, and
datasets originally provided as sequences (human
enhancers Cohn, human nonTATA promoters) were
mapped to the reference using the ‘seq2loc‘ tool included
in the package. Data were stored as compressed (gzipped)
CSV tables of genomic coordinates, containing all infor-
mation typically found in a BED format table. Column
names are id, region, start, end, and strand. Each data-
set has train and test subfolders and a separate table for
each class. Furthermore, each dataset contains a YAML
information file with metadata such as its version, the
names of included classes, and links to sequence files of
the reference genome. The stored coordinates and linked
sequence files were used to produce the final datasets,
ensuring the reproducibility of our method. For more
information, visit the datasets folder of the GitHub
repository5. To speed up this conversion from a list of
genomic coordinates to a locally stored folder of nucleo-
tide sequences, we provide a cloud based cache of the full
sequence datasets which can be used simply by setting
the use_cloud_cache=True option.

Utility and discussion
Easy data access tools
Python package with the data is installed using one
command line command: pip install genomic-
benchmarks. The installed package contains ready-
to-use data loaders for the two most commonly used
deep learning frameworks, TensorFlow and PyTorch.
This feature is important for reproducibility and for the
adoption of the package, particularly by people with lim-
ited knowledge of genomics. Data loaders allow the user
to load any of the provided datasets using single line of
code. Full examples including imports and accessing one
sample of the data are shown in Figs. 2 and 3 for PyTorch
and TensorFlow respectively. However, our data are not

Fig. 2  Python code for loading dataset as a PyTorch Dataset object using get_dataset() function. This function takes three arguments: name
of dataset, train or test split, and version of the dataset

4  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks/​tree/​main/​
docs

5  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks/​tree/​main/​
datas​ets

>>> from genomic_benchmarks.dataset_getters.pytorch_datasets import get_dataset
>>>
>>> dset = get_dataset('human_nontata_promoters' , split = 'train' , version =O)
»> dset [O]
('CAATCTCACAGGCTCCTGGTTGTCTACCCATGGACCCAGAGGTTCTTTGACAGCTTTGGCA ... TCCAGGAGATGT' , 0)

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/docs
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/docs
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/datasets
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/datasets

Page 5 of 9Grešová et al. BMC Genomic Data (2023) 24:25 	

bound to any particular library or a tool. We provide an
interface to the two most commonly used deep learn-
ing frameworks, but data are easily accessible using even
plain Python, as shown in Fig. 4. Furthermore, we made
Genomic benchmarks available as Hugging Face data-
sets6, expanding their acessibility.

Baseline model
On top of ready-to-use data loaders, we provide tools
for training neural networks and simple convolutional
neural network (CNN) architecture (adapted from [48]).
Demonstrative Jupyter notebook is provided in the
notebooks folder of the GitHub repository7, PyTorch
version is also shown in Fig. 5, and it can be used as a
starting point for further research and experimentation

Fig. 3  Python code for loading the dataset as TensorFlow Dataset object. First, we download dataset to our local machine and then we use
TensorFlow function text_dataset_from_directory() to create a Dataset object

Fig. 4  Python code for downloading and acessing the dataset as a raw text files. First, we download dataset to our local machine and then we
sequentialy read all files and store the samples in a dictionary. A full example can be found at https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​
bench​marks/​blob/​main/​noteb​ooks/​How_​To_​Train_​BERT_​Class​ifier_​With_​HF.​ipynb

6  https://​huggi​ngface.​co/​katar​inagr​esova
7  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks/​tree/​main/​
noteb​ooks

>>> import tensorflow as tf
>>> from genomic_benchmarks.loc2seq import download_dataset
»>
>>> seq_path = download_dataset("human_nontata_promoters" , version =0)
Downloading 1VdUg0Zu into / home / user / .genomic_benchmarks / human_nontata_promoters. zip
... Done.
Unzipping ... Done.
»>
>>> BATCH_SIZE = 64
>>> CLASSES = ['negative' , 'positive']
>>>
>>> train_dset = tf.keras.preprocessing.text_dataset_from_directory(

directory =seq_path / 'train'
batch_size =BATCH_SIZE,
class_names =CLASSES)

Found 27097 files belonging to 2 classes.
»>
»> list (train_dset) [0] [0] [0]
<tf.Tensor : shape = (), dtype =string, numpy =b 'TCCTGCCTTTCCACTTGCACCAGT ... TGCTGCGGGCGG' >

>>> from genomic_benchmarks.loc2seq import download_dataset
>>> from pathlib import Path
>>>
>>> seq_path = download_dataset("human_nontata_promoters" , version =0)
Downloading 1VdUg0Zu into / home / user / .genomic_benchmarks / human_nontata_promoters. zip
... Done.
Unzipping ... Done.
>»
>>> tmp_dict = {}
>>> for dset in ['train' , 'test'] :

for c in ['negative' , 'positive']:
for f in Path(seq_path / f ' { dset } / { c } /').glob('*.txt') :

txt = f.read_text()
tmp_dict [f.stem] = (dset, int (c == "positive"), txt)

>>>
>» tmp_dict
{ '7227' : ('train' , 0, 'TGGTCGTTAAAAAGATGCAGGCAGAAGGCA ... '),

'11037' : ('train' , 0, 'GCAGTGGTGAGGACCTGCATCCTGCATGTC ... '),
... }

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/blob/main/notebooks/How_To_Train_BERT_Classifier_With_HF.ipynb
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/blob/main/notebooks/How_To_Train_BERT_Classifier_With_HF.ipynb
https://huggingface.co/katarinagresova
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/notebooks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/notebooks

Page 6 of 9Grešová et al. BMC Genomic Data (2023) 24:25

with genomic benchmark data. CNN is an architecture
that is able to find input features without feature engi-
neering and has a relatively small number of parameters
due to weights sharing (see [49] for more). Our imple-
mentation consists of three convolutional layers with 16,
8, and 4 filters, with a kernel size of 8. The output of each
convolutional layer goes through the batch normaliza-
tion layer and the max-pooling layer. The output of the
last set of layers is flattened and goes through two dense
layers. The last layer is designed to predict probabilities
that the input sample belongs to any of the given classes.
The architecture of the model is shown in Fig. 6. To get
a baseline estimate for researchers using these bench-
marks, we fit the CNN model described above to each
dataset included in our collection. Training notebooks
are provided in an experiments folder of the GitHub
repository8. The models were trained for 10 epochs with
batch size 64. The accuracy and F1 score for PyTorch
and Tensorflow CNN models on all genomic benchmark
datasets are shown in Table 2. In addition, we provide an

example notebook how to train a DNABERT model [50]
using Genomic Benchmarks9.

Future development
We are aware of the limitations of the current reposi-
tory. While we strive to include diverse data, still most
of our benchmark datasets are balanced, or close to bal-
anced, having similar length of sequences and a limited
number of classes. Our main datasets all come from the
human genome, and all deal with regulatory features. In
the future, we would like to increase the diversity of our
datasets to be able to diagnose the model’s sensitivity to
those factors. Many machine learning tasks in Genom-
ics consist of binary classification of a class of Genomic
functional elements against a background. However, it
can be beneficial to start expanding the field into multi-
class classification problems, especially for functional
elements that have similar characteristics to each other
against the background. We will expand our benchmark
collection to include more imbalanced datasets, and
more multi-class datasets.

Fig. 5  Python code showing the whole process of getting the dataset, tools, model and training the CNN model on the dataset. Thanks to out
package, necessary code has only few lines and is easily understandable and expandable

8  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks/​tree/​main/​
exper​iments

9  https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​bench​marks/​blob/​main/​
noteb​ooks/​How_​To_​Train_​BERT_​Class​ifier_​With_​HF.​ipynb

Imports
import torch
from torch.utils.data import DataLoader
from torchtext.data.utils import get_tokenizer
from genomic_benchmarks.dataset_getters.pytorch_datasets import HumanEnhancersCohn
from genomic_benchmarks.models.torch import CNN
from genomic_benchmarks.dataset_getters.utils import coll_factory, LetterTokenizer,

build_vocab

Data preparation
train_dset = HumanEnhancersCohn('train' , version =O)
tokenizer = get_tokenizer(LetterTokenizer())
vocabulary = build_vocab(train_dset, tokenizer, use_padding =False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
collate = coll_factory(vocabulary, tokenizer, device, pad_to_length = None)
train_loader = DataLoader(train_dset, batch_size =32, shuffle =True , collate_fn =collate)

Model preparation
model = CNN(

number_of_classes =2,
vocab_size =vocabulary. __ len __ (),
embedding_dim =100,
input_len =500

).to(device)

Model training
model.train(train_loader, epochs =5)

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/experiments
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/tree/main/experiments
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/blob/main/notebooks/How_To_Train_BERT_Classifier_With_HF.ipynb
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks/blob/main/notebooks/How_To_Train_BERT_Classifier_With_HF.ipynb

Page 7 of 9Grešová et al. BMC Genomic Data (2023) 24:25 	

Conclusions
Machine learning, especially deep learning, have
recently started revolutionizing the field of genomics.
Deep learning methods are highly dependent on large
amounts of high-quality data to train and benchmark
data are needed to accurately compare performance
of different models. Here, we propose a collection of
Genomic Benchmarks, produced with the aim of being
easily accessible and reproducible. Our intention is to
lower the difficulty of entry into the machine learning
for Genomics field for researchers that may not have
extensive knowledge of Genomics but want to apply
their knowledge of machine learning in this field. Such
an approach worked well for the field of protein folding,
where benchmark-based competitions helped revolu-
tionize the field.

The nine genomics datasets that have been currently
added are a first step towards the direction of a large
repository of Genomic Benchmarks. Beyond making
access to these datasets easy for users, we have ensured
that adding more datasets in a reproducible way is an
easy task for further development of the repository.
We encourage users to propose datasets or subfields
of interest that would be useful in future releases. We
have provided guidelines and tools to unify access to
any genomic data and we will happily host submitted
genomic datasets of sufficient quality and interest.

In this manuscript, we have implemented a sim-
ple convolutional neural network as a baseline
model trained and evaluated on all of our datasets.

Fig. 6  CNN architecture. The neural network consists of three
convolutional layers with 16, 8, and 4 filters, with a kernel size of
8. The output of each convolutional layer goes through the batch
normalization layer and the max-pooling layer. The output is then
flattened and passes through two dense layers. The last layer is
designed to predict the probabilities that the input sample belongs
to any of the given classes

Table 2  Performance of baseline models on benchmark
datasets

Pytorch Tensorflow

Dataset Accuracy F1 score Accuracy F1 score

dummy_mouse_enhanc-
ers_ensembl

69.0 70.4 50.0 66.9

demo_coding_vs_
intergenomic_seqs

87.6 86.8 89.6 89.4

demo_human_or_worm 93.0 92.8 94.2 93.2

drosophila_enhanc-
ers_stark

58.6 44.5 52.4 69.1

human_enhancers_cohn 69.5 67.1 68.9 71.3

human_enhancers_
ensembl

68.9 56.5 81.1 74.6

human_ensembl_regula-
tory

93.3 93.3 79.3 79.3

human_nontata_pro-
moters

84.6 83.7 86.5 84.4

human_ocr_ensembl 68.0 66.1 68.8 72.0

Embedding

•
Conv1 D (16 filters - kernel 8)

Batch Normalization

Pooling

+
Conv1 D (8 filters - kernel 8)

Batch Normalization

Pooling

+
Conv1 D (4 filters - kernel 8)

Batch Normalization

Pooling

+
Flatten

Dense

Dense

Page 8 of 9Grešová et al. BMC Genomic Data (2023) 24:25

Improvement on this baseline will be certainly achieved
by using different architectures and training schemes.
We have an open call for users that outperform the
baseline to submit their solution via our Github reposi-
tory, and be added to a ’Leaderboard’ of methods for
each dataset. We hope that this will create a healthy
competition on this set of reproducible datasets, and
promote machine learning research in Genomics.

Abbreviations
CNN	� Convolutional neural network
OCR	� Open chromatin region
TSS	� Transcription start site

Acknowledgements
We are thankful to Google Cloud for providing P. Simecek and V. Martinek free
research credits. Additional computational resources were provided by the
e-INFRA CZ project (ID:90140), supported by the Ministry of Education, Youth
and Sports of the Czech Republic.

Author’ contributions
KG did current state of the field research. KG and PS created and collected
datasets. VM implemented data loaders. DC, PS and KG implemented base-
line models. KG, PS and PA prepared the manuscript. All authors read and
approved the final manuscript.

Funding
The work of P. Simecek was supported by the H2020 MSCA IF Langua-
geOfDNA (nb. 896172) and funding from Czech Science Foundation,
project no. 23-04260L. The work of P. Alexiou was supported by grant
H2020-WF-01-2018: 867414. The work of K. Gresova, V. Martinek, and D. Cechak
was supported by EMBO Installation Grant 4431 “Deep Learning for Genomic
and Transcriptomic Pattern Identification” to P. Alexiou. The funding bodies
played no role in the design of the study and collection, analysis, and interpre-
tation of data and in writing the manuscript.

Availability of data and materials
The datasets generated and/or analysed during the current study are available
in the GitHub repository, https://​github.​com/​ML-​Bioin​fo-​CEITEC/​genom​ic_​
bench​marks.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 August 2022 Accepted: 31 March 2023

References
	1.	 Oubounyt M, Louadi Z, Tayara H, Chong KT. DeePromoter: robust

promoter predictor using deep learning. Front Genet. 2019;10:286.
	2.	 Le NQK, Ho QT, Nguyen TTD, Ou YY. A transformer architecture based

on BERT and 2D convolutional neural network to identify DNA enhanc-
ers from sequence information. Brief Bioinform. 2021;22(5).

	3.	 Quang D, Xie X. FactorNet: a deep learning framework for predicting
cell type specific transcription factor binding from nucleotide-resolu-
tion sequential data. Methods. 2019;166:40–7.

	4.	 Yin Q, Wu M, Liu Q, Lv H, Jiang R. DeepHistone: a deep learning
approach to predicting histone modifications. BMC Genomics.
2019;20(2):11–23.

	5.	 Shen Z, Zhang Q, Han K, Huang Ds. A deep learning model for RNA-
protein binding preference prediction based on hierarchical LSTM
and attention network. IEEE/ACM Trans Comput Biol Bioinforma.
2020;19(2):753–62.

	6.	 Georgakilas GK, Grioni A, Liakos KG, Chalupova E, Plessas FC, Alexiou P.
Multi-branch convolutional neural network for identification of small
non-coding RNA genomic loci. Sci Rep. 2020;10(1):1–10.

	7.	 Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable
effectiveness of data in deep learning era. In: Proceedings of the IEEE
international conference on computer vision. Institute of Electrical and
Electronics Engineers Inc., United States. 2017. p. 843–852.

	8.	 Nawi NM, Atomi WH, Rehman MZ. The effect of data pre-processing
on optimized training of artificial neural networks. Procedia Technol.
2013;11:32–9.

	9.	 Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100,000+ questions for
machine comprehension of text. 2016. arXiv preprint arXiv:​1606.​05250.

	10.	 Maas A, Daly RE, Pham PT, Huang D, Ng AY, Potts C. Learning word vec-
tors for sentiment analysis. In: Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language tech-
nologies. Association for Computational Linguistics, Portland, Oregon,
USA. 2011. p. 142–150.

	11.	 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L, Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on computer
vision and pattern recognition. IEEE. 2009. p. 248–255.

	12.	 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Ima-
geNet Large Scale Visual Recognition Challenge. Int J Comput Vis.
2015;115(3):211–52. https://​doi.​org/​10.​1007/​s11263-​015-​0816-y.

	13.	 Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to
assess protein structure prediction methods. Wiley Online Library; 1995.

	14.	 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.
Highly accurate protein structure prediction with AlphaFold. Nature.
2021;596(7873):583–9.

	15.	 Liu B, Fang L, Long R, Lan X, Chou KC. iEnhancer-2L: a two-layer predic-
tor for identifying enhancers and their strength by pseudo k-tuple
nucleotide composition. Bioinformatics. 2016;32(3):362–9.

	16.	 Li W, Godzik A. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics.
2006;22(13):1658–9.

	17.	 Liu B, Li K, Huang DS, Chou KC. iEnhancer-EL: identifying enhancers
and their strength with ensemble learning approach. Bioinformatics.
2018;34(22):3835–42.

	18.	 Le NQK, Yapp EKY, Ho QT, Nagasundaram N, Ou YY, Yeh HY. iEnhancer-
5Step: identifying enhancers using hidden information of DNA
sequences via Chou’s 5-step rule and word embedding. Anal Biochem.
2019;571:53–61.

	19.	 Tahir M, Hayat M, Kabir M. Sequence based predictor for discrimi-
nation of enhancer and their types by applying general form of
Chou’s trinucleotide composition. Comput Methods Prog Biomed.
2017;146:69–75.

	20.	 Jia C, He W. EnhancerPred: a predictor for discovering enhancers
based on the combination and selection of multiple features. Sci Rep.
2016;6(1):1–7.

	21.	 He W, Jia C. EnhancerPred2. 0: predicting enhancers and their strength
based on position-specific trinucleotide propensity and electron–ion
interaction potential feature selection. Mol BioSyst. 2017;13(4):767–74.

	22.	 Nguyen QH, Nguyen-Vo TH, Le NQK, Do TT, Rahardja S, Nguyen BP.
iEnhancer-ECNN: identifying enhancers and their strength using
ensembles of convolutional neural networks. BMC Genomics.
2019;20(9):1–10.

	23.	 Khanal J, Tayara H, Chong KT. Identifying enhancers and their strength
by the integration of word embedding and convolution neural network.
IEEE Access. 2020;8:58369–76.

	24.	 Zhang TH, Flores M, Huang Y. ES-ARCNN: Predicting enhancer strength
by using data augmentation and residual convolutional neural network.
Anal Biochem. 2021;618:114120.

Published online: 01 May 2023

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
http://arxiv.org/abs/1606.05250
https://doi.org/10.1007/s11263-015-0816-y

Page 9 of 9Grešová et al. BMC Genomic Data (2023) 24:25 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	25.	 Inayat N, Khan M, Iqbal N, Khan S, Raza M, Khan DM, et al. iEnhancer-DHF:
Identification of Enhancers and Their Strengths Using Optimize Deep
Neural Network With Multiple Features Extraction Methods. IEEE Access.
2021;9:40783–96.

	26.	 Mu X, Wang Y, Duan M, Liu S, Li F, Wang X, et al. A Novel Position-Specific
Encoding Algorithm (SeqPose) of Nucleotide Sequences and Its Applica-
tion for Detecting Enhancers. Int J Mol Sci. 2021;22(6):3079.

	27.	 Yang R, Wu F, Zhang C, Zhang L. iEnhancer-GAN: A Deep Learning Frame-
work in Combination with Word Embedding and Sequence Generative
Adversarial Net to Identify Enhancers and Their Strength. Int J Mol Sci.
2021;22(7):3589.

	28.	 Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer
browser—a database of tissue-specific human enhancers. Nucleic Acids
Res. 2007;35(suppl_1):88–92.

	29.	 Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M,
et al. An atlas of active enhancers across human cell types and tissues.
Nature. 2014;507(7493):455–61.

	30.	 ENCODE Project Consortium, et al. An integrated encyclopedia of DNA
elements in the human genome. Nature. 2012;489(7414):57.

	31.	 Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A,
et al. Integrative analysis of 111 reference human epigenomes. Nature.
2015;518(7539):317–30.

	32.	 Lin H, Li QZ. Eukaryotic and prokaryotic promoter prediction using hybrid
approach. Theory Biosci. 2011;130(2):91–100.

	33.	 Schmid CD, Perier R, Praz V, Bucher P. EPD in its twentieth year: towards
complete promoter coverage of selected model organisms. Nucleic Acids
Res. 2006;34(suppl_1):82–5.

	34.	 Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA, Solovyev
VV. Sequence alignment kernel for recognition of promoter regions.
Bioinformatics. 2003;19(15):1964–71.

	35.	 Ohler U. Identification of core promoter modules in Drosophila and their
application in accurate transcription start site prediction. Nucleic Acids
Res. 2006;34(20):5943–50.

	36.	 Yang JY, Zhou Y, Yu ZG, Anh V, Zhou LQ. Human Pol II promoter recogni-
tion based on primary sequences and free energy of dinucleotides. BMC
Bioinformatics. 2008;9(1):1–13.

	37.	 Rani TS, Bhavani SD, Bapi RS. Analysis of E. coli promoter recog-
nition problem in dinucleotide feature space. Bioinformatics.
2007;23(5):582–8.

	38.	 Lai HY, Zhang ZY, Su ZD, Su W, Ding H, Chen W, et al. iProEP: a com-
putational predictor for predicting promoter. Mol Ther Nucleic Acids.
2019;17:337–46.

	39.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
An imperative style, high-performance deep learning library. Adv Neural
Inf Process Syst. 2019;32:8026–37.

	40.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. {TensorFlow}: A
System for {Large-Scale} Machine Learning. In: 12th USENIX symposium
on operating systems design and implementation (OSDI 16). USENIX
Association, Savannah, GA, USA. 2016. p. 265–283.

	41.	 Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic
promoters using convolutional deep learning neural networks. PLoS ONE.
2017;12(2):0171410.

	42.	 Cohn D, Zuk O, Kaplan T. Enhancer identification using transfer and
adversarial deep learning of DNA sequences. BioRxiv. 2018:264200.

	43.	 Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K,
et al. Genome-scale functional characterization of Drosophila develop-
mental enhancers in vivo. Nature. 2014;512(7512):91–5.

	44.	 Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The ensembl
regulatory build. Genome Biol. 2015;16(1):1–8.

	45.	 Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise
E, et al. Sequence finishing and mapping of Drosophila melanogaster
heterochromatin. Science. 2007;316(5831):1625–8.

	46.	 dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA,
Thurmond J, et al. FlyBase: introduction of the Drosophila melanogaster
Release 6 reference genome assembly and large-scale migration of
genome annotations. Nucleic Acids Res. 2015;43(D1):690–7.

	47.	 Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al.
Ensembl 2021. Nucleic Acids Res. 2021;49(D1):884–91.

	48.	 Klimentova E, Polacek J, Simecek P, Alexiou P. PENGUINN: Precise explora-
tion of nuclear G-quadruplexes using interpretable neural networks.
Front Genet. 2020;11:1287.

	49.	 Albawi S, Mohammed TA, Al-Zawi S, Understanding of a convolutional
neural network. In: 2017 international conference on engineering and
technology (ICET). IEEE. 2017. p. 1–6.

	50.	 Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in
genome. Bioinformatics. 2021;37(15):2112–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

BMC

	Genomic benchmarks: a collection of datasets for genomic sequence classification
	Abstract
	Background
	Results
	Conclusions

	Background
	Construction and content
	Overview of Datasets
	Reproducibility
	Data format

	Utility and discussion
	Easy data access tools
	Baseline model
	Future development

	Conclusions
	Acknowledgements
	References

