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Abstract 

Upper-limb amputation brings about its challenges, including loss of identity as well 

as independence. Several prosthetic hands have been developed to aid amputees with 

regaining normal function following their traumatic experience, however, acceptance 

of such foreign body extensions is challenging. This is especially true when the chosen 

artificial limb poses a number of operational limitations whilst feeling unnatural. This 

results in a reduction of the overall experience whilst posing the risk of device 

rejection. 

In order to satisfy the end user with an innovative intent interpretation system to be 

used with an anthropomorphic prosthetic hand, the ultimate objective of this research 

project was to carry out a systematic exercise to seek a practical solution for the 

framework which best addresses a trade-off problem between simplicity, dexterity and 

usability. This problem was mainly addressed by investigating surface 

electromyography signal acquisition methods in relation to isometric and anisometric 

contractions which led to the choice of using transient signals for motion identification 

and steady-state signals for force estimation.  

The intent interpretation framework was also developed with the ability of reliably 

detecting movement phases from no movement phases, only triggering a classifier to 

make a motion prediction with true movement detection. A classifier was designed to 

distinguish between four specifically chosen motions from a rest or neutral state, 

providing the amputee with the capability of performing a large percentage of activities 

of daily living. Most importantly, the system was set to recognise human instructions 

in the most simple and intuitive manner to humans. 

The intent interpretation framework was designed to be user-specific and five normal 

limbed subjects and two transradial amputees performed offline, episodic experiments 

which resulted in successful statistical results on the movement detection and 

identification performance of the system. Successful inter-session performance, as 

well as force estimation performance results were also obtained through further 

episodic, continuous and force estimation tests performed by a smaller subject pool. 

A successful maximised trade-off between the three important attributes was achieved 

through this framework, which is capable of exploiting the natural human sense of 

intuition, whilst still providing the end-user with the capability of performing a vast 

majority of daily tasks in a reliable and practical way. 
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1. Introduction 

Upper limb loss is perceived as a devastating occurrence, totally changing a person’s 

lifestyle whilst affecting the individual’s social and private life [1]. This impairment 

adversely affects an amputee’s quality of life, reducing the overall interaction 

capability and decline in performance of activities of daily living success rates. 

Approximately 4,000 persons a year suffer from an upper-limb amputation in Italy, 

whilst 20% of all amputations in the USA are of the upper-limb type [2]. 

Due to these numbers, the interest in prosthetics is outstanding, with the field having 

gained various interested researchers to work on ongoing research projects. In fact, a 

remarkable number of papers regarding upper-limb prosthetics research have been 

published in the last twenty years, with figures showing that approximately 4,000 

publications in relation to this field were available until 2010, 70% of which having 

been published between 2001 and 2010 [3]. With further innovative technologies, 

materials, methods and ideas, the publication numbers continue to increase. However, 

due to the complexity that comes along with the development of a prosthetic hand, the 

studies that are carried out are widely spread, aimed at targeting different problems. 

This thus leads to difficulty for most researchers to stay up to date with all developed 

prosthetic systems and their different capabilities. This has led to market and research 

achievements to remain disconnected [4]. Furthermore, even though the technical and 

clinical advancements made from the initiation of upper-limb prosthetics have been 

game changing, several limitations are still present within the prosthetics industry. 

These limitations include, and are not limited to, noisy prosthetics due to the number 

and operation of actuators, lack of sensory feedback provided to the amputee and the 

lack of intuition and reliability in the prosthetic control aspect [2]. 

A problem that has been identified at the University of Malta (UM) in the recent years 

[5] [6] is the difficulty of achieving a balance between three very important attributes 

related to prosthetics, namely, simplicity, dexterity and usability. While it is understood 

that the optimisation of the trade-off between these three attributes is difficult to obtain 

due to their conflicting natures when it comes to design, a sensible balance is essential 

for a device to be successfully effective and accepted by the amputee community. 

