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Abstract

Humans observe, humans understand, and then, humans act, but machines
only act. The Topic Detection and Tracking (TDT) community realised, early on,
that to accomplish its task, to detect and track events from the news media, it would
not suffice to act without understanding. Yet the TDT community rarely sought to
understand. Therefore when Twitter modernised the task, now to detect and track
events from social media, researchers had no response to the new challenges: the
volume and velocity, the brevity and the noise. Today, we ask more of our TDT al-
gorithms. We demand that they detect events precisely, describe comprehensively
and model formally. We demand that they meet our modern needs without an-
swers to the questions posed by understanding. What does it mean to understand
events? How can we understand events? How can understanding improve TDT?
In this dissertation, we answer the three questions. We debate interpretations of
understanding and adopt a structured, semantic definition of events: Who does
What, Where and When. We develop DEPICT, a novel algorithm to understand
Who participates in events and Where, and EVATE to understand What can hap-
pen from past events. And with understanding, we propose SEER, a novel TDT
algorithm that tracks events with increased precision, coverage and sensitivity, and
which drives a novel and simplified event modeller. In the end, we demonstrate
that understanding remains a worthwhile ambition. Machines can observe and un-
derstand, and when they do, they act better.
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1

Introduction

The year is 1996. In the United States, four teams participate in the pilot study into
Topic Detection and Tracking (TDT). TDT’s objective: use Artificial Intelligence (AI) to
segment, detect and track news stories in the media [7]. The first results leave room
for improvement, so a year later, Allan et al. [9] offer a suggestion: understanding Who
does What, Where and When, and Why and How in events. Today, applications for TDT
abound, but the research area finds itself with more troubles and still, no understanding.
Therefore in this dissertation we adopt the suggestion as our research question: can
understanding improve TDT?

The suggestion to understand events was tinged with reluctance. Allan et al. [9]
hoped that understanding the ‘five Ws and one H’ (the Who, What, Where, When, Why
and How) would lead to “significant advances” but feared “that the gains may not be
large.” Over the next few years, as the TDT community grew, some followed the sug-
gestion, but never with significant advances. Simple understanding did not solve the
research area’s troubles [169]. Sometimes, understanding worsened them [35; 120; 125;
139].

In 2006, Twitter launched and the research community cast understanding aside.
The social network revolutionised news dissemination, and with it, the TDT task. News
spread quickly on Twitter, and soon, it started to break there too [130]. Twitter chroni-
cled the Arab Spring’s organisation [110; 134], and famously broke the news of Osama
bin Laden’s death [98] and the Boston Marathon bombing [220; 245]. And still, Twitter
grew and grew. By 2015, Twitter was producing 500 million tweets per day [258]. In
2019, Twitter users described an illness that the world would call, only weeks later, the
COVID-19 pandemic [133].

1



Chapter 1. Introduction

There, on Twitter, TDT found purpose. Event tracking algorithms stopped repeat-
ing after the newswire and became the newswire [201]. Around the world, Reuters
Tracer detected breaking news within minutes, usually much quicker than the news
media [129; 130]. In Japan, the system by Sakaki et al. [227] detected most earthquakes
within one minute. In the USA, the system by Zhao et al. [296] detected topics from NFL
games within seconds. Tweets came to symbolise the antithesis to news reports.

Yet tweets came to symbolise the antithesis to news reports in other ways too. Twit-
ter replaced the newswire’s steady stream with too many tweets arriving too fast for
heavy processing [86; 191]. Twitter replaced eloquent narratives with curt tweets no
longer than 280 characters. And Twitter replaced the formality of news articles with
vulgar informality and noise [102].

Years later, with Twitter’s challenges in the backdrop, understanding resurfaced.
The TDT community wondered again about understanding. Is noise not a failure to
recognise relevance, objectivity and importance in tweets? Understanding could help
TDT algorithms make sense of Twitter streams [26]. Are the research area’s issues not
a sign of ignorance about events? Understanding could drive algorithms [49] and im-
prove their performance [28]. But the research community’s solution was rarely under-
standing [26; 49; 94; 137].

Unable to harness tweets or understand events, progress in TDT stalled. We speak of
similar flaws in the algorithm by Zhao et al. [296] from 2011 and in ours from 2019 [141].
Algorithms still only build timelines from popular events [93; 225], still succumb to
noise and miss the details [79; 136; 146; 161]. TDT literature never made understanding
events the problem, so understanding never became the solution.

The year is no longer 1996, but understanding still matters. Understanding still
matters to the performance of event tracking algorithms [9], to their abilities to describe
events [49] and, eventually, to comprehend and reason about them [39]. Understanding
still matters because we expect machines to perform the job of a human with none of
the knowledge.

Understanding matters beyond academic circles as well. The news industry, which
inspired the research area of TDT, grows increasingly accepting of AI. In 2022, 70% of
the respondents to a survey by Newman [180] felt AI would play “a key part in helping
find or investigate stories using data.” Journalists envision AI as a disruptor [179], a
revolution in news gathering, production and distribution [18]. To the media industry,
understanding matters because it determines the utility of TDT algorithms.

Therefore this dissertation answers the question: can understanding improve TDT?
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1.1 | To understand events
Can understanding improve TDT? The question appears simple, its answer obvious,
but you would not find it in early research. Those who followed the suggestion by
Allan et al. [9] sought easy answers that would fit in manuscripts a few pages long,
and the results confirmed the initial apprehension [35; 120; 125; 139]. Differently from
those early experiments, we dedicate this entire dissertation to answering the research
question from three aspects. What does it mean to understand events? How can we
understand events automatically? How can understanding improve event tracking?

What does it mean to understand events?
In Chapter 2, we seek interpretations of understanding in past research on TDT. We
find few and only implicit definitions. The research community rarely stopped to ask
what it means to truly understand events. A philosophical debate on the definition of
knowledge is moot, but the matter of what true knowledge entails remains central to
our work. For our sake, Plato’s widely-accepted [23], three-word definition suffices:

Definition 1 (Knowledge, or understanding1). Justified true belief. — Plato

Had early TDT research pursued knowledge more intently, it would likely have un-
covered more difficulties. Events have complex structures and take different forms. We
cannot understand what happens in events without understanding what constitutes
events, but the research community could not agree on a common definition [225]. In
part, researchers afforded not to. A spectator watching a football match can recognise a
goal without understanding the game’s rules. Likewise, a TDT algorithm can recognise
an incident without a formal structure of events, such as by identifying an unexpected
influx of tweets. Research thus subsisted without a definition.

Elsewhere, another research area could not begin to exist without a definition of
events, nor without understanding them. In Event Modelling and Mining (EMM), de-
tecting events only denotes the first step in the pursuit of true understanding, which
requires representing events in a “semantically-meaningful way” [39]. Unlike TDT lit-
erature, EMM research could not but agree on a semantic definition. Therefore from
EMM literature we adopt the following definition of events:

1A slight semantic nuance separates knowledge from understanding. Knowledge represents facts,
whereas understanding suggests the observer’s perception of knowledge. Ideally, we want algorithms
to generate knowledge, but in reality, they will always generate what their designs perceive as knowledge.
In short, they generate understanding. For the sake of simplicity, we consider knowledge and under-
standing as synonyms in this dissertation. Furthermore, throughout this dissertation we limit our scope of
understanding to extracting information about Who is doing What, Where and When in events.
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Definition 2 (Event). “An action, or a series of actions, or a change [What] that happens
at [a] specific time [When] due to specific reasons [How/Why], with associated entities
such as objects, humans [Who], and locations [Where].” — Chen and Li [39]

EXAMPLE: “At least 120 people [Who] are feared to have been killed [What] in a series of dev-
astating attacks [How/Why] across Paris [Where] on Friday evening [When].” [203]

The definition serves three functions. First, it aligns our problem with the ‘five Ws
and one H‘, which Allan et al. [9] proposed and which we follow; for the sake of clarity,
we capitalise references to the ‘five Ws and one H‘ throughout this dissertation. Second,
the definition links TDT with EMM, giving the former new purpose in the latter, as we
argue in Chapter 6. Third, the definition provides a theoretical structure with which to
understand events, which leads us to the second question.

How can we understand events automatically?
In Chapters 3 and 4 we understand Who does What and Where in events.2 Understand-
ing remains a challenging task even with a semantic structure of events. It demands
that researchers leave behind a decades-long tradition that neglected knowledge. Un-
derstanding, then, demands novel ideas, but novel ideas alone may not suffice either.
We develop and apply understanding on Twitter, the de facto modern standard of TDT
research [201] that has defied Information Retrieval (IR)’s traditional tools [41]. There-
fore understanding also demands novel tools.

In Chapter 3, we develop our understanding of the Who and the Where. Some
research describes the Who and the Where as event terms [99; 289], the words that char-
acterise an event and distinguish it from the others, normally persons, organisations or
locations—named entities. Instinctively, the TDT community turned to Named Entity
Recognition (NER), but in this work we reveal some of the flaws in the use of such tools.
In Chapter 3, we show how NER models do not distinguish between named entities
mentioned in passing and named entities with an active role in an event, participants.
Previously, we defined participants as follows:

Definition 3 (Event participant, or participant). A person, location or organisation that
affects or is affected by the event. — Mamo et al. [144]

EXAMPLE: The teams, players and venue in a football match; the political parties, candidates,
and states and counties in an American election.

2Of the remaining ‘five Ws and one H’, the When follows implicitly from TDT’s detection task; the
primary function of a TDT algorithm is to detect When something happens. The Why and the How denote
reasoning [39], and thus fit better within the scope of event mining.
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We understand Who participates in events and Where with DEPICT, a novel al-
gorithm. DEPICT does not discard NER’s output altogether but refines it with the
Automatic Participant Detection (APD) framework [144]. Unlike traditional NER mod-
els, which do not comprehend the nature of participants, DEPICT gleans an understand-
ing about Who or Where they are and what they do. Because it understands, DEPICT
can precisely discover the majority of an event’s participants, including those that NER
tools miss.

In Chapter 4, we develop our understanding of the What. The same research that
speaks of event terms often also refers to domain terms, the words that characterise an
event domain and distinguish it from the others, like how vote characterises the event
domain of elections. Domain terms thus belong to event domains, so before we discuss
terms any further, we formally define event domains:

Definition 4 (Event domain, or domain). A group of events that share a common vo-
cabulary, the domain terms. — Filatova et al. [66]; Hua et al. [99]; Yang et al. [289].

EXAMPLE: The domain of football matches; the domain of national elections.

Domain terms play a particular role in event domains. In general, terms may de-
scribe any concept, but in event domains, they describe “an action, or a series of actions,
or a change” [39], or What happens in the domain’s events. In TDT’s simpler jargon, do-
main terms describe topics: the important key topics, like goals in football matches, and
the comparatively unimportant non-key topics, like yellow cards. Formally, we define
domain terms as follows:

Definition 5 (Domain term, or term3). Words or phrases that describe What happens
during events from a particular event domain. — Hua et al. [99]

EXAMPLE: The terms goal, score and corner in the domain of football matches; voting, recount and
ballot in the domain of elections.

We understand What happens in events with EVATE, a novel algorithm. We could
find little research on extracting terms from event domains, and even less from Twitter,
but we approach the problem as an Automatic Term Extraction (ATE) task: to recog-
nize domain-related terms from domain-related corpora [13]. EVATE adapts both to
event domains and to Twitter by observing the outputs of a TDT technique working on
tweets. In the end, EVATE reciprocally serves TDT techniques with terms tailored to
event tracking on Twitter, around which revolves our third question.

3For the sake of clarity, in this dissertation we italicise domain terms to distinguish them from words
or concepts. When we refer to a concept, such as a goal in football matches, we do not italicise the word.
However, when we mean to refer to a domain term, not a general concept, we italicise it: goal, not goal.
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How can understanding improve event tracking?
In Chapters 5 and 6, we apply our understanding of Who does What and Where. On
most of the occasions when TDT research explored understanding, the community did
not distinguish between developing and applying understanding. The two meshed in-
separably and left the suggestion by Allan et al. [9] in an answer-less limbo. In this
dissertation, we undertake the test and explore whether the application of understand-
ing can improve TDT.

In Chapter 5, we apply our understanding in a novel TDT algorithm, SEER. Histori-
cally, event tracking research could reserve only a limited role to understanding because
the understanding itself was limited. In contrast, EVATE’s understanding from Chap-
ter 4—proper event understanding—tells us, in advance, What can plausibly happen in
any event from a domain. Therefore understanding drives our new algorithm. In the
end, through SEER we unequivocally answer the question of whether understanding
can improve event tracking.

In Chapter 6, we combine the three algorithms in the understanding-driven event
modeller. Detecting events no longer suffices: we need algorithms to model Who did
What, Where and When [191]. In the understanding-driven event modeller, DEPICT
understands Who is participating and Where, EVATE understands What may happen,
and SEER understands When events happen. Later, we use the event models to build
the event knowledge graph: a visualisation and a tool—a form of storytelling.

We have shared the data and algorithms used in this dissertation in two GitHub
repositories. The data and its outputs, the ground truths and results, and the Jupyter
Notebooks all reside in the NicholasMamo/phd-data GitHub repository. Separately, we
have released all the algorithms as an open-source project in the NicholasMamo/EvenTDT
GitHub repository with a GNU GPLv3 licence. The EvenTDT library, written in Python
3, includes a suite of 15 tools, 14,342 lines of documentation and an additional 8,585 lines
of Python code, excluding tests. To the best of our knowledge, EvenTDT represents the
largest open-source TDT library. We formalise our aims and objectives next.

1.2 | Aims and objectives
In this dissertation, we present what we believe to be the first study into the role of
machine understanding in event tracking. We make none of the simplifying assump-
tions and adopt none of the simplified interpretations of understanding that pervade
TDT’s history. On the contrary, we discuss, in depth, what true event knowledge en-
tails, and how the research community can develop and apply understanding. In the
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end, we answer three questions. What does it mean to understand events? How can we
understand events automatically? How can understanding improve event tracking?

We answer our research questions through five chapters. In the review chapter,
Chapter 2, we survey literature to answer what it means to understand. In the under-
standing chapters, Chapters 3 and 4, we answer how we can understand events auto-
matically. In the application chapters, Chapters 5 and 6, we answer how understanding
improves event tracking. Every chapter answers one fundamental question that helps
us comprehend the role of understanding in event tracking. Together, these questions
form this dissertation’s principal aims and objectives:

■ What does it mean to understand events? The research community understood
haphazardly, never pausing to question what it means to understand events. In
Chapter 2, we trawl the research area’s past for interpretations of understanding
as we present TDT literature’s first review dedicated to event knowledge.

■ When does a named entity become a participant? Named entities did not improve
TDT performance sufficiently [169] because they did not represent understanding,
at least not semantic understanding. In Chapter 3, we understand the Who and
the Where with DEPICT, an APD algorithm that understands, first and foremost,
what makes participants of named entities.

■ When does a word become a domain term? To understand the Who and the
Where, researchers could use NER, and to understand the When, they could use
temporal features, but the What had no direct equivalent. In Chapter 4, we under-
stand the What with EVATE, the first semantic ATE technique designed for event
tracking on Twitter.

■ How can understanding improve TDT algorithms? Allan et al. [9] perceived un-
derstanding as a way to improve accuracy—only accuracy—but understanding
can benefit algorithms in many ways. In Chapter 5, a case study on football
matches, we apply EVATE’s understanding in a novel TDT algorithm, SEER, to
give the first definitive answer to the suggestion byAllan et al. [9].

■ Where does TDT’s next revolution lie? Like Twitter before it, understanding can
be a paradigm shift for event tracking. In Chapter 6, a case study on British
politics, we apply our understanding of Who does What, Where and When in
the understanding-driven event modeller to explore how understanding can give
TDT algorithms new purpose.
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1.3 | Contributions
In the rest of this dissertation, we address the suggestion that Allan et al. [9] made in the
aftermath of the TDT pilot study: understanding events. We argue on the merits of dif-
ferent forms of understanding, develop semantic understanding about Who does What
and Where in events, and then apply the same knowledge to prove that understanding
can indeed improve event tracking. In the end, we make the following contributions:

■ In Chapter 1, we share the NicholasMamo/EvenTDT repository, the largest open-
source TDT library

■ In Chapter 2, we present the first literature review on understanding in TDT and
other event-related research areas

■ In Chapter 3, we propose DEPICT, a novel APD algorithm that understands Who
participates in events and Where by understanding the participants themselves

■ In Chapter 4, we propose EVATE, the first ATE algorithm that understands What
happens in events from Twitter

■ In Chapter 5, we propose SEER, the first TDT algorithm driven by foreknowledge
of What can happen in an event, and which proves that understanding can im-
prove event tracking

■ In Chapter 6, we propose a novel event modeller simplified and augmented by
understanding and understanding-driven TDT

Apart from the core material above, we have included an additional chapter as an
appendix. In Appendix A, we review the most notorious of TDT literature’s difficul-
ties on Twitter: its evaluations. The appendix contains what we believe to be the most
comprehensive survey yet on TDT evaluation methodologies on Twitter. Through the
surveyed papers, we discuss the challenges to measure progress accurately and objec-
tively, including the progress due to understanding.

It does not surprise us that the research community has not studied understanding
in depth: the road to understanding is a long one. In this work, we avoid repeating
the past mistakes that sought to shorten it, namely the hasty interpretations of what
it means to understand. Because while the research community never considered the
question seriously, it has proposed several implicit interpretations of event knowledge.
We embark on the long road to understanding in the next chapter as we debate the
virtues and flaws of the many meanings of understanding.
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Review
The Long Road to Understanding

The long road to understanding should probably have been much shorter. The idea
that machine understanding can improve machine performance is anything but revo-
lutionary—certainly not in TDT, whose community of researchers recognised knowl-
edge’s potential in its inception. Understanding represents an intuitive idea, and like
all intuitive ideas, it reappeared frequently over the years, which makes it all the more
perplexing why TDT researchers did not study event knowledge more closely.

Allan et al. [9] were the first to introduce the idea of understanding events to TDT
literature. It had been two years since the launch of the pilot project [7]. At the time,
the TDT task had three objectives: to segment, detect and track events in news me-
dia. However, early algorithms struggled with performance when aggregating news
articles, so at the end of the two-year pilot project, Allan et al. [9] reluctantly proposed
understanding as a solution:

Significant advances in Event Tracking accuracy are most likely to be ob-
tained using some limited form of story parsing and “understanding”. It
is likely to be useful to capture notions of who, what, where, when, why,
and how, although the well-known past experience from IR suggests that
the gains may not be large.

— Allan et al. [9]

Over the next few years, the TDT community followed the suggestion and explored
understanding, but knowledge barely improved performance. In the meantime, not
only did algorithms struggle to overcome the early challenges but new ones appeared

9



Chapter 2. Review: The Long Road to Understanding

when researchers migrated to Twitter. In this chapter, we follow the long road to under-
standing, from the research area’s origins to modern day applications of TDT on Twitter,
and ultimately answer the following questions:

■ Why does TDT need understanding? Algorithms were limited even before Twit-
ter introduced new challenges, but Allan et al. [9] believed that understanding
could solve many of the area’s problems. In Section 2.1, we explore how TDT’s
challenges changed over the years and identify applications for understanding.

■ What does it mean to understand events? Since Allan et al. [9] first proposed un-
derstanding, the TDT community has adopted different interpretations of what it
means to understand events. In Section 2.2, we contrast these different perspec-
tives and their suitability as event understanding.

■ How can TDT research understand events? A major obstacle to understanding
is characterising the type of information that would be useful [137; 169]. In Sec-
tion 2.3, we adopt a structured definition of events based on the ‘five Ws and
one H’, and explain how researchers can generate understanding about the Who,
Where and What automatically.

Material from this chapter has been published [145] or is in print [148].

2.1 | Twitter: the crowd-sourced newswire
Early on, Allan et al. [9] hypothesised that understanding in its ideal form could trivi-
alise the TDT task. Every event has a unique identity: Who did What, Where and When,
the ‘four Ws’. Two train accidents share a general vocabulary, but the specifics—the
‘four Ws’—distinguish them [139; 289]. A system that understands events recognises
that one event shares its identity with the other. Inversely, a system that understands
events recognises a new event because it shares its identity with no other. Understand-
ing the event identity symbolised the research area’s hope of solving its early problems.

From a certain perspective, TDT research’s problems were not of its own making.
Back then, algorithms would collect reports from the news media and group them into
events, so the research community naturally gravitated towards clustering. In cluster-
ing, or document-pivot approaches, literature found simplicity and a well-researched
task but also several challenges, namely fragmentation and cumbersome parameter-
tuning [5; 72]. If understanding could solve clustering’s problems, the research commu-
nity reasoned, it would solve TDT’s own.
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Yet Allan et al. [9] feared understanding would never suffice, and the early experi-
ments to improve clustering through understanding vindicated those fears. At its worst,
understanding failed. The event profiles by Makkonen et al. [139] mirrored the event
identity proposed by Allan et al. [9]—one sub-vector for each of the ‘four Ws’—but it
performed worse than a traditional baseline, as did the similar effort by Kumaran and
Allan [120]. And at its best, understanding barely improved results [169]. Within a
few years, what Allan et al. [9] had predicted came true: limited understanding yielded
limited improvements.

The failures had, at least, the merit of spurring the creation of feature-pivot tech-
niques. Feature-pivot techniques do not understand the idiosyncrasies of specific events
but how events behave in general: when an event happens, news outlets publish more
reports or adapt their language [288]. To measure those changes, Fung et al. [72] for-
malised feature-pivot approaches, inspired by the earlier concept of burst [113], an el-
egant solution to measure spikes in the number of published articles or in the use of
some keywords. Because burst made sense, feature-pivot approaches quickly became
the popular alternative to clustering, the document-pivot approach.

Feature-pivot approaches overcame clustering’s challenges without understanding,
but they created new ones. Analyses on term correlations can be misleading [5; 93],
and individual keywords do not tell a story like a news article or even a headline do.
To compensate, feature-pivot approaches normally follow term extraction with term
clustering to provide context [5], but groups of terms are not always expressive either.
Do the terms defeat, Republicans and Democrats mean that the Republicans defeated the
Democrats, or the opposite? Therefore by the time Twitter launched, researchers had
neither explored understanding nor overcome TDT’s challenges.

Twitter’s launch in 2006 revolutionised news dissemination. Late in 2010, Twitter
played a prominent role in chronicling the Arab Spring [110; 134]. In 2011, Twitter broke
the news of Osama Bin Laden’s death [98], and in 2013, it broke the news of the Boston
Marathon bombing [220; 245]. Even the British Royal Family first announced the death
of Queen Elizabeth II in a tweet [248; 256]. Reuters estimates that between 10% and 20%
of all news breaks on Twitter first [130]. For many, the social network became a key
source of news [257].

Twitter’s launch revolutionised TDT too. Before Twitter launched, algorithms would
wait for the news media to publish reports and then cluster them to form events; TDT
was a mere aggregator. After Twitter launched, it made amateur reporters of regular in-
ternet users and transformed the social network into a crowd-sourced newswire. More
importantly for the research area, Twitter made most of its content available for free
through its API. Now, algorithms could chase the breaking news themselves instead
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of repeating after the media, sparking many new applications for event tracking. TDT
literature had its new medium of choice [201].

Nothing changed TDT research quite like Twitter did. Literature progressed from
unspecified event detection, or identifying breaking news from general streams, to spec-
ified event detection, or building timelines of specific, often planned events [62]. Since
Zhao et al. [296] first built timelines of American football games, research has followed
sports events [162], monitored protests [95] and mapped natural disasters [61], among
many other applications.

Yet accepting these new possibilities meant accepting the new challenges [26; 49; 86;
99; 102], of which Twitter created plenty. Twitter mixed news with fake news, quality
with noise, and facts with opinions. To someone unfamiliar with Twitter, the social
network’s challenges may best be verbalised in the blunt words of Paul Doyle, a football
writer for the Guardian who we interviewed in our previous work [141]:

People are ... more extreme on Twitter. It is a forum where people are delib-
erately seeking attention. If you’re looking at accuracy, it’s not interesting. I
consider Twitter to be the “toilet walls” of the twenty-first century. People
would write graffiti on toilet walls to make their opinions known. Now, they
use Twitter.

— Paul Doyle for Mamo [141]

Twitter dwarfed earlier concerns among TDT researchers with three new formidable
challenges. First, Twitter added volume and velocity. As early as in 2011, Twitter
users published more than 50 tweets per second during popular events, like the Su-
perbowl [296]. By 2015, Twitter generated 500 million tweets per day, or almost 6,000
tweets per second [258]. The Twitter API’s free-tier limits the stream to 50 tweets per
second, but even smaller numbers require prohibitively-heavy processing in real-time
systems [62; 191; 225].

Volume and velocity affect document-pivot approaches the worst. Clustering algo-
rithms ceaselessly compare documents with clusters: the more tweets, the more com-
parisons. In the context of Twitter’s voluminous tweets, Panagiotou et al. [191] argued
that clustering becomes outright infeasible. Document-pivot approaches did survive
Twitter after all but only in the form of on-line methods [142; 146; 158].

Second, Twitter added brevity. At launch, the social network propelled the con-
cept of microblogging into the mainstream. Twitter’s distinctively-short 140-character
tweets, later expanded to 280 characters, would not even fit this paragraph. Brevity
robbed microblogs of the expressiveness of news reports [41; 228]. Donald Trump’s in-
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Figure 2.1: Twitter’s brevity robs tweets of context. Humans, however, need little con-
text. With the heavily-publicised 2020 US presidential election in the backdrop, Donald
Trump’s message could fit in a three-word tweet.

famous tweet, shown in Figure 2.1, reads like incoherent rambling especially because it
omits the controversial context surrounding the 2020 US election. Therefore TDT meth-
ods on Twitter rely on groups of tweets for context [64].

Brevity does not only pose challenges, however. It lets users react more quickly and
forces them to be more selective with words, to concentrate tweets around a few topical
keywords [287]. Donald Trump needed just three words to deliver a clear message to
those who understood the context: stop and count carried the narrative on their own. In
TDT, Choudhury and Breslin [42] exploited the same brevity as they trained a classifier
for cricket games. The classifier ignores most words in tweets and instead uses only the
few that appear in a list of cricket terms and players, a form of understanding compiled
manually by the authors.

Yet brevity led to sparsity, and sparsity harmed even established IR methods. The
Term Frequency-Inverse Document Frequency (TF-IDF) term-weighting scheme, for ex-
ample, was developed for longer documents than tweets [146; 153; 228; 260]. Unlike
in formal news reports, words rarely repeat in tweets, effectively transforming TF-IDF
into Document Frequency-Inverse Document Frequency (DF-IDF). Ironically, TF-IDF on
Twitter promotes rare terms, not frequent terms [153]. Later, Saeed et al. [226] argued
that the static design of TF-IDF cannot capture the dynamic nature of events.

Third, Twitter added noise. For many Twitter users, the rules of grammar and or-
thography exist as optional constructs, or so they seem. Researchers could no longer
assume that the IR techniques that worked on formal news reports would work on
tweets [41; 191; 225; 298]. Mishra and Diesner [166], for example, proposed an NER al-
gorithm tailored to Twitter’s orthography; tellingly, the solution hinges on gazetteers of
names, organisations and locations, another type of understanding.

Neither could TDT research assume that every tweet was newsworthy [99]. Noise
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appears in the subject matter of tweets too. Twitter users talk about their daily life, react
to news and share opinions [99; 206; 264], sometimes in the same tweet. Moreover, the
noise only seems to be increasing. Meladianos et al. [161] compared tweet datasets from
2014 with other datasets by Nichols et al. [183] from 2010 and noted a greater presence
of noise.

But what is noise if not the algorithmic failure to distinguish between what is rele-
vant and irrelevant, what is objective and subjective, and what is important and what
is trivial? If humans can recognise noise, spam and advertising effortlessly, why cannot
machines do the same? Does the difference not lie in understanding?

Over the years, some researchers endeavoured to understand Twitter streams better.
Hasan et al. [93] manually compiled a list of 350 phrases related to spam, like click here,
to remove noisy tweets, and Kolajo et al. [114] used knowledge bases of slang, acronyms
and abbreviations. Some even involved simple types of event understanding. Hossny
and Mitchell [95], Hua et al. [99] and Zhou et al. [297] all filtered off-topic tweets with
automatically-extracted news keywords.

Such efforts appear scarcely, however. TDT research rarely ever built on understand-
ing [26; 49; 94; 137], preferring simpler alternatives instead. Researchers pummelled
Twitter’s best virtue, its large volume, by aggressively filtering all retweets [28; 55; 101;
102; 226]. They justified themselves by arguing that retweets introduce bias and redun-
dancy [158; 225], but the effects can be staggering. McMinn and Jose [158] removed all
retweets and any tweet without a named entity: 95% of the dataset.

Aggressive filtering appears in another form in document-pivot techniques. Some
research retains only the largest clusters [102; 197; 264] or clusters exceeding a certain
size because they are more likely to be newsworthy. Our previous algorithms accept
clusters with three or more tweets [142; 146], but others adopt far more conservative
limits; Hasan et al. [93], Ifrim et al. [102], and McMinn and Jose [158] accept no cluster
with fewer than 10 tweets, and McMinn et al. [157] only accept clusters with at least 30
tweets. Ozdikis et al. [189] set the threshold at 250.

Hampered by the new challenges, progress stalled. Evidently, AI witnessed tech-
nological advances, which the research community adopted. Researchers applied ma-
chine learning [71], text embedding [61] and, more generally, increasingly-convoluted
solutions. Yet the performance woes continue to torment TDT, now compounded by
Twitter and the complex needs of contemporary applications.

If performance improved, it did not improve substantially. We draw parallels be-
tween the algorithm by Zhao et al. [296] from 2011 and in ours from 2021 [146]. The
idea of building a timeline of an unpopular event seems delusional [93; 225]. What re-
mains if the system filters 95% of all tweets from an unpopular event? How many top-
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Figure 2.2: TDT publications generally evaluate on large datasets from popular events.
Excluding classification tasks and the early volume-based techniques, datasets range
from a few tens of thousands of tweets to millions.

ics in unpopular events form clusters with 10 or more tweets? Excluding classification
tasks and trivial algorithms, our surveyed research in the domain of football matches
required datasets with at least 40,000 tweets.1 The median, however, lies 6 times higher,
at around 240,000 tweets.

To follow unpopular events, TDT research must compromise. van Oorschot et al.
[265] trained a classifier limited to detecting a few football topics. Löchtefeld et al. [136]
provided a manually-curated knowledge base related to football, which included ex-
traction patterns and a list of team and player names from the German Bundesliga.
Otherwise, what remains are trivial algorithms like those by Zhao et al. [296] or Lana-
gan and Smeaton [121]: inexpressive methods that only identify periods with a high
activity.

Yet algorithms struggle even in popular events. In football matches, TDT algorithms
complain about capturing key topics, like goals, but missing many more non-key top-
ics, like yellow cards, which evoke less interest [79; 121; 136; 146; 150; 183; 265]. Even
Meladianos et al. [162], with their massive datasets, suffer from the same fate: they miss

1Figure 2.2 and Figure 5.2 on page 111 exclude classification tasks and simple algorithms. Classification
limits the scope of TDT to a few, usually easily-enumerable topics, such as goals in football matches, and
excludes difficult-to-enumerate topics, like missed chances and other exceptional developments. Simple
algorithms, which characterised early research, have no such limits and operate even on a few hundred
tweets [121]. However, as we discuss in Chapter 5, their performance and outputs no longer meet the
needs of modern TDT.
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39 topics, of which 36 yellow cards.
Lack of interest does not excuse TDT methods’ failure to capture non-key topics.

Non-key topics occur frequently and possibly with newsworthy consequences [136;
266]. A foul may lead to a free-kick or a penalty, which in turn may lead to a goal.
The narrative feels incomplete without the non-key topics filling the spaces among key
incidents. We cannot justify the failure of sophisticated algorithms to detect non-key
topics even from massive datasets.

In the past, we attempted to overcome some of the challenges. Finding Impor-
tant News REports (FIRE) [142], a batched algorithm, combined document-pivot and
feature-pivot techniques to detect topics. Conceptually, the document-pivot or cluster-
ing approach detected candidate topics, while the feature-pivot technique confirmed
whether users were discussing them like breaking news. Later, Event TimeLine Detec-
tion (ELD) [146] refined FIRE’s formula with a real-time process and a novel feature-
pivot technique.

The two algorithms achieved mitigated success. FIRE considered clusters with as
few as three tweets and often detected breaking news around the world quicker than
the news media [142]. ELD stretched the capabilities of clustering to create timelines
far more granular than those by Zhao et al. [296] from datasets with as little as 64,000
tweets [146]. Yet a practical limit remains, not much lower than 64,000, as we show in
Appendix B. Furthermore, while the combination of document-pivot and feature-pivot
techniques improved precision and recall, ELD too fell to old vices, capturing noise and
missing many non-key topics.

It is tempting to reflect on past failures with clemency. We could accept the flaws as
part of Twitter’s character, a worthwhile sacrifice in the name of TDT research’s new-
found purpose. The failures, however, reveal something far simpler: that basic tweaks
to document-pivot and feature-pivot techniques cannot overcome the research area’s
challenges. Researchers need to accept volume and velocity, brevity and noise as obsta-
cles without justifying the faults in their algorithms, and then examine more fundamen-
tal solutions, like understanding. Only then may TDT research progress again.

Recently, some researchers have started to evoke understanding again. This time,
understanding does not merely represent an avenue worth exploring, as Allan et al. [9]
suggested, but a necessity. Bontcheva and Rout [26] proposed understanding as a way
to make sense of social media. De Boom et al. [49] advocated for knowledge to drive
event detection, and Panagiotou et al. [191] argued that algorithms should not only
detect but also describe Who did What, Where and When. Two decades after Allan
et al. [9] first mooted understanding, the research community seems willing, again, to
explore event knowledge as a solution to TDT’s problems. First, however, it needs to
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resolve what it means to understand.

2.2 | What we understand by understanding
Liverpool had been leading Leeds for almost an hour—a fragile, 1-0 lead—when Diego
Llorente scored the equaliser. With an air of resignation, Liverpool’s community man-
ager only tweeted a few numbers, a hashtag, and the two 1-word sentences in Figure 2.3:
“Goal. Leeds.” Two 1-word sentences sufficed. Liverpool supporters knew exactly what
the community manager and the goal meant.

A little understanding goes a long way for humans. A few well-chosen keywords,
in no particular order, give us enough context to grasp the substance of a story [96].
Despite its brevity, Donald Trump’s tweet in Figure 2.1 became an internet sensation,
and although Liverpool’s tweet had no such fortune, it is expressive precisely because
the choice of words is so plain. Far from being ambiguous, the two sentences, short
even by Twitter’s standards, make the messages poignantly incisive.

Machines understand differently. We understand Liverpool’s tweet because it is di-
rect and unambiguous but still simple in its use of common football language. We also
understand the contextual cues: the tweeting account and the knowledge that Liverpool
were playing against Leeds. In contrast, algorithms do not understand semantics like
we do, so they do not distinguish between words like bench and goal, and process them
similarly. Machines do not really understand events despite understanding having ac-
companied TDT research since its early days.

Of course, TDT algorithms generate simple forms of understanding. At minimum,
algorithms understand When something happens, and all but the most trivial of tech-
niques understand topics in more detail: document-pivot approaches understand what
users are discussing and feature-pivot approaches understand how. Yet neither let un-
derstanding drive the process [49], so they generate limited knowledge.

More practically, the generated understanding has limited practical use. None of the
knowledge about particular events or topics transfers to other events. A machine may
detect a goal in one football match, but it does not understand the meaning or signifi-
cance of goals, nor of the term goal. Therefore the machine cannot apply that knowledge
in other football matches. In this dissertation, we do not focus on the expendable under-
standing that emerges naturally from the TDT process but on the type of transferable
understanding that can drive event tracking.

The TDT community does not employ understanding in its algorithms because it
has none. The research area still does not really understand what it means to gener-
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Figure 2.3: Tweets can be expressive even if they are short as long as the reader under-
stands the context. Liverpool’s tweet from their match against Leeds included all the
necessary information: When the incident happened, What happened and Who made
it happen, the scoreline and the event hashtag.

ate knowledge about events, even though interpretations abound. From the theoretical
reflection on the event identity by Allan et al. [9] to more practical perspectives, re-
searchers have interpreted understanding differently, but they never reached a consen-
sus. Furthermore, most interpretations do not arise from explicit study but from indirect
and casual experiments into understanding.

The earliest type of understanding is also the most deliberate: structured or theoret-
ical understanding. Every event “comprises at the very least what happened, where it
happened, when it happened, and who was involved” [169]. The event structure pro-
posed by Allan et al. [9] formalises those components in one framework, ‘the five Ws
and one H’: Who did What, Where and When, and Why and How.2 Above, Liverpool’s
community manager afforded such brevity because the tweet describes the Who, What,
and When: “87’ [When] - Goal [What]. Leeds [Who].”; the Where, unchanging through-
out the event, is redundant.

Today, the ‘four Ws’ have all but disappeared from event tracking, but they are expe-
riencing a quiet renaissance elsewhere. While TDT researchers afforded to track events
without a theoretical structure, those in EMM did not. Event modelling research as-
sumed the task of representing “in a semantically meaningful way” [39] the events that
TDT research could not understand. In the ‘four Ws’, the event modelling community

2In practice, TDT literature focuses only on the Who, What, Where and When, or the ‘four Ws’ [139; 169].
The Why and How denote more complex reasoning, a task for event mining [39].
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found its semantic structure.

Yet in event tracking like in event modelling, the event structure does not consti-
tute understanding. Framed in Plato’s definition of knowledge, Definition 1, the ‘four
Ws’ fail. The structure contains no propositions: no justifications, no truths and no
beliefs—only a template for event understanding. Researchers have to interpret for
themselves how to fill in the ‘four Ws’, with difficulty. The When alludes to time, but
researchers had to rationalise what it means to understand What happens in an event,
with Whose involvement and Where. The TDT community frequently resorted to lin-
guistics to fill in the structure. Less commonly, it prioritised semantics.

Linguistic understanding

First, the TDT community understood with linguistics. In linguistics, researchers found
convenience and accessibility. They found that they could trial understanding effort-
lessly with existing Natural Language Processing (NLP) tools. The When aligned with
the publication time, the Who and the Where with NER’s named entities, and the What
with most of what remained. Thus, linguistics helped fill in some of the gaps in the
theory of the ‘four Ws’.

Some research modelled events from news articles in this manner. Makkonen et al.
[139] built event profiles entirely with linguistics: NER tools to understand the Who and
the Where, and Parts of Speech (POS) tagging to understand the What. More contempo-
rary applications augment the old structure with modern metadata. The event models
of Li et al. [126], otherwise identical to event profiles [139], consider Twitter mentions as
the Who and hashtags as the topics, the What.

Others studied certain aspects of the event structure. Chen and Ku [35] extracted
named entities, the Who and the Where, and boosted their weight, whereas McMinn
and Jose [158] processed tweets separately depending on the named entities within.
Others yet left behind the event structure altogether and gave understanding a more
sophisticated but withdrawn role. They interpreted understanding events as discover-
ing the latent subjects in streams with topic modelling [49], or simply comprehending
language better with synonymy [114; 138] or text embedding [61; 94].

Linguistic understanding failed frequently, however. The event profiles built by
Makkonen et al. [139] performed worse than the baseline, as did those by Kumaran and
Allan [120], and for Li et al. [125], performance only improved after they filtered the pro-
files semantically. Likewise, topic models [49] and named entity boosting [10; 35] only
reduced errors when applied selectively. Even when linguistics succeeded, the progress
appeared insignificant next to the efforts and complexity of understanding [169].
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Linguistics failed because they did not capture true event understanding. They rep-
resent the assumption that if TDT algorithms understood language better, they could
track events better. To a certain extent, the assumption makes sense. So much of TDT’s
process depends on language: document-pivot techniques cluster documents that use
the same language and feature-pivot techniques monitor changes in language. Nev-
ertheless, the assumption represents only a weak belief, that linguistic understanding
could approximate event understanding. Knowledge rests not only on belief but on
justification and true propositions too, and linguistics contributed little of either.

Semantic understanding

Second, the TDT community understood with semantics. On occasion, researchers
recognised that human understanding of events has a more refined nature than sim-
ple parsed language. Like the two words that describe Leeds’ goal against Liverpool,
TDT research needed to understand, precisely, events. Machines do not require named
entities or nouns or verbs; they require the named entities and nouns and verbs that
describe events semantically.

Semantic understanding does not have to fall far from linguistic understanding.
Nouns like goal, cross and foul comprise the vast majority of terms in the lexicon by Kubo
et al. [118], which they use for event summarisation. Likewise, the lexicon by Choud-
hury and Breslin [42] contains nouns and named entities relevant to cricket games. Dif-
ferently from linguistics, however, you could pore over every noun and every named
entity, and find an inextricable link with the event and its domain.

Thus, semantic understanding refines linguistics. Hua et al. [99] rank a POS tagger’s
words based on their affinity with the domain, and Hossny and Mitchell [95] extract
protest-related words with a method similar to feature selection. Elsewhere, Huang
et al. [101], who build separate timelines for each named entity in an event, seek to
understand participants better: they discard infrequent named entities and identify co-
references. Each approach uses but does not depend on linguistics.

Notwithstanding such examples, semantic understanding seldom figures in TDT
literature. Like Kubo et al. [118] or Choudhury and Breslin [42], researchers could de-
fine semantic understanding manually to capture true event knowledge. Buntain et al.
[28] mulled the possibility but found the manual process infeasible, unreasonable and
unscalable. Moreover, ready-made knowledge bases rarely cater to the specific needs
of particular domains either [244]; WordNet lists 16 different senses of the word cross,
which Kubo et al. [118] included in their lexicon, but not one relates to football.

Buntain et al. [28] never considered generating semantic understanding automati-
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cally. Perhaps the task appeared formidable without any guarantees. When automatic
semantic understanding appeared, it followed the failures of linguistic understanding,
such as when Chen and Ku [35] filtered trivial named entities, or when Li et al. [125]
built event profiles using only event clauses. Such research recognised that a few precise
terms distinguish one story from another [8]. The difficulty, however, lies in identifying
which [139] and rationalising the same logic to extract them algorithmically. So far, the
problem remains without a solution.

Event models

Third, the TDT community understood with event models. Event models represent the
culmination of semantic understanding. Semantic understanding comprehends only
What happens, with Whose involvement or Where; event models combine all of the
‘four Ws’ in one structure that describes how one relates with the other. Unlike the iso-
lated terms in the lexicon by Kubo et al. [118] or the detached named entities extracted
by Huang et al. [101], the event model may link What happens with Who makes it hap-
pen. Thus, event models fill the event structure with semantics.

Löchtefeld et al. [136] present the best example of event models in TDT literature. A
football knowledge base stores the names of German teams and players, the Who, and a
set of hand-crafted extraction patterns that capture Who does What in matches. When-
ever a pattern matches a few tweets, the system creates an event model, such as which
player scored a goal. Machine-readable understanding begets machine-readable under-
standing. Yet the process implies not only the difficulties of understanding semantically
but also the new difficulties of understanding how events function, and the example by
Löchtefeld et al. [136] may well be the only one in TDT literature.

Event models appear predominantly elsewhere, in EMM research. Naturally, event
modelling’s scope differs. TDT understands retrospective or real-time events, whereas
event modelling understands only past events, the outputs of event extraction or track-
ing algorithms that have concluded. The event models thus arrive far too late to drive
the TDT process. In other words, they still leave the TDT community needing to under-
stand events for itself.

The interpretations of event understanding leave an almost-unreconcilable divide.
At one end, automatic understanding, like POS tagging or NER [35; 139], is convenient
and accessible but ambiguous and inaccurate. At the other end, manually-compiled
understanding [118; 136] is laborious but unambiguous and accurate. The challenge lies

21



Chapter 2. Review: The Long Road to Understanding

Figure 2.4: Journalists rely on the ‘five Ws and one H’ to describe events. The BBC’s
tweet describes Who is doing What, Where, and Why and How; the publication time
implies the When.

not only in generating understanding automatically but rather in generating the type of
reliable, semantic knowledge around which researchers could design TDT algorithms.
In the next section, we describe how research can start closing the gap.

2.3 | Semantics as a solution
While the TDT community struggled to understand events, the news media had mas-
tered them. For centuries, journalists and reporters in the news media have had to
understand events to report about them to readers and listeners. A skilled journalist
can weave a narrative in just one sentence using nothing more than the tools that Allan
et al. [9] proposed: the ‘five Ws and one H’.

The ‘five Ws and one H’ represent a fundamental rule of journalism [222]. They
orient readers and listeners towards the essence of a story [105]. The BBC’s tweet in
Figure 2.4 gives the background and an update about a story at once: “Indonesian
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Navy [Who] hunting for submarine [What] that has gone missing [Why] in waters north
of island of Bali [Where]”. Liverpool’s tweet in Figure 2.3 achieves the same effect with
even more pronounced minimalism.

Because the ‘five Ws and one H’ make sense, we adopt them as our framework for
understanding. Historically, the major obstacle to understand events has been to iden-
tify important information, what it means to understand [137; 169], but the event struc-
ture serves as a theoretical guideline. The ‘five Ws and one H’ orient our understanding
like they orient the news media’s readers and listeners.

Of course, past failures and a low adoption tarnish the ‘five Ws and one H’. Never-
theless, history portrays these simple tools as theoretically-sound; only in TDT literature
do they appear practically-shallow. Our position in this dissertation is that TDT research
failed the ‘five Ws and one H’, and not the other way round. Research understood lan-
guage, not events. Differently from prevailing literature, in this dissertation we fill the
event structure with semantic understanding.

In practice, our vision of event knowledge resembles the lexicon of terms that Kubo
et al. [118] wrote or the knowledge base of participants that Löchtefeld et al. [136] com-
piled: semantic, precise, human-like. Nevertheless, while we generate different types
of understanding, our end-goal represents only an elementary form of event models.
We propose to understand, semantically, What may happen in an event, or Who may
be involved and Where, but not how one relates to the other. We explore, briefly, event
models in Chapter 6.

We impose two conditions on how we must fill the event structure with semantic
understanding. First, we must generate understanding automatically, which requires
us to formalise what it means to understand What may happen, or Who may perform
an action or Where. We refer back to the definition of events, Definition 2 on page 4 [39].
Second, we must generate understanding early enough to drive the TDT process. Un-
derstanding retrospectively, like EMM research does, excludes the application of knowl-
edge in real-time events. Therefore we aspire to understand events semantically, auto-
matically and ahead of time.

Of the ‘five Ws and one H’, we focus on the ‘four Ws’. In particular, we look to
understand the event participants, the Who and the Where, and the actions or changes,
the What; the primary TDT task, to detect new events, implies the When, whereas the
Why and the How demand complex reasoning [51], and thus fit better as problems for
event mining [39]. Table 2.1 lists our interpretations of the ‘four Ws’. In the rest of
this section, we discuss the significance of the Who and the Where, and the What, and
explain how they can make sense in practice, not just in theory.
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Who “The entities that play a significant role in shaping the event progress” [101;
234]; the persons, locations or organisations who affect or are affected by the
event [144]

What “An action, or a series of actions, or a change” [39]; “the subject, occasion,
body or activity that [is] involved in the event” [169]

Where The places or locations where the event takes place [169]

When The date and time when the event takes place [169]

Table 2.1: Selected interpretations from literature of the four basic elements of an event:
Who did What, Where and When.

The Who and the Where
No form of understanding appears as commonly as the Who and the Where in TDT
literature. Early on, some researchers perceived a semantic value in persons, organi-
sations and locations that distinguished one event from the other. Therefore research
boosted the weights of named entities [5; 35], or separated them from ordinary words to
form event-centric adaptations of the classical, undiscerning Vector Space Model (VSM):
event profiles [120; 139; 285].

Others reasoned that events primarily concern the Who and the Where [158] and
gave participants a role to match. McMinn and Jose [158] cluster tweets separately,
depending on which names appear within. Likewise, the algorithms by Shen et al.
[234] and Huang et al. [101] follow participants to build individual timelines for each
named entity and its coreferences. Such thinking refined the philosophy of events, gave
timelines a new sense. A timeline no longer symbolised a list of topics but a list of topics
related to a certain named entity.

The prevalence of the Who and the Where in TDT literature leads to two reflections.
First, it reflects the driving role that named entities assume in events [158; 169]; ignore
them, research found, and performance drops significantly [10]. Second, and perhaps
more consequential to how the research community chose to understand, it reflects the
ease with which researchers could extract participants. The Who and the Where sym-
bolise persons, organisations and locations—named entities. Existing NER literature
gave researchers a rare relief from having to define the Who and the Where, and the
tools with which to identify them.

Regrettably, research never progressed past NER. Had research investigated the
Who and the Where more closely, they might have comprehended why only discrim-
inating named entities helped Chen and Ku [35] improve performance. Chen and Ku
[35] discovered what Zhou et al. [297] remarked later: named entities do not necessarily
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indicate newsworthiness. Although the Who and the Where manifest as named entities,
not all named entities represent the Who or the Where. At fault, our assumptions: NER
tools understand language, not events.

Because NER models understand language, not events, they cannot discern between
named entities and event participants. On 26 July 2020, as Leicester City’s Jamie Vardy
played against Manchester United, he was simultaneously competing for the Premier
League Golden Boot against Arsenal’s Pierre-Emerick Aubameyang and Southampton’s
Danny Ings [237]. Twitter users mentioned Aubameyang and Ings alongside Vardy, de-
spite having no bearing on the match itself. All three were named entities, but only
Vardy was a participant. Yet TDT research still assumes, erroneously, that named enti-
ties could substitute for participants.

In our previous work, we revised the assumption [144]. We assumed that at least
some named entities represent participants, and that they can lead us to the other par-
ticipants. The new assumption formed the basis of Automatic Participant Detection
(APD), a six-step framework to understand Who participates in events, or Where they
happen. In the first three steps, APD still relies on NER to identify, score and filter infre-
quent named entities. In the next steps, however, the framework refines NER’s output:
it disambiguates named entities to retain only the relevant participants and extrapolates
from them the ones it missed.

APD reconciled NER with proper event understanding of the Who and the Where.
NER tools, whether designed for Twitter or not, succumbed to the same challenges: they
understood language, not events. In contrast, our first iteration of the APD framework
correctly filtered many irrelevant named entities and captured many more relevant par-
ticipants that NER models had missed, even before the event started [144]. APD helped
us understand events, not language. We describe DEPICT, a novel algorithm to under-
stand the Who and the Where, in Chapter 3.

The What
The TDT community’s biggest failure to fill the event structure with semantics was the
What. Like for the Who and the Where, researchers looked for readily-available solu-
tions to understand the What. Algorithms applied topic modelling to discover latent
topics [49] and POS tagging to understand What happens in events [35; 120; 139; 169].
This time, however, the obvious flaws of the linguistic assumptions could not escape re-
searchers. The lexicon constructed manually by Kubo et al. [118] contrasts sharply with
the crudity of linguistic understanding.

The What should have a significance in the event. It should describe “the subject,
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occasion, body or activity that [is] involved in the event” [169], or “an action, or a series
of actions, or a change” [39]. What understanding do linguistics impart? Makkonen
et al. [139] understood What happens in events simply through the “subjects, objects,
attributive nominals, prepositional complements and main verbs”—linguistic compo-
nents. POS tagging only understands the syntax of a language, and synonymy and text
embedding only the semantics of language, not events.

In a way, the absence of definitions impelled researchers to rely on linguistics. While
the What is intuitive for a human to understand, it proves far more challenging to
define [267; 282]. We read Liverpool’s tweet and sense the disappointment of a late
equaliser, and we read the BBC’s tweet and sense tragedy. Machines read words and
sense nothing. Nevertheless, understanding What happens in events remains a crucial
aspect of event knowledge. No other component of the ‘four Ws’ describes events as
expressively as the What [169].

We again revise the assumption of linguistics. Like Hua et al. [99] and others [66;
289], we assume that a few keywords, normally the Who and the Where, separate events
in the same domain; Hua et al. [99] called them “event terms”. Fundamentally, events
belong to the same domain because they share a general vocabulary [161], the domain
terms: a building collapses in an earthquake, a political party wins an election, a player
scores in a football match. We assume that domain terms describe What happens in
events from a particular domain.

Our assumption aligns the process of understanding What happens in events with
Automatic Term Extraction (ATE), the task of identifying domain-specific terms from
domain-specific corpora. Like TDT’s algorithms, ATE methods generally have a lin-
guistic component and often rest on nouns. Unlike TDT’s algorithms, however, ATE
methods only rest on the nouns that describe domains. A statistical component, the
termhood measure, follows the linguistic component and weighs a word’s suitability as
a term [140]. Thus, ATE can become the answer for TDT research to understand What
happens generally in events from a domain.

The TDT community has experimented with ATE only briefly, never explicitly, in
the work we have surveyed. There are no sophisticated termhood measures tailored to
events or tweets—only elementary techniques. Hua et al. [99] and Zhou et al. [297, 298],
the closest research we could find to ATE in TDT literature, used the most rudimentary
of the research area’s baselines: TF-IDF and derivations of it. Hossny and Mitchell [95]
simply applied feature selection with Jaccard similarity to the problem. None of the
surveyed approaches even evaluated the quality of the understanding—only its effects
on the system.

Elementary ATE techniques may not satisfy TDT. To understand What happens in
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events, event tracking research must adapt, not merely adopt, ATE, for two reasons.
First, while ATE literature focusing on general domains abounds, we could find little
research on event domains. TDT literature needs domain terms to reflect, accurately,
“an action, or a series of actions, or a change” [39]. As our findings in Chapter 5 suggest,
ATE’s general domain terms, much like linguistics, may not suffice.

Second, we could find even less ATE research on Twitter. Hua et al. [99] tracked
events from tweets but understood the What from news articles, and so did Zhou et al.
[297, 298]. In fact, among the literature that we reviewed, only Hossny and Mitchell [95]
understood What happens in event domains from tweets, and they approached the task
as a feature selection problem. If TDT algorithms track events on Twitter, then surely
they should understand them like Twitter does.

Thus, ATE’s performance and challenges in event domains and on Twitter remain
a great unknown. TDT research on Twitter may not understand events as long as ATE
algorithms do not understand events from tweets. Like we adapted NER to understand
the Who and the Where, event tracking research must also adapt ATE to understand the
What. We describe EVATE, a novel algorithm to understand What happens in events
from tweets, in Chapter 4.

Recap
Allan et al. [9] first set TDT on the road to understanding in 1998, but more than two
decades later, the research community still has barely embarked on the journey. The
reluctance does not mean that the community has solved the challenges that motivated
the original suggestion. On the contrary, TDT literature faces new challenges for which
research has no answer. In this chapter, we revived the proposal to study understanding
by answering the following questions:

■ Why does TDT need understanding? For years, research has grappled helplessly
with the limitations of document-pivot and feature-pivot techniques, and later
with Twitter’s challenges. In Section 2.1 we explored TDT literature’s difficulties
and showed how event understanding can overcome some of modern day’s most
persistent challenges, including Twitter’s volume and velocity, brevity and noise.

■ What does it mean to understand events? From the event structure to linguistic
understanding and more sophisticated, semantic knowledge, TDT research has
explored understanding, albeit often indirectly. In Section 2.2, we compared per-
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Principal contributions

■ The first review dedicated to the development and application of understand-
ing in TDT literature

■ A critical discussion of different forms of understanding that links TDT with
EMM and the news media

■ Practical guidance to understand the Who and the Where with APD, and the
What with ATE

spectives of understanding and discussed why linguistics could not match a se-
mantic understanding of events.

■ How can TDT literature understand events? Without direction from the ‘four Ws’,
the research community approximated understanding through linguistics, which
could never suffice. In Section 2.3, we adopted the ‘four Ws‘ as our definition of
events, and we linked the Who and the Where with APD, and the What with ATE
to develop semantic understanding automatically.

In the rest of this dissertation, we develop our vision of event understanding. In
Chapter 3, we understand the Who and the Where with APD, and in Chapter 4 we un-
derstand the What with ATE. Then, in Chapters 5 and 6, we apply our understanding in
TDT and EMM. We start by exploring how APD can help us understand, semantically,
Who participates in events and Where in the next chapter.
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Understanding

The Who and the Where

McMinn and Jose [158] hypothesised that events primarily concern participants. More
precisely, McMinn and Jose [158] hypothesised that named entities form “the building
blocks of events”: events happen because named entities make them happen or, by
happening, events involve or affect named entities. Others formulated more measured
hypotheses. Yang et al. [289] and Popescu et al. [205] recognised the value of participants
and hypothesised simply that named entities could substitute for them. Each treated
named entities as a window into events: understand named entities and you will have
understood events themselves.

From such practical hypotheses flowed the TDT community’s first understanding
of events, the Who and the Where. The hypotheses by McMinn and Jose [158], Yang
et al. [289] and Popescu et al. [205] seem to flow logically, without any apparent flaws.
In practice, however, the hypotheses proved incomplete and ingenuous, and ultimately
detrimental. Understanding about the Who and the Where only harmed its various
applications [10; 35; 120; 125; 139]. The first taste of understanding exposed the dangers
of understanding too simply.

In this chapter, we explore literature’s first form of understanding, the Who and
the Where. We demonstrate how the TDT community erred in conflating named enti-
ties with participants, and how the assumption ultimately let down their applications.
More importantly, we also demonstrate how the research area could understand partic-
ipants with Automatic Participant Detection (APD). We demonstrate all by answering
the following questions:

■ What makes a named entity an event participant? The idea that named entities
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could represent event participants has a logical basis, but Named Entity Recog-
nition (NER) tools on their own often worsened performance. In Section 3.1, we
demonstrate how named entities failed TDT algorithms primarily because the fun-
damental assumption failed: few named entities could substitute for participants.

■ How can a better understanding of participants improve our understanding of
Who participates in events and Where? The TDT community expected named
entities to be a quick way of understanding the Who and the Where, and the ef-
forts matched the expectations. In Section 3.2, we present DEPICT, a novel APD
algorithm that follows a more circuitous route to understand, not merely detect,
participants.

■ How does APD refine the NER assumption, that named entities could substitute
for participants? The TDT community never studied the suitability of NER models
to understand event participants; it only ever studied how named entities affected
performance, often in the negative. In Section 3.3, we compare three NER models,
including, for the first time, Twitter’s own named entity annotator, with two APD
algorithms.

3.1 | What makes a named entity an event participant
McMinn and Jose [158] made explicit what many others had previously only implied.
Before McMinn and Jose [158], Popescu et al. [205] had similarly argued that events
revolve around “a small set of important entities”, as a general rule persons, locations
or organisations. A decade earlier, Li et al. [125] went even further and posited, with
excessive optimism, that knowledge of participants would make event tracking “easy
and effective.” The hypotheses seemed to flow logically.

Beneath the hypotheses’ elegant veneer, however, lay a more practical matter. Un-
derstanding the Who and the Where represented an attractive prospect because the two
proved the most accessible of the ‘five Ws and one H’. TDT researchers could under-
stand the Who and the Where with existing NER models. So began the rocky journey
into understanding, with named entities the staple assumption. The research commu-
nity rarely asked the critical question at the heart of the premise: what makes a named
entity an event participant?

Without an answer, the assumption failed frequently and systematically. Few re-
searchers measured the effects of named entities on their TDT algorithms explicitly, but
when they did, flaws appeared with a telling consistency. First, named entity boost-
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Model Precision Recall MAP Balance

NLTK 48.33% 31.46% 30.42% 0.3533

TwitterNER 48.00% 28.85% 34.76% 0.2829

Table 3.1: Deployed on six football matches, NLTK and TwitterNER could neither ex-
tract event participants comprehensively nor, more surprisingly, precisely. We present a
full breakdown of the results in Table F.1.

ing harmed algorithms, which performed better in complete ignorance of named en-
tities [10; 35]. More recently, Phuvipadawat and Murata [204] resurrected the idea of
named entity boosting, this time on Twitter, and inspired many others [5; 102; 264]. The
trend, however, appears to be a facade built only on an empirical study.

Then, event profiles failed. Early on, the TDT community repeatedly attempted to
reconstruct the event structure [9], predominantly from named entities. Event profiles
worsened performance as well. The efforts of Kumaran and Allan [120], Makkonen et al.
[139] and Li et al. [125] could not exceed even elementary baselines. The event profiles
extracted by Li et al. [125], built on named entities, made almost three times as many
mistakes as TF-IDF with cosine similarity.

The difficulties to improve performance painted a distorted picture of understand-
ing. We could, perhaps, trace the lack of semantic understanding in modern solutions
back to these unsuccessful experiments. Regardless, the TDT community seems to have
set aside named entities. Elsewhere, however, EMM research continued to insist on
the assumption—on named entities. To Edouard et al. [56], named entities represent
such a crucial element that no event could conceivably exist without the involvement
of one. Yet others found little guarantee of newsworthiness in the presence of named
entities [297].

To understand why the assumption failed TDT algorithms so regularly, we exam-
ined the output of two NER models. We used Natural Language Toolkit (NLTK)’s
general-purpose NER model [22], and TwitterNER [166] to extract 50 named entities
from six football match datasets, which we use in Section 5.3. As we annotated named
entities following the same process as in Section 3.3, the causes of NER’s failures in
event tracking literature became clearer. We identified three problems in the results of
Table 3.1.

First, we found that many participants never appeared in NER’s rankings. We
tracked all six football matches using not only the event hashtag but also the names
of the stadium, teams, players and coaches. Still, on average, NLTK and TwitterNER
could recall less than a third of participants. Instead, the two NER models played to the

31



Chapter 3. Understanding: The Who and the Where

whims of the events: they captured the participants with a prominent role and missed
altogether the more numerous but withdrawn actors.

Second, and more surprisingly, we found that most named entities bore little rele-
vance to the event. On average, we could label less than half of the named entities as
clear mentions of participants. Instead, NLTK and TwitterNER filled the rankings with
ambiguous references to participants, mostly common first names, and many other spu-
rious named entities with a tangential relevance: the names of unrelated teams, players
and other football personalities.

Third, the named entities described very selective versions of events, the ones told
by Twitter users. The low balance figures indicate how both NER models succumbed
to what we previously termed as bias [144], or the tendency for a few named entities
to dominate discussion [101]. In the domain of football matches, one team often hogs
attention, and the two NER models mirrored the asymmetric behaviour, covering one
set of players disproportionately more than the other.

To summarise, TDT research’s assumption failed our experiment on every count.
The two NER models could neither capture participants precisely nor comprehensively
nor symmetrically. And the flaws appeared consistently: no extractor and no event de-
viated considerably from the trend. Not even TwitterNER’s better handling of Twitter’s
syntax led to statistically-significant gains over NLTK’s general-purpose tool. It should
come as no surprise, then, that named entities did not improve TDT algorithms. We will
examine the difficulties of NER models to understand the Who and the Where in more
detail in Section 3.3. For now, our failed experiment can serve as a valuable lesson.

Some inquisitive researchers drew the right conclusions. While many, like Makko-
nen et al. [139], lamented but accepted the flaws of understanding, others looked for
the reasons why understanding failed to improve performance. Allan et al. [10] con-
cluded that several named entities had little relevance to the event and that many oth-
ers referred to the same participants, and thus created ambiguity. Chen and Ku [35]
concluded, from a highly TDT-centric perspective, that many named entities have no
discriminating power to distinguish one event from the others. Similarly, Li et al. [125]
concluded that few of the named entities captured the essence of an event.

Because the three groups of researchers drew the right conclusions, they could shape
NER’s output to suit the needs of the TDT problem. Allan et al. [10] created a stopword
list of named entities to remove noise and applied co-reference resolution to map refer-
ences to a common entity, thus reducing ambiguity. Chen and Ku [35] only boosted the
weight of the discriminating named entities, and Li et al. [125] constructed event profiles
from the few named entities that appeared in important sentences, the event clauses. On
these rare occasions, when the TDT community bridged linguistic understanding with
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semantics, the methods’ results improved.

These results reveal NER models to be useful tools with a limited scope. NER’s
scope has never been to capture all event participants and filter all irrelevant named
entities. Even the ideal NER model could not distinguish between a named entity with
a passive presence and a participant with an active role in an event—what Chen and Ku
[35] called the discriminating named entities. NER’s scope is simply to capture named
entities. Therefore the problem of NER reminds us of the broader problem of event
understanding: the problem is not so much the use of named entities as it is identifying
which named entities can contribute positively [169].

The rare recent efforts to understand tend to be little more discerning of the outputs
from NER tools than Allan et al. [10] and the rest. Shen et al. [234] and Huang et al. [101]
resolved co-references and filtered infrequent named entities, but a stark dissonance re-
mains between their definition and practical interpretation of participants.1 Both define
participants as “the entities that play a significant role in the event” but reduce signif-
icance to a contest of popularity. McMinn and Jose [158], who called participants the
“building blocks of events”, do not filter named entities at all.

If the Who and the Where carry so much importance in events; if participants consti-
tute the foundation of events, then surely they warrant a more thorough understanding.
Surely we must progress past the assumption that NER’s linguistic understanding could
substitute for semantic understanding.

In our previous work, we revised the assumption [144]. The TDT community as-
sumes that named entities could substitute for participants. We assumed that certain
named entities could substitute for participants, and that those named entities could
lead us to the ones that the NER model missed. From our new assumption emerged,
unwittingly, the present solution to understand the Who and the Where: the six-step
Automatic Participant Detection (APD) framework, summarised in Figure 3.1.

Originally, we devised the APD framework to follow the query expansion princi-
ple [141]. We describe events with queries that humans could understand but which
machines interpret literally: an event representation, normally a hashtag. If machines
recognised the participants, however, they could automatically augment the queries,
or the event representations. This simple act of expanding the query with a seman-
tic understanding of the event’s participants would ultimately improve TDT perfor-
mance [141]. The crux, of course, lay in overcoming NER’s limits: identifying which
named entities could substitute for participants.

1We refer to Shen et al. [234] and Huang et al. [101] frequently throughout this chapter, and we often
refer to them as one interchangeable system. We do so because the article by Huang et al. [101] appears to
be a re-print with only minor, cosmetic changes of the earlier paper by Shen et al. [234].
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Figure 3.1: The six-step APD framework extends the NER assumption. The first three
steps apply an NER tool, whereas the last three refine and complete its output. Figure
reproduced from [148].

Moreover, the query expansion principle alone did not suffice. NER’s limited scope,
in particular recall, hindered the query expansion task and forced us to add the entity
set expansion principle to the design. Participants tend to share common traits, we
observed, so we could follow the named entities that could substitute for participants
to find the ones that the NER tool had missed. These two principles formed our new
assumption about participation and guided the APD framework’s six steps.

The first four steps reflect the first part of the assumption, that certain named entities
could substitute for participants. The first step extracts all named entities, the second
step scores and ranks them, and the third step filters the ranking to retain only fre-
quent named entities, like Shen et al. [234] and Huang et al. [101] do. Differently from
Shen et al. [234] and Huang et al. [101], however, the fourth step resolves the remaining
named entities to a knowledge base, a process of disambiguation and semantic filtering.

The last two steps reflect the second part of the assumption, that the resolved named
entities could lead us to the ones that the NER tool had missed. A few named entities
hog attention [101], as we also showed above, so the fifth step uses the resolved par-
ticipants to extrapolate the missed ones from a knowledge base. Finally, the sixth step
post-processes the participants, adapting them to the needs of the application.

At a glance, the APD process may appear unnecessarily-complicated. It may seem

34



3.2. DEPICT: DEtecting Participants by Inferring Common Traits

like a complex answer to ostensibly-simple questions: Who is participating in an event?
Where is the event taking place? Nevertheless, it is the inherent complexity of semantic
understanding that demands APD’s complex process. Therefore the APD process rep-
resents more than a glorified filter of NER’s outputs. It incorporates all the lessons of
Allan et al. [10], Chen and Ku [35], and Li et al. [125]: it co-references and filters, and
understands participants with a more semantic direction than any of them. It represents
the transition from linguistic to semantic understanding.

The APD framework represents our answer to the question of what makes a named
entity a participant. A named entity becomes a participant when it plays a “signifi-
cant role in the event” [101; 234]; when we cannot separate the named entity from the
event because one affects the other [144]; when we cannot explain the event without
the named entity: a “building block” [158]. Detecting participants, then, goes through
understanding the participants themselves. In the next section, we present DEPICT, a
novel algorithm to understand, not merely detect, participants.

3.2 | DEPICT: DEtectingParticipants by InferringCom-
mon Traits

Our first APD implementation showed a way for TDT researchers to overcome the lim-
its of linguistic understanding [144]. We assumed that certain named entities could
substitute for participants, and that other participants formed tight-knight communities
around them in the Wikipedia graph. The algorithm, part of ELD’s architecture, yielded
statistically-significant gains in precision and recall over two NER models. Neverthe-
less, we could not describe the technique as an unmitigated success.

Our first APD implementation also exposed the complexity of semantic understand-
ing [144]. Every step in the framework represents an assumption, and every assump-
tion an intricate process. ELD’s assumption required us to re-construct sections of the
Wikipedia graph, and still, despite the complexity, the algorithm remained unaware of
what made participants out of named entities. It understood relations among partici-
pants but not the participants themselves. In some domains, with such a weak grasp
of semantics, the algorithm was prone to semantic drift. In other domains, the core
assumption lost all meaning and the algorithm failed utterly.

In this section, we introduce DEtecting Participants by Inferring Common Traits
(DEPICT), an extension to ELD’s APD algorithm in three parts. First, in DEPICT we
experiment with Twitter’s new-and-untried proprietary NER model; to the best of our
knowledge, we become the first to experiment with Twitter’s annotations in the context
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of TDT. Second, DEPICT extracts attributes to understand the participants themselves,
not the associations among them; we give an example in Figure 3.3 on page 44. Third,
DEPICT applies the attribute profiles to simplify and refine the APD process.

Our novelties concern only three steps. We experiment with different extractors at
step one, and implement a new extrapolator and a new post-processor at steps five and
six. Nevertheless, the three other steps—scoring, filtering and resolution—still play a
crucial role in DEPICT’s design, so for the sake of clarity, we describe all six steps next.

Extraction
The extraction step receives a corpus of tweets and extracts, from each tweet, a list of
named entities. We filter no tweets; the next steps render it unnecessary. We do not
even filter retweets. Retweets might induce bias [225] and, intuitively, accentuate the
imbalance and asymmetry that we observed in the previous section, in Table 3.1. Yet
bias takes another form, which we accept more readily: the bias towards well-written,
authoritative content, as we demonstrate in Section 4.3.

We only change one thing in tweets. We expand user mentions, replacing account
handles such as @NicholasMamo with display names like Nicholas Mamo. The minor
change makes tweets more imitative of natural language, and thus facilitates NER.
Then, we extract named entities with one of three NER models, which represent three
broad classes of tools: the general-purpose, the bespoke and the proprietary.

First, we extract named entities using NLTK’s general-purpose NER model. NLTK’s
NER model [22] represents the general-purpose solution, a model that balances perfor-
mance with annotation quality [231; 270], designed to work in any medium and with
any subject. It does not, however, adapt to the unconventional. In particular, in Sec-
tion 3.3 we will reveal how NLTK struggles to adapt to Twitter’s foreign syntax and
erratic grammar.

Second, we extract named entities using TwitterNER [166]. TwitterNER represents
the bespoke solution, a model whose existence revolves around overcoming one well-
defined problem: Twitter’s syntax. TwitterNER distinguishes between words, hashtags
and mentions, and uses a word representation trained on six billion tweets. More dis-
tinctively, the NER model also employs a multitude of gazetteers, covering common
first and last names, places and companies, and many other types of entities from di-
verse domains. With the gazetteers, TwitterNER progresses from a mere syntactical
understanding to an understanding of what a named entity may be. We had also used
TwitterNER in our previous work [144].
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Third, we extract named entities using Twitter’s own NER model. Twitter’s annota-
tor represents the proprietary solution, the social network’s answer to its own challenges
of syntax and language. Twitter introduced entity annotations as part of the new ver-
sion of its API in late 2019 [83], revealing very little about how its algorithm annotates
named entities. Twitter has implied the use of semantic analysis and the existence of
a domain graph, but those seemingly only concern tweets’ contextual annotations, not
entity annotations. Therefore at the time of writing, we still do not understand Twitter’s
entity recognition process any better than we did at launch.

To the best of our knowledge, we become the first to apply Twitter’s named entity
annotations in the context of events. The black-box nature of Twitter’s algorithm inhibits
research from drawing any meaningful conclusions on its design, and we will not pre-
sume to either. Nevertheless, a certain value remains in the study of Twitter’s annotator.
As we compare Twitter’s NER model with NLTK’s and TwitterNER in Section 3.3, we
come to understand better the benefits and trade-offs of the proprietary algorithm. At
the end of the extraction step, NLTK’s NER model, TwitterNER and Twitter’s annotator
return a list of named entities.

Scoring
The scoring step receives a list of named entities, one for each tweet, and assigns a
score to every named entity in the corpus. While NER models extract named entities
from individual tweets, the APD framework extracts named entities from the entire
event discourse. The first part of our assumption requires us to identify the few that
could plausibly substitute for participants. Scoring facilitates the task. The second step
aggregates the extractor’s output into individual scores: one score for every named
entity, an indication of the entity’s extent of participation in the event.

To score named entities, we adopt the same assumption as Shen et al. [234] and
Huang et al. [101]. As we confirm later, in Section 3.3, frequent named entities tend
to be participants. Therefore the scoring step simply counts the number of times a
named entity appears in our corpus. At the end of the scoring step, the scorer returns a
frequency-based ranking of named entities.

Filtering
The filtering step receives a ranking of named entities and retains the ones that could
substitute for participants. While we follow the same assumption as Shen et al. [234] and
Huang et al. [101] to score participants, the premise, which rests solely on frequency, re-
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Figure 3.2: Named entity frequency in events follows a power law distribution. A few
participants appear with a forceful intensity, while most appear scarcely. The behaviour
makes simple, frequency-based linguistic filters unreliable to extract participants.

mains a bold one. The assumption that frequent named entities represent participants
has an undeniably-intuitive basis, but it fails often. As we showed in Table 3.1, fre-
quency may reflect relevance, but relevance seldom reflects participation.

The overindulgence in frequency has important ramifications. Ignore, momentarily,
NER models’ low precision, and frequency remains an unreliable indicator of partici-
pation. Rapid declines and sheer drops characterise the frequency plot in Figure 3.2, a
power law distribution. The most-frequent named entity appears, on average, seven-
teen times as much as the tenth. Even if a frequency-based filter sufficed to understand
semantically, it would still tread an uncertain boundary that shifted constantly across
events: at what frequency do the participants end and the named entities begin?

We relax the assumption. We still assume that frequency indicates participation, but
we do not depend on the assumption alone. Instead, like in our previous work [144], we
use a rank-based filter; a football match has around 50 participants, so we filter the top
50 named entities. The rank-based filter avoids an arbitrary threshold that, like in Shen
et al. [234] and Huang et al. [101], varies with the event’s popularity, and it captures as
many candidate participants as possible. Evidently, we pay little regard to precision,

38



3.2. DEPICT: DEtecting Participants by Inferring Common Traits

but we do so in the safe knowledge that the next step, resolution, filters named entities
with a more semantic diligence. At the end of the filtering step, the filter returns a list of
the most frequent named entities.

Resolution
The resolution step receives a list of named entities and resolves them to a knowledge
base. Our filtering so far, like in Shen et al. [234] and Huang et al. [101], has depended
on frequency, a process barely more expressive of participation than linguistic under-
standing. The fourth step filters again, but it filters differently, with a more explicit
semantic intent. The resolution step thus symbolises the threshold between linguistic
understanding and semantic understanding.

Resolution filters named entities in a process of disambiguation. By definition, res-
olution only maps named entities to a knowledge base, but the inverse process, of dis-
carding named entities with little relevance to the event, amounts to a filtering opera-
tion. From a more practical perspective, resolution refines the extrapolator’s seed set
to capture more accurately semantic relevance [209]. In this chapter, this process of
refinement matters even more than it did in our previous algorithm. DEPICT under-
stands participants to extrapolate the ones that the NER models missed, and therefore
it requires an accurate understanding of the ones that the NER models captured.

DEPICT re-uses ELD’s resolver, which could disambiguate named entities to a pre-
cision of around 70% [144]. In summary, the resolver disambiguates named entities by
assessing how well their Wikipedia articles fit in the event’s domain. The algorithm
starts by searching for named entities on Wikipedia and retrieves, for each one, the
top ten articles. Then, it compares the first sentence of each page with the centroid of
all tweets in the event’s corpus using cosine similarity. A named entity resolves to an
article if the similarity exceeds a threshold, empirically-set to 0.10. At the end of the
resolution step, the resolver returns a list of disambiguated participants.

Extrapolation
The extrapolation step receives a list of resolved participants and extrapolates from
them the ones that the NER model missed. No other component matches the extrapola-
tor’s contribution to recall. In ELD, the extrapolator alone caused recall to soar, almost
double, above NLTK’s (27% � 53%) and TwitterNER’s (32% � 60%) [144]. Yet the recall
figures still betray failures in the extrapolator, such as how it tended to drift semanti-
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cally. Much of DEPICT’s design aims to stifle semantic drift, so before we present the
new extrapolator, it is worth exploring why and how ELD’s method failed.

Extrapolation, together with resolution, embodies our answer to the question: what
makes a named entity a participant? In ELD, we answered the question with a simple
approximation. We assumed, like several others in entity set expansion literature [31;
235], that named entities become participants when they form communities with other
participants in the Wikipedia graph. The extrapolator ranked articles from the largest
communities by comparing them with the domain, like the resolver. It was this lack of
semantic guidance, this ignorance about what made participants of the resolved named
entities, that led to semantic drift [144].

Our assumption here is that named entities become participants when they resem-
ble resolved participants in what they are and what they do. In the 2020 US presidential
election, the community structure did not liken Joe Biden to Donald Trump—their role
did: both were politicians contesting the same election. The link between them, like the
hundreds of other connections that they shared with non-participants, existed only as
proof of an unknown relation: a guide, certainly, but not a solution. Therefore to under-
stand the Who and the Where, we first need to understand the participants themselves,
a form of meta-understanding.

We understand participants by extracting their defining traits, their attributes. Ex-
panding entity sets by identifying the common aspects in the seed set seems entirely
intuitive, even if attributes seldom feature in practice [21; 293]. We could find no com-
mon definition of attributes [12; 251], a recurrent theme in IR, but we regard the task
as a generalisation of relation extraction. Every attribute has a type and a value, like
a relation, but the value does not necessarily denote another entity. On the contrary,
an attribute normally describes an intrinsic property [100]. Therefore, like Huang et al.
[100], we consider attributes and relations in the same way.

We extract attributes from Wikipedia. The massive encyclopedia stands as a high-
quality [74; 284], consistent [286] and up-to-date [1; 209] record of concepts. In fact, you
could find Wikipedia behind derivative knowledge bases like YAGO [241] and DBpedia.
Their structures, containing readily-available attributes, may even appear as superior
candidates to Wikipedia itself if not for often-incomplete and outdated information [36;
37; 269].

Wikipedia has another, more subtle advantage. Formal knowledge bases do not
distinguish clearly between past and present aspects of an entity. At the time of writ-
ing, DBpedia affiliated Neymar, a Brazilian footballer, with three dbp:clubs: Santos,
Barcelona and Paris Saint-Germain. To find Neymar’s current club, you would have to
look up another attribute, dbp:currentclub. Conversely, a Wikipedia article’s first sen-
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tence, the definition sentence, contains no spurious details [144; 301]. It describes the
concept’s present state—the essence and nothing more. Therefore we extract attributes
from the definition sentence.

To extract attributes, DEPICT uses a custom context-free grammar implemented
in NLTK’s shallow parser [22]. By design, the grammar assumes that the definition
sentence describes, uniquely, the article’s concept, which frees it from the burden of
identifying the subject of an attribute. At the highest level, attributes comprise names
or types, such as BASED-IN, and one or more values. At the lowest level, attribute
names represent verbs, and attribute values represent named entities, nouns, numbers
or dates. In-between, the grammar also recognises modifiers to attributes—adjectives
or adverbs—and prepositions. Table 3.2 summarises our context-free grammar.

The actual extrapolation process follows a traditional IR route: generate, score and
rank candidates. Our understanding simplifies the first step. We no longer recon-
struct the Wikipedia graph to examine the community structure; we only compile a
list of broadly-related concepts. DEPICT generates candidate participants by fetching
the most frequently-linked concepts from the resolved participants. We ignore concepts
with years in their titles, unless the year appears in parentheses, as a disambiguator.

The extrapolator’s only parameter, k, controls how many candidates we generate
and balances coverage with semantic drift. A larger value of k allows DEPICT to reach
otherwise-unreachable candidates but also stretches the scope of the candidate set. In
practice, we found a value of 200 to strike a good balance. Then, DEPICT extracts the
attributes of every resolved and candidate participant; we refer to a participant’s collec-
tion of attributes as its attribute profile.

DEPICT builds attribute profiles for the k concepts using the grammar, but we also
consider four additional practical aspects of attributes. First, prepositions alter the
meaning of attributes. We cannot compare the team a footballer plays for with the po-
sition which they play as. The two attributes hold incomparable values, so DEPICT
programmatically separates attributes by preposition: PLAYS-FOR and PLAYS-AS.

Second, modifiers tend to be needlessly-specific. Max Verstappen’s definition sen-
tence describes him as “a Belgian-Dutch racing driver”, but nationality has very little to
do with Formula 1. Of course, the modifiers might be what link participants together; in
US presidential elections, candidates are not merely politicians but American politicians.
In reality, however, the low value of k limits the semantic drift to a negligible effect.
Therefore DEPICT retains only the head of the attribute value, without modifiers: rac-
ing driver, not Belgian-Dutch racing driver.

Third, not every attribute characterises the prototypical participant. Attributes in
parentheses, such as BORN, describe personal characteristics, and others describe almost
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Description A date consists of two numbers and a proper noun in various orders, and may be preceded by a weekday.

Production DATE: <CD> <NNP> <CD> EXAMPLE: 14/CD May/NNP 2017/CD

DATE: <NNP> <CD> <,> <CD> EXAMPLE: March/NNP 9/CD ,/, 1996/CD

DATE: <NNP> <,> <DATE> EXAMPLE: Tuesday/NNP ,/, 6/CD June/NNP 1944/CD

Description A named entity consists of a sequence of proper nouns, but it may also contain numbers or pronouns.

Production ENT: <CD>? <NNP.*> (<CD|NNP.*|PRP>)* EXAMPLE: 1860/CD Munich/NNP
EXAMPLE: World/NNP War/NNP I/PRP

Description A modifier includes a number, or a list of adjectives or adverbs that modify something, usually a noun phrase.

Production MOD: <CD><IN><DT> EXAMPLE: one/CD of/IN the/DT

MOD: <CD>?<JJ.*|RB.*>+ EXAMPLE: 2012/CD Finnish/JJ [drama film]

MOD: <MOD> (<CC|,|TO>? <MOD>)+ EXAMPLE: Canadian/JJ ,/, English-language/JJ ,/,
conservative/JJ [newspaper]

MOD: <ENT|NP> <MOD|POS> EXAMPLE: Brazilian/ENT national/MOD [team]

Description A noun phrase consists of a sequence of nouns, which may be preceded by modifiers or by an entity. A noun
phrase may also combine a series of noun phrases separated by modifiers.

Production NP: <MOD|VBG>* <NN.*>+ EXAMPLE: football/NN team/NN

NP: <ENT> <NP> EXAMPLE: France/ENT (national team)/NP

NP: <NP> <MOD> <NP> EXAMPLE: broadsheet/NP daily/MOD newspaper/NP
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Description An attribute name or type consists of one verb in any tense, including past participles.

Production NAME: <VB.*> EXAMPLE: plays/VBZ [for France]

Description An attribute value consists of a noun phrase, an entity, a number or a date, or a series of such values.

Production VALUE: <NP|ENT|CD|DATE>+ EXAMPLE: (Brazilian professional footballer)/NP
EXAMPLE: [born on] (28 October 1955)/DATE
EXAMPLE: (Ligue 1)/ENT club/NP Lyon/ENT

Description An attribute consists of one or more values separated by coordinating conjunctions or commas. Values may
have determiners, possessive pronouns or modifiers. The list itself may also have a preposition as a modifier.

Production VALUES: <TO>? <IN>? (<DT|PRP$>? <MOD>*

<VALUE><CC|,>*)+

EXAMPLE: an/DT (American businessman)/VALUE, de-
veloper/VALUE and/CC investor/VALUE
EXAMPLE: [adopted the euro] as/IN their/PRP$ (pri-
mary currency)/VALUE

Description An attribute consists of a name and a list of values, and each list may have modifiers.

Production ATTR: <NAME> (<MOD>? <VALUES>)+ EXAMPLE: plays/NAME (as an attacking mid-
fielder)/VALUES (for Ligue 1 club Lyon and the
Brazil national team)/VALUES
EXAMPLE: [Memphis Depay, also] known/NAME
simply/MOD (as Memphis)/VALUES

Table 3.2: DEPICT uses a context-free grammar to extract entity attributes. In the examples, we use parentheses to indicate the
POS tag of a group of symbols without annotating each symbol individually. For example, the named entity Ligue 1 would be
annotated as (Ligue/NNP 1/CD)/ENT, but we annotate it as (Ligue 1)/ENT for the sake of clarity.
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Figure 3.3: DEPICT creates attribute profiles by parsing the first sentences of Wikipedia
articles, the definition sentences. The extrapolator extracts attributes using a custom
context-free grammar, but it also refines profiles further programmatically.

exclusively one participant—a football team can only have one captain. We cannot gen-
eralise such attributes and require them of all the candidates. Therefore DEPICT prunes
attributes if they appear in parentheses or describe only one resolved participant.

Fourth, we can only be certain that the participants’ attributes relate to the event.
However, an attribute may describe a candidate but not any of the participants. We can
neither ascertain that the attribute is relevant nor that it is irrelevant, and it would be
incorrect to penalise a candidate’s score for an attribute that may, in the end, have some
relevance. Therefore DEPICT prunes the attributes of candidates that do not describe
any of the resolved participants. Figure 3.3 shows a sample profile with three attributes:
REFERRED-TO, IS and BASED-IN.

We score and rank candidates by comparing them with the resolved participants.
A candidate resembles a resolved participant not only because the two share attributes
but, most importantly, because they also share attribute values: two footballers partici-
pate in the same event because they PLAY-FOR the same team. DEPICT reflects this logic
with the Jaccard similarity, simc,r, which computes the overlap in the attribute values of
candidate c and resolved participant r:

simc,r =
∑a∈A(r)

|ra∩ca|
|ra∪ca|

|A(r)| (3.1)
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The equation iterates over the participants’ attributes, A(r), and compares the values
of attribute a in the resolved participant’s and candidate’s profiles, ra and ca. We con-
struct the final ranking similarly. We average candidate c’s similarity over all resolved
participants, set R, to get the overall score, scorec:

scorec =
∑r∈R simc,r

|R| · ln wc

ln max(wc|c ∈ C)
(3.2)

To the averaged score, we also add a second factor, a logarithm with a dual purpose.
First, the logarithm functions as a weighting mechanism. Similarly to ELD’s assumption
on community structure, we assume that the greater the number of incoming links wc

from resolved participants, the greater the likelihood that candidate c is relevant to the
event. While designing DEPICT, we observed that weighting improves the ranking
order but reduces balance by increasing bias; we leave further investigation into bias
for future work. We normalise the weight by the highest value among all candidates C
to maintain the score’s range between 0 and 1.

Second, and more subtly, the logarithm acts as a threshold. If just one resolved
participant links to a candidate, then the candidate must only have a meagre similarity
to the resolved participants. By extension, it must have a meagre relevance to the event.
The logarithm assigns a score of 0 to such candidates, regardless of the logarithmic base.
DEPICT filters all candidates with a score of zero, whether by weight or similarity, and
ranks the rest. At the end of the extrapolation step, the extrapolator returns a ranking
of extrapolated participants.

Post-processing
The post-processing step receives a list of resolved and extrapolated participants, and
adapts them to the application’s needs. DEPICT simply re-constructs the participant
profiles, this time with fewer cares. The post-processor extracts all attributes, with-
out removing modifiers and without pruning, to portray participants to the best of the
grammar’s abilities. Then, it ranks participants by score: first the resolved participants,
then the extrapolated ones. At the end of the post-processing step, DEPICT returns a
ranking of participants and their profiles: who they represent and what they do.

Understanding adds an intrinsic value to participants, understanding for the sake
of understanding. DEPICT identifies not only the associations between participants but
what makes them participants in the first place. We understand not only that a named
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entity represents a person but also what they do and what nicknames they go by; not
only that a named entity represents a location but also where it lies, a hierarchy that
spans cities, regions and countries. Yet understanding adds an even greater value to
participants, an extrinsic one.

Understanding gives TDT researchers new possibilities around which to design al-
gorithms. With a better understanding of basketball players, perhaps Shen et al. [234]
and Huang et al. [101] would have covered less noise and more participants. Perhaps
they would have built separate timelines for teams, not only players. At least, they
would have had the possibilities with understanding like DEPICT’s. They could not
have had them with the understanding of NER models. We explore these new possibil-
ities of understanding in Chapter 6. Before, we evaluate DEPICT.

3.3 | Refining linguistic understanding
The disappearance of semantic understanding from TDT literature was logical. It made
sense for Shen et al. [234], Huang et al. [101] and others to stray no further than the
lessons of Allan et al. [10], Chen and Ku [35], and Li et al. [125]. Understanding se-
mantically represented a lengthy, complex process to replace the enduring tradition of
linguistics with event semantics, a solution with no guarantees. After all, research’s task
was TDT, not understanding. In this section, we cede to the doubts. We start by debat-
ing whether linguistic understanding could ever serve as semantics before we explore
how semantic understanding pushes the boundaries of event knowledge.

Our evaluation setup follows our previous work [144]. For most of this section, we
evaluate NER and APD models on ten football matches, a domain with a rigid structure
that has served TDT research well, as we explain in Chapter 5. We collected datasets
for an hour, starting 75 minutes before each match and ending an hour later. During
this time, teams publish the line-ups, triggering intense discussions about participants.
Appendix D.1 includes more details about our datasets.

We compare five models throughout this section: three NER tools and two APD al-
gorithms. The three NER tools, NLTK’s [22], TwitterNER [166] and Twitter’s annotator,
follow the APD framework until step three: extraction, scoring and filtering. The two
APD algorithms, DEPICT and our de facto baseline, ELD’s participant detection tech-
nique, follow the entire process. At the end, all models produce rankings containing not
more than 50 named entities or participants.

We compare three aspects of the five models. First, we evaluate the overall quality
using IR research’s standard metrics: precision and recall, often combined into the sin-
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gular F-score. The three metrics can be expressed in terms of the true positives tp, the
false positives f p, and the false negatives f n:

precision =
tp

tp + f p
(3.3) recall =

tp
tp + f n

(3.4)

F-score =
2 · precision · recall
precision + recall

(3.5)

Second, we evaluate the order quality. The rank of a participant reflects the model’s
confidence in its level of participation, so the order matters. We measure the order qual-
ity using Average Precision (AP), itself based on Precision at k (P@k), or the precision of
all elements until rank k. AP focuses more narrowly on the values of P@k at ranks with
valid participants; relk evaluates to 1 if the element at rank k is valid and 0 otherwise.
Then, it computes the average over all participants in the ground truth GT. For brevity,
we summarise the AP with Mean Average Precision (MAP), or the mean AP across all
events, the set E:

relk =


1 if the element at rank k is relevant

0 otherwise

(3.6)

AP =
1

|GT| ∑
k=1

P@k · relk (3.7) MAP =
1
|E| ∑

e∈E
APe (3.8)

Third, we evaluate the symmetry. In our previous work, models often captured
a skewed perspective of participation. Shaped by Twitter’s discussion, rankings fre-
quently extracted nearly all of the participants from one football team but almost none
from the other. To measure symmetry, we introduce the balance metric, bound between
0 and 1. Balance reaches the minimum value when the ranking is completely asym-
metrical, or when it captures participants exclusively from one team. It reaches the
maximum value when the ranking is completely symmetrical, or when the number of
participants from the first team, r1, equals those of the second team, r2. In other words,
the higher the balance, the lower the bias:2

2Our balance metric is not defined in the case where a model captures no participants at all. Similarly,
balance can only be applied in event domains whose participants segregate naturally into two groups, such
as in football matches. In the context of football matches, we associate the stadium with the home team.
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balance = min(
r1

r2
,

r2

r1
) (3.9)

We annotate rankings using widely-available ground truths. Specifically, we use
LiveScore.com’s and The Guardian’s reports. We consider as precise all entities that ful-
fil our definition of participants, Definition 3, normally the teams, coaches and players
as the Who, and the stadium as the Where. The APD models do not produce any re-
dundant participants, but NER tools capture many indirect references: surnames, nick-
names and aliases. Therefore in the NER rankings, we also accept as precise indirect but
unambiguous references to participants.

In the rest of this section, we follow the procedure above. We start by analysing the
quality of the three NER models, symbols of linguistic understanding. We ask, in the
first analysis, whether NER tools could ever improve enough to bridge the gap between
linguistic and semantic understanding.

The limits of linguistic understanding
Before the TDT community could consider semantic understanding on Twitter, it had
to confront the quality of its linguistic understanding. As early as in 2009, Sankara-
narayanan et al. [229] observed tell-tale signs that Twitter would challenge all man-
ner of NLP tasks, not least NER. Later, Ritter et al. [218], Panagiotou et al. [191] and
many other researchers who looked closely enough observed similar signs and echoed
the same calls: NLP on Twitter had to develop independently of general-domain NLP.
Therefore for a long time, the TDT community could not even claim that its linguistic
understanding was good linguistic understanding.

Recent advances have heeded those early calls. NER models on Twitter have pro-
gressed tremendously since Sankaranarayanan et al. [229] and others first noted the
inadequacy of traditional NLP tools on Twitter. The summary results in Table 3.3 show
how modern solutions like TwitterNER [166] and Twitter’s own annotator eclipse the
more traditional NER model of NLTK. Spurred by these results, in this analysis we
investigate whether a new generation of NER tools could permit research to forego se-
mantic understanding.

NLTK’s NER model fared poorly. In its outputs, we observed many of the same
signs that Sankaranarayanan et al. [229] did. Twitter’s unique syntax—irregular orthog-
raphy, emojis, full stops replaced with new lines—misled NLTK’s model, which could
not delimit named entities, identify where one ends and another one starts. Ordinary
capitalised hashtags like #JuventusFC appeared as names. NLTK’s traditional model
understood neither Twitter’s syntax nor, as a consequence, named entities.
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Model Precision Recall MAP Balance

NLTK 29.80% 21.55% 17.36% 0.4885

TwitterNER △ 32.80% ▲ 26.67% 20.09% △ 0.7273

Twitter ▲ 44.40% ▲ 33.98% ▲ 30.60% 0.5786

Table 3.3: TwitterNER and Twitter’s annotator out-perform NLTK but still do not suffice,
neither in precision nor in recall. △ and ▲ indicate statistically-significant increases at
the 95% and 99% confidence levels, and ▽ and ▼ statistically-significant drops at the
95% and 99% confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-
Rank test) compared to the model in the row above. We present a full breakdown of the
results in Table F.2.

TwitterNER fared better. The model was not misguided by Twitter’s peculiarities,
around which Mishra and Diesner [166] designed their model. TwitterNER understood,
through its gazetteers, what a named entity may be. Only the heavy Western influence
of the lexicons—European and American names dominate—seemed capable of hinder-
ing the model, which captured more confidently participants from Western countries.
Still, in these experiments TwitterNER captured significantly more participants and less
noise than NLTK.

Twitter’s annotator fared even better. No one could understand Twitter’s syntax bet-
ter than Twitter itself. Twitter’s proprietary model skilfully navigated hashtags, men-
tions and all the other distinctive properties of the social network’s user-generated writ-
ing. The annotator captured named entities with impressive accuracy: 11.60% more
precision than TwitterNER and 14.60% more than NLTK’s NER model; 7.31% more re-
call than TwitterNER and 12.43% more than NLTK—all statistically-significant gains at
the 99% confidence level.

Of course, we cannot rest too comfortably on Twitter’s annotations. We can only
speculate about why Twitter’s annotator improved precision and recall to such a degree.
Do Twitter’s entity annotations owe their success to a hidden measure of semantics? Or
do the improvements perhaps stem from the topic graph, which Twitter’s contextual
annotations use? Every named entity is annotated by a function in a black box that we
can neither fully comprehend nor, more importantly, improve.

Moreover, Twitter’s annotations do not outdo TwitterNER in every aspect. The three
extractors generally performed consistently: precision and recall rose and fell in syn-
chrony across events, but not balance. In balance, the three models did not perform
consistently. TwitterNER represented teams with more symmetry than either NLTK
(0.4885 � 0.7273; one-tailed paired samples t-test: p = 0.0159) or Twitter’s annotator
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(0.5786 � 0.7273), although the improvements over the latter were only significant at the
90% confidence level (one-tailed paired samples t-test: p = 0.0802).

Such imbalance has secondary effects, including how it affects algorithms like the
ones proposed by Shen et al. [234] and Huang et al. [101]. The two designed an al-
gorithm to democratise TDT’s standard monolithic timeline with individual timelines,
one for each named entity. Individual timelines would overcome Twitter’s bias, they
reasoned, unaware that NER tools yield to the same bias. In fact, the way in which
Shen et al. [234] and Huang et al. [101] filtered infrequent named entities might have in-
advertently exacerbated the imbalance in favour of the few participants that dominate
Twitter’s discussions.

Imbalance affects APD as well, perhaps more so than any other metric. As we
showed in our previous work [144], and as we show again later in this chapter, ex-
trapolation mirrors the input in its output: give an extrapolator a biased seed set and
it only accentuates the bias further; but give an extrapolator a symmetric seed set, and
it could capture almost every participant with the same symmetry. Even in DEPICT,
balance remains a determining factor to performance.

We cannot easily determine why Twitter’s annotations outdo the two other methods
so convincingly in every metric except balance. Twitter’s cryptic annotator may induce
bias somewhere in its function. More likely, however, imbalance does not indicate a
flaw in Twitter’s annotator but the opposite: a virtue of TwitterNER’s. In TwitterNER,
gazetteers hold a large variety of first and last names, which distribute evenly between
teams. Thus, TwitterNER normally favours no side in particular.

Nevertheless, beyond the incremental improvements from NLTK’s NER model to
TwitterNER to Twitter’s own annotator, one sign remains irrefutable: not a single NER
model meets our needs. We could combine the best qualities of TwitterNER—its open-
ness and balance—with the best qualities of Twitter’s annotator—its precision and re-
call—and the results would still not match our expectations. Frequent entities tended
to be participants, but the rest were scattered haphazardly, participants intermittent
among named entities. Even at their highest, precision and recall remain too low.

We could hardly fault TwitterNER or Twitter’s annotator either. Rarely did they
mistake a noun or a verb, or a hashtag for a named entity. Most annotations correctly
identify named entities, including a small selection of participants and a multitude of
references to them. Actually, such references hold value. They tells us all the different
ways of referring to a participant, formal and informal, which Wikipedia does not. At
best, however, references require a good co-reference resolution algorithm to make sense
of all the dangling names, like the one Shen et al. [234] and Huang et al. [101] employ. At
worst, as we showed in the experiment of Section 3.1, references saturate the ranking,

50



3.3. Refining linguistic understanding

occupying spaces that other, less popular participants could fill better.

In short, the adaptations to Twitter’s syntax and user behaviours refine NLP, but
only NLP. The technological advances in TwitterNER and Twitter’s own annotator
lessen the worries of Sankaranarayanan et al. [229], Ritter et al. [218] and others but
do nothing to lessen the TDT community’s own worries. Regardless of how much the
performance of NER models improves, it cannot seem to improve enough to bridge
linguistic understanding with semantic understanding. The event tracking community
must develop its own understanding of the Who and the Where.

The new limits of semantic understanding
If linguistic understanding cannot suffice, then semantic understanding must. In this
analysis, we try to imagine what kind of understanding Shen et al. [234], Huang et al.
[101] and others would have inherited had they sought out semantic understanding that
truly captured participants “that play a significant role in the event.” As we investigate
ELD’s APD model and DEPICT, we discover the trade-offs between the convenience
and accessibility of linguistic understanding, and the complexity of semantic under-
standing.

The results in Table 3.4 paint an unmistakeable scene. We tested three versions of
ELD’s APD method and DEPICT, one for each NER model, and the conclusions did
not change. It mattered little whether we used NLTK’s model, TwitterNER or Twitter’s
annotator; and it mattered even less whether the extrapolator implemented ELD’s as-
sumption of interconnectedness or DEPICT’s deeper understanding of participants: our
APD models surpassed the NER tools in precision and recall consistently, and always
with statistical significance. The worst APD model out-performed even the best NER
tool. Clearly, semantic understanding out-performs linguistic understanding.

Of course, semantic understanding still relies heavily on linguistic understanding,
the NER extractors. When the latter erred, the former erred with it, and all three NER
models erred, although none as frequently or as gravely as NLTK’s. NLTK’s NER model
captured less than a quarter of participants on average, and the dearth of information
re-appeared subtly in our APD methods. ELD’s and DEPICT’s recall hovered around
50%. For every participant from one team, ELD and DEPICT captured around four from
the other, suggesting an almost-perfect asymmetry that confirms our previous findings
about bias [144].

In practice, however, our APD methods required very little more than what NLTK’s
NER model could provide. Generally, TwitterNER only captured three or four more
participants than NLTK and with a significantly better balance, but the incremental
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Model Precision Recall Precision (lenient) MAP Balance

NLTK 29.80% 21.55% 31.20% 17.36% 0.4885

ELDNLTK ▲ 48.68% ▲ 50.55% ▲ 66.52% ▲ 38.56% ▽ 0.2856

DEPICTNLTK △ 54.00% 53.77% △ 76.04% 40.28% 0.2581

(a) The poor results of NLTK’s NER tool hindered ELD’s APD method and DEPICT.

Model Precision Recall Precision (lenient) MAP Balance

TwitterNER 32.80% 26.67% 34.40% 20.09% 0.7273

ELDTwitterNER ▲ 57.40% ▲ 60.93% ▲ 78.00% ▲ 47.66% ▽ 0.5337

DEPICTTwitterNER ▲ 66.08% ▲ 70.57% △ 87.67% △ 56.05% 0.6161

(b) TwitterNER only improved slightly over NLTK’s NER model, but the improvements, notably
in balance, translated into large gains in the performance of our two APD algorithms.

Model Precision Recall Precision (lenient) MAP Balance

Twitter 44.40% 33.98% 46.40% 30.60% 0.5786

ELDTwitter ▲ 60.40% ▲ 64.20% ▲ 80.80% ▲ 51.73% 0.5542

DEPICTTwitter 62.13% 66.05% 84.84% 54.80% 0.5431

(c) Twitter’s annotator improved over TwitterNER, although this time, the improvements did
not reflect quite as strongly in our two APD techniques.

Table 3.4: Our APD techniques out-performed the NER models in most metrics when
extracting event participants. △ and ▲ indicate statistically-significant increases at the
95% and 99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95%
and 99% confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank
test) compared to the model in the row above. We present a full breakdown of the
results in Table F.3.

gains sufficed. In the match between Juventus and Inter, TwitterNER only captured
the stadium, two teams, two players and one coach—merely 12.50% of all participants.
Nevertheless, the perfect symmetry between sides gave our APD methods just enough
information for DEPICT to recall 85.42% of all participants.

Likewise, TwitterNER’s improvements in the other events proliferated throughout
our APD methods. For the baseline, TwitterNER’s more complete output served to
clarify the community structure and performance spiked. For DEPICT, the increased
symmetry served to create a more generalisable representation of the event’s typical
participant, rather than one team’s typical participant. DEPICT peaked and captured,
on average, more than seven out of every ten participants.

Our APD methods still failed on occasion, however. Neither method could maintain
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the NER models’ balance, and while ELD did not understand participants well enough
to distinguish them from tangential concepts, DEPICT stuck too rigidly to its under-
standing. The coaches and stadiums, integral aspects of the Who and the Where, did
not fit the profile of a typical participant, a footballer. Consequently, the extrapolator
rarely extracted the stadium and the coaches as participants.

Sometimes, DEPICT also gleaned a deceptive representation of participants. Among
the resolved participants in the match between Real Madrid and Chelsea figured Timo
Werner, Antonio Rüdiger and Kai Havertz. All three footballers played for Chelsea and,
incidentally, for the German national team too. Therefore after DEPICT had thoroughly
filled-in the Chelsea squad, it resorted to the German squad and ignored altogether the
Real Madrid one. Tellingly, ELD’s method performed only marginally better.

Yet even when ELD’s APD method and DEPICT failed, they failed gracefully. ELD’s
extrapolator first exhausted true participants before wandering through communities
that, though relevant, did not host participants, and DEPICT did even better. Our novel
method understood what a participant could be and what it could not be, and rejected
any concepts that shared no traits with the resolved participants. In both cases, precision
rose sharply, and recall and MAP more than doubled over NLTK’s and TwitterNER’s.

The upward trajectory ended abruptly. When we replaced TwitterNER with Twit-
ter’s annotator, the quality of the linguistic understanding improved. Twitter’s NER
model now gave ELD and DEPICT ample proof about participants and the commu-
nities they formed, albeit with less symmetry, but our techniques seemed unmoved
by the extra data. While ELD’s performance improved slightly, DEPICT registered no
improvements at all. On the contrary, its recall worsened (70.57% � 66.05%) and extin-
guished the statistical significance over ELD. The two algorithms converged, recalling
around two-thirds of participants and nothing more.

To understand why ELD and DEPICT struggled to refine further, we annotated more
leniently. The two APD algorithms could not easily understand that a footballer missed
a match because of an injury or suspension, or simply because the coach dropped them.
Yet by their absence, unavailable players affect managerial decisions and, thus, the event
itself.3 Therefore the lenient variant of the precision metric, shown in Table 3.4, accepts
as precise those non-participants who would normally have participated, had they been
healthy, eligible or selected for the match by the coach.

The new metric describes the problem more clearly. In two events, every one of
DEPICT’s participants could have participated in the event, and in three others, fewer
than five named entities had no clear association with the event. ELD performed sim-

3An anonymous reviewer of our first APD article [144] made this argument and inspired this analysis.
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ilarly, if slightly worse. The lenient annotation raised ELD’s precision from 60.40% to
80.80% and DEPICT’s from 62.13% to 84.84%. In other words, the lenient interpretation
of precision practically halved the number of perceived mistakes.

The converging results, then, point to a practical limit in semantic understanding,
and not a particularly obstructive one either. If we could forgive the relevant but mis-
taken named entities as nuisances in the way of the actual participants, then the solution
would lie simply in enlarging the ranking. If we could not, the mistakes of semantic un-
derstanding still appear in far smaller numbers than those of linguistic understanding.
Hence, we re-affirm our conclusion: the event tracking community must develop its
own understanding of the Who and the Where.

The generalisability of semantic understanding
NER outdoes APD in one quality: generalisability. NLTK’s NER model, TwitterNER
and Twitter’s annotator might have been designed for different mediums but not for
the idiosyncrasies of any particular domain. The core idea of NER generalises and so
the models behave predictably: most events concern named entities [56], and without
any changes, NER models could always capture named entities, if not participants. Con-
versely, an APD algorithm’s ability to capture participants depends on how accurately
its assumption reflects the structure of an event domain.

Consider ELD’s model. We speak of ELD’s APD model as if our design only as-
sumed one feature, that participants form communities, a practical premise in certain
event domains. In fact, however, the design implied a second, subtler assumption: the
expectation that only participants may form communities. The second assumption fails
in many domains, and when it does, the brittle ELD drifts severely, as we show next.

To study the generalisability of our APD models, we experimented with the domain
of Formula 1 Grands Prix. We collected data from seven races from the start of the 2022
season using the same process as before, as we detail in Appendix D.1. We also re-used
our previous configurations to extract participants, except in one event; in the British
Grand Prix, the resolver could not generate any seeds from which to extrapolate, so
we lowered the threshold from 0.10 to 0.05. As we annotated the rankings, seeking the
names of drivers and constructors as the Who, and the circuit and location as the Where,
ELD’s difficulties became apparent.

ELD’s APD model failed abjectly. The results in Table 3.5 show how ELD barely
even matched NLTK’s recall and performed worse than more sophisticated NER mod-
els. At best, recall only reached 30.88% and MAP only 21.38%. We could only label
21.14% of ELD’s participants as precise, and most, ELD owed to its resolver. The extrap-
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Model Precision Recall MAP

NLTK 25.43% 26.73% 11.28%

ELDNLTK ▼ 18.29% 26.73% △ 15.88%

DEPICTNLTK ▲ 36.86% ▲ 58.06% ▲ 35.45%

(a) DEPICT achieved a high recall despite the often-inaccurate input from NLTK’s NER tool.

Model Precision Recall MAP

TwitterNER 36.57% 37.33% 33.50%

ELDTwitterNER ▼ 20.86% ▽ 30.88% ▽ 21.38%

DEPICTTwitterNER ▲ 34.00% ▲ 53.92% ▲ 35.13%

(b) DEPICT ceased to improve, despite the improvements in TwitterNER’s output relative to
NLTK. It captured most drivers but could not identify constructors as participants.

Model Precision Recall MAP

Twitter 40.86% 38.71% 33.16%

ELDTwitter ▼ 21.14% 30.88% ▽ 21.29%

DEPICTTwitter △ 35.43% ▲ 56.68% ▲ 33.75%

(c) Twitter’s annotator exceeded TwitterNER’s results but without matching those of our APD
algorithms, which plateaued.

Table 3.5: DEPICT generalised better than ELD’s APD model, even if performance
dipped from the domain of football matches. △ and ▲ indicate statistically-significant
increases at the 95% and 99% confidence levels, and ▽ and ▼ statistically-significant
drops at the 95% and 99% confidence levels (one-tailed paired samples t-test or
Wilcoxon Signed-Rank test) compared to the model in the row above. We present a
full breakdown of the results in Table F.4.

olator roamed unknowingly from communities of drivers and constructors to the more
abundant clusters of car models. In almost every case and every metric, ELD performed
worse than the NER models, our linguistic understanding.

DEPICT succeeded, but laboriously. Performance dropped from our previous anal-
yses and settled on almost-static values of precision, recall and MAP. Despite the drops,
however, our new model always registered statistically-significant gains in recall over
the NER models. DEPICT only failed to identify participants once, in the glamorous set-
ting of the Monaco Grand Prix. The footballers, artists and all other celebrities in atten-
dance muddled the definition of participation, and DEPICT only resolved one driver,
Charles Leclerc, himself a Monégasque. There, in Monte Carlo, DEPICT recalled just
16.13% of participants.
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Model Candidates Locations Governance Parties Other

TwitterNER 18.66% 16.33% 1.00% 1.33% 62.67%

ELDTwitterNER 14.10% 12.82% 7.69% 4.49% 60.90%

DEPICTTwitterNER 85.33% 5.33% 1.00% 1.00% 7.33%

Table 3.6: DEPICT gleaned a more general representation of participants than ELD,
which restricted semantic drift. While ELD, like TwitterNER, varied the type of par-
ticipants, erring often, DEPICT predominantly extracted election candidates.

The unvarying recall values indicate a limit to robustness. Wikipedia articles de-
scribe participants such as Lewis Hamilton, Nicholas Latifi and Pierre Gasly consis-
tently as racing drivers, and DEPICT extracted drivers almost without fail. Constructors,
however, do not follow a fixed template. Ferrari is a racing division, AlphaTauri is a
racing team and constructor, and Aston Martin is a car manufacturer. Without a uniform
writing style, DEPICT could not infer a typical definition of constructors. We hypoth-
esize that the use of linguistic semantics, such as word embeddings, could reduce the
reliance on writing styles, but we leave the idea for future work.

Yet even with its flaws, DEPICT remains more generalisable than ELD’s model. Our
final experiment pitted the two algorithms in the context of Canada’s federal election
of 2021, where the very concept of participation is ill-defined. Politicians and parties,
provinces and ridings, and journalists and governmental institutions could all claim to
participate to varying degrees. The domain gave ELD and DEPICT absolute freedom to
interpret the matter of participation.

Most of the configurations remained unchanged. This time, we extracted named
entities from a random sample of tweets published on election day, a brief exercise in
retrospective APD, as we explain in Appendix D.1. We used TwitterNER to extract
the top 50 named entities, which gave us sufficient information about participants and
their nature. We also reduced the resolution threshold from 0.10 to 0.05, which resolved
27 participants, and increased DEPICT’s candidate concepts from 200 to the 500 most-
frequent links. In the end, we retained the top 300 concepts as participants, which we
annotated using ground truth from The Globe and Mail, and other sources.

The gaps between models grew even wider, as Table 3.6 shows. ELD only identi-
fied 156 concepts, although it had the distinction of capturing every province and every
major political party in Canada. Yet the ones principally concerned with the event, the
hundreds of candidates vying for election, constituted fewer than a fifth of TwitterNER’s
and ELD’s rankings. Of the rest, mostly journalists, retired politicians and other Cana-
dian concepts, we could qualify few as outright irrelevant, but they reminded us of
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Recap

Principal contributions

■ The first in-depth analysis on how Twitter users converse about event partici-
pants before and during events

■ The first study on how Twitter’s NER annotator compares with traditional and
targeted NER models on the social network

■ DEPICT, a novel APD algorithm to not only identify but also understand par-
ticipants

linguistic understanding: tangential concepts in the way of more befitting participants.
Undeterred by ambiguity, DEPICT sustained its advantage. Crucially, our novel al-

gorithm learned differently. While ELD compared candidates with the domain, DEPICT
compared candidates with the resolved participants. The final ranking reflected the al-
gorithm’s general understanding of participation: a slew of election candidates came
first, then some provinces, ridings and other locations, and finally a few political parties
and governmental institutions. Only 22 of the 300 concepts did not fit in any of our
broad categories, and tellingly, 12 were the resolver’s concepts: journalists, irrelevant
politicians and incorrectly-disambiguated participants.

Inevitably, DEPICT still makes an assumption on the structure of the event domain.
The attribute profiles assume that every participant follows a prototypical template.
Nevertheless, DEPICT’s assumption generalised better than ELD’s across events and
across domains. More importantly, its assumption did not consign the algorithm to trail
behind the NER models. We conclude this chapter next.

Recap
Framed in the structure of events that Allan et al. [9] proposed, the ‘five Ws and one
H’, McMinn and Jose [158] had reason to qualify participants as “the building blocks of
events”. Precisely because participants carry so much weight, they merit a better un-
derstanding than what linguistic understanding offers. Semantic understanding does
better. Not only can APD models capture participants more precisely and more com-
prehensively than NER tools, but they can understand the participants themselves, un-
locking new applications in TDT. In this chapter, we answered the following questions:

■ What makes a named entity an event participant? A named entity becomes a
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participant when what it represents and what it does affects or is affected by the
event. In Section 3.1, we explored TDT literature’s answers to the question to
finally demonstrate that not all named entities are participants.

■ How can a better understanding of participants improve our understanding of
Who participates in events and Where? Distinguishing between named entities
and participants requires us to understand, first and foremost, the participants
themselves. In Section 3.2, we presented DEPICT, a novel APD algorithm that
understands participants and their roles to glean the Who and the Where.

■ How does APD refine the NER assumption, that named entities could substitute
for participants? The APD assumption presumes that only certain named entities
could substitute for participants and searches for the ones that do. In Section 3.3,
we showed how even simple APD models can greatly outdo NER tools, but only
a robust assumption can imitate the generalisability of NER models.

Despite our success, understanding the Who and the Where demands a certain un-
realistic robustness of APD models. Participants change across most events, requiring
an individual understanding of every single event. Conversely, an understanding of
the What generalises across events, at least within domains. In fact, no form of under-
standing describes a domain’s events better than the What [169]. Therefore in the next
chapter, we develop our understanding of What may happen in events.
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4

Understanding

The What

A goal is a goal. A football fan has no need for FIFA’s 74-word dull dictionary definition
to understand what a goal is: they intuitively know that a goal represents an important
concept in ways they could not express. A machine does not. An algorithm understands
neither that a goal represents an important football concept nor why, and humans can
hardly explain why either.

In Chapter 2, we proposed Automatic Term Extraction (ATE) to understand What
happens in events. It would only be natural to expect literature on ATE, the task of
identifying the words and phrases that characterise a domain, to master, and not simply
understand, domain terms. It does not, however, understand them any better than TDT
literature. The ATE community contends with the same fundamental question as the
TDT community: when and how does a word become a domain term?

Throughout this chapter, we investigate What happens in events. We show that
defining a term represents only the first of ATE research’s problems. To the best of our
knowledge, ATE’s research community has neither studied event domains nor tweets,
which differ considerably from its conventional domains and mediums. Yet we still
conquer the difficulties with our novel method, EVATE, designed to extract terms from
event domains on Twitter. In this chapter, we answer the following questions:

■ What makes a word a domain term? Before understanding what terms describe
an event domain, a machine must understand why a term is a term. In Section 4.1,
we explore the attributes that distinguish a word from a term by exploring explicit
definitions and implicit design choices in algorithms.
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■ How can ATE methods extract terms that make sense semantically? Terms rep-
resent semantically-important concepts, but a concrete measure of semantics has
eluded researchers. In Section 4.2, we present EVATE, a novel algorithm to extract
meaningful domain terms.

■ How well can ATE techniques extract domain terms from Twitter? To the best of
our knowledge, ATE methods have neither been applied to event domains nor
to Twitter. In Section 4.3, we study the difficulties facing EVATE and other ATE
techniques when extracting domain terms from football matches on Twitter.

■ What roles do named entities play in slow-changing domains? To distinguish
between domain terms and event terms, ATE algorithms depend on accurate and
representative samples, but those can be a luxury. In Section 4.4, we question
whether Formula 1’s named entities qualify as domain terms or event terms, and
address both possibilities with EVATE.

■ Do ATE algorithms truly adapt to dynamic domains? ATE literature proclaims its
algorithms the solution to minimising the burden of manually-listing the terms in
changing domains. In Section 4.5, we debunk the claims in the volatile domain of
American politics and propose a solution to create a generalisable and transferable
political lexicon.

4.1 | What makes a term a domain term
Kubo et al. [118] filled their lexicon with words like goal, shot and substitution. We recog-
nise these words as undeniably football-related terms, but what makes goal a term? It is
difficult to justify its presence in the lexicon with more than abstract notions, like impor-
tance, but algorithms do not function with abstract notions. We need ways to quantify
importance, around which the ATE task revolves.

The solution might seem obvious. If humans understand terms but machines do not,
then let humans define lexicons; Kubo et al. [118] did, and so did Olteanu et al. [187]
and Temnikova et al. [247]. Buntain et al. [28] disagreed. They imagined a machine that
tracked football matches by following certain keywords but feared that a lexicon would
inevitably miss terms, like how the lexicon by Kubo et al. [118] omits penalty. Buntain
et al. [28] considered adding the missing terms but saw it as a never-ending process.
When would they stop adding terms?

Ready-made alternatives exist, but they always carry the same caveats. In early re-
search on bootstrapping, or the task of expanding lexicons, Roark and Charniak [219] ex-
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4.1. What makes a term a domain term

Figure 4.1: ATE research distinguishes between keyphrases and domain terms. In the
tweet above, the word penalty is not the only keyphrase but the only domain term. The
keyphrase extraction task makes no such distinction.

tracted terms from news corpora and compared them with WordNet. WordNet missed
three out of every five correct terms. Since then, many others have noted the same
insufficiencies in human-crafted resources [103; 214; 215; 241; 249], including domain-
specific ones. A dictionary by UEFA [259] contains more than 2,500 football-related
terms, dwarfing the 33 phrases that Kubo et al. [118] included in their lexicon, but still
misses simple terms like tackle.

In part, a resource like WordNet can never be complete, both because it is a gen-
eral knowledge base and because event domains change [14; 116; 208]. Football’s rules
have remained relatively stable for a century, but the sport has still innovated with tech-
nologies like the goal-line technology and the Video Assistant Referee (VAR). Maintaining
databases manually for changing domains remains a time-consuming, expensive, and
ultimately still error-prone job [104; 135; 159; 202; 300], as Buntain et al. [28] observed.

Evidently, Buntain et al. [28] and the rest of the TDT community overlooked au-
tomatic alternatives, of which ATE could be one. Unlike keyphrase extraction, ATE
extracts terms that describe an entire domain, not a single document [294; 295]. In
Paris Saint-Germain’s tweet, displayed in Figure 4.1, decision, reversed and penalty are all
keyphrases, but only penalty describes What happens in the domain of football matches.
ATE makes a similar distinction. Regrettably, however, we found little TDT research that
integrated aspects from ATE; the closest works rely on manual annotation [187; 247].
Therefore we focus instead on ATE literature’s broader efforts.

Moving from manual solutions to ATE requires defining terms to an algorithm, but
even humans disagree on what makes a word a term sometimes [70; 155]. Literature
treats terms as embodiments of important concepts [15; 24; 115; 117; 194; 268]: in an elec-
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tion, it is not the lexeme vote itself that is important but the concept of participating in
democracy. At the same time, such human-like concepts remain abstract notions [185],
so the research area remains without an agreed-upon definition of terms [13].

Given the absence of a definition, we study more pragmatic interpretations. Re-
search must approximate the notion of importance through some other means, conven-
tionally by answering two questions: what can be a term? What makes a good term?
These two questions align with ATE’s two broad schools of thought, or the linguistic
and statistical methods [111; 160; 176], even though the modern approach combines the
two [140]. We discuss linguistic and statistical methods next.

The linguistic importance of terms
Linguistically, terms take many forms. We focus on single-word terms in this disserta-
tion, but terms can also manifest as phrases [111; 115; 159; 232], like the terms counter
attack, free kick and right foot that Kubo et al. [118] chose. In fact, Basili et al. [17] hypoth-
esised that phrases constitute the majority of terms, and that simple, single-word terms
act as shorthand to more technical multi-word terms, like using yellow instead of yellow
card in football. Nakagawa and Mori [174] argued similarly.

Event tracking literature never quite reached such sophisticated reasoning about
terms. Nevertheless, it did approach ATE research on the practical question of what
can be a term. Often, TDT research assumes that terms are nouns and verbs [129], two
POS tags that are “important to describe an event” [128]. Similarly, ATE research as-
sumes that terms are nouns [13], although adverbs, adjectives [70] and verbs [115] are
also considered on occasion.

However, neither TDT nor ATE research justifies why certain POS tags suit terms
better than others [111]. ATE research scarcely considers verbs as terms, but is shot, a
noun, not simply a footballer shooting, a verb? Even closed-class words can be terms; in
football, it is common to describe players who have been expelled or substituted as be-
ing off, a preposition, and Kubo et al. [118] even included far, an adverb. In fleeting mo-
ments of self-introspection, the research community recognises the weak justifications
of some of its choices [70]. More commonly, however, the ATE research community
accepts the assumptions of linguistic filtering as a necessary compromise [70; 131].

Similarly, researchers skirt the question of whether named entities can or should be
domain terms. Generally, named entities characterise the Who and the Where of events,
or the event terms, not the What, as we explained in Section 2.3. Nevertheless, certain
persons, organisations and places can appear ubiquitously enough to qualify as domain
terms, as we argue in Section 4.4. Formula 1’s governing body, the Fédération Interna-
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tionale de l’Automobile (FIA), has been organising Grands Prix events since 1950. Its
constant presence blurs the line between event terms and domain terms.

Some research addresses names explicitly. Park et al. [195] assign the highest pos-
sible score to named entities, and Lopes et al. [132] present named entities as essential
components of domains. Few others follow. Most exclude named entities altogether
from the design of their ATE algorithms. In fact, even as Velardi et al. [267] consider
named entities as part of the terminology, their algorithm ultimately rejects them.

The statistical importance of terms
Whatever similarity exists between TDT and ATE extends only as far as linguistics.
Event summarisation [223] and tracking [139] research blindly accepts POS tagging’s
output as unquestionably correct terms. Few question what makes a linguistically-valid
word not merely a candidate term but a proper domain term. Conversely in ATE, lin-
guistics only represent a starting point to be complemented by statistical measures [140].

Statistical methods measure termhood, or how well a word fits as a term [111; 127;
159; 294]. Inevitably, however, researchers realised that without a formal definition of
terms, they would also struggle to explain what makes a good term [196]. Thus, ATE
research returned to abstract notions of importance. We could summarise the efforts as
the quest to materialise those abstract notions, to find the features that transform words
into terms. In this section, we explore three such common features in termhood metrics:
namely relevance, specificity, and consistency.

Relevance

First, a good term is relevant to its domain [99; 127; 131; 282]. Intuitively, vote repre-
sents an elections domain term because it holds a certain relevance to elections, but like
importance, relevance remains too vague a concept. Therefore ATE methods estimate
relevance in some other way, such as by using word frequency [196; 290]: the word vote
holds relevance because it appears frequently in the context of elections.

Nevertheless, word frequency’s convenient simplicity conceals naïvety. Word fre-
quency assumes that only common words can postulate as domain terms, a bold as-
sumption at both ends of the frequency spectrum. At one end, we can reasonably
expect valid terms to appear frequently, but by definition, stopwords like above, are
and yourself appear more commonly than any other class of words. So do abbrevia-
tions and profanity on Twitter. In short, frequent words do not necessarily represent
terms [16; 127; 131; 135].
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At the other end of the spectrum, uncommon words can also be terms [70; 111; 127;
185]. The word impeachment is a domain term in politics, but a rare one; before US
president Donald Trump was first impeached in 2020, only two other presidents had
been impeached in over 200 years. In fact, not only can infrequent words be terms, but
Ha and Hyland [89] interpret rarity as a sign of technicality. In short, word frequency
renounces semantics in favour of simplicity [127], which is why ATE techniques often
also consider specificity.

Specificity

Second, a good term carries a specific meaning in a domain or within a community [24;
25; 175; 176]. Specificity manifests itself clearly in technical terms [25; 283]. What im-
peachment lacks in frequency, it compensates with its specific, legal definition that ap-
plies only to politics. In contrast, stopwords form the language’s core vocabulary with-
out being specific to any particular domain [4; 173]. Therefore specificity automatically
bars them.

Chung [43] represented specificity as a four-point scale. The lower half of the scale
includes function words and other words with a tangential relevance to the domain,
like the word flag in politics. The upper half of the scale includes closely-related words
and domain-specific words, which Chung [43] accepts as domain terms. The algorithm
places words on this scale using a classic, ratio-based approach; the metric calculates
the ratio of times that a word appears in the domain and in general, as formalised in
Equation 4.1. Domain-specific terms have a high ratio because they appear dispropor-
tionately in the domain, whereas the ratio of function words falls closer to one.

Similar algorithms appear elsewhere in ATE literature. A few years after Chung
[43], Park et al. [195] proposed an identical ratio-based algorithm, now called Domain
Specificity. Domain Specificity compares the probability of a candidate term t appearing
in any document from the domain, pt,D, with its probability of appearing in a general
corpus, pt,G:

Specificityt =
pt,D

pt,G
(4.1)

More broadly, these algorithms form part of a family of approaches that rely exten-
sively or exclusively on specificity: contrastive ATE. Contrastive approaches assume
that termhood can be measured by comparing a word’s appearance in one domain with
its use in other domains or in general [115; 135; 185].

Notwithstanding our two examples, contrastive approaches do not have to rely on
ratios. In the same year that Park et al. [195] proposed Domain Specificity, Kit and Liu
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[111] proposed Rank Difference, which computes ranks, not ratios. More specifically,
Rank Difference compares the rank of a word in a specific domain, kt,D, with its rank in
general, kt,G; the higher the difference, the higher a word’s termhood.1

Differencet =
kt,D

|VD|
− kt,G

|VG|
(4.2)

Here, rank is a loosely-defined concept. Kit and Liu [111] calculate the rank using
Term Frequency (TF), but any other ATE metric could substitute. Kit and Liu [111] also
normalise the ranks using |VD| and |VG|, the number of unique words in the domain-
specific and general corpora. Such approaches sound intuitive, but like word frequency
approximating relevance, contrastive approaches can overreach.

Contrastive approaches assume that domains share no overlap. Balachandran and
Ranathunga [14], whose ratio-based technique resembles closely those of Chung [43]
and Park et al. [195], assume that contrastive approaches can only work in highly-
detached domains. Still, even separate domains can share terms. In this chapter we ex-
tract terms from football matches, Formula 1 Grands Prix and US politics. The three do-
mains share little, but red still appears prominently in each: red cards in football matches,
red flags in Formula 1 Grands Prix and red states in US politics. Contrastive approaches
miss many valid terms when the assumption of specificity fails [185].

Specificity appears as an even bolder assumption in event domains, which ATE lit-
erature neglected. Consider Figure 4.2, which illustrates one way of mapping words
related to football matches to the scale conceived by Chung [43]. The placement of cer-
tain keywords is admittedly subjective, but the domain-specific terms leave little room
for doubt. Chung [43] interpreted domain-specific terms as words that associate with
no other domains. However, no terms carry a more specific meaning to the domain of
football matches than the names of footballers and clubs; Liverpool F.C. only has meaning
in the domain of football matches.

More generally, points three and four on the scale delineate domain and event terms.
The more specific a term in an event domain, the more likely it represents the Who
and Where, or the event terms. Yet as we discussed in Chapter 2, event terms should
distinguish between events, not paint a general picture of What happens in a domain.
Consequently, the fourth tier in the scale no longer represents domain terms—a first
sign of the frailty of ATE’s most fundamental of assumptions in event domains.

Even so, specificity appears so much in ATE methods because generally it makes
sense—just not in isolation. Techniques commonly apply specificity to compensate for

1In Equation 4.2, kt,D and kt,G represent ranks. Conventionally, 1 stands for the highest rank, but Kit
and Liu [111] wrote the equation such that 1 stands for the lowest rank to make the concept clearer. We
stay faithful to their decision.
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Figure 4.2: The specificity scale does not hold in event domains. Chung [43] accepted
words in the third and fourth tiers as domain terms, but in TDT, the fourth tier repre-
sents event terms.

relevance’s simplicity. TF-IDF, a conventional metric, combines relevance, TF, with
specificity, IDF [131; 135]. As we show in this chapter, the simple combinations of
TF-IDF and its variants remain powerful baselines. In fact, both Hua et al. [99] and
Zhou et al. [298] use TF-IDF and offshoots of it in a TDT architecture to extract event-
related terms from news reports.

Naturally, TF-IDF remains a general technique borrowed from IR literature, unaware
of ATE’s sensibilities. Lopes et al. [131] took aspects of TF-IDF and moulded them to
suit ATE’s needs. The resulting metric, Term Frequency-Disjoint Corpora Frequency
(TF-DCF), compares the presence of a candidate term t in a specific domain, the term
frequency TFt,D, with its presence in several other, contrasting domains, D′:

TF-DCFt,D =
TFt,D

∏∀d′∈D′ 1 + log(1 + TFt,d′)
(4.3)

The slight variation on TF-IDF allows Lopes et al. [131] to interpret specificity more
leniently than ratio-based measures. By design, TF-DCF accepts that a term may belong
to more than one domain but penalises words that appear in many areas. Nevertheless,
while TF-DCF and similar techniques perform well, they miss another important aspect

66



4.1. What makes a term a domain term

of termhood: consistency.

Consistency

Third, a good term appears consistently throughout the domain. Consistency has not
earned the same prominence as relevance and specificity, but it develops the former: a
good term is not merely relevant to a domain but consistently relevant. From a slightly
different perspective, a term that appears in one document cannot be relevant to a do-
main [202]. While not prominent, consistency has long accompanied ATE literature.
Presenting Domain Consensus, one of the field’s earliest termhood measures, Velardi
et al. [267] argued that a domain’s community should agree on the term’s use and there-
fore apply it uniformly. Consistency captures that aspect of terms.

Since consistency is so closely-tied with relevance, the two inevitably share simi-
larities. While word frequency captures relevance, document frequency captures con-
sistency [202]. The two also share shortcomings. Despite rarely representing terms,
stopwords and function words do not only appear frequently but also consistently. In-
versely, inconsistent words can be terms too; few football matches have penalty shoot-
outs, but when they do, little else matters.

Still, we consider consistency to be a cornerstone of domain terms. We do not inter-
pret consistency as the consensus within a community but as the property of termhood
that distinguishes event terms from domain terms. Event terms, the Who and Where,
only describe a subset of events, but domain terms appear consistently throughout the
domain. Liverpool F.C. only plays a few football matches a year, but goals remain a cen-
tral theme in all football matches even without Liverpool F.C.’s involvement. In other
words, the difference between event terms and domain terms lies simply in consistency.

In their own unique ways, linguistic and statistical principles try to give a formal
structure to terms. In reality, they only get us a little closer to understanding them.
Linguistic filtering tells us that terms are likely to represent nouns without justifying
why [70]. Statistics tell us that domain terms appear frequently but maybe infrequently
too, that terms are specific to a domain but not necessarily either, and that terms appear
consistently except for the ones which do not. Linguistic and statistical qualities get
us close to but miss altogether the essence that transforms a word into a domain term:
semantics.

A goal does not represent an important concept because it appears frequently or
consistently in football matches, nor because it is specific to a domain. A goal represents
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an important concept because it gives meaning to the game—it describes What happens
in events. In other words, a goal’s significance lies in an abstract notion of semantic
importance that neither linguistics nor statistics adequately capture.

Few methods address semantics. Qureshi et al. [210] construct a graph of Wikipedia
categories to elect domain terms, and Meijer et al. [160] follow up ATE with word disam-
biguation using a taxonomy. More recently, Zhang et al. [294, 295] proposed two general
re-ranking algorithms, both based on word similarity, to re-rank a base ATE technique’s
output. Still, you could not claim that either captures semantics.

Evidently, capturing a notion as abstract as meaning poses a difficult task [155]. In
fact, explicit uses of semantics remain rare even in contemporary ATE literature [294].
Yet what ties the above approaches together is the manner in which they try to quantify
semantics: with statistics. Numbers cannot easily measure the role of words, distinguish
between one that has a mere relevance and one that describes What happens in events.
In the next section, we propose EVATE as an alternative that approaches semantics from
a novel perspective, linguistics.

4.2 | EVATE: EVent-Aware Term Extractor
A young child sits down to watch a football match for the first time. The child does not
understand the significance of a goal yet, but they will soon. And in a few years’ time,
the young child will have become a football fan who understands goals, the offside rule,
and maybe even why VAR ruled against their favourite team. In this section, we present
EVent-Aware Term Extractor (EVATE), a novel ATE approach inspired by how humans
learn about event domains.

EVATE is, to the best of our knowledge, the first ATE algorithm designed for event
domains. Our technique combines principles of linguistics with principles of statistics
to learn domain terms by observation, just like a human [66]. While we design EVATE’s
statistical metric around the structure of event domains, we innovate best in the linguis-
tic component, to which we assign the role of extracting semantically-meaningful can-
didate terms. The statistical component simply orders words based on their relevance,
specificity and consistency in the domain. We describe these components in detail next.

Extracting semantically-meaningful words
A word becomes a term when it carries a semantic significance. Unlike its TDT coun-
terpart, the ATE community never pretended that linguistics could lead to a semantic
understanding, and with good reason. POS tagging, which traditionally drives linguis-

68



4.2. EVATE: EVent-Aware Term Extractor

tic components, could never aspire to capture the precise semantics of the 33 terms that
Kubo et al. [118] hand-picked. Instead, research implements semantics in the statistical
component, seemingly by default and without much success. EVATE injects semantics
differently, through the linguistic component, but before we present our method, we
reflect on what gives meaning to a concept in event domains.

Regular domains differ from event domains. In regular domains, almost anything
can be a concept, but in event domains, the most meaningful concepts are the ones that
change the state of the event. The earliest works in TDT literature defined events in
terms of What happens in them [9], and the automata that Kleinberg [113] conceived,
which would eventually inspire feature-pivot techniques, revolve around the transi-
tions from an event at rest to an event in motion. In short, event domain concepts are
represented by topics, which we define as follows:

Definition 6 (Topic). An event within an event, a sub-event which we could also de-
scribe as a function of Who did What, Where and When, and Why and How.

EXAMPLE: Alexandre Lacazette [Who] scores [What] a penalty [How] after 22 minutes [When].

We describe topics, the concepts, through topical keywords, which distil the essence
of an incident: the ‘five Ws and one H’. Since topics represent the concepts of event
domains, topical keywords analogously represent the event terms and domain terms of
event domains. We define topical keywords as follows:

Definition 7 (Topical keyword). The lexemes or phrases that describe Who did What,
Where and When, and Why and How.

EXAMPLE: Alexandre Lacazette, scores, penalty, 22.

Because topics represent concepts and topical keywords represent terms in event do-
mains, EVATE replaces POS tagging with a TDT algorithm. We task the TDT algorithm
with tracking events to extract topics and the associated topical keywords: EVATE’s
semantically-meaningful candidate terms. To construct a comprehensive lexicon, we
require a TDT algorithm with a feature-pivot component, and that extracts topics pre-
cisely and comprehensively—both key and non-key topics.

ELD [143; 146], which we described in Chapter 2, fits all criteria. ELD uses a stan-
dard document-pivot method to cluster tweets and a feature-pivot technique to identify
the topical keywords in each cluster. Combined in such a way, the document-pivot and
feature-pivot approaches allow ELD to report about events with a fine granularity with-
out succumbing to excessive noise. Therefore we run ELD on several events, extracting
topical keywords from each. Then, we rank them using EVATE’s statistical component.
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Measuring termhood
The linguistic component generates a list of words that carry a semantic weight in event
domains. ELD, and by extension EVATE, does not filter words based on POS tags, but
still, it filters out stopwords, function words and other closed-class words as long as
they hold no significance. The role of the statistical component changes accordingly.
Termhood ceases to be the arbiter of semantics and instead assumes that all words have
a semantic bearing—some more than others.

In this work, we present a novel termhood measure tailored to event domains.
EVATE’s statistical metric combines the three desirable characteristics of domain terms
described in Section 4.1: relevance, specificity and consistency. The flaws in the three
attributes’ assumptions remain, but the linguistic component’s semantic basis strength-
ens the premise. EVATE estimates the termhood of a candidate term t by multiplying
three scores together, ensuring that any zero value disqualifies the term:

EVATEt = EFt · ICFt · Entropyt (4.4)

The three components play distinct but mutually-reinforcing roles. First, Event Fre-
quency (EF) estimates relevance by counting the number of events in which a word
appears as a topical keyword. Second, Inverse Corpus Frequency (ICF) approximates
specificity by comparing a word’s usage in the domain with its usage in general. Third,
Entropy measures a word’s consistency in the domain. In the end, EVATE ranks words
in descending order of score and accepts the top words as terms. We describe EF, ICF
and Entropy in the rest of this section.

Event Frequency (EF)

Event Frequency (EF) measures relevance. EF represents our biggest departure from
popular ATE methods. Standard word frequency can be misleading, as we explained
in Section 4.1, but EF tailors the measure to event domains and Twitter. As the name
implies, EF counts the number of events, E, in which the TDT algorithm identified the
candidate term t as one of the event’s topical keywords, T(e):

EFt = log10 |{e ∈ E|t ∈ T(e)}| (4.5)

We assign EF the role of subduing the effects of user behaviour. TDT methods miss
non-key topics, like yellow cards in football matches, precisely because they are unpop-
ular among Twitter users and thus scarcely feature in tweets [150]. Even certain key
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topics, like red cards, appear infrequently despite their importance. By definition, how-
ever, EF does not require an intense discussion surrounding a topical keyword—a word
either describes a topic as a topical keyword or it does not.

EF also subdues the effects of the event domain’s structure. We consider the event
frequency, not the topic frequency, which would place an unfair disadvantage on top-
ics with an upper limit on frequency. Consider Formula 1 Grands Prix. A driver can
enter the pit lane several times, but a race rarely requires more than one formation lap.
In other words, pit stops would appear as topical keywords far more frequently than
formation laps just by virtue of the event domain’s rules. By definition, however, EF
does not require topics to happen frequently in any one event—only frequently enough
throughout the event domain.

Our final design choice in EF is to take its logarithm, not its raw frequency. As Lopes
et al. [131] so eloquently put it, "a term t that occurs 10 times is not 10 times more im-
portant than a term t′ that appears only once." Likewise, humans do not need to renew
and reaffirm their belief about a topic’s importance in every event. After observing the
same topic a few times, humans permanently commit its importance to memory. The
logarithmic EF reflects the same behaviour.

Simultaneously, the logarithmic EF helps EVATE overcome one of ATE’s major chal-
lenges: dynamic domains. When the English FA introduced the brand-new VAR tech-
nology to the English Premier League in 2019, football fans quickly grasped that it
would change the game. Similarly to human memory, the logarithmic curve grows
quickly as the method learns and then slowly as it consolidates knowledge, allowing
rare or new terms to catch up. Note that the logarithmic base scales the scores but does
not affect the ranking order.

Inverse Corpus Frequency (ICF)

Inverse Corpus Frequency (ICF) measures specificity. Differently from standard ATE ap-
proaches, we found it infeasible to apply Inverse Document Frequency (IDF) on tweets
without any changes. The brevity of tweets constrains term frequency to not more than
one in most tweets [153], and standard IDF arbitrarily promotes uncommon words. In
this work, we replace IDF with ICF, the second component of Term Frequency-Inverse
Corpus Frequency (TF-ICF) [213], and add Laplace smoothing:

ICFt = log
|G|

|{d ∈ G|t ∈ d}|+ 1
(4.6)

We calculate ICF in the same way as IDF for a candidate term t, by counting the
number of documents d in which the word appears. Differently from IDF, however, ICF
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Figure 4.3: Domain terms appear more consistently than event terms. Domain terms
appear in most events, whereas event terms appear only in events in which they are
participating.

counts the frequency on a different, static corpus, G, not on the domain corpus. Our
static corpus contains 457,429 English tweets collected using the Twitter Sample API
over 12 hours. This corpus of general tweets effectively turns EVATE into a contrastive
ATE approach that compares the frequency of a word in the event domain with its use
in general. We exclude retweets when calculating ICF to minimise bias. We describe the
general corpus in more detail in the introduction of Appendix D.

Entropy

Entropy measures consistency. A football fan does not learn the names of teams and
players first; they change from one event to the other. A football fan first learns the
fundamental rules, from the law governing goals to the more technical one regulating
offsides, because they occur in most matches. The contrast delineates the separation
between event terms and domain terms, which entropy seeks to establish.

Event terms and domain terms distribute differently. As shown in Figure 4.3, the
event terms Chelsea and Willian, then a Chelsea player, appear disproportionately in
Chelsea’s matches. Conversely, the domain terms yellow [card] and goal distribute more
uniformly across events. Entropy identifies domain terms from such differences. We
adapt the standard entropy equation such that pt,e represents the probability a candi-
date term t appears in event e among all events E. To calculate pt,e, we count the term’s
document frequency in the corpus of event e, D(e), and divide by the term’s total docu-
ment frequency across all events:
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pt,e =
|{d ∈ D(e)|t ∈ d}|

∑E
e′ |{d ∈ D(e′)|t ∈ d}|

(4.7)

Entropyt = − ∑
e∈E

pt,e log pt,e (4.8)

In Equation 4.8, entropy assigns a lower score the less regular a term’s distribution,
or when the term appears with a high probability in a few events and a low probability
in the rest. Conversely, entropy assigns the optimal score when a term distributes evenly
across all events. To minimise redundancy, we exclude retweets when measuring pt,e in
Equation 4.7.

While conceptually similar, EF and entropy complement each other. On the one
hand, EF measures relevance by considering the number of events in which a candidate
term appears as a topical keyword. On the other hand, entropy considers all events,
ensuring that a candidate term remains relevant even when it does not appear as a
topical keyword. A football match might end goalless, but Twitter users will still talk
about goals in their absence—perhaps more so.

By design, EVATE captures relevance, specificity and consistency. Above all, it cap-
tures the semantics that have for so long eluded ATE research. Yet the metric’s pursuit
of meaning in terms does not come without limits or disadvantages. EVATE draws se-
mantics from topical keywords, a concept unique to ATE but which depends on TDT.
Without topical keywords, EVATE loses not just its linguistic component’s semantics
but also the foundation of its statistical measure, EF.

In fact, the fusion of EVATE with a TDT algorithm ties the former’s limits closely
with the latter’s. ELD, like most other feature-pivot techniques, only extracts unigrams,
not n-grams—yellow and card separately, not as one—and some noise inevitably escapes
ELD’s scrutiny. We could argue similarly about POS tagging, but optimising TDT algo-
rithms proves far costlier than optimising the former. POS tagging requires one efficient
pass over documents, whereas TDT algorithms tend to be highly parametric, slow to
execute and expensive to evaluate, as we explain in Chapter 5 and Appendix A.

Finally, EVATE requires careful curation of its data. Given a set of events with a sin-
gular perspective of the domain, entropy would lose all meaning, and with it, EVATE
would lose the ability to distinguish event terms from domain terms. The events should
provide a generalisable view of the domain, allow domain terms like yellow and goal in
Figure 4.3 to climb above the rest. In fact, more than just varied data, EVATE requires co-
pious data. The logarithmic EF must observe a word as a topical keyword in at least two
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events to assign a non-zero score, but as we show in Section 4.5, EVATE keeps learning
from new datasets for a long time. Still, we make all these sacrifices for semantics.

In the rest of this chapter, we study EVATE’s behaviour in different types of domains.
In Section 4.3, we compare our technique with four common baselines to understand
ATE’s general behaviour on Twitter and in the domain of football matches. Then, in
Section 4.4 we question the fine line between event terms and domain terms in Formula
1 Grands Prix. Lastly, in Section 4.5 we examine the performance of ATE methods in the
dynamic domain of American politics.

4.3 | A goal is a goal: the languageof the beautiful game
In 1990, the Italian Alps hosted the second World Cup semi-final. Germany knocked
out England. After the match, Gary Lineker, whose goal for England was not enough to
take his country to the final, reacted with an iconic quote: "Football is a simple game—22
men chase a ball for 90 minutes and at the end, the Germans always win." The conclu-
sion is not true, of course; Lineker revised his quote years later when Germany was
unceremoniously knocked out of the 2018 FIFA World Cup in the group stage [3], but
he always kept the first part: football is a simple game.

Football is a simple game because it has a rigid structure. Before a match starts,
we know that 22 players will spend 90 minutes trying to score goals and avoiding to
concede them. As a result, as we explain in Chapter 5, the rigid structure and sheer
popularity of football has made the sport a popular domain for evaluations in TDT
literature. In this section, however, we focus on football for a different reason: football
represents an ideal event domain for ATE.

Describing the ideal setting for ATE, Wong et al. [282, 283] pushed for "balanced,
unbiased and randomised" datasets. Similarly, Luo et al. [135] emphasised the need for
varied but thematic documents. Football, with its broad popular support and abun-
dance of events [28], embodies those ideals. For the experiments in this section, we
collected more than 4.5 million tweets from 24 football matches, each split into an un-
derstanding period and an event period. ELD uses the one-hour understanding period
before the match to understand the event, and the event period to extract topics and
topical keywords. Appendix D.2 includes more details about the datasets.

We compare EVATE with four baselines. The baselines, all of which we introduced
in Section 4.1, represent ATE’s two broad schools of thought. The first two represent
the frequency-based methods, which we refer to as the general methods for reasons that
will become clear later. The last two represent the purely contrastive, specific methods:
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■ TF-ICF compares the frequency of a candidate term in a specific domain with its
frequency in a general domain [213]. TF-ICF represents our adaptation of TF-IDF
to Twitter’s brevity by calculating the IDF component on a static, general corpus.
The second component, ICF, also features in EVATE.

■ TF-DCF compares the frequency of a candidate term in a specific domain with its
frequency in several others [131]. In this work, we only use one other domain, a
general one, to compute TF-DCF.

■ Domain Specificity contrasts the use of a candidate term in a specific domain with
its use in general [195]. Domain Specificity represents the classical, ratio-based
termhood measures like the one proposed by Chung [43].2

■ Rank Difference contrasts the rank of a candidate term in a domain-specific corpus
with its rank in a general corpus [111]. Like Kit and Liu [111], we rank words in
the domain-specific and general corpora using term frequency, but we initially
set a minimum cut-off point of 100 occurrences to eliminate the rare and out-of-
dictionary words so rife on Twitter.

We describe the approaches by Kit and Liu [111] and Park et al. [195] as contrastive,
but in reality, all baselines and EVATE have a contrastive element. In all cases, we use
the sample dataset described in Appendix D as the general domain corpus with which
to contrast the domain. The baselines share a common linguistic component, which
extracts stemmed nouns, verbs and adjectives using the NLTK library [22].

Our evaluation has two parts. First, in this chapter we evaluate terms directly by
comparing them against a gold standard, one of ATE’s two predominant evaluation
methodologies [13; 111]; the alternative, manual annotation, proves to be both costly
and subjective. Second, in Chapters 5 and 6 we evaluate the effects of EVATE’s terms on
TDT algorithms, a form of indirect evaluation [111].

In this chapter’s direct assessment, we compare the lexicons with two ground truth
lists. First, we compare the outputs with a dictionary published by UEFA [259], con-
taining over 2,500 technical terms related to football. Second, we counterbalance the
technicality of the first dictionary with the more colloquial, crowd-sourced glossary on
Wikipedia [281]. We filter both dictionaries to retain only single-word terms.

2Terms that never appear in the general corpus, usually named entities or misspellings, receive an
infinitely-high score from Equation 4.1 as the denominator equals 0. Park et al. [195], who took a lenient,
inclusive view of named entities, accepted such terms and ranked them highly. Differently from Park
et al. [195], we reject terms that only appear in the domain corpora, both because named entities tend to
represent event terms and because noisy out-of-vocabulary terms abound on Twitter.
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Using our ground truths, we measure two aspects of quality. The first aspect is the
overall quality of the term lists [13; 117; 159; 196], which we measure using precision,
recall and the F-score. We only consider the top 200 terms, after which we observe
quality to degrade, with fewer domain terms, their place taken by noise.

The second aspect is the quality of the ranking’s order. Given the semantic impor-
tance of the term goal, we do not expect an algorithm to simply extract it but to extract
and rank it highly, above noisier words. While research traditionally uses AP [13] to
measure ranking quality, the sheer size of our ground truth relative to our lexicons re-
duces the metric to very low, incomparable values. Therefore we use AP sparingly in
favour of the more expressive P@k. In the rest of this section, we analyse the perfor-
mance of EVATE and the four baselines, starting by studying ATE’s behaviour in the
domain of football matches on Twitter.

Twitter is a difficult medium
Like Twitter changes most other IR tasks, it changes the ATE problem. The high preci-
sion and recall values of ATE research disappear on Twitter, replaced instead with the
poor performance in Table 4.1. On formal documents, Rank Difference boasted a state-
of-the-art precision of 97% [111]; on Twitter, Rank Difference’s precision only reached
42.50%, and only after heavy filtering. The other methods performed even worse. Twit-
ter is a difficult medium.

Twitter’s noise hindered ATE algorithms in all its forms. We observed POS tagging
fraught with mistakes, weakening algorithms and producing the poor results in Ta-
ble 4.1a. The errors in the POS tags, fruits of Twitter’s disorderly orthography, pushed
the English club Arsenal to among the top 10 terms in TF-ICF’s and TF-DCF’s lexicons.
Despite the mistakes, however, the baselines’ weak understanding of semantic value
made POS tagging an invaluable element, without which all four methods performed
worse. Even on Twitter, ATE research does not afford to exclude linguistic filtering.

Yet misspellings, hurried mistakes, only account for a small part of the algorithms’
errors. To adapt to brevity, Twitter users developed an informal vernacular. Many users
prefer the short mid to midfielder and refer to skilled footballers as ballers. Nowadays,
acronyms, abbreviations and informal words form an important and accepted part of
how Twitter converses. While language evolves, tradition changes slowly. To UEFA
and Wikipedia’s formal dictionaries, the new vocabulary represents inferior, informal
language to be rejected.

Because of the glossaries’ own shortcomings, the poor performance in Table 4.1a
looks worse than it actually is. Twitter’s vernacular may be informal but not wrong. The
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Algorithm P@50 P@100 Precision Recall F-score

EVATE 50.00% 36.00% 29.00% 7.03% 11.32%

TF-ICF 42.00% 29.00% 23.00% 5.58% 8.98%

TF-DCF 34.00% 25.00% 20.50% 4.97% 8.00%

Domain Specificity 16.00% 17.00% 21.50% 5.21% 8.39%

Rank Difference 26.00% 23.00% 20.50% 4.97% 8.00%

(a) The performance of ATE methods, using all tweets except retweets, does not compare with
results on more traditional corpora.

Algorithm P@50 P@100 Precision Recall F-score

EVATE 50.00% 36.00% 29.00% 7.03% 11.32%

TF-ICF 46.00% 34.00% 26.00% 6.30% 10.15%

TF-DCF 38.00% 29.00% 24.50% 5.94% 9.56%

Domain Specificity 22.00% 21.00% 19.50% 4.72% 7.61%

Rank Difference 32.00% 32.00% 25.00% 6.06% 9.76%

(b) The performance of the ATE baselines improved when we included retweets, although it
remained far below their results on more traditional corpora.

Algorithm P@50 P@100 Precision Recall F-score

EVATE 50.00% 36.00% 29.00% 7.03% 11.32%

TF-ICF 48.00% 43.00% 31.50% 7.64% 12.29%

TF-DCF 46.00% 38.00% 30.00% 7.27% 11.71%

Domain Specificity 32.00% 25.00% 22.50% 5.45% 8.78%

Rank Difference 36.00% 37.00% 42.50% 10.30% 16.59%

(c) The ATE baselines performed best when we used only tweets by verified users. For the first
time, all methods except Domain Specificity out-performed EVATE in various metrics.

Table 4.1: On Twitter, ATE algorithms require fine-tuning. Performance improved when
we included retweets, and especially when we restricted the input to the authoritative
content of verified users. We could not change ELD’s tweet filters, so EVATE’s results
did not change either.

Twitter community widely adopted the colloquial mannerisms to the point that even
formal accounts sometimes use acronyms, abbreviations and other informal language.
Therefore even though EVATE and the baselines fail to capture the formal terminology
of glossaries, they learn, at least, how Twitter users converse about events.
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Aside from the informal, glossaries cannot capture every single formal term either.
UEFA’s dictionary has space for the spectators’ boos but not VAR, and while the list
includes five types of tackles, it misses the term tackle itself. Furthermore, our algorithm
and baselines capture multi-word terms as single-word terms. Instead of the glossaries’
yellow card, we capture yellow and card; instead of free kick, we capture free and kick. Our
unigrams do not feature individually in the ground truth, to the detriment of precision.

Nevertheless, the study of tweets can improve performance. The gradual improve-
ments in Table 4.1b’s results highlight the need for more ATE research on social media
content. Consider retweets, which generally improve the quality and order of lexicons.
Research, in particular in TDT, avoids retweets on the premise of bias [225], but litera-
ture rarely describes what bias it avoids. Logically, bias favours content by authoritative
users, like journalists, whose huge following attracts retweets. In short, retweets pro-
mote authoritative content and thus improve results.

Results improve further with more thoughtful considerations. Using only tweets
by verified authors led to even more impressive gains in performance. Until 2020, ver-
ified users comprised a relatively exclusive group of prominent accounts, comprising
journalists, companies and other public figures. Twitter opened applications for verifi-
cation in 2021, but getting the coveted blue verification tick requires users to have a high
following, usually reserved for authoritative users.

Our baselines thrived with tweets by verified users. Authoritative users tend to
write authoritative content, and authoritative content tends to have the good orthogra-
phy that characterises formal documents. POS tagging, now in its element, made fewer
mistakes. As shown in Table 4.1c, Rank Difference, this time excluding words that ap-
pear fewer than 50 times, achieved the highest precision score: 42.50%. TF-ICF and
TF-DCF performed worse but still surpassed EVATE, at least in overall quality.

Yet by imitating the more proper language of verified users, the baselines traded
away Twitter’s casual vernacular. Words like pen, short for penalty, disappeared from the
lexicons, and so did book and gol, informal ways of referring to yellow cards and goals.
The lexicons became slightly less representative of Twitter, and thus, slightly less rele-
vant to TDT on Twitter. EVATE made no such trade-off: it embraced Twitter’s language
at the cost of performance, and even then, our method obtained a comparable precision
and recall to TF-ICF’s and TF-DCF’s. Only Rank Difference greatly out-performed our
method with a considerable gap.

The performance results seem to clash with our assertions. Table 4.1 shows linguistic
understanding outperforming our presumed semantic understanding, EVATE. A dif-
ference still exists, a subtle presence that you could miss by only observing the figures.
There exist matters of performance—how well the five methods learned—and matters
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of substance: what the five methods learned. As we demonstrate in the next analysis,
the five methods learned vastly different things about football.

Of specific, general and semantic methods
The figures in Table 4.1 imply that some methods simply perform better than others.
Domain Specificity generally performs poorly, whereas EVATE, TF-ICF and TF-DCF
perform similarly to each other. The assertion holds some truth—certain methods really
do perform better than others—but the simplistic view obscures the differences among
the lexicons. In these experiments, we examine the effects that the statistical and even
linguistic choices have on the lexicons.

In Figure 4.4, EVATE and the four baselines, using only tweets by verified authors,
diverge into three groups.3 Rank Difference shares the most overlap with TF-ICF and
TF-DCF, but it shares more meaningful characteristics, notably the types of mistakes,
with Domain Specificity. Therefore we consider the first group to include Domain Speci-
ficity and Rank Difference, which favour highly specific terms, like goalkeeper, event
hashtags, and team and player names. The second group includes TF-ICF and TF-DCF,
whose similar design based on word frequency, extracts more general terms, like foot-
ball, team and game. The third group, completely isolated from the others, includes only
EVATE, which builds markedly different lexicons than the baselines.

The first group, with Domain Specificity and Rank Difference, produced highly-
specific lexicons. As we argued in Section 4.1, few terms have the specificity and distin-
guishing power of event terms, normally the participants: Who is involved in an event
or Where the event is located. Whenever the POS tagger erred, it exposed specificity’s
weakness to named entities. Rank Difference might have achieved a best-performing
precision of 42.50%, but it interspersed domain terms among team and player names.
Despite boasting the highest precision of all methods, Rank Difference trailed EVATE
by 14.00% (50.00% � 36.00%) in P@50.

The specific methods failed at the other extreme too. When a term did not fulfil
the assumption of specificity, Domain Specificity and Rank Difference relegated it to
the end of the lexicon. In Rank Difference’s list, goal only appeared at rank 119. Other
common terms, including yellow and card, appeared even further down among the top
200 terms or not at all, like red. Domain Specificity’s metric, even more simplistic than
Rank Difference, accentuated the problem.

3TF-ICF and Rank Difference consistently perform best in their groups. For brevity and clarity, through-
out the rest of this chapter we focus extensively on the two algorithms and EVATE. However, unless other-
wise specified, our observations of TF-ICF apply to TF-DCF too, and our observations of Rank Difference
apply to Domain Specificity too.
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Figure 4.4: The five methods build three types of lexicons. Domain Specificity and Rank
Difference construct specific lexicons, and TF-DCF and TF-ICF construct general lexi-
cons. EVATE constructs topical lexicons.

In contrast, the second group, with TF-ICF and TF-DCF, tended to generate overly-
general lexicons, to the detriment of specific terms. Because these methods depend
heavily on word frequency, general and frequent terms climbed over the more specific
but less frequent terms. TF-ICF’s top four terms comprised goal, score, game and player.
Without context, you could easily mistake the domain for hockey.

EVATE lay somewhere in-between the two groups. Our algorithm avoided event
terms without gleaning a superficial understanding of the domain. Kepa, the name of a
Spanish goalkeeper, was the highest-ranked event term in its lexicon, but even it only
appeared at rank 42 due to low EF and Entropy scores. Instead, EVATE filled the higher
ranks with domain terms, though without the triviality of TF-ICF’s and TF-DCF’s lists.
In fact, out of EVATE’s top 10 terms, only 2 appeared among TF-ICF’s top 100 terms:
goalkeeper (7th � 89th) and foul (9th � 75th).

To confirm that EVATE builds a more technical lexicon than TF-ICF, we adapted
the definitions of technicality by Ha and Hyland [89] to WordNet. Ha and Hyland [89]
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Figure 4.5: WordNet represents concepts in a hypernymy structure. Similarly to Ha and
Hyland [89], we assume that the higher a concept appears in the taxonomy, the more
general it is, and vice-versa.

described technical words as monosemous, so we calculated the mean number of senses
of EVATE’s and TF-ICF’s top 20 terms from WordNet. We found that the average term in
TF-ICF’s top 20 terms had 13.06 senses, more than twice as many meanings as EVATE’s
top 20 terms, which had 5.47 senses on average. The term score, for example, has 18
senses, whereas keeper or goalkeeper, both highly-ranked by EVATE, only have 2 senses.

Ha and Hyland [89] also noted that technical words have specialised senses. To test
this property, we manually mapped EVATE’s and TF-ICF’s top 20 terms to their closest
WordNet sense, if available. Then, we measured the minimum and maximum depths of
each sense from the root concept in the hypernym taxonomy. For example, as shown in
Figure 4.5, the term player originates from the root concept entity, ancestor to all nouns,
and forks into two hypernym paths. Again, TF-ICF’s terms had a shallower depth, with
the average minimum and maximum depths ranging from 6.57 to 6.93, as opposed to
EVATE’s ranges, which went from 8.31 to 9.23.

EVATE’s performance problems, then, do not lie in substance but in form. As we
intuited previously, many of EVATE’s terms were not incorrect but missing from the
ground truth. Twitter’s informal language seemed to worsen performance. While 6
of Rank Difference’s top 10 terms were event terms—the names of teams or related
hashtags—only 1 of EVATE’s top 10 terms was clearly incorrect: FFS, an expression of
frustration. The remaining four incorrect terms included two informal words, baller and
gol, and two missing ground truth terms, VAR and yellow. Rank Difference erred with
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event terms, while EVATE erred with casual domain terms.
The question follows naturally: which group best describes the domain of football

matches? First, the answer depends on the medium. Rank Difference’s formality when
using tweets by verified authors may have appeased UEFA’s dictionary, but on Twitter,
informality reigns. The informal word pen does not appear in the ground truth, but
when throngs of users mention the word, it becomes significant. A TDT algorithm de-
pends on the language of the common Twitter user as much as—or even more than—the
language of journalists and clubs to detect topics.

Second, the answer depends on what the application needs. Topics in the same event
share a general vocabulary [161], so TDT algorithms rely on the specifics to distinguish
among topics. Consider when the German national team thrashed Brazil 7–1 on 8 July
2014, scoring four goals in six minutes. The goals included a rebound, a long shot and
two counter-attacks, but they shared a common vocabulary: Germany scored a goal.
The common description could have deceived an unknowing machine into believing
the four goals to be the same, but the specific vocabulary—the context, the goalscorer,
and the way the player scored—set the goals apart.

EVATE’s combination of general and specific concepts has a distinct TDT-like qual-
ity. While the baselines described the domain broadly with terms such as quarter-final,
aggregate and season, EVATE focused specifically on What happens during events. In
fact, EVATE captured more terms from the lexicons by Kubo et al. [118] and Zhang
et al. [291] than any other baseline. Rank Difference, the best-performing method in
recall in Table 4.1, extracted 47.50% of the single-word terms in the two lexicons, com-
piled specifically to summarise football matches. In contrast, TF-ICF recalled 50.00%
and EVATE recalled 52.50% of terms.

EVATE also provides a lexicon of terms with the right tone and specificity for TDT
on Twitter. TF-ICF’s and TF-DCF’s vocabulary remains too general and too noisy to be
useful to a machine. Conversely, while Domain Specificity and Rank Difference con-
struct highly-specific term lists, the Who and the Where do not transfer across events.
EVATE places itself between the four baselines by balancing general, specific and topi-
cal domain terms: it understands, precisely, What happens in events in Twitter’s dialect.
From these perspectives, EVATE provides a more suitable vocabulary for TDT on Twit-
ter than the baselines.

We will consolidate our findings in Chapters 5 and 6 as we demonstrate the qualities
of EVATE’s terms in TDT. For now, our analyses teach us two lessons about understand-
ing What happens in event domains. First, they demonstrate the need for ATE ground
truths that reflect, accurately, what it means to understand What happens in events
on Twitter. Second, the poor performance of TDT’s adopted ATE metrics, TF-ICF and
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TF-DCF, exemplifies and explains the many failures of the research area’s early ventures
into understanding.

Bootstrapping to describe the How
Any supporter could tell that Germany had scored seven goals against Brazil, but a
journalist could articulate the individuality of each goal. The Guardian’s Barry Glen-
denning [81] described Germany’s first goal graphically: “From a corner, a totally un-
marked Thomas Muller [sic] side-foots home from six yards out". Glendenning did not
satisfy with the What and explained the How too. So far, EVATE’s understanding re-
sembles that of a casual supporter more than that of a journalist: goal, half and referee
rank highly, while corner, deflect and midfield lag far behind. In this section, we study
how bootstrapping can help us construct a more descriptive, but still precise, lexicon.

We approach bootstrapping as a re-ordering problem. We focus, in particular, on
EVATE; in our experiments, the noisy terms towards the top of TF-ICF’s and Rank Dif-
ference’s rankings led to noisy bootstrapping. In contrast, EVATE’s top terms describe
the domain precisely and broadly-comprehensively; the top 20 terms alone include ref-
erences to goals, halves, fouls and substitutions. Therefore we use EVATE’s top k terms
as the seed set and re-order the remaining 200 − k terms.

In this section, we use three statistical metrics as bootstrappers: the chi-square statis-
tic, Log-Likelihood Ratio (LLR) and Pointwise Mutual Information (PMI). The three
bootstrappers evaluate the co-occurrence statistics of a candidate term with seed set
terms in the same tweets. At each iteration, the bootstrappers add 10 terms to the
seed set and continue bootstrapping with the updated set until they have re-ordered all
terms. We exclude retweets from the bootstrapping calculation to consider how Twitter
converses in general, without the influence of repeated content.

All three methods promote terms that co-occur significantly more than by chance, or
had the candidate term and the seed set term been independent. Chi-square was used
by McIntosh and Curran [156] for bootstrapping and, more notably, by Yang et al. [289]
in TDT to separate words into domain and non-domain terms. The chi-square statistic
between a candidate term t and a seed set term s in a corpus of tweets T can be expressed
as follows using the contingency table shown in Table 4.2:

χ2 =
(A + B + C + C)(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(4.9)

The LLR and PMI statistics are more clear in their intents. Similarly to Roark and
Charniak [219], we formulate LLR based on the log-likelihood statistic, seeking surpris-
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|{d ∈ T|t ∈ d}| |{d ∈ T|t /∈ d}|

|{d ∈ T|s ∈ d}| A B

|{d ∈ T|s /∈ d}| C D

Table 4.2: In the chi-square contingency table, A represents the number of documents in
corpus T that contain both the candidate term t and the seed term s, and D represents the
number of documents that contain neither. B and C represent the number of documents
that contain only s and only t respectively.

ing co-occurrences between candidate terms and seed set terms. We compute the loga-
rithm of the ratio between the observed co-occurrence probability O and the expected
co-occurrence probability in case of independence E [212]. Likewise, we express PMI,
a common bootstrapper [103; 244], as the logarithm of the ratio between the observed
co-occurrence frequency, pt1,t2 of two terms, and the expected co-occurrence frequency
in case of independence, pt1 pt2 [244].

LLR = 2 · O ln
O
E

(4.10) PMI = log
pt1,t2

pt1 pt2

(4.11)

Apart from the bootstrappers, we vary two other parameters in our experiments.
First, we adjust the size of the seed set k to understand how the number and quality of
terms affect the algorithms. Second, we experiment with different ways how the boot-
strappers score candidate terms: either by taking the candidate term’s highest similarity
to any seed set term, MAX, or the candidate term’s average similarity with all seed set
terms, MEAN.

Table 4.3 lists the best-performing bootstrappers. Only 3 out of 50 setups wors-
ened EVATE’s ranking quality, and all drops were marginal. The best setup with chi-
square, chosen experimentally, used 16 seed terms and boosted EVATE’s AP from 3.19%
to 3.75%—a relative improvement of 17.49%. EVATE’s P@50, already the highest of all
methods, increased by 4.00% (50.00% � 54.00%), and P@100 rose by 9.00% (36.00% �
45.00%)—2.00% higher than TF-ICF’s.

Generally, using the MEAN score to bootstrap new terms benefited bootstrappers
more than the MAX score. In fact, only 3 out of 18 models performed better with the
MAX score than the MEAN score. The difference between the two types of scoring was
minimal, averaging just 0.06% in AP due to the sheer size of the ground truth, but the
MEAN strategy improved consistently enough over the MAX strategy to be statistically-
significant (one-tailed paired-samples t-test: p = 0.001).
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Bootstrapper Scoring Seeds P@50 P@100 AP

EVATE 50.00% 36.00% 3.19%

Chi-square MAX 30 52.00% 44.00% 3.50%

MEAN 16 54.00% 45.00% 3.75%

LLR MAX 30 48.00% 40.00% 3.34%

MEAN 30 48.00% 42.00% 3.38%

PMI MAX 50 50.00% 42.00% 3.29%

MEAN 30 56.00% 42.00% 3.45%

Table 4.3: Chi-square out-performed the other bootstrappers even with small seed sets.
Moreover, bootstrappers consistently performed better with the MEAN scoring scheme.

The outcome may seem intuitive, but it clashes with what both Igo and Riloff [103],
and Zhang et al. [295] found. The two had found bootstrapping based on the MAX sim-
ilarity with any seed set term to out-perform the MEAN strategy. Widdows and Dorow
[279] disagreed, warning that such scoring could introduce “infections”, or idiomatic
terms with little relevance to the broader domain. In football matches, the equivalent
of infections would be bootstrapping Manchester because it combines with United to
form Manchester United, an event term. Our findings aligned with those of Widdows
and Dorow [279]. A more general word than Manchester, like kick, would be a better
candidate because it combines with free-kicks, corner kicks and kick-offs.

Out of the three bootstrappers, chi-square generally performed best and never failed
to improve EVATE’s list. In large part, the chi-square bootstrapper succeeded because of
its ability to choose words with precision, even when starting from small seed sets. As
shown in Figure 4.6, chi-square’s AP exceeded 3.65% with just 12 seed terms, and rose
to 3.75% with 16 terms. PMI and LLR paled in comparison. As chi-square approached
an AP of 3.75%, PMI and LLR tarried with an AP of around 3.40%. Results improved
with an increasingly-large seed set but never reached chi-square’s early heights.

More than just quantity, all bootstrappers require quality. Beyond 25 terms, the ini-
tial seed set grew, but the noise grew with it. When the seed set grew larger than 25
terms, PMI’s and LLR’s performance reached a plateau, and chi-square’s AP worsened.
With each new noisy term that entered the seed set, one fewer noisy term remained
for the bootstrappers to re-order. The bootstrappers lost their purpose and effective-
ness. By the end, with a seed set of 60 terms, the bootstrapped lexicons converged, and
increasingly resembled each other and EVATE’s original lexicon.

A closer look at the best bootstrapper reveals its immediate influence. The chi-square
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Figure 4.6: The chi-square bootstrapper performs best with small, high-quality seed
sets. Conversely, the PMI and LLR bootstrappers require large seed sets, at which point
quality dwindles, hindering the two bootstrappers.

bootstrapper with MEAN scoring and 16 seed terms gave a prompt and considerable
boost to precision. Early on, the bootstrapper boosted words like corner (174th � 41st),
net (193rd � 33rd) and decision (178th � 22nd). P@k peaked at 65.38% after the 25th term, but
the bootstrapper maintained its improvement over EVATE until the end. Precision re-
mained above 50.00% until the 88th term, at which point EVATE had scored just 40.00%.

At the other end of the ranking, chi-square made few mistakes too. When the boot-
strapper’s precision started to decrease, it decreased almost monotonically, as if only
noisy terms remained to bootstrap. The term freekick, a popular misspelling of free-kick,
dropped heavily (17th � 172nd). However, many other terms dropped along with freekick,
with the worst-hit words being subjective expressions like WTF (26th � 166th), masterclass
(27th � 173rd) and wow (33rd � 175th).

We apply the chi-square bootstrapper’s terms again later in this chapter and in Chap-
ter 5, where we apply the top terms in a TDT algorithm. Before, however, we move from
football’s ideal setting to more unwelcoming domains. We start by analysing EVATE
and the baselines in the slow-changing domain of Formula 1 Grands Prix.
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4.4 | EVATE as a semantic re-ranker: the language of
Formula 1

Between 2007 and 2022, Lewis Hamilton raced in more than 300 Formula 1 Grands Prix.
Over 16 years, he broke countless records and became synonymous with Formula 1:
Lewis Hamilton was Formula 1, and Formula 1 was Lewis Hamilton. In the previous
section, EVATE constructed a lexicon that captured What happens in football matches,
but what allowed EVATE to construct such an accurate lexicon was the rigidity, structure
and rich variety of the domain. Such variety appears nearly impossible in Formula 1.
Had we collected one Grand Prix dataset per season since Twitter launched in 2006, only
one corpus would not have featured Lewis Hamilton: the 2006 season.

Event domains like Formula 1 blur the line between domain and event terms. The
ubiquity of drivers and constructors, like Hamilton’s Mercedes, creates a seeming para-
dox in which the Who ceases to represent event terms and starts to represent domain
terms. In this section, we study the role of named entities in Formula 1 Grands Prix.
We do not attempt to answer the question of whether named entities should be domain
terms—not even ATE literature seems capable of deciding. Instead, we entertain both
possibilities: named entities as domain terms and named entities as event terms.

We base our experiments on the 2020 Formula 1 season. The 2020 season, curtailed
by COVID-19 restrictions, included 17 Grands Prix, and we collected data about 15 of
them. Similarly to the experiments on football matches, each dataset includes an under-
standing period, which lasts half an hour, and a longer event period. Differently from
football matches, however, the participants—the drivers and the constructors—seldom
change. Therefore we collected tweets that mention participants for both periods. Ap-
pendix D.5 includes more details.

The baselines and metrics in this section remain unchanged. We re-use TF-ICF and
TF-DCF as the general ATE algorithms, and Domain Specificity and Rank Difference as
the specific methods. Once again, we focus on TF-ICF and Rank Difference as the best-
performing methods in each group. Each baseline produces a lexicon using the best
configuration in Section 4.3: by considering all tweets by verified authors.

We compare the outputs from EVATE and the baselines with a set of four ground
truth lists. The crowd-sourced glossary on Wikipedia [280] serves as a general motor
sport ground truth, and three others, by F1technical.net [60], Formula 1 Dictionary [68]
and Formula 1 [67], focus specifically on Formula 1. We also use widely-available lists
of drivers, constructors and Grands Prix from the 2020 season. Differently from other
ground truths, the Formula 1 glossaries consist of highly-technical, mostly multi-word
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terms. Therefore for this experiment only, we split multi-word terms into their single-
word constituents.

Using the described setup, we dedicate the rest of this section to study how ATE
algorithms handle named entities. We start by considering named entities as domain
terms, not event terms, in the first analysis.

Named entities as domain terms
To someone who follows Formula 1, watching the same drivers lining up on the grid and
racing around the circuit is an almost-weekly routine during the season. They grew up
watching the same constructors; several have been competing for decades. The drivers
and constructors still act as the Who, and the actions and changes as the What, but
you could see why some event terms could double as domain terms. Therefore in this
analysis, we consider drivers and constructors as domain terms.

To consider event terms as domain terms, we loosened the linguistic filters. Now,
the four baselines accepted proper nouns as well as nouns, verbs and adjectives. With
fewer linguistic constraints, the four baselines filled their lexicons with named entities,
as shown in Table 4.4. Because of the consistency of named entities in Formula 1, even
TF-ICF and TF-DCF, the general methods, include many named entities in their lexi-
cons; the prevalence of named entities accounts for the 20.00% difference in TF-ICF’s
precision between Tables 4.4a and 4.4b, a comparable figure to Rank Difference.

The abundance of named entities makes more sense in the lexicons of the specific
methods. By design, Domain Specificity and Rank Difference focus on technical terms,
but the two methods subverted our expectations. Instead of harnessing POS tag filter-
ing, Domain Specificity and Rank Difference succumbed to noise. In pursuit of highly-
technical terms, Rank Difference arbitrarily prioritised driver nicknames, Grand Prix
locations and racing positions, like P14. Few truly technical terms, like constructor, halo
or DRS (Drag Reduction System), appeared in Rank Difference’s lexicon.

EVATE’s behaviour remained consistent. With a lexicon that balanced the general
terms with the more specific terms, EVATE again found a place between the two groups
of methods. Our method captured regular domain terms like gravel, wing and tire, but
not at the expense of neglecting drivers and constructors. Even without relying on POS
tagging, EVATE identified drivers and constructors as domain terms due to their speci-
ficity and persistent involvement in topics.

Thus, EVATE out-performed all other methods. Two-thirds of the first 50 terms de-
scribed either What happens or Who is involved in Grands Prix. Even TF-ICF, which
achieved 8.00% higher overall precision than EVATE (43.50% � 51.50%), ranked fewer
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Algorithm P@50 P@100 Precision Recall F-score

EVATE 24.00% 28.00% 25.50% 5.26% 8.72%

TF-ICF 28.00% 39.00% 31.50% 6.49% 10.77%

TF-DCF 22.00% 30.00% 29.00% 5.98% 9.91%

Domain Specificity 14.00% 13.00% 14.00% 2.89% 4.79%

Rank Difference 14.00% 17.00% 23.00% 4.74% 7.86%

(a) The ATE baselines performed poorly when we excluded drivers and constructors from the
ground truth. All techniques, including the baselines, which benefited from POS tagging, still
mistakenly captured many named entities, including the baselines, which benefited from POS
tagging.

Algorithm P@50 P@100 Precision Recall F-score

EVATE 66.00% 57.00% 43.50% 8.44% 14.13%

TF-ICF 62.00% 64.00% 51.50% 9.99% 16.73%

TF-DCF 62.00% 64.00% 49.00% 9.51% 15.92%

Domain Specificity 44.00% 33.00% 27.00% 5.24% 8.77%

Rank Difference 60.00% 55.00% 43.50% 8.44% 14.13%

(b) Performance more than doubled when we included drivers and constructors in the ground
truth. The increase in performance over Table 4.4a is due to the prominence of names in the five
algorithms’ lexicons.

Table 4.4: ATE methods captured many named entities in the domain of Formula 1
Grands Prix. EVATE’s lexicon stands out for its higher quality due to its ability to filter
Grand Prix locations.

precise terms among the first 50 (66.00% � 62.00%). The difference is in EVATE’s ability
to recognise the drivers and constructors from the actual event terms: the Grand Prix
locations, or the Where.

Drivers and constructors are not the only important named entities in Formula 1.
Albeit only relevant to one or, rarely, two Grands Prix per season, the circuits’ names,
symbolic of the Where, appear with intensity. As a result, opening up the baselines to
named entities without any other semantic controls degraded the baselines’ rankings.
EVATE had no trouble filtering the names of Grands Prix, both because ELD rarely
captured them and because most hosted only one event. The baselines made no such
distinction: TF-ICF identified 18 locations, and Rank Difference extracted 20. EVATE
captured none.

The distinction between how the baselines and EVATE handled event terms typi-
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fies the distinction between tools built for general domains and those built for event
domains. Event domains differ from general domains, and EVATE understood the dif-
ference. Even without any additional controls on the linguistic component, it was able
to distinguish between the Who and the Where, the domain terms and the event terms.
The lack of controls, however, make the next question a tougher ask of EVATE. What if
drivers and constructors were event terms, not domain terms?

Named entities as event terms
Named entities as domain terms make sense, but you could also understand why re-
search might frown upon the idea. From a purist perspective, named entities, the Who
and the Where, remain the responsibility of APD—ATE should describe uniquely What
happens. Moreover, a lexicon without named entities generalises better. Drivers retire
and constructors fail, but the fundamental concepts that compose the What remain—the
impermanence of named entities cannot be but a negative trait. A general understand-
ing, free of named entities, could transfer across motor sport domains, like Formula
2, Formula E and possibly MotoGP. Therefore in this section, we consider drivers and
constructors as event terms, and remove them from the ground truth.

For the baselines, excluding named entities proved as simple as tweaking the POS
tagging algorithm to reject proper nouns. Of course, POS tagging fails on occasion, and
because POS tagging fails, the baselines experienced the drops in performance from
Table 4.4 to Table 4.5a. For instance, POS tagging correctly interpreted the names of
Grands Prix, such as the Austrian Grand Prix, as adjectives. While the baselines avoided
drivers and constructors for the most part, the Grand Prix locations again degraded the
overall precision and ranking quality.

EVATE suffered more heavily. For EVATE, rejecting named entities requires tweak-
ing the TDT algorithm, which is inconvenient and adds unnecessary overhead if the
code is at all available. We did not change our method, and neither did the lexicon
change. Drivers and constructors still occupied 9 out of EVATE’s top 10 words, and
its performance remained the same as in Table 4.4a, stooping to the lowest P@50 in Ta-
ble 4.5a.

In the end, neither lexicon adapted sufficiently to consider named entities as event
terms. The baselines’ linguistic component excluded the Who but not the Where, and
while EVATE’s statistical component excluded the Where, it was unable to exclude the
Who. Therefore in the rest of this analysis, like Zhang et al. [294] before us, we combine
the baselines’ qualities with those of EVATE to re-rank the baselines’ lexicons.

First, we used EVATE as a simple semantic re-ranker. EVATE calculated its own ter-
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Algorithm P@50 P@100 Precision AP

EVATE 24.00% 28.00% 25.50% 1.36%

TF-ICF 58.00% 47.00% 37.50% 4.07%

TF-DCF 48.00% 47.00% 37.50% 3.78%

Domain Specificity 30.00% 23.00% 18.50% 0.97%

Rank Difference 38.00% 45.00% 39.00% 3.32%

(a) All ATE methods struggled to distinguish between between domain terms and event terms,
often promoting named entities. The difficulties persisted even after configuring POS tagging to
retain only nouns, verbs and adjectives.

Algorithm P@50 P@100 Precision AP

TF-ICF 54.00% 47.00% 37.50% 3.71%

TF-DCF 54.00% 48.00% 37.50% 3.61%

Domain Specificity 42.00% 27.00% 19.00% 1.58%

Rank Difference 56.00% 50.00% 39.00% 3.83%

(b) As a simple re-ranker, EVATE re-ordered the baselines’ lexicons independently. EVATE’s
contributions improved Domain Specificity and Rank Difference, the worst ATE methods, but
had minimal effect on the best ones.

Algorithm P@50 P@100 Precision AP

TF-ICF 66.00% 48.00% 37.50% 4.36%

TF-DCF 56.00% 48.00% 37.50% 4.13%

Domain Specificity 42.00% 27.00% 18.50% 1.51%

Rank Difference 60.00% 49.00% 39.00% 4.18%

(c) As a combined re-ranker, EVATE multiplied its termhood scores with those of the baselines.
This time, every method improved, including TF-ICF and TF-DCF, the best-performing ATE
baselines.

Table 4.5: EVATE improved the performance of ATE methods as a semantic re-ranker.
The most consistent improvements, however, resulted from combining EVATE’s ter-
mhood scores with those of the baselines.

mhood scores for the terms in each baseline’s lexicon and then used the new scores to
re-rank the terms. As shown in Table 4.5b, simple re-ranking achieved mixed results.
Domain Specificity’s and Rank Difference’s AP rose sharply, but the improvements co-
incided with declines in TF-ICF’s and TF-DCF’s qualities. The two factors combined
allowed Rank Difference to overtake TF-ICF in P@50 (54.00% � 56.00%) and P@100
(47.00% � 50.00%). Simple re-ranking thus brought the four baselines’ results closer
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to each other, but at the expense of the general methods.

In simple re-ranking, the baselines relinquished too much control to EVATE. The
four baselines became the linguistic filters for EVATE, the actual termhood measure.
Domain Specificity and Rank Difference could hardly perform worse, and benefited
from having our method relegate Grand Prix locations from the top ranks. Conversely,
EVATE, which prioritised drivers and constructors, punished any mistake in TF-ICF’s
and TF-DCF’s lexicons. In the former lexicon, [Lance] Stroll climbed from 93rd to 8th and
[Max] Verstappen from 98th to 4th.

Second, we allowed the baselines and EVATE to share control by combining ter-
mhood measures. In combined re-ranking, the baseline still primarily acts as a linguistic
filter and EVATE still primarily acts as a termhood measure. This time, however, EVATE
shares its termhood role with the baseline. Combined re-ranking re-scales the baseline’s
and EVATE’s termhood scores between 0 and 1, and then multiplies them to compute
the terms’ final termhood scores. In other words, combined re-ranking considers both
the baseline’s and EVATE’s termhood scores, and prioritises terms that the two metrics
rank highly.

Combined re-ranking brought the four baselines closer to each other in AP, but this
time at no baseline’s expense. At the higher end of the lexicons, EVATE and the baselines
compromised to prioritise common and high-scoring terms. At the other end, EVATE
exercised its degree of control to relegate Grand Prix locations. Domain Specificity and
Rank Difference again benefited the most, with P@50 rising by 12.00% (30.00% � 42.00%)
and 22.00% (38.00% � 60.00%), as shown in Table 4.5c. The general methods profited
less but profited nonetheless. TF-DCF and TF-ICF experienced an 8.00% improvement
in P@50, and the latter retained a 66.00% precision after 50 terms.

EVATE’s contributions as a re-ranker despite its own struggles highlight the impor-
tance of semantics in ATE. We cannot conflate EVATE failing by missing valid domain
terms, which was not our method’s primary flaw, with it failing because it does not
meet our expectations. EVATE’s shortcomings in this section reflected not flaws in logic
but the datasets’ inadequate variety. However, even when it fails to meet our expecta-
tions, EVATE can act as a semantic re-ranker. In the last section, we apply its semantic
properties in a domain that, unlike Formula 1, changes constantly: politics.
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4.5 | ATE in dynamic domains: the language of Ameri-
can politics

If a week is a long time in politics, then three months must feel like an eternity. The
three months surrounding the 2020 United States presidential election certainly felt like
they would never end. Americans went from a controversial president to a controversial
election, from protests on social media to protests at the Capitol, and from the COVID-
19 battle to the vaccination battle. They were challenging circumstances for the United
States and they are challenging circumstances for ATE.

Politics create a stark contrast with football matches and Formula 1 Grands Prix.
Under normal conditions, football matches start with a referee whistle and end with
another whistle an hour and a half later, and Grands Prix start on the grid and end
at the finish line: fixed rules and clear boundaries. Politics have neither. On one day
during the 2020 United States election cycle, America voted, and on the other, America
rioted. Election Day stretched into Election Week. To ATE, politics symbolise the polar
opposite of our previous domains, the ideal settings for term extraction.

Still, the volatility of politics serves a purpose. ATE research postulates as a solution
to evolving domains, where WordNet and other resources do not suffice [14; 140; 208].
In dynamic domains, the community takes its algorithms’ suitability as a foregone con-
clusion, rarely pausing to question the claim, but we do. In this section, we use politics’
state of constant change to test whether and how ATE algorithms, including EVATE,
adapt to dynamic domains.

The setting of our problem consists of the three months surrounding the 2020 United
States presidential election, contested by Donald Trump for the Republican Party and
Joe Biden for the Democratic Party. We started collecting data on 20 October 2020, in
the final days of the election campaign. Americans voted two weeks later, on 3 Novem-
ber. We continued collecting data until 21 January 2021, the day following President
Joe Biden’s Inauguration Day. During these 94 days, and as shown in Figure 4.7, we
captured mounting legal challenges, riots at the Capitol, and background themes, like
the COVID-19 pandemic.

The setting itself poses two challenges to adapt the datasets to ATE algorithms. First,
the lack of boundaries forced us into a simplifying assumption: each day represents an
individual event structured identically as the others. Second, because political events
have no clear start, we could not collect an understanding period, which ELD uses to
construct timelines. Instead, ELD always uses the general dataset described in Ap-
pendix D as the understanding period. Thus, ELD’s term-weighting scheme promotes
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Figure 4.7: A timeline of notable events from the 2020 US presidential election. The data
spans three months and notably covers election day, the Capitol riot and inauguration
day, among other events.

words that appear more often in politics than in general.

The nature of the data itself barely changes. We missed three days, between 12 Jan-
uary and 14 January 2021, due to server downtime, resulting in a 91-day dataset. On
the other days, we excluded retweets due to the large volume and still collected more
than 85 million tweets, an average of 939,763 tweets per day. Appendix D.7 describes
our data collection process in more detail.

Likewise, the evaluation procedure barely changes. We re-use the same baselines
and configurations: tweets by verified users except retweets; Rank Difference again
only considers terms that appear at least 50 times. Our ground truth covers unigrams
from three subjects. First, we include general political terminology from a glossary by
the Dole Institute of Politics [52] and a dictionary by Brown et al. [27]. Second, we use
a list of election terms from the U.S. Election Assistance Commission [263]. Third, we
consider legal terminology from Justia [107] and the United States Courts [261].

In the rest of this section, we analyse ATE’s behaviour over the three months covered
by our datasets. We start by studying just how well the four baselines and EVATE adapt
and learn from the volatility of American politics. Then, we combine the techniques
from this chapter to create a generalisable and transferable lexicon of political language.

The myth of adapting
After three months, all ATE algorithms had surveyed, directly or indirectly, more than
85 million tweets. Those 85 million tweets carried breaking news, jeers and opinions
from a polarising election like few others. In the ways of noise, the data from the US
election resembled that from football matches and Formula 1 Grands Prix. In almost
every other way, it did not. EVATE and the four baselines reacted poorly, and as Ta-
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Algorithm P@50 P@100 Precision Recall F-score

EVATE 24.00% 28.00% 26.00% 4.44% 7.59%

TF-ICF 46.00% 38.00% 32.00% 5.47% 9.34%

TF-DCF 44.00% 38.00% 30.50% 5.21% 8.90%

Domain Specificity 30.00% 27.00% 28.00% 4.78% 8.17%

Rank Difference 44.00% 38.00% 35.50% 6.06% 10.36%

Table 4.6: ATE algorithms struggled immensely in the domain of politics. The four
baselines and EVATE captured very few terms, even from our massive ground truth
lexicons. Not one algorithm and not one assumption adapted to the volatility of politics.

ble 4.6 shows, the five algorithms extracted relatively few terms, even from a domain as
limitless as politics.

TF-ICF and TF-DCF hardly adapted at all. TF-ICF provided an overview that must
be familiar by now: a general picture of the domain composed of terms like vote, pres-
ident and election. Yet part of what gave TF-ICF a general outlook seems to have been
consistency: vote, president and election were not only relevant but consistently relevant.
In a domain as dynamic as politics, however, where most of what constitutes relevance
changes from one day to the next, few events appeared consistently. Most appeared as
an ephemeral presence: one day of voting and an exceptional few days of vote counting,
a day of rioting and its aftermath, and one day to inaugurate the new president.

Without consistency, what TF-ICF and TF-DCF got wrong devalued what they got
right. The two still sought frequent and specific terms, but because the specific terms
appeared so briefly, TF-ICF and TF-DCF populated their lexicons with frequent words
instead. What remains constant and consistent, frequent but not specific in the domain
of politics is the language of profanity and opinions, everyday language. The assump-
tion of frequency lost all meaning.

A reliance on frequency produced trivial lexicons. TF-ICF and TF-DCF scattered
political terms among the noise, a saturation of trivial words such as say, think and year.
Figure 4.8 shows how almost three out of every four terms in TF-ICF’s lexicon appeared
in the list of the thousand most common English words according to English First [59].
In contrast, less than a quarter of Rank Difference’s and EVATE’s top 200 terms figured
in the list. Of course, not all common words are incorrect—vote, president and election are
all common—but most bear little relevance to the domain and thus trivialise the lexicon.

Rank Difference adapted remarkably in comparison. The specific method thrived
amid the highly-technical, unambiguous terminology of politics. Terms like impeach-
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ment, certification and insurrection soared, and not even named entities proved problem-
atic. The main actors of the 2020 United States election, namely Joe Biden and Donald
Trump, already enjoyed global repute (and disrepute) before the election, which low-
ered specificity. Rank Difference again performed best with 35.50% precision.

Yet Rank Difference’s high precision hides a muted defect. The simplistic assump-
tion of contrastive approaches, that a term appears in only one domain, fails too with
politics’ most popular terms. The terms vote, president and election all appear in the list
of most common words [59] because politics seep into everyday life. In other words,
they fail the assumption of specificity. Domain Specificity and Rank Difference pun-
ished general terms severely, and few broached the top 200 terms. The term vote only
appeared 552nd in Domain Specificity’s ranking, incredibly still much better than its
position in Rank Difference’s lexicon: 7,403rd.

EVATE again established itself as the middle-ground between the triviality of the
general methods and the specificity of the technical metrics. It captured both vote and
impeachment, both president and certification. Yet while EVATE’s lexicon balanced general
terms with more specialised ones, its assumption failed too. Not every day represented
an individual event with an identical structure to all others. Only the six days of tireless
vote counting, between voting day and when cable networks called the election for Joe
Biden, remained faithful to EVATE’s assumption. The rest of the days only shared the
overarching context of a single election from one political landscape.

The conundrum of named entities returned. Without consistency, named entities
became the common themes, and EVATE learned the Who and the Where much more
comfortably than the What. Joe Biden and Donald Trump, their running mates and fam-
ily members inundated the top ranks. And while TF-ICF and Rank Difference captured
no American states, they constituted 10 (5.00%) of EVATE’s 200 terms.

Most of EVATE’s remaining mistakes resembled Rank Difference’s. On manual in-
spection, many errors proved false flags. Several terms were absent from the ground
truth: socialist, insurrection and overturn. Many others described the political agenda
without being specific to politics—attorney, economy and vaccine—or gained temporary
relevance from the context: the controversy of Hunter Biden’s laptop and Trump’s cam-
paign slogan, to drain the swamp.

In fact, the mistakes may even appear as welcome signs. Many capture an accurate,
if brief, snapshot of American politics, set in 2020. If ATE algorithms truly adapted to
domains, as research postures, then we should only expect our lexicons to capture a
narrow, general facet of the ground truth alongside newly-relevant terms. The mistakes
seem to augur well for adaptive algorithms.

In reality, however, ATE literature’s aspirations to adaptive learning seem shallow.
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Figure 4.8: TF-ICF fills the political lexicon with common words. Almost three-quarters
of TF-ICF’s terms appear in the list of the thousand most common English words [59], a
far higher rate than Rank Difference and EVATE.

The state of American politics on day 1 differed greatly from its state on day 91; calls to
vote quieted, campaign slogans expired, and scandals faded to be replaced by new ones.
Adaptive learning should renew understanding as it consumes new data. It should con-
stantly cycle between forgetting and learning. Algorithms must forget quickly—and
selectively, only the irrelevant terms—and then learn just as quickly to replace old con-
cepts with newly-topical ones.

Despite pretences, forgetting and learning do not characterise ATE algorithms. In
our experiments, TF-ICF hardly learned. Newly-relevant terms strained to catch up
with more established terms; even riot only finished 247th. Rank Difference learned
more easily. The differences in ranks seemed easier to overcome than TF-ICF’s raw term
frequencies but only as long as terms burst powerfully. Conversely, the baselines forgot
too slowly. Both relied, directly or indirectly, on term frequency, and the more tweets the
techniques surveyed, the harder it became to forget old concepts and learn new ones.

Forgetting may be EVATE’s strongest quality in a domain with scarce qualities. At al-
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most every major shift in discourse, EVATE’s lexicon worsened slightly as it introduced
new terms at the end of the lexicon before finding them a rightful place or discarding
them altogether. Precision dipped after news networks called the election for Joe Biden,
after rioters stormed the Capitol building, and again after inauguration day. Between
the United States Electoral College’s vote and the end, TF-ICF replaced 21 terms and
Rank Difference changed 31 terms. During the same period, EVATE recycled more than
a quarter of its lexicon: 52 terms.

Yet EVATE learned cautiously and slowly, and sometimes not at all. Because our
assumption failed—not every day experienced the same events—EVATE had to wait for
days until it observed another similar event. The term riot first appeared in its lexicon
on 10 January 2021—four days after the actual Capitol riots and three days after Rank
Difference first added the term to its lexicon. Sometimes, another similar event did not
occur; ELD only captured allegations of an attempted insurrection once, not enough for
EVATE to assign a positive termhood score. In fact, of 1,944 topical terms, ELD only
captured 783 (40.28%) at least twice.

Our findings leave a void. Not only do the five algorithms hardly adapt, but they
also capture a narrow view of politics stuck in 2020. In TF-ICF and TF-DCF, the gener-
alisable mixes with the banal; distracting knowledge reminiscent of the understanding
from TDT’s early research—lexicons too trivial to be useful, as we show in Chapter 5. In
Domain Specificity and Rank Difference, the specific terms evoke esoteric knowledge:
convenient when needed and harmless otherwise, but ultimately rarely useful. Finally,
in EVATE, the Who and the Where detract from the generalisability of the What.

We conclude this chapter with one last analysis. Our lexicons so far apply to one
brief and parochial window, American politics in late 2020. Even ignoring the mistakes,
applying the lexicons in any other time frame or in any other location would erode
relevance further. In the last analysis, we remedy the situation by combining techniques
from previous experiments to craft a generalisable and transferable political lexicon.

The baseline of politics
The scene is one of abject failure: a failure to learn, a failure to generalise and a failure to
adapt. Yet it is not an entirely new scene. We have seen ATE algorithms failing to learn a
precise, topical lexicon in football matches, and we have seen ATE algorithms failing to
generalise in Formula 1 Grands Prix. We cannot make a lexicon respond more quickly to
the dynamics of events—that would require changing the algorithm itself—but we can
improve the learned output to make it more topical and more generalisable. This is the
challenge that we undertake in this analysis: to combine re-ranking with bootstrapping
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Method P@50 P@100 P@200 P@400 AP

TF-ICF 46.00% 38.00% 32.00% 25.50% 3.39%

TF-ICF with re-ranking 62.00% 45.00% 38.00% 27.25% 4.60%

TF-ICF with re-ranking, bootstrapping 68.00% 57.00% 42.00% 27.25% 5.59%

Table 4.7: The combination of re-ranking with bootstrapping created a generalisable and
transferable political lexicon. The final lexicon inherits the best qualities of TF-ICF and
EVATE. We considered the top 400 terms in each lexicon to calculate the AP.

and salvage from the lexicons the transferable political knowledge.

Consider where we start. Rank Difference appears immediately contrary to the prin-
ciples of generalisability and transferability. It paints a relatively precise picture of the
domain of politics, but it remains too specific, too American—too incompatible with our
goals. Moreover, EVATE shares very little overlap with Rank Difference for re-ranking
to have any meaningful influence; of Rank Difference’s top 1000 terms, EVATE agrees
on just 175 (17.50%). TF-ICF has a very different set of flaws. We described TF-ICF’s lex-
icon as too trivial and too noisy, with words like [they]’re, make and today. Nevertheless,
scattered among the noise lie the elements of a generalisable and transferable lexicon.

Therefore to begin with, we applied EVATE as a semantic re-ranker to sort TF-ICF’s
lexicon. We re-used the best configuration from Section 4.4, combining the termhood
scores of TF-ICF and EVATE to re-rank the former’s top 1,000 terms.4 Evidently, the
list includes many more words than we would need, but only because it also contains
much more noise than we would want. We charge EVATE with diligent refinement, and
as Table 4.7 shows, it refined TF-ICF’s coarse lexicon masterfully.

TF-ICF and EVATE agreed on just 382 terms (38.20%), but 382 terms sufficed. EVATE
transformed TF-ICF’s lexicon. Trivial noise like say (4th � 384th), people (14th � 386th) and
want (49th � 392nd) dropped hundreds of positions, replaced with more topical terms
such as riot (247th � 96th), county (323rd � 92nd) and speech (199th � 52nd). Performance
reflected the quality of the movements too. As topicality overcame noise, P@100 rose
by 7.00% (38.00% � 45.00%) and P@200 by 6.00% (32.00% � 38.00%). TF-ICF’s lexicon
became visibly cleaner and more topical.

Bootstrapping improved the lexicon even further. As EVATE moved terms to the
dense upper echelons of the lexicon, the first ranks started to describe politics minutely,

4We experimented with several other configurations too. We tweaked the number of terms, re-ranked
Rank Difference’s lexicon, and even attempted to merge the re-ranked lists of Rank Difference and TF-ICF.
The results were underwhelming. More than just ineffectual, the low overlap between EVATE and Rank
Difference rendered re-ranking detrimental. For brevity, we do not present the results here.
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Figure 4.9: Semantic re-ranking and bootstrapping improve TF-ICF’s political lexicon.
With just six seeds, the chi-square bootstrapper moves valid terms to the forefront of the
new lexicon and relegates noise to the end.

which enabled bootstrapping. Now, we could use the first political terms to seek other
similarly-political terms. We re-used the same configuration from Section 4.3, the chi-
square bootstrapper with the MEAN scoring strategy. This time, chi-square ordered
the first 400 terms, ten at a time, covering all terms to which both EVATE and TF-ICF
assigned a positive termhood value. We only varied the seed set size, and as Figure 4.9
shows, bootstrapping never failed to improve the lexicon.

Once again, chi-square needed very few examples. The best bootstrapper registered
a relative increase of 64.95% in AP (3.39% � 5.59%) over the base lexicon with just six
seeds: election, vote, president, pardon, administration and campaign. General, subjective
and other nondescript terms in the re-ranked lexicon, like today (76th � 293rd), good (73rd

� 302nd) and Biden (57th � 380th), made way for the ephemeral concepts that EVATE
scarcely encountered. Terms like project [result] (268th � 66th), mail[-in ballots] (359th �
23rd) and cast [ballot] (216th � 13th), though only relevant briefly, climbed the ranks.

You could not call the final lexicon EVATE’s or TF-ICF’s, but it bears the best qualities
of both. Among the top 200 terms, the share of common English words, so abundant
in TF-ICF’s lexicon, declined from 74.50% in the original lexicon to 62.50% in the re-
ranked one and 51.00% in the bootstrapped one. Simultaneously, P@200 rose steadily,
from 26.00% in EVATE’s lexicon and 32.00% in TF-ICF’s to 38.00% in the re-ranked one
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and 42.00% in the bootstrapped one. For the first time, P@100 exceeded 50.00% and
remained above the symbolic threshold until the 138th term. We empirically truncated
the final lexicon at 250 terms, at which point precision still stood at 36.00%.

Of course, we make sacrifices in the combination. We sacrifice the informality of the
average tweet for the authoritative tone of verified users, and Rank Difference’s specific
terms for TF-ICF’s general ones. More importantly, our data left an indelible trace of
American politics in the final lexicon. We captured senate, governor and [the United
States Electoral] College but missed parliament, minister and [the House of] Commons, the
foundation of other systems of governance. Evidently, TF-ICF and EVATE could not
compensate for the gaps in data.

Yet even the defects cannot tarnish the overall quality of the final lexicon, which
captures everything lastly political and discards anything subjective and ephemeral. It
demonstrates that even in a domain as vast as politics, a baseline of terms remains.
The baseline describes current affairs, issues of policy—climate change, the military and
the economy—and the basic functioning of democracy—voting, debating and governance.
All these concepts and others, our lexicon captures thanks to EVATE’s semantic under-
standing. We apply this lexicon in Chapter 6. For now, we conclude our experiments in
understanding, and with them, this chapter.

Recap
A goal is a goal. A human understands that a goal is an important concept in football
matches but scrambles to explain why. Nevertheless, finding an answer to the question
remains important, and we found ours in semantics. In the end, our endeavours let
us harness the link between ATE and TDT to propose a semantic termhood measure
tailored for event tracking on Twitter, EVATE. In doing so, we answered the following
questions:

■ What makes a word a domain term? Semantics make a word a domain term, but
semantics remain an elusive concept. In Section 4.1, we found in ATE literature
the attributes that get us close to—but do not quite capture—the meaning behind
words: the POS tags, and the frequency, specificity and consistency of words.

■ How can ATE methods extract terms that make sense semantically? The answer
depends on the application, but in event domains, the answer is somewhat clearer:
topical terms command a powerful semantic presence. In Section 4.2, we designed
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Principal contributions

■ The first study on the performance of traditional ATE algorithms on Twitter
and in different types of event domains

■ EVATE, the first ATE method designed for tweets and for TDT

■ The first study into how bootstrapping and semantic re-ranking can adapt the
outputs of traditional ATE algorithms to different types of event domains

EVATE by replacing traditional linguistic filtering with a TDT algorithm to iden-
tify candidate terms.

■ How well can ATE techniques extract domain terms from Twitter? Twitter is a
difficult medium that devastates performance, but progress remains possible, as
our analyses showed in the domain of football matches. In Section 4.3, we demon-
strated how ATE research needs to understand user-generated content better, and
how EVATE manages to build adequate lexicons for TDT research on Twitter.

■ What roles do named entities play in slow-changing domains? EVATE under-
stands event domains and, by extension, the role of named entities better than
traditional ATE algorithms. In Section 4.4, we contemplated the roles of named
entities in Formula 1 and showed how even when EVATE fails, it can contribute
to other algorithms as a semantic re-ranker.

■ Do ATE algorithms truly adapt to dynamic domains? Research presents itself as
a solution to dynamic domains, but traditional algorithms forget too slowly and
learn too slowly to adapt. In Section 4.5, the domain of politics discredited ATE
literature’s claims, but we also demonstrated how EVATE can help create a gener-
alisable and transferable political lexicon.

In the first half of this dissertation we explored the development of event under-
standing. In the second half, we apply our understanding in two applications. Our first
use-case applies EVATE’s knowledge about football matches in a TDT algorithm. In
the next chapter, we reflect on what makes the ideal algorithm and design a technique
driven by our understanding from this chapter to approach the hypothetical ideal.
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Application

The Football Case Study

In TDT’s early years, what Allan et al. [9] had suggested, that performance may improve
with understanding, became a self-fulfilling prophecy. Good intentions motivated the
suggestion, but the research community interpreted it too literally. Allan et al. [9] sug-
gested that algorithms might improve with “some limited form of story parsing and
understanding”, and the community responded with a limited form of linguistic under-
standing. Allan et al. [9] also suggested that “the gains [in accuracy] may not be large”,
and the community responded with minimal gains.

TDT literature rarely explored, let alone challenged, the suggestion. It rarely pushed
the limits of understanding. Even today, understanding still rarely accompanies algo-
rithms, and only at a distance. Limited understanding drives techniques in few in-
stances [49], like in the participant timelines of Huang et al. [101] and McMinn and
Jose [158]. Everywhere else, knowledge appears merely as an accessory, an incremental
change applied to established algorithms, or not at all. Incremental changes led only to
incremental improvements.

In this chapter, we prove Allan et al. [9] right—and wrong. We prove them right
by the gains in performance achieved by a novel algorithm designed for Twitter and
driven by understanding. We prove them wrong by demonstrating that the gains in
performance can be large, that the gains do not apply only to accuracy, and that un-
derstanding can drive and not simply accompany TDT. In this chapter, we study the
application of understanding in a classical TDT context, football matches on Twitter,
and answer the following questions:

■ What makes the ideal TDT algorithm? The TDT task has evolved since Allan
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et al. [9] first proposed event understanding as a solution to the area’s challenges,
but while accuracy represents a primary concern, it no longer remains the only
concern. In Section 5.1 we outline eight aspects of the ideal TDT algorithm and
describe event understanding’s role in the hypothetical standard.

■ How can event understanding drive TDT? The research community satisfied itself
with cursory applications of event understanding, rarely applying it to drive event
detection [49]. In Section 5.2, we present SEER, the first TDT algorithm driven by
the automatic understanding of What may happen in events.

■ In what ways can event understanding improve TDT, and to what extent? From
the original suggestion of understanding [9] to participant timelines [101; 158] and
everything in-between, the research community alluded to but rarely studied the
benefits of understanding. In Section 5.3, we evaluate the effects of understanding
on two aspects of the ideal TDT algorithm: precision and comprehensiveness.

Due to space constraints, we present a study on the benefits of understanding to
sensitivity, a continuation of Section 5.3, in Appendix B.

5.1 | The ideal TDT algorithm
The TDT community obsesses with accuracy. Even Allan et al. [9] only regarded un-
derstanding as a way of improving accuracy. Like precision, recall and other derivative
metrics, accuracy made sense in 1998, when metrics measured an algorithm’s ability to
fulfil the role of a news aggregator, but it makes less sense today. When the research area
migrated to Twitter and its role changed from news aggregator to automatic newswire,
its metrics needed to change too.

Today’s ideal TDT algorithm is more than just precise and comprehensive. The
ideal algorithm is also expressive [191] and timely [62; 191; 266] in its output, sensi-
tive and scalable regardless of the event’s popularity, lightweight and efficient [62; 191],
parameter-free, and portable to all events, domains and languages. In this section, we
explore each quality in detail, investigating the motivations behind these eight charac-
teristics, the design choices that empower algorithms and the necessary compromises
that inhibit them.
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Comprehensive
First, the ideal TDT algorithm is comprehensive. Data is scarce, but already in 2015,
Twitter could generate 500 million tweets per day [258]. In the span of two hours, even
football matches can produce millions of tweets [161; 162]; the 2014 World Cup final
generated 1,907,999 tweets [161]. Twitter’s high-volume, high-velocity streams would
overwhelm anyone seeking information [6; 26; 129], but the ideal TDT algorithm syn-
thesises all the details in a dataset into a few topics.

Borrowing from IR literature, the TDT community evaluates comprehensiveness us-
ing recall. In football matches, annotators calculate recall on easily-enumerable topics:
goals, at least, but also yellow and red cards, the starts and ends of halves, and substi-
tutions, as we explain in Appendix A. Few direct comparisons between systems exist in
literature, but some patterns still arise across papers and events.

Distant comparisons across papers make immediately clear research’s difficulties in
designing comprehensive algorithms. TDT systems have a habit of capturing popular
key topics with relative ease but of missing non-key topics with equal ease. Meladianos
et al. [162], for instance, captured all goals from 17 matches but less than a third of
yellow cards. Many others [146; 150; 183], alongside Meladianos et al. [162], captured
key topics but missed non-key topics, forming an unmistakeable pattern.

In our previous work [146], we designed ELD precisely to overcome these chal-
lenges. ELD captured more non-key topics—yellow cards and substitutions—than the
baseline from Zhao et al. [296], and performed with consistency on datasets of varying
sizes. While we designed ELD to prioritise comprehensiveness, however, it still missed,
with the same consistency, certain topics: non-key topics involving the less popular
team or the team with a non-English-speaking fanbase, and other topics rendered in-
consequential by the event’s scenario, like a last-minute yellow card.

ELD overcame the technical challenges but stumbled at the behavioural ones. Twit-
ter talks about what it finds interesting [150]. When Olympique Lyonnais faced VfL
Wolfsburg in the 2020 UEFA Women’s Champions League final [238], only 1 tweet from
over 11,000 mentioned Dzsenifer Marozsán’s yellow card and, incidentally, misspelt her
name. Twitter simply did not find Marozsán’s yellow card interesting. Nevertheless,
newsworthiness, as opposed to interestingness, is not measured by what mobilises the
masses [71]; non-key topics can be newsworthy without being interesting [136; 266].

While TDT research can do little to overcome such behavioural challenges, it can, at
least, overcome the technical limits. The event shadow [121], or the way seconds-long
key topics stretch for minutes in Twitter’s discourse [266], presents a technical challenge.
The fat-tailed distribution of tweets that follows key topics overshadows non-key top-
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Figure 5.1: Extraordinary topics hide subsequent non-key topics. Twitter users keep
discussing key topics for a long time, increasing the likelihood of detecting duplicate
topics and decreasing the likelihood of detecting other topics. Lanagan and Smeaton
[121] called the phenomenon the “event shadow”.

ics [150; 226], as shown in Figure 5.1, but it does not erase their existence. Consequently,
identifying the non-key topics hidden in the shadow of key topics becomes a technical
challenge.

Different approaches handle the event shadow with varying success. Document-
pivot approaches do not rest on tweet volume and so remain unaffected by topic pop-
ularity as long as enough content exists to form sufficiently-large clusters. Conversely,
feature-pivot techniques that rely on spikes in volume to detect topics miss non-key
topics, dwarfed completely by the event shadow [226]. Therefore comprehensiveness
leaves no space for the traditional volume-based, feature-pivot approaches, the earliest
and simplest methods of early TDT research on Twitter [28; 97].

ELD was more comprehensive than simpler methods, even on datasets with a few
tens of thousands of tweets, because it overcame the technical limits. ELD first clus-
tered tweets using an incremental document-pivot approach, which bypassed the event
shadow. Then, the feature-pivot technique could extract bursty keywords from each
individual cluster, regardless of the topic’s popularity. Nevertheless, underneath the
event shadow, ELD uncovered not only non-key topics but all forms of noise too, and
contended with IR’s classical compromise: the precision-recall trade-off.
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Precise
Second, the ideal TDT algorithm is precise. A TDT algorithm would be completely
comprehensive by classifying every tweet as a topic, but the ideal algorithm cannot
presume to minimise information overload without also detecting what is not a topic.
In other words, the ideal algorithm synthesises all the information in a dataset into a
few but precise topics [129].

Precision assumes various forms, but certain types of topics are clearly imprecise.
Precision must entail veracity, although Liu et al. [130] found fake news to be far less
prevalent than harmful. Noise, such as spam and advertisements [206], is also noisy by
definition: the type of ubiquitously and undesirable content that distinguishes TDT on
Twitter from TDT in more formal mediums [191; 275]. By some accounts, noise consti-
tutes up to 95% of datasets [158], as we describe further down. Other types of topics are
borderline cases, at least in traditional TDT research.

In Appendix A.3, for example, we argue that redundant topics should be considered
equally as imprecise as noise. Over the years, perhaps driven by the early misguided no-
tion, unproven on Twitter, that topic detection represents TDT’s more difficult task [289],
research ignored the second task, topic tracking. The event shadow poses a challenge
because algorithms fail to recognise the same key topic being discussed in marginally-
different ways. In short, the event shadow challenges topic tracking as well as topic
detection. Literature, however, seems to have tacitly accepted redundancy, rarely ac-
knowledging it and downplaying the actual high rates of topic duplication in its time-
lines [277].

Literature has offered few solutions to improve precision. Some approaches train
models to learn the domain’s vocabulary, and thus retain the precise instead of filtering
the imprecise [95; 99; 297; 298], but such filtering methods appear uncommonly. More
frequently, research filters noise, like how Hasan et al. [93] use a manually-compiled list
of 350 spam terms to remove 70% of all tweets, or how McMinn and Jose [158] remove
all tweets without named entities—95% of all tweets.

Noise does not necessarily make up 70% of all tweets, much less 95%. Nevertheless,
Hasan et al. [93], and McMinn and Jose [158] demonstrate to what extent aggressive
filtering became the norm. Like McMinn and Jose [158], many others aggressively fil-
ter all retweets [162; 226]. Research justifies retweet filtering by arguing that retweets
contribute noise and no additional new information [101; 234], and thus removing them
helps algorithms scale to high-volume streams. However, if users and tweets represent
sensors and signals [227], then do retweets not represent boosts to the sensors’ signals?

Aggressive filtering takes other forms too. In document-pivot approaches, research
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retains only large clusters since many forms of noise scatter across clusters and do not
form sizeable groups. Ozdikis et al. [189] boldly rejected clusters with fewer than 250
tweets. Others set a relatively more lenient threshold of 10 tweets [93; 102; 158], or
retained only the largest clusters [102; 197; 264]. Yet even lenient thresholds become
stringent in unpopular events.

Despite research’s best intentions, aggressive filtering only reinforces the precision-
recall trade-off. Research ignores the obvious: non-key topics seldom attract enough
attention to form large clusters. Retweet filtering further exacerbates the problem; the
fewer the tweets, the fewer the clusters that reach the threshold. Moreover, retweets
occupy an increasingly-large share of datasets, from around 30% a few years ago [157]
to more than 40% in our experiments. And so precision increases, but recall inevitably
decreases too.

Expressive
Third, the ideal TDT algorithm is expressive. Earle et al. [55], Kumar et al. [119] and
Sakaki et al. [227] all designed systems to detect earthquakes, but the three algorithms
express themselves with varying degrees of clarity. The system by Earle et al. [55] can
only detect When an earthquake occurs. The system by Kumar et al. [119] goes further
and extracts key terms to express, vaguely, What happened. Differently from Earle et al.
[55] and Kumar et al. [119], as soon as the early warning system by Sakaki et al. [227]
detects an earthquake, it geo-locates Where the earthquake occurred and sends alerts.
Even in detecting topics, Sakaki et al. [227] express and describe.

Detecting and tracking topics with accuracy no longer suffices: TDT methods need
to describe topics too [191]. We do not mean that an algorithm should assume the role
of a summariser or a visualiser, or describe topics in any particular way. We mean that
the raw output of an event tracking algorithm rarely suffices in practice; Earle et al.
[55] aspired to provide situational information, but detecting merely that an earthquake
occurred somewhere on Earth without geo-locating the place aids neither human nor
machine. The ideal TDT algorithm guides the reader, the summariser or the visualiser
with its output.

The choice of model again determines the potential of an algorithm to be expres-
sive. Document-pivot algorithms identify topics based on what Twitter users discuss.
Even without any form of summarisation, document-pivot algorithms provide human-
readable summaries through the clusters’ tweets [102]. In contrast, feature-pivot algo-
rithms identify topics based on how Twitter users discuss them, and vary more in their
expressiveness.
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Like in Earle et al. [55], a feature-pivot algorithm may simply detect abnormal tweet-
ing behaviour. Regardless of how precise or comprehensive, such traditional volume-
based techniques distil no information from a topic [28; 97]; they detect spikes, but not
their subject. Determining the subject requires extra work. Nichols et al. [183], aware
that their volume-based approach detected without describing, complemented the tech-
nique with a component to seek the tweets responsible for spikes.

Alternatively, like in Kumar et al. [119], a feature-pivot algorithm may identify popu-
lar or bursty keywords. Scattered keywords with no context, however, only set a blurry
scene [96], an incoherent story that cannot serve as situational information. For exam-
ple, Kumar et al. [119] extracted five keywords to describe an earthquake that hit Italy’s
Emilia-Romagna region in 2012. The keywords included Emilia and chies[a] (Italian for
church) but did not name any particular church in Emilia-Romagna, nor indicate what
happened to or in it.

Being expressive can also result from simple forms of understanding. The partici-
pant timelines by Huang et al. [101], and McMinn and Jose [158], otherwise identical
to TDT literature’s standard monolithic timeline, express something about an event’s
participants. The two-level system by Yang et al. [289] classifies documents with labels
such as tornadoes or bombings before clustering them, and in the process expresses the
broad subjects of topics. Similarly, Farnaghi et al. [61] used location-based clustering
to express geographical situational information about Hurricane Florence, succeeding
where Earle et al. [55] and Kumar et al. [119] failed.

Responsive
Fourth, the ideal TDT algorithm is responsive. The early warning system by Sakaki
et al. [227] relied on users reacting like sensors to early tremors to warn others about
the slower but more destructive waves that could follow. The developed system had
utility because it could send earthquake warnings quicker than the Japan Meteorological
Agency; citizens could turn off stoves and take cover from falling objects [227]. In such
cases, a warning that arrives too late has as much value as one that never arrives.

The utility of responsive systems extends beyond emergency situations. A respon-
sive algorithm is more convenient and useful than an unresponsive one. Reuters Tracer
provided utility not only through the number of news alerts it raised, magnitudes higher
than those raised by its network of more than 2,500 journalists [129; 130]. Reuters
Tracer also provided utility because its alerts almost always preceded competing news-
rooms [130]. The ideal TDT algorithm exploits Twitter’s potential by reacting to news
with low latency [62; 191; 266].
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A TDT algorithm could still have valid reasons for sacrificing responsiveness. When
a topic occurs during an event, it shifts the conversation [6; 161; 162]. Feature-pivot ap-
proaches often use fixed or sliding time windows as reference points to observe changes
in volume or shifts in discourse. The shorter the time windows, the shorter an algo-
rithm’s response time but the more jarring the shifts too. The longer the time windows,
the smoother the shifts [150] and consequently, the more reliable the algorithm’s output.

Responsiveness, then, becomes a trade-off for reliability, or precision. Zhao et al.
[296] engineered ten-second time windows that could detect topics from American foot-
ball games within around 40 seconds. However, as a baseline applied to quiet streams in
our previous work [146], the algorithm misconstrued any minor deviation in volume as
a topic. Therefore depending on the systems’ requirements of precision, time windows
stretch from seconds [296] to minutes [226] and hours [260], and sometimes days [61].

Researchers must carefully manage the trade-off between reliability and the practi-
cal value of an algorithm. Algorithms that must amass data before extracting precise
information rob the output of its practical value [275]. Consider the situational informa-
tion generated by Farnaghi et al. [61] and their algorithm, by all accounts expressive; the
algorithm’s one-day time windows make it ineffective situational information. At best,
the system fulfils little more than an archival role when its reporting has more latency
than a human journalist’s.

Scalable but sensitive
Fifth, the ideal TDT algorithm is scalable but sensitive. A scalable and sensitive algo-
rithm performs in the same way on events that generate millions of tweets as it does
on events that generate a few hundreds. In other words, the ideal algorithm is scale-
invariant: comprehensive and precise, expressive and responsive in events both popu-
lar and unpopular.

Sensitivity, in particular, represents a different utility than comprehensiveness. Most
TDT algorithms can boast of being scalable, but few events produce the volumes of
tweets that challenge scalability. We collected just 2,774 tweets in English over more
than 2 hours from the 2020 Copa Del Rey final, played on 3 April 2021 between Athletic
Club and Real Sociedad; a popular event could generate 3,000 tweets in a minute with
Twitter’s API limit of 50 tweets per second [296]. A sensitive and scalable algorithm
would allow us to build quality timelines even for events with low coverage or with a
non-English-speaking audience, like the Copa del Rey final.

While most TDT algorithms scale, few can boast being sensitive, for sensitivity sym-
bolises a costly trade-off for precision. Sensitive algorithms have to maintain a metic-
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Figure 5.2: Few TDT publications experiment with small datasets from unpopular
events. Excluding classification tasks and simple volume-based algorithms, datasets
range from a few tens of thousands of tweets to millions.

ulous balance between granularity and precision. Like longer time windows increase
reliability, the large communities behind popular events lead algorithms with the wis-
dom of the crowds. In unpopular events, however, the crowd is smaller and its wisdom
proportionate.

Modern literature retains an unrealistic view of small datasets. Studies make corpora
with 40,000 [162] and 60,000 [143] tweets seem small, as shown in Figure 5.2, ignoring
the truly unpopular events, which produce far smaller datasets. The most sensitive
algorithms remain the traditional and “naïve” [28; 97] volume-based methods, which
trade sensitivity for precision, comprehensiveness and expressiveness. Others limited
the scope of the algorithm by approaching TDT as a classification task [265] or by ap-
plying rigid, manually-defined understanding [136].

Scalability and sensitivity demand algorithms designed for and dedicated to them.
Scalability excludes the heavy processing of document-pivot algorithms, which must
be simultaneously sensitive to unpopular events’ quiet streams and scalable to popular
events’ high-volume, high-velocity streams [62; 93]. In comparison, feature-pivot algo-
rithms face fewer problems; discourse changes in unpopular events as it does in popular
events, as we show in this chapter.

Sensitivity makes even steeper demands. Sensitivity excludes the aggressive tweet
filtering of Hasan et al. [93], and McMinn and Jose [158], which makes large datasets
small, and small datasets even smaller. Sensitivity also excludes the aggressive cluster
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filtering of Hasan et al. [93], Ifrim et al. [102] and Ozdikis et al. [189], which spares few
clusters in unpopular events, as we show in Appendix B. Finally, sensitivity excludes
buffering an impractical amount of tweets that may never arrive. After all, the Copa
del Rey final’s 2,774 tweets would not even have filled two of the 1,500-tweet bins that
Corney et al. [44] used.

Lightweight and efficient
Sixth, the ideal TDT algorithm is lightweight and efficient. Tweets arrive in great vol-
umes and at high velocities, leaving algorithms with little time to process and detect [62;
157; 191]. Being lightweight and efficient is a measure of an algorithm’s resource de-
mands [62; 129; 191] and a measure of feasibility [274]: how much processing can an
algorithm shed while still meeting performance requirements?

Above all being lightweight and efficient is a pre-condition for other qualities. To
be responsive to Twitter’s high volumes, the ideal algorithm must process tweets ef-
ficiently, without buffering data unnecessarily [191]. To be sensitive and scalable, the
ideal algorithm must be efficient to match Twitter in throughput. Finally, the ideal algo-
rithm remains comprehensive and precise despite being lightweight and efficient.

The earliest TDT systems on Twitter represent the epitome of efficiency. Marcus et al.
[150], Nichols et al. [183] and others [55; 296] spent no time at all studying individual
tweets. Instead, they simply studied Twitter’s overall behaviour: how tweeting volume
changed over time. However, early research on Twitter quickly recognised that sys-
tems could not easily remain comprehensive and precise while being lightweight and
efficient.

The complexity increased. Algorithms progressed from short, 10-second time win-
dows [296] to minute-long blocks. To overcome the event shadow, research studied
the tweets’ keywords [28] and their authors [97]. And to overcome the event shadow
without sacrificing precision, in ELD we combined document-pivot and feature-pivot
methods into one heavyweight and inefficient method [143; 146].

Document-pivot algorithms symbolise the anti-thesis of efficiency. K-means’ re-
peated passes over thousands of tweets and its reliance on batched data led to Pana-
giotou et al. [191] arguing that Twitter leaves no space for document-pivot algorithms,
especially in real-time systems. ETree, a real-time event modeller and miner, required
“effective and efficient event modelling”, and so Gu et al. [86] avoided complex cluster-
ing, “infeasible due to its low efficiency” [86].

Like in ETree, clustering survived Twitter in the form of single-pass, incremental
algorithms. In the general recipe of incremental clustering, the algorithm assigns a tweet
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to the most similar cluster if one exists, and otherwise creates a new cluster for the tweet.
Nevertheless, while admittedly more efficient than traditional clustering, single-pass
algorithms remain inefficient: they compare a tweet with all the clusters in memory
to finally assign it to just one cluster. Perhaps Panagiotou et al. [191] were right, and
document-pivot methods really are infeasible on Twitter after all.

Parameter-free
Seventh, the ideal TDT algorithm is parameter-free [50]. Parameters adapt an algorithm
to the data by balancing the trade-offs between qualities: between precision and com-
prehensiveness, between precision and scalability or sensitivity, and between precision
and responsiveness. A measure of human control may appear desirable, but the ideal
algorithm simply has no need for parameters. It detects events without human bias,
perspectives and interpretations, and in the words of Keogh et al. [109] “let[s] the data
itself speak to us”.1

A parameter-free algorithm is a mark of robustness. An algorithm laden with pa-
rameters cannot be portable, neither to different languages and domains, nor to events.
TDT’s early research on Twitter produced robust algorithms [150; 183; 296]. The tech-
nique by Lanagan and Smeaton [121], for example, simply seeks the highest peaks in
volume. No parameters shackle such algorithms with unreasonable assumptions about
the data, so they adapt effortlessly to all languages, domains and events.

By extension, a parameter-free algorithm is a mark of convenience. The settings that
optimise an algorithm for a popular event mislead it in an unpopular one [275]. In
evaluations, parameters leave researchers scrambling for the optimal configuration in
domains where even small changes can make big differences [276]. Unsurprisingly, as
we demonstrate in Appendix A.1, empirically-set parameters prevail in TDT literature.

A parameter-free algorithm is also a mark of elegance. Elegance represents an en-
viable pursuit, but elegant algorithms do not easily overcome the technical challenges.
Buntain et al. [28] and Hsu et al. [97] recognised that the elegance of techniques like
the one proposed by Lanagan and Smeaton [121], which the former called “naïve” [28],
makes them simplistic for the needs of modern TDT. The existing elegant algorithms do
not distinguish between an opinion and a fact, and cannot overcome Twitter’s technical

1We distinguish between a parameter-free algorithm, and a lightweight and efficient algorithm. A
parameter-free algorithm is not necessarily lightweight and efficient, and vice-versa. The K-means algo-
rithm, used as a document-pivot technique, has few parameters—the number of clusters K and the distance
measure— but it is notoriously inefficient. Conversely, while the algorithm we present in Section 5.2 has
several parameters, it remains lightweight and efficient.

113



Chapter 5. Application: The Football Case Study

limits. In short, like lightweight algorithms, parameter-free techniques often create a
trade-off between elegance, and comprehensiveness and precision.

The chase for parameter-free algorithms is what led Fung et al. [72] to propose
feature-pivot techniques. Before Twitter had even launched, Fung et al. [72] complained
that document-pivot algorithms were notoriously parametric: from choosing the small-
est acceptable cluster and the similarity measure to deciding how to handle the tem-
poral factor [35] and fragmentation [72]. Twitter only exacerbated the challenges asso-
ciated with parameters, which nowadays have to be set empirically, as we explain in
Appendix A.1. Therefore Fung et al. [72] proposed feature-pivot techniques, loosely-
based on automata, which Kleinberg [113] had previously proposed.

Feature-pivot techniques escaped the criticism reserved for document-pivot algo-
rithms but only succeeded in slightly reducing parameters. The length of time windows
affects both precision and comprehensiveness [150], so it must be considered a param-
eter. Burst normally does not accept or reject topics with absolute confidence but takes
a range of values—the burst’s cut-off point too must be considered a parameter. In fact,
few feature-pivot algorithms eliminated parameters completely; even the feature-pivot
technique by Lanagan and Smeaton [121] has an arbitrarily-set parameter: a minimum
of ten topics in every event.

Nevertheless, parameter-free algorithms are not a quixotic ideal. Algorithms with
few or no parameters can stem from deliberate choices. Lappas et al. [122] identified
periods of high activity based on an earlier algorithm by Ruzzo and Tompa [224], which
requires no parameters. Similarly, on Twitter, Farnaghi et al. [61] and Madani et al.
[138] used Hierarchical Dirichlet Processes, not Latent Dirichlet Processes, to reduce
parameters.

Portable
Eighth, the ideal TDT algorithm is portable. A portable algorithm should work with
different languages, and adapt to every domain and every event. While the researchers’
assumptions, reflected in parameters set empirically on sample data, harm portabil-
ity [275], portability remains the TDT community’s unspoken rule. Technical limita-
tions rarely bind an algorithm to a single language, domain or event. Users flare like
sensors when they feel an earthquake’s tremors [227], and they flare like sensors when
a footballer scores a goal [183].

Only understanding harms portability. Very few studies—just Buntain et al. [28],
to the best of our knowledge—discuss the effects of understanding explicitly. Never-
theless, if we consider developing understanding to be a separate task from the TDT
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process, then event and domain understanding binds an algorithm that depends on it
to a single event or a single domain. An algorithm that understands one event cannot
be portable to other events, and an algorithm that understands one domain cannot be
portable to other domains.

Buntain et al. [28] questioned the utility of understanding when it harms portabil-
ity. At first, they considered tracking certain keywords, like goal in football matches,
to detect topics. If the TDT algorithm could not track penalties or missed chances, the
lexicon could grow to accommodate the new topic type. Buntain et al. [28] seemed in-
clined to accept that understanding limits an event tracker to one language, but their
consideration ended abruptly when they tried to account for every remote topic.

Buntain et al. [28] were right. Understanding has questionable utility in the face of
exceptional topics. We can enumerate the expected key and non-key topics in a football
match, but not exceptional topics: a player biting another [28], a terrorist attack happen-
ing on the perimeter of a stadium [203], or a parachutist mistaking a football pitch for
a landing field [246]. Exceptional topics have an inherent value of newsworthiness by
virtue of being exceptional [51], and understanding fails utterly at capturing them.

Zhang et al. [292] sought to design the ultimate generalisable TDT method. They
philosophised that a topic can be reduced to tweets, topics and their time intervals.
When a topic happens, certain semantic aspects in the tweets change, and those same
changes embody the topic. Thus, their design solicited the anomalies in semantic as-
pects, a simple word embedding, as portents of a topic. Yet Zhang et al. [292] placed ex-
cessive value in generalisability, and the algorithm could not consistently out-perform
simpler baselines.

Therefore while Buntain et al. [28] were right, we still disagree. The qualities in this
section read like trade-offs for precision, but in reality, portability is a trade-off for every
other quality. Like Zhang et al. [292], the research community trades portability for com-
prehensiveness, expressiveness, responsivity, scalability and sensitivity, efficiency and
elegance. The community trades portability for precision itself. Buntain et al. [28] ques-
tioned the utility of understanding; we question whether research affords to continue
ignoring it any longer.

In the end, even Buntain et al. [28] reconsider understanding. They reflect on un-
derstanding as a “potential opportunity ... in combining domain knowledge with ...
domain-agnostic foundations.”

Portability has failed TDT. Faced with a choice between general and portable algo-
rithms that achieve limited results in any domain, and specialised algorithms designed
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to exploit knowledge about one domain, research repeatedly chose the former. In this
dissertation, we break the prevailing trend and investigate whether a sacrifice to porta-
bility can lead to the “significant advances” that Allan et al. [9] envisaged. We demon-
strate the benefits of our choice in the rest of this chapter.

5.2 | SEER: Stream-Enabled Event Reporter
In many ways, ELD had succeeded. The final solution proved responsive, portable and
comprehensive without incurring harsh penalties to precision. Penalties did appear, but
elsewhere. ELD’s combination of document-pivot and feature-pivot techniques was so
parametric that we were forced to set many of its parameters empirically. Its clustering
was so complex, cumbersome and inefficient that we were forced to slow down the
streams of popular events. Simultaneously, ELD’s clustering restricted the algorithm’s
ability to scale up to popular events and to be sensitive to unpopular ones. In many
ways too, ELD had failed.

In this section, we present Stream-Enabled Event Reporter (SEER) as a solution to
the challenges that ELD faced. SEER does not simply contribute a novel TDT algo-
rithm—the research community has proposed many and progressed little. Instead, it
contributes a novel model to apply understanding in TDT, one that creates separate
timelines for separate types of topics. In our case study on football matches, SEER con-
structs a timeline about goals, another about yellow cards, and several more timelines,
one for each type of topic.

SEER, like ELD, splits processing into two parts, as shown in Figure 5.3: an un-
derstanding period before the event, and the actual event period [146]. During the
understanding period, SEER establishes a baseline of the event’s vocabulary by con-
structing a term-weighting scheme. During the event period, it separates tweets into
topical streams and detects topics in each stream separately.

In this work, we implement SEER’s architecture to simplify ELD. We remove ELD’s
core, the then-novel feature-pivot algorithm, and embed it in SEER’s understanding-
driven architecture to detect topics in each stream. The improved solution remains as
responsive and comprehensive as ELD but becomes more efficient, sensitive and pre-
cise. In the end, SEER only sacrifices portability. We describe the architecture in more
detail in the rest of this section.
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Figure 5.3: SEER’s architecture splits processing into an understanding period and the
actual event period. During the understanding period, SEER understands the event’s
background vocabulary as a TF-ICF term-weighting scheme. During the event period,
SEER splits tweets into streams and detects topics in each.
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The understanding period
The understanding period complements, but does not replace, EVATE’s domain under-
standing from Chapter 4. EVATE understands the domain’s vocabulary; SEER under-
stands the event’s background vocabulary. The occurrence of topics shifts the event’s
vocabulary [161; 162], but the background never changes. In a match opposing Leicester
City and Manchester United, the two teams exist persistently in the background: every
topic involves, directly or indirectly, Leicester City and Manchester United. Therefore
during the understanding period, SEER establishes a baseline of the event’s vocabulary
to accentuate later shifts in the discourse due to topics.

SEER, like ELD, represents the background vocabulary as a term-weighting scheme
based on TF-ICF [213]. The TF-ICF scheme adapts the standard TF-IDF to dynamic doc-
ument streams and, incidentally, to Twitter’s brevity by calculating IDF on a separate,
static corpus. In this work, the static corpus is a collection of tweets, Du, collected dur-
ing the understanding period. Later, during the event period, TF-ICF combines the term
frequency of a word t in a tweet d, TFt,d, with the ICF scheme:

TF-ICFt,d = TFt,d · log
|Du|

|{d′ ∈ Du|t ∈ d′}|+ 1
(5.1)

We employ TF-ICF during the event period to promote words that appear promi-
nently during the event but not before it. In particular, TF-ICF boosts the topical key-
words. Twitter users cannot discuss goals that have not been scored before the event, so
TF-ICF boosts any mentions of the words score and goal during the event. More gener-
ally, the less frequently a word appears during the understanding period, the higher its
TF-ICF weight during the event period, and vice-versa.

Term clustering
As humans, we perceive semantic concepts in isolated terms. In football, a foul is not the
literal foul but a well-defined concept depicting an action and its consequences. Simi-
larly, the concepts of fouls, tackles and yellow cards do not exist in isolation but as
linked concepts with overlapping information: a mistimed tackle leads to a foul, and a
foul possibly leads to a yellow or red card. SEER’s topical streams, which process tweets
separately based on the terms within, represent such concepts. We define each topical
stream as a group of terms by clustering EVATE’s domain terms, thus developing the
literal foul, tackle and card into the human-like concept of a foul.

In word clustering, the same elusive, abstract notion of ATE re-appears: seman-
tics. Formally, word clusters represent “sets of words that share a significant aspect of
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their meaning” [48], but neither aspect nor meaning have clear definitions. Therefore,
like in ATE literature, applications of word clustering—from word sense disambigua-
tion [53; 112; 271] to sentiment analysis [272], and from text classification [46] to short
text clustering [182]—interpreted semantics in different ways.

Word clustering adopted interpretations of semantics from other areas of IR. From
document clustering, word clustering adopted the interpretation that words in a clus-
ter should be similar to each other and dissimilar to those in other clusters [46]. From
bootstrapping, word clustering adopted the interpretation that contextual and syntac-
tical cues can gauge semantics [46]. Like in ATE literature, if the research community
could not measure the semantics of word clusters quantitatively, it could, at least, es-
timate them. In SEER, we also borrow interpretations from document clustering and
bootstrapping to estimate semantics.

Our word clustering algorithm revolves around the idea of distributional similarity.
The idea, traditionally attributed to Harris [92], states that “words that occur in the same
contexts tend to be similar” [192]. We consider that two terms share a context if they
appear in the same tweet, an assumption enabled by the brevity of tweets. We estimate
contextual similarity using chi-square, from Equation 4.9 on page 83; PMI normally
overestimates the similarity of rare word pairs [154].

After calculating the contextual similarity, we construct a word graph with terms
as nodes, connected with edges weighted to reflect the chi-square score. Out of all
edges, we retain only links in the 95th percentile of contextual similarity to eliminate
misleading, possibly incidental associations between domain terms. Then, we apply
the Girvan-Newman algorithm [80], repeatedly removing the edges with the highest
betweenness until we have partitioned the graph into the desired number of compo-
nents: the human-like concepts of topic types.

Our algorithm only has one parameter: the number of clusters. The larger the num-
ber, the smaller the clusters and the more fragmented the concepts [106] but the purer
the meaning of each group. The smaller the number, the larger the clusters and the more
likely that different concepts merge [106]. At one extreme, singleton clusters describe
the precise, unambiguous ideas of single domain terms; at the other extreme, a solitary
cluster with all terms describes the entire domain, not its concepts or topic types.

Choosing the number of clusters presents a particularly-difficult challenge in event
domains. Meladianos et al. [161] argued that TDT in unplanned events, like break-
ing news, faces fewer difficulties than TDT in planned events, like football matches,
whose topics share a common vocabulary. In football matches, for example, seemingly-
disparate concepts intertwine: the referee may consult the VAR to disallow a goal due
to a foul or an offside in the build-up. Consequently, the ideal cluster, which collects do-
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main terms that refer, unambiguously, to one topic, appears as an unreachable ideal. We
could not find prior work on word clustering in event domains, nor a suitable ground
truth to help us establish the optimal number of clusters.

Instead, we set the number of clusters empirically. We constructed the graph using
the top 70 terms from EVATE’s bootstrapped lexicon and clustered domain terms into 15
groups with a modularity of 0.7034. The value lies at the higher end of what Newman
and Girvan [178] consider attainable, but it falls just below the optimal value: 10 clusters
and a modularity of 0.7514.2 Nevertheless, we find that the 15 clusters make more sense
thematically, as we show in Table 5.3 on page 137: one cluster describes spam words,
another refereeing decisions, and yet another goals. Moreover, the finer selection of
clusters allows us to understand better the effects of different types of understanding in
Section 5.3.

Topical streams
What distinguishes the algorithms by Huang et al. [101], and McMinn and Jose [158]
from others are the unconventional participant streams. Both sought topics, like any
other TDT approach, but neither knew What might happen in advance—only Who
could make it happen. The participant streams served as a proxy to the question: What
will the participants do? SEER draws inspiration from Huang et al. [101], and McMinn
and Jose [158], but we know What can happen in advance. Thus, SEER requires no
proxy and can answer a more direct question: What will happen?

If the intuition that drove EVATE is that topics generate topical domain terms, then
the intuition that drives SEER is that topical domain terms generate topics. The way
Twitter users discuss events lends credibility to our intuition. A topic, though un-
expected, flows predictably; topical conversations revolve around a small set of key-
words [8; 42], the domain terms, and a few other event terms. Brevity pushes tweets to
revolve even more closely around a few but unambiguous topical domain terms [287].

SEER’s intuition, driven by the knowledge about What can happen in a domain’s
events, eliminates the need for the Who. The Who changes across events, and so an
algorithm would have to identify participants for each event using either APD or NER,
which incur overhead. In contrast, the What remains fixed across all events in the same
domain, and therefore it depends on the one-time output of an ATE technique, which
does not impinge on the TDT algorithm’s processing.

2More generally, modularity favours large clusters. Topics in the same event domain share a common
vocabulary [161], which leaves only a murky distinction between concepts.
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Figure 5.4: Streams isolate different types of topics to minimise the event shadow.
Above, tweets mentioning the terms tackle, yellow, card and red make a lean impression
on the overall tweeting volume. Isolating those tweets, however, makes yellow and red
card offences much clearer, without having to resort to clustering.

As tweets arrive, SEER dispatches them to the corresponding streams, which we
provide as an input. SEER decides which streams receive the tweets by removing stop-
words and stemming any words that remain using NLTK’s Porter Stemmer [22]. Each
stream handles a different set of tweets: if a tweet mentions the word goal, SEER for-
wards the message to the stream whose cluster includes the term goal.

The topical streams shift our perspective of events. In Figure 5.4, the stream’s nar-
row focus on card offences promotes Bukayo Saka’s yellow card in Arsenal’s match
against Southampton from a barely-noticeable blip to a clearly-demarcated spike. The
topical streams shift the perspective of algorithms as well as humans. Even to the early
and trivial volume-based algorithms of TDT research, Saka’s yellow card would appear,
unmistakeably, as a topic.

SEER’s keyword-based streaming acts as an aggressive, albeit sensible, filter. A
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tweet may be processed by one or more streams, depending on the present keywords.
If a tweet mentions both goal and offside, SEER forwards it to the streams whose clusters
include goal or offside. Just as likely, a tweet may be processed by no stream at all; at this
stage, our novel algorithm will already have discarded around 50% to 60% of all tweets
for not containing any domain terms.

Later, each stream applies even more filters. Some filters derive from our previous
works [142; 146] and others from our findings in Appendix A. SEER retains retweets
but filters replies and quoted tweets, both normally used to react to topics rather than
to proactively report about them. SEER also filters tweets with more than two hashtags
or with URLs, noisy behaviour to maximise message reach. Finally, it filters tweets
by users with the aspects of career spammers: those who left their profile descriptions
empty, who have fewer than one follower per thousand tweets, or who never tweeted
or favourited a tweet before.

By now, SEER must be starting to resemble the TDT algorithms that we criticised for
filtering aggressively. Indeed, SEER does not hesitate to filter aggressively, but it filters
differently, more intelligently and purposefully than other algorithms. It does not filter
indiscriminately, on perceived notions of what could be noise, but on well-understood
notions of what could be relevant to the event domain based on EVATE’s keywords.
More importantly, as we demonstrate throughout this chapter, SEER’s aggressive filter-
ing inhibits none of the algorithm’s qualities.

Topic detection
Internally, the topical streams behave similarly to ELD [146], at least initially. Within
each stream, SEER pre-processes tweets by removing stopwords, stemming the remain-
ing words, and replacing account handles with display names: from @NicholasMamo
to Nicholas Mamo. SEER also removes Unicode symbols and normalises characters that
repeat more than twice, simplifying the impassioned gooooaaal into goal. Finally, the
technique weighs words using the TF-ICF scheme from the understanding period and
normalises documents. The more meaningful changes occur later, when the topical
streams eliminate the costly clustering technique.

Clustering has its appeals, like how documents describe topics better than key-
words [5]. Clustering’s critical appeal, however, lies in its ability to overcome the event
shadow: a goal does not interfere with a yellow card because the two topics exist in dif-
ferent clusters. In SEER, streams achieve the same effect without the resource-intensive
and inefficient clustering process: a goal does not interfere with a yellow card because
the two topics exist in different streams, not clusters. Even if two similar topics, such as
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Figure 5.5: Retweet decay minimises the effect of the event shadow by giving a lower
weight to old retweets. Visually, the decay makes the spikes in volume better-defined,
thus reducing the influence of past topics on the algorithm’s perception of the present.

two goals, find themselves competing for attention, it is unlikely for one to dwarf the
other like a key topic dwarves a non-key topic: similar topics attract similar attention.
SEER may thus retain only ELD’s feature-pivot technique.

The reduction of ELD’s combination of TDT techniques to a lone feature-pivot al-
gorithm still requires some changes. In ELD’s combination, the minimum cluster size
acted as an indirect control over tweeting activity: if Twitter users did not discuss a
topic intensely enough, they would not form sufficiently-large clusters. Without any
control over tweeting activity, ELD’s feature-pivot technique could mistake even inci-
dental shifts in the vocabulary of quiet streams as topics. Therefore SEER borrows two
assumptions from TDT research on how users react to topics: when a topic occurs, users
tweet more, and with a different, specific vocabulary [161; 162].

In SEER, we test the first assumption, the increase in tweeting activity, through vol-
ume. We segment the stream into time windows and count the tweets published in a
time window, Ds. While we do not remove retweets, we do not want what happened
in the past to warp our perception of the present either. Therefore unlike other TDT
research, we apply a decay factor to retweets: the more time passes before someone
retweets a tweet, the less its influence on the tweeting activity. The decay factor uses the
exponential distribution with λ empirically-set to 0.5 to rapidly reduce the weight of
retweets. In Equation 5.2, timed and timed′ represent the UNIX timestamps, in seconds,
of the original tweet and the retweet.
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decayd′ =


e−λ

timed′ −timed
60 if d′ is a retweet

1 otherwise

(5.2)

activitys = ∑
d∈Ds

decayd (5.3)

The decay factor suppresses the event shadow. It makes peaks in volume visibly
clearer and better-defined. A one-minute delay costs a retweet around 40% of its weight
and lightens the heavy tail of the event shadow. In Figure 5.5, decay lightens the event
shadow cast by Patrik Schick’s goal from the halfway line in the Czech Republic’s match
against Scotland [170]. It limits Twitter’s hubbub to a handful of minutes, making the
wonder goal seem more ordinary than it actually was. Five minutes after the goal, the
match had moved on, and so had SEER.

We consider that a stream could contain a topic when tweeting activity, after apply-
ing the decay factor, rises sharply. Therefore before deploying the feature-pivot algo-
rithm to detect a topic, as we describe further down, SEER looks for a burst in tweeting
activity, controlled by two thresholds: a dynamic threshold and a static baseline.

The dynamic threshold adapts to each stream’s varying levels of activity. While iso-
lated in separate streams, key and non-key topics still attract different levels of attention.
The threshold for what constitutes a sufficiently sharp rise in tweeting activity should
be higher in the agitated stream of goals than in the quieter stream of yellow cards. In
SEER, the dynamic threshold of a stream simply calculates the arithmetic mean of the
activity in all previous time windows:

dynamicsn
=

1
n − 1

n−1

∑
i=1

activitysi
(5.4)

We experimented with other types of dynamic thresholds too. As expected, a stricter
threshold like the one Hsieh et al. [96] used, one or two standard deviations above the
arithmetic mean, improved precision at the expense of recall. We found the trade-off
unnecessary. A stricter threshold needlessly micro-manages the actual TDT algorithm,
ELD’s robust feature-pivot technique, and wastes the merits of SEER’s clean and topical
streams. Nevertheless, retaining the more lenient arithmetic mean requires the intro-
duction of a second, static threshold.

The static threshold establishes the minimum activity in a time window to consider
the presence of a topic plausible. While the dynamic threshold adapts well to volumi-
nous streams, even a slight, anomalous increase in quieter streams could be mistaken
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Figure 5.6: SEER’s dynamic and static thresholds monitor tweeting activity. The dy-
namic threshold adapts to the varying levels of activity in each stream, whereas the
static threshold remains fixed. The TDT algorithm only checks for topics if activity ex-
ceeds both thresholds.

for a topic. The static threshold, a parameter applied equally to all streams but targeted
specifically at low-volume streams, sets a minimum activity below which SEER never
checks for topics. If the stream passes the first test, its activity climbing above both the
static and dynamic thresholds, as shown in Figure 5.6, SEER verifies whether a topic has
occurred by deploying the feature-pivot technique.

We test the second assumption, whether the discourse has shifted, with ELD’s burst-
based measure. ELD’s feature-pivot technique changes little in SEER. To accommodate
clustering’s inefficient processing, ELD placed fixed checkpoints at regular intervals
to observe changes in vocabulary. By eliminating clustering, however, SEER may re-
introduce the more responsive sliding time windows. Analogously, instead of compar-
ing the popularity of keywords in a cluster with their popularity in past checkpoints,
SEER compares the popularity of keywords in the current window with previous slid-
ing time windows.

We also tweak ELD’s measure of a word’s popularity, or nutrition. In the original
sense imagined by Cataldi et al. [32], nutrition combined the usage of a word with the
reputation of those who used it. ELD, however, considered all users as equal sensors
and calculated the nutrition of a word t based only on its usage: the sum of the word’s
TF-ICF term weights in the normalised tweets published during the time window, Ds.
In SEER, we adopt the same simplified interpretation as ELD, but we add the decay
factor for retweets from Equation 5.2:
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nutritiont,sn = ∑
d∈Ds

TF-ICFt,d · decayd (5.5)

Complementing nutrition is burst. While nutrition measures the instantaneous pop-
ularity of a word, burst measures the change in its popularity. Intuitively, a bursty word
appears more prominently in the present than in the past. ELD’s measure of burst mon-
itors the shift in the event’s vocabulary, one word at a time, to detect topical keywords
and, by extension, topics.

SEER re-uses ELD’s process to measure burst [146]. Before SEER calculates burst,
it rescales the nutrition of each sliding time window between 0 and 1, corresponding
to the words with the lowest and highest nutrition values. Then, it computes the burst
of each word t by comparing its nutrition in time window n, sn, with its nutrition in
previous time windows:

burstt,sn =
∑n−1

i=n−τ(nutritiont,sn − nutritiont,si) · 1√
en−i

∑τ
i=1

1√
ei

(5.6)

The first component in the numerator fulfils burst’s fundamental role, to compare
the nutrition in the present with the nutrition in the past. When we originally designed
the formula, however, we intended for burst to have two additional properties [146].
First, we wanted burst to give more weight to recent observations. The second com-
ponent in the numerator applies a decay factor, controlled by the parameter τ, to past
time windows. Incidentally, the decay factor makes old time windows redundant, so
we empirically set τ to five.

Second, we wanted burst to be explainable. The denominator normalises burst and,
together with the earlier rescaling of the nutrition scores, binds the final value between
-1 and 1. At one extreme, a burst of -1 signals a previously-topical word on the decline;
at the other extreme, a burst of 1 signals a newly-topical word.

Burst reveals how Twitter users discuss topics and explains better the event shadow.
Figure 5.7 shows how the burst of Joe Willock evolved over a few minutes after he scored
for Arsenal against Southampton. Burst’s behaviour mirrors findings on how bursty
events progress through four stages in sociological research: a quiet period before the
word becomes topical, a rapid increase in popularity, which then settles on a longer
plateau, and finally the paracme, or the word’s gradual return to normality [128].

Burst’s four stages are important because they reveal the predictable pattern of top-
ics and their topical keywords. First, we can expect to capture topical keywords quickly.
After Joe Willock’s goal, his burst in the stream of goals rose from 0 to above 0.7 within
just 17 seconds of his first mention. We can confidently set a relatively-high threshold
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Figure 5.7: Topical keywords become bursty almost immediately after a topic occurs,
but they persist longer in the event’s vocabulary. SEER accepts words as topical for as
long as their burst remains above the threshold, a user-defined parameter.

for burst without harming responsiveness. SEER accepts words as topical—and thus,
accepts that a topic really has occurred—for as long as burst remains above the user-
defined threshold.

Second, we can expect topical keywords to remain bursting for longer. The long
bursts of topical keywords, often outlasting the sliding time window itself, allow SEER
to describe topics. In our previous works, the clustering technique’s ability to group
descriptive tweets in bursty clusters dictated the algorithm’s expressiveness. Without
clustering, SEER could rely on bursty keywords to describe topics, but it would submit
to the limits of keywords, inexpressive in isolation [5]. Instead, SEER describes topics
by collecting every tweet that mentions a bursty keyword, starting from the beginning
of the time window and stopping when burst dips below the threshold.

Finally, SEER organises the entirety of its output—topics, topical keywords, and
tweets—in timelines, one for every stream. A timeline serves the purposes of a chrono-
logical ordering of topics and an intuitive representation of events. Above all, a time-
line’s structure helps SEER serve the purpose of a topic tracker.

SEER tracks topics like ELD [146]. If a new topic bursts within 90 seconds of an-
other in the same stream, SEER adds the new topic to the existing node. Otherwise, it
compares the new topical keyword with the keywords of other nodes from the previ-
ous 10 minutes; if the cosine similarity exceeds 0.6, SEER again adds the new topic to
the existing node. If no similar node exists, SEER appends a new node to the stream’s
timeline.

The option to collapse the stream timelines into one traditional event timeline re-
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mains. In fact, in the next section we assume that if a topic overlaps several streams,
such as a goal disallowed for an offside, it bursts almost simultaneously in each stream.
The assumption allows the monolithic timeline to combine topics that occur within 90
seconds of each other.

Understanding transforms ELD in simple ways. Understanding removes the need
for clustering, so SEER gains in responsiveness, scalability and sensitivity, as we show
in the next section and in Appendix B. Of course, the algorithm requires the under-
standing of What may happen in an event as an input, which in practice must involve a
certain degree of manual supervision. Yet without the document-pivot technique, SEER
becomes simpler, more efficient and elegant.

Apart from the understanding, only three user-defined parameters control SEER’s
performance. The feature-pivot technique adapts to events and to event domains with
the length of the sliding time windows, the static threshold and the minimum burst. In
practice, SEER could be simplified even further. Of the three parameters, the length of
the sliding time windows does not change across events; it only changes across event
domains. A stricter dynamic threshold can also make redundant the static one, as we
show Chapter 6. In the end, SEER only sacrifices portability.

Buntain et al. [28] had argued on behalf of exceptional topics. An understanding-
driven TDT technique could not track the exceptional, such as when health officials
invaded the pitch during a match between Brazil and Argentina to deport players who
had broken COVID-19 quarantine laws [262]. Buntain et al. [28], however, over-stated
the problem. Topics in the same domain share a vocabulary [161; 162]—even outlandish
topics: health officials invaded the pitch during a match between Brazil and Argentina to
deport players who had broken COVID-19 quarantine laws. In practice, domain under-
standing only restricts SEER’s portability to a domain’s events and topics, exceptional
or not, as we show in Chapter 6.

In the rest of this chapter, we quantify understanding’s contributions to TDT. In the
next section, with football in the backdrop, we demonstrate how good understanding,
even applied trivially in ELD, can benefit event tracking in limited ways. Later, when
we experiment with SEER, we demonstrate how proper understanding handed control
to drive TDT algorithms can provide all-encompassing benefits.
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5.3 | The benefits of understanding
Football is a simple game, and still, it manages to surprise. Research found in football
a predictable domain with a vocal following, comprehensive media coverage and fre-
quent events [28], but even in the predictable, research found the unpredictable. From
routine matches to surprise routs, TDT research could trial its algorithms in different
scenarios without ever leaving the domain. Unsurprisingly, few domains appear with
the consistency of football matches in literature: 18 out of 79 studies in our review in
Appendix A. Therefore in this chapter, we too test understanding and its application in
the whimsical setting of football matches.

In this section, we perform a manual evaluation following the principles we outline
in Appendix A. Evidently, the choice of datasets can sway results; Keogh et al. [109]
called the corpora a “meta parameter” of the evaluation. We minimise our bias some-
what counter-intuitively, by curating events to cover various scenarios. Moreover, we
analyse six datasets, a high figure in the standards of manual evaluations in TDT litera-
ture. We describe the six events, including their defining characteristics, and the number
and types of topics in Appendix D.3.

In our evaluation, understanding itself takes a withdrawn role, leaving us to eval-
uate its contributions to TDT. Naturally, we compare SEER with its predecessor with-
out understanding, ELD, which we designed to optimise precision and recall. Even
then, however, we only study the contributions of understanding indirectly, through a
summary-based evaluation; as we explain in Appendix A, manual costs render more
direct evaluations infeasible. Therefore like the majority of TDT literature, we manually
annotate summaries as a way of evaluating the topic tracking performance.

We generate summaries using the Maximal Marginal Relevance (MMR) method [84].
MMR, an extractive technique, constructs summaries from individual documents or
sentences, always seeking to balance relevance with non-redundancy. We generate sum-
maries from the 20-longest tweets in each timeline node, thus preserving context and
coherency. The topical keywords and their bursts serve as the relevance query. Sum-
maries may include several tweets but may not exceed 280 characters, the length of the
longest possible tweet. Unless otherwise stated, we merge SEER’s stream timelines into
one timeline to simplify our evaluation.

Our annotations of the summaries deviate from literature. As we argue in Ap-
pendix A, TDT’s metrics, in particular precision, cannot express the range of Twitter’s
content. Therefore in our analyses, we follow a novel evaluation methodology, adapted
and refined from existing literature. While our analyses retain a notion of precision, as
we describe further down, we divide the metric into five labels:
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■ Noisy topics do not describe a real occurrence, or describe it with insufficient clar-
ity. Noise represents a catch-all label for spam, fake news and off-topic tweets, but
noisy topics may also lack adequate context to understand what happened. The
tweet “Nathan Patterson wouldn’t have got [sic] in his way” does not tell us what
Patterson did, nor in whose way he got himself.

■ Redundant topics describe newsworthy but old occurrences without contributing
any novel information. Most redundant topics would already have been detected
by the algorithm in the past, but they endured long enough in Twitter’s discussion
for the TDT algorithm to capture them several times. In fact, redundant topics tend
to be key topics with a long event shadow, like Patrik Schick’s goal.

■ Subjective topics describe an opinion or a desire without offering any justification.
A subjective topic provides the reader with too little information to verify a claim.
The tweet “[Hector] Bellerin is so so poor” may be a true observation, possibly
shared by many users, but without context, it may also be the tinted perception of
one Twitter user.

■ Non-enumerable topics describe real but difficult-to-enumerate occurrences. A
non-enumerable topic might occur too often or have too little influence to be news-
worthy, but we cannot deny that it occurred. Among others, non-enumerable top-
ics include injuries, missed chances and more general observations, as in the tweet
“Southampton with six shots to Arsenal’s one in the second half.”

■ Enumerable topics describe real, easy-to-enumerate occurrences with consider-
able newsworthiness. In this work, like in our previous research [146], we con-
sider goals (including disallowed ones), yellow and red cards, the start and end of
each half, and substitutions.

We obtained the ground truth for non-enumerable and enumerable topics from reli-
able sources: The Guardian, LiveScore.com, BeSoccer.com and others.

In our analyses, these five labels depict the algorithms’ behaviours, but they also
form the basis of IR’s traditional metrics: precision, recall and the F-score. We inter-
pret precision with a strictness uncharacteristic of TDT evaluations. Since opinions and
desires have a questionable value of newsworthiness, we regard subjective topics as
imprecise. Furthermore, as we argue in Appendix A, TDT research should reject re-
dundant topics with the same determination with which it rejects noisy topics. There-
fore in this work we only consider enumerable and non-enumerable topics as precise.
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Conversely, we only calculate the recall of enumerable topics: goals, cards, halves and
substitutions. We provide a full break-down of topics in Appendix D.3.

In the rest of this section, we present and study two applications of understanding.
First, we disprove the idea that understanding must drive a TDT algorithm to be ef-
fective by showing how even trivial applications can improve precision. Second, we
exhibit the benefits of understanding-driven applications to recall in SEER. We present
another analysis on the benefits of understanding to sensitivity in Appendix B.

The benefits of understanding to precision
Early TDT experiments did not discover the limits of applied understanding but the
limits of linguistic understanding. When researchers followed Allan et al. [9] into ex-
ploring limited forms of understanding, the mitigated successes failed to emphasise the
potential of event knowledge. Instead, the experiments had the opposite effect. They
seemed to confirm the initial fears about understanding and its applications. And so
TDT research moved on and away. Few seemed to realise that the gains had not been
limited by flawed application but by flawed understanding.

In our first application, we apply event domain understanding trivially. We disre-
gard momentarily SEER to demonstrate how domain understanding does not have to
drive TDT methods to be beneficial. In fact, our application of understanding is perhaps
the most conceivably trivial: we remove all tweets without domain terms.

Our understanding, like its application, assumes a simple form: the top 70 domain
terms from EVATE after bootstrapping. The cut-off point includes many topical terms
but excludes the deluge of general, often inaccurate terms that follow, such as club, good
and poor. Table 5.3 on page 137 shows the 70 terms split into streams. In our experiment,
we fed tweets containing any of the 70 terms to an unchanged ELD, which we refer to as
ELDFiltered, and discarded the rest. To study the benefits of understanding applied triv-
ially, we established ELD’s configurations empirically, as we describe in Appendix E.1,
and then fixed the same parameters in ELDFiltered.

The trivial application of understanding, although a passive presence, simplified
ELDFiltered. At a distance, understanding could not make ELDFiltered’s processing any
more efficient, but domain filtering enabled by understanding simplified the task, as
shown in Table 5.1. In the match between Southampton and Arsenal, understanding
retained 41,207 of 97,874 tweets—42.10% of the data. Even at its most indulgent, in
the match between Scotland and the Czech Republic, understanding only kept 51.15%
of all tweets. In the end, after ELDFiltered filtered tweets with its own internal rules,
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Algorithm Dataset size (tweets) Domain filtering (%) Algorithm filtering (%)

ELD 124,479 124,479.00 (100.00%) 100,856.33 (80.37%)

ELDFiltered 124,479 59,131.67 (46.97%) 46,909.50 (36.93%)

SEER 124,479 82,632.67 (65.19%) 35,073.67 (26.84%)

Table 5.1: ELDFiltered and SEER filter aggressively but sensibly. The table reports the
macro-average number of tweets that pass each stage of filtering across our six datasets.
Domain filtering refers to the understanding-based filtering or streaming, whereas the
algorithm filtering refers to each technique’s specific filters. SEER’s figures include du-
plicate tweets.4 We present a full breakdown of the dataset filtering in Table D.12.

only between 33.03% and 42.51% of the datasets remained. The trivial application of
understanding made ELDFiltered more responsive and scalable.

The perfect understanding, however, is not defined by the aggressiveness of its fil-
ters but by the sensibility of its nature. The perfect understanding removes all the irrel-
evant tweets and retains all the relevant ones, and our understanding removed many
of the former. As shown in Table 5.2, ELDFiltered captured, on average, 15 fewer topics
than ELD (37.83 � 22.83) but only 4 fewer precise topics per match (20.33 � 16.33). Un-
derstanding reduced noisy topics in ELDFiltered to a third of ELD’s (19.82% � 6.57%) and
subjective topics to almost a half (20.70% � 12.41%). Filtering worked sensibly, judging
tweets not on assumed markers of noise but on subject.

Because filtering worked sensibly, ELDFiltered became more precise than ELD. Pre-
cision climbed drastically, by almost 18% (53.74% � 71.53%). If we had to consider
as precise the newsworthy but redundant topics, signs of flaws in topic tracking, not
in understanding, ELDFiltered’s precision would climb even higher, to 81.02%, up from
ELD’s 59.47%. Evidently, the trivial application of understanding made ELDFiltered sig-
nificantly more precise than ELD (one-tailed paired samples t-test: p = 0.005).

Our understanding, however, was not perfect. Filtering removed some relevant
tweets too and the statistically-significant gains in ELDFiltered’s precision were matched
with statistically-significant drops in recall (56.73% � 42.31%; one-tailed paired samples
t-test: p = 0.0274). Only twice did ELDFiltered recall at least half of the ground truth
topics. In the match between Scotland and the Czech Republic, the most testing trial,
ELDFiltered only recalled Patrik Schick’s two goals; the drop in recall in this match almost
single-handedly pushed ELDFiltered’s average F-score below ELD’s (55.04% � 52.09%).

Sceptically, you might wonder whether the conclusion was predictable. Was it in-
evitable that when ELDFiltered’s clusters became smaller, like its datasets, the algorithm
would succumb to IR’s classical trade-off between precision and recall? The question
has its merits; after all, filtering reduced dataset sizes by between 50% and 60%. As if to
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Algorithm Topics Precise topics Precision Recall F-score

ELD 37.83 20.33 53.74% 56.73% 55.04%

ELDFiltered ▼ 22.83 ▼ 16.33 ▲ 71.53% ▽ 42.31% 52.09%

SEER 33.83 24.17 △ 71.43% 55.77% △ 62.89%

(a) SEER improved precision without sacrificing recall, unlike ELDFiltered. The table reports the
macro-average number of topics and F-score, and the micro-average precision and recall. We
present a full breakdown of the results in Table F.5.

Algorithm Redundant Noise Subjective Non-enumerable Enumerable

ELD 5.73% 19.82% 20.70% 30.84% 22.91%

ELDFiltered 9.49% 6.57% ▽ 12.41% △ 43.07% 28.47%

SEER 4.43% ▼ 6.90% 17.24% ▲ 45.81% 25.62%

(b) SEER captured little noise, which it re-invested into capturing non-enumerable topics. In our
interpretation, precision includes only non-enumerable and enumerable topics. We present a
full breakdown of the annotations in Table F.6.

Algorithm Goals Cards Halves Substitutions

ELD 87.50% 52.94% 37.50% 57.45%

ELDFiltered 100.00% 52.94% 29.17% ▽ 25.53%

SEER 93.75% 52.94% 50.00% 46.81%

(c) Our three algorithms struggled to capture cards, halves and substitutions due to Twitter’s
behavioural challenges. The table reports the micro-average recall for each type of enumerable
topic. We present a full breakdown of the results in Table F.7.

Table 5.2: The understanding-driven SEER improved over traditional methods. ELD
struggled with both precision and recall, whereas ELDFiltered traded recall for precision.
△ and ▲ indicate statistically-significant increases at the 95% and 99% confidence levels,
and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence levels (one-
tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to ELD.

further prove the trade-off, recall did not drop in the match between Leicester City and
Manchester United, where even after filtering, ELDFiltered retained a large dataset with
more than 88,000 tweets. The real answer, however, is more nuanced.

There is a lot to be said about the trade-off between precision and recall. For now,
we note only that if the dataset size creates the trade-off, it must create it with a measure
of consistency. We observed no trade-off in the recall of key topics, namely the goals
and the two red cards. Nevertheless, while ELDFiltered captured just as many cards as
ELD, it struggled immensely to recall the other non-key topics: halves and, especially,
substitutions. In fact, ELDFiltered captured less than half of the substitutions that ELD
did (57.45% � 25.53%). Had we excluded halves and substitutions, ELDFiltered’s recall of
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goals and cards would have overtaken ELD’s (69.70% � 75.76%).3 Clearly, the trade-off
affects substitutions disproportionately.

The trade-off, then, must exist in something subtler than the dataset size, such as the
understanding that supports its filtering. EVATE understood cards and substitutions
differently. It gleaned an exceptional understanding of the former, not only with foun-
dational terms—book, yellow, and card—but also with supporting terms, like foul, referee
and tackle. Conversely, substitutions presented a more difficult challenge to EVATE,
which it described with far less clarity; only sub, short for substitution, explicitly refers
to the topic. We elaborate on the trade-off in the next analysis.

The trade-off shows the quality of understanding limiting our application, and not
just the application limiting the understanding. The remark evokes our argument in
Chapter 2, about how linguistic understanding limited the application by providing a
different kind of understanding than what machines required. Our argument here dif-
fers on one point: domain understanding provided ELDFiltered the right kind of under-
standing to detect certain topics, like yellow cards, but its perfectible quality failed with
substitutions. Still, even the imperfections of understanding applied trivially simplified
ELDFiltered’s task and improved precision at no cost to the recall of goals and cards.

The benefits of understanding to recall
In reality, the application limits the understanding as well. As datasets grew smaller,
ELDFiltered’s clusters grew smaller too, and the three-tweet threshold for clusters trans-
formed into an aggressive filter that limited sensitivity and the utility of understanding.
In this section, we experiment with SEER, our novel algorithm designed to harness un-
derstanding. We fixed SEER’s sliding time windows to one minute, and varied the static
threshold and the minimum burst as we describe in Appendix E.1.

SEER, with 70 domain terms grouped into 15 concepts, did not eschew ELDFiltered’s
aggressive filtering. On the contrary, it filtered even more aggressively. Initially, the
streams received between 59% and 74% of the dataset volume, but after filtering tweets,
SEER only processed between 22.14% and 35.41% of the dataset volume.4 Nevertheless,

3Curiously, substitutions condition recall more than any other type of topic in our experiments, even
compared to other TDT research. During the COVID-19 pandemic, football associations reacted to the
physical toll of the congested calendars by increasing the number of permitted substitutions from three to
five. As a result, substitutions make up almost half of our ground truth topics: 47 out of 104.

4 We distinguish between tweets and dataset volume. If ELDFiltered consumes 50% of tweets, it would
process 50% of tweets once, but SEER may process the same tweet in multiple streams. The dataset volume
is simply the sum of tweets processed by each stream as a fraction of all tweets in the dataset. If SEER
processes 50% of the dataset volume, the 50% could mean 25% of unique tweets processed by two streams.
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while SEER captured, on average, four fewer topics than ELD (37.83 � 33.83), it also
captured four more precise topics (20.33 � 24.17).

Consequently, SEER retained ELDFiltered’s precision and significantly improved over
ELD’s (53.74% � 71.43%; Wilcoxon Signed-Rank test: p = 0.0310). SEER’s worst preci-
sion (66.67%), in the match between Turkey and Italy, exceeded ELD’s best performance
(65.52%), in the match between Wales and Switzerland. Like ELDFiltered, SEER signifi-
cantly increased the proportion of enumerable topics over ELD (30.84% � 45.81%) and
significantly lowered the proportion of noisy topics (19.82% � 6.90%).

SEER, however, differed from ELDFiltered. Although it applied the same understand-
ing as ELDFiltered, SEER applied knowledge better, more cleverly. Our new algorithm
detected more halves than ELD (37.50% � 50.00%) and just as many cards. On the sin-
gular occasion when SEER missed a goal, its topical keywords—Embolo, goal, corner and
lead—required no description; only the summarisation algorithm failed to communi-
cate the idea clearly. Ultimately, recall dropped minimally from ELD—too little to be
statistically-significant (56.73% � 55.77%; one-tailed paired samples t-test: p = 0.3355).
In short, SEER did not trade precision for recall.

Still, SEER exhibited its limits. Neither our understanding nor its application could
overcome Twitter’s behavioural challenges. TDT approaches will probably always be
limited by what triggers Twitter, whose interests hang over recall like an invisible ceil-
ing [146]. SEER could only yield to Twitter’s biases. Our algorithm routinely struggled
to detect topics related to the less popular team. In the match between Hungary and
France, it captured all of France’s substitutions but none of Hungary’s. The same trend
persisted in all other matches, albeit never with such pronounced effects.

SEER struggled with substitutions too, although not to the same extent as ELDFiltered.
With understanding, SEER could eliminate clustering and become more sensitive, as we
demonstrate in Appendix B, and the increased sensitivity compensated for the lack of
knowledge about substitutions. However, while SEER improved the recall of substitu-
tions relative to ELDFiltered (25.53% � 46.81%), it still did not reach ELD’s levels (57.45% �
46.81%). Moreover, SEER often detected substitutions indirectly, such as through tweets
that discussed the changes, or when the substitution accompanied another topic, as in
the tweet “Shane Long coming on [in the] second half.”

Two factors logically reduced ELDFiltered’s and SEER’s recall of substitutions, but nei-
ther fully explain the difficulties nor suggest solutions. First, substitutions draw little at-
tention, but so do yellow cards, and both ELDFiltered and SEER recalled more cards than
substitutions. Second, and as we explained earlier, our incomplete understanding limits
our applications, but we cannot expect domain terms to describe participant-centric top-
ics like substitutions. The football community reports about substitutions using many
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common words with no particular attachment to the domain: the coach may change,
replace, bring on or take off a player, who would come off or leave the pitch for another to
come on or enter, or a player could simply be off or on.

In this work, we hypothesise a third explanation for our mishandling of substitu-
tions. Throughout our work, we observed researchers attempting to define events but
never topics. Here, we separate topics into three broad classes. First, mixed topics, the
majority class, involve a participant performing an action: a participant, Scotland or Pa-
trik Schick, scores a goal. Second, event-centric topics describe an action and advance the
state of the event without directly affecting participants: the half starts or ends. Third,
participant-centric topics express an opinion about or advance the state of participants
with little immediate effect on the event: one player replaces another.

Our hypothesis would explain why EVATE could not describe substitutions com-
prehensively and why SEER often recalled substitutions indirectly. Domain terms de-
scribe actions and changes, the What, but ignore altogether participants, the Who and
the Where. Therefore our filtering and streaming captured mixed and event-centric top-
ics but thwarted the detection of participant-centric developments. Perhaps, then, the
participants streams by Huang et al. [101], and McMinn and Jose [158] serve a differ-
ent purpose than topical streams: they express a different, participant-centric version of
events. While we leave further study of our hypothesis for future work, we study how
understanding hinders its application in more depth in Chapter 6.

The analysis so far describes SEER’s performance as an application but reveals little
about the influence that different types of understanding have on TDT algorithms. To
evaluate, indirectly, the effects of diverse forms of understanding, we followed the same
procedure as before, but we annotated each stream’s timeline separately. We present a
summary of the results in Table 5.3.

Most streams behaved predictably, as we intuited in Section 5.2: topical domain
terms generated topics. Streams whose terms describe enumerable topics tended to
capture enumerable topics, and streams whose terms describe non-enumerable top-
ics tended to capture non-enumerable topics. We annotated as enumerable 58.82% of
the topics generated by the stream tracking yellow, card and other terms, and as non-
enumerable 70.59% of the topics generated by the stream tracking touch, cross, ball and
pass. The trend persisted in other types of topics too: 44.44% of topics in the self-
explanatory stream tracking world, class and striker expressed opinions.

Most streams behaved predictably, but the few exceptions to the intuition revealed
SEER’s strengths. In particular, the provenance of noise highlights the virtues of SEER’s
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Stream Topics Precise topics Precision

champion, final, league, football, win 15.33 7.67 50.00%

take, knee, player 11.83 6.17 52.11%

touch, cross, ball, pass 11.33 10.33 91.18%

goal, score, concede, equalise, offside, assist 10.00 7.50 75.00%

need, half, sub, second, lead, 2nd 10.00 7.00 70.00%

keeper, best, goalkeeper, defend, Kepa, save 6.83 4.50 65.85%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 5.00 3.50 70.00%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 4.67 4.00 85.71%

deflect, kick, corner, shot, net 4.50 4.00 88.89%

world, class, striker 3.00 1.00 33.33%

tackle, dribble, yellow, red, card 2.83 2.50 88.24%

man, utd 1.17 1.00 85.71%

hit, post 0.67 0.67 100.00%

(a) The more a stream resembled linguistic understanding, the worse it performed. The table
reports the macro-average number of topics and the micro-average precision of each stream. We
present a full breakdown of the results in Table F.8.

Stream Redundant Noise Subjective Non-enumerable Enumerable

champion, final, league, football, win 6.52% 14.13% 29.35% 23.91% 26.09%

take, knee, player 4.23% 11.27% 32.39% 22.54% 29.58%

touch, cross, ball, pass 1.47% 7.35% 0.00% 70.59% 20.59%

goal, score, concede, equalise +2 terms 11.67% 0.00% 13.33% 43.33% 31.67%

need, half, sub, second, lead, 2nd 11.67% 1.67% 16.67% 20.00% 50.00%

keeper, best, goalkeeper, defend +2 terms 4.88% 9.76% 19.51% 43.90% 21.95%

foul, referee, book, decision +6 terms 6.67% 10.00% 13.33% 46.67% 23.33%

gol, stream, online, free, Reddit +4 terms 0.00% 7.14% 7.14% 25.00% 60.71%

deflect, kick, corner, shot, net 7.41% 0.00% 3.70% 51.85% 37.04%

world, class, striker 11.11% 11.11% 44.44% 16.67% 16.67%

tackle, dribble, yellow, red, card 0.00% 5.88% 5.88% 29.41% 58.82%

man, utd 0.00% 0.00% 14.29% 28.57% 57.14%

hit, post 0.00% 0.00% 0.00% 75.00% 25.00%

(b) Topical streams normally captured topics, while non-topical streams generally captured dif-
ferent types of noise. The table reports the micro-average distribution of annotations across each
stream. In our interpretation, precision includes only non-enumerable and enumerable topics.
We present a full breakdown of the annotations in Table F.9.

Table 5.3: Linguistic understanding injected noise into event timelines. The streams that
best reflect semantic understanding tended to out-perform the others. For clarity, we
manually lemmatised the terms in this table, and struck out terms that we had used as
tracking keywords in Chapter 4, which SEER ignores. The streams tracking baller and
Arsenal, and clear and handball generated no topics.
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aggressive filtering and topic detection. Our novel algorithm sought shifts in vocabu-
lary, but noise does not shift and does not burst [101; 234], and so noise rarely emerged
as a topic. In fact, at a precision of 85.71%, not even the stream tracking noisy words,
like stream, online and Reddit, proved noisy. The question, then, follows naturally: where
does noise originate from?

Two factors introduced noise and other subjective content to the detriment of preci-
sion. First, a weak, negative correlation exists between precision and the average num-
ber of topics in a stream (Pearson correlation coefficient: r = −0.4023). The number
of topics ranged from 0.67 per match in the stream tracking hit and post to 15.33 in the
stream tracking football, win and others. Generally, as the average number of topics in-
creased, so did the noise and the subjective content: the precision-recall curve.

The negative correlation indicates a systemic failure in the dynamic threshold. In
low-activity streams, SEER’s static threshold often silenced topic detection, but in high-
activity streams, when tweeting activity rose higher than the static baseline, the dynamic
threshold continuously invoked and tested the TDT component. A stricter dynamic
threshold, one or two standard deviations above the mean [96], might have suppressed
noise and opinions better.

Nevertheless, the negative correlation alone remains too weak to serve as an expla-
nation for the provenance of noise and subjective content. In fact, we found almost
no correlation between precision and the average number of precise topics in a stream
(Pearson correlation coefficient: r = −0.0793). The streams tracking take, knee and player,
and touch, cross, ball and pass averaged around 11 topics per match. However, whereas
we only annotated 52.11% of the former’s topics as precise, we accepted 91.18% of the
latter’s. Therefore for our second explanation, we sought an answer in the nature of our
understanding, not in our application.

Second, we noticed that the more noisy or subjective a stream, the more general its
subject. General streams contradict our intuition. The terms they track rarely describe
topics, What happens during events, and instead characterise the broader domain. In
fact, the three least precise streams tracked world, class and striker; take, knee and player;
and league, football and win, among others. The second observation also explains the
first one. General streams generate more topics than specific streams by virtue of being
general: all matches concern football and winning, but players hit the post infrequently.

Our analyses say something about the fragility of understanding and its application.
The conclusions vindicate our decision to use EVATE’s topical terms over TF-ICF’s and
TF-DCF’s general lexicons, or Rank Difference’s and Domain Specificity’s technical but
non-topical lexicons. At the same time, our conclusions explain the struggles of early
TDT research. If not even EVATE’s general but still football-related terms served SEER,
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Recap

how could early research hope to overcome complex challenges with simple linguistic
understanding?

Our analyses also say something about our interpretation of understanding. Proper
event understanding, the kind that TDT methods need, cannot and will not result from
classical IR research into linguistics. Proper event understanding will result from TDT
literature learning about events independently of classical research, like how DEPICT
adapted traditional NER or how EVATE adapted traditional ATE. Better understanding,
perhaps even honed by manual curation, reserves promise to improve results further.

The benefits of understanding extend beyond precision and comprehensiveness.
They reach into sensitivity, as we show in Appendix B, and into less tangible, hardly-
quantifiable qualities: the expressiveness of SEER’s topical keywords, the responsive-
ness of a simplified technique, and the elegance and efficiency of a solution without
clustering. What we can quantify, however, attests to understanding’s virtues. Twitter
does not force TDT’s sacrifices in the name of precision. Our algorithms do, and our
understanding does.

Recap
In the years since TDT’s founding, the research community fixated on accuracy. Per-
haps the community felt compelled to remain faithful to its traditional evaluations. Or
perhaps the community did not dare to hope for improvements in qualities it could not
quantify—not without first making satisfactory gains in accuracy. Now, perhaps the
time has arrived for TDT research to move past accuracy.

The research community can move past accuracy without abandoning it. Accuracy
can improve alongside other qualities through understanding. Because if even raw, un-
filtered understanding driving simple algorithms in noisy domains can provide wide-
ranging benefits, what challenges in the TDT community’s way could possibly seem
insurmountable? In this chapter, we demonstrated understanding’s potential by an-
swering the following questions:

■ What makes the ideal TDT algorithm? Perfect comprehensiveness and perfect
precision no longer make the perfect algorithm. In Section 5.1, we explained how
understanding can help researchers approach our vision of the ideal algorithm: a
comprehensive, precise, expressive, responsive, scalable but sensitive, lightweight
and efficient, parameter-free and portable algorithm.
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Principal contributions

■ Confirmation of the benefits of semantic understanding to precision, even
when event knowledge is applied trivially

■ SEER, the first event tracking algorithm driven by understanding and a
demonstration of the wide-reaching benefits of semantic knowledge in TDT

■ The first study on the effects of different types of understanding on the perfor-
mance of TDT algorithms

■ How can event understanding drive TDT? Unlike the research community’s early
efforts with linguistic understanding, event domain understanding can assume
more than a passive role and direct algorithms. In Section 5.2, we proposed SEER,
a reinterpretation of ELD [146] greatly simplified by understanding, the prescience
of What can happen.

■ In what ways can event understanding improve TDT, and to what extent? Even
as a passive presence, proper event understanding—not linguistic understand-
ing—can improve event tracking algorithms. In Section 5.3, we demonstrated
how understanding makes TDT algorithms more precise without sacrificing com-
prehensiveness when research lets event knowledge drive its techniques.

We present another analysis on the benefits of understanding to sensitivity in Ap-
pendix B. Nevertheless, the analyses in this chapter alone answer our research ques-
tion by demonstrating that semantic understanding can improve TDT. Understanding,
however, can do more than simply improve TDT. Improvements will beget improve-
ments and understanding will give the research area new purposes. In the next chapter,
we look to the future, this time with a case-study in politics in which we explore what
forms those purposes could take.
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Application

The Politics Case Study

In 2015, Reuters embarked on a project that would harness computational power to
minimise information overload on journalists and gain a competitive edge: Reuters
Tracer [129; 130]. By 2017, Reuters Tracer would be scouring 12 million tweets daily for
news. It would cluster them with a TDT algorithm, capturing 70% of the newsroom’s
own stories with around 60% precision, and raising alerts minutes ahead of Reuters’
internal ticker and its competitors. Yet Reuters Tracer would also produce more than
6,600 clusters every day, 275 events every hour, 4.5 stories every minute [130]. Reuters
had its competitive edge, a still-overloaded competitive edge.

Reuters were not alone in experimenting with AI. In Japan, JX Press automatically
mines social networks for news [149], and in Germany, Deutsche Welle uses Dataminr
[47], an AI-powered news discovery product. More and more newsrooms around the
world are starting to recognise the value in computational journalism, not least to aid in
newsgathering efforts [18; 51; 149; 179; 180; 217]. Like Reuters, will they also realise that
even as systems process and reduce data, too much remains to digest manually [165]?
Will they realise that it no longer suffices for TDT algorithms to detect and track without
explaining?

The scientific community concluded the same. So lacking was event understanding,
and so great the need to understand events, that a new research area emerged: Event
Modelling and Mining (EMM) [39]. TDT algorithms do not understand events; event
modellers understand Who did What, Where and When. TDT algorithms detect and
track; event miners infer new information from event models. TDT algorithms return
events as outputs; event modellers return events as resources. In this chapter, with
politics as our backdrop, we envision a future in which event modelling revolutionises
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TDT as we answer the following questions:

■ What makes event modelling so complex? The process to model events formally,
to make of them resources that we could mine automatically [39], represents an
elaborate undertaking. In Section 6.1, we argue that event modelling only grows
complex when understanding does not drive it.

■ How can understanding make resources of events? The difference between events
as outputs and events as resources lies in whether and how we understand them.
In Section 6.2, we combine the outputs of DEPICT, EVATE and SEER to create a
simple event modeller driven by understanding.

■ What do we sacrifice with understanding? Buntain et al. [28] feared that under-
standing could never transfer across events and event domains. In Section 6.3,
we investigate the sacrifices of understanding to portability by transferring our
understanding of American politics to British politics.

■ What role will event tracking play in the modern newsroom? Event tracking and
event modelling, improved and augmented by understanding, can find a practi-
cal purpose in journalism. In Section 6.4, we talk with Professor Charlie Beckett,
founder and director of the JournalismAI initiative at the London School of Eco-
nomics (LSE), to explore the use-cases of event tracking in newsrooms.

6.1 | The many names of understanding
You could call Reuters Tracer by many names [129; 130]. You could call it an event
extractor for the way it extracts Who does What, Where and When from individual
tweets. You could call it an event detector and tracker for the way a TDT algorithm
uses those ‘four Ws’ to cluster tweets into events. Or you could simply call it an event
modeller because a cluster’s ‘four Ws’ could form a semantic event model.

The many names represent different problems but also different needs and ends.
Event modelling represents the modern need of computational journalism [39; 165]. To a
journalist, Reuters Tracer’s 6,600 daily events might as well have been 12 million tweets:
more tractable, certainly, but still intractable data. Journalists and researchers already
have data—too much of it, in fact [39; 165]. What they need are new ways to index,
query and mine it automatically [39], but neither would be possible without semantic,
machine-readable representations of events: event models.
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Thus, event modelling emerged, perhaps not quite as a nascent research area as
much as a reformulation of existing tasks. Event extractors already glean structured
representations of events, but only from individual documents and often with arbitrary
structures; TwiCal extracts entities, phrases, timestamps and event types [218]. In con-
trast, TDT algorithms identify events from whole corpora, but rarely with any structure
at all. Event modelling simply combined principles of event extraction with principles
of TDT: it broadened event extraction’s task to TDT’s corpora and imposed a semantic
structure on event models, the ‘four Ws’ [39].

Inevitably, the three research areas share a close resemblance. In fact, for a short
while, and driven by the vision of understanding that Allan et al. [9] first outlined, the
TDT task shared a much closer resemblance with event modelling than today. Makko-
nen et al. [139], like Liu et al. [129, 130] in Reuters Tracer, extracted the ‘four Ws‘ from
news articles to build event profiles. A present-day reader might have called the event
profiles by another name: event models. Both represent events semantically, in terms of
the ‘four Ws’. Both understand events.

There, in understanding, lies the difference between merely detecting and mod-
elling. The algorithms of Makkonen et al. [139], Liu et al. [129, 130] and a few others
detect, track and model because they understand events, even if only with linguistics;
the rest, the greater part of modern research, afford to detect and track without under-
standing. Only event modellers afford no such luxury: they must understand Who does
What, Where and When to build event models. Evidently, event modelling’s retrospec-
tive understanding arrives far too late to drive TDT algorithms, but it is understanding
that separates the two research areas.

Event modelling reveals two shortcomings in TDT literature. First, it exposes the
most prominent flaw in TDT algorithms, the absence of understanding. The efforts of
Makkonen et al. [139] and Liu et al. [129, 130] remain outliers in a scientific tradition that
shunned understanding to the detriment not only of performance but also of expres-
siveness. Event models loom over TDT literature’s raw events as reminders of what
Panagiotou et al. [191] wrote about, that algorithms need to detect, track and express
events semantically, and as reminders that first, algorithms must understand events.

Second, event modelling exposes the crudity of TDT’s outputs. Without a structure,
TDT algorithms’ events represent an output, an informational dead-end, but in event
modelling, events represent resources to mine further, a means to an end [39]. From
event models, Gottschalk and Demidova [85] build a knowledge graph to reconstruct
timelines of events. From their graph, Opdahl and Tessem [188] discover interesting
news angles, and from theirs, Abhishek et al. [1] identify fake news, a problem for which
linguistics alone cannot suffice [164]. Like Twitter before it, event modelling gave new
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meaning to TDT literature’s events.

Nevertheless, event modelling research soon discovered the complexity of under-
standing. Representing events semantically requires solving problems for which a so-
lution still does not exist [75]. It requires algorithms to detect events, to track stories
and to extract semantic information from tweets [136] or from events [90]. In short, it
requires researchers to follow the long road to understanding that we have followed in
this dissertation.

Complexity harms event modelling. The absence of open-source systems forces
projects meaning only to harness event models as a resource to design trivial event
modellers [90]. Primarily, they trivialise the understanding. Research resorts, again, to
named entities to understand the Who and the Where, and to nouns, verbs and adjec-
tives to understand the What [218]. The understanding becomes simplistic and linguis-
tic, and the errors cascade [269]. Event modellers spend a lot of time understanding,
and in the end, they understand poorly.

Complexity also trivialises the TDT algorithms. They appear as if only out of ne-
cessity, to deduplicate the event extractor’s events, and they appear in simple forms.
Feature-pivot techniques measure only changes in volume [252], and document-pivot
techniques seldom bear more sophistication. Basic clustering algorithms, often graph-
based [20; 56] or incremental [77; 78; 123], dominate. Even Reuters Tracer [129; 130] uses
a plain clustering algorithm.

Still, systems grow unwieldy. EMBERS AutoGSR uses three sets of models to rep-
resent protests semantically [230]. The hybrid event extractor and event modeller by
Petroni et al. [198] includes 14 components to detect seven types of events, and the ar-
chitectures of Reuters Tracer [129; 130], NewsReader [108; 221; 269] and SUMMA [77;
78; 190] grew so immense that their descriptions span multiple publications. Complex-
ity does not imply ornate design. It implies architectures that extract, detect and model
without understanding.

Event modelling is an inherently complex task, but literature let it grow needlessly
so. The community neither harnessed its proximity with TDT nor understood events
properly. If a TDT algorithm detects, tracks and understands; if, like Reuters Tracer [129;
130], it tells us Who participated and Where or, like SEER, it tells us What happened,
then the event tracker becomes an event modeller. The alternative, to model without
understanding driving the process, might reserve the same fate in event modelling lit-
erature as in TDT research: needless complexity, complex inefficacy. In the next section,
we show how SEER and our understanding can simplify event modelling.
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6.2 | The understanding-driven event modeller
Event modelling never had a choice, whether to understand or not. Research looked for
semantic understanding, but when it found none, it twisted the problem. Event mod-
elling stopped being the problem of representing events semantically and became the
problem of generating the understanding with which to represent events semantically.
Yet we have semantic understanding. What we have described in this dissertation are
the individual parts of an event modeller, the ones that understand Who does What,
Where and When. In this section, they form the understanding-driven event modeller.

The understanding-driven event modeller combines DEPICT, EVATE and SEER to
model events. In the architecture in Figure 6.1, our modeller receives understanding
about Who participates in events and Where from DEPICT, and understanding about
What happens and When from SEER. Understanding acts as an input, not as a task, and
our modeller simply models. In the rest of this section, we describe our understanding-
driven event modeller.

The Who and the Where
The understanding-driven modeller receives understanding about the Who and the
Where from DEPICT. DEPICT automatically follows a process of disambiguation simi-
lar to Nebhi [177] but more deliberate; it does not disambiguate using only popularity or
contextual cues but by understanding the participants themselves. The attribute profiles
tell us Who or Where a participant is and what they do, and augments the modelling
process.

Consider the matter of distinguishing between the Who and the Where. The Who
represents a person or an organisation, and the Where a location, but the attribute pro-
files help us distinguish between the two more reliably than simple linguistics. When
present, an attribute like BORN qualifies uniquely a person, the Who. Only participants
without a BORN attribute require the use of linguistics to distinguish between organisa-
tions and locations, the Where. In such cases, we identify the named entity type from
the first sentence of the participant’s Wikipedia article with NLTK’s NER model.

Consider also the matter of matching a participant to a topic within an event. Fun-
damentally, and similarly to Edouard et al. [56], we simply require that a participant
appear in at least half of a topic’s tweets to ascribe it the role of the Who or the Where,
but the substance lies in what counts as an appearance. Evidently, we search for partici-
pant names in tweets, and for the tweets’ named entities in participant names, such that
the surname Truss also matches the participant Liz Truss. Nevertheless, understanding
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Figure 6.1: DEPICT, EVATE and SEER form a simple event modeller. DEPICT passes the
participants, the Who and the Where, directly to the modeller, while EVATE’s domain
terms, the What, drive SEER and, indirectly, the modeller.

improves our capabilities beyond what essentially amounts to a linguistic process.

We turn, again, to attributes to augment the matching process. Attributes such as
KNOWN-AS or REFERRED-TO, which DEPICT would have extracted in post-processing, list
all the nicknames, aliases and lexical variations of participant names. Therefore we also
search for participant aliases in tweets, and for the tweets’ named entities in participant
aliases, such that the colloquialism Tories also maps to the United Kingdom’s Conserva-
tive Party. The event modeller always performs whole-word, case-insensitive searches.

Other heuristics could similarly augment the modelling task further. The attribute
SERVING-AS could capture indirect references to participants through official titles: Prime
Minister, Secretary of State or Chancellor of the Exchequer. Moreover, and although irrele-
vant to our localised events, attributes could link events with multiple regions, forming
a bottom-up taxonomy of the Where: what happens in London also happens in England
and in Europe. We leave such heuristics to future work, and as further evidence of the
expressive power of semantic understanding.

146



6.2. The understanding-driven event modeller

The What and the When
The understanding-driven modeller receives understanding about the What and the
When from SEER. A TDT algorithm that understands can be a TDT algorithm that mod-
els, and SEER understands. Like participant timelines express Who participated in an
event [101], and like manually-crafted patterns express Who made What happen [136],
SEER’s streams embody What happens and When. Therefore we model the What and
the When directly after SEER’s outputs.

In particular, SEER simplifies our modelling of What happens in events. SEER’s
streams evoke the event types of Edouard et al. [56], Reuters Tracer [129; 130]’s topic
models and ASRAEL [222]’s schema labels: coarse subjects. Streams automatically seg-
regate events into concepts—policies, polling and protests, among many others—but with-
out having to infer event types linguistically, train models or cluster schemas. Every
event in the stream of voting concerns voting.

In fact, SEER also augments our modelling of the What, albeit subtly. We could have
described What happens with nouns or verbs, or even bursty keywords, but they do not
distinguish between the Who and the Where, and the What. Or we could have matched
EVATE’s terms to SEER’s events, like we did with the Who and the Where, but a term
could be relevant without being eventful. When a stream flares, however, it reveals
something deeper: not merely that a keyword burst or that a term gained relevance, but
that something happened within, an event. SEER’s streams, EVATE’s terms, explicitly
capture the actions and changes, the What.

Data alone does not tell a story, and big data obscures it. As Reuters discovered, the
events, processed and reduced, remain overwhelming to digest and analyse. To distil
information from big data, we need new visualisations, new tools and new forms of
storytelling [65; 77; 178; 217]. Fortunately, a definition of knowledge graphs by Ehrlinger
and Wöß [57] serves all three:

Definition 8 (Knowledge graph). “A knowledge graph acquires and integrates infor-
mation into an ontology and applies a reasoner to derive new knowledge.” — Ehrlinger
and Wöß [57]

Ehrlinger and Wöß [57] came up with the definition as they wrestled with literature’s
scattered interpretations of knowledge graphs. Inadvertently, they also tied the new
definition with the problem of EMM. Event modelling’s structure of Who does What,
Where and When acts as the ontology that gives structure to the knowledge graph, and
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event mining’s process to deduce the Why and the How acts as the reasoner. Therefore
to minimise information overload, we transform our event models into a knowledge
graph.

Our knowledge graph represents the different aspects of event models. The nodes
represent the Who, the Where and the What, and the relations among them represent in-
teractions. We add frequency-weighted relations among the Who and the Where when
two participants co-exist in the same event, and between the What and the Who or the
Where when a participant co-occurs with a subject in an event. The knowledge graph
thus serves as a visualisation, a tool to discover and tell stories: a summary of happen-
ings and interactions, Who did What and Where across all events.

The knowledge graph concludes the event modelling process as a testament to the
benefits of understanding. Like in TDT, understanding brought the benefits of preci-
sion, comprehensiveness and simplicity to event modelling. It eliminated the onerous,
inexact task of understanding an event from the microcosm of a cluster or a single doc-
ument and learned, instead, from the entire event and its domain. Like in TDT, un-
derstanding only sacrificed portability. We study the sacrifices of understanding next
before returning to the knowledge graph in Section 6.4.

6.3 | The sacrifices of understanding
A week is a long time in politics. It is an especially-long time for Liz Truss, once prime
minister of the United Kingdom, who could only count on six full weeks during her
tenure, the shortest-ever for a UK prime minister to date. Elected on 5 September 2022
and gone less than two months later, Truss’ first week in office foreshadowed the turmoil
to come. On her first six days in power, we study the sacrifices of understanding to
portability.

Our data spans a week, starting one day before Truss won the Conservative Party
leadership contest. Over 11 hours on Sunday, 4 September 2022, as Twitter speculated
on the next prime minister, we tracked Truss and her adversary, Rishi Sunak; the more
than 130,000 tweets constitute our understanding period. Over the next six days, as
Twitter dissected and debated the new prime minister’s fiery initiation, we continued
to track Truss, Sunak and other secondary personalities; the almost three million tweets
constitute our event period. We describe our datasets in more detail in Appendix D.4.

Our data alone challenges portability, how well an algorithm adapts to a shifting
landscape. The timeline in Figure 6.2 shows the public’s engagement changing, but
so does the nature of the events. On Monday, 5 September 2022, Truss won the lead-
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Figure 6.2: A timeline of notable events from Liz Truss’ first week as UK prime minister.

ership contest, and on Tuesday, she officially became prime minister. On Wednesday,
she fielded parliamentary questions, and on Thursday she unveiled her plan to tackle
mounting energy bills. Then, the political agenda transformed. Queen Elizabeth II died,
and on Friday and on Saturday, Truss met with King Charles III and attended ceremo-
nial functions. Every day revealed a new side of politics, a new test for our algorithms.

The real test of portability, however, lies in our understanding. We test portability
through SEER, driven by EVATE’s 250 terms from Section 4.5, but while broadly politi-
cal, our understanding also has a distinct American flavour. Our understanding of US
politics describes a president, our data a monarch and a prime minister; our understand-
ing describes a nationwide election, our data a leadership contest; our understanding
describes a congress, our data a parliament. The differences allow us to investigate
whether our political understanding causes SEER to miss important topics in another,
slightly unfamiliar domain.

We measure the sacrifices of understanding to portability by counting the number
of topics that SEER misses from the baseline, ELD. Of course, we know from Section 5.3
that ELD’s precision and comprehensiveness suffer in the absence of understanding. In
this experiment, however, ELD does not challenge SEER in precision and recall but in
portability, and the absence of understanding poses no threats to portability. Later, we
also test SEER more thoroughly, against a version of itself without understanding.

The domain requires a few changes to both algorithms. News breaks and spreads
differently in politics than in football matches, with more quoted tweets and URLs, both
of which we now accept. Discourse changes more slowly too [5], so we combine topics
that occur within 15 minutes of each other. Moreover, to reflect the increased stability,
we widen SEER’s time windows from one minute to fifteen minutes, and ELD’s from
half a minute to five minutes. ELD’s shorter time windows were required both by its
resource-intensive tweet buffering, and by the broader subject and increased volatility
of its solitary stream.
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Finer tweaks to the two algorithms prove more difficult. As we explain later, we
could not optimise the F-score. We varied ELD’s configurations manually, balancing
precision with comprehensiveness, but we could not do the same for SEER. EVATE’s
250 terms, grouped into 50 streams, attracted disparate levels of activity, from a mere
383 tweets in the stream of runoff and senate to 600,225 in the stream of work, want and
other general terms. Every stream would have required its own, tailored configura-
tion. Instead, we let the streams regulate themselves: we lowered the static threshold
to a modest 50 tweets per 15 minutes and raised the dynamic threshold to 1 standard
deviation above the mean, similarly to Hsieh et al. [96]. We list our configurations in
Appendix E.2 and SEER’s streams in Table F.14.

The ramifications of a domain as vast as politics forcibly reach our annotation pro-
cess too. Like in Section 5.3, we annotate summaries manually, in SEER’s case separately
for each stream. We use The Guardian and other sources as references, but the innumer-
able topics render a comprehensive ground truth unachievable [62; 252], so the metrics
change. We no longer measure recall nor, consequently, the F-score.

The labels change too. We keep the redundant, subjective and noisy labels, but we
no longer distinguish between enumerable and non-enumerable topics. Instead, we
merge them into a new label, newsworthy topics, which also includes statements by
politicians and other authoritative figures. To measure portability, how many topics an
algorithm missed, we manually match the newsworthy topics of one algorithm with
those of another. We present and discuss our results next.

The sacrifices of understanding to portability
The experiment opens with a familiar scene: ELD’s struggles and SEER’s triumphs. As
Table 6.1a shows, ELD avoided the noise and the subjectivity but not the redundancy,
and newsworthiness graced fewer than half of its topics (47.11%). In contrast, SEER
thrived. Our novel algorithm captured more noise (6.61% � 7.85%) and more subjectiv-
ity (3.31% � 14.39%) than ELD but significantly less redundancy (42.98% � 5.42%). We
annotated as newsworthy almost three out of every four topics in SEER (72.34%). We
suspected that ELD would struggle, and SEER confirmed our suspicions with aplomb.
Yet of sacrifices to portability, we observed few signs.

SEER lost little with understanding. Of ELD’s 57 newsworthy topics, just 14 (24.56%)
did not appear in SEER, as Table 6.1b shows. More importantly, our algorithm missed
details but rarely whole stories. It missed two updates on a post-Brexit trade agreement
and Truss’ fleeting vow to “ride out the storm”, but mostly, it omitted details. In general,
SEER missed idle commentary, newspaper headlines and other non-key topics in ELD,
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Algorithm Redundant Noise Subjective Newsworthy Topics

ELD ▲ 42.98% 6.61% ▼ 3.31% ▽ 47.11% ▽ 121

SEERDefault 5.49% ▲ 35.16% △ 25.27% ▼ 34.07% ▽ 91

SEER 5.42% 7.85% 14.39% 72.34% 535

(a) The baselines, in particular ELD, adapted poorly to the new domain, while SEER maintained
its performance from Chapter 5. The table reports the micro-average distribution of annotations
across all days, and the total number of topics. In our interpretation, precision includes only
newsworthy topics. We present a full breakdown of the annotations in Tables F.13 and F.14.

Baseline’s topics SEER’s topics

Baseline In SEER Not in SEER In baseline Not in baseline

ELD 43 (75.44%) 14 (24.56%) 120 (31.01%) 267 (68.99%)

SEERDefault 12 (38.71%) 19 (61.29%) 21 (5.43%) 366 (94.57%)

(b) Despite using understanding, SEER missed few newsworthy topics and detected many more
that ELD missed. 75.44% of ELD’s newsworthy topics also appeared in SEER, whereas 68.99%
of SEER’s newsworthy topics did not appear in ELD.

Table 6.1: Far from hindering portability, understanding benefited SEER, both in pre-
cision and in comprehensiveness. SEER maintained its gains in precision over ELD
and missed few of the baseline’s newsworthy topics. △ and ▲ indicate statistically-
significant increases at the 95% and 99% confidence levels, and ▽ and ▼ statistically-
significant drops at the 95% and 99% confidence levels (one-tailed paired samples t-test
or Wilcoxon Signed-Rank test) compared to SEER.

some of which felt more like summarisation anomalies than news stories, such as the
nondescript congratulations of a Latvian politician.

What SEER gained with understanding far surpassed what it lost. While 75.44%
of ELD’s newsworthy topics also appeared in SEER, only 31.01% of SEER’s appeared in
ELD.1 The remaining 68.99% of SEER’s newsworthy topics captured the congratulations
of prominent British politicians, a brewing scandal about Truss’ chief-of-staff, and other
key and non-key topics from the daily incidents of politics. EVATE’s understanding
may not have covered the entire domain, but coverage mattered little. Even imperfect
understanding compensated for the technical flaws of traditional methods with greater
freedom to design a more precise, more comprehensive algorithm.

The results challenge our interpretation of portability. Like Buntain et al. [28], we
had assumed that only understanding harms portability, but ELD did not prove portable
even without understanding. Consider ELD’s uncharacteristically-large share of redun-
dancy (42.98%). ELD’s architecture suits fast-moving domains, like football matches,

1We annotated SEER’s streams separately, but their subjects overlap in closed domains [161]. Whether
noisy, subjective or newsworthy, topics frequently appeared in multiple streams at once. Therefore not all
of SEER’s 387 newsworthy topics are unique.
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but in the slow-moving world of politics, the same topics expressed differently appeared
as if new. Like so many other TDT algorithms, ELD primarily models user and tweeting
behaviours, but behaviours change, and so portability suffers.

In contrast, SEER proved portable despite understanding. Our method primarily
models What can be newsworthy, and it made few and reasonable technical assump-
tions. Like in football matches, for SEER to detect duplicate topics, the conversations
about them had to change drastically. Similarly, to detect subjective topics, they had
to originate from journalists, politicians or other influential sources capable of shap-
ing Twitter’s discourse. Therefore the distribution of annotations barely budged from
Chapter 5. We recorded similar figures of redundancy (4.43% � 5.42%), noise (6.90% �
7.85%), subjectivity (17.24% � 14.39%) and newsworthiness (71.43% � 72.34%).

Clearly, portability depends on technique as much as it depends on understand-
ing. In fact, the difference in technical capabilities between ELD and SEER obscures the
real influence of understanding on portability. We can deduce that SEER misses a few
aspects of key topics but not why, whether due to technique or to understanding. To
truly appreciate what our algorithms gains and loses with understanding, we need to
compare it with another that boasts similar technical capabilities: SEER itself.

We compare SEER with itself but without understanding. Previously, SEER dis-
carded any tweet that did not mention one of EVATE’s 250 political terms. Now, instead
of discarding those tweets, it passes them on to a default stream, SEERDefault: a stream
like any other except in understanding. The default stream thus reveals which events
escaped EVATE’s understanding and SEER’s scrutiny.

This time, SEER lost more with understanding. The default stream received around
a fifth of all tweets (21.19%)—a fifth that SEER never accessed. Logically, the majority
of its newsworthy topics, 19 of 31 (61.29%), did not appear in the other streams. The de-
fault stream exposed SEER’s inability to detect early reports that Thérèse Coffey would
become deputy prime minister and that Truss would meet King Charles III. Primarily,
however, the default stream exposed its own lack of political understanding. Many of
the missed topics lay on the periphery of politics: newspaper round-ups, reactions to a
comedian’s quips on Truss and whispers about Queen Elizabeth II’s health.

The lack of understanding about What can be newsworthy affected performance.
The default stream’s 31 newsworthy topics constituted a small fraction of its 91 top-
ics—the highest tally of any stream—and precision fell to almost half of SEER’s (72.34%
� 34.07%). This time, unlike ELD, the default stream did not succumb to redundancy
but to inanities: 10.88% more subjectivity than SEER (14.39% � 25.27%) and around five
times more noise (7.85% � 35.16%). Including the default stream with all others would
have reduced SEER’s precision by 5.57%, from 72.34% to 66.77%. The default stream’s
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Figure 6.3: The default stream filters more aggressively than the understanding-driven
streams. Tweets without domain terms were 25.83% (31.70% � 57.53%) more likely to be
filtered than tweets with domain terms.

performance betrayed that it received the dregs that the other streams rejected.

The lack of understanding also appeared forcefully in the filtering behaviours. The
default stream detected and tracked like any other stream, and it filtered with the same
rules, but it filtered far more aggressively, as Figure 6.3 demonstrates. In fact, we found a
significant difference in the way the default stream and all other streams filtered (Mann-
Whitney U test: p = 0.0001). The default stream filtered 25.83% more tweets than the
other streams (31.70% � 57.53%)—an 81.48% relative increase.

The default stream stands as a reflection of the quality of our understanding. If
the default stream’s technique did not change but performance did, then the tweets
themselves must have changed. The tweets changed in one aspect only: they mentioned
no domain terms. Those tweets tended to violate our rules about what constitutes noise
more often than the rest, and when they did not, they still predominantly contributed
noise and subjectivity. In other words, even without consulting user or tweet metadata,
understanding acted as a latent filter. TDT research has strived for so long to understand
and filter noise when the solution may have lain, all along, in understanding news.

The default stream also reflects on our application of understanding. It vindicates
our decision to drive SEER with the What, rather than the Who or the Where; most
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tweets and topics in the default stream mentioned Truss, Sunak and the other named
entities who we tracked, but without being topical. It also vindicates our decision to
design the algorithm around topical streams. The overlapping vocabulary gave SEER
the ability to catch the same topics from different aspects, and the comforting security
of knowing that even if we miss a topic in one stream, we might detect it in another.

Ultimately, the default stream reflects on portability. Even as we challenged our
understanding in a foreign domain, SEER lost little: 19 topics, just 4.55% of the 418
newsworthy topics in SEER’s default and understanding-driven streams. Evidently,
understanding binds us to one broad domain; we cannot apply our understanding of
football matches in politics. Within that domain, however, understanding makes few
sacrifices. For portability, TDT literature has sacrificed precision and comprehensive-
ness, expressiveness and efficiency, sensitivity and scalability. Everything that it sacri-
ficed, it sacrificed in vain.

The benefits of understanding give event tracking another purpose. The improve-
ments in precision, comprehensiveness and sensitivity at a negligible cost to portability
lend event tracking and modelling technology a more practical value. At the dawn of
a new wave of automation in journalism, we talked with Professor Charlie Beckett, ex-
journalist and director of the JournalismAI initiative at the London School of Economics
(LSE). We summarise our conversation in the next section.

6.4 | Perspective: Prof. Charlie Beckett
Much of Professor Charlie Beckett’s work has focused on the future of news. In 2010,
he predicted the rise of networked journalism, the fusion of traditional journalism with
modern media and digital tools [19]; today, the internet and social media have become
indispensable for journalists [250]. He also predicted that live blogs would become
the new front page of newspapers, and today they have become centrepieces on the
websites of many of its pioneers, like The Guardian [82]. If his predictions offer any
guarantee, then we already know the provenance of journalism’s next technological
wave: AI. We talked with Professor Beckett about journalism and AI.

Beckett joined the London School of Economics (LSE) in 2016 after seven years work-
ing as a programme editor for Channel 4 News. Previously, he had spent a decade as a
senior producer and programme editor at the BBC, and worked as a journalist at local
news stations. In our conversation, transcribed in full in Appendix C, he told us that the
LSE hired him to found and direct Polis, a journalism think-tank, precisely for his prac-
tical experience as a journalist. “They deliberately wanted someone from the profession
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to come into the university, to bring that kind of perspective.”
Since 2019, Beckett has also been directing JournalismAI, a project within Polis to

research the intersection where journalism meets AI. “I saw AI as the next technological
wave that’s happening”, he recalled. “[JournalismAI’s] main mission is to support good
journalism, to be honest, but it also functions as a form of research. By working with
these journalists, by teaching them, by doing innovation workshops, we find out both
what they think about AI, but also we’re actually learning about what you can do with
AI: what works, what doesn’t work, what impact it has, what consequences it has when
you do it.”

AI’s technological wave has already started. The same week that we met, AI had
again made the news, figuratively and literally. In an awkward incident, CNET was
forced to defend itself after it was caught furtively using AI to write articles [240]. The
episode reflected the wider trend of rapidly-developing generative technology, such
as OpenAI’s ChatGPT writer and Midjourney’s AI-driven image generator, and gave
journalism a glimpse of what the future holds. AI is no longer emerging but evolving
and developing, and journalism finds itself having to keep pace.

Still, Beckett remains steadfast: AI will not replace the human in journalism. His
2019 survey, where JournalismAI began, opens with a terse declaration: “No, the robots
are not going to take over journalism” [18]. He imagines a more complementary role for
AI. “AI is generally used to supplement human labour. It very rarely replaces it, and
in many cases it actually creates new labour, which can be good, either by creating new
formats or by the need to review and edit the actual technology.”

Beckett’s perspective is shared by his peers [51; 149]. The right question to ask, he
told us, is what humans do better than machines. He believes in the human qualities
of judgement and morality, efficiency and creativity, emotion and empathy. In fact, the
use of technology could make more space for those human qualities. “Perhaps human
journalists will get better and do more of the creative, empathy, judgment stuff. Again
though, it’s a false binary to say that’s completely different and can’t be supported by
technology”.

What about understanding? Yes, machines lack understanding too. By that, Beckett
did not mean “some deep intellectual genius”, but something more basic, more funda-
mental—more human. He illustrated his point with VAR, the technology on the side-
lines of football matches. VAR too burdens humans with the final judgements: what
counts as a deliberate handball or as a natural movement of the arm.

Another human quality, social connection, underpins Beckett’s earlier prediction,
networked journalism. Networked journalism encapsulates the relationship between
journalists and the public, a digital connection that extends beyond social media. It
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extends especially beyond Twitter, which he called too “small” and “unrepresentative”
to capture the social connection alone. “We think of social media as the platform, but
it’s not. In social media, it’s the social bit that’s important. ... What I think is partly that
journalists are learning about the limits of a platform like Twitter [and] thinking about
other forms of data apart from social media discourse.” Stricter regulations, financial
troubles and erratic management may well make a market reckoning unavoidable.

Event tracking, even on Twitter, still has a role to play in the newsroom. Beckett’s
recollection of the live-blogging process was of a largely-manual operation: a journal-
ist sitting at their desk, browser open and scouring webpages for news. Perhaps they
are supported by technology too, he added. Perhaps they could be supported better
by event tracking technology. When we presented Beckett with the interactive demos
shown in Figure 6.4, he remarked about the timeline’s relevance, SEER’s precision dur-
ing Truss’ fateful first week as UK prime minister. “Something like this can be the back-
bone to a live blog.”

Event tracking technology does not exclude the human. In line with Beckett’s vi-
sion of journalism and AI, the journalist plays a complementary role. “All those things
that journalists do in a formulaic way, [SEER] will do well”, he told us, but for the
rest, it requires the human. We returned, again, to human judgement. “The interest-
ing bit—and this is what journalists talked to me about when they say they’re using
things like this—they say that they use this, and when they see something that’s a bit
stand-out, they can follow up on it. That idea of judgment.”

Nevertheless, it feels inexact to say that event tracking simply detects the news.
Rather, in its contemporary form it detects the news that Twitter’s “small” and “un-
representative” network finds interesting. When we presented this dilemma to Beckett,
however, he responded with one of his own: between reporting the news that editors
and journalists find interesting, and the news that resonates with audiences. The argu-
ment fits within the context of rising news avoidance [181]. “We see [news avoidance]
as a problem. We aren’t seeing it as quite a normal response to the world, a world of
abundant information”. Event tracking can thus play a second, less obvious role:

I think that we can use these technologies firstly to understand better what’s
happening in the world, but secondly to understand what interests people.
How do things connect to people’s lives and what does our audience do?
That’s possibly the biggest revolution in journalism in the last ten years:
audience data. We now understand what people do with news. We don’t
understand why or how they feel about it particularly, but we can at least
measure their behaviour. How do we do that? We do it with this software.
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Figure 6.4: Before our conversation, we sent Professor Charlie Beckett two interactive demos. On the left, SEER’s timeline
supports filtering based on topic popularity, streams and keywords. On the right, the event knowledge graph has adjustable
level-of-detail, and clickable nodes and edges to filter the timeline based on Who did What and Where.
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— Professor Charlie Beckett

The event knowledge graph can also support efforts to counter news avoidance.
Beckett expressed his annoyance at the endless cavilling of journalists that alienates
audiences. “They’ll talk about the emphasis from the Prime Minister that was subtly
different today. ... The general public are thinking ‘I don’t understand, sounds to me
like the same thing, this is so fine-tuning.’ They don’t understand the context: what did
he say before?” The knowledge graph could provide that context and guide explanatory
journalism, which now finds near-universal acceptance among newsrooms [181]. “You
can match with your knowledge graph: this is what they said about taxation before; this
is what they are saying now; this is what it means.”

Identifying more specific applications of the knowledge graph proved more difficult.
Partly, the difficulty stems from the graph’s function: not as a final output but as a
resource to contextualise the news or discover news angles [188], or as Beckett called it, a
form of data journalism. “I think we are seeing increasingly the kind of journalism—and
it’s usually data journalism of some sort, which is what this is, in a sense—that makes
connections. We saw a lot of it during the [COVID-19] pandemic, of course, where there
was that kind of ‘how is the pandemic changing society?’ I could imagine you doing
this kind of thing with an issue like the pandemic.”

Our brief conversation served to confirm another of Beckett’s predictions. AI con-
tinues to deliver to journalism the new powers and new responsibilities that named his
report [18]. Yet it also continues to expose the new needs of journalism. JournalismAI
has been exploring the opportunities of AI through its fellowship programmes, and al-
most unfailingly, projects depart from first principles: What is a quote or a claim? What
is a politician? A promising sign of academic rigour, perhaps, but also of newsrooms
wrestling with novel problems that AI research has yet to address. A disconnect remains
between journalists and technologists, both firmly encamped in their fields.

At the end, we did not ask Beckett for a prediction but for an appeal: how AI research
can address journalism’s needs. “We’re not so good at thinking about the consequences
of potential application in a more general way: how it might change the journalistic
practice. That’s the thing I look at. The people who know about the technology can
help think through those kind of applications. It’s not just how this can help journal-
ism—that’s the first one. ... The second one is: how might it change journalism?” Jour-
nalists have started to understand the technology. Now, they need technologists to start
understanding journalism. We conclude this chapter next.
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Recap

Principal contributions

■ The first event modeller led by understanding and understanding-driven TDT

■ Confirmation that the benefits of understanding to precision, recall and sensi-
tivity outweigh any sacrifices to portability

■ An interview with Professor Charlie Beckett on the future of event tracking in
the newsroom

Recap
Without understanding, Reuters Tracer grew in complexity. Reuters had to build a dis-
tributed architecture to process, classify and filter more than 12 million tweets daily. Ev-
ery day, an incremental clustering algorithm developed, merged and filtered over 16,000
clusters [129], and still, Reuters Tracer had to deploy a set of heuristics and models to
help journalists make sense of the thousands of events that remained [130]. Reuters
Tracer stands as an exemplar of computational journalism, but also as a lesson and as a
warning.

With understanding, Reuters Tracer might have assisted journalists better. It might
have detected more news with a higher precision, or even earlier than it did. Perhaps
it might have required fewer resources or helped organise events better. Certainly, un-
derstanding held greater promise of benefits than of sacrifices for Reuters Tracer, like
it held for SEER. In this chapter, we demonstrated that understanding could be TDT
research’s next paradigm shift by answering the following questions:

■ What makes event modelling so complex? Event modelling literature seeks to
model TDT research’s events, but without proper event understanding, it falls to
the same traps. In Section 6.1, we discussed how understanding could simplify
event modelling like it simplified event tracking.

■ How can understanding make resources of events? Modelling events formally
only poses a complex task because algorithms must understand events instead
of simply applying understanding. In Section 6.2, we demonstrated how under-
standing and understanding-driven TDT could simplify and augment the event
modelling process.

■ What do we sacrifice with understanding? In retrospect, it seems obvious that un-
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derstanding would benefit TDT algorithms, but fears of its sacrifices to portability
hindered research on understanding [28]. In Section 6.3, we allayed those fears by
showing that what SEER gains with understanding thoroughly outweighs what it
loses.

■ What role will event tracking play in the modern newsroom? In journalism’s
technological wave of automation, the machine supplements the human. In Sec-
tion 6.4, our conversation with Professor Charlie Beckett revealed how event track-
ing technologies could form the backbone of live blogs, help counter news avoid-
ance and power a new form of data journalism.

This chapter concludes our work on understanding. Throughout this report, we
studied TDT literature’s decades-long difficulties to interpret the meaning of under-
standing, to understand and to apply that understanding, and to face the emerging
challenges of user-generated content and computational journalism. As we studied the
difficulties, however, their roots appeared plainly: simplistic theories, improper under-
standing and shallow application of it. The difficulties emerged not from understanding
but from its very absence. We conclude this report with a summary of our main findings
in the next chapter.
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Conclusion

Can understanding improve TDT? Yes, it can, and even in 1998, the TDT community
must have sensed that understanding could improve its algorithms. Its mistake was
never about suggesting event knowledge as the solution but never having progressed
past the initial suggestion, never having asked the questions that followed: what it
means to understand events, and how it could develop and best apply understanding.

Without understanding, the research area’s early decades declined into a Sisyphean
struggle. Again and again, the TDT community looked for a substitute for understand-
ing, first in linguistics, then in alternative methods and finally, when all else failed, in
increasingly-complex algorithms. Again and again, the TDT community found no sub-
stitute. This dissertation demonstrates why: proper understanding has no substitute.

Still, our Yes feels reductive. Understanding does not merely improve TDT, as Al-
lan et al. [9] envisaged, but gives it new meaning. Understanding represents a bridge
between what TDT can do and what we need it to do, and between what TDT is and
what it can be. Mitchell [167, 168] argues that machines do not really understand, do not
grasp true meaning; they only pretend to. We do not purport to have given machines
true understanding, but we hope to have given them the tools with which to pretend
better. In this dissertation, we addressed the following aims and objectives:

■ What does it mean to understand events? To understand events means, first and
foremost, to define events. In Chapter 2, we chose a semantic and structured def-
inition to guide our understanding and connect TDT with other event-related re-
search areas: Who does What, Where and When.

■ When does a named entity become a participant? Named entities become par-
ticipants when Who or Where they are determines What happens in events. In
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Principal contributions

■ In Chapter 1, the NicholasMamo/EvenTDT repository, the largest open-source
TDT library

■ In Chapter 2, the first literature review on understanding in TDT and other
event-related research areas

■ In Chapter 3, DEPICT, a novel APD algorithm that understands Who partici-
pates in events and Where by understanding the participants themselves

■ In Chapter 4, EVATE, the first ATE algorithm that understands What happens
in events from Twitter

■ In Chapter 5, SEER, the first TDT algorithm driven by foreknowledge of What
can happen in an event, and which proves that understanding can improve
event tracking

■ In Chapter 6, a novel event modeller simplified and augmented by under-
standing and understanding-driven TDT

Chapter 3, we proposed DEPICT, a novel APD algorithm that understands the
Who and the Where by learning what makes participants of named entities.

■ When does a word become a domain term? Words become domain terms when
they carry a semantic value that describes the actions and changes—What hap-
pens in events. In Chapter 4, we proposed EVATE, a novel ATE algorithm that
understands the What much like humans, by observing events.

■ How can understanding improve TDT algorithms? Allan et al. [9] hoped to make
algorithms more accurate, but understanding can elevate event tracking in other
ways too. In Chapter 5, we proposed SEER, our answer to the suggestion made
by Allan et al. [9] and a monument to the many virtues of understanding.

■ Where does TDT’s next revolution lie? It no longer suffices for TDT algorithms
to detect and track events without describing. In Chapter 6, we proposed the
understanding-driven event modeller, a demonstration of how understanding can
transform event trackers into event modellers, and their outputs into resources.
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7.1 | What comes after understanding
Understanding is a beginning, not the end. As the TDT pilot study reached its com-
pletion, Allan et al. [7] concluded the final report on a hopeful note: “the technologies
applied solve large portions of the problem, but leave substantial room—and hope—for
improvement.” We conclude our report similarly. This time, understanding solves large
portions of the problem, but leaves substantial room—and hope—for improvement. De-
veloping understanding means developing TDT.

TDT research needs understanding, today perhaps even more than in 1998. Litera-
ture has unsolved problems and unmet needs, but in understanding, it may well find
the solutions. TDT research needs understanding for its own sake, to fulfil the potential
that Allan et al. [7] saw in those early techniques, and for the sake of the research areas
that depend on it. Above all, it needs understanding to move past solving data issues
and technical problems, and start solving real-world challenges. In our vision, the road
to understanding goes on as follows:

■ In Chapter 2, the very thing that eluded TDT research for so long—a semantic
definition of events—unlocked our thesis, but we have only started filling in the
theoretical void. To create a meaningful connection among event-related research
areas, we need a common language of events, one idea of what we must under-
stand. Future work should extend the theory of Who does What, Where and When
to cover the Why and the How, the relationships that link events together.

■ In Chapter 3, DEPICT understood the Who and the Where retrospectively and
from the microcosm of one event. If we could understand the prototypical partic-
ipant of an event domain, not a singular event, then APD could serve in more
scenarios, including real-time disambiguation. Future work should generalise
DEPICT’s understanding, from inferring the common attributes of one event’s
participants to inferring the common attributes of an event domain’s participants.

■ In Chapter 4, EVATE understood the What semantically, not unlike a human but
far simpler. Human understanding takes a more abstract form: not isolated terms
but connected concepts that serve more complex applications, like SEER’s topical
streams. Future work should develop EVATE’s understanding of What happens in
event domains into semantically-richer ideas, such as by mapping terms to Word-
Net senses.

■ In Chapter 5, SEER showed one application of understanding, but event knowl-
edge has many uses. TDT research has proposed innumerable algorithms, without
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understanding but with limitless ways for it to suffuse them. Future work should
explore how understanding could make techniques more precise and compre-
hensive, expressive and timely, sensitive and scalable, lightweight and efficient,
parameter-free and portable, on Twitter and elsewhere.

■ In Chapter 6, we showed how understanding can simplify event modelling, but
the process to understand remains daunting. We will not harness the ideas in
this dissertation until we have understanding readily-available to simplify and
augment our algorithms. Future work should build upon our principles and our
vision in this chapter to create a connected whole that describes Who usually does
What, Where and When, and Why and How: an event domain ontology.

The year is no longer 1996. The question of whether understanding can improve
TDT belongs to the past. New questions can take its place. How does a TDT algorithm
understand? How does it apply understanding and to what effect?
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A

Review
An Apology for TDT’s Manual

Evaluations

When Meladianos et al. [161] evaluated their TDT approach, they engaged human eval-
uators to manually annotate more than 1,600 tweets. They called the ordeal “daunting”.
But then, three years later, when it was time to evaluate a newly-designed algorithm,
Meladianos et al. [162] adopted the same daunting methodology, only this time to anno-
tate 2,600 tweets. TDT research complains about manual evaluations but keeps finding
itself inexplicably drawn back to them.

In this appendix, we study the research community’s complicated but necessary re-
lationship with manual evaluations. We explore the challenges that TDT research faces
when evaluating its approaches and the community’s failed attempts at designing an
automatic evaluation methodology. In the end, we show how research has little choice
but to keep returning to manual evaluations, but without excusing devious practices. In
this appendix, we answer the following questions:

■ What challenges does the TDT community face with manual evaluations? Re-
searchers fixate on the manual, financial and time-related costs of manual evalu-
ations but ignore other aspects that influence the primary concern: scientific cor-
rectness. In Appendix A.1, we study what makes manual evaluations in TDT so
problematic.

■ How and why did the TDT community’s endeavours towards automatic eval-
uation methodologies fail? When Twitter’s data sharing policy made labelled
datasets obsolete, researchers tried to innovate, in vain. In Appendix A.2, we ex-
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plain why automatic evaluation methodologies did not suffice and why they will
probably never suffice.

■ How can the TDT community make evaluations more reproducible? Researchers
accepted the limits of manual evaluation methodologies but took excessive licence
with analyses and abandoned reproducibility. In Appendix A.3, we build on ideas
by Weiler et al. [278] to propose more reproducible TDT evaluations, which guide
our analyses in Chapter 5.

Material from this appendix is in the last stages of peer review [147].

A.1 | The challenges of manual evaluations
Meladianos et al. [161, 162]’s story is not unique. The research community laments
the challenges of manual evaluations [5; 274] but, like a vice, keeps returning to them.
Weiler et al. [277] found that at least 18 out of 42 surveyed TDT evaluations included a
manual component.1 Manual evaluations were only outnumbered by studies with no
evaluation at all: 19 out of 42.

In this section, we consolidate the findings by Weiler et al. [277]. Our annotations
of the 79 studies in Table A.2, which follow the methodology in Table A.1, show how
manual evaluations of Twitter-based systems persist in TDT literature. However, we
also explain how the manual efforts, which research deplores, represent only one of
the drawbacks of manual evaluations. In particular, we identify three flaws in manual
evaluations: the manual, financial and time-related costs, the indirect effects of those
costs on the analyses, and human error and bias.

The costs of manual evaluations
The efforts entailed by manual evaluations are the natural recipients of the TDT com-
munity’s complaints. It is difficult to carry out a manual evaluation without remark-
ing about the debilitating manual, financial and time-related costs. Even in general, it
is “difficult to obtain human relevance judgement[s]” [38], let alone to label the mas-
sive tweet corpora of TDT research [62]. When Aiello et al. [5] considered obtaining

1Meladianos et al. [161] recruited human annotators to manually label one-minute time windows, but
Weiler et al. [277] marked their approach as using “Match facts”, ground truth. Therefore Weiler et al.
[277] interpreted manual evaluations differently from us, albeit slightly; we consider such an approach
semi-automatic.
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None Publications with no experiments whatsoever

Empirical Publications with only the authors’ qualitative analyses to discuss the outputs

Manual Publications with quantitative analyses based on human annotations

Semi-automatic Publications with both manual and automatic analyses, or which engage humans to
manually annotate a corpus to later evaluate automatically

Automatic Publications with quantitative analyses that require no human input, normally using
annotated corpora or validity indices

(a) The five broad types of evaluation methodologies that we identified in our review.

Other Publications that include original evaluations that do not fit in any other category

Validity indices Publications that estimate the quality of clustering algorithms using automatic mea-
sures

Keyword matching Publications that use datasets split into time windows, each associated with a list of
keywords if it covers an event

Window classification Publications that use datasets split into time windows, each of which may be linked to
an event

Document classification Publications that use datasets whose documents may be linked to an event

(b) The five types of semi-automatic and automatic evaluation methodologies that we identified
in our review.

Researchers Publications in which the authors annotated the algorithms’ outputs themselves

External Publications in which the authors recruited students, Amazon Mechanical Turk work-
ers or anyone else without authorship to annotate the algorithms’ outputs

(c) The two types of annotators that we identified in empirical, manual or semi-automatic eval-
uations in our review; some publications employ both the authors and external actors as anno-
tators.

None Publications that compare the novel algorithms with no others

Parameter tweaking Publications that only compare the novel algorithms with different configurations of
the same algorithms

Trivial algorithms Publications that compare the novel algorithms with newly-invented, simple algo-
rithms not published in literature

Published algorithms Publications that compare the novel algorithms with other peer-reviewed algorithms

Published results Publications that compare the novel algorithms’ results with the results of other peer-
reviewed publications on the same datasets

(d) The five types of baselines that we identified in our review; some publications include mul-
tiple types of baselines.

Table A.1: Our methodology to review TDT evaluations, including analyses of the TDT
components in EMM architectures.

human relevance judgements for a manual evaluation, they shunned the “overwhelm-
ing amount of effort”. They curtly described manual evaluations as “extremely time-
consuming, and infeasible in practice”, and moved on to a semi-automatic analysis.

While inconvenient, manual evaluations are not as infeasible as Aiello et al. [5]
claimed. Our survey corroborates the findings by Weiler et al. [277]: manual evaluations
remain ubiquitous in TDT. 38 out of 79 (48.10%) studies in Table A.2 rely exclusively on

195



Appendix
A.

Review
:An

Apology
forTD

T’sM
anualEvaluations

Publication Evaluation Annotators Datasets Tweets Baseline

Sankaranarayanan et al. [229] None None

Petrović et al. [199] Manual External Published algorithms, parameter tweaking,
trivial baselines

Phuvipadawat and Murata [204] Empirical Parameter tweaking

Sakaki et al. [227] Manual 2 None

Chakrabarti and Punera [33] Manual External Parameter tweaking

Choudhury and Breslin [42] Semi-automatic External 1 1,500 None

Earle et al. [55] Manual Researchers None

Gu et al. [86] Manual Researchers and external Published algorithms, parameter tweaking

Lanagan and Smeaton [121] Manual External 8 101–4,073 Parameter tweaking

Marcus et al. [150] Manual Researchers 4 None

Popescu et al. [205] Semi-automatic Parameter tweaking

Shamma et al. [233] Empirical 2 None

Zhao et al. [296] 33 Parameter tweaking

Hsieh et al. [96] Manual Researchers 18 81,655–1,455,151 None

Nichols et al. [183] Manual Researchers 3 72,335–113,189 None

Ozdikis et al. [189] Manual Researchers Parameter tweaking

Petrović et al. [200] Semi-automatic External 50,000,000 Published algorithms, parameter tweaking,
published results

van Oorschot et al. [265] Automatic 63 1,050,343 Parameter tweaking

Aiello et al. [5] Semi-automatic Researchers 3 Published algorithms

Cataldi et al. [32] Manual External None

Guille et al. [88] Empirical External 7,874,772 None

Shen et al. [234] Semi-automatic External 7 163,775–345,335 Published algorithms
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Publication Evaluation Annotators Datasets Tweets Baseline

Vasudevan et al. [266] 15 3,000,000 None

Burnside et al. [29] Manual External 4 Published results

Chierichetti et al. [40] Automatic 2 1,490,000–342,000,000 Trivial baselines

Corney et al. [44] Semi-automatic Researchers 2 None

Guille and Favre [87] Manual External 2 1,437,126–2,086,136 Published algorithms, parameter tweaking

Ifrim et al. [102] Manual External 4 Published results

Martin-Dancausa and Göker [152] Manual External 4 Published results

Nutakki et al. [186] Manual External 4 Published results

Petkos et al. [197] Empirical None

Van Canneyt et al. [264] Manual External 4 Published results

De Boom et al. [49] Semi-automatic Researchers Parameter tweaking

Feng et al. [64] Manual External 9,000,000 Published algorithms

Kumar et al. [119] Manual Researchers 2 None

Löchtefeld et al. [136] Manual 42 103–11,894 None

Madani et al. [138] Manual Researchers Published algorithms

McMinn and Jose [158] Manual External Published algorithms

Meladianos et al. [161] Semi-automatic External 13 72,335–1,907,999 Trivial baselines

Unankard et al. [260] Manual Researchers 1 196,834 Published algorithms

Weiler et al. [274] Published algorithms, trivial baselines

Weiler et al. [275] Published algorithms, trivial baselines

Zhou et al. [297] Manual 2 Published algorithms

Adedoyin-Olowe et al. [2] Manual Researchers 3 None

Buntain et al. [28] 3 809,426–1,166,767 Published algorithms

Hua et al. [99] Published algorithms
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Publication Evaluation Annotators Datasets Tweets Baseline

Liu et al. [129] Semi-automatic 357,000,000 Published algorithms, parameter tweaking

Preoţiuc-Pietro et al. [207] Semi-automatic External 3 2,500,000–150,000,000 Published algorithms, parameter tweaking

Weiler et al. [276] Automatic Published algorithms

Zhou et al. [299] None None

Akhtar and Siddique [6] 1 58,000 Parameter tweaking

Edouard et al. [56] Automatic 2,342–43,000,000 Published algorithms

Hammad and El-Beltagy [91] Manual Researchers None

Li et al. [126] Semi-automatic External Published algorithms

Liu et al. [130] Manual External Published algorithms

Mamo and Azzopardi [142] Manual Researchers Published algorithms

Nolasco and Oliveira [184] Manual 1 432,975 None

Tonon et al. [252] Manual Researchers 195,700,000 None

Weiler et al. [277] Manual Researchers Published algorithms, trivial baselines

Zhou et al. [298] Manual 2 Published algorithms

Chen and Terejanu [34] 3 Parameter tweaking

Hossny and Mitchell [95] Published algorithms

Huang et al. [101] Semi-automatic External 5 218,313–345,335 Published algorithms

Meladianos et al. [162] Semi-automatic External 20 41,539–973,985 Trivial baselines

Petroni et al. [198] None 25,000 None

Choi and Park [41] Automatic 3 Published results

GabAllah and Rafea [73] Manual Published algorithms

Hasan et al. [93] Manual External Published algorithms

Mele et al. [163] Manual External 80,134 Published algorithms

Pradhan et al. [206] Manual External 3 1,653–24,667 None
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Publication Evaluation Annotators Datasets Tweets Baseline

Saeed et al. [226] Automatic 3 124,524–2,335,105 Published results

Weiler et al. [278] Automatic Published algorithms

Farnaghi et al. [61] Automatic 1 Parameter tweaking

George et al. [76] Manual Researchers 203,519 Published algorithms, trivial baselines

Hettiarachchi et al. [94] Semi-automatic Researchers 99,995–174,498 Published algorithms, parameter tweaking

Mamo et al. [146] Manual Researchers 6 63,891–303,982 Published algorithms

Zhang et al. [292] Automatic Published algorithms, trivial baselines

Di Corso et al. [50] Automatic 6 60,005 Published algorithms, parameter tweaking

Kolajo et al. [114] Automatic 82,887 Published algorithms

Table A.2: A review of TDT evaluation methodologies on Twitter, including analyses of the TDT components in EMM ar-
chitectures. We only filled in the data when the authors made their approaches explicit. Moreover, we excluded from any
calculations the number of datasets used in unspecified TDT tasks, which detect breaking news from general streams and thus
rarely require more than one dataset.
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Figure A.1: On Twitter, journalists often mix opinions with factual observations. In the
tweet above, French football expert Jonathan Johnson thought PSG could count them-
selves lucky for Gueye’s goal because performance had been poor.

human annotators. 14 (17.72%) other semi-automatic methodologies require, at least, a
manual effort to compile a ground truth compatible with an automatic evaluation. Of
the remaining publications, only 11 (13.92%) perform a purely-automatic analysis.

Despite the prevalence of manual evaluations, constructing the ground truth or an-
notating the outputs of algorithms manually still requires considerable efforts [225]. Of-
ten, the financial costs of engaging neutral annotators force researchers to annotate the
output themselves; in 19 out of 52 manual or semi-automatic evaluations (36.54%) in
our survey, the authors labelled the outputs themselves. One (1.92%) other study by
Gu et al. [86] engaged both the researchers and two external annotators. The efforts
weigh heavy on research, but more importantly they distract from more discreet yet
equally-consequential challenges.

The indirect effects of manual evaluations

Manual evaluations on Twitter feel conspicuously unscalable [274], but they cause other,
more obscure problems too. For instance, the TDT community rarely evaluates algo-
rithms directly. Feature-pivot methods only produce bursty terms with little context
about what happened [5; 96]. Volume-based approaches provide even less context:
spikes but not what prompted them [28; 97]. Therefore annotators turn to human-
readable summaries generated by usually-trivial summarisation algorithms. As a result,
research often only evaluates algorithms indirectly, through summaries.
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Manual evaluations also limit the scope of the analyses. Normally, researchers only
present results for one empirically-set configuration of the algorithm. The compro-
mise appears understandable; researchers cannot configure an algorithm experimen-
tally because each set-up entails an additional daunting manual evaluation. Only 19
(24.05%) studies compared different configurations of their own algorithms, and just
eight (10.13%) of those publications compared their algorithms with other baselines
from literature. Empirically-set parameters prevail.

Parameters do not only have to be set for novel algorithms but for baselines too.
Away from TDT literature, Keogh et al. [109] illustrated the dangers of empirical set-
tings; a previous study, which experimented with too few configurations of the baseline,
wrongfully claimed improvements. In TDT literature, George et al. [76] evaluated the
baseline with 21 different configurations to identify the best settings but had to limit the
evaluation to only a small sample of topics.

Similarly, non-automatic evaluations normally consider few datasets. While the me-
dian number of corpora did not differ greatly, semi-automatic and automatic evalua-
tions generally permitted the use of more datasets. Manual evaluations in our survey
used, on average, 5.95 corpora (n = 20), whereas semi-automatic (n = 8) and automatic
(n = 6) evaluations averaged 6.75 and 13.00 corpora respectively. The small number of
datasets in manual evaluations is not a negligible factor. Fewer datasets implies repre-
senting fewer scenarios, which consequently makes it difficult to gauge the reliability
and generalisability of results [157].

Human error and bias

Research rarely broaches the subject of human error and human bias. Weiler et al. [274]
acknowledged curtly that manual evaluations “might suffer from human error or bias”,
and Panagiotou et al. [191] attributed subjectivity to the nature of manual evaluations.
However, the absence of a frank conversation on human error and bias does not absolve
manual evaluations of subjectivity. On the contrary, if research cannot decide on what
constitutes a domain term or agree on a definition of events, then human bias and error
cannot but exist in TDT evaluations.

The prime example of subjectivity appears in an experiment by Allan et al. [11],
and Swan and Jensen [243], an early exercise in formalising TDT’s manual annotations.
As part of the evaluation, the researchers of the two linked studies recruited four stu-
dents to judge how many topics an algorithm’s features captured. The four students
rarely agreed. In fact, the experiment ended with such low inter-annotator agreement
(kappa = 0.233) that the authors could not draw any reliable conclusions.
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The presence of human error and bias does not surprise us. What surprises us is the
lack of effort by TDT research to minimise it. In fairness, it is difficult to come up with
rules to minimise subjectivity; Sakaki et al. [227] mentioned that annotators sometimes
struggled to decide whether a tweet discussed an earthquake. In other cases, a fine
line separates an opinion from an observation. The tweet in Figure A.1, for example,
describes a topic, makes an observation and expresses an opinion all at once.

Notwithstanding the difficulties, few TDT researchers even attempt to annotate out-
put systematically. Chakrabarti and Punera [33] had human annotators label tweets as
describing a topic, an observation or something else, and Zhou et al. [297, 298] sought
the ‘four Ws’ in summaries. Elsewhere, the rules written by Hsieh et al. [96] come off
as arbitrary: a topic is either a popular tweet or a group of keywords, but only if the
authors could decipher a meaning. Few others offer any system for manual annotation.
Research implicitly accepts subjectivity as it leaves labelling to the annotators’ discretion
or, more frankly, bias.

A.2 | The futility of automatic evaluations
In theory, a TDT evaluation should not be any more complex than the analyses from
the research area’s pilot study [7]: a document—a news report or a tweet—either be-
longs to a topic or to an event, or it does not. Today, however, those early evaluations
survive only as an ideal case-study, a relic out of reach for modern TDT: a comparison
of configurations and algorithms with well-defined metrics and minimal human effort,
but permitted, in the first place, by a shared dataset.

Twitter’s restrictions on data sharing rendered the TDT pilot study’s automatic eval-
uations obsolete. As we explain in Appendix A.3, Twitter limits data sharing, making
it unreasonable, infeasible and unscalable to annotate datasets for one-time use. In-
stead, the research community improvised and sought a different automatic evaluation
methodology tailored to Twitter. The principal motivation was the convenience of min-
imising the manual efforts, but convenience could also lead to sounder evaluations.

In this section, we identify and explore two broad automatic evaluation method-
ologies in TDT: classification and keyword analyses. The research community has not
widely-adopted either automatic methodology, an indication of the intrinsic difficulty
of TDT’s evaluations. In the rest of this section, we discuss the virtues of classification
and keyword analyses, and explore the reasons behind their low adoption.
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Publication Evaluation Type Annotators

Choudhury and Breslin [42] Semi-automatic Document classification External

Popescu et al. [205] Semi-automatic Window classification

Petrović et al. [200] Semi-automatic Document classification External

van Oorschot et al. [265] Automatic Window classification

Aiello et al. [5] Semi-automatic Keyword matching Researchers

Shen et al. [234] Semi-automatic Window classification External

Chierichetti et al. [40] Automatic Window classification

Corney et al. [44] Semi-automatic Keyword matching Researchers

De Boom et al. [49] Semi-automatic Document classification Researchers

Meladianos et al. [161] Semi-automatic Window classification External

Liu et al. [129] Semi-automatic Other

Preoţiuc-Pietro et al. [207] Semi-automatic Document classification External

Weiler et al. [276] Automatic Other

Edouard et al. [56] Automatic Document classification

Li et al. [126] Semi-automatic Document classification External

Huang et al. [101] Semi-automatic Window classification External

Meladianos et al. [162] Semi-automatic Window classification External

Choi and Park [41] Automatic Keyword matching

Saeed et al. [226] Automatic Keyword matching

Weiler et al. [278] Automatic Document classification

Farnaghi et al. [61] Automatic Validity indices

Hettiarachchi et al. [94] Semi-automatic Keyword matching Researchers

Zhang et al. [292] Automatic Keyword matching

Di Corso et al. [50] Automatic Validity indices

Kolajo et al. [114] Automatic Document classification

Table A.3: A review of semi-automatic and automatic TDT evaluation methodologies
on Twitter. We only filled in the data when the authors made their approaches explicit.

Classification
The obvious route for an automatic evaluation methodology in TDT pointed to clas-
sification. Twitter’s large datasets, however, made traditional classification, with la-
belled training and test sets, prohibitively expensive, more so than a manual evalua-
tion [260; 277]. A few, eight of 25 (32.00%) semi-automatic or automatic methodolo-
gies, still obstinately annotated a selection of tweets, if not whole corpora. Many others
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sought creative alternatives.

If annotators could not label all tweets, they could, at least, label time windows.
Seven of 25 (28.00%) studies in Table A.3, had human judges annotate time windows, or
aligned the timelines produced by their TDT algorithms with updates from minute-by-
minute reports: a precise topic is one that coincides with a ground truth topic [101; 234;
265]. Literature thus found a way to give traditional classification a modern veneer.

Classification may be elegant, but it has too narrow a scope. Classification lumps
noise, spam and opinions with observations, statistics and other newsworthy but non-
enumerable topics. Every topic has to fit in a rigid two-by-two confusion matrix, but
non-enumerable topics with a subjective importance [161; 162], like injuries and missed
chances in football matches, do not fit neatly. Some refused to evaluate such non-
enumerable topics [161; 162]. Others filtered them manually, still subjectively [101; 234].

Even ignoring the rigidity of the confusion matrix, questionable assumptions under-
mine classification. Classification assumes that the ground truth is complete, an unre-
alistic expectation. In our evaluation in Chapter 5, The Guardian’s minute-by-minute
report failed to mention two yellow cards for Arsenal’s Shkodran Mustafi and Bukayo
Saka against Southampton. Reports cannot include every interesting statistic and obser-
vation.

Classification also assumes that the ground truth can be aligned with the TDT algo-
rithm’s timeline. The ground truth might report a topic late or more than once, or the
algorithm could detect the topic a few minutes late. Even the slightest delays prolifer-
ate errors [265]. The only alternative is projecting topics onto the ground truth manu-
ally [101; 162]. Yet in the process, TDT research submits to the same manual efforts that
automatic evaluation methodologies sought to eliminate.

Nonetheless, classification’s major flaw lies in how it only evaluates accuracy. One of
ELD’s clusters in Chapter 5 collected opinions on Manchester United’s Harry Maguire.
The cluster appeared accurate because it coincided with a ground-truth topic, but it
missed altogether what provoked the scorn: a rash yellow card. As the TDT community
looked for a suitable automatic evaluation methodology, it disregarded the research
area’s full scope: to detect and track but also to describe [191]. Keyword evaluations,
which we discuss next, partially overcame this hurdle.

Keyword evaluations
Keyword evaluations simultaneously measure a TDT algorithm’s ability to detect and
describe topics. To the best of our knowledge, Lee et al. [124] were the first to propose
keyword evaluations, although it was Aiello et al. [5] who popularised the approach.
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Topic Keywords [5] YAKE! [30]

Chelsea 1 - 0 Liverpool Ramires
scores a goal from inside the box to
the bottom left corner of the goal.

Ramires, goal, 1-0, Chelsea, score,
yes

Chelsea, Liverpool, Ramires, goal,
scores

Newt Gingrich: “Thank you Geor-
gia! It is gratifying to win my home
state so decisively to launch our
March Momentum”

Newt, Gingrich, thank, Georgia,
March, Momentum, gratifying

Gingrich, Georgia, Newt, Momen-
tum, March

Republican Party keeps control of
the House of Representatives

GOP, Republican, House, control Representatives, Party, House, Re-
publican, control

Table A.4: Keyphrase extraction can replace manual annotation in keyword evaluations.
Above, we set YAKE! [30] to extract the five highest-scoring unigrams from each topic’s
description. Its output correlates closely with the annotations by Aiello et al. [5].

Keywords evaluations calculate precision and recall by comparing a feature-pivot ap-
proach’s bursty keywords with a set of ground truth terms, like the ones shown in Ta-
ble A.4. Nowadays, several re-use the dataset that Aiello et al. [5] built [41; 226] or
propose their own [44].

Keyword evaluations do not eliminate human error and bias entirely, at least in the
way researchers conduct them. Aiello et al. [5] constructed the ground truth themselves
and employed a journalist as an editor.2 Hettiarachchi et al. [94] followed with seem-
ingly far less rigour. The occasionally vague ground truth, with keywords such as wrong,
stupid and awful, do not assuage our worries. On the contrary, it confirms our concerns
that researchers could reverse-engineer the ground truth from the algorithm’s output to
embellish results. In the end, not only did Aiello et al. [5] and Hettiarachchi et al. [94]
repeat manual efforts, but they also introduced subjectivity.

In practice, we might find ways to automate a part of the process. Modern keyphrase
extraction algorithms, like YAKE! [30], could substitute for humans, as shown in Ta-
ble A.4, and with none of the manual efforts or subjectivity. However, not even YAKE!
could solve the other, more subtle challenges of keyword-based evaluations.

Keyword evaluations only loosely indicate the quality of a feature-pivot technique.
Like in classification, keyword evaluations do not compensate for an incomplete ground
truth: missing observations, statistics and other topics. More critically, keyword eval-
uations do not cater to lexical variety; Aiello et al. [5] chose goal and score to describe
Ramires’ goal in Table A.4, but you could also say that Chelsea has taken the lead or
that Ramires put Chelsea ahead. The only reliable manner to adapt to the richness of
language is to return, again, to manual evaluations.

2Aiello et al. [5] did not describe the dataset annotation in the paper itself, but Professor Aiello explained
the annotation process in correspondence with us.
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The prevalence of manual evaluations is not the result of some hidden virtue. Rather,
the prevalence of manual evaluations points to an absence of adequate alternatives.
Nevertheless, the futility of the TDT community’s automatic evaluations and the way
they always fail to replace manual analyses is reminiscent of another research area: sum-
marisation.

The summarisation community also struggles to evaluate. Summarization literature
complements the objective measures of automatic evaluations, most prominently BLEU
and ROUGE, with the subjective measures of manual evaluations: clarity, cohesion and
coverage [58]. It balances the objectivity of automatic evaluations with the reliability
of manual evaluations. Just like the summarisation community, TDT researchers must
accept the limits of automatic evaluations and the difficulties of manual evaluations,
and strive to make both more reproducible. We address reproducibility next.

A.3 | The quandary of reproducibility
While conducting this survey, we often struggled to understand evaluation procedures.
We struggled to understand what data researchers used, when a ground truth topic
became “of interest to fans” [44] or what constituted a precise judgement, and how one
algorithm measured against another. Our experience confirmed what Weiler et al. [277,
278] observed before us: TDT research is marked by an abundance of ad hoc studies [277]
and a lack of reproducible research [278].

The flaws of manual and automatic evaluations have become a well-accepted fact,
but they cannot be allowed to grow into an excuse for irreproducible evaluations. This
section concludes the survey with a study on reproducible research in TDT. Our study
develops previous work by Weiler et al. [278], but instead of proposing a new evaluation
methodology, we suggest ways how research can strengthen existing ones through four
aspects: reproducible data, ground truth, metrics and algorithms.

Reproducible data
At the root of all problems to evaluate TDT algorithms lies Twitter’s data sharing pol-
icy [254]. If studies on particular tasks, such as earthquake detection [55; 225], could
share a dataset, they could annotate and share a common ground truth, like early re-
search did. However, researchers rarely share tweet datasets [45], and when they do,
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Twitter’s policy only lets them share tweet IDs, not the full datasets. Researchers seeking
to re-use datasets must download corpora anew, hindering comparative analyses [191].

Setting aside the changing tweeting habits—more noise [161], new features, and
looser restrictions on tweet length—downloading datasets results in smaller corpora,
without unavailable tweets. Twitter might temporarily suspend or permanently ban an
account, or a user might make their account private or delete individual tweets. Every
time, the dataset grows smaller and less comparable. Crow [45] aptly refers to these
changes as dataset “rot”, and the effects can be tremendous. It took Weiler et al. [277]
a week to download just a sample of a dataset published by McMinn et al. [157] four
years earlier. By then, only 40% of the sample remained.

Naturally, the scale of missing tweets undermines reproducibility [276]. Perhaps
the difference between the original and downloaded datasets could be justifiable, to an
extent, if the downloaded data remained representative of the original. To the best of
our knowledge, no TDT study has ever challenged this assumption. On the contrary, the
community rests blindingly on it, as proven by the large number of studies that re-used
the datasets of Aiello et al. [5] and McMinn et al. [157]. The assumption is, unfortunately,
deeply flawed.

To test this hypothesis, we re-downloaded four datasets that we had collected ear-
lier, as we describe in Appendix D.5. Between one day and almost three years had
passed since we first downloaded the datasets, as shown in Table A.5. When we com-
pared the tweets we could retrieve with those we could not, we found that the available
tweets contained around 17.44% fewer mentions and 44.14% fewer URLs than unavail-
able tweets. Retweets were less likely to be available than the typical tweet, and on
average, we could not retrieve 88.47% of tweets mentioning the word stream, even after
just three months.

The average author changed too. Except for the match between Liverpool and
Atlético de Madrid, which we downloaded again after one day, accounts that posted
retrievable tweets were between one and two years older than accounts whose tweets
had been deleted. They were also far less likely to have empty profile descriptions and
far more likely to be popular; in the match between Crystal Palace and Chelsea, authors
of retrieved tweets averaged five times as many followers as authors of deleted tweets.
Moreover, although we could not retrieve between 12.61% and 35.78% of data, between
91.59% and 95.62% of tweets by verified authors always remained available.

The patterns did not distribute uniformly within events either. Tweets published just
before or just after the match started had a higher likelihood of becoming unavailable,
as shown in Figure A.2. On average, only 69.45% of tweets published within the first
15 minutes of a match remained available, as opposed to 81.27% of tweets in the last 15
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Download date Tweets

Original Downloaded Original Downloaded (% available)

Crystal Palace - Chelsea 30 Dec 2018 29 Aug 2021 63,891 41,028 (64.22%)

Southampton - Arsenal 25 Jun 2020 29 Aug 2021 97,874 70,656 (72.19%)

Turkey - Italy 11 Jun 2021 30 Aug 2021 109,888 90,543 (82.40%)

Liverpool - Atlético de Madrid 3 Nov 2021 4 Nov 2021 107,607 94,040 (87.39%)

(a) Statistics about the original datasets and the same datasets downloaded anew after a period
of time. The re-downloaded datasets shrunk considerably due to tweets becoming irretrievable.

Change between unavailable and available tweets

Crystal Palace
Chelsea

Southampton
Arsenal

Turkey
Italy

Liverpool
Atlético de Madrid

Average account age 28.62% 38.48% 46.49% 0.77%

Average number of account followers 420.83% 338.50% 30.97% 391.41%

URLs per tweet -22.85% -26.29% -57.62% -69.80%

Mentions per tweet -6.78% -12.00% -21.16% -29.80%

(b) The change in mean values of selected attributes between the sets of unavailable and avail-
able tweets. Positive values mean that the value was higher in the available tweets than in the
unavailable tweets, and vice-versa. For example, in the match between Turkey and Italy, the
average account was 46.49% older for available tweets than for unavailable tweets.

Percentage of available tweets

Crystal Palace
Chelsea

Southampton
Arsenal

Turkey
Italy

Liverpool
Atlético de Madrid

All tweets 64.22% 72.19% 82.40% 87.39%

Tweets by verified authors 91.59% 93.28% 91.54% 95.62%

Tweets by new accounts (age < week) 42.55% 48.37% 57.73% 69.49%

Tweets by authors with no description 56.23% 68.42% 73.77% 88.85%

Tweets by authors with no followers 48.95% 36.30% 38.19% 29.03%

Retweets 59.89% 66.71% 78.93% 79.66%

Tweets containing URLs 60.24% 67.87% 71.47% 68.57%

Tweets mentioning stream 7.33% 11.71% 9.05% 18.02%

(c) The percentage of available tweets calculated for selected groups with particular attributes.
For the downloaded dataset to be representative of the original dataset, the percentage of avail-
able tweets in each group should be approximately equal to the percentage of all tweets that
were still available. Many meaningful metrics change drastically.

Table A.5: Tweet datasets self-sanitise over time. Tweets containing spam-related fea-
tures, like URLs, are less likely to remain available, even a month after they were pub-
lished, while most tweets by verified authors remain retrievable for years.

minutes. Tweet availability fell when the use of the word stream rose, and rose when the
use of the word stream fell (Pearson correlation coefficient: r = −0.9622).
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Figure A.2: Unavailable tweets do not distribute uniformly during events. Tweets pub-
lished fifteen minutes before or after a football match starts tend to become unavailable
much more frequently than later tweets. During this period, spam bots tweet links to
streams, which Twitter promptly removes.

The changes to the datasets did not occur gradually. 24 hours after the match be-
tween Liverpool and Atlético de Madrid, 12.61% of tweets had already become unavail-
able. By then, the average number of URLs and mentions in tweets had plummeted.
Twitter had removed 81.98% of tweets mentioning the word stream after one day, and
the figure rose to 86.13% after one week. 14.86% of all tweets had become unavailable
after just seven days, and yet, in 2019, Choi and Park [41] and Saeed et al. [226] were
still using the dataset that Aiello et al. [5] had collected seven years earlier.

These observations are anything but incidental. The average irretrievable tweet rep-
resents an archetype of the noisy content for which we configured spam filters in our
previous works [142; 146]. The conclusion is unavoidably linked with Twitter’s zero-
tolerance policy regarding spam [255]. The tweets that cannot be retrieved are more
likely to be spam and pollute the data; those that can be retrieved are more likely to be
reliable. In short, as time goes by, datasets sanitise themselves.

To confirm our findings, we downloaded labelled datasets that Waseem and Hovy
[273], and Founta et al. [69] had made available. The two datasets, both collected to
study the characteristics of spam and abusive tweets, were labelled manually to iden-
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Download date Tweets

Original Downloaded Original Downloaded (% available)

Waseem and Hovy [273] 7 Apr 2013–7 Jul 2015 Oct 29, 2021 16,907 10,365 (61.31%)

Founta et al. [69] 30 Mar 2017–9 Apr 2017 Oct 28, 2021 99,799 53,641 (53.75%)

(a) Statistics about the hate speech detection datasets collected by Waseem and Hovy [273] and
Founta et al. [69], and the same datasets downloaded anew after a period of time. Their re-
downloaded datasets shrunk considerably too due to tweets becoming irretrievable.

Available tweets from Waseem and Hovy [273]

All tweets 61.31%

Normal tweets 66.11%

Racist tweets 0.61%

Sexist tweets 80.25%

(b) Almost every single racist tweet in the
dataset collected by Waseem and Hovy [273]
had become unavailable by the time we down-
loaded their dataset.

Available tweets from Founta et al. [69]

All tweets 53.75%

Normal tweets 64.10%

Abusive tweets 34.35%

Hateful tweets 41.92%

Spam tweets 55.61%

(c) Abusive, hateful and spam tweets in the
dataset collected by Founta et al. [69] were more
likely to have been deleted than normal tweets.

Table A.6: Tweet datasets self-sanitise not just in event domains. The labelled datasets
collected by Waseem and Hovy [273] and Founta et al. [69] clearly demonstrate how
abusive and spam tweets are more likely to become unavailable than normal tweets.

tify different types of noise. Years after the authors first collected the datasets, around
two-thirds of normal tweets remained available, as shown in Table A.6. In contrast,
Twitter had eliminated almost every single racist tweet that Waseem and Hovy [273]
had collected,3 and the majority of abusive and hateful tweets that Founta et al. [69] had
collected. Spam was 8.49% less likely than normal tweets to remain available [69].

Apart from characterising noise, our findings have two implications. First, the self-
sanitising behaviour of datasets rejects the assumption that underpins so much TDT
research. As Twitter deletes spam, trustworthy tweets by verified or popular authors
increasingly occupy a larger share of the dataset, so it would only be natural for preci-
sion to increase. In turn, our findings cast doubts on so many studies’ outcomes. How
much of the improvements over the results that Aiello et al. [5] achieved could Choi and
Park [41] attribute to design? How much to time? Re-using datasets only gives a false

3The fact that four-fifths of all sexist tweets in the corpus collected by Waseem and Hovy [273] remained
available reflects more on the annotation process than on Twitter’s moderation. Waseem and Hovy [273]
annotated the dataset themselves alongside an external annotator and admitted that they interpreted sex-
ism differently from the annotator; the authors labelled any criticism towards women as sexist, whereas
the annotator only flagged flagrant examples of sexism. In fact, 85% of disagreements occurred in the sexist
label, many over opinions and other genuine, non-sexist criticism of women.

210



A.3. The quandary of reproducibility

sense of reproducibility: downloaded datasets do not faithfully reproduce the original.

Second, since we know that the missing tweets mainly comprise noise, we can envis-
age solutions to replace the missing tweets with synthetic noise. It is difficult to replace
topical tweets because the algorithm would have to understand a topic’s complex struc-
ture: Who is involved, What happened, Where and When. Conversely, noise, especially
spam and advertisements, does not depend on the event. Noise could be literal gibber-
ish without affecting its purpose, to be noisy, and a TDT algorithm’s relationship with
it, to avoid it. Deleted tweets indicate where noise might have once existed, and where
we might re-introduce it. We leave the task of replacing missing noise for future work.

Synthetic datasets have appeared briefly in TDT research. Although unaware of the
cleansing of datasets with time, Weiler et al. [278] ultimately proposed a new type of
dataset: the artificial stream. The artificial stream is a statistical distribution modelled
over background terms, and into which the researcher injects events by defining top-
ical terms. The solution is a well-intended and reproducible concept, even though it
caters only to feature-pivot techniques—it injects terms, not tweets. More glaringly, the
artificial stream does not solve other problems.

The artificial stream does not eliminate subjectivity; it merely shifts bias from the an-
notations to the dataset. Does the researcher choose the quiet setting of an unimportant
match, or the erratic, noisy environment of a cup final? A researcher could still be selec-
tive with collected datasets [109], but the artificial stream gives the user near-absolute
control over the simulated behaviour. Moreover, synthetic data does not capture the
nuances of Twitter’s behaviour, like opinions or the event shadow [121]. Neither is it
unthinkable that the artificial stream could be reverse-engineered to optimise results.

No straightforward solution exists to make datasets fully-reproducible, but TDT lit-
erature has ample room to improve how it describes corpora. We suggest that research
describes any notable characteristics of the event that might prejudice performance.
A quiet goalless draw would logically generate less noisy discussions than a football
match in which a fight breaks out among teammates [236]. In this survey, we also ob-
served researchers failing to declare how they collected datasets [5; 161; 162], or how
much data they collected [5] or downloaded from an existing dataset [41]. The TDT
community should, at least, be more transparent about its data.

Reproducible ground truth
As a research area revolving around news, TDT literature has no difficulty finding
ground truth. Whether detecting earthquakes [55], discovering worldwide breaking
news [260] or following specific events [161; 162], researchers could always rely on
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widely-available and reliable reporting in the news media. Generally, evaluations har-
ness the widespread coverage for robust and reproducible ground truth.

In football, for example, matches enjoy detailed media coverage. In turn, media
coverage transforms into high-quality, accessible ground truth [28]. Sports gained pop-
ularity in TDT precisely because they allow researchers to share a common domain and
measure the recall of objective, easily-enumerable topics. Almost all analyses on foot-
ball matches evaluate the recall of goals [146; 162], like analyses on American football
games evaluate the recall of touchdowns [33; 296].

Of course, not every topic can be enumerated as easily. A goal is unquestionably a
goal, but a weak shot might easily be misconstrued as a misplaced pass or cross. Injuries,
missed chances and offsides can all be interesting, but their presence in the ground truth
depends on the reporter’s subjective judgement [161; 162]. Some researchers ignored
subjective topics [161; 162], while in our previous work, we only considered them when
measuring precision [146].

Still, at times research finds ways to avoid scrutiny. Aiello et al. [5], Corney et al.
[44] and others [96; 101; 150] constructed the ground truth of sports events manually
from interesting or significant topics. Neither explained what makes a topic interesting
or significant. Others sought objective topics but with fickle reasoning. Aiello et al. [5]
only retained “some key bookings” from football matches. Meladianos et al. [161, 162],
who followed Nichols et al. [183], looked for the start and end of the first half, but only
the end of the second half: did the second half kick-off prove more problematic for the
TDT algorithm to capture?

Creative interpretation of the ground truth harms reproducibility. It turns what
should be an objective reference into subjective annotation thinly-veiled as ground truth.
TDT researchers can, however, make the ground truth more reproducible, if only by
defining it clearly and objectively, without dubious manipulations. We suggest, in
particular, that evaluations follow recall-based analyses on easily-enumerable develop-
ments: goals in football matches, touchdowns in American football, electoral victories
in politics. At least, such analyses permit comparisons among algorithms, even from
afar, across events and papers.

Reproducible metrics
Before Weiler et al. [278] proposed the artificial stream, they proposed standardised
TDT metrics [274; 275]. Two metrics automated the evaluation of throughput and re-
dundancy, but three others tied the metrics closely with the ground truth. Weiler et al.
[274, 275]’s solution: calculate precision and recall by performing look-ups on Google,
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or in the archives of Bloomberg, the New York Times and Reuters, or by mapping events
to DBpedia concepts.

Like in automatic evaluations, Weiler et al. [274, 275] made some compromises. The
three metrics only addressed a particular niche, popular events in unspecified TDT, and
forfeited reliability. More importantly, Weiler et al. [274, 275] reckoned with the futility
of adapting IR’s simple metrics to a complex domain. In IR and early TDT research, a
document was either precise or imprecise, recalled or missed, but on Twitter, the two
metrics proved reductive.

On Twitter, few topics are entirely precise or entirely imprecise. Spam and adver-
tisements clearly constitute noise [206], but other topics lie somewhere in-between. In
such cases, the annotator still has to decide, subjectively, which label to assign: precise
or imprecise. Therefore in the end, the judgement on a topic’s validity still depends on
the annotator’s interpretation of what makes a topic precise [161; 162]. In this section,
we focus on two types of topics that we could neither easily call precise nor imprecise:
opinions and redundant topics.

TDT literature criticises and implicitly rejects any opinionated topic, but opinions
have a place in event timelines. McMinn et al. [157] argue that opinions define Twit-
ter and make the social network a popular choice for event tracking. Elsewhere too, in
the news media, subjectivity plays a role in event reporting. The BBC’s football match
timelines interpose punditry with reporting, and The Guardian’s minute-by-minute ac-
counts exude personality. Responding to questions on The Guardian’s coverage of the
Russian invasion of Ukraine in February 2022, Chris Moran, the newsroom’s Head of
Editorial Innovation, explicitly recognised the role of opinions in journalism:

Explainers, visual journalism and opinion pieces are most obviously crucial
[to give context for developments and to explain the fundamental concepts].
... The ‘What we know so far’ format is of particular use in a story that moves
this quickly and which can become overwhelming very fast. Opinion’s role
here is also critical. It’s really telling that opinion in this context shows deep
engagement and this speaks to the value it has in explaining and contextu-
alising in interesting ways.

— Chris Moran for the Reuters Institute for the Study of Journalism [242]

In fact, nowadays, most news media publishes opinion pieces or even mixes opin-
ions with facts. 38% of respondents to a survey by Newman [180], holding various roles
in the news media, actively encouraged journalists to share their opinions alongside
news, a high figure for an industry that traditionally took pride in objectivity. Evidently
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opinions reserve some value, unlike spam and advertisements, but the TDT commu-
nity’s narrow definition of precision still bundles opinions with regular noise.

While TDT research criticises opinions, it avoids altogether discussing redundancy,
or detecting duplicate topics [277]. Not even Meladianos et al. [161], who designed an
algorithm to minimise repeated topics, addressed redundancy in their evaluation. Yet
in the context of the event shadow [121], or how discussion about key topics persists for
a long time, it is unreasonable to expect an event tracking algorithm to have no redun-
dancy. On the contrary, Weiler et al. [277], who also criticised the lack of discussion on
redundancy, demonstrated how the high precision scores conceal high rates of duplicate
topics.

TDT literature on Twitter makes a convenient error in ignoring redundancy. By def-
inition, redundant information runs contrary to the research area’s first task, first-story
detection, and thus brings no value to TDT. Moreover, by ignoring redundancy, the re-
search community disavows the second task: topic tracking. Consequently, researchers
should reject redundancy as unequivocally as they reject noise.

Clearly, precision cannot describe the range of topics captured by modern TDT meth-
ods. Nevertheless, we do not mean that the research community should abandon preci-
sion and recall. We only mean that TDT evaluations should adopt other, more nuanced
measures: interpretations that capture the distinct character of social media content.

Weiler et al. [274, 275]’s first two metrics, throughput and redundancy, represent a
positive step towards more expressive metrics. With redundancy, Weiler et al. [274, 275]
acknowledged the difference between redundant and precise topics. Redundant topics
are neither precise nor imprecise and do not depend on the whims of the annotators;
redundant topics are simply different from precise and imprecise topics. In the same
way, opinions or opinion-based topics differ from traditional metrics.

TDT evaluations would be richer, more objective and, ultimately, more reproducible
if the community did not rely on an oversimplified measure of precision. We suggest
that the TDT community adopts more expressive metrics than precision by distinguish-
ing between and reporting about the types of captured topics: redundant, noisy, opin-
ionated and true topics. Consequently, like with recall, the community can compare the
precision of different algorithms in a limited form.

Reproducible algorithms
Without shareable datasets, common ground truth and a singular interpretation of the
metrics, TDT remains without an established state-of-the-art [45]. Meaningful com-
parisons between systems appear scarcely in literature [274; 277]. Not even Meladi-
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Publication Language Interface Domains GitHub repository

Guille et al. [88] Java 8 GUI Unspecified AdrienGuille/SONDY

Ifrim et al. [102] Python 2 CLI Finance, politics, war heerme/twitter-topics

Van Canneyt et al. [264] Java CLI Finance, politics, war svcanney/twittertopics

Hettiarachchi et al. [94] Python 3 CLI Football, politics HHansi/Embed2Detect

Mamo et al. [146] Python 3 CLI Football NicholasMamo/eld-data

Table A.7: TDT literature has very few open-source algorithms. Practical considerations,
such as needing an algorithm designed for a particular event domain, whittles down the
choice of baselines even further.

anos et al. [162], who designed an improved algorithm as a follow-up to their previous
work [161], compared the new technique with its predecessor.

Of course, most TDT publications compare novel techniques with some form of a
baseline; only 22 (27.85%) of the 79 studies in our survey do not. However, the compar-
isons allow us to draw few meaningful conclusions about the quality of novel methods
when compared to other techniques. Meladianos et al. [161, 162], like many others,
proposed a simple baseline, and 11 other studies (13.92%) presented only results from
different configurations of the same algorithms.

In fairness, the scarcity of baselines in TDT research seldom seems a self-serving
choice. Like Weiler et al. [277, 278] before us, we struggled to find authors who shared
their source code—just five, including ourselves. In reality, practical considerations
whittle down further the selection in Table A.7. Some implementations use obsolete
programming languages, or impose data or software requirements. Others have poor
documentation or no easy-to-use interface with which to configure the algorithms. Oth-
ers yet may have been designed around the characteristics of particular event domains,
and do not transfer to the domain under study.

Without open-source systems, researchers struggle to evaluate the relative quality
of novel algorithms or establish a state-of-the-art. Implementing baselines is inconve-
nient [157], bordering on infeasible without clear implementation details. Even minor,
unintended changes could destabilise the algorithm [211; 276]. Instead, researchers of-
ten implement trivial, non-peer-reviewed techniques (11.39%) as basics benchmarks.

Others turn to peer-reviewed algorithms, but normally only to the simple ones from
early TDT research (45.57%). Shen et al. [234] and Huang et al. [101] used a volume-
based method by Marcus et al. [150], simple enough to fit in 33 lines of pseudo-code.
Seven used Petrović et al. [199, 200]’s LSH [5; 93; 114; 126; 129; 158; 207], but every one
of them used the implementation from 2010 [199], not the more complex, improved
version from 2012 [200]. As a result, even the studies that use baselines provide few
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Appendix A. Review: An Apology for TDT’s Manual Evaluations

Principal contributions

■ The most comprehensive review yet of TDT evaluation methodologies

■ Proof that tweet corpora self-sanitise over time, discrediting the re-use of
datasets in the name of reproducibility

■ Proposals to make TDT’s datasets, ground truth, metrics and algorithms more
reproducible

insights into the quality of novel algorithms.

This time, the solution for more reproducible TDT evaluations is more straightfor-
ward: open-source algorithms. In the 2014 SNOW Data Challenge [193], human annota-
tors did not have access to the source code, but they had common datasets and a ground
truth, and clear instructions on how to apply metrics [29; 102; 152; 186; 197; 264]. There
must have been bias, but it must have been applied uniformly too. Such a pristine envi-
ronment is impossible to re-create without shareable data, but open-source algorithms
can substitute.

Raff [211] argues that open-source code alone does not make a paper reproducible;
we see it as a start. If there is going to be human bias in the choice of dataset, ground
truth and interpretation of IR’s metrics, then let annotators use open-source algorithms
to apply bias uniformly to the baselines too. It is our hope that open-sourcing the
NicholasMamo/EvenTDT repository will facilitate the future development and dissemi-
nation of TDT algorithms.

Recap
When Meladianos et al. [162] returned to the “daunting” evaluation from their previous
work [161], they might have felt forced to repeat the experiments. Meladianos et al. [162]
must considered the alternatives but confronted the reality that no automatic evaluation
could replicate the reliability of manual evaluations. In this appendix, we surveyed
TDT literature’s difficulties with manual evaluations and the reasons why none of the
automatic alternatives prevailed by answering the following questions:

■ What challenges does the TDT community face with manual evaluations? The
manual efforts of manual evaluations conceal other unintended consequences on
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Recap

analyses. In Appendix A.1, we explained how manual evaluations also force re-
searchers to evaluate algorithms indirectly and subjectively.

■ How and why did the TDT community’s endeavours towards automatic evalu-
ation methodologies fail? The research area’s approaches to automatic evalua-
tions, namely classification and keyword-based analyses, never replaced manual
evaluations. In Appendix A.2, we argued that TDT’s two automatic alternatives
minimised the manual effort and subjectivity but traded away reliability.

■ How can the TDT community make evaluations more reproducible? The chal-
lenges associated with manual evaluations do not excuse the utter failure to make
results comparable or reproducible. In Appendix A.3, we dispelled the notion
that Twitter datasets are re-usable and suggested how TDT research could make
its datasets, ground truth, metrics and algorithms more reproducible.
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B

Encore
The Benefits of Understanding

In Paris, it is time for Le Classique, the historic rivalry between Paris Saint-Germain and
Olympique de Marseille. Matches between the two French clubs are always a passionate
affair, and not in the romantic ways of Paris. Today, however, the French capital hosts
no ordinary Le Classique: the winner takes the coveted Trophée des Champions. Notwith-
standing the significance of a cup final, you could not sense the fervour in the English-
speaking neighbourhood of Twitter. Ambivalence reigns.

Ambivalence is Twitter’s rule, not the exception. For every popular match, countless
others draw little attention, at least from the English-speaking world. Out of 20 datasets
collected by Meladianos et al. [162] during the 2014 World Cup, the most popular match,
Germany’s infamous battering of Brazil (973,985 tweets), generated more tweets than
the 10 least popular matches combined (967,464 tweets). By all measures, even the least
popular match, between Honduras and Switzerland (41,539 tweets), was a popular one.
Yet while TDT research has always designed algorithms to scale up to popular events,
the community rarely sought to scale down to unpopular events—to be sensitive.

In this appendix, we present what we believe to be event tracking literature’s first
formal study on sensitivity. In our sensitivity analysis, we study how an algorithm’s
performance changes as the number of available tweets decreases. When designing the
novel experimental methodology, we wanted the results to reflect only the algorithm’s
abilities. We wanted to avoid uncertainty. We did not want bias, even unintended bias,
clouding the results: did performance deteriorate because of our choice of events or
because the algorithm really struggles with unpopular events?

To eliminate bias, our experimental methodology fixes the events. We assume that
no material difference exists between how Twitter behaves in popular and unpopular
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events. The assumption allows us to scale down the same six matches from the previ-
ous analyses to simulate real unpopular events without loss of generality. At the end,
however, we also present results from whole datasets of genuinely unpopular events.

We scaled down the six datasets using systematic sampling. Systematic sampling
minimises the sampling error. It faithfully preserves not only what happened and when
but also the event’s characteristics: how Twitter reacted to what happened, whether
with disinterest, subjectivity or noise. In this way, we gradually reduced the corpora
from between 87,717 and 209,132 tweets to 50,000, 25,000 and, eventually, 10,000 tweets.
Table B.1 presents a summary of ELD’s and SEER’s results.

At 50,000 tweets, ELD’s precision increased and its recall decreased. The dimin-
ished datasets transformed ELD’s previously-permissive three-tweet threshold for clus-
ters into a repressive filter. ELD detected topics with caution and so precision increased,
but it paid for it in recall. While the baseline comfortably captured the majority of key
topics—almost all goals and both red cards—it missed many more non-key topics. At
50,000 tweets, ELD’s caution already seemed irrationally excessive, but logically, we
could not lower the cluster threshold any further than 3 tweets.

In contrast, SEER’s precision and recall dropped together. At 50,000 tweets, the
aggregate data about topics became meagre and the shifts in vocabulary unreliable.
SEER’s precision could only decrease, but the volume still spikes and the vocabulary
still shifts with topics in every event, even an unpopular one. Therefore SEER did not
have to trade precision for recall and out-performed ELD’s F-score, although, for the
only time in these analyses, not to a statistically-significant extent (50.69% � 55.54%;
one-tailed paired samples t-test: p = 0.0519).

At 25,000 tweets, ELD’s precision kept increasing and its recall kept decreasing.
Throughout our research, two classes of algorithms ventured close to or below 25,000
tweets: trivial methods [121] and extraction or classification models [136; 265]. ELD rep-
resented neither and, predictably, struggled. Our baseline still detected most of the key
topics comfortably, but overall, it only captured one of every four enumerable topics.
Still, not even aggressive filtering, which by now had raised ELD’s precision to 66.22%,
could reach ELDFiltered’s (71.53%) and SEER’s (71.43%) precision on all data.

Meanwhile, SEER’s precision and recall continued to drop, but more gently, this
time. Its precision remained above ELD’s (66.22% � 68.09%), and so did recall (25.00%
� 45.19%), yielding statistically-significant gains in F-score (36.68% � 54.52%; one-tailed
paired samples t-test: p = 0.0519). Perhaps the most telling sign of sensitivity lies
in Figure B.1: with just 25,000 tweets, SEER only obtained a marginally-lower F-score
when compared with ELD using all data (55.04% � 54.52%).

At 10,000 tweets, ELD faltered completely. Unable to capture more than four topics
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Data Algorithm Topics Precise topics Precision Recall F-score

All tweets ELD 37.83 20.33 53.74% 56.73% 55.04%

SEER 33.83 24.17 △ 71.43% 55.77% △ 62.89%

50,000 tweets ELD 24.50 14.83 60.54% 43.27% 50.69%

SEER △ 27.00 ▲ 17.67 65.43% 48.08% 55.54%

25,000 tweets ELD 12.33 8.17 66.22% 25.00% 36.68%

SEER ▲ 23.50 ▲ 16.00 68.09% ▲ 45.19% ▲ 54.52%

10,000 tweets ELD 2.67 2.50 93.75% 11.54% 19.67%

SEER ▲ 27.17 ▲ 16.50 ▼ 60.74% ▲ 42.31% ▲ 50.34%

(a) With fewer tweets, ELD’s precision increased sharply but recall plunged. SEER’s precision
and recall decreased together but remained at functional levels. The table reports the macro-
average number of topics and F-score, and the micro-average precision and recall. We present a
full breakdown of the results in Tables F.10 and F.11.

Data Algorithm Goals Cards Halves Substitutions

All tweets ELD 87.50% 52.94% 37.50% 57.45%

SEER 93.75% 52.94% 50.00% 46.81%

50,000 tweets ELD 87.50% 23.53% 25.00% 44.68%

SEER 100.00% 41.18% 41.67% ▽ 36.17%

25,000 tweets ELD 75.00% 11.76% 12.50% 19.15%

SEER 93.75% 41.18% ▲ 41.67% △ 31.91%

10,000 tweets ELD 62.50% 0.00% 4.17% 2.13%

SEER △ 87.50% △ 47.06% △ 37.50% ▲ 27.66%

(b) In smaller datasets, ELD still captured key topics, although not as reliably as SEER. Nev-
ertheless, it barely captured any non-key topics. The table reports the micro-average recall for
each type of enumerable topic. We present a full breakdown of the results in Table F.12.

Table B.1: SEER degraded more gracefully than ELD in increasingly-small datasets.
Our understanding-driven algorithm captured many non-key topics even from datasets
with 10,000 tweets. △ and ▲ indicate statistically-significant increases at the 95% and
99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99%
confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) com-
pared to the baseline, ELD, at each stage.

in any match, ELD’s precision increased sharply to 93.75% but recall decreased with
equal surety to 11.54%. ELD captured the majority of goals but only one substitution
and one start to a half, and not a single card. By the end, precision had increased by
40.01% (53.74% � 93.75%) when compared with using all data, but recall had dropped
by 45.19% (56.73% � 11.54%).

SEER degraded more gracefully. Precision and recall still dropped—precision de-
creased by 10.69% (71.43% � 60.74%) and recall by 13.46% (55.77% � 42.31%) when com-
pared with using all data—but not to ELD’s extent. SEER only missed two goals; ELD
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Figure B.1: SEER scales down to the small datasets of unpopular events much better
than ELD. At 25,000 tweets, SEER performed almost as well as ELD on all tweets. In
fact, it remained functional even when we scaled datasets down to 10,000 tweets.

missed six. SEER captured more than a third of halves and more than a quarter of sub-
stitutions; ELD captured one start to a half and one substitution. Finally, SEER captured
almost half of all cards; ELD not a single one. Even at 10,000 tweets, our novel algorithm
remained functional.

Therefore we pushed SEER further. We wanted to test our assumption about how
Twitter behaves in unpopular events and confirm our findings on real events. We
wanted to eliminate the mere possibility of sampling error. Thus, we evaluated SEER at
levels far out of reach for ELD’s document-pivot approach, on datasets that we collected
from real and unpopular events, as shown in Table B.2.

At 10,163 tweets, in the Trophée des Champions [63], SEER performed similarly to
how it had performed with 10,000 tweets. It missed Paris Saint-Germain’s first dis-
allowed goal but captured the next one and the trophy’s three deciding goals. SEER
also captured the event’s progression in the key substitutions, interruptions and missed
chances. Its performance bore a clear resemblance to its own results on the simulated
datasets with 10,000 tweets, both in precision (60.74% � 61.90%) and in recall (42.31% �
45.83%).

At 7,943 tweets, in the match between Parma and Milan [151], SEER performed with
the assuredness of an algorithm processing much larger datasets. It captured all goals,
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Event Dataset size (tweets) Topics Precise topics Precision Recall F-score

Trophée des Champions 10,163 21 13 61.90% 45.83% 52.67%

Parma - Milan 7,943 29 21 72.41% 57.69% 64.22%

Copa del Rey 2,774 32 14 43.75% 37.50% 40.38%

(a) SEER maintained a relatively-high recall even in the small datasets of unpopular events.

Event Redundant Noise Subjective Non-enumerable Enumerable

Trophée des Champions 4.76% 28.57% 4.76% 19.05% 42.86%

Parma - Milan 6.90% 6.90% 13.79% 24.14% 48.28%

Copa del Rey 28.13% 3.13% 25.00% 25.00% 18.75%

(b) As datasets grew smaller, and as SEER monitored changes in increasingly-sparse data, re-
dundancy and subjective content started to infect the timelines.

Event Goals Cards Halves Substitutions

Trophée des Champions 80.00% 0.00% 75.00% 40.00%

Parma - Milan 100.00% 44.44% 100.00% 33.33%

Copa del Rey 100.00% 0.00% 100.00% 12.50%

(c) SEER could capture some non-key topics even in the Copa del Rey final, whose dataset had
fewer than 3,000 tweets.

Table B.2: SEER’s improvements persisted in real datasets from unpopular events. Even
on datasets with a few thousand tweets, it captured almost all key topics and the most
interesting non-key topics.

every start and end to a half, and other non-key topics. You could barely tell that it had
less than a tenth of the data of the match between Southampton and Arsenal.

And at 2,774 tweets, in the Copa del Rey final [216], SEER finally faltered. It captured
every half start and end, as well as the winning goal, but it yielded to redundancy and
subjectivity—although rarely to noise.

223





C

Interview
Prof. Charlie Beckett

This appendix includes a transcript of our interview with Professor Charlie Beckett. We
interviewed Beckett on 20 January 2023 via a Zoom meeting, which we recorded. The
full transcript of our conversation, edited for readability, follows next.

N. MAMO: Let’s start with what I hope is an easy question. Who is Charlie Beckett,
first of all, and why did he launch JournalismAI?

C. BECKETT: I’m a professor at the Department of Media and Communications
and I’m a former journalist, and I teach and research journalism. I’m at the
LSE [London School of Economics] because I run a journalism think-tank
called Polis. That’s why they hired me: they deliberately wanted someone
from the profession to come into the university, to bring that kind of per-
spective. That’s very much what I still do.

On the JournalismAI project, I’m doing it because I saw AI as the next wave
of technological change in journalism. My work has all been about the future
of news, partly about technology but more generally about how journalism
is changing and what consequences that has for both the news media and
society. I saw AI as the next technological wave that’s happening.

[JournalismAI’s] main mission is to support good journalism, to be honest,
but it also functions as a form of research. It’s kind of active-learning re-
search for me and for everyone else that is a part of it. We do a lot of nor-
mal research—surveys and so on—but by working with these journalists, by
teaching them, by doing innovation workshops, we find out both what they
think about AI, but also we’re actually learning about what you can do with
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AI: what works, what doesn’t work, what impact it has, what consequences
it has when you do it. That’s how I do my research.

N. MAMO: JournalismAI started with your 2019 report [18], at least in the pub-
lic. How have you seen the applications of AI change? And how have the
challenges changed as well?

C. BECKETT: It was four years ago that we did the research, and a lot has changed
in that time, although it has mainly been about exponential acceleration. It
has been about the increase in adoption. You know how adoption works:
you have pioneers, and then you have follower-on, and that creates a kind
of momentum where people feel that they have to keep up and so on. We’re
now at the keeping-up phase, where there is enough use of AI out there for
it not to be a discovery. It’s not emerging. It’s now evolving and developing.
Otherwise though, it hasn’t changed so much. I think the framework that
we established in that report is pretty resilient actually. For example, AI is
generally used to supplement human labour. It very rarely replaces it, and
in many cases it actually creates new labour, which can be good, either by
creating new formats or by the need to review and edit the actual technology.
Generally-speaking, that report has been pretty robust in terms of the oppor-
tunities and the challenges. The reasons for not adopting it are very similar
still: it’s a lack of resources, lack of time, lack of skills, lack of knowledge,
some cultural obstacles as well, and also the intrinsic challenges around the
technologies.

N. MAMO: You’ve been asked this question plenty of times—whether robots will
replace journalists—and you always say that no, AI will supplement jour-
nalism and even create new opportunities. Just this week, for example, we
saw CNET getting caught, in a way of speaking, using an AI to write arti-
cles [240]. In a way, AI is entering newsrooms everywhere. I won’t ask you
whether robots will replace journalists, but I will ask you why not. As in,
what do humans do so much better than robots?

C. BECKETT: That is the right way to ask the question, actually. It’s not whether
humans are going to disappear; it’s asking the questions that we always ask
of technology. What can a technology do and what do we need humans for?
And also, the secondary question to that one is: what do humans need to do
differently? That’s interesting: how differently do humans have to behave
because of this? As you said, it’s not just about “here’s a lump of labour and
robots are going to take it over”, or “here’s a human role that the technology
is going to do.”
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Sometimes, that’s going to be the case. So for example, one I always give,
when I was a journalist and I wanted archives, if I wanted to do research,
I went to a room full of newspaper cuttings. There was a lovely lady there
who spent her day cutting up newspapers and putting them in bits into en-
velopes. She doesn’t work there any more. She’s fired, she’s gone, she’s
doing something else. That job does not exist, so that’s an interesting exam-
ple of a technology replacing it. Research killed her job.
There will be loads of things that are, as you say, easily-identifiable. The
ones that aren’t fall into two categories. One is around the use-case of jour-
nalism, and that depends very much on what your journalism is. If your
journalism is publishing share prices, well, that’s more vulnerable to techno-
logical adoption. If your journalism, though, is rapid response assessment of
events, or what somebody has said and how important it is, there’s a degree
of judgment and selection. That may be what humans are better at.
Then there’s the other category, which I call the “fluffy category”, the so-
called creativity and perhaps the emotional, empathy bit. Algorithms are
very bad at sentiment still; they struggle hard at that because sentiment is
messy—humans struggle with it, so let alone machines. And there’s a pos-
itive there, which is that perhaps human journalists will get better and do
more of the creative, empathy, judgment stuff. Again though, it’s a false bi-
nary to say that’s completely different and can’t be supported by technology,
but it kind of falls into this category.
There’s a third category, actually, which is efficiency. Sometimes the machine
can do it, but why bother? It’s just not worth-it. It wasn’t very difficult for
a human to do it; frankly, it’s quicker if a human does it. By the time you
program the thing, and the risk of it getting it slightly wrong and you having
to check it, the return on investment is not worth-it. So there’s that third
category, of efficiency.

N. MAMO: You mentioned the human judgment in news production. Would you
also say that machines lack a certain human-like understanding of how the
world works, how news works, that makes it difficult to reason about and
judge events or news?

C. BECKETT: Yeah, and I don’t necessarily mean some deep intellectual genius. I
mean, think of a football match. You can program the software to say “okay,
I’m going to look out for goals. I’m going to tell you how many corners they
got, if somebody got sent off.” But what if there’s a VAR judgment? You
know, it’s one of the big stories in every football match now. The VAR, the
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software itself made an intervention in the game and they have to decide:
was that a deliberate handball or was it accidental?
It’s really funny, you can hear the commentators saying things like “that was
a natural movement.” What? What does that mean? Is there an “unnatural
movement”? What does that mean? But we all kind of know what it means,
and it’s a controversy. There isn’t an answer; maybe some people will say
it’s a handball, and some will say no, it was accidental. To capture that in
an interesting way, which is very trivial and banal and doesn’t really mat-
ter—you don’t need a university degree to have an opinion—is harder for
the machines to do.
One other thing that machines find difficult to do is morality. So much
of journalism, quite rightly, should be about “this is unjust.” I think it’s
quite difficult to program for social justice, partly because it’s an ideological
stance, but you can program ideologically, we know that. With ChatGPT,
some people are saying that it has a liberal bias, apparently, which I think is
very funny. I saw a conservative commentator say that it’s got a liberal bias
because the program relies upon facts. He was saying that “the trouble is
that the left and the liberals have facts on their side; we conservatives have
beliefs.” You think “oh dear, that’s interesting.”
But anyway, you take my point. Karin Wahl-Jorgensen did a very good
study of Pulitzer prize winners, and one of the key emotions was anger,
in the sense of anger about social injustice and so on. I think that might be
hard to program for.

N. MAMO: I want to put AI aside for a bit; we’ll come back to it very soon. Be-
fore looking at the applications, I just want to take a look at your idea of
networked journalism. In 2010, you predicted that the live blog would be-
come the front page of newspapers and, more importantly, that social net-
works would become much more important in the day-to-day work of news-
rooms [19]. Thirteen years later, what role does social media play, in partic-
ular in the newsgathering task?

C. BECKETT: Yeah, it’s interesting. When I wrote the book in 2008, Facebook had
just started, and the whole social media thing hadn’t really taken off. So
when I was talking about “networked” I was talking about the internet more
generally and the audiences of digital tools. It’s quite interesting looking
back at that. I wasn’t really talking about social media as such.
In a way that’s quite a narrow definition, where journalists use digital tools
to engage the public in the process of production and dissemination of jour-
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nalism, and the creation of journalism. It’s quite a narrow definition, really.
Obviously, you can always think of it more generally with Manuel Castells’
network society; because of the internet, digital and social media, everything
is interactive, everything is connected, potentially digitised and datafiable
and so on. So in that sense, it has become environmental, as Roger Silver-
stone said: media has become environmental, it’s not a separate entity.
That’s the key to understanding social media and the stuff that I’ve written
about emotions, if you look at that. The key idea is that the affective nature
of media is very much conditioned literally by the mobile phone. In a sense,
we’re going back to the 2008 thing of the device, like the internet, the hy-
perlink. The mobile phone, the device where we are all now interlinked and
hyperlinked, embodies that because it’s so integral to our lives, so embed-
ded in our lives, literally and physically. You know, we go to sleep [...], it’s
always on, it’s always there.
In that sense, we think of social media as the platform, but it’s not. In so-
cial media, it’s the social bit that’s important. It’s the behavioural bit that I
think is really important, and by that I mean the way we relate to it physi-
cally and emotionally, and socially and practically, and informationally and
intellectually is so important—the way we integrate it into our lives.
That includes things like the performative nature of it. When we use this
thing, we’re performing in a particular range of ways that we don’t generally
in society; when we go to work, we behave differently to how we behave
down at the pub, or when we’re with our family. And when we do social
media, again we behave in different ways. It’s a no-brainer but I still find
it amazing that journalists still have this idea that they’re going to just take
their journalism and do it on a platform; they will take their journalism and
they’re going to just transfer it to the internet, or they’re going to transfer it
to a social media platform.
Obviously, the best ones don’t. The most recent example would be TikTok.
As usual, I was right, I was ahead of the curve in the same way I said about
live blogging and all these other things. I said “look, TikTok, get on it—it’s
going to be massive, it’s got a particular quality to it and a particular sociality
to it, and if you’re not there, then you’re not going to be part of a huge area
of people’s lives.”
What was key about it was that you couldn’t just go on TikTok and say
“hello, I’m a journalist, here’s my one-and-a-half minute report from this
morning’s TV bulletin.” You have to do something ludicrously different:
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Sophia Smith Galer did her sea shanty stuff about her new story and things
like that. The guy from Washington Post... They do things differently, and
some of that will be good, some will be bad.

I think that’s the continuing impact of social media, although I think that
we’re now entering, as you know, a very interesting phase around networks
and platforms, which of course is regulation. Well, it’s both regulation but
it’s also a kind of market reckoning as well: what are these things there for?
As we’ve all said from the beginning, these are particular things. Facebook,
for example, is a private company owned by basically one guy, and if he
changes his mind about it, it’s going to change.

N. MAMO: That’s what happened with Twitter. That’s what I wanted to ask you
next, in fact. Twitter is changing; it is in danger, even financially. You said
that the social aspect of social media is bigger than social networks and in-
dividual platforms. At the same time, we’ve seen Twitter transform into a
public town square, not just in the way that [Elon] Musk refers to it to get
advertising money, but also in the way it gave a voice to everyone, for better
or for worse. That kind of voice has been exploited or harnessed in scientific
research for newsgathering. Do you see that sort of thing also in journalism,
where Twitter is used—or perhaps journalists even depend on it—to find
leads? And what do you think would happen if Twitter suddenly had to
disappear?

C. BECKETT: Well, firstly I think that something would replace it. There would be
other versions of it. Obviously there’s a huge caveat around Twitter, which
is that it’s not that big. It’s particularly important to journalists, but it’s very
distorting. In some countries, like the UK, it’s quite significant, but in many
countries it’s irrelevant. Even in the UK, when you actually look at the num-
ber of people actually doing stuff on Twitter, it’s vanishingly small, really.
But it’s much bigger than a journalist would normally have by just wander-
ing around the street.

The other caveats around it is it being very unrepresentative. And as I said;
there’s a way people have discourse on Twitter, which is not generalisable
to other platforms or the internet in general. And it’s certainly not gener-
alisable to real-life: your Twitter will be so different to my Twitter because
of the people you follow. So when people say “Twitter this, Twitter that”,
they really mean “my Twitter” or “my imaginary Twitter”, including when
academics do research on it.
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What I think is partly that journalists are learning about the limits of a plat-
form like Twitter. They’re thinking “hang on, I’m spending my whole day
on this thing, and this is ridiculous: I’m doing a story based on three tweets
as if they’re quotes, as if they’re interviews, and they’re not.” There’s a kind
of hollowness there if you’re not careful.
What I think is perhaps more interesting is thinking about social and data
journalism more broadly, where people—especially with the AI technologies
but also just generally with data journalism—are thinking about other forms
of data apart from social media discourse. Yesterday I read a story about
India and decreasing population. Statistics are notoriously bad in India, for
anything, so what they’ve done in this story was that they were quoting
things like searches for baby bottles, or baby prams or baby carriers. They
were saying that they’ve gone up 20%, which would suggest that there’s
some correlation with increasing fertility. I thought that was a really nice
way of expressing it, of telling a story, and more interesting than “I’ve seen
a tweet.”
Data journalism, we tend to think a bit about pandemics or bank records and
so on. But if you think about it more generally, the increasing datafication of
our lives is going to be more interesting than those things, and we’re going
to be interested in other forms of discourse. For example, other social media
platforms like Reddit, Tumblr [...] often have much more interesting sources
for trends and stories than an obvious one like Twitter.

N. MAMO: You mentioned datafication and it’s not just that we have data now,
that we quantify various aspects of the world and of the news, but there’s
also the problem of there being too much of it sometimes. If I had to con-
dense my research, it would be solving that problem, the problem of infor-
mation overload. I developed two applications and in the last part of this
conversation, I would like to focus a little bit more on them.
When I asked you what humans have that machines do not, and when I
prodded you on understanding, that’s because I approached the problem of
information overload from an understanding perspective. The idea is that
machines don’t really understand who is participating in an event. I gave
you the example of Liz Truss’ premiership in the UK: machines don’t under-
stand who the important figures are in UK politics.
More importantly, they don’t understand what matters. Twitter gave a plat-
form to subjectivity, to bias. That is not news; as you said, three tweets don’t
make a story. I developed algorithms to detect who is participating and what
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is important in different domains, mostly focusing on football and politics.
The idea is that if we know that speeches or resignations are important in
politics, we can drive newsgathering with that information; we can focus
just on speeches and we can focus just on resignations.
I developed these two applications, and my first question on this timeline or
live blog is about your first impression on quality. What does it do well and
what does it not do well? More importantly, do you see any applications for
it in the newsroom?

C. BECKETT: I think that the live blogging thing is interesting. As you mentioned
earlier, it’s one of the few things I predicted accurately, and it’s this sort of
perverse thing. When The Guardian first started doing it, what was inter-
esting about it is that it broke so many rules. Newspapers are supposed to
be a set record of events; they’re not supposed to be a commentary upon
events—that’s kind of broadcasting. They also did things like all the hyper-
linking, even to other media; again, you’re not supposed to do that—you’re
supposed to be the fount of knowledge.
I think that in that sense, the two examples—the football live blogs and the
politics live blogs—are both interesting ones. I should revisit to see how they
do it now, but in a way, the journalist would be sitting at his or her desk and
have various [browser] windows open and be combing through stuff. They
probably have alerts and so on—perhaps they’re helped by the technology
as well. So I think that something like this can be the backbone to a live blog.
The interesting bit—and this is what journalists talked to me about when
they say they’re using things like this—they say that they use this, and when
they see something that’s a bit stand-out, they can follow up on it. That idea
of judgment.
Always remember that people want different types of news. That’s why
people go to The Guardian’s website or their app. And sometimes they’ll
want the podcast, the Today in Focus podcast, which does a deep dive on
a story, or they’ll go to the long reads section because they want a long,
complicated read. Sometimes they just want to scroll rapidly through some
headlines just to check-in, the pause thing; people have a pause in their day,
and they just want to make sure there’s nothing happening: “oh there’s a
live blog about the queen dying”, and they’ll flick through that live blog. I
doubt that there are many people who will sit there for an hour looking at
a live blog as it goes click-click-click. I’m sure that’s not the experience, in
the same way that people tend not to with 24-hour TV news. They dip in an
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hour, or it’s there in the background.
The judgment around it can be kind of odd. We can see how bad Twitter
trending topics is, for example. It’s really gotten especially bad at the mo-
ment. We don’t know what the algorithm is doing now. The point is that
sometimes, something has a resonance. Resonance is really hard to program
for. You can have a relatively trivial event, something like an MP has been
rude to his secretary, and you think “well okay, that’s not a criminal offence,
he was not a very important MP”, but it may resonate. It may have a turn
of phrase that he used, or it may be symbolic of wider fears and concerns
around sexual harassment or something—it’s a resonance.
There’s also the kind of relevance, what you put into the live blog, and this
[SEER’s timeline] looks like a good one to me. This looks like it’s hitting all
the right things, as you say, hitting the right names, understanding status.
All those things that journalists do in a formulaic way, it will do well.
Will it get it quite [as well] if, for example... It will recognise Jeremy Corbyn,
who was the Labour leader, that he’s quite important. It may even under-
stand that he has a certain ideology. But what if Corbyn says something a bit
unusual? What if he says “I like bankers”? “Capitalism is great”? A human
would go “Jeremy Corbyn is saying that capitalism is great, that’s interest-
ing!” The machine might not. The machine might say “yeah, capitalism is
great, that’s not a controversial statement.”

N. MAMO: That is a problem of understanding as well.
C. BECKETT: But that’s alright because that’s what journalism has. Famously, John

Birt, who was Director-General of the BBC when I was there, talked about
journalism’s bias against understanding. It’s a strange thing because jour-
nalism has to simplify things and turn everything into a formula, and often
reduce to something simple. Because journalism is obsessed, for example,
with conflict, it’s always attracted to that rather than what is necessarily-
true or significant, and it doesn’t always help you understand. It’s more
interested in the drama of the story, for example, than helping you to under-
stand.
So I think there’s a danger of exaggerating how good journalism is at always
giving you the full, balanced, explained narrative about something. Does
that make sense? You want the algorithm to be almost better than routine
journalism.

N. MAMO: The problem—and this sort of links with what you said earlier about
what resonates with people—is that since we’re using tweets, we’re not just
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detecting the news, but rather we are detecting the news that people find
interesting. That can be helpful because it tells the editor, for example, what
can potentially resonate with the audience, or what deserves its own arti-
cle, but at the same time, it also conflicts a little with what you said about
morality at the beginning of our conversation: just because something is in-
teresting, it doesn’t make it newsworthy, or maybe it can amplify certain
ideas. How much would you trust an AI, in particular an event detection
system like this?

C. BECKETT: I would trust it as much as a human journalist because it is going
to be programmed and edited by humans. I think that, in a way, that’s a
misleading question. You talked earlier about how you can use technology
to counter news avoidance. I think the phrase news avoidance is a strange
phrase because journalists use it to mean that people are doing something
perverse, that there’s this wonderful thing called news that journalists create
and for some bizarre reason, a lot of people are avoiding it. Either they are
totally avoiding it, they say that on any news, or they’re saying there’s too
much news.
We see this as a problem. We aren’t seeing it as quite a normal response to the
world, a world of abundant information, of constant, persistent overabun-
dant information. I think it’s actually the [other] way round: we should
assume that it’s quite logical to want your news to be rationed, and your
news to be relevant, and for a lot of people, they don’t care that Liz Truss
met the King at Buckingham Palace. What relevance does that have to their
life? They’re worried about their heating bill, they’re worried about their
cat who is sick, they’re worried about whether their kids are going to get
to school on time. They’re worried about them being a bit overweight, and
they don’t know if they’re going to be able to get to the gym in time.
There’s all these other things and they’re interested in other things that jour-
nalism isn’t interested in. Journalism doesn’t care about those things often,
and journalism isn’t very entertaining. It can be depressing and boring and
complicated.

N. MAMO: So you are comfortable with AI prodding the journalist and telling
them “listen, this could be more relevant than other news to your audience.”

C. BECKETT: I think [that is] one of the most interesting things about using AI, and
one of our Collab teams did this about countering human bias. Journalists
have this bias towards whatever, a certain type of story; they went to Oxford
and they studied PPE [Philosophy, Politics and Economics] so they really
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do think that what the Prime Minister does is the most important thing ev-
eryday. They didn’t do science so they’re ignoring completely the fact that
there’s this scientist who has done this amazing biotechnology experiment
that’s really going to change our lives. “No, no, no! What the Prime Minister
does is really exciting.”
I think that we can use these technologies firstly to understand better what’s
happening in the world, but secondly to understand what interests people.
How do things connect to people’s lives and what does our audience do?
That’s possibly the biggest revolution in journalism in the last ten years:
audience data. We now understand what people do with news. We don’t
understand why or how they feel about it particularly, but we can at least
measure their behaviour. How do we do that? We do it with this software.

N. MAMO: I want to move to the second application very quickly. Even with live
blogs, if you have Liz Truss’ premiership—even though it was short, 44 days
are still a lot of information to consume—or if you have Russia’s invasion of
Ukraine, some events tend to change very quickly and stretch for a long time.
The idea of this event visualisation is that you could focus, for example,
just on tax-related information. You could just filter at a whim. In other
words, navigate events like searching or filtering. Same question as before:
what was your first impression of this visualisation, and do you see any
application for it in the newsroom?

C. BECKETT: I don’t know about the actual application here, the way it’s struc-
tured. I think we are seeing increasingly the kind of journalism—and it’s
usually data journalism of some sort, which is what this is, in a sense—that
makes connections. We saw a lot of it during the pandemic, of course, where
there was that kind of “how is the pandemic changing society?” So we were
tracking the virus itself and the health effects, but there was also all this in-
terest, for example, in working from home, trying to measure how that has
progressed over time, how it has had an impact on education over time. I
could imagine you doing this kind of thing with an issue like the pandemic.
And also I think journalism and the public are becoming increasingly inter-
ested in historical context, and by that, I don’t necessarily mean “let’s look
back nostalgically.” I mean what has changed, what the direction of travel
is around an issue. I mentioned demography, the population story, because
there are so many aspects to that: Why is it changing? What are the other
factors in it? When we look at that, what are the other stories that are being
told to us? There’s a change in women’s rights, there’s a change in con-
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traception, there’s a change in the wealth of certain countries—that’s why
demography is changing. That is increasingly-interesting for journalists and
the public as they seek to understand their world. Those connections, I think,
are increasingly-interesting to people.
If you think about it, what is the attraction of conspiracy theories? They’re
completely bogus, but people love to make connections. They love to see
causations and relations between things. That’s because, as you know as
a scholar, correlation and causation are often confused. Just because some-
thing is related doesn’t make it causation, but it’s related and that’s interest-
ing. I think this kind of way of thinking about an event or a person is really
interesting.

N. MAMO: In fact, these kind of visualisations, in research we call them either
the event knowledge graph—a graph that represents knowledge—or event
models. They could be used as a visualisation, which is our primary pur-
pose given the constraints that we have, but also one of the ideas that has
been proposed is that they could be mined automatically to identify news
angles [188]. For example, if someone gave a job to somebody else, and the
first person is the father of the second person, then that’s nepotism.

C. BECKETT: Yeah, it would be a great nepotism graph!
N. MAMO: Yeah, so you have software, AI, that continuously mines the event

knowledge graph to come up with news leads or news angles. That’s one
of the applications that we came up with.
I just have a couple of questions left, and I want to go back to JournalismAI.
I’ve been following JournalismAI for two-and-a-half years now, I think, and
one pattern that emerged from the Collab Challenges of 2021 and the Fel-
lowships of last year is that most teams seem to approach problems from
first principles. For example, one thing that really stuck with me from The
Guardian’s quote detection program is that they even had to define what
a quote is. It seems as if the problems that journalism is tackling are com-
pletely novel. Do you feel like AI technology and research are not addressing
the needs of journalism right now?

C. BECKETT: Yes, basically, in a word: yes. I think you make a really interesting
point there, actually. One of the things that pleasantly-surprised me when
we did the Collabs and the Fellowships was that people did often go to first
principles. They sort of said, as we keep saying, before you start using this
thing, think about what problem it is that you are trying to solve. As you
know, again as an academic, defining your terms is so important. Defining
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your research question is so important before you go do your research. As
you said, it was quite interesting how they went back and asked: “what are
we trying to do here?”
One of the teams this year looked at how you can fact-check politicians’
claims. There was a technical issue there about how on Earth they did that:
what is a politician and what is a claim? Is it just anything they say? How
do you conceptualize that? It’s quite an interesting question.
I used to be a political journalist and one of the things that I find most te-
dious, certainly about British political journalism, is the endless sort of “oh
you said something slightly different to yesterday so therefore that’s a U-
turn.” They’ll talk about the emphasis from the Prime Minister that was
subtly different today. And we know what they mean, but they’re talking
in a kind of code and they’re making assumptions. The general public are
thinking “I don’t understand, sounds to me like the same thing, this is so
fine-tuning.” They don’t understand the context: what did he say before?
So again you can match with your knowledge graph: this is what they said
about taxation before; this is what they are saying now; this is what it means.
I have been having this conversation the past few days, funnily enough, be-
cause we were thinking about what we’ll do this year by thinking about new
trends. One of the things that we’re trying to grapple with more this year is
trying to get the technologists who don’t know anything about journalism
to listen to journalists. I don’t just mean to provide a specific tool but just
generally, to say: here’s our first-order problem, is that of interest to you?

N. MAMO: That’s the reason why I asked for this interview. Out of hundreds of
papers that I’ve reviewed, I can only name one that actually got feedback
from a journalist, and they got it after the solution was done [150], similar
to this interview, at the end of the day. That’s excluding Reuters Tracer [129;
130], which is a special case because it was developed in-house to address
existing needs.

C. BECKETT: I was literally having this conversation yesterday. We were trying
to work out how we would construct this. Would it be that we would go
and find five Google engineers, sit them down in a room and say “this is
journalism”?
I remember doing this in San Francisco. I met someone who is a top expert
on blockchain, some five years ago, and I sat down with her and she didn’t
know anything about journalism apart from being a normal person. So she
said “what’s your problem in journalism? What’s your problem?” And I
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said that the advertising’s disappearing or we’ve got this problem with fake
news. I said “could the blockchain help with this? Could the blockchain help
with that?” And every time, she went “um, nah” or “you could do that, but
I don’t see why you’d do it; you could solve it much better with this other
thing.” So we went through this whole thing.
What was interesting about it was that this conversation was with somebody
who knew the tech. They didn’t know the journalism, which is a version of
what you’re talking about.

N. MAMO: It is, and the problem goes both ways, by the way. One of the prob-
lems that we had was defining what it means to understand the news, and
I didn’t find the solution in research, primarily. Primarily, it was inspired
by the news. In fact, our definition of understanding is Who does What,
Where and When, Why and How: tools you must be familiar with. So this
challenge goes both ways. One last question: what is your final appeal to AI
researchers with this in mind?

C. BECKETT: In the context of journalism, so this is quite different to AI researchers
elsewhere, there is an interesting issue about the obsession with AI ethics. I
think this applies to digital generally, and technology in general. Every-
one says technology is neutral but often times—in the social sciences any-
way—we take a kind of political approach to technology. We say—and this
is a bit paradoxical—we say that there’s a danger with this technology and
we’re implying that it’s therefore dangerous. We’re not so good—or cer-
tainly in academe—we’re not so good at thinking about the consequences of
potential application in a more general way: how it might change the jour-
nalistic practice. That’s the thing I look at.
So my appeal would be: help me, or help is when the people who know
about the technology—which I don’t properly—can help think through those
kind of applications. I think that’s the interesting research question. It’s not
just how this can help journalism—that’s the first one: how can this partic-
ular technology help journalism? The second one is: how might it change
journalism? And don’t always frame it as a good and a bad [thing]; don’t
always frame it in terms of losing jobs or making mistakes.
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Data

This appendix includes details about the tweet corpora used throughout this work. We
collected tweets using the Tweepy [253] library for Python, which we wrapped in a
custom collection tool in the NicholasMamo/EvenTDT library. We have made the corpora
available in the NicholasMamo/phd-data repository.

Throughout this dissertation, we often refer to a general corpus. Most notably, we
use the general corpus in Chapter 3 to resolve participants and in Chapter 4 to contrast
event domains with everything else. The general corpus is a dataset of 457,429 English
tweets, which we collected over 12 hours between 11 April 2020 at 21:35 and 12 April
2020 at 9:35 using Twitter’s Sample API. For all other datasets, we used Twitter’s Filter
API to collect tweets mentioning certain keywords. The rest of this appendix describes,
in detail, the datasets used in this dissertation: when and how we collected them, and
any other notable characteristics.

D.1 | Data used in Chapter 3
In Chapter 3, we extract participants from event domains. Our contributions follow
our previous work, the six-step APD framework [144]. In our original implementation,
the resolver and extrapolator compared the prospective participants with the domain,
which involved a TF-ICF term-weighting scheme. To construct the term-weighting
scheme, we use the general corpus, which we describe at the beginning of this appendix.

Differently from other chapters, we start Chapter 3 with a short experiment. In Ta-
ble 3.1 on page 31, we evaluate two NER models on six football match datasets. Since we
re-used the corpora from Chapter 5, we do not describe them here but in Appendix D.3.
Instead, we focus on the datasets from Section 3.3.
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Data used in Section 3.3
In Section 3.3, we collected datasets slightly differently than in other chapters. Other
chapters required us to collect datasets from two periods: the understanding period,
before the event starts, and the actual event period. In Chapter 3, however, we col-
lected data only during the understanding period to simulate extracting the Who and
the Where with no knowledge of the event itself.

For most of Section 3.3, we focused on the domain of football matches. We collected
datasets for an hour, starting 75 minutes before the events started. During this period,
teams released line-ups, allowing us to understand a little better Who would be par-
ticipating and Where. We left 15 minutes between the understanding period and the
event period, as if to give the APD process time to conclude before the match started.
We collected datasets using the event hashtag, and the names and common references
to the two teams. Details about each match follow in the next table.

Event Date Time Tweets Keywords

Juventus - Inter 3 Apr 2022 19:30–20:30 3,803 #JuveInter, Juventus, Juve, Inter

Crystal Palace - Arsenal 4 Apr 2022 19:45–20:45 20,105 #CRYARS, Crystal Palace, Palace, Arse-
nal

Manchester City - Atlético 5 Apr 2022 19:45–20:45 8,753 #MCIATM, Manchester City, Atleti,
Atletico Madrid

Burnley - Everton 6 Apr 2022 19:15–20:15 6,021 #BUREVE, Burnley, Everton

Watford - Leeds 9 Apr 2022 14:45–15:45 4,550 #WATLEE, Watford, Leeds

Aston Villa - Tottenham 9 Apr 2022 17:15–18:15 14,372 #AVLTOT, Aston Villa, Tottenham, Spurs

Manchester City - Liverpool 10 Apr 2022 16:15–17:15 41,251 #MCILIV, Manchester City, Liverpool

Real Madrid - Chelsea 12 Apr 2022 19:45–20:45 43,158 #RMACHE, Real Madrid, Chelsea

Newcastle - Leicester 17 Apr 2022 14:00–15:00 3,950 #NEWLEI, Newcastle, Leicester

Liverpool - Manchester United 19 Apr 2022 19:45–20:45 63,549 #LIVMUN, Liverpool, Manchester
United

209,512

Table D.1: The football match datasets used in Section 3.3.

Conversely, Formula 1 Grands Prix have no line-ups—the drivers and constructors
only change in-between seasons. The domain thus has no clear window when to collect
datasets. In this dissertation, we followed an identical process as in football matches:
we collected tweets over an hour, starting 75 minutes before the formation lap. Details
about each Grand Prix from the first part of the 2022 season follow in the next table.
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Event Date Time Tweets Keywords

Australian GP 10 Apr 2022 05:45–06:45 3,011 #AustralianGP, Formula 1, Formula One

Imola GP 24 Apr 2022 13:45–14:45 12,375 #ImolaGP, #F1, Formula 1, Formula One

Spanish GP 22 May 2022 13:45–14:45 12,067 #SpanishGP, Formula 1, Formula One

Monaco GP 29 May 2022 13:45–14:45 15,686 #SpanishGP, Formula 1, Formula One

Azerbaijan GP 12 Jun 2022 11:45–12:45 8,091 #AzerbaijanGP, Formula 1, Formula One

Canadian GP Jun, 19 2022 18:45–19:45 15,065 #CanadianGP, Formula 1, Formula One

British GP Jul, 3 2022 14:45–15:45 19,159 #BritishGP, Formula 1, Formula One

85,454

Table D.2: The Formula 1 datasets used in Section 3.3.

We conclude Section 3.3 with a short analysis on the 2021 Canadian federal election.
We collected the dataset over 24 hours, between 13:00 on 20 September 2021 and 13:00 on
21 September 2021, covering the period when Canadians voted and when the election’s
results became known. In total, we collected 410,749 tweets, but in the analysis we only
used a random sample: 82,150 tweets, or 20% of the data. We generated the sample
using the shuf bash command-line utility.

Date Time Tweets Keywords

Sep 20–21, 2022 13:00–13:00 82,150 #CanadaElection, #CanadaElection2021, #CanadaVotes, #ItsOurVote,
#polcan, #CdnPoli, #Elxn44, Trudeau, O’Toole, Blanchet, Jagmeet Singh,
Annamie Paul, Maxime Bernier, Canada election, Canadian election,
Canada elections

Table D.3: The 2021 Canadian federal election datasets used in Section 3.3.

D.2 | Data used in Chapter 4
Throughout Chapter 4, we often refer to general corpora in the context of ATE tech-
niques. We use a general corpus to calculate EVATE’s ICF component, and many of our
ATE baselines also use the same dataset. The general corpus is the sample collection of
tweets that we describe at the beginning of this appendix.

Data used in Section 4.3
For the ATE evaluation of Section 4.3, we collected tweets from 24 football matches. We
refer to each match by its event hashtag, which includes shortened versions of the two
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teams. For example, #BVBS04 refers to two German teams: Borussia Dortmund, BVB,
and Schalke 04, S04.

Each football match dataset includes two parts: an understanding period and an
event period. The understanding period, which we consider to last an hour, precedes
the football match. The event period, then, starts shortly before the match and ends
a little after the match’s scheduled end. Only ELD, described in Section 2.1, uses the
understanding period to prioritise keywords that appear intensely during the match
but not before. In total, we collected more than 4.5 million tweets, averaging 192,426
tweets per match. Details about each dataset follow in the next table.

Time Tweets

Event Date Understanding Event Understanding Event

Dortmund - Schalke 04 16 May 2020 14:15–15:15 15:15–17:30 13,549 169,208

Dortmund - Bayern Munich 26 May 2020 17:15–18:15 18:15–20:30 9,444 107,536

Aston Villa - Sheffield United 17 Jun 2020 17:45–18:45 18:45–21:00 10,185 117,400

Manchester City - Arsenal 17 Jun 2020 20:00–21:00 21:05–23:20 48,617 334,557

Tottenham - Manchester United 19 Jun 2020 20:00–21:00 21:00–23:15 33,785 294,775

Brighton - Arsenal 20 Jun 2020 14:45–15:45 15:45–18:00 18,140 174,742

Aston Villa - Chelsea 21 Jun 2020 16:00–17:00 17:00–19:15 26,755 196,205

Leicester - Chelsea 28 Jun 2020 15:50–16:50 16:45–19:10 16,626 112,463

Barcelona - Atlético 30 Jun 2020 20:45–21:45 21:45–00:10 6,889 157,579

Everton - Leicester City 01 Jul 2020 17:45–18:45 18:45–21:10 10,358 86,060

Wolves - Arsenal 04 Jul 2020 17:15–18:15 18:15–20:40 26,467 152,288

Aston Villa - Manchester United 09 Jul 2020 20:00–21:00 21:00–23:20 16,044 268,149

Liverpool - Burnley 11 Jul 2020 14:45–15:45 15:45–18:05 9,491 75,782

Arsenal - Liverpool 15 Jul 2020 20:00–21:00 21:00–23:20 26,498 241,731

Tottenham - Leicester 19 Jul 2020 15:45–16:45 16:45–19:05 4,006 110,317

Juventus - Lyon 07 Aug 2020 19:45–20:45 20:45–23:05 6,162 140,839

Barcelona - Napoli 08 Aug 2020 19:45–20:45 20:45–23:05 11,223 206,740

Bayern Munich - Chelsea 08 Aug 2020 19:45–20:45 20:45–23:05 34,317 197,189

Atalanta - Paris Saint-Germain 12 Aug 2020 19:45–20:45 20:45–23:05 9,318 226,661

Leipzig - Atlético 13 Aug 2020 19:45–20:45 20:45–23:05 7,266 97,959

Manchester City - Lyon 15 Aug 2020 19:45–20:45 20:45–23:05 12,103 194,865

Leipzig - Paris Saint-Germain 18 Aug 2020 19:45–20:45 20:45–23:05 14,015 163,877

Lyon - Bayern Munich 19 Aug 2020 19:45–20:45 20:45–23:05 14,361 241,349

Sevilla - Inter 21 Aug 2020 19:45–20:45 20:45–23:05 12,391 151,940
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Time Tweets

Event Date Understanding Event Understanding Event

398,010 4,220,211

Table D.4: The football match datasets used in Section 4.3.

To collect the datasets, we used Twitter’s Filter API, which allowed us to collect
tweets mentioning certain keywords. During the understanding period, we collected
tweets mentioning the event hashtag, colloquial versions of the team names and any
other references to the match; the hashtag #Revierderby, for example, refers to the derby
between Borussia Dortmund and Schalke 04. During the event period, we also collected
tweets mentioning the names of the stadium, coaches and players, including substitutes.
The tracking keywords that we used to collect tweets during the understanding and
event periods of each match follow in the next table.

Period Keywords

Dortmund - Schalke 04

Understanding #BVBS04, #Revierderby, Borussia, Dortmund, Schalke

Event #BVBS04, #Revierderby, Borussia, Dortmund, BVB, Schalke, Signal Iduna Park, Favre, Wagner,
Burki, Hakimi, Delaney, Dahoud, Guerreiro, Hummels, Akanji, Haaland, Brandt, Piszczek, Reyna,
Sancho, Goetze, Balerdi, Morey, Hazard, Schmelzer, Hitz, Raschl, Schubert, McKennie, Nastasic,
Serdar, Raman, Caligiuri, Jonjoe Kenny, Todibo, Oczipka, Harit, Salif Sane, Miranda, Gregoritsch,
Matondo, Kutucu, Burgstaller, Schoepf, Becker, Nuebel, Mercan

Dortmund - Bayern Munich

Understanding #BVBFCB, BVB, Dortmund, Bayern, Munich

Event #BVBFCB, BVB, Dortmund, Bayern, Munich, Signal Iduna Park, Favre, Hans Flick, Burki,
Piszczek, Hummels, Akanji, Hakimi, Delaney, Dahoud, Guerreiro, Thorgan Hazard, Brandt, Haa-
land, Sancho, Gotze, Balerdi, Morey, Emre Can, Witsel, Schmelzer, Reyna, Hitz, Neuer, Pavard,
Boateng, Alaba, Davies, Kimmich, Goretzka, Coman, Muller, Gnabry, Lewandowski, Odriozola,
Javi Martinez, Cuisance, Perisic, Lucas Hernandez, Ulreich, Lukas Mai, Meier, Zirkzee

Aston Villa - Sheffield United

Understanding #AVLSHU, Villa, Sheffield

Event #AVLSHU, Villa, Sheffield, Villa Park, Dean Smith, Chris Wilder, Nyland, Konsa, Hause, Mings,
Targett, Hourihane, Douglas Luiz, McGinn, Ghazi, Davis, Grealish, Baston, Vassilev, Neil Tay-
lor, Nakamba, Trezeguet, Samatta, Jota, Mohamady, Reina, Dean Henderson, Basham, Egan, Jack
Robinson, Baldock, Lundstram, Norwood, Berge, Stevens, McBurnie, Billy Sharp, Luke Freeman,
Jagielka, McGoldrick, Kieron Freeman, Mousset, Osborn, Clarke, Moore, Rodwel

Manchester City - Arsenal

Understanding #MCIARS, Manchester City, Arsenal
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Period Keywords

Event #MCIARS, Manchester City, Arsenal, Etihad, Guardiola, Arteta, Ederson, Kyle Walker, Eric Gar-
cia, Laporte, Mendy, David Silva, Gundogan, Bruyne, Mahrez, Gabriel Jesus, Sterling, Aguero,
Zinchenko, Rodri, Leroy Sane, Bernardo Silva, Fernandinho, Otamendi, Carson, Foden, Leno, Bel-
lerin, Mari, Mustafi, Tierney, Xhaka, Guendouzi, Nketiah, Willock, Saka, Aubameyang, Ceballos,
Lacazette, Maitland-Niles, Nicolas Pepe, David Luiz, Reiss Nelson, Emiliano Martinez, Kolasinac,
Martinelli

Tottenham - Manchester United

Understanding #TOTMUN, Tottenham, Manchester United

Event #TOTMUN, Tottenham, Manchester United, Tottenham Hotspur Stadium, Mourinho, Solskjaer,
Lloris, Aurier, Davinson Sanchez, Dier, Davies, Sissoko, Harry Winks, Heung-Min Son, He-
ung Min Son, Lamela, Bergwijn, Kane, Alderweireld, Vertonghen, Celso, Sessegnon, Gazzaniga,
Ndombele, Skipp, Gedson Fernandes, Harvey White, De Gea, Bissaka, Wan-Bissaka, Lindelof,
Maguire, Shaw, McTominay, Fred, Daniel James, Fernandes, Rashford, Martial, Bailly, Pogba,
Mata, Lingard, Romero, Ighalo, Greenwood, Matic, Brandon Williams

Brighton - Arsenal

Understanding #BHAARS, Brighton, Arsenal

Event #BHAARS, Brighton, Arsenal, The American Express Community Stadium, The Amex, Graham
Potter, Arteta, Mathew Ryan, Schelotto, Webster, Lewis Dunk, Daniel Burn, Propper, Bissouma,
Mooy, Pascal Gross, Trossard, Maupay, Lamptey, Duffy, Stephens, Mac Allister, Murray, Solly
March, Montoya, David Button, Connolly, Leno, Bellerin, Mustafi, Rob Holding, Kolasinac, Pepe,
Ceballos, Guendouzi, Saka, Lacazette, Aubameyang, Tierney, Ozil, Maitland-Niles, Reiss Nelson,
Emiliano Martinez, Willock, Nketiah, Martinelli, Zech Medley

Aston Villa - Chelsea

Understanding #AVLCHE, Villa, Chelsea

Event #AVLCHE, Villa, Chelsea, Villa Park, Dean Smith, Lampard, Nyland, Konsa, Mings, Hause,
Targett, Hourihane, Douglas Luiz, McGinn, El-Ghazi, Davis, Grealish, Neil Taylor, Nakamba,
Trezeguet, Baston, Samatta, Jota, Mohamady, Reina, Vassilev, Kepa, Azpilicueta, Rudiger, Chris-
tensen, Alonso, Loftus-Cheek, Kante, Kovacic, Willian, Giroud, Mason Mount, Barkley, Abraham,
Pedro, Caballero, Zouma, Pulisic, Reece James, Emerson, Gilmour

Leicester - Chelsea

Understanding #LEICHE, Leicester, Chelsea

Event #LEICHE, Leicester, Chelsea, King Power Stadium, Rodgers, Lampard, Schmeichel, James Justin,
Evans, Soyuncu, Chilwell, Ndidi, Perez, Praet, Tielemans, Barnes, Vardy, Wes Morgan, Demarai
Gray, Albrighton, Danny Ward, Iheanacho, Choudhury, Mendy, Fuchs, Bennett, Caballero, Reece
James, Rudiger, Zouma, Emerson, Kante, Gilmour, Willian, Mount, Pulisic, Abraham, Kepa, Mar-
cos Alonso, Jorginho, Barkley, Pedro, Loftus-Cheek, Kovacic, Giroud, Azpilicueta

Barcelona - Atlético

Understanding #BarcaAtleti, Barca, Barcelona, Atleti, Atletico
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Period Keywords

Event #BarcaAtleti, Barca, Barcelona, Atleti, Atletico, Camp Nou, Setien, Simeone, ter Stegen, Semedo,
Pique, Lenglet, Alba, Rakitic, Busquets, Vidal, Messi, Suarez, Griezmann, Arthur, Neto, Braith-
waite, Sergi Roberto, Umtiti, Firpo, Pena, Puig, Collado, Fati, Araujo, Monchu, Oblak, Arias, Fe-
lipe, Gimenez, Lodi, Hector Herrera, Saul, Felix, Llorente, Lemar, Diego Costa, Adan, Partey,
Morata, Correa, Saponjic, Vitolo, Carrasco, Hermoso, Trippier, Ricard Sanchez, Manuel Sanchez,
Alvaro Garcia

Everton - Leicester City

Understanding #EVELEI, Everton, Leicester

Event #EVELEI, Everton, Leicester, Goodison Park, Ancelotti, Rodgers, Pickford, Coleman, Keane,
Holgate, Digne, Iwobi, Andre Gomes, Sigurdsson, Anthony Gordon, Calvert-Lewin, Richarli-
son, Baines, Mina, Bernard, Stekelenburg, Tom Davies, Kean, Virginia, Branthwaite, Baningime,
Schmeichel, James Justin, Evans, Soyuncu, Chilwell, Ndidi, Albrighton, Tielemans, Praet, Barnes,
Vardy, Wes Morgan, Demarai Gray, Maddison, Danny Ward, Iheanacho, Ayoze Perez, Choudhury,
Mendy, Fuchs

Dortmund - Schalke 04

Understanding #BVBS04, #Revierderby, Borussia, Dortmund, Schalke

Event #BVBS04, #Revierderby, Borussia, Dortmund, BVB, Schalke, Signal Iduna Park, Favre, Wagner,
Burki, Hakimi, Delaney, Dahoud, Guerreiro, Hummels, Akanji, Haaland, Brandt, Piszczek, Reyna,
Sancho, Goetze, Balerdi, Morey, Hazard, Schmelzer, Hitz, Raschl, Schubert, McKennie, Nastasic,
Serdar, Raman, Caligiuri, Jonjoe Kenny, Todibo, Oczipka, Harit, Salif Sane, Miranda, Gregoritsch,
Matondo, Kutucu, Burgstaller, Schoepf, Becker, Nuebel, Mercan

Dortmund - Bayern Munich

Understanding #BVBFCB, BVB, Dortmund, Bayern, Munich

Event #BVBFCB, BVB, Dortmund, Bayern, Munich, Signal Iduna Park, Favre, Hans Flick, Burki,
Piszczek, Hummels, Akanji, Hakimi, Delaney, Dahoud, Guerreiro, Thorgan Hazard, Brandt, Haa-
land, Sancho, Gotze, Balerdi, Morey, Emre Can, Witsel, Schmelzer, Reyna, Hitz, Neuer, Pavard,
Boateng, Alaba, Davies, Kimmich, Goretzka, Coman, Muller, Gnabry, Lewandowski, Odriozola,
Javi Martinez, Cuisance, Perisic, Lucas Hernandez, Ulreich, Lukas Mai, Meier, Zirkzee

Aston Villa - Sheffield United

Understanding #AVLSHU, Villa, Sheffield

Event #AVLSHU, Villa, Sheffield, Villa Park, Dean Smith, Chris Wilder, Nyland, Konsa, Hause, Mings,
Targett, Hourihane, Douglas Luiz, McGinn, Ghazi, Davis, Grealish, Baston, Vassilev, Neil Tay-
lor, Nakamba, Trezeguet, Samatta, Jota, Mohamady, Reina, Dean Henderson, Basham, Egan, Jack
Robinson, Baldock, Lundstram, Norwood, Berge, Stevens, McBurnie, Billy Sharp, Luke Freeman,
Jagielka, McGoldrick, Kieron Freeman, Mousset, Osborn, Clarke, Moore, Rodwel

Manchester City - Arsenal

Understanding #MCIARS, Manchester City, Arsenal
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Period Keywords

Event #MCIARS, Manchester City, Arsenal, Etihad, Guardiola, Arteta, Ederson, Kyle Walker, Eric Gar-
cia, Laporte, Mendy, David Silva, Gundogan, Bruyne, Mahrez, Gabriel Jesus, Sterling, Aguero,
Zinchenko, Rodri, Leroy Sane, Bernardo Silva, Fernandinho, Otamendi, Carson, Foden, Leno, Bel-
lerin, Mari, Mustafi, Tierney, Xhaka, Guendouzi, Nketiah, Willock, Saka, Aubameyang, Ceballos,
Lacazette, Maitland-Niles, Nicolas Pepe, David Luiz, Reiss Nelson, Emiliano Martinez, Kolasinac,
Martinelli

Tottenham - Manchester United

Understanding #TOTMUN, Tottenham, Manchester United

Event #TOTMUN, Tottenham, Manchester United, Tottenham Hotspur Stadium, Mourinho, Solskjaer,
Lloris, Aurier, Davinson Sanchez, Dier, Davies, Sissoko, Harry Winks, Heung-Min Son, He-
ung Min Son, Lamela, Bergwijn, Kane, Alderweireld, Vertonghen, Celso, Sessegnon, Gazzaniga,
Ndombele, Skipp, Gedson Fernandes, Harvey White, De Gea, Bissaka, Wan-Bissaka, Lindelof,
Maguire, Shaw, McTominay, Fred, Daniel James, Fernandes, Rashford, Martial, Bailly, Pogba,
Mata, Lingard, Romero, Ighalo, Greenwood, Matic, Brandon Williams

Brighton - Arsenal

Understanding #BHAARS, Brighton, Arsenal

Event #BHAARS, Brighton, Arsenal, The American Express Community Stadium, The Amex, Graham
Potter, Arteta, Mathew Ryan, Schelotto, Webster, Lewis Dunk, Daniel Burn, Propper, Bissouma,
Mooy, Pascal Gross, Trossard, Maupay, Lamptey, Duffy, Stephens, Mac Allister, Murray, Solly
March, Montoya, David Button, Connolly, Leno, Bellerin, Mustafi, Rob Holding, Kolasinac, Pepe,
Ceballos, Guendouzi, Saka, Lacazette, Aubameyang, Tierney, Ozil, Maitland-Niles, Reiss Nelson,
Emiliano Martinez, Willock, Nketiah, Martinelli, Zech Medley

Aston Villa - Chelsea

Understanding #AVLCHE, Villa, Chelsea

Event #AVLCHE, Villa, Chelsea, Villa Park, Dean Smith, Lampard, Nyland, Konsa, Mings, Hause,
Targett, Hourihane, Douglas Luiz, McGinn, El-Ghazi, Davis, Grealish, Neil Taylor, Nakamba,
Trezeguet, Baston, Samatta, Jota, Mohamady, Reina, Vassilev, Kepa, Azpilicueta, Rudiger, Chris-
tensen, Alonso, Loftus-Cheek, Kante, Kovacic, Willian, Giroud, Mason Mount, Barkley, Abraham,
Pedro, Caballero, Zouma, Pulisic, Reece James, Emerson, Gilmour

Leicester City - Chelsea

Understanding #LEICHE, Leicester, Chelsea

Event #LEICHE, Leicester, Chelsea, King Power Stadium, Rodgers, Lampard, Schmeichel, James Justin,
Evans, Soyuncu, Chilwell, Ndidi, Perez, Praet, Tielemans, Barnes, Vardy, Wes Morgan, Demarai
Gray, Albrighton, Danny Ward, Iheanacho, Choudhury, Mendy, Fuchs, Bennett, Caballero, Reece
James, Rudiger, Zouma, Emerson, Kante, Gilmour, Willian, Mount, Pulisic, Abraham, Kepa, Mar-
cos Alonso, Jorginho, Barkley, Pedro, Loftus-Cheek, Kovacic, Giroud, Azpilicueta

Barcelona - Atlético de Madrid

Understanding #BarcaAtleti, Barca, Barcelona, Atleti, Atletico
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Period Keywords

Event #BarcaAtleti, Barca, Barcelona, Atleti, Atletico, Camp Nou, Setien, Simeone, ter Stegen, Semedo,
Pique, Lenglet, Alba, Rakitic, Busquets, Vidal, Messi, Suarez, Griezmann, Arthur, Neto, Braith-
waite, Sergi Roberto, Umtiti, Firpo, Pena, Puig, Collado, Fati, Araujo, Monchu, Oblak, Arias, Fe-
lipe, Gimenez, Lodi, Hector Herrera, Saul, Felix, Llorente, Lemar, Diego Costa, Adan, Partey,
Morata, Correa, Saponjic, Vitolo, Carrasco, Hermoso, Trippier, Ricard Sanchez, Manuel Sanchez,
Alvaro Garcia

Everton - Leicester City

Understanding #EVELEI, Everton, Leicester

Event #EVELEI, Everton, Leicester, Goodison Park, Ancelotti, Rodgers, Pickford, Coleman, Keane,
Holgate, Digne, Iwobi, Andre Gomes, Sigurdsson, Anthony Gordon, Calvert-Lewin, Richarli-
son, Baines, Mina, Bernard, Stekelenburg, Tom Davies, Kean, Virginia, Branthwaite, Baningime,
Schmeichel, James Justin, Evans, Soyuncu, Chilwell, Ndidi, Albrighton, Tielemans, Praet, Barnes,
Vardy, Wes Morgan, Demarai Gray, Maddison, Danny Ward, Iheanacho, Ayoze Perez, Choudhury,
Mendy, Fuchs

Wolves - Arsenal

Understanding #WOLARS, Wolves, Arsenal

Event #WOLARS, Wolves, Arsenal, Molineux, Nuno Espirito Santo, Arteta, Patricio, Boly, Coady, Saiss,
Doherty, Dendoncker, Neves, Moutinho, Jonny, Adama, Jimenez, Jordao, Neto, Gibbs-White,
Jota, Ruddy, Vinagre, Campana, Kilman, Buur, Martinez, Mustafi, David Luiz, Kolasinac, Cedric,
Ceballos, Xhaka, Tierney, Aubameyang, Nketiah, Saka, Bellerin, Sokratis, Lacazette, Torreira,
Maitland-Niles, Rob Holding, Nelson, Willock, Matt Macey

Aston Villa - Manchester United

Understanding #AVLMUN, Villa, Manchester United

Event #AVLMUN, Villa, Manchester United, Villa Park, Dean Smith, Solskjaer, Reina, Konsa, Hause,
Mings, Neil Taylor, El-Ghazi, Douglas Luiz, McGinn, Trezeguet, Grealish, Samatta, Lansbury,
Nakamba, Hourihane, Jota, Guilbert, Nyland, El Mohamady, Vassilev, Davis, De Gea, Wan-
Bissaka, Wan Bissaka, Lindelof, Maguire, Luke Shaw, Pogba, Matic, Greenwood, Bruno, Rashford,
Martial, Bailly, Mata, Pereira, Fred, Daniel James, Romero, Ighalo, McTominay, Brandon Williams

Liverpool - Burnley

Understanding #LIVBUR, Liverpool, Burnley

Event #LIVBUR, Liverpool, Burnley, Anfield, Klopp, Dyche, Alisson, Neco Williams, Gomez, van Dijk,
Robertson, Wijnaldum, Fabinho, Curtis Jones, Salah, Firmino, Mane, Lovren, Keita, Adrian,
Oxlade-Chamberlain, Minamino, Shaqiri, Origi, Alexander-Arnold, Elliott, Nick Pope, Bardsley,
Kevin Long, Tarkowski, Charlie Taylor, Pieters, Westwood, Brownhill, McNeil, Chris Wood, Jay
Rodriguez, Gudmundsson, Robert Brady, Peacock-Farrell, Vydra, Max Thompson, Dunne, Ben-
son, Goodridge, Driscoll-Glennon

Arsenal - Liverpool

Understanding #ARSLIV, Arsenal, Liverpool
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Period Keywords

Event #ARSLIV, Arsenal, Liverpool, Emirates Stadium, Klopp, Arteta, Martinez, Rob Holding, David
Luiz, Tierney, Cedric, Torreira, Xhaka, Reiss Nelson, Pepe, Lacazette, Saka, Bellerin, Sokratis, Ce-
ballos, Aubameyang, Maitland-Niles, Mustafi, Willock, Kolasinac, Macey, Alisson, Alexander-
Arnold, Gomez, van Dijk, Robertson, Oxlade-Chamberlain, Fabinho, Wijnaldum, Salah, Firmino,
Mane, Lovren, Keita, Adrian, Minamino, Shaqiri, Origi, Curtis Jones, Elliott, Neco Williams

Tottenham - Leicester

Understanding #TOTLEI, Tottenham, Leicester

Event #TOTLEI, Tottenham, Leicester, Tottenham Hotspur Stadium, Mourinho, Rodgers, Lloris, Aurier,
Davinson Sanchez, Alderweireld, Ben Davies, Sissoko, Harry Winks, Lo Celso, Moura, Kane,
Heung-Min Son, Vertonghen, Lamela, Sessegnon, Foyth, Gazzaniga, Bergwijn, Skipp, Gedson
Fernandes, Tanganga, Schmeichel, Bennett, Wes Morgan, Evans, James Justin, Ndidi, Tielemans,
Luke Thomas, Ayoze Perez, Vardy, Barnes, Demarai Gray, Danny Ward, Iheanacho, Choudhury,
Matthew James, Mendy, Praet, Johnson, Hirst

Juventus - Lyon

Understanding #JuveOL, Juventus, Lyon

Event #JuveOL, Juventus, Lyon, Allianz Stadium, Sarri, Rudi Garcia, Szczesny, Cuadrado, Bonucci, de
Ligt, Alex Sandro, Bentancur, Pjanic, Rabiot, Bernardeschi, Higuain, Ronaldo, Chiellini, Ramsey,
Dybala, Danilo, Matuidi, Rugani, Demiral, Pinsoglio, Olivieri, Muratore, Buffon, Lopes, Denayer,
Marcelo, Marcal, Guimaraes, Dubois, Caqueret, Aouar, Maxwel Cornet, Depay, Toko Ekambi,
Diomande, Andersen, Rafael, Dembele, Traore, Mendes, Reine-Adelaide, Jean Lucas, Tete, Tataru-
sanu, Melvin Bard, Cherki

Barcelona - Napoli

Understanding #BarcaNapoli, Barcelona, Barca, Napoli

Event #BarcaNapoli, Barcelona, Barca, Napoli, Camp Nou, Setien, Gattuso, ter Stegen, Semedo, Pique,
Lenglet, Alba, Sergi Roberto, Rakitic, de Jong, Messi, Suarez, Griezmann, Neto, Firpo, Pena,
Puig, Fati, Araujo, Monchu, Mingueza, de la Fuente, Reis, Orellana, Ospina, Di Lorenzo,
Manolas, Koulibaly, Mario Rui, Fabian, Demme, Zielinski, Callejon, Mertens, Insigne, Meret, Al-
lan, Llorente, Lozano, Elmas, Luperto, Maksimovic, Politano, Hysaj, Karnezis, Lobotka, Milik

Bayern Munich - Chelsea

Understanding #BAYCHE, Bayern, Chelsea

Event #BAYCHE, Bayern, Chelsea, Allianz Arena, Flick, Lampard, Neuer, Kimmich, Boateng, Alaba,
Davies, Goretzka, Alcantara, Gnabry, Thomas Muller, Perisic, Lewandowski, Odriozola, Sule,
Javier Martinez, Coutinho, Cuisance, Lucas Hernandez, Tolisso, Ulreich, Hoffmann, Tillman, Mu-
siala, Arrey-Mbi, Caballero, Reece James, Christensen, Zouma, Emerson, Barkley, Kante, Kovacic,
Hudson-Odoi, Tammy Abraham, Mason Mount, Kepa, Rudiger, Giroud, Batshuayi, Tomori, Cum-
ming, Broja, Henry Lawrence, Maatsen, Bate, Simeu

Atalanta - Paris Saint-Germain

Understanding #ATAPSG, Atalanta, PSG
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Period Keywords

Event #ATAPSG, Atalanta, PSG, Estadio da Luz, Gasperini, Tuchel, Sportiello, Toloi, Caldara, Djim-
siti, Hateboer, de Roon, Freuler, Gosens, Pasalic, Gomez, Zapata, Sutalo, Palomino, Czyborra,
Muriel, Piccoli, Malinovsky, Da Riva, Castagne, Bellanova, Gelmi, Rossi, Colley, Navas, Kehrer,
Thiago Silva, Kimpembe, Bernat, Ander Herrera, Marquinhos, Gueye, Sarabia, Icardi, Neymar,
Mbappe, Daniel Paredes, Sergio Rico, Choupo-Moting, Diallo, Draxler, Bakker, Kalimuendo-
Muinga, Bulka, Dagba, Mbe Soh, Ruiz-Atil

Leipzig - Atlético

Understanding #RBLATL, #RBLAtleti, #UCL, Leipzig, Atleti, Atletico Madrid

Event #RBLATL, #RBLAtleti, #UCL, Leipzig, Atleti, Atletico Madrid, Estadio Jose Alvalade, Nagels-
mann, Simeone, Gulacsi, Halstenberg, Upamecano, Klostermann, Angelino, Sabitzer, Kampl,
Laimer, Nkunku, Poulsen, Olmo, Orban, Haidara, Forsberg, Tyler Adams, Lookman, Schick,
Mukiele, Mvogo, Tschauner, Novoa, Borkowski, Wosz, Oblak, Trippier, Savic, Gimenez, Lodi, Car-
rasco, Saul, Hector Herrera, Koke, Llorente, Diego Costa, Adan, Arias, Partey, Joao Felix, Morata,
Lemar, Saponjic, Felipe, Vitolo, Mario Hermoso, Manuel Sanchez, Moya

Manchester City - Lyon

Understanding #ManCityOL, #UCL, Manchester City, Lyon

Event #ManCityOL, #UCL, Manchester City, Lyon, Estadio Jose Alvalade, Pep, Guardiola, Rudi Gar-
cia, Ederson, Kyle Walker, Eric Garcia, Laporte, Cancelo, Fernandinho, Rodri, Ilkay Gundogan,
De Bruyne, Gabriel Jesus, Raheem Sterling, Claudio Bravo, John Stones, Zinchenko, Bernardo
Silva, David Silva, Mendy, Mahrez, Otamendi, Foden, Doyle, Palmer, Bernabe, Lopes, Denayer,
Marcelo, Marcal, Dubois, Caqueret, Guimaraes, Aouar, Cornet, Toko Ekambi, Depay, Diomande,
Andersen, Rafael, Dembele, Bertrand Traore, Thiago Mendes, Reine-Adelaide, Jean Lucas, Kenny
Tete, Tatarusanu, Melvin Bard, Cherki

Leipzig - Paris Saint-Germain

Understanding #RBLPSG, #UCL, Leipzig, PSG

Event #RBLPSG, #UCL, Leipzig, PSG, Estadio da Luz, Nagelsmann, Tuchel, Gulacsi, Klostermann, Up-
amecano, Mukiele, Laimer, Kampl, Sabitzer, Angelino, Olmo, Nkunku, Poulsen, Orban, Haidara,
Forsberg, Tyler Adams, Lookman, Schick, Halstenberg, Mvogo, Tschauner, Novoa, Borkowski,
Wosz, Rico, Kehrer, Thiago Silva, Kimpembe, Bernat, Ander Herrera, Marquinhos, Paredes, Di
Maria, Mbappe, Neymar, Verratti, Choupo-Moting, Icardi, Sarabia, Kurzawa, Diallo, Draxler,
Bakker, Gueye, Bulka, Dagba, Garissone Innocent

Lyon - Bayern Munich

Understanding #OLFCB, #UCL, Lyon, Bayern

Event #OLFCB, #UCL, Lyon, Bayern, Estadio Jose Alvalade, Rudi Garcia, Flick, Anthony Lopes, De-
nayer, Marcelo, Marcal, Dubois, Caqueret, Guimaraes, Aouar, Cornet, Toko Ekambi, Depay,
Diomande, Andersen, Rafael, Dembele, Traore, Mendes, Reine-Adelaide, Jean Lucas, Kenny Tete,
Tatarusanu, Bard, Cherki, Neuer, Kimmich, Boateng, Alaba, Davies, Alcantara, Goretzka, Gnabry,
Thomas Muller, Perisic, Lewandowski, Odriozola, Niklas Sule, Pavard, Javier Martinez, Coutinho,
Cuisance, Lucas Hernandez, Tolisso, Ulreich, Coman, Zirkzee, Hoffmann

Sevilla - Inter

Understanding #SevillaInter, #UEL, #UELFinal, Inter, Sevilla
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Period Keywords

Event #SevillaInter, #UEL, #UELFinal, Inter, Sevilla, RheinEnergieSTADION, Lopetegui, Conte, Bounou,
Jesus Navas, Kounde, Diego Carlos, Reguilon, Joan Jordan, Fernando, Banega, Ocampos, de Jong,
Suso, Vaclik, Sergi Gomez, El Haddadi, Gudelj, Escudero, Oliver Torres, Vazquez, Jose Alonso
Lara, Javier Diaz, Genaro Rodriguez, Pablo Perez, En-Nesyri, Handanovic, Godin, de Vrij, Bastoni,
D’Ambrosio, Barella, Brozovic, Gagliardini, Ashley Young, Lautaro, Lukaku, Alexis Sanchez, Vic-
tor Moses, Sensi, Ranocchia, Valero, Eriksen, Padelli, Esposito, Pirola, Biraghi, Skriniar, Candreva

Table D.5: The keywords used to collect the football match datasets used in Section 4.3.

Data used in Section 4.4
For the ATE evaluation of Section 4.4, we collected datasets from the 2020 Formula 1
season. Due to the COVID-19 pandemic, the 2020 season was a relatively short one,
with just 17 Grands Prix—four fewer than in 2019. Over the course of the season, we
collected data from 15 out of the 17 races. We missed the Belgian Grand Prix on 30
August 2020 due to human error in the collection, and the Russian Grand Prix on 27
September 2020 due to API downtime.

In the Formula 1 Grands Prix evaluations, we reverted to the same dataset model
as in the football matches analyses, with an understanding period and an event period.
The understanding period only covered 30 minutes, while the event period generally
lasted between two hours and two hours and a half. We further extended the event
period for Grands Prix that were suspended with red flags and resumed later. In total,
we collected more than 2.2 million tweets, averaging 147,232 tweets per Grand Prix.
Details about each Grand Prix follow in the next table.

Time Tweets

Event Date Understanding Event Understanding Event

Austrian GP 05 Jul 2020 14:25–14:55 14:55–17:25 17,285 197,166

Austrian GP (2) 12 Jul 2020 14:25–14:55 14:55–17:10 5,911 113,467

Hungarian GP 19 Jul 2020 14:25–14:55 14:55–17:10 10,170 98,014

British GP 02 Aug 2020 14:25–14:55 14:55–17:10 7,665 125,416

F1 70th Anniversary 09 Aug 2020 14:25–14:55 15:00–17:10 8,331 120,678

Spanish GP 16 Aug 2020 14:25–14:55 15:00–17:10 5,151 87,006

Belgian GP 30 Aug 2020

Italian GP� Sep 06, 2020 14:25–14:55 14:55–17:10 10,232 178,050

Tuscan GP�� Sep 13, 2020 14:25–14:55 14:55–17:40 8,790 177,615

Russian GP Sep 27, 2020
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D.2. Data used in Chapter 4

Time Tweets

Event Date Understanding Event Understanding Event

Eifel GP Oct 11, 2020 13:25–13:55 13:55–16:10 6,677 125,857

Portuguese GP Oct 25, 2020 13:25–13:55 13:55–16:10 5,563 115,509

Imola GP 01 Nov 2020 12:25–12:55 12:55–15:10 3,614 102,168

Turkish GP 15 Nov 2020 10:25–10:55 10:55–13:10 7,789 119,922

Bahrain GP� 29 Nov 2020 14:25–14:55 14:55–18:40 4,196 275,029

Sakhir GP 06 Dec 2020 17:25–17:55 17:55–20:10 5,428 180,268

Abu Dhabi GP 13 Dec 2020 13:25–13:55 13:55–16:10 8,474 77,036

115,276 2,093,201

Table D.6: The Formula 1 datasets used in Section 4.4. Each� denotes a red flag, which
led to longer race times.

One major difference between football matches and Formula 1 Grands Prix is that
the Formula 1 drivers and constructors are known ahead of each race. Therefore dif-
ferently from the football match datasets, during the understanding period we tracked
not just the event hashtag, such as #AustrianGP and #F1, but also all drivers and con-
structors. Consequently, ELD’s TF-ICF term-weighting scheme could still gauge the
popularity of drivers and constructors from the understanding period dataset.

Because the drivers and constructs are known ahead of the Grands Prix, we normally
used the same keywords to collect datasets during the understanding and event peri-
ods. We only made a few changes to the tracking keywords between the two periods,
always to rectify human errors. The tracking keywords used to collect tweets during
the understanding and event periods of each Grand Prix follow in the next table.

Period Keywords

Austrian GP

Understanding #AustrianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #AustrianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Austrian GP (2)
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Period Keywords

Understanding #AustrianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #AustrianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Hungarian GP

Understanding #HungarianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #HungarianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

British GP

Understanding #BritishGP, Silverstone, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing
Point, Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #BritishGP, Silverstone, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing
Point, Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell, Hulkenberg

F1 70th Anniversary

Understanding #F170, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red Bull
Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc, Gros-
jean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo Perez,
Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell, Hulkenberg

Event #F170, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red Bull
Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc, Gros-
jean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo Perez,
Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell, Hulkenberg

Spanish GP

Understanding #SpanishGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell
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Period Keywords

Event #SpanishGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Italian GP

Understanding #ItalianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #ItalianGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Tuscan GP

Understanding #TuscanGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #TuscanGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Eifel GP

Understanding #EifelGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell, Hulkenberg

Event #EifelGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell, Hulkenberg

Portuguese GP

Understanding #PortugueseGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #PortugueseGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Imola GP
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Period Keywords

Understanding #ImolaGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #ImolaGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Turkish GP

Understanding #TurkishGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #TurkishGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Bahrain GP

Understanding #BahrainGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #BahrainGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Sakhir GP

Understanding #SakhirGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Event #SakhirGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point, Red
Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel, Leclerc,
Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez, Checo
Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Abu Dhabi GP

Understanding #AbuDhabiGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell
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Period Keywords

Event #AbuDhabiGP, #F1, Alfa Romeo, AlphaTauri, Ferrari, Haas, McLaren, Mercedes, Racing Point,
Red Bull Racing, Renault, Williams, Spielberg, Raikkonen, Giovinazzi, Gasly, Kvyat, Vettel,
Leclerc, Grosjean, Magnussen, Lando, Norris, Carlos Sainz, Lewis Hamilton, Bottas, Sergio Perez,
Checo Perez, Stroll, Albon, Verstappen, Ricciardo, Ocon, Latifi, George Russell

Table D.7: The keywords used to collect the Formula 1 datasets used in Section 4.4.

Data used in Section 4.5
The politics analyses too required a tailored data collection process. First, as we ex-
plained in Section 4.5, we considered each day to be a separate event. Second, we did
not collect an understanding period for ELD. Instead, we used the general corpus de-
scribed in the beginning of this appendix as ELD’s understanding period to contrast
what happens in general with what happens in politics.

The datasets span around three months, from 20 October 2020 to 21 January 2021. We
only missed three days, between 12 January and 14 January 2021 due to server down-
time. To assemble the dataset, we automatically tracked keywords from midnight to
the next midnight, Central European time. Over these three months, we collected more
than 85 million tweets, averaging 939,763 tweets per day.

The 91 days cover several important events from the US political scene. Early on,
the datasets cover the lead-up to the presidential election, ballot casting (3 November
2020) and counting (until after 7 November 2020), and the day when news networks
called the election for Joe Biden (7 November 2020). Later, the datasets also cover the
electoral college casting its votes (14 December, 2020), the Capitol riot (6 January 2021)
and President Joe Biden’s Inauguration Day (20 January 2021). Details about how we
collected each dataset follow in the next table.

Date Tweets Keywords

Oct 20, 2020 800,129 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 21, 2020 816,396 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 22, 2020 915,016 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 23, 2020 1,021,130 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 24, 2020 953,337 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 25, 2020 891,355 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 26, 2020 944,575 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 27, 2020 1,008,524 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 28, 2020 973,792 #elections, #Elections2020, #Election2020, Trump, Biden
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Date Tweets Keywords

Oct 29, 2020 997,428 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 30, 2020 1,039,370 #elections, #Elections2020, #Election2020, Trump, Biden

Oct 31, 2020 996,352 #elections, #Elections2020, #Election2020, Trump, Biden

01 Nov 2020 1,019,263 #elections, #Elections2020, #Election2020, Trump, Biden

02 Nov 2020 1,078,132 #elections, #Elections2020, #Election2020, Trump, Biden

03 Nov 2020 1,191,254 #elections, #Elections2020, #Election2020, #ElectionDay, Trump, Biden

04 Nov 2020 1,218,193 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

05 Nov 2020 1,138,791 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

06 Nov 2020 1,228,534 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

07 Nov 2020 1,231,376 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

08 Nov 2020 1,245,691 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

09 Nov 2020 1,170,033 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

10 Nov 2020 1,103,084 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

11 Nov 2020 1,116,066 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

12 Nov 2020 1,069,789 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

13 Nov 2020 1,048,658 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

14 Nov 2020 1,014,234 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

15 Nov 2020 956,601 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

16 Nov 2020 1,021,980 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

17 Nov 2020 983,282 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

18 Nov 2020 1,000,717 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

19 Nov 2020 960,814 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

20 Nov 2020 1,064,809 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

21 Nov 2020 993,736 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

22 Nov 2020 1,011,573 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

23 Nov 2020 946,513 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

24 Nov 2020 1,065,894 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

25 Nov 2020 1,027,134 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

26 Nov 2020 879,987 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

27 Nov 2020 891,475 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

28 Nov 2020 956,810 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

29 Nov 2020 866,458 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

30 Nov 2020 954,964 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

01 Dec 2020 983,740 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

02 Dec 2020 982,248 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden
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Date Tweets Keywords

03 Dec 2020 962,032 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

04 Dec 2020 981,950 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

05 Dec 2020 889,500 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

06 Dec 2020 893,041 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

07 Dec 2020 851,002 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

08 Dec 2020 961,751 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

09 Dec 2020 986,540 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

10 Dec 2020 941,485 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

11 Dec 2020 986,838 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

12 Dec 2020 1,075,637 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

13 Dec 2020 924,343 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

14 Dec 2020 916,663 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

15 Dec 2020 1,054,386 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

16 Dec 2020 1,011,836 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

17 Dec 2020 869,909 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

18 Dec 2020 845,646 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

19 Dec 2020 751,313 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

20 Dec 2020 759,096 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

21 Dec 2020 769,415 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

22 Dec 2020 830,913 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

23 Dec 2020 883,521 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

24 Dec 2020 790,989 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

25 Dec 2020 507,839 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

26 Dec 2020 542,201 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

27 Dec 2020 641,878 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

28 Dec 2020 703,022 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

29 Dec 2020 736,368 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

30 Dec 2020 759,738 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

31 Dec 2020 690,442 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

01 Jan 2021 663,665 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

02 Jan 2021 724,707 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

03 Jan 2021 790,928 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

04 Jan 2021 835,254 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

05 Jan 2021 860,095 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

06 Jan 2021 1,014,673 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden
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Date Tweets Keywords

07 Jan 2021 974,257 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

08 Jan 2021 1,035,643 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

09 Jan 2021 1,035,824 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

10 Jan 2021 942,608 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

11 Jan 2021 952,909 #elections, #Elections2020, #Election2020, #ElectionDay, #ElectionNight, Trump, Biden

12 Jan 2021

13 Jan 2021

14 Jan 2021

15 Jan 2021 881,553 #Inauguration, #InaugurationDay, #Inauguration2021, Trump, Biden

16 Jan 2021 830,411 #Inauguration, #InaugurationDay, #Inauguration2021, Trump, Biden

17 Jan 2021 825,258 #Inauguration, #InaugurationDay, #Inauguration2021, Trump, Biden

18 Jan 2021 832,624 #Inauguration, #InaugurationDay, #Inauguration2021, Trump, Biden

19 Jan 2021 917,626 #Inauguration, #InaugurationDay, #Inauguration2021, Trump, Biden

20 Jan 2021 1,113,018 #Inauguration, #InaugurationDay, #Inauguration2021, Inauguration, Trump, Biden

21 Jan 2021 988,869 #Inauguration, #InaugurationDay, #Inauguration2021, Inauguration, Trump, Biden

85,518,453

Table D.8: The 2020 US presidential election datasets used in Section 4.5.

D.3 | Data used in Chapter 5
For the TDT analyses of Chapter 5, we largely followed the same approach as in our
previous work [146]. SEER, like ELD, uses a corpus of tweets from before the event starts
to construct the TF-ICF term-weighting scheme. Therefore in all cases, we collected a
dataset before the event and another during the event. We collected nine events, of
which we use six regularly in Section 5.3 and the other three exclusively in Appendix B.
Details about the nine datasets and how we collected them follow in the next table.

Time Tweets

Event Date Understanding Event Understanding Event

Southampton - Arsenal 25 Jun 2020 17:45–18:45 18:45–21:00 15,135 97,874

Leicester - Manchester United 26 Jul 2020 15:45–16:45 16:45–19:05 34,253 209,132

Turkey - Italy 11 Jun 2021 19:45–20:45 20:45–23:00 28,022 109,888

Wales - Switzerland 12 Jun 2021 13:45–14:45 14:45–17:00 15,914 87,717

Scotland - Czech Republic 14 Jun 2021 13:45–14:45 14:45–17:00 17,390 120,194
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Time Tweets

Event Date Understanding Event Understanding Event

Hungary - France 19 Jun 2021 13:45–14:45 14:45–17:00 9,886 122,069

Trophée des Champions 13 Jan 2021 19:45–20:45 20:45–23:05 886 10,163

Copa del Rey 03 Apr 2021 20:15–21:15 21:17–23:32 656 2,774

Parma - Milan 10 Apr 2021 16:45–17:45 17:45–19:00 1,098 7,943

123,240 767,754

Table D.9: The football match datasets used in Section 5.3.

Although we used nine datasets in our analyses, we focus extensively on the first
six. We only use the 2020 Trophée des Champions final between Paris Saint-Germain
and Olympique de Marseille, the 2020 Copa Del Rey final between Athletic Club and
Real Sociedad, and the match between Parma and Milan as real-life examples of low-
coverage events in Appendix B. Here, too, we focus on the first six datasets.

While arguing about the need for parameter-free algorithms in IR, Keogh et al. [109]
briefly referred to the dataset, which they called a “meta parameter” of the evaluation.
The simplest manner of eliminating human bias from the meta parameter, and the one
Keogh et al. [109] adopted, is to experiment with a variety of datasets and scenarios.
Nevertheless, as we explained in Appendix A, TDT’s manual evaluations hardly en-
courage such comprehensive analyses. Instead, in our evaluation we opted to observe
our algorithms’ behaviours in several scenarios by hand-picking the six events. The six
matches had the following characteristics and key topics:

■ The match between Southampton and Arsenal was quiet [54]. Early on, Arsenal’s
Eddie Nketiah had a goal disallowed for an offside in the build-up, before later
pouncing on a mistake by Southampton’s goalkeeper to open the scoring. In the
last few minutes, Southampton’s Jack Stephens received a red card and, shortly
after, Arsenal’s Joe Willock scored the second goal. The uncontroversial nature
of the key topics facilitated precise topic detection, and all algorithms performed
remarkably well.

■ The match between Leicester City and Manchester United was agitated [237].
Manchester United’s Bruno Fernandes had a goal disallowed for offside in the first
half, but he scored a penalty in the second half. Towards the end, Leicester City’s
Jonny Evans received a red card for a reckless challenge before substitute Jesse Lin-
gard scored a second, late goal for Manchester United. The match was filled with
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opinions and reactions to an eventful match: Manchester United’s record-setting
14th penalty of the season, Lingard’s first goal of the season in the last minute, and
Manchester United’s return to Champions League football.

■ The match between Turkey and Italy was impassioned [172]. The two national
teams met in the EURO 2020 opener, held in Summer of 2021 due to the COVID-
19 pandemic. After a quiet first half, Italy scored three goals in the second half
to win the match. The special occasion, the opening of an awaited major tour-
nament, rallied Twitter, with the community sharing its unsolicited opinions and
predictions. The Italians would go on to win the EURO 2020 tournament.

■ The match between Wales and Switzerland was calm [171]. The Swiss scored first
through Breel Embolo in the second half, but Wales’ Kieffer Moore equalised a
quarter of an hour later. Five minutes before the end of the match, Switzerland
took the lead, but Mario Gavranović had strayed offside and the referee disal-
lowed the goal. All algorithms captured very few opinions during the event and,
consequently, achieved relatively-high precision scores.

■ The match between Scotland and the Czech Republic was remarkable [170]. The
match was quiet for a long time, even after Patrik Schick opened the scoring for the
Czech Republic just before half-time, but Twitter’s engagement increased drasti-
cally in the second half. Schick picked up a loose ball in midfield, shot from the
halfway line and scored his second. The goal, which later won the EURO 2020 goal
of the tournament, created a long-tailed event shadow, misleading all algorithms
into detecting redundant topics.

■ The match between Hungary and France was unexpected [239]. France, then
reigning World Cup champions, had just defeated Germany in the first match of
the EURO 2020 tournament. Hungary, however, took a surprise lead at the end of
the first half through Attila Fiola, whose goal cast an event shadow that persisted
throughout half-time. France’s Antoine Griezmann equalised in the second half,
but their struggles led to observers expressing their opinions on the match and
criticising the French coach’s decisions. The draw foreshadowed France’s difficul-
ties in the tournament and an unceremonious exit against Switzerland.

A detailed breakdown of the number and types of topics in each event follow in the
next table.
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Event Goals Cards Halves Substitutions Total

Southampton - Arsenal 3 3 4 4 14

Leicester - Manchester United 3 2 4 9 18

Turkey - Italy 3 3 4 8 18

Wales - Switzerland 3 7 4 9 23

Scotland - Czech Republic 2 0 4 10 16

Hungary - France 2 2 4 7 15

Trophée des Champions 1 3 4 8 16

Copa del Rey 4 9 4 9 26

Parma - Milan 5 5 4 10 24

26 34 36 74 170

Table D.10: The ground truth topics in the football match datasets used in Section 5.3.

Similarly to our previous work [146], with the line-ups still unknown, during the
understanding period we could only collect tweets that mentioned the event hashtags
and the team names. However, during the event, we also tracked the names of the
stadium, coaches and players, including substitutions. In all cases, including matches
that did not involve English clubs, we only collected tweets in English to facilitate the
annotation process.

We sought to maximise the dataset sizes, especially during the event, and so we
favoured colloquial names when collecting datasets. Normally, for example, supporters
refer to players and coaches by surnames or nicknames, not full names. Therefore unless
the surname was common enough to be ambiguous or a common English lexeme, we
did not track the full name. The tracking keywords used to collect each dataset follow
in the next table.

Period Keywords

Southampton - Arsenal

Understanding #SOUARS, Southampton, Arsenal

Event #SOUARS, Southampton, Arsenal, St. Mary’s Stadium, Hasenhuttl, Arteta, McCarthy, Yan Valery,
Stephens, Bednarek, Bertrand, Redmond, Ward-Prowse, Emile Hoejbjerg, Stuart Armstrong, Ings,
Obafemi, Vestergaard, Shane Long, Che Adams, Romeu, Walker-Peters, Smallbone, Gunn, Vokins,
Tella, Emiliano Martinez, Bellerin, Mustafi, Rob Holding, Tierney, Ceballos, Xhaka, Saka, Pepe,
Nketiah, Aubameyang, Sokratis, Lacazette, Ozil, Maitland-Niles, Reiss Nelson, Willock, Ko-
lasinac, Macey, Matthew Smith

Leicester - Manchester United

Understanding #LEIMUN, Leicester, Manchester United
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Period Keywords

Event #LEIMUN, Leicester, Manchester United, King Power Stadium, Rodgers, Solskjaer, Schmeichel,
James Justin, Wes Morgan, Jonny Evans, Albrighton, Choudhury, Ndidi, Tielemans, Luke Thomas,
Iheanacho, Vardy, Demarai Gray, Danny Ward, Barnes, Perez, Matthew James, Mendy, Praet, Ben-
nett, Hirst, De Gea, Wan-Bissaka, Lindelof, Maguire, Brandon Williams, Pogba, Matic, Green-
wood, Fernandes, Rashford, Martial, Bailly, Mata, Lingard, Fred, Daniel James, Romero, Fosu-
Mensah, Ighalo, McTominay

Turkey - Italy

Understanding #TURITA, #ITATUR, #TUR, #ITA, #EURO2020

Event #TURITA, #ITATUR, #TUR, #ITA, Stadio Olimpico, Cakir, Celik, Soyuncu, Demiral, Meras,
Yokuslu, Karaman, Tufan, Yazici, Calhanoglu, Yilmaz, Insigne, Immobile, Berardi, Locatelli,
Jorginho, Barella, Spinazzola, Chiellini, Bonucci, Florenzi, Donnarumma, Gunok, Bayindir, Cen-
giz Under, Tokoz, Antalyali, Kabak, Unal, Kokcu, Kahveci, Ayhan, Muldur, Dervisoglu, Gunes,
Sirigu, Meret, Di Lorenzo, Belotti, Pessina, Emerson, Chiesa, Acerbi, Cristante, Bernardeschi, Ras-
padori, Bastoni, Mancini

Wales - Switzerland

Understanding #WALSUI, #SUIWAL, #WAL, #SUI, #EURO2020

Event #WALSUI, #SUIWAL, #WAL, #SUI, #EURO2020, Baku Olimpiya, Danny Ward, Connor Roberts,
Rodon, Ben Davies, Mepham, Morrell, Joe Allen, Ramsey, Daniel James, Moore, Bale, Sefer-
ovic, Embolo, Shaqiri, Rodriguez, Freuler, Xhaka, Mbabu, Akanji, Schaer, Elvedi, Sommer, Hen-
nessey, Adam Davies, Gunter, Neco Williams, Lockyer, Harry Wilson, Tyler Roberts, Ampadu,
Norrington-Davies, Jonathan Williams, Brooks, Levitt, Robert Page, Mvogo, Omlin, Widmer, Za-
karia, Vargas, Zuber, Sow, Fassnacht, Benito, Mehmedi, Gavranovic, Comert, Petkovic

Scotland - Czech Republic

Understanding #SCOCZE, #CZESCO, #SCO, #CZE, #EURO2020

Event #SCOCZE, #CZESCO, #SCO, #CZE, #EURO2020, Hampden Park, David Marshall, Hanley, Liam
Cooper, Hendry, O’Donnell, Stuart Armstrong, McGinn, McTominay, Andrew Robertson, Dykes,
Ryan Christie, Schick, Jankto, Darida, Masopust, Kral, Soucek, Boril, Kalas, Celustka, Coufal, Va-
clik, Craig Gordon, McLaughlin, Callum McGregor, Che Adams, Greg Taylor, David Turnbull,
Nisbet, Ryan Fraser, Patterson, Billy Gilmour, Forrest, McKenna, Steve Clarke, Mandous, Kader-
abek, Brabec, Barak, Tomas Holes, Krmencik, Sevcik, Zima, Hlozek, Vydra, Mateju, Pekhart, Sil-
havy

Hungary - France

Understanding #HUNFRA, #FRAHUN, #HUN, #FRA, #EURO2020

Event #HUNFRA, #FRAHUN, #HUN, #FRA, #EURO2020, Puskas Arena, Gulacsi, Botka, Willi Orban,
Szalai, Nego, Kleinheisler, Nagy, Schafer, Fiola, Szalai, Sallai, Mbappe, Benzema, Griezmann, Ra-
biot, Kante, Pogba, Digne, Kimpembe, Varane, Pavard, Lloris, Dibusz, Bogdan, Lang, Kecskes,
Cseri, Holender, Lovrencsics, Varga, Siger, Varga, Nikolic, Schon, Marco Rossi, Mandanda, Maig-
nan, Lenglet, Lemar, Giroud, Ousmane Dembele, Tolisso, Moussa Sissoko, Lucas Hernandez,
Dubois, Kounde, Thuram, Deschamps

Trophée des Champions

Understanding #TropheeDesChampions, #TDC2020, #PSGOM, #OMPSG, Trophee des Champions, PSG, Paris
Saint-Germain, Marseille
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Period Keywords

Event #TropheeDesChampions, #TDC2020, #PSGOM, #OMPSG, Trophee des Champions, PSG, Paris
Saint-Germain, Marseille, Stade Bollaert-Delelis, Pochettino, Villas-Boas, Navas, Florenzi, Mar-
quinhos, Diallo, Kurzawa, Verratti, Ander Herrera, Paredes, Di Maria, Icardi, Mbappe, Radonjic,
Payet, Thauvin, Gueye, Kamara, Rongier, Nagatomo, Alvaro Gonzalez, Caleta-Car, Sakai, Man-
danda, Sergio Rico, Kimpembe, Bakker, Pembele, Danilo Pereira, Draxler, Neymar, Kean, Sarabia,
Yohann Pele, Balerdi, Sanson, Cuisance, Khaoui, Benedetto, Marley Ake, Germain, Lirola

Copa del Rey

Understanding #CopaDelRey, Copa del Rey, #AthleticClub, Athletic Club, Bilbao, Sociedad

Event #CopaDelRey, Copa del Rey, #AthleticClub, Athletic Club, Bilbao, Sociedad, Estadio de La Car-
tuja, Unai Simon, de Marcos, Yeray Alvarez, Inigo Martinez, Berchiche, Dani Garcia, Vencedor,
Berenguer, Raul Garcia, Muniain, Inaki Williams, Oyarzabal, Isak, Portu, David Silva, Zubimendi,
Merino, Monreal, Le Normand, Zubeldia, Gorosabel, Remiro, Ezkieta, Unai Nunez, Vesga, Ibai
Gomez, Unai Lopez, Lekue, Villalibre, Capa, Balenziaga, Marcelino Garcia, Ayesa, Elustondo,
Sagnan, Guevara, Fernandez, Januzaj, Barrenetxea, Bautista, Munoz, Alguacil

Parma - Milan

Understanding #ParmaMilan, Parma, Milan

Event #ParmaMilan, Parma, Milan, Stadio Ennio Tardini, Sepe, Conti, Bani, Gagliolo, Pezzella, Kucka,
Hernani, Kurtic, Dennis Man, Pelle, Gervinho, Colombi, Grassi, Cornelius, Brugman, Laurini,
Bruno Alves, Osorio, Dierckx, Valenti, Chaka Traore, Camara, Busi, D’Aversa, Donnarumma,
Kalulu, Kjaer, Tomori, Theo Hernandez, Bennacer, Kessie, Saelemaekers, Calhanoglu, Rebic,
Ibrahimovic, Tatarusanu, Donnarumma, Dalot, Castillejo, Tonali, Mandzukic, Hauge, Leao, Meite,
Brahim Diaz, Krunic, Gabbia, Pioli

Table D.11: The keywords used to collect the football match datasets used in Section 5.3.

In reality, the algorithms discarded many tweets from the datasets. In the first anal-
ysis of Section 5.3, we experimented with ELDFiltered, which filtered tweets that did not
contain any domain term. In the second analysis, SEER similarly filtered tweets as it
deployed them to the relevant streams. Then, both ELDFiltered and SEER, like ELD itself,
filtered the tweets that they received. Details about how many tweets each algorithm
processed at each stage follow in the next table.

Algorithm Dataset size Domain filtering (%) Algorithm filtering (%)

Summary

ELD 124,479 124,479.00 (100%) 100,856.33 (80.37%)

ELDFiltered 124,479 59,131.67 (46.97%) 46,909.50 (36.93%)

SEER 124,479 82,632.67 (65.19%) 35,073.67 (26.84%)

Southampton - Arsenal

ELD 97,874 97,874 (100.00%) 84,400 (86.23%)
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Algorithm Dataset size Domain filtering (%) Algorithm filtering (%)

ELDFiltered 97,874 41,207 (42.10%) 34,869 (35.63%)

SEER 97,874 58,227 (59.49%) 23,897 (24.42%)

Leicester - Manchester United

ELD 209,132 209,132 (100.00%) 178,743 (85.47%)

ELDFiltered 209,132 106,505 (50.93%) 88,906 (42.51%)

SEER 209,132 154,918 (74.08%) 74,048 (35.41%)

Turkey - Italy

ELD 109,888 109,888 (100.00%) 81,897 (74.53%)

ELDFiltered 109,888 50,545 (46.00%) 37,013 (33.68%)

SEER 109,888 70,663 (64.30%) 26,453 (24.07%)

Wales - Switzerland

ELD 87,717 87,717 (100.00%) 67,641 (77.11%)

ELDFiltered 87,717 42,901 (48.91%) 32,107 (36.60%)

SEER 87,717 57,942 (66.06%) 19,420 (22.14%)

Scotland - Czech Republic

ELD 120,194 120,194 (100.00%) 94,811 (78.88%)

ELDFiltered 120,194 61,480 (51.15%) 48,247 (40.14%)

SEER 120,194 81,120 (67.49%) 35,419 (29.47%)

Hungary - France

ELD 122,069 122,069 (100.00%) 97,646 (79.99%)

ELDFiltered 122,069 52,152 (42.72%) 40,315 (33.03%)

SEER 122,069 72,926 (59.74%) 31,205 (25.56%)

Table D.12: The breakdown of the dataset filtering of Table 5.1. The table reports the
number of tweets that pass each filter across all datasets. Domain filtering refers to
standard tweet filtering for ELDFiltered and streaming for SEER.

Here, we re-iterate the nuances of ELDFiltered’s and SEER’s figures. ELDFiltered re-
ceived, on average, 46.97% of any dataset, which means that it processed 46.97% of all
unique tweets in the dataset. SEER received the same number of unique tweets, but it
processed some of them multiple times across several streams. Therefore the 65.19% of
tweets that SEER received actually means that SEER processed the equivalent of 65.19%
of all unique tweets of any dataset.
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D.4 | Data used in Chapter 6
Throughout Chapter 6, we focused on British politics. In particular, we followed Liz
Truss’ first days as Prime Minister of the United Kingdom, starting on the eve of her
election as prime minister on Sunday, 4 September 2022, and ending six days later at
midnight on Sunday, September 11. We tracked Truss for the whole week, but a few
other politicians also ebbed in and out of relevance: Rishi Sunak, Boris Johnson and
Keir Starmer.

The data evokes that of Section 4.5, but we treated our corpora somewhat differ-
ently. In the ATE task of Section 4.5, we wanted to capture what happens in politics
but not outside. Conversely, in the TDT task of Chapter 6, we wanted to capture the
topics that emerged from the political baseline. Therefore while in Section 4.5 we used
the general corpus to construct our TF-ICF scheme, to compare politics with a neutral
baseline of discourse, in Chapter 6 we used the data from September 4 as ELD’s and
SEER’s understanding periods.

The event period, between Monday, 5 September 2022 and Saturday, September 10
captured several historic events. On September 5, Truss won a mandate to lead the
Conservative Party, defeating fellow Tory Rishi Sunak. On September 6, Truss formally
assumed the role of prime minister, and the next day, on September 7, she met her cab-
inet for the first time. On September 8, Truss announced her much-awaited energy bill,
but news of Queen Elizabeth II’s death in the afternoon overshadowed the announce-
ment. On September 9 and 10, Truss attended official ceremonies related to the new
King. Details about how we collected our datasets follow in the next table.

Date Time Tweets Keywords

Sep 4, 2022 13:00–14:00 16,427 Truss, Sunak

Sep 4, 2022 14:00–15:00 15,824 Truss, Sunak

Sep 4, 2022 15:00–16:00 14,066 Truss, Sunak

Sep 4, 2022 16:00–17:00 12,864 Truss, Sunak

Sep 4, 2022 17:00–18:00 13,018 Truss, Sunak

Sep 4, 2022 18:00–19:00 11,994 Truss, Sunak

Sep 4, 2022 19:00–20:00 11,207 Truss, Sunak

Sep 4, 2022 20:00–21:00 10,496 Truss, Sunak

Sep 4, 2022 21:00–22:00 10,638 Truss, Sunak

Sep 4, 2022 22:00–23:00 4,360 Truss, Sunak

Sep 4, 2022 23:00–0:00 11,234 Truss, Sunak
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Date Time Tweets Keywords

Sep 5, 2022 0:00–1:00 7,118 Truss, Sunak

Sep 5, 2022 1:00–2:00 3,864 Truss, Sunak

Sep 5, 2022 2:00–3:00 2,317 Truss, Sunak

Sep 5, 2022 3:00–4:00 1,509 Truss, Sunak

Sep 5, 2022 4:00–5:00 1,265 Truss, Sunak

Sep 5, 2022 5:00–6:00 1,391 Truss, Sunak

Sep 5, 2022 6:00–7:00 1,968 Truss, Sunak

Sep 5, 2022 7:00–8:00 4,992 Truss, Sunak

Sep 5, 2022 8:00–9:00 10,055 Truss, Sunak

Sep 5, 2022 9:00–10:00 14,615 Truss, Sunak

Sep 5, 2022 10:00–11:00 13,790 Truss, Sunak

Sep 5, 2022 11:00–12:00 13,782 Truss, Sunak

Sep 5, 2022 12:00–13:00 14,863 Truss, Sunak

Sep 5, 2022 13:00–14:00 90,170 Truss, Sunak

Sep 5, 2022 14:00–15:00 109,836 Truss, Sunak

Sep 5, 2022 15:00–16:00 61,183 Truss, Sunak

Sep 5, 2022 16:00–17:00 50,367 Truss, Sunak

Sep 5, 2022 17:00–18:00 48,545 Truss, Sunak

Sep 5, 2022 18:00–19:00 48,897 Truss, Sunak

Sep 5, 2022 19:00–20:00 46,584 Truss, Sunak

Sep 5, 2022 20:00–21:00 39,905 Truss, Sunak

Sep 5, 2022 21:00–22:00 36,996 Truss, Sunak

Sep 5, 2022 22:00–23:00 34,591 Truss, Sunak

Sep 5, 2022 23:00–0:00 32,750 Truss, Sunak

Sep 6, 2022 0:00–1:00 22,534 Truss, Sunak

Sep 6, 2022 1:00–2:00 13,102 Truss, Sunak

Sep 6, 2022 2:00–3:00 7,782 Truss, Sunak

Sep 6, 2022 3:00–4:00 5,720 Truss, Sunak

Sep 6, 2022 4:00–5:00 5,120 Truss, Sunak

Sep 6, 2022 5:00–6:00 5,633 Truss, Sunak

Sep 6, 2022 6:00–7:00 7,264 Truss, Sunak

Sep 6, 2022 7:00–8:00 14,454 Truss, Sunak

Sep 6, 2022 8:00–9:00 24,875 Truss, Sunak

Sep 6, 2022 9:00–10:00 29,739 Truss, Sunak
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Date Time Tweets Keywords

Sep 6, 2022 10:00–11:00 30,668 Truss, Sunak

Sep 6, 2022 11:00–12:00 31,413 Truss, Sunak

Sep 6, 2022 12:00–13:00 41,991 Truss, Sunak, Boris Johnson

Sep 6, 2022 13:00–14:00 47,029 Truss, Sunak, Boris Johnson

Sep 6, 2022 14:00–15:00 47,805 Truss, Sunak, Boris Johnson

Sep 6, 2022 15:00–16:00 37,985 Truss, Sunak, Boris Johnson

Sep 6, 2022 16:00–17:00 33,642 Truss, Sunak, Boris Johnson

Sep 6, 2022 17:00–18:00 37,592 Truss, Sunak, Boris Johnson

Sep 6, 2022 18:00–19:00 49,912 Truss, Sunak, Boris Johnson

Sep 6, 2022 19:00–20:00 41,399 Truss, Sunak, Boris Johnson

Sep 6, 2022 20:00–21:00 42,502 Truss, Sunak, Boris Johnson

Sep 6, 2022 21:00–22:00 36,577 Truss, Sunak, Boris Johnson

Sep 6, 2022 22:00–23:00 35,835 Truss, Sunak, Boris Johnson

Sep 6, 2022 23:00–0:00 31,896 Truss, Sunak, Boris Johnson

Sep 7, 2022 0:00–1:00 20,672 Truss, Sunak, Boris Johnson

Sep 7, 2022 1:00–2:00 11,977 Truss, Sunak, Boris Johnson

Sep 7, 2022 2:00–3:00 6,802 Truss, Sunak, Boris Johnson

Sep 7, 2022 3:00–4:00 5,329 Truss, Sunak, Boris Johnson

Sep 7, 2022 4:00–5:00 4,824 Truss, Sunak, Boris Johnson

Sep 7, 2022 5:00–6:00 5,039 Truss, Sunak, Boris Johnson

Sep 7, 2022 6:00–7:00 6,343 Truss, Sunak, Boris Johnson

Sep 7, 2022 7:00–8:00 12,302 Truss, Sunak, Boris Johnson

Sep 7, 2022 8:00–9:00 21,437 Truss, Sunak, Boris Johnson

Sep 7, 2022 9:00–10:00 28,464 Truss, Sunak, Boris Johnson

Sep 7, 2022 10:00–11:00 26,334 Truss, Sunak, Boris Johnson

Sep 7, 2022 11:00–12:00 23,148 Truss, Sunak, Boris Johnson

Sep 7, 2022 12:00–13:00 22,434 Truss, Sunak, Boris Johnson

Sep 7, 2022 13:00–14:00 46,485 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 14:00–15:00 37,735 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 15:00–16:00 29,700 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 16:00–17:00 26,611 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 17:00–18:00 28,637 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 18:00–19:00 27,762 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 19:00–20:00 29,280 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 20:00–21:00 26,434 Truss, Sunak, Boris Johnson, Starmer
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Date Time Tweets Keywords

Sep 7, 2022 21:00–22:00 23,124 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 22:00–23:00 22,035 Truss, Sunak, Boris Johnson, Starmer

Sep 7, 2022 23:00–0:00 22,451 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 0:00–1:00 15,602 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 1:00–2:00 8,427 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 2:00–3:00 4,834 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 3:00–4:00 3,388 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 4:00–5:00 2,783 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 5:00–6:00 2,836 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 6:00–7:00 4,226 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 7:00–8:00 9,425 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 8:00–9:00 19,131 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 9:00–10:00 23,514 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 10:00–11:00 22,288 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 11:00–12:00 21,108 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 12:00–13:00 27,392 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 13:00–14:00 49,649 Truss, Sunak, Boris Johnson, Starmer

Sep 8, 2022 14:00–15:00 41,574 Truss, Starmer

Sep 8, 2022 15:00–16:00 33,229 Truss, Starmer

Sep 8, 2022 16:00–17:00 30,281 Truss, Starmer

Sep 8, 2022 17:00–18:00 28,345 Truss, Starmer

Sep 8, 2022 18:00–19:00 26,717 Truss, Starmer

Sep 8, 2022 19:00–20:00 29,849 Truss, Starmer

Sep 8, 2022 20:00–21:00 51,604 Truss, Starmer

Sep 8, 2022 21:00–22:00 26,561 Truss, Starmer

Sep 8, 2022 22:00–23:00 22,975 Truss, Starmer

Sep 8, 2022 23:00–0:00 19,220 Truss, Starmer

Sep 9, 2022 0:00–1:00 12,913 Truss, Starmer

Sep 9, 2022 1:00–2:00 8,565 Truss, Starmer

Sep 9, 2022 2:00–3:00 5,274 Truss, Starmer

Sep 9, 2022 3:00–4:00 3,818 Truss, Starmer

Sep 9, 2022 4:00–5:00 3,264 Truss, Starmer

Sep 9, 2022 5:00–6:00 2,867 Truss, Starmer

Sep 9, 2022 6:00–7:00 3,236 Truss, Starmer
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Date Time Tweets Keywords

Sep 9, 2022 7:00–8:00 5,603 Truss, Starmer

Sep 9, 2022 8:00–9:00 10,154 Truss, Starmer

Sep 9, 2022 9:00–10:00 11,959 Truss, Starmer

Sep 9, 2022 10:00–11:00 12,256 Truss, Starmer

Sep 9, 2022 11:00–12:00 11,610 Truss, Starmer

Sep 9, 2022 12:00–13:00 10,985 Truss, Starmer

Sep 9, 2022 13:00–14:00 14,787 Truss, Starmer

Sep 9, 2022 14:00–15:00 13,267 Truss, Starmer

Sep 9, 2022 15:00–16:00 9,918 Truss, Starmer

Sep 9, 2022 16:00–17:00 9,017 Truss, Starmer

Sep 9, 2022 17:00–18:00 10,171 Truss, Starmer

Sep 9, 2022 18:00–19:00 9,255 Truss, Starmer

Sep 9, 2022 19:00–20:00 8,768 Truss, Starmer

Sep 9, 2022 20:00–21:00 8,959 Truss, Starmer

Sep 9, 2022 21:00–22:00 10,483 Truss, Starmer

Sep 9, 2022 22:00–23:00 8,431 Truss, Starmer

Sep 9, 2022 23:00–0:00 7,802 Truss, Starmer

Sep 10, 2022 0:00–1:00 5,885 Truss, Starmer

Sep 10, 2022 1:00–2:00 3,778 Truss, Starmer

Sep 10, 2022 2:00–3:00 2,638 Truss, Starmer

Sep 10, 2022 3:00–4:00 1,725 Truss, Starmer

Sep 10, 2022 4:00–5:00 1,478 Truss, Starmer

Sep 10, 2022 5:00–6:00 1,381 Truss, Starmer

Sep 10, 2022 6:00–7:00 1,487 Truss, Starmer

Sep 10, 2022 7:00–8:00 2,355 Truss, Starmer

Sep 10, 2022 8:00–9:00 4,521 Truss, Starmer

Sep 10, 2022 9:00–10:00 7,020 Truss, Starmer

Sep 10, 2022 10:00–11:00 7,106 Truss, Starmer

Sep 10, 2022 11:00–12:00 8,677 Truss, Starmer

Sep 10, 2022 12:00–13:00 8,084 Truss, Starmer

Sep 10, 2022 13:00–14:00 7,980 Truss, Starmer

Sep 10, 2022 14:00–15:00 6,825 Truss, Starmer

Sep 10, 2022 15:00–16:00 6,286 Truss, Starmer

Sep 10, 2022 16:00–17:00 5,820 Truss, Starmer

Sep 10, 2022 17:00–18:00 5,619 Truss, Starmer
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Date Time Tweets Keywords

Sep 10, 2022 18:00–19:00 5,642 Truss, Starmer

Sep 10, 2022 19:00–20:00 6,077 Truss, Starmer

Sep 10, 2022 20:00–21:00 5,606 Truss, Starmer

Sep 10, 2022 21:00–22:00 6,110 Truss, Starmer

Sep 10, 2022 22:00–23:00 6,217 Truss, Starmer

Sep 10, 2022 23:00–00:00 5,882 Truss, Starmer

2,883,828

Table D.13: The UK politics datasets used in Chapter 6.

D.5 | Data used in Appendix A
Although we present Appendix A as a review of TDT research’s evaluation method-
ologies, we collected various datasets to verify some of literature’s assumptions about
Twitter data. In this section, we present both the repurposed datasets from other chap-
ters and the data collected specifically for Appendix A.3.

Differently from other chapters, in Appendix A we only used the data from the event
period. Moreover, we downloaded the data twice. The first time, we downloaded the
datasets while the football match was ongoing; we originally collected the first dataset,
from the match between Crystal Palace and Chelsea, for our previous work [146]. The
second time, we exported the tweet IDs and used them to re-download the datasets
anew after a few days, weeks, months or years. The differences between the two ver-
sions allowed us to analyse what kind of tweets we lost with Twitter’s data-sharing
policy [254]. Details about each match follow in the next table.

Download date Tweets

Event Original Downloaded Original Downloaded (% available)

Crystal Palace - Chelsea 30 Dec 2018 29 Aug 2021 63,891 41,028 (64.22%)

Southampton - Arsenal 25 Jun 2020 29 Aug 2021 97,874 70,656 (72.19%)

Turkey - Italy 11 Jun 2021 30 Aug 2021 109,888 90,543 (82.40%)

Liverpool - Atlético de Madrid 3 Nov 2021 4 Nov 2021 107,607 94,040 (87.39%)

379,260 296,267 (78.12%)

Table D.14: The football match datasets used in Appendix A.3.
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Like in other chapters, we generally downloaded the original datasets by tracking
the event hashtag, and the names of the teams, players, coaches and the stadium. We
prioritised colloquial references to names, thus maximising the amount of data we col-
lected. The tracking keywords used to collect each dataset follow in the next table.

Event Keywords

Crystal Palace - Chelsea #CRYCHE, Crystal Palace, Chelsea, Selhurst Park, Sarri, Hodgson, Guaita,
Wan-Bissaka, Tomkins, Sakho, van Aanholt, McArthur, Kouyate, Milivojević,
Meyer, Zaha, Townsend, Hennessey, Joel Ward, Dann, Puncheon, Schlupp, Wick-
ham, Ayew, Arrizabalaga, Azpilicueta, Rüdiger, Luiz, Alonso Mendoza, Kante,
Jorginho, Kovacic, Willian, Giroud, Eden Hazard, Caballero, Palmieri, Chris-
tensen, Ampadu, Zappacosta, Barkley, Morata

Southampton - Arsenal #SOUARS, Southampton, Arsenal, St. Mary’s Stadium, Hasenhuttl, Arteta,
McCarthy, Yan Valery, Stephens, Bednarek, Bertrand, Redmond, Ward-Prowse,
Emile Hoejbjerg, Stuart Armstrong, Ings, Obafemi, Vestergaard, Shane Long,
Che Adams, Romeu, Walker-Peters, Smallbone, Gunn, Vokins, Tella, Emiliano
Martinez, Bellerin, Mustafi, Rob Holding, Tierney, Ceballos, Xhaka, Saka, Pepe,
Nketiah, Aubameyang, Sokratis, Lacazette, Ozil, Maitland-Niles, Reiss Nelson,
Willock, Kolasinac, Macey, Matthew Smith

Turkey - Italy #TURITA, #ITATUR, #TUR, #ITA, Stadio Olimpico, Cakir, Celik, Soyuncu, Demi-
ral, Meras, Yokuslu, Karaman, Tufan, Yazici, Calhanoglu, Yilmaz, Insigne, Immo-
bile, Berardi, Locatelli, Jorginho, Barella, Spinazzola, Chiellini, Bonucci, Florenzi,
Donnarumma, Gunok, Bayindir, Cengiz Under, Tokoz, Antalyali, Kabak, Unal,
Kokcu, Kahveci, Ayhan, Muldur, Dervisoglu, Gunes, Sirigu, Meret, Di Lorenzo,
Belotti, Pessina, Emerson, Chiesa, Acerbi, Cristante, Bernardeschi, Raspadori, Bas-
toni, Mancini

Liverpool - Atlético de Madrid #LIVATM, Liverpool, Atleti, Atletico, Anfield, Alisson, Alexander-Arnold, Matip,
van Dijk, Tsimikas, Oxlade-Chamberlain, Fabinho, Henderson, Salah, Jota, Mane,
Suarez, Felix, Correa, Carrasco, Koke, De Paul, Trippier, Hermoso, Gimenez, Fe-
lipe, Oblak, Adrian, Kelleher, Konate, Alcantara, Firmino, Minamino, Robertson,
Origi, Phillips, Neco Williams, Tyler Morton, Klopp, Lecomte, Lodi, Hector Her-
rera, Cunha, Vrsaljko, Serrano, Iturbe, Carlos Martin, Fran Gonzalez, Simeone

Table D.15: The keywords used to collect the football match datasets used in Ap-
pendix A.3.
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Configurations

This appendix includes details about the algorithms’ configurations as used in this
work. In the absence of an automatic evaluation methodology, almost all TDT algo-
rithms must be tweaked manually to optimise performance. Therefore this appendix
describes which parameters we tweaked and why, and lists the final configurations for
each experiment.

E.1 | Configurations for the analyses in Chapter 5
In Chapter 5, we improved ELD [146] with the application of understanding. ELD’s
novelty did not lie in its understanding—it had none—but in the way it harnessed
the combination of document-pivot and feature-pivot techniques, which improved the
granularity of our algorithm at a small cost to precision. Therefore we used ELD itself
as a baseline without understanding.

Nevertheless, ELD’s highly-parametric structure posed challenges. The combined
model inherited the parameters of both TDT families: the document-pivot algorithm’s
minimum cluster size and freeze period, the similarity measure and threshold, and the
feature-pivot algorithm’s window length and minimum burst. Naturally, the manual
evaluations of TDT literature, whose challenges we discussed at length in Appendix A,
force us to set some of the parameters empirically [146].

In our analyses in Chapter 5, we re-used some of the parameters from our previous
work [146]. We had developed ELD within the context of football matches, and its
parameters then applied again in our case study on football matches. In particular,
we used cosine similarity to compare incoming tweets with existing clusters, using a
similarity threshold of 0.5, and we set the time window length to half a minute. We
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considered a cluster to be topical if it had one word with a burst of 0.8 or higher, or two
or more words with a burst of 0.5 or higher.

We could not fix two other parameters, however. First, the minimum cluster size
acts as a threshold, as in other popular TDT literature: the more popular an event, the
higher the threshold to accept a cluster as topical. As a rule of thumb, a newsworthy
cluster must have, at least, three tweets. Second, the freeze period acts as a setting
to tweak performance, allowing the resource-heavy clustering algorithm to match the
throughput of popular events. Furthermore, since we do not focus on timeliness, we
slowed down ELD’s input to allow the clustering algorithm to keep up with the stream.

Our first experiment with ELD is the trivial application of understanding, ELDFiltered.
With our trivial application, we sought to identify the limits of understanding, and
therefore we re-used ELD’s configurations in ELDFiltered. Larger datasets might have
permitted us to relax ELDFiltered’s parameters by reducing the minimum cluster size, for
example, without degrading recall, but we leave such experiments for future work.

Later, in the sensitivity experiments of Appendix B, as we evaluated ELD’s perfor-
mance on smaller datasets, we did relax the parameters. In reality, however, we could
only tweak, slightly, the cluster size and freeze period, bringing the two settings to their
bare minimum. All of ELD’s and ELDFiltered’s configurations follow in the next table.

Event Cluster size (tweets) Freeze period (seconds) Throttle (multiplier)

All tweets

Southampton - Arsenal 3 20 0.5

Leicester - Manchester United 10 5 0.25

Turkey - Italy 3 20 0.5

Wales - Switzerland 3 20 0.5

Scotland - Czech Republic 3 20 0.5

Hungary - France 5 20 0.5

50,000 tweets

Southampton - Arsenal 3 20 0.5

Leicester - Manchester United 3 20 0.5

Turkey - Italy 3 20 0.5

Wales - Switzerland 3 20 0.5

Scotland - Czech Republic 3 20 0.5

Hungary - France 3 20 0.5

25,000 tweets

Southampton - Arsenal 3 20 0.5
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Event Cluster size (tweets) Freeze period (seconds) Throttle (multiplier)

Leicester - Manchester United 3 20 0.5

Turkey - Italy 3 20 0.5

Wales - Switzerland 3 20 0.5

Scotland - Czech Republic 3 20 0.5

Hungary - France 3 20 0.5

10,000 tweets

Southampton - Arsenal 3 20 0.5

Leicester - Manchester United 3 20 0.5

Turkey - Italy 3 20 0.5

Wales - Switzerland 3 20 0.5

Scotland - Czech Republic 3 20 0.5

Hungary - France 3 20 0.5

Table E.1: ELD’s configurations in the evaluations of Section 5.3.

SEER’s structure simultaneously simplified the algorithm but complicated parame-
ter tweaking. Our novel algorithm only inherited the parameters from the feature-pivot
technique: the length of the sliding time windows, the static threshold and the mini-
mum burst. Nevertheless, the algorithm’s sensitivity made optimising the algorithm a
more trying task: the three parameters can take a much broader range of values than
ELD’s. We could only fix one of the three parameters, the time window length, which
depends on the domain; we fixed it to one minute in football matches.

Therefore we only tweaked two parameters: the static threshold and the minimum
burst. The static threshold replaces the role of ELD’s minimum cluster size and changes
proportionally with the event’s popularity. Conversely, the minimum burst changed
little, ranging from 0.5 to 0.8. SEER’s configurations, in each event and at different
dataset sizes, follow in the next table.

Event Static threshold (activity) Minimum burst

All tweets

Southampton - Arsenal 15 0.7

Leicester - Manchester United 30 0.6

Turkey - Italy 15 0.6

Wales - Switzerland 10 0.7

Scotland - Czech Republic 15 0.7
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Event Static threshold (activity) Minimum burst

Hungary - France 15 0.7

Trophée des Champions 3 0.8

Copa del Rey 2 0.8

Parma - Milan 3 0.8

50,000 tweets

Southampton - Arsenal 12 0.6

Leicester - Manchester United 14 0.6

Turkey - Italy 14 0.5

Wales - Switzerland 9 0.8

Scotland - Czech Republic 9 0.6

Hungary - France 14 0.5

25,000 tweets

Southampton - Arsenal 8 0.6

Leicester - Manchester United 10 0.6

Turkey - Italy 10 0.6

Wales - Switzerland 8 0.8

Scotland - Czech Republic 5 0.8

Hungary - France 7 0.8

10,000 tweets

Southampton - Arsenal 4 0.8

Leicester - Manchester United 4 0.8

Turkey - Italy 4 0.8

Wales - Switzerland 4 0.8

Scotland - Czech Republic 3 0.8

Hungary - France 3 0.8

Table E.2: SEER’s configurations in the evaluations of Section 5.3.

E.2 | Configurations for the analyses in Chapter 6
In Chapter 6, we compared ELD with SEER to study the sacrifices of understanding to
portability. We did not expect to contrast ELD’s performance in precision and recall with
SEER’s, nor did we want to. The thorough analyses of Section 4.5 revealed how SEER
greatly out-performs ELD when we configured both optimally. We simply expected the
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comparison in Chapter 6 to expose what SEER misses with understanding.
With portability our priority, we loosened the configurations of both algorithms.

The nature of the election itself weighed heavy; the impulses, variety and duration of
the event period precluded any lengthy experiments. In both ELD and SEER, we set the
burst threshold to 0.7 and merged any topics occurring within 15 minutes of each other.
In SEER, we merged nodes for each stream separately.

One change deserves explanation: ELD has a shorter time window than SEER. While
SEER uses 15-minute time windows, ELD creates checkpoints every five minutes. ELD
owes the difference to two reasons. First, ELD buffers tweets before creating check-
points, but the data in 15-minute blocks would have exhausted our limited memory,
overflown into the swap space and rendered the algorithm unusable. Second, ELD cov-
ers the entire event in one monolithic timeline whose discourse changes more quickly
than SEER’s topical streams. Nevertheless, ELD’s five-minute time windows still cap-
ture a general idea of the event’s changing vocabulary.

We barely needed to configure SEER further. We found one configuration to suffice
as long as we gave the algorithm the liberty to oversee itself. We set the static threshold
to a humble 50 tweets per 15 minute-time window and the dynamic threshold to one
standard deviation above the mean tweeting activity.

Conversely, we could not but vary ELD’s configuration. The volume varied from
barely a thousand tweets to a hundred-fold more around the time when Truss won
the leadership election. Therefore in the two hours surrounding Truss’ election, we
tweaked the minimum cluster size, the freeze period and throttled the stream to reflect
the discourse. ELD’s configurations follow in the next table.

Date Time Cluster size (tweets) Freeze period (seconds) Throttle (multiplier)

Sep 5, 2022 00:00–13:00 5 30 0.5

Sep 5, 2022 13:00–15:00 10 5 0.1

Sep 5, 2022 15:00–00:00 5 30 0.5

Sep 6, 2022 00:00–00:00 5 30 0.5

Sep 7, 2022 00:00–00:00 5 30 0.5

Sep 8, 2022 00:00–00:00 5 30 0.5

Sep 9, 2022 00:00–00:00 5 30 0.5

Sep 10, 2022 00:00–00:00 5 30 0.5

Table E.3: ELD’s configurations in the evaluation of Section 6.3.
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Results

This appendix includes comprehensive detail about the results presented in this work.
For the sake of clarity, the tables in the main text often include aggregate results as
a summary, especially when the full tables would occupy too much space. The rest
of this appendix presents a full breakdown of the results, including how they should
be interpreted in the main text. We have made all outputs, results and annotations
available in the NicholasMamo/phd-data repository.

F.1 | Results from the analyses of Chapter 3
In Chapter 3, we annotated rankings of named entities and participants using standard
IR metrics, namely precision, recall and AP. To those, we added a balance metric, which
measures the bias in a ranking; the higher the balance, the less the bias in a ranking.
The summary tables listed the macro-average performance, thus valuing each event
equally. In reality, however, the difference between the micro-average and the macro-
average matters little in our experiments: normally every ranking has the same number
of elements and ground truth items.

Results from Section 3.1
Unlike the other chapters, Chapter 3 included a short analysis in the first section, Sec-
tion 3.1. The first analysis helped us understand better the suitability of named entities
as participants, a common assumption in TDT circles. Therefore we did not extract
named entities before the event started but as it happened. Given that we collected the
six datasets before Twitter rolled out the second version of its API, we could not eval-
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uate the performance of Twitter’s own annotations. The breakdown of results from the
NER experiment follows in the next table.

Model Precision Recall AP Balance

Summary

NLTK 48.33% 31.46% 30.42% 0.3533

TwitterNER 48.00% 28.85% 34.76% 0.2829

Southampton - Arsenal

NLTK 50.00% 35.56% 42.33% 0.1429

TwitterNER 54.00% 35.56% 37.66% 0.4545

Leicester - Manchester United

NLTK 52.00% 35.56% 41.39% 0.4545

TwitterNER 52.00% 35.56% 42.04% 0.6000

Turkey - Italy

NLTK 46.00% 31.37% 22.27% 0.2308

TwitterNER 40.00% 21.57% 24.71% 0.1000

Wales - Switzerland

NLTK 42.00% 29.41% 21.26% 0.8750

TwitterNER 44.00% 25.49% 33.26% 0.3000

Scotland - Czech Republic

NLTK 54.00% 29.41% 29.58% 0.2500

TwitterNER 68.00% 37.25% 56.44% 0.1176

Hungary - France

NLTK 46.00% 27.45% 25.68% 0.1667

TwitterNER 30.00% 17.65% 14.41% 0.1250

Table F.1: NLTK’s and TwitterNER’s participant detection results in football matches,
summarised in Table 3.1. Neither NER model registered statistically-significant gains
over the other.

Results from Section 3.3
In the first analysis of Section 3.3, we compared NLTK [22], TwitterNER [166] and Twit-
ter’s own annotations. The next table displays the differences between the three models.
The summary, like in all other tables in this section, lists the MAP, or the macro-average
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AP over all events. For each event, then, the table lists the individual AP values. The
full breakdown of the comparison between NER models follows in the next table.

Model Precision Recall Precision (lenient) MAP (AP) Balance

Summary

NLTK 29.80% 21.55% 31.20% 17.36% 0.4885

TwitterNER △ 32.80% ▲ 26.67% △ 34.40% 20.09% △ 0.7273

Twitter ▲ 44.40% ▲ 33.98% ▲ 46.40% ▲ 30.60% 0.5786

Juventus - Inter

NLTK 16.00% 10.42% 16.00% 9.36% 0.6667

TwitterNER 18.00% 12.50% 18.00% 10.12% 1.0000

Twitter 30.00% 25.00% 32.00% 14.64% 0.7143

Crystal Palace - Arsenal

NLTK 30.00% 26.67% 36.00% 18.30% 0.3333

TwitterNER 30.00% 31.11% 34.00% 19.14% 0.5556

Twitter 42.00% 33.33% 50.00% 32.12% 0.5000

Manchester City - Atlético

NLTK 26.00% 10.64% 26.00% 12.02% 0.2500

TwitterNER 26.00% 21.28% 26.00% 10.56% 1.0000

Twitter 54.00% 31.91% 54.00% 36.64% 0.5000

Burnley - Everton

NLTK 40.00% 40.00% 40.00% 20.78% 1.0000

TwitterNER 52.00% 53.33% 52.00% 35.44% 0.8462

Twitter 70.00% 64.44% 70.00% 52.26% 0.9333

Watford - Leeds

NLTK 12.00% 8.89% 14.00% 6.69% 0.3333

TwitterNER 20.00% 15.56% 22.00% 9.05% 0.4000

Twitter 16.00% 13.33% 20.00% 7.07% 0.5000

Aston Villa - Tottenham

NLTK 20.00% 13.33% 20.00% 11.26% 0.5000

TwitterNER 28.00% 20.00% 28.00% 13.62% 0.8000

Twitter 30.00% 24.44% 30.00% 14.01% 0.8333

Manchester City - Liverpool

NLTK 38.00% 22.22% 38.00% 23.78% 0.6667
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Model Precision Recall Precision (lenient) MAP (AP) Balance

TwitterNER 36.00% 24.44% 36.00% 25.65% 0.5714

Twitter 58.00% 35.56% 58.00% 49.85% 0.7778

Real Madrid - Chelsea

NLTK 42.00% 30.00% 42.00% 21.77% 0.2500

TwitterNER 40.00% 24.00% 40.00% 25.44% 0.2000

Twitter 50.00% 34.00% 50.00% 29.05% 0.2143

Newcastle - Leicester

NLTK 24.00% 13.33% 24.00% 13.05% 0.5000

TwitterNER 30.00% 22.22% 32.00% 21.11% 1.0000

Twitter 30.00% 22.22% 30.00% 17.86% 0.2500

Liverpool - Manchester United

NLTK 50.00% 40.00% 56.00% 36.61% 0.3846

TwitterNER 48.00% 42.22% 56.00% 30.72% 0.9000

Twitter 64.00% 55.56% 70.00% 52.53% 0.5625

Table F.2: The NER tools’ participant detection results in football matches, summarised
in Table 3.3. △ and ▲ indicate statistically-significant increases at the 95% and 99% con-
fidence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence
levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to the
model in the row above.

Following the conclusion that NER, linguistic understanding, cannot substitute for
semantic understanding, we applied the APD process. In the next experiments, we used
each NER model to extract named entities, serving as the APD framework’s first step.
In the next table, the subscript refers to the NER model that each APD algorithm uses.

The table also includes indications of statistical significance. The significance should
be interpreted as one model’s improvement over the one immediately above it: DEPICT
over ELD, and ELD over the NER model. We present statistical significance in this way
because in almost every case, when ELD out-performs the NER model, DEPICT does
too. The full breakdown of results follows in the next table.

Model Precision Recall Precision (lenient) MAP (AP) Balance

Summary

NLTK 29.80% 21.55% 31.20% 17.36% 0.4885

ELDNLTK ▲ 48.68% ▲ 50.55% ▲ 66.52% ▲ 38.56% ▽ 0.2856
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Model Precision Recall Precision (lenient) MAP (AP) Balance

DEPICTNLTK △ 54.00% 53.77% △ 76.04% 40.28% 0.2581

TwitterNER 32.80% 26.67% 34.40% 20.09% 0.7273

ELDTwitterNER ▲ 57.40% ▲ 60.93% ▲ 78.00% ▲ 47.66% ▽ 0.5337

DEPICTTwitterNER ▲ 66.08% ▲ 70.57% △ 87.67% △ 56.05% 0.6161

Twitter 44.40% 33.98% 46.40% 30.60% 0.5786

ELDTwitter ▲ 60.40% ▲ 64.20% ▲ 80.80% ▲ 51.73% 0.5542

DEPICTTwitter 62.13% 66.05% 84.84% 54.80% 0.5431

Juventus - Inter

NLTK 16.00% 10.42% 16.00% 9.36% 0.6667

ELDNLTK 34.00% 29.17% 36.00% 29.75% 0.0769

DEPICTNLTK 42.00% 43.75% 58.00% 28.72% 0.0500

TwitterNER 18.00% 12.50% 18.00% 10.12% 1.0000

ELDTwitterNER 34.00% 33.33% 38.00% 25.77% 0.3333

DEPICTTwitterNER 84.00% 85.42% 94.00% 72.03% 0.8636

Twitter 30.00% 25.00% 32.00% 14.64% 0.7143

ELDTwitter 70.00% 68.75% 90.00% 60.11% 0.9412

DEPICTTwitter 60.00% 60.42% 78.00% 55.47% 0.3810

Crystal Palace - Arsenal

NLTK 30.00% 26.67% 36.00% 18.30% 0.3333

ELDNLTK 46.00% 51.11% 54.00% 39.08% 0.2105

DEPICTNLTK 46.00% 51.11% 54.00% 43.00% 0.2778

TwitterNER 30.00% 31.11% 34.00% 19.14% 0.5556

ELDTwitterNER 70.00% 77.78% 86.00% 58.00% 0.8421

DEPICTTwitterNER 74.00% 82.22% 92.00% 66.77% 0.9474

Twitter 42.00% 33.33% 50.00% 32.12% 0.5000

ELDTwitter 74.00% 82.22% 90.00% 61.04% 0.9474

DEPICTTwitter 72.00% 80.00% 92.00% 63.94% 1.0000

Manchester City - Atlético

NLTK 26.00% 10.64% 26.00% 12.02% 0.2500

ELDNLTK 42.00% 42.55% 52.00% 33.77% 0.1765

DEPICTNLTK 44.00% 46.81% 54.00% 39.72% 0.2222

TwitterNER 26.00% 21.28% 26.00% 10.56% 1.0000
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Model Precision Recall Precision (lenient) MAP (AP) Balance

ELDTwitterNER 58.00% 61.70% 70.00% 36.69% 0.5263

DEPICTTwitterNER 64.00% 68.09% 74.00% 46.24% 0.7778

Twitter 54.00% 31.91% 54.00% 36.64% 0.5000

ELDTwitter 62.00% 65.96% 76.00% 52.51% 0.7222

DEPICTTwitter 68.00% 72.34% 82.00% 59.77% 1.0000

Burnley - Everton

NLTK 40.00% 40.00% 40.00% 20.78% 1.0000

ELDNLTK 70.00% 75.56% 94.00% 66.30% 0.5455

DEPICTNLTK 70.00% 75.56% 98.00% 61.70% 0.7895

TwitterNER 52.00% 53.33% 52.00% 35.44% 0.8462

ELDTwitterNER 70.00% 75.56% 96.00% 68.89% 0.5455

DEPICTTwitterNER 72.00% 77.78% 100.00% 67.81% 0.7500

Twitter 70.00% 64.44% 70.00% 52.26% 0.9333

ELDTwitter 72.00% 77.78% 96.00% 73.03% 0.5909

DEPICTTwitter 72.00% 77.78% 100.00% 70.08% 0.8421

Watford - Leeds

NLTK 12.00% 8.89% 14.00% 6.69% 0.3333

ELDNLTK 40.82% 40.00% 59.18% 25.58% 0.0000

DEPICTNLTK 61.29% 42.22% 90.32% 26.52% 0.0000

TwitterNER 20.00% 15.56% 22.00% 9.05% 0.4000

ELDTwitterNER 42.00% 42.22% 60.00% 31.51% 0.0556

DEPICTTwitterNER 48.78% 44.44% 70.73% 29.62% 0.0000

Twitter 16.00% 13.33% 20.00% 7.07% 0.5000

ELDTwitter 46.00% 44.44% 64.00% 29.78% 0.1111

DEPICTTwitter 51.28% 44.44% 74.36% 28.67% 0.0526

Aston Villa - Tottenham

NLTK 20.00% 13.33% 20.00% 11.26% 0.5000

ELDNLTK 46.00% 51.11% 62.00% 28.61% 0.2105

DEPICTNLTK 46.00% 51.11% 62.00% 31.25% 0.0952

TwitterNER 28.00% 20.00% 28.00% 13.62% 0.8000

ELDTwitterNER 72.00% 77.78% 94.00% 65.10% 0.6667

DEPICTTwitterNER 74.00% 82.22% 98.00% 67.40% 0.8500
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Model Precision Recall Precision (lenient) MAP (AP) Balance

Twitter 30.00% 24.44% 30.00% 14.01% 0.8333

ELDTwitter 70.00% 77.78% 92.00% 62.72% 0.6667

DEPICTTwitter 78.00% 86.67% 100.00% 78.73% 0.6957

Manchester City - Liverpool

NLTK 38.00% 22.22% 38.00% 23.78% 0.6667

ELDNLTK 46.00% 46.67% 84.00% 30.73% 0.6154

DEPICTNLTK 58.00% 64.44% 92.00% 41.91% 0.5263

TwitterNER 36.00% 24.44% 36.00% 25.65% 0.5714

ELDTwitterNER 50.00% 53.33% 88.00% 40.15% 0.4118

DEPICTTwitterNER 56.00% 62.22% 90.00% 47.40% 0.4737

Twitter 58.00% 35.56% 58.00% 49.85% 0.7778

ELDTwitter 52.00% 55.56% 88.00% 47.07% 0.4706

DEPICTTwitter 64.00% 71.11% 96.00% 58.84% 0.7778

Real Madrid - Chelsea

NLTK 42.00% 30.00% 42.00% 21.77% 0.2500

ELDNLTK 58.00% 56.00% 70.00% 50.90% 0.4000

DEPICTNLTK 56.00% 56.00% 68.00% 48.73% 0.2727

TwitterNER 40.00% 24.00% 40.00% 25.44% 0.2000

ELDTwitterNER 54.00% 52.00% 64.00% 49.38% 0.2381

DEPICTTwitterNER 50.00% 50.00% 60.00% 43.91% 0.1364

Twitter 50.00% 34.00% 50.00% 29.05% 0.2143

ELDTwitter 52.00% 54.00% 62.00% 45.41% 0.2273

DEPICTTwitter 50.00% 50.00% 60.00% 42.77% 0.1364

Newcastle - Leicester

NLTK 24.00% 13.33% 24.00% 13.05% 0.5000

ELDNLTK 48.00% 53.33% 72.00% 38.35% 0.2000

DEPICTNLTK 64.71% 48.89% 94.12% 40.36% 0.0476

TwitterNER 30.00% 22.22% 32.00% 21.11% 1.0000

ELDTwitterNER 68.00% 75.56% 96.00% 56.42% 0.7895

DEPICTTwitterNER 74.00% 82.22% 98.00% 64.01% 0.7619

Twitter 30.00% 22.22% 30.00% 17.86% 0.2500

ELDTwitter 44.00% 48.89% 64.00% 36.01% 0.1000
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Model Precision Recall Precision (lenient) MAP (AP) Balance

DEPICTTwitter 46.00% 51.11% 68.00% 40.36% 0.0455

Liverpool - Manchester United

NLTK 50.00% 40.00% 56.00% 36.61% 0.3846

ELDNLTK 56.00% 60.00% 82.00% 42.48% 0.4211

DEPICTNLTK 52.00% 57.78% 90.00% 40.94% 0.3000

TwitterNER 48.00% 42.22% 56.00% 30.72% 0.9000

ELDTwitterNER 56.00% 60.00% 88.00% 44.74% 0.9286

DEPICTTwitterNER 64.00% 71.11% 100.00% 55.31% 0.6000

Twitter 64.00% 55.56% 70.00% 52.53% 0.5625

ELDTwitter 62.00% 66.67% 86.00% 49.60% 0.7647

DEPICTTwitter 60.00% 66.67% 98.00% 49.39% 0.5000

Table F.3: ELD’s and DEPICT’s participant detection results in football matches, sum-
marised in Table 3.4. △ and ▲ indicate statistically-significant increases at the 95% and
99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99%
confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) com-
pared to the model in the row above.

We concluded the section with a briefer analysis on Formula 1 Grands Prix and an-
other on the 2021 Canadian federal election. Differently from before, we could not eval-
uate precision leniently in Formula 1 since the same drivers always participated. Fur-
thermore, we could not calculate balance because participants separate into more than
two teams or constructors. The full breakdown of the precision, recall and AP results
follows in the next table.

Model Precision Recall MAP (AP)

Summary

NLTK 25.43% 26.73% 11.28%

ELDNLTK ▼ 18.29% 26.73% △ 15.88%

DEPICTNLTK ▲ 36.86% ▲ 58.06% ▲ 35.45%

TwitterNER 36.57% 37.33% 33.50%

ELDTwitterNER ▼ 20.86% ▽ 30.88% ▽ 21.38%

DEPICTTwitterNER ▲ 34.00% ▲ 53.92% ▲ 35.13%

Twitter 40.86% 38.71% 33.16%
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F.1. Results from the analyses of Chapter 3

Model Precision Recall MAP (AP)

ELDTwitter ▼ 21.14% 30.88% ▽ 21.29%

DEPICTTwitter △ 35.43% ▲ 56.68% ▲ 33.75%

Australian GP

NLTK 22.00% 19.35% 5.58%

ELDNLTK 14.00% 19.35% 11.49%

DEPICTNLTK 42.00% 67.74% 40.54%

TwitterNER 32.00% 29.03% 20.52%

ELDTwitterNER 16.00% 22.58% 17.44%

DEPICTTwitterNER 30.00% 48.39% 33.21%

Twitter 38.00% 38.71% 22.32%

ELDTwitter 22.00% 35.48% 26.60%

DEPICTTwitter 40.00% 64.52% 37.76%

Imola GP

NLTK 34.00% 32.26% 21.49%

ELDNLTK 20.00% 29.03% 21.60%

DEPICTNLTK 44.00% 64.52% 58.34%

TwitterNER 38.00% 38.71% 43.57%

ELDTwitterNER 20.00% 29.03% 18.30%

DEPICTTwitterNER 32.00% 48.39% 34.54%

Twitter 38.00% 35.48% 29.91%

ELDTwitter 22.00% 25.81% 18.86%

DEPICTTwitter 40.00% 61.29% 37.49%

Spanish GP

NLTK 20.00% 19.35% 11.06%

ELDNLTK 20.00% 25.81% 18.37%

DEPICTNLTK 44.00% 67.74% 49.89%

TwitterNER 30.00% 29.03% 32.56%

ELDTwitterNER 20.00% 29.03% 26.46%

DEPICTTwitterNER 38.00% 61.29% 47.95%

Twitter 38.00% 35.48% 31.08%

ELDTwitter 26.00% 35.48% 37.43%

DEPICTTwitter 44.00% 70.97% 58.02%
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Model Precision Recall MAP (AP)

Monaco GP

NLTK 22.00% 25.81% 6.58%

ELDNLTK 12.00% 16.13% 3.47%

DEPICTNLTK 18.00% 29.03% 5.72%

TwitterNER 26.00% 32.26% 19.00%

ELDTwitterNER 16.00% 19.35% 11.84%

DEPICTTwitterNER 32.00% 48.39% 20.89%

Twitter 36.00% 38.71% 22.87%

ELDTwitter 8.00% 9.68% 2.73%

DEPICTTwitter 10.00% 16.13% 2.70%

Azerbaijan GP

NLTK 34.00% 38.71% 16.87%

ELDNLTK 24.00% 38.71% 25.20%

DEPICTNLTK 42.00% 67.74% 42.82%

TwitterNER 38.00% 45.16% 38.76%

ELDTwitterNER 26.00% 41.94% 28.92%

DEPICTTwitterNER 38.00% 61.29% 39.21%

Twitter 52.00% 48.39% 50.06%

ELDTwitter 26.00% 41.94% 25.83%

DEPICTTwitter 42.00% 67.74% 39.86%

Canadian GP

NLTK 22.00% 19.35% 6.54%

ELDNLTK 16.00% 22.58% 13.41%

DEPICTNLTK 34.00% 54.84% 24.47%

TwitterNER 50.00% 45.16% 52.95%

ELDTwitterNER 22.00% 32.26% 21.61%

DEPICTTwitterNER 32.00% 51.61% 36.50%

Twitter 46.00% 38.71% 50.59%

ELDTwitter 22.00% 32.26% 17.05%

DEPICTTwitter 34.00% 54.84% 28.92%

British GP

NLTK 24.00% 32.26% 10.85%
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Model Precision Recall MAP (AP)

ELDNLTK 22.00% 35.48% 17.59%

DEPICTNLTK 34.00% 54.84% 26.38%

TwitterNER 42.00% 41.94% 27.15%

ELDTwitterNER 26.00% 41.94% 25.11%

DEPICTTwitterNER 36.00% 58.06% 33.58%

Twitter 38.00% 35.48% 25.30%

ELDTwitter 22.00% 35.48% 20.50%

DEPICTTwitter 38.00% 61.29% 31.47%

Table F.4: The NER tools’ and APD models’ participant detection results in Formula 1,
summarised in Table 3.5. △ and ▲ indicate statistically-significant increases at the 95%
and 99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95% and
99% confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test)
compared to the model in the row above.

F.2 | Results from the analyses of Chapter 5
In Chapter 5, we based our evaluation on standard IR metrics: precision, recall and the
F-score. We only calculated the micro-average for the first two metrics, precision and
recall, and we presented the macro-average F-score and the average number of topics
per match. The following table presents a summary of results and the six matches on
which we calculated the summary. We only use the last three matches in the last analysis
of Section 5.3, and therefore the summary does not include them.

Algorithm Topics Precise topics Precision Recall F-score

Summary

ELD 37.83 20.33 53.74% 56.73% 55.04%

ELDFiltered ▼ 22.83 ▼ 16.33 ▲ 71.53% ▽ 42.31% 52.09%

SEER 33.83 24.17 △ 71.43% 55.77% △ 62.89%

Southampton - Arsenal

ELD 35 22 62.86% 72.22% 67.22%

ELDFiltered 20 17 85.00% 55.56% 67.19%

SEER 32 24 75.00% 66.67% 70.59%

Leicester - Manchester United
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Algorithm Topics Precise topics Precision Recall F-score

ELD 49 29 59.18% 43.48% 50.13%

ELDFiltered 30 23 76.67% 43.48% 55.49%

SEER 35 25 71.43% 43.48% 54.05%

Turkey - Italy

ELD 39 20 51.28% 55.56% 53.33%

ELDFiltered 24 18 75.00% 44.44% 55.81%

SEER 36 24 66.67% 50.00% 57.14%

Wales - Switzerland

ELD 29 19 65.52% 57.14% 61.04%

ELDFiltered 19 13 68.42% 50.00% 57.78%

SEER 39 30 76.92% 57.14% 65.57%

Scotland - Czech Republic

ELD 32 14 43.75% 56.25% 49.22%

ELDFiltered 20 10 50.00% 12.50% 20.00%

SEER 24 17 70.83% 62.50% 66.41%

Hungary - France

ELD 43 18 41.86% 60.00% 49.32%

ELDFiltered 24 17 70.83% 46.67% 56.26%

SEER 37 25 67.57% 60.00% 63.56%

Trophée des Champions

SEER 21 13 61.90% 45.83% 52.67%

Copa Del Rey

SEER 32 14 43.75% 37.50% 40.38%

Parma - Milan

SEER 29 21 72.41% 57.69% 64.22%

Table F.5: The TDT algorithms’ results in football matches, summarised in Table 5.2a. △
and ▲ indicate statistically-significant increases at the 95% and 99% confidence levels,
and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence levels (one-
tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to the baseline,
ELD.

Throughout the chapter, we annotated the algorithmic output manually, assigning
one of five labels to each topic’s summary, as we explain at the beginning of Section 5.3.
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We adopted a strict interpretation of precision, which considers only non-enumerable
and enumerable labels as precise. The next table shows a full breakdown of the distri-
bution of labels by all algorithms and in all matches. Similarly to before, the summary
only includes the first six matches.

Algorithm Redundant Noise Subjective Non-enumerable Enumerable

Summary

ELD 5.73% 19.82% 20.70% 30.84% 22.91%

ELDFiltered 9.49% 6.57% ▽ 12.41% △ 43.07% 28.47%

SEER 4.43% ▼ 6.90% 17.24% ▲ 45.81% 25.62%

Southampton - Arsenal

ELD 5.71% 14.29% 17.14% 28.57% 34.29%

ELDFiltered 0.00% 15.00% 0.00% 45.00% 40.00%

SEER 0.00% 6.25% 18.75% 40.63% 34.38%

Leicester - Manchester United

ELD 4.08% 24.49% 12.24% 38.78% 20.41%

ELDFiltered 6.67% 6.67% 10.00% 43.33% 33.33%

SEER 11.43% 2.86% 14.29% 42.86% 28.57%

Turkey - Italy

ELD 5.13% 12.82% 30.77% 35.90% 15.38%

ELDFiltered 8.33% 0.00% 16.67% 50.00% 25.00%

SEER 0.00% 8.33% 25.00% 47.22% 19.44%

Wales - Switzerland

ELD 3.45% 20.69% 10.34% 37.93% 27.59%

ELDFiltered 15.79% 5.26% 10.53% 31.58% 36.84%

SEER 2.56% 7.69% 12.82% 56.41% 20.51%

Scotland - Czech Republic

ELD 12.50% 15.63% 28.13% 18.75% 25.00%

ELDFiltered 25.00% 0.00% 25.00% 40.00% 10.00%

SEER 8.33% 4.17% 16.67% 41.67% 29.17%

Hungary - France

ELD 4.65% 27.91% 25.58% 23.26% 18.60%

ELDFiltered 4.17% 12.50% 12.50% 45.83% 25.00%

SEER 5.41% 10.81% 16.22% 43.24% 24.32%
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Algorithm Redundant Noise Subjective Non-enumerable Enumerable

Trophée des Champions

SEER 4.76% 28.57% 4.76% 19.05% 42.86%

Copa del Rey

SEER 28.13% 3.13% 25.00% 25.00% 18.75%

Parma - Milan

SEER 6.90% 6.90% 13.79% 24.14% 48.28%

Table F.6: The TDT algorithms’ annotations in football matches, summarised in Ta-
ble 5.2b. △ and ▲ indicate statistically-significant increases at the 95% and 99% confi-
dence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence
levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to the
baseline, ELD.

Out of the five labels, we only calculated recall over enumerable topics. We consider
redundant, noisy and subjective topics as undesirable, and as the name implies, non-
enumerable topics cannot be enumerated. The following table presents a breakdown
of recall values of the four types of enumerable topics that we considered: goals, cards,
halves and substitutions. Once more, the summary only includes the first six matches.

Algorithm Goals Cards Halves Substitutions

Summary

ELD 87.50% 52.94% 37.50% 57.45%

ELDFiltered 100.00% 52.94% 29.17% ▽ 25.53%

SEER 93.75% 52.94% 50.00% 46.81%

Southampton - Arsenal

ELD 100.00% 66.67% 50.00% 75.00%

ELDFiltered 100.00% 66.67% 75.00% 25.00%

SEER 100.00% 100.00% 75.00% 37.50%

Leicester - Manchester United

ELD 33.33% 42.86% 50.00% 44.44%

ELDFiltered 100.00% 42.86% 50.00% 22.22%

SEER 100.00% 42.86% 50.00% 22.22%

Turkey - Italy

ELD 100.00% 50.00% 50.00% 44.44%
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Algorithm Goals Cards Halves Substitutions

ELDFiltered 100.00% 50.00% 50.00% 22.22%

SEER 100.00% 0.00% 25.00% 55.56%

Wales - Switzerland

ELD 100.00% 66.67% 25.00% 50.00%

ELDFiltered 100.00% 66.67% 0.00% 50.00%

SEER 66.67% 66.67% 50.00% 50.00%

Scotland - Czech Republic

ELD 100.00% 0.00% 25.00% 60.00%

ELDFiltered 100.00% 0.00% 0.00% 0.00%

SEER 100.00% 0.00% 50.00% 60.00%

Hungary - France

ELD 100.00% 50.00% 25.00% 71.43%

ELDFiltered 100.00% 50.00% 0.00% 57.14%

SEER 100.00% 50.00% 50.00% 57.14%

Trophée des Champions

SEER 80.00% 0.00% 75.00% 40.00%

Copa del Rey

SEER 100.00% 0.00% 100.00% 12.50%

Parma - Milan

SEER 100.00% 44.44% 100.00% 33.33%

Table F.7: The TDT algorithms’ recall of enumerable topics in football matches, sum-
marised in Table 5.2c. △ and ▲ indicate statistically-significant increases at the 95% and
99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99%
confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) com-
pared to the baseline, ELD.

In the next experiments, when we evaluated SEER’s streams in Section 5.3, we sim-
plified our evaluation. Recall did not concern us; the behaviour of the streams did, and
so we focused on the annotations. We note that two out of 15 streams, with concepts
baller and Arsenal, and clear and handball, generated no topics, and thus we exclude them
from the analysis. The breakdown of results for each stream, separated per match, fol-
lows in the next table.
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Stream Topics Precise topics Precision

Summary

champion, final, league, football, win 15.33 7.67 50.00%

take, knee, player 11.83 6.17 52.11%

touch, cross, ball, pass 11.33 10.33 91.18%

goal, score, concede, equalise, offside, assist 10.00 7.50 75.00%

need, half, sub, second, lead, 2nd 10.00 7.00 70.00%

keeper, best, goalkeeper, defend, Kepa, save 6.83 4.50 65.85%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 5.00 3.50 70.00%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 4.67 4.00 85.71%

deflect, kick, corner, shot, net 4.50 4.00 88.89%

world, class, striker 3.00 1.00 33.33%

tackle, dribble, yellow, red, card 2.83 2.50 88.24%

man, utd 1.17 1.00 85.71%

hit, post 0.67 0.67 100.00%

Southampton - Arsenal

champion, final, league, football, win 11 4 36.36%

take, knee, player 7 4 57.14%

touch, cross, ball, pass 5 4 80.00%

goal, score, concede, equalise, offside, assist 13 10 76.92%

need, half, sub, second, lead, 2nd 11 11 100.00%

keeper, best, goalkeeper, defend, Kepa, save 2 2 100.00%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 3 3 100.00%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 5 5 100.00%

deflect, kick, corner, shot, net 3 3 100.00%

world, class, striker 1 0 0.00%

tackle, dribble, yellow, red, card 3 2 66.67%

man, utd 0 0

hit, post 0 0

Leicester - Manchester United

champion, final, league, football, win 14 6 42.86%

take, knee, player 7 2 28.57%

touch, cross, ball, pass 10 7 70.00%

goal, score, concede, equalise, offside, assist 8 6 75.00%

need, half, sub, second, lead, 2nd 10 10 100.00%
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Stream Topics Precise topics Precision

keeper, best, goalkeeper, defend, Kepa, save 10 8 80.00%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 7 6 85.71%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 5 4 80.00%

deflect, kick, corner, shot, net 2 2 100.00%

world, class, striker 0 0

tackle, dribble, yellow, red, card 4 3 75.00%

man, utd 1 1 100.00%

hit, post 7 6 85.71%

Turkey - Italy

champion, final, league, football, win 16 10 62.50%

take, knee, player 17 7 41.18%

touch, cross, ball, pass 13 11 84.62%

goal, score, concede, equalise, offside, assist 14 7 50.00%

need, half, sub, second, lead, 2nd 11 10 90.91%

keeper, best, goalkeeper, defend, Kepa, save 3 2 66.67%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 1 1 100.00%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 4 4 100.00%

deflect, kick, corner, shot, net 7 6 85.71%

world, class, striker 4 0 0.00%

tackle, dribble, yellow, red, card 11 7 63.64%

man, utd 1 1 100.00%

hit, post 0 0

Wales - Switzerland

champion, final, league, football, win 23 12 52.17%

take, knee, player 18 14 77.78%

touch, cross, ball, pass 15 10 66.67%

goal, score, concede, equalise, offside, assist 12 9 75.00%

need, half, sub, second, lead, 2nd 20 17 85.00%

keeper, best, goalkeeper, defend, Kepa, save 9 7 77.78%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 3 3 100.00%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 7 5 71.43%

deflect, kick, corner, shot, net 7 5 71.43%

world, class, striker 4 2 50.00%

tackle, dribble, yellow, red, card 5 5 100.00%
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man, utd 0 0

hit, post 0 0

Scotland - Czech Republic

champion, final, league, football, win 11 7 63.64%

take, knee, player 6 4 66.67%

touch, cross, ball, pass 7 6 85.71%

goal, score, concede, equalise, offside, assist 7 5 71.43%

need, half, sub, second, lead, 2nd 2 2 100.00%

keeper, best, goalkeeper, defend, Kepa, save 5 1 20.00%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 0 0

gol, stream, online, free, Reddit, link, Manchester, FFS, live 2 2 100.00%

deflect, kick, corner, shot, net 2 2 100.00%

world, class, striker 1 0 0.00%

tackle, dribble, yellow, red, card 9 7 77.78%

man, utd 1 1 100.00%

hit, post 0 0

Hungary - France

champion, final, league, football, win 17 7 41.18%

take, knee, player 16 6 37.50%

touch, cross, ball, pass 10 7 70.00%

goal, score, concede, equalise, offside, assist 6 5 83.33%

need, half, sub, second, lead, 2nd 14 12 85.71%

keeper, best, goalkeeper, defend, Kepa, save 1 1 100.00%

foul, referee, book, decision, VAR, given, pen, dive, ref, penalty 3 2 66.67%

gol, stream, online, free, Reddit, link, Manchester, FFS, live 5 4 80.00%

deflect, kick, corner, shot, net 6 6 100.00%

world, class, striker 8 4 50.00%

tackle, dribble, yellow, red, card 9 3 33.33%

man, utd 1 1 100.00%

hit, post 0 0

Table F.8: SEER’s precision results across all streams in football matches, summarised in
Table 5.3a. For clarity, we lemmatised the terms and struck out terms that we had used
as tracking keywords, which SEER ignores. Empty cells indicate that the stream did not
generate any topics.
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To annotate the streams, we followed the exact same process as before. Once again,
we annotated each stream’s timeline with one of five labels: redundant, noisy, subjec-
tive, non-enumerable or enumerable. This time, however, we annotated each of SEER’s
timelines separately and independently. The breakdown of annotations for each stream,
separated per match, follows in the next table.

Stream Redundant Noise Subjective Non-enumerable Enumerable

Summary

champion, final, league, football, win 6.52% 14.13% 29.35% 23.91% 26.09%

take, knee, player 4.23% 11.27% 32.39% 22.54% 29.58%

touch, cross, ball, pass 1.47% 7.35% 0.00% 70.59% 20.59%

goal, score, concede, equalise +2 terms 11.67% 0.00% 13.33% 43.33% 31.67%

need, half, sub, second, lead, 2nd 11.67% 1.67% 16.67% 20.00% 50.00%

keeper, best, goalkeeper, defend +2 terms 4.88% 9.76% 19.51% 43.90% 21.95%

foul, referee, book, decision +6 terms 6.67% 10.00% 13.33% 46.67% 23.33%

gol, stream, online, free, Reddit +4 terms 0.00% 7.14% 7.14% 25.00% 60.71%

deflect, kick, corner, shot, net 7.41% 0.00% 3.70% 51.85% 37.04%

world, class, striker 11.11% 11.11% 44.44% 16.67% 16.67%

tackle, dribble, yellow, red, card 0.00% 5.88% 5.88% 29.41% 58.82%

man, utd 0.00% 0.00% 14.29% 28.57% 57.14%

hit, post 0.00% 0.00% 0.00% 75.00% 25.00%

Southampton - Arsenal

champion, final, league, football, win 0.00% 36.36% 27.27% 27.27% 9.09%

take, knee, player 0.00% 14.29% 28.57% 28.57% 28.57%

touch, cross, ball, pass 0.00% 0.00% 0.00% 81.82% 18.18%

goal, score, concede, equalise +2 terms 0.00% 0.00% 20.00% 20.00% 60.00%

need, half, sub, second, lead, 2nd 7.69% 0.00% 15.38% 23.08% 53.85%

keeper, best, goalkeeper, defend +2 terms 0.00% 33.33% 0.00% 33.33% 33.33%

foul, referee, book, decision +6 terms 0.00% 0.00% 0.00% 0.00% 100.00%

gol, stream, online, free, Reddit +4 terms 0.00% 0.00% 0.00% 20.00% 80.00%

deflect, kick, corner, shot, net 0.00% 0.00% 0.00% 0.00% 100.00%

world, class, striker 0.00% 0.00% 100.00% 0.00% 0.00%

tackle, dribble, yellow, red, card 0.00% 0.00% 0.00% 0.00% 100.00%

man, utd

hit, post

Leicester - Manchester United
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champion, final, league, football, win 0.00% 7.14% 50.00% 28.57% 14.29%

take, knee, player 0.00% 28.57% 42.86% 0.00% 28.57%

touch, cross, ball, pass 0.00% 0.00% 0.00% 90.00% 10.00%

goal, score, concede, equalise +2 terms 20.00% 0.00% 10.00% 40.00% 30.00%

need, half, sub, second, lead, 2nd 0.00% 0.00% 25.00% 25.00% 50.00%

keeper, best, goalkeeper, defend +2 terms 0.00% 25.00% 0.00% 50.00% 25.00%

foul, referee, book, decision +6 terms 10.00% 10.00% 0.00% 60.00% 20.00%

gol, stream, online, free, Reddit +4 terms 0.00% 20.00% 0.00% 20.00% 60.00%

deflect, kick, corner, shot, net 0.00% 0.00% 0.00% 100.00% 0.00%

world, class, striker

tackle, dribble, yellow, red, card 0.00% 14.29% 0.00% 28.57% 57.14%

man, utd 0.00% 0.00% 14.29% 28.57% 57.14%

hit, post 0.00% 0.00% 0.00% 100.00% 0.00%

Turkey - Italy

champion, final, league, football, win 0.00% 12.50% 25.00% 31.25% 31.25%

take, knee, player 11.76% 11.76% 35.29% 17.65% 23.53%

touch, cross, ball, pass 9.09% 0.00% 0.00% 72.73% 18.18%

goal, score, concede, equalise +2 terms 7.69% 0.00% 7.69% 53.85% 30.77%

need, half, sub, second, lead, 2nd 21.43% 0.00% 28.57% 14.29% 35.71%

keeper, best, goalkeeper, defend +2 terms 0.00% 0.00% 36.36% 36.36% 27.27%

foul, referee, book, decision +6 terms 0.00% 0.00% 33.33% 66.67% 0.00%

gol, stream, online, free, Reddit +4 terms 0.00% 0.00% 0.00% 25.00% 75.00%

deflect, kick, corner, shot, net 14.29% 0.00% 0.00% 57.14% 28.57%

world, class, striker 0.00% 0.00% 100.00% 0.00% 0.00%

tackle, dribble, yellow, red, card 0.00% 0.00% 0.00% 100.00% 0.00%

man, utd

hit, post 0.00% 0.00% 0.00% 100.00% 0.00%

Wales - Switzerland

champion, final, league, football, win 13.04% 13.04% 21.74% 30.43% 21.74%

take, knee, player 5.56% 0.00% 16.67% 44.44% 33.33%

touch, cross, ball, pass 0.00% 15.00% 0.00% 60.00% 25.00%

goal, score, concede, equalise +2 terms 13.33% 0.00% 20.00% 40.00% 26.67%

need, half, sub, second, lead, 2nd 0.00% 8.33% 16.67% 33.33% 41.67%

keeper, best, goalkeeper, defend +2 terms 0.00% 0.00% 0.00% 40.00% 60.00%
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foul, referee, book, decision +6 terms 11.11% 11.11% 0.00% 44.44% 33.33%

gol, stream, online, free, Reddit +4 terms 0.00% 14.29% 14.29% 28.57% 42.86%

deflect, kick, corner, shot, net 14.29% 0.00% 14.29% 42.86% 28.57%

world, class, striker 0.00% 0.00% 50.00% 25.00% 25.00%

tackle, dribble, yellow, red, card 0.00% 0.00% 0.00% 33.33% 66.67%

hit, post

man, utd

Scotland - Czech Republic

champion, final, league, football, win 9.09% 0.00% 27.27% 9.09% 54.55%

take, knee, player 0.00% 0.00% 33.33% 16.67% 50.00%

touch, cross, ball, pass 0.00% 0.00% 0.00% 50.00% 50.00%

goal, score, concede, equalise +2 terms 0.00% 0.00% 14.29% 71.43% 14.29%

need, half, sub, second, lead, 2nd 28.57% 0.00% 0.00% 0.00% 71.43%

keeper, best, goalkeeper, defend +2 terms 11.11% 11.11% 0.00% 66.67% 11.11%

foul, referee, book, decision +6 terms 0.00% 20.00% 60.00% 20.00% 0.00%

gol, stream, online, free, Reddit +4 terms 0.00% 0.00% 0.00% 0.00% 100.00%

deflect, kick, corner, shot, net 0.00% 0.00% 0.00% 100.00% 0.00%

world, class, striker 0.00% 0.00% 100.00% 0.00% 0.00%

tackle, dribble, yellow, red, card

man, utd

hit, post 0.00% 0.00% 0.00% 100.00% 0.00%

Hungary - France

champion, final, league, football, win 11.76% 17.65% 29.41% 11.76% 29.41%

take, knee, player 0.00% 18.75% 43.75% 12.50% 25.00%

touch, cross, ball, pass 0.00% 14.29% 0.00% 64.29% 21.43%

goal, score, concede, equalise +2 terms 20.00% 0.00% 10.00% 30.00% 40.00%

need, half, sub, second, lead, 2nd 16.67% 0.00% 0.00% 16.67% 66.67%

keeper, best, goalkeeper, defend +2 terms 11.11% 11.11% 44.44% 33.33% 0.00%

foul, referee, book, decision +6 terms 0.00% 0.00% 0.00% 100.00% 0.00%

gol, stream, online, free, Reddit +4 terms 0.00% 0.00% 20.00% 40.00% 40.00%

deflect, kick, corner, shot, net 0.00% 0.00% 0.00% 50.00% 50.00%

world, class, striker 25.00% 25.00% 0.00% 25.00% 25.00%

tackle, dribble, yellow, red, card 0.00% 0.00% 33.33% 33.33% 33.33%

man, utd
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hit, post 0.00% 0.00% 0.00% 0.00% 100.00%

Table F.9: SEER’s annotations across all streams in football matches, summarised in
Table 5.3b. For clarity, we lemmatised the terms and struck out terms that we had used
as tracking keywords, which SEER ignores. Empty cells indicate that the stream did not
generate any topics.

Finally, in the sensitivity evaluation of Appendix B, we reduced dataset sizes to em-
ulate the lower activity of unpopular events. A full breakdown of the number of topics,
precision, recall, and F-score across all datasets and at varying amounts of data follows
in the next table.

Data Algorithm Topics Precise topics Precision Recall F-score

Summary

All tweets ELD 37.83 20.33 53.74% 56.73% 55.04%

SEER 33.83 24.17 △ 71.43% 55.77% △ 62.89%

50,000 tweets ELD 24.50 14.83 60.54% 43.27% 50.69%

SEER △ 27.00 ▲ 17.67 65.43% 48.08% 55.54%

25,000 tweets ELD 12.33 8.17 66.22% 25.00% 36.68%

SEER ▲ 23.50 ▲ 16.00 68.09% ▲ 45.19% ▲ 54.52%

10,000 tweets ELD 2.67 2.50 93.75% 11.54% 19.67%

SEER ▲ 27.17 ▲ 16.50 ▼ 60.74% ▲ 42.31% ▲ 50.34%

Southampton - Arsenal

All tweets ELD 35 22 62.86% 72.22% 67.22%

SEER 32 24 75.00% 66.67% 70.59%

50,000 tweets ELD 26 18 69.23% 61.11% 64.92%

SEER 30 21 70.00% 66.67% 68.29%

25,000 tweets ELD 12 10 83.33% 38.89% 53.03%

SEER 29 21 72.41% 66.67% 69.42%

10,000 tweets ELD 2 2 100.00% 5.56% 10.53%

SEER 25 18 72.00% 50.00% 59.02%

Leicester - Manchester United

All tweets ELD 49 29 59.18% 43.48% 50.13%

SEER 35 25 71.43% 43.48% 54.05%

50,000 tweets ELD 30 16 53.33% 30.43% 38.75%
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Data Algorithm Topics Precise topics Precision Recall F-score

SEER 30 20 66.67% 39.13% 49.32%

25,000 tweets ELD 13 8 61.54% 13.04% 21.52%

SEER 24 19 79.17% 34.78% 48.33%

10,000 tweets ELD 3 2 66.67% 8.70% 15.38%

SEER 38 23 60.53% 34.78% 44.18%

Turkey - Italy

All tweets ELD 39 20 51.28% 55.56% 53.33%

SEER 36 24 66.67% 50.00% 57.14%

50,000 tweets ELD 23 13 56.52% 38.89% 46.08%

SEER 28 15 53.57% 38.89% 45.06%

25,000 tweets ELD 15 8 53.33% 16.67% 25.40%

SEER 21 14 66.67% 33.33% 44.44%

10,000 tweets ELD 4 4 100.00% 27.78% 43.48%

SEER 24 16 66.67% 50.00% 57.14%

Wales - Switzerland

All tweets ELD 29 19 65.52% 57.14% 61.04%

SEER 39 30 76.92% 57.14% 65.57%

50,000 tweets ELD 24 16 66.67% 50.00% 57.14%

SEER 24 19 79.17% 64.29% 70.95%

25,000 tweets ELD 14 10 71.43% 28.57% 40.82%

SEER 15 13 86.67% 57.14% 68.87%

10,000 tweets ELD 3 3 100.00% 7.14% 13.33%

SEER 18 12 66.67% 42.86% 52.17%

Scotland - Czech Republic

All tweets ELD 32 14 43.75% 56.25% 49.22%

SEER 24 17 70.83% 62.50% 66.41%

50,000 tweets ELD 21 11 52.38% 43.75% 47.68%

SEER 24 14 58.33% 43.75% 50.00%

25,000 tweets ELD 12 6 50.00% 31.25% 38.46%

SEER 27 14 51.85% 37.50% 43.52%

10,000 tweets ELD 2 2 100.00% 6.25% 11.76%

SEER 20 12 60.00% 37.50% 46.15%

Hungary - France

All tweets ELD 43 18 41.86% 60.00% 49.32%
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SEER 37 25 67.57% 60.00% 63.56%

50,000 tweets ELD 23 15 65.22% 40.00% 49.59%

SEER 26 17 65.38% 40.00% 49.64%

25,000 tweets ELD 8 7 87.50% 26.67% 40.88%

SEER 25 15 60.00% 46.67% 52.50%

10,000 tweets ELD 2 2 100.00% 13.33% 23.53%

SEER 38 18 47.37% 40.00% 43.37%

Table F.10: The TDT algorithms’ results in small datasets, summarised in Table B.1a. △
and ▲ indicate statistically-significant increases at the 95% and 99% confidence levels,
and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence levels (one-
tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to the baseline,
ELD.

We note that performance does not necessarily decrease with less data. In the match
between Turkey and Italy, for example, SEER achieved a very high F-score (57.14%) with
just 10,000 tweets. Such anomalies can be explained by the sampling error. Sampling
may influence performance directly by over-representing certain non-key topics, but it
may also affect performance indirectly: it may choose descriptive tweets that allow the
summarisation algorithm to describe several non-key topics at once.

For brevity, we did not discuss our annotation process in Appendix B. However,
we followed the same process as before, annotating topics as either redundant, noisy,
subjective, non-enumerable or enumerable. The full breakdown across all datasets and
at varying amounts of data follows in the next table.

Data Algorithm Redundant Noise Subjective Non-enumerable Enumerable

Summary

All tweets ELD 5.73% 20.26% 20.26% 30.84% 22.91%

SEER 4.43% ▼ 6.90% 17.24% ▲ 45.81% 25.62%

50,000 tweets ELD 7.48% 13.61% 18.37% 32.65% 27.89%

SEER 7.41% ▽ 6.79% 20.37% ▲ 37.65% 27.78%

25,000 tweets ELD 10.81% 10.81% 12.16% 33.78% 32.43%

SEER 7.80% 9.93% 14.18% 38.30% 29.79%

10,000 tweets ELD 0.00% 6.25% 0.00% 25.00% 68.75%

SEER ▲ 7.98% 12.27% ▲ 19.02% 34.97% ▽ 25.77%
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Data Algorithm Redundant Noise Subjective Non-enumerable Enumerable

Southampton - Arsenal

All tweets ELD 5.71% 14.29% 17.14% 28.57% 34.29%

SEER 0.00% 6.25% 18.75% 40.63% 34.38%

50,000 tweets ELD 3.85% 7.69% 19.23% 30.77% 38.46%

SEER 3.33% 6.67% 20.00% 33.33% 36.67%

25,000 tweets ELD 8.33% 0.00% 8.33% 33.33% 50.00%

SEER 0.00% 10.34% 17.24% 34.48% 37.93%

10,000 tweets ELD 0.00% 0.00% 0.00% 50.00% 50.00%

SEER 4.00% 4.00% 20.00% 36.00% 36.00%

Leicester - Manchester United

All tweets ELD 4.08% 24.49% 12.24% 38.78% 20.41%

SEER 11.43% 2.86% 14.29% 42.86% 28.57%

50,000 tweets ELD 6.67% 20.00% 20.00% 30.00% 23.33%

SEER 10.00% 10.00% 13.33% 36.67% 30.00%

25,000 tweets ELD 0.00% 23.08% 15.38% 38.46% 23.08%

SEER 12.50% 0.00% 8.33% 45.83% 33.33%

10,000 tweets ELD 0.00% 33.33% 0.00% 0.00% 66.67%

SEER 2.63% 15.79% 21.05% 39.47% 21.05%

Turkey - Italy

All tweets ELD 5.13% 12.82% 30.77% 35.90% 15.38%

SEER 0.00% 8.33% 25.00% 47.22% 19.44%

50,000 tweets ELD 4.35% 8.70% 30.43% 30.43% 26.09%

SEER 10.71% 7.14% 28.57% 35.71% 17.86%

25,000 tweets ELD 6.67% 20.00% 20.00% 33.33% 20.00%

SEER 14.29% 9.52% 9.52% 42.86% 23.81%

10,000 tweets ELD 0.00% 0.00% 0.00% 0.00% 100.00%

SEER 12.50% 4.17% 16.67% 37.50% 29.17%

Wales - Switzerland

All tweets ELD 3.45% 20.69% 10.34% 37.93% 27.59%

SEER 2.56% 7.69% 12.82% 56.41% 20.51%

50,000 tweets ELD 12.50% 8.33% 12.50% 37.50% 29.17%

SEER 4.17% 8.33% 8.33% 41.67% 37.50%

25,000 tweets ELD 7.14% 7.14% 14.29% 42.86% 28.57%

SEER 0.00% 6.67% 6.67% 40.00% 46.67%
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10,000 tweets ELD 0.00% 0.00% 0.00% 66.67% 33.33%

SEER 16.67% 5.56% 11.11% 33.33% 33.33%

Scotland - Czech Republic

All tweets ELD 12.50% 15.63% 28.13% 18.75% 25.00%

SEER 8.33% 4.17% 16.67% 41.67% 29.17%

50,000 tweets ELD 14.29% 19.05% 14.29% 23.81% 28.57%

SEER 8.33% 8.33% 25.00% 33.33% 25.00%

25,000 tweets ELD 41.67% 0.00% 8.33% 16.67% 33.33%

SEER 7.41% 18.52% 22.22% 33.33% 18.52%

10,000 tweets ELD 0.00% 0.00% 0.00% 50.00% 50.00%

SEER 15.00% 10.00% 15.00% 30.00% 30.00%

Hungary - France

All tweets ELD 4.65% 30.23% 23.26% 23.26% 18.60%

SEER 5.41% 10.81% 16.22% 43.24% 24.32%

50,000 tweets ELD 4.35% 17.39% 13.04% 43.48% 21.74%

SEER 7.69% 0.00% 26.92% 46.15% 19.23%

25,000 tweets ELD 0.00% 12.50% 0.00% 37.50% 50.00%

SEER 12.00% 12.00% 16.00% 36.00% 24.00%

10,000 tweets ELD 0.00% 0.00% 0.00% 0.00% 100.00%

SEER 5.26% 23.68% 23.68% 31.58% 15.79%

Table F.11: The TDT algorithms’ annotations in small datasets, summarised in Ta-
ble B.1a. △ and ▲ indicate statistically-significant increases at the 95% and 99% confi-
dence levels, and ▽ and ▼ statistically-significant drops at the 95% and 99% confidence
levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test) compared to the
baseline, ELD.

The sensitivity evaluation also returned to a more extensive analysis that considered,
once more, recall. The breakdown of the recall of goals, cards, halves and substitutions
across all datasets and at varying amounts of data follows in the next table.

Data Algorithm Goals Cards Halves Substitutions

Summary

All tweets ELD 87.50% 52.94% 37.50% 57.45%

SEER 93.75% 52.94% 50.00% 46.81%
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Data Algorithm Goals Cards Halves Substitutions

50,000 tweets ELD 87.50% 23.53% 25.00% 44.68%

SEER 100.00% 41.18% 41.67% ▽ 36.17%

25,000 tweets ELD 75.00% 11.76% 12.50% 19.15%

SEER 93.75% 41.18% ▲ 41.67% △ 31.91%

10,000 tweets ELD 62.50% 0.00% 4.17% 2.13%

SEER △ 87.50% △ 47.06% △ 37.50% ▲ 27.66%

Southampton - Arsenal

All tweets ELD 100.00% 66.67% 50.00% 75.00%

SEER 100.00% 100.00% 75.00% 37.50%

50,000 tweets ELD 100.00% 66.67% 50.00% 50.00%

SEER 100.00% 100.00% 75.00% 37.50%

25,000 tweets ELD 100.00% 0.00% 25.00% 37.50%

SEER 66.67% 100.00% 75.00% 50.00%

10,000 tweets ELD 33.33% 0.00% 0.00% 0.00%

SEER 66.67% 100.00% 50.00% 25.00%

Leicester - Manchester United

All tweets ELD 33.33% 42.86% 50.00% 44.44%

SEER 100.00% 42.86% 50.00% 22.22%

50,000 tweets ELD 66.67% 14.29% 25.00% 33.33%

SEER 100.00% 28.57% 25.00% 33.33%

25,000 tweets ELD 33.33% 14.29% 0.00% 11.11%

SEER 100.00% 42.86% 25.00% 11.11%

10,000 tweets ELD 66.67% 0.00% 0.00% 0.00%

SEER 100.00% 42.86% 25.00% 11.11%

Turkey - Italy

All tweets ELD 100.00% 50.00% 50.00% 44.44%

SEER 100.00% 0.00% 25.00% 55.56%

50,000 tweets ELD 100.00% 0.00% 0.00% 44.44%

SEER 100.00% 0.00% 0.00% 44.44%

25,000 tweets ELD 33.33% 0.00% 0.00% 22.22%

SEER 100.00% 0.00% 25.00% 22.22%

10,000 tweets ELD 100.00% 0.00% 25.00% 11.11%

SEER 100.00% 50.00% 25.00% 44.44%

Wales - Switzerland
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All tweets ELD 100.00% 66.67% 25.00% 50.00%

SEER 66.67% 66.67% 75.00% 50.00%

50,000 tweets ELD 100.00% 33.33% 25.00% 50.00%

SEER 100.00% 66.67% 75.00% 25.00%

25,000 tweets ELD 100.00% 33.33% 0.00% 0.00%

SEER 100.00% 33.33% 50.00% 50.00%

10,000 tweets ELD 33.33% 0.00% 0.00% 0.00%

SEER 66.67% 33.33% 50.00% 25.00%

Scotland - Czech Republic

All tweets ELD 100.00% 0.00% 25.00% 60.00%

SEER 100.00% 0.00% 50.00% 60.00%

50,000 tweets ELD 50.00% 0.00% 25.00% 50.00%

SEER 100.00% 0.00% 50.00% 30.00%

25,000 tweets ELD 100.00% 0.00% 25.00% 20.00%

SEER 100.00% 0.00% 25.00% 30.00%

10,000 tweets ELD 50.00% 0.00% 0.00% 0.00%

SEER 100.00% 0.00% 25.00% 30.00%

Hungary - France

All tweets ELD 100.00% 50.00% 25.00% 71.43%

SEER 100.00% 50.00% 50.00% 57.14%

50,000 tweets ELD 100.00% 0.00% 25.00% 42.86%

SEER 100.00% 0.00% 25.00% 42.86%

25,000 tweets ELD 100.00% 0.00% 25.00% 14.29%

SEER 100.00% 0.00% 50.00% 42.86%

10,000 tweets ELD 100.00% 0.00% 0.00% 0.00%

SEER 100.00% 0.00% 50.00% 28.57%

Table F.12: The TDT algorithms’ recall of enumerable topics in small datasets, sum-
marised in Table B.1b. △ and ▲ indicate statistically-significant increases at the 95%
and 99% confidence levels, and ▽ and ▼ statistically-significant drops at the 95% and
99% confidence levels (one-tailed paired samples t-test or Wilcoxon Signed-Rank test)
compared to the baseline, ELD.
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F.3 | Results from the analyses of Chapter 6
In Section 6.3, we performed a quantitative analysis on SEER as a TDT algorithm. The
domain changed, and it changed the way we applied the metrics from Chapter 5. In
politics, we could no longer enumerate the innumerable topics, and neither could we
calculate recall. Therefore we simplified the evaluation: we annotated topics as redun-
dant, noisy, subjective or newsworthy—the latter an alias for non-enumerable topics but
also for precision. The breakdown of annotations follows in the next table.

Algorithm Redundant Noise Subjective Newsworthy Topics

Summary

ELD ▲ 42.98% 6.61% ▼ 3.31% ▽ 47.11% ▽ 121

SEERDefault 5.49% ▲ 35.16% △ 25.27% ▼ 34.07% ▽ 91

SEER 5.42% 7.85% 14.39% 72.34% 535

September 5

ELD 55.88% 2.94% 8.82% 32.35% 34

SEERDefault 0.00% 35.29% 41.18% 23.53% 17

SEER 0.00% 2.44% 17.07% 80.49% 82

September 6

ELD 29.41% 11.76% 0.00% 58.82% 34

SEERDefault 0.00% 30.77% 15.38% 53.85% 13

SEER 6.29% 10.86% 13.14% 69.71% 175

September 7

ELD 50.00% 10.00% 0.00% 40.00% 10

SEERDefault 0.00% 50.00% 10.00% 40.00% 10

SEER 3.26% 9.78% 14.13% 72.83% 92

September 8

ELD 36.67% 3.33% 3.33% 56.67% 30

SEERDefault 13.64% 18.18% 22.73% 45.45% 22

SEER 7.64% 7.64% 14.01% 70.70% 157

September 9

ELD 58.33% 8.33% 0.00% 33.33% 12

SEERDefault 8.33% 25.00% 33.33% 33.33% 12

SEER 10.71% 0.00% 17.86% 71.43% 28

September 10
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Appendix F. Results

Algorithm Redundant Noise Subjective Newsworthy Topics

ELD 0.00% 0.00% 0.00% 100.00% 1

SEERDefault 5.88% 58.82% 23.53% 11.76% 17

SEER 0.00% 0.00% 0.00% 100.00% 1

Table F.13: ELD’s and SEER’s results in UK politics, summarised in Table 6.1a. △ and
▲ indicate statistically-significant increases at the 95% and 99% confidence levels, and
▽ and ▼ statistically-significant drops at the 95% and 99% confidence levels (one-tailed
paired samples t-test or Wilcoxon Signed-Rank test) compared to SEER.

While ELD and SEER’s default stream produced monolithic timelines, SEER itself
produced several. As we explain in Section 6.3, we clustered EVATE’s top 250 terms
from Section 4.5 into 50 concepts: every concept a stream, every stream detecting topics
individually. For brevity, we provide the full breakdown in the NicholasMamo/phd-data
repository, alongside the full list of domain terms. A summary follows in the next table.

Stream Redundant Noise Subjective Newsworthy Topics

Summary

charge, pro-trump, assault, arrest, riot +6 terms 0.00% 16.67% 8.33% 75.00% 12

popular, project, official, affirm, win +4 terms 0.00% 0.00% 0.00% 100.00% 2

foreign, economy, brief, advise, nation +4 terms 15.00% 7.50% 12.50% 65.00% 40

policy, cooperation, administration +6 terms 7.14% 7.14% 7.14% 78.57% 28

work, want, country, congratulate, peace +3 terms 2.17% 8.70% 28.26% 60.87% 46

appeal, lawyer, judge, dismiss, campaign +3 terms 42.86% 0.00% 0.00% 57.14% 7

Chinese, military, raise, defense +4 terms 0.00% 11.11% 0.00% 88.89% 9

lead, state, process, ballot, recount +3 terms 0.00% 22.22% 0.00% 77.78% 9

evidence, Republican, outcome, claim +4 terms 0.00% 20.00% 33.33% 46.67% 15

ally, legal, court, overturn, challenge +3 terms 0.00% 7.69% 15.38% 76.92% 13

turnout, county, find, poll, major, vote, override 7.14% 7.14% 28.57% 57.14% 14

hour, take, spent, time, year, last, office 2.50% 5.00% 27.50% 65.00% 40

senior, agency, director, community +2 terms 0.00% 0.00% 0.00% 100.00% 1

cabinet, nominee, invoke, announce, week, new 0.00% 14.29% 35.71% 50.00% 14

destroy, clemency, trump, people, enemy +1 term 0.00% 15.79% 26.32% 57.89% 19

attempt, democracy, power, try, coup, cheat 0.00% 23.08% 15.38% 61.54% 13

retire, receive, confirm, nominate, secretary, first 13.64% 4.55% 4.55% 77.27% 22

demand, package, stimulus, check +2 terms 0.00% 0.00% 9.09% 90.91% 11

children, justice, family, separate, border +1 term 0.00% 0.00% 0.00% 100.00% 6
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F.3. Results from the analyses of Chapter 6

Stream Redundant Noise Subjective Newsworthy Topics

sign, fund, govern, send, bill, pass 11.11% 0.00% 5.56% 83.33% 18

health, team, education, pick +2 terms 0.00% 0.00% 11.11% 88.89% 9

transition, lose, lost, concede, acknowledge 0.00% 50.00% 0.00% 50.00% 2

troop, pay, cut, service, order 5.26% 5.26% 5.26% 84.21% 19

effort, reject, victory, reverse, presidential 0.00% 0.00% 0.00% 100.00% 2

counsel, attorney, said, investigate, general 0.00% 11.11% 27.78% 61.11% 18

impeach, article, incite, suspend, twitter 0.00% 100.00% 0.00% 0.00% 1

law, crime, federal, account, criminal 0.00% 0.00% 0.00% 100.00% 2

call, Democrat, governor, pressure, leader 0.00% 9.38% 3.13% 87.50% 32

Russian, media, disinformation, lie 0.00% 0.00% 25.00% 75.00% 4

death, virus, travel, vaccine 0.00% 33.33% 0.00% 66.67% 3

term, next, president, end 33.33% 0.00% 0.00% 66.67% 18

rig, fraud, say, believe 10.53% 0.00% 21.05% 68.42% 19

son, staff, position, appoint 0.00% 0.00% 14.29% 85.71% 7

member, remove, leave, resign 0.00% 0.00% 9.09% 90.91% 11

bid, block, certification 0

wear, rally, mask 0

deliver, message, remark 0.00% 20.00% 0.00% 80.00% 5

dose, refuse, million 0.00% 0.00% 0.00% 100.00% 7

final, second, debate 0.00% 0.00% 20.00% 80.00% 5

press, conference, hold 0.00% 0.00% 33.33% 66.67% 3

early, county, mail 0.00% 0.00% 0.00% 100.00% 1

steal, stop 0.00% 16.67% 0.00% 83.33% 6

money, tax 5.00% 5.00% 10.00% 80.00% 20

terrorist, group 0

woman, vice 0

inauguration, oath 0

attack, die 0.00% 0.00% 0.00% 100.00% 2

runoff, senate 0

violence 0

cast 0

Table F.14: SEER’s annotations across all streams in UK politics, summarised in Ta-
ble 6.1a. For clarity, we lemmatised the terms. Empty cells indicate that the stream did
not generate any topics.
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