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A R T I C L E I N F O A B S T R A C T

Editor: A. Ringwald We apply the Euler transformation to accelerate the convergence of the QCD perturbative series with the aim to 
determine the strong coupling 𝛼𝑠 in terms of the total 𝜏-decay rate 𝑟𝜏 . The variation of the result with the order 
of the QCD perturbation theory is small and comparable with the uncertainties of 𝑟𝜏 . We also present an estimate 
of a range of the yet unknown 5th and 6th order coefficients 𝑘5 and 𝑘6 of the Adler function.
1. Introduction

The value of the strong coupling constant 𝛼𝑠 depends on the scale 
at which it is determined. At the scale of the 𝜏 mass, 𝑚𝜏 , it can be de-

termined very precisely from the total hadronic 𝜏-decay rate (see for 
example the review Ref. [1] and references therein) for two reasons: 
the 𝜏 mass is large enough so that a perturbative approach seems to be 
justified and its theoretical expression is known to order 𝛼4

𝑠
owing to the 

heroic calculation of the QCD current correlator by Baikov, Chetyrkin 
and Kühn [2]. Higher-order calculations have reached a state where it 
is unlikely that the next order will become available soon. It is therefore 
important to gain insight in the behaviour of the perturbative series and 
possibly obtain some hint on how good the extraction of 𝛼𝑠 from the to-

tal 𝜏-decay rate can be if only a few first terms of the perturbative series 
are known. In this note we investigate the applicability of a well-known 
technique of accelerating the convergence of the QCD perturbative se-

ries, namely the Euler transformation [3–5].

2. The hadronic decay of the 𝝉-lepton

Taking into account radiative corrections, the 𝜏-decay rate into non-

strange hadrons for the vector and axial-vector components, 𝑉 and 𝐴, 
can be written as

𝑅𝜏,𝑉 ∕𝐴 =
𝑁𝐶

2
||𝑉𝑢𝑑

||2 𝑆𝐸𝑊

(
1 + 𝑟𝜏 + 𝛿′

𝐸𝑊
+ 𝛿

(2,𝑚𝑞 )
𝑢𝑑,𝑉 ∕𝐴 +

∑
𝐷≥4

𝛿(𝐷)

)
. (1)

* Corresponding author.

Here, 𝑆𝐸𝑊 = 1.01907 ± 0.0003 [6] is a factor describing logarith-

mically enhanced electroweak corrections calculated in Refs. [7,8], 
𝛿′
𝐸𝑊

= 0.0010 [9] takes into account residual non-logarithmic elec-

troweak corrections, 𝛿(2,𝑚𝑞 )
𝑢𝑑,𝑉 ∕𝐴 is the dimension 𝐷 = 2 perturbative quark 

mass correction (smaller than 0.1% for 𝑢, 𝑑 quarks) and 𝛿(𝐷) are higher-

dimension contributions from condensates in the operator product ex-

pansion (OPE) and possible contributions from genuine duality viola-

tion. OPE corrections and non-perturbative contributions dominate the 
uncertainty. An estimate of these contributions has been obtained from 
a fit to the ALEPH data [10,11] with the result 𝛿𝑁𝑃 = −0.0064 ±0.0013. 
Based on the recent analysis of Ref. [12], we will use

𝑟𝜏 = 0.2027 ± 0.0028 (2)

in our numerical results. We also note the reference value for the strong 
coupling at the 𝜏 mass given by the Particle Data Group (PDG) [6]:

𝛼𝑠(𝑚𝜏 ) = 0.312 ± 0.015 . (3)

Note that we are particularly interested in the higher-order corrections 
from perturbative QCD which are comprised in 𝑟𝜏 . These are deter-

mined by the current-current correlator and can be written as a power 
series in the strong coupling constant 𝛼𝑠 which we describe in the next 
section.
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3. Perturbative corrections

The hadronic branching ratio of the 𝜏-lepton is related to the spec-

tral function, i.e. the imaginary part of the current-current correlator. 
We consider the vector plus axial-vector correlator

4𝜋2Π𝜇𝜈(𝑞2) = 𝑖 ∫ 𝑑4𝑥 𝑒𝑖𝑞𝑥⟨0|𝑇 (𝐽𝜇(𝑥)𝐽𝜈 (0))|0⟩
= (−𝑔𝜇𝜈𝑞

2 + 𝑞𝜇𝑞𝜈)Π(𝑞2) , (4)

where the currents 𝐽𝜇(𝑥) =
1
2 (𝑉𝜇(𝑥) + 𝐴𝜇(𝑥)) with 𝑉𝜇(𝑥) = 𝑢̄(𝑥)𝛾𝜇𝑑(𝑥)

and 𝐴𝜇(𝑥) = 𝑢̄(𝑥)𝛾𝜇𝛾5𝑑(𝑥) are constructed from the light-quark field 
operators 𝑢(𝑥) and 𝑑(𝑥). Using Cauchy’s theorem and omitting non-

perturbative and OPE corrections one finds

𝑅𝜏 (𝑠0) = −6𝜋𝑖 ||𝑉𝑢𝑑
||2 𝑆𝐸𝑊 ∮|𝑠|=𝑠0

𝑑𝑠

𝑠0

(
1 − 𝑠

𝑠0

)2(
1 + 2 𝑠

𝑠0

)
Π(𝑠) , (5)

where the integration is over a circle of radius |𝑠| = 𝑠0, given by the 𝜏
mass, 𝑠0 =𝑚2

𝜏
, 𝑚𝜏 = 1.77686 ± 0.00012 GeV [6].

The result for the correlator renormalized at a scale 𝜇 is of the form

4𝜋2Π(𝑠) = −
∞∑
𝑛=0

𝑎𝑛
𝑛+1∑
𝑖=1

𝑐𝑛𝑖𝐿
𝑖 , 𝑎 ≡ 𝛼𝑠(𝜇)

𝜋
, 𝐿 ≡ ln −𝑠

𝜇2 , (6)

where 𝛼𝑠(𝜇) is the MS renormalized running coupling. Non-logarithmic 
terms, i.e. with coefficients 𝑐𝑛0 are not included, as these terms are 
related to external renormalization and do not contribute to measurable 
quantities. We also have 𝑐𝑛,𝑛+1 = 0 for 𝑛 ≥ 1. Only the coefficients 𝑐𝑛1
have to be calculated from (𝑛 + 1)-loop diagrams; the other coefficients 
𝑐𝑛𝑖 with 𝑖 ≥ 2 are related by the renormalization group equation (RGE) 
to 𝑐𝑛1. The following shorter notation will be used for the independent 
coefficients:

𝑐𝑛1 = 𝑘𝑛

with 𝑘0 = 𝑘1 = 1. The non-trivial coefficients have been calculated in 
the MS scheme, 𝑘2 and 𝑘3 by Bardeen et al. [13] and 𝑘4 by Baikov et 
al. [2]. For three flavours, 𝑛𝑓 = 3, the result is

𝑘2 =
299
24

− 9𝜁3 = 1.63982 ,

𝑘3 =
58057
288

− 779
4

𝜁3 +
75
2

𝜁5 = 6.37101 ,

𝑘4 = 49.076 .

For the current-current correlator one finds explicitly the power series 
in the coupling 𝑎 up to order 𝑂(𝑎6) [1,2]:

−4𝜋2Π(𝑠) =𝐿+ 𝑎𝐿+ 𝑎2
(
𝑘2𝐿− 1

2
𝑏0𝐿

2
)

+ 𝑎3
(
𝑘3𝐿−

(1
2
𝑏1 + 𝑏0𝑘2

)
𝐿2 + 1

3
𝑏20𝐿

3
)

+ 𝑎4
(
𝑘4𝐿−

(1
2
𝑏2 + 𝑏1𝑘2 +

3
2
𝑏0𝑘3

)
𝐿2

+
(5
6
𝑏0𝑏1 + 𝑏20𝑘2

)
𝐿3 − 1

4
𝑏30𝐿

4
)

+ 𝑎5

(
𝑘5𝐿−

(1
2
𝑏3 + 𝑏2𝑘2 +

3
2
𝑏1𝑘3 + 2𝑏0𝑘4

)
𝐿2

+
(
𝑏0𝑏2 +

1
2
𝑏21 +

7
3
𝑏0𝑏1𝑘2 + 2𝑏20𝑘3

)
𝐿3

−
(13
12

𝑏20𝑏1 + 𝑏30𝑘2

)
𝐿4 + 1

5
𝑏40𝐿

5

)
(7)

+ 𝑎6

(
𝑘6𝐿−

(1
2
𝑏4 + 𝑏3𝑘2 +

3
2
𝑏2𝑘3 + 2𝑏1𝑘4 +

5
2
𝑏0𝑘5

)
𝐿2

(7 ( ) 4 ( ) 9
2

+
6

𝑏1𝑏2 + 𝑏0𝑏3 +
3

𝑏21 + 2𝑏0𝑏2 𝑘2 + 2
𝑏0𝑏1𝑘3
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+10
3

𝑏20𝑘4

)
𝐿3

−
(35
24

𝑏0𝑏
2
1 +

3
2
𝑏20𝑏2 +

47
12

𝑏20𝑏1𝑘2 +
5
2
𝑏30𝑘3

)
𝐿4

+
(77
60

𝑏30𝑏1 + 𝑏40𝑘2

)
𝐿5 − 1

6
𝑏50𝐿

6

)
.

The coefficients 𝑏𝑖 of the QCD 𝛽-function are as given in Refs. [2,14]

𝑏0 = 2.75 − 0.166667𝑛𝑓 = 2.25 ,

𝑏1 = 6.375 − 0.791667𝑛𝑓 = 4 ,

𝑏2 = 22.3203 − 4.36892𝑛𝑓 + 0.0940394𝑛2
𝑓
= 10.059896 , (8)

𝑏3 = 114.23 − 27.1339𝑛𝑓 + 1.58238𝑛2
𝑓
+ 0.0058567𝑛3

𝑓
= 47.228040 ,

𝑏4 = 524.56 − 181.8𝑛𝑓 + 17.16𝑛2
𝑓
− 0.22586𝑛3

𝑓
− 0.0017993𝑛4

𝑓

= 127.322 .

The last numerical value in each line is given for three flavors, 𝑛𝑓 = 3.

For the calculation of 𝑅𝜏 , one needs to evaluate integrals of the form

𝐼 (𝑞, 𝑘) = 1
2𝜋𝑖 ∮|𝑠|=𝑠0

𝑠𝑞
(
log −𝑠

𝜇2

)𝑘

𝑑𝑠

and their expressions can be extracted from results given in Refs. [15,

16] as follows

𝐼 (𝑞, 𝑘)

= 𝑠
𝑞+1
0

𝑘∑
𝑝=0

𝑘−𝑝∑
𝑙=0

(−1)
𝑝−1
2

[
1 − (−1)𝑝

]
2

𝑘!
𝑝! 𝑙!

(−1)𝑘−𝑝−𝑙

(𝑞 + 1)𝑘−𝑝−𝑙+1 𝜋
𝑝−1

(
log

𝑠0

𝜇2

)𝑙

for 𝑞 ≠ −1

and

𝐼 (−1, 𝑘) =
𝑘∑

𝑝=0

1 + (−1)𝑝

2
(−1)𝑝∕2 𝜋𝑝𝑘!

(𝑘− 𝑝)! (𝑝+ 1)!

(
log

𝑠0

𝜇2

)𝑘−𝑝

for 𝑞 = −1 .

Using these results and setting 𝜇2 = 𝑠0 = 𝑚2
𝜏
, we obtain the following 

power expansion of 𝑟𝜏 in terms of 𝑎 = 𝛼𝑠(𝑚𝜏 )∕𝜋 up to order 𝑂(𝑎6):

𝑟𝜏 = 𝑎+ 5.20232𝑎2 + 26.3659𝑎3 + 127.079𝑎4 + (307.787 + 𝑘5)𝑎5

+ (−5646.6 + 17.8125𝑘5 + 𝑘6)𝑎6 . (9)

This result is obtained with the prescription known as fixed-order 
perturbation theory (FOPT), i.e. by keeping the renormalization scale 
𝜇2 = 𝑠0 fixed along the contour of integration. We do not consider the 
alternative approach known as contour-improved perturbation theory 
since this has been shown recently to be inconsistent with the standard 
way to treat non-perturbative effects [17–20].

4. Numerical results

Predictions of Eq. (9) for 𝑟𝜏 at different orders are shown in Fig. 1

using the PDG value as input for the strong coupling, 𝛼𝑠(𝑚𝜏 ) = 0.312 ±
0.015. All terms in the power expansion of 𝑟𝜏 are positive (except possi-

bly the 5th and 6th order term depending on the values of the unknown 
coefficients 𝑘5,6). Therefore the value of 𝑟𝜏 as well as its uncertainty re-

sulting from the error of 𝛼𝑠(𝑚𝜏 ) increase when including the next higher 
order. The values shown by blue points in Fig. 1 indicate the effect of 
the coefficients 𝑘5 and 𝑘6 on the higher-order predictions when their 
values are changed from 𝑘5 = 0 to 𝑘5 = 277 and 𝑘6 = 0 to 𝑘6 = 3460 as 
estimated in Ref. [21] (see below).

The expression for the 𝜏-decay constant given in the previous section 
in Eq. (9), can be inverted to obtain the strong coupling as a power 

series in 𝑟𝜏 :
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Fig. 1. 𝑟𝜏 at different orders of 𝛼𝑠 using the PDG value 𝛼𝑠(𝑚𝜏 ) = 0.312 ± 0.015. 
The estimates shown by purple points are calculated with 𝑘5 = 𝑘6 = 0. The 
estimates in blue for the 5th and 6th order are obtained with 𝑘5 = 277, 𝑘6 =
3460 [21].

Fig. 2. 𝛼𝑠 at different orders of 𝑟𝜏 using 𝑟𝜏 = 0.2027 ± 0.0028 [12] in Eq. (10), 
and assuming 𝑘5 = 𝑘6 = 0 (purple points) or 𝑘5 = 277, 𝑘6 = 3460 (blue points).

𝑎 = 𝑟𝜏 − 5.20232 𝑟2
𝜏
+ 27.7624 𝑟3

𝜏
− 145.241 𝑟4

𝜏
+ (1013.89 − 𝑘5) 𝑟5𝜏

+ (−5467.2 + 18.6037𝑘5 − 𝑘6) 𝑟6𝜏 . (10)

Using this inverted power series in Eq. (10), we can determine 𝛼𝑠 from 
the experimental value of 𝑟𝜏 . The series for 𝑎(𝑟𝜏 ) is approximately geo-

metric with alternating signs and coefficients that grow approximately 
as (−5)𝑘, 𝑘 = 0, … 3. Since 𝑟𝜏 ≃ 1∕5, the resulting order-by-order de-

termination of the strong coupling does not seem to be convergent, at 
least not up to order 𝑟6

𝜏
, as can be seen in Fig. 2. The error bars shown 

in the figure are due to the uncertainty estimate of 𝑟𝜏 , see Eq. (2), 
which includes the experimental uncertainty of 𝑅𝜏 and an estimate of 
the non-perturbative contributions. They appear much smaller than the 
order-to-order variations of the power expansion of 𝑎(𝑟𝜏 ). It seems ob-

vious from these results that the truncation of the perturbative series 
dominates the total uncertainty of 𝛼𝑠 determined from the hadronic 𝜏
decay.

5. Acceleration of the series expansion of the strong coupling 
using Euler transformation

From the discussion above it seems desirable to improve the series 
expansion of the strong coupling constant. A powerful method, well-

known in the mathematical literature (see e.g. Refs. [3,4]), which can 
3

be used to this end is the Euler transformation [5]. For a convergent 
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series, the Euler transform is again convergent and it converges to the 
same limit as the original series. The Euler transform can be used for 
the fast acceleration of convergence of infinite series and for analytic 
continuation. In particular, this can be the case for a series which is 
close to a geometric one.

The Euler transformation of a series of the form

𝑆 =
∞∑
𝑘=0

𝑥𝑘 = 1 + 𝑥1 + 𝑥2 +… (11)

is defined as

𝑆𝐸 =
∞∑
𝑘=0

𝑥𝐸
𝑘

with

𝑥𝐸
𝑘
= 1

2𝑘+1

((
𝑘

0

)
𝑥0 +

(
𝑘

1

)
𝑥1 +…+

(
𝑘

𝑘

)
𝑥𝑘

)
.

The properties of this transformation can be exemplified for a geometric 
series, a close approximation of the power expansion of 𝑎(𝑟𝜏 ). Setting 
𝑥𝑘 = 𝑥𝑘 in Eq. (11), it is straightforward to show that the Euler trans-

formation of the series

𝑆 =
∞∑
𝑘=0

𝑥𝑘 (12)

is

𝑆𝐸 = 1
2

∞∑
𝑘=0

2−𝑘 (1 + 𝑥)𝑘 . (13)

Obviously both series converge to the same value, 𝑆 = 𝑆𝐸 = 1∕(1 − 𝑥). 
However, while the original geometric series is convergent for all com-

plex 𝑥 with |𝑥| < 1, the new series converges in a circle of radius 2 
centred at −1, i.e. |1 + 𝑥| < 2. One can say in this case that the Eu-

ler transformation provides the analytic continuation of the series into 
a larger domain. However, it depends on the value of 𝑥 whether the 
original series, or the Euler transformed version, converges faster.

Thus, we apply the Euler transformation to the series obtained above 
for 𝑎(𝑟𝜏 ), see Eq. (10). The Euler-improved version of 𝑎 is again a 
power series in 𝑟𝜏 , though with coefficients which change at each order, 
namely

𝑎𝐸1 = 0.5 𝑟𝜏 ,

𝑎𝐸2 = 0.75 𝑟𝜏 − 1.30058 𝑟2
𝜏
,

𝑎𝐸3 = 0.875 𝑟𝜏 − 2.60116 𝑟2
𝜏
+ 3.47029 𝑟3

𝜏
,

𝑎𝐸4 = 0.9375 𝑟𝜏 − 3.5766 𝑟2
𝜏
+ 8.67573 𝑟3

𝜏
− 9.07754 𝑟4

𝜏
,

𝑎𝐸5 = 0.96875 𝑟𝜏 − 4.22689 𝑟2
𝜏
+ 13.8812 𝑟3

𝜏
− 27.2326 𝑟4

𝜏

+ 0.03125 (1013.89 − 𝑘5) 𝑟5𝜏 ,

𝑎𝐸6 = 0.984375 𝑟𝜏 − 4.63332 𝑟2
𝜏
+ 18.219 𝑟3

𝜏
− 49.9265 𝑟4

𝜏

+ 0.109375 (1013.89 − 𝑘5) 𝑟5𝜏
− 0.015625 (5467.1 − 18.6037𝑘5 + 𝑘6) 𝑟6𝜏 , (14)

where 𝑎𝐸
𝑛

includes the coefficients of Eq. (10) up to the order 𝑛. In Fig. 3

we plot the corresponding numerical results for 𝑎𝐸
𝑛

. The result looks 
indeed much better, i.e. the variations from one to the next perturbative 
order turn out to be much smaller. For example, the difference of the 
central values of 𝑎 between the third and the fourth order is reduced 
from about 0.5% to about 0.09%, namely about a factor 6 smaller after 
performing the Euler transformation. Correspondingly, if this variation 
is used to estimate a theory uncertainty, one would find a much smaller 
value.

It is often argued that an estimate of the truncation error of the 

perturbative series of a quantity can be obtained by assuming that the 
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Fig. 3. (a) plot of 𝛼𝑠 at different orders of 𝑟𝜏 using 𝑟𝜏 = 0.2027 ±0.0028 and assuming 𝑘5 = 𝑘6 = 0. Purple points are obtained from Eq. (10), blue points are calculated 
from the Euler transformed series. (b) plot of the same results with an enlarged scale to make the size of the error bars visible. Shifted (red) points at 5th and 6th 
order are obtained for values of 𝑘 = 277 and 𝑘 = 3460.
5 6

next unknown higher-order term should be expected to be of the same 
size as the last known term in the series. We impose a similar condition 
by assuming

𝑎𝐸
𝑛
= 𝑎𝐸

𝑛−1 (15)

to determine an expected value of the unknown coefficients 𝑘𝑛. The 
truncation error could then be estimated by assigning a 100% uncer-

tainty to 𝑘𝑛. The unknown 𝑘5 enters at 5th order in 𝑎𝐸5 albeit with a very 
small coefficient. Estimating 𝑘5 from the condition that 𝑎𝐸5 (𝑘5) = 𝑎𝐸4 re-

sults in 𝑘5 = 276. Note that our prediction is very close to the value 
of 𝑘5 = 277 obtained in Ref. [21] where stability of Padé approximants 
of the Borel-transformed Adler function was studied. Using our esti-

mate for 𝑘5 one can go one step further and determine 𝑘6 from the 
condition 𝑎𝐸6 (𝑘6) = 𝑎𝐸5 with the result 𝑘6 = 3249. Also this estimate is in 
surprisingly good agreement with the value obtained in Ref. [21] where 
𝑘6 = 3460 ±690 was found. The prescription of Eq. (15) to determine the 
higher-order coefficients is corroborated by the fact that also the known 
𝑘4 can be estimated this way. We find 𝑘4 = 54.95 from 𝑎𝐸4 (𝑘4) = 𝑎𝐸3 . Our 
result differs by only about 10% from the correct value 𝑘4 = 49.086. We 
note that if 𝑘4 was predicted in this manner from the original series in 
Eq. (10), one would find 𝑘4 = −78.0. This result is completely off and 
the corresponding estimate of a truncation error would be much larger.

6. Estimate of the strong coupling

At 4th order and using only the known higher-order coefficients our 
result for the strong coupling is 𝛼𝑠 = 0.3142 ± 0.0022 determined from 
the Euler-transformed power expansion of 𝛼𝑠(𝑟𝜏 ). The error is propa-

gated from the input 𝑟𝜏 = 0.2027 ± 0.0028. The uncertainty includes in 
this case only errors from the experimental determination of 𝑅𝜏 and an 
estimate of non-perturbative contributions as described above. At the 
next order we find instead 𝛼𝑠 = 0.3149 ± 0.0023Δ𝑟𝜏

± 0.0093Δ𝑘5
where 

a truncation error is added, resulting from our estimate of 𝑘5 with a 
100% uncertainty, i.e. using 𝑘5 = 276 ± 276. Going one step further 
to the 6th order, fixing 𝑘5 = 276 and using 𝑘6 = 3249 ± 3249, we find 
𝛼𝑠 = 0.3153 ±0.0023Δ𝑟𝜏

±0.0110Δ𝑘6
. We can see that the Euler transfor-

mation leads to a determination of 𝛼𝑠 with small changes when going 
from the 4th to the 5th and the 6th order. However, the truncation error 
remains dominating.

7. Summary

In order to determine the strong coupling constant we have inves-
4

tigated the inverted power series of perturbative QCD for the total 
hadronic 𝜏-decay rate to express 𝛼𝑠 in terms of 𝑟𝜏 . In principle, us-

ing 𝛼𝑠(𝑟𝜏 ) to rewrite other observables (as e.g. the cross section for 
𝑒+𝑒− → hadrons) as a function of 𝑟𝜏 one can hope to perform more 
direct comparisons of a variety of QCD predictions [22]. However, the 
power expansion of 𝛼𝑠(𝑟𝜏 ) is badly behaved and cannot be used directly 
for this purpose. Therefore we studied the application of the Euler trans-

formation to accelerate the convergence of this series. We have also 
determined estimates of the unknown 5th and 6th order coefficients 𝑘5
and 𝑘6 of the Adler function and used them to calculate estimates of the 
strong coupling. We found that the determination of 𝛼𝑠 from the Euler 
transformed series is stable with small variations when going from one 
to the next higher order. The theoretical uncertainty from the estimated 
range of the unknown coefficients, however, remains large compared 
with the experimental uncertainty of the 𝜏-decay rate.
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