However, this problem has to date been mostly identified from a mechanical design 

point of view. Nevertheless, this study aims to find a solution to satisfy this three-

attribute trade-off solely from a prosthetic action intent point of view for its eventual 

integration with the mechanical device currently being developed concurrently at UM. 
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Both this study and the mechanical device are being carried out as part of the project 

entitled The Development of the Mechanical and Control Framework for a Minimal 

Anthropomorphic Prosthetic Hand (MAProHand [7]) at UM and with the 

collaboration of the company Orthopaedic Centre Malta. The MAProHand project is 

financed by the Malta Council for Science & Technology through FUSION: The R&I 

Technology Development Programme 2018 1. 

Therefore, the primary research objective of this research project was identified to be 

a systematic exercise to seek a practical solution for the control system of a minimal 

anthropomorphic artificial hand which best addresses the common trade-off problem 

between simplicity, dexterity and usability. In this work, a control system or 

framework refers to the analysis of input signals for the recognition of prosthesis action 

intent, which has also been termed as an intent interpretation system. Thus, in this 

context, a control system does not refer to a system having a mathematical relationship 

between its input and output with feedback logic.  

To reach this trade-off objective, the aim was to satisfy a balance between these three 

attributes which have been defined as follows: 

• A simple system mainly focusing on a simple command system which is 

intuitive to use (as is our normal hand) and does not require the amputee to re-

learn the fundamentals of limb operation. This aims to reduce the learning 

curves that come with most prosthetic hands whilst promoting a more natural 

sense of control;  

• A dexterous system having appropriate hand capability with a sufficient degree 

of freedom allowance for the user to be capable of performing a vast majority 

of the most common activities of daily living. This mostly relates to the kind 

of gestures and grasps that are made available to the user;  

• A usable system with a reliable and practical intent interpretation system which 

has a large resemblance to normal human hand functionality. This relates to 

how reliably the user can utilise the prosthesis and how intelligent the system 

is with extracting different user intentions. 

These definitions go hand-in-hand with the claim that the ultimate goal in upper-limb 

prostheses research and development is to have a system which functions as closely as 

possible to an actual human hand, with all its capabilities, giving back the amputee the 

                                                 
1 Contract Number R&I-2017-028T. 
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experience of functionality which they had prior to limb loss [8] [9]. 

The umbrella term of intuition has been chosen to be the most important aspect when 

it comes to this above-mentioned research objective, since this will be the most 

important element for the design and development of the action intent recognition of 

the prosthesis. This is so since the lack of intuition provided within the currently 

available devices is seen as an overall limitation; affecting the general user experience 

and requiring extensive re-learning training [2]. This choice is also believed to allow 

us to successfully balance the three above-mentioned attributes. In fact, an intent 

interpretation interface via surface electromyography (sEMG) has been chosen to 

facilitate the exploitation of the human sense of intuition, to our own advantage. The 

sEMG phenomenon is the extraction of myoelectric signals formed by physiological 

changes in muscle fiber membrane states in response to instructions sent to motor units 

by the Central Nervous System (CNS). This information is gathered non-invasively 

through surface electrodes which may then be manipulated to aid with the 

determination of naturally intended hand movements [10] [11]. 

The broad primary research objective was therefore split into smaller milestones to be 

tackled throughout the course of this dissertation and may be identified as follows: 

• Identification of various prosthetic control systems which have been 

researched and implemented through a thorough literature review to identify 

which measures shall contribute to the three-attribute trade-off satisfaction; 

• Familiarisation with the relationships that exist between sEMG signals and 

different muscle contractions for intuitive action intent system development; 

• Development of an intent interpretation system based on the sEMG signals 

recorded during the performance of different motions, as well as force exertion 

in different grasps for eventual user-intended prosthetic hand control; 

• Testing of the system by normal-limbed subjects as well as amputees to 

determine its performance in ideal, laboratory conditions. 

The next chapters of this dissertation explore these different objectives accordingly. 

Firstly, Chapters 2 and 3 are literature review chapters which identify the different 

prosthetic systems that have been investigated, leading to specific decisions 

contributing to our system design. Chapter 4 explores the relationships that may be 

obtained between sEMG signal features and changes in velocities and forces. This 

chapter gives an insight into what kind of sEMG signals may be used to extract specific 
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information, which were then used in the intent interpretation system design as 

explained in Chapter 5. Chapter 6 discusses the testing methodologies and the data 

processing methodologies used. Chapter 7 then presents all the results obtained which 

are also analysed and discussed. Finally, the dissertation is concluded with Chapter 8. 
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2. Hand Prostheses Control Review 

It is known that the majority of upper-limb loss cases are due to trauma following work 

and road related accidents, as well as war injuries. However, illnesses and other 

medical conditions such as cancer, tumours, diabetes and vascular complications are 

also cause for amputation [12]. The amputee demographic also includes those with 

congenital limb deficiencies who are born with deformed or missing limbs, at times 

still requiring surgery or amputation [13]. 

There are various anatomic levels at which the hand may be amputated, including 

transhumeral amputation, transradial amputation, partial-hand amputation and 

shoulder, elbow and wrist disarticulations [14]. Four of these levels are shown in 

Figure 2.1. While it is generally said that the longer the remaining limb is, the better it 

is for the patient to be fitted with a prosthesis due to more joints remaining intact [15], 

the most common amputation levels are transradial, at 65% [14]. Transradial 

amputations take place between the wrist and elbow and due to these high figures, this 

work will solely focus on prosthetic hands for transradial amputees. 

Beasley [16] describes how an amputee goes through three stages following his 

amputation, which are similar to grieving stages; such that the first stage is disbelief, 

followed by realisation and finally, adaptation. The most important stage from these 

three is the realisation stage since this is the point at which the amputee is faced with 

the opportunity to start with the process of mentally accepting this loss and to start 

adapting accordingly. Therefore, it is crucial that during this stage, the amputee is 

offered an optional aid, such as a prosthetic limb, to help with this transition. Failure 

of mental acceptance at this stage may lead to rehabilitation failures, which is why it 

is important that the prosthetic hands offered to the patient are appealing and provide 

the user with satisfactory results.  

    
(a) (b) (c) (d) 

Figure 2.1 - (a) Shoulder Disarticulation, (b) Transhumeral Amputation, (c) Elbow Disarticulation 

and (d) Transradial Amputation Levels [17]. 
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The prosthetic devices field is a multidisciplinary one, consisting of many subdivisions 

which ultimately need to merge together. Knowledge with regard to human physiology 

and anatomy is required in order to be able to design a functional system using several 

software, electrical and electronic designs and mechanical designs, amongst others 

[18]. Since the human hand is a very powerful tool to any human being whilst also 

being a sophisticated means for physical and social interaction, there are a lot of 

aspects that one needs to figure out with regard to its anatomy and functionality. The 

hand allows us to accomplish many movements, ranging from very powerful to utterly 

precise tasks which are only possible due to the available Degrees of Freedom (DoFs) 

which amount to more than 20, and thumb opposition dynamics [1]. Having said that, 

even though the technical and clinical advancements made from the initiation of upper-

limb prosthetics have been game changing, several limitations are still present within 

the prosthetics industry. From an intent interpretation point of view, these limitations 

are mostly due to the lack of intuitivism as well as low reliability of the overall system 

[2]. This leads us to perform a review of the different prosthetic systems that exist on 

the market in order to determine which kind of control system would be best to 

implement to obtain a system which maximally balances the simplicity, dexterity and 

usability attributes mentioned in Chapter 1. 

2.1. Upper-Limb Prosthetic Systems 

There are various types of upper-limb prostheses which are commercially available or 

have been developed for research purposes. A brief hierarchy of the most important 

prosthetic classes is as shown in Figure 2.2. The most basic distinction between some 

of the available prostheses is whether they are simply used as passive accessories or 

active tools and the following sub-sections delve into the differences of the listed 

prostheses types. 

2.1.1. Passive Prostheses 

There are two types of passive prostheses, cosmetic and functional. Cosmetic 

prostheses, as shown in Figure 2.3, offer no functionality and are simply seen as an 

aesthetic substitution to the lost limb. This substitution also provides aesthetic and 

psychological support to the amputee who opts to wear it. Meanwhile, functional 

prosthetic devices have very specific purposes, developed with the aim of facilitating 

some kind of activity, usually sport or work related [1] [4], as shown in Figure 2.4. 
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Figure 2.2 - Upper-Limb Prostheses Classifications [2]. 

 

Figure 2.3 - Lifelike Cosmetic Prostheses [19]. 

 

Figure 2.4 - A Functional Prosthesis used for Sports [20]. 

2.1.2.  Active Prostheses 

For body-powered prostheses, energy is harnessed from other body muscles in order 

to operate a cable through a link, as shown in Figure 2.5. While such upper-limb 

prosthetics are known to be difficult for some to operate due to the required body 

power whilst also lacking in cosmetic appeal, such systems are essentially lower in 

cost than other prostheses whilst proving to be less expensive to repair [1].  

Upper-Limb 
Prostheses

Passive

Cosmetic Functional

Active

Body-
Powered

Externally 
Powered

Myoelectric Electric
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Figure 2.5 - Body Powered Prostheses [21]. 

Meanwhile, externally powered prostheses use external power sources such as 

batteries rather than using energy generated by their body. According to Geethanjali 

[18], externally powered prostheses are more desirable by amputees than body-

powered prostheses due to their cosmetic appearance. These externally powered 

prostheses are then usually classified into electric and myoelectric prostheses [1] [18].  

While body-powered hands are known to require strenuous shoulder efforts in order 

to operate the prosthetic devices, one can still argue that such systems give a better 

feel to the user with regard to the position as well as exerted forces [22]. Meanwhile, 

myoelectric hands do not give the user such an advantage, unless having an in-built 

sensory system which feeds back some sensory information back to the amputee.  

2.1.2.1.  Electric Prostheses 

Electric prostheses are operated electrically, using, for example, batteries, and are 

known to be heavy and expensive to buy and repair. Such electric devices may be 

pressure signal, strain gauge and switch signal operated, amongst others [18]. 

According to Cordella et al. [1], such electric protheses are most suitable for persons 

who suffer from phocomelia and are born with short and malformed limbs, since it 

gives them the ability to control the device through external buttons.  

2.1.2.2.  Myoelectric Prostheses 

Myoelectric prostheses work on the idea of reading and utilising EMG signals which 

are generated in skeletal muscles, reflecting the user’s intention, through surface 

electrodes. For prosthetic hand control, these signals need to be recorded from any 

viable residual muscle/s following amputation, in accordance to the intent 

interpretation system chosen. The introduction of reading the user’s intent gives these 

kinds of prostheses an edge over all others in terms of the ability of ‘natural control’. 
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One is to note that the information that is conveyed by myoelectric signals obtained 

from surface electrodes may only be a subset of the total information delivered to the 

muscles by the motor neurons. Therefore, the measured signals at the skin’s surface 

provide us with less spatial and temporal information that is actually provided to the 

neuromuscular system and thus, the action intent signals sent through the central 

nervous system are impossible to fully extract through myoelectric signals. This is 

especially true when utilising surface electrodes.  

Whilst sEMG electrodes have been chosen as the method to be used for data collection 

for this work, one is to note that other myoelectric control sensor alternatives or 

combinations have also been used in the literature. Such sensor modalities include 

accelerometers, ultrasound, touchpads, force and slip sensors, finger position encoders 

and grip chips, amongst others [2] [3] [4]. Targeted Muscle Reinnervation (TMR) is 

another way of obtaining signals to control the prosthesis through the restoration of 

function of the arm nerves by rewiring them to different, more accessible, muscle sets. 

This technique, however, requires surgical interventions [4] [18] [23]. Other multi-

modal sensing techniques such as Tactile Myography (TMG) have also been explored 

[24] [25]. 

Atzori and Müller [4] and Dwivedi et al. [26] both agree that sEMG is the most 

commonly used interface in both research and commercial products since it facilitates 

movement execution. This is in relation to other intent interpretation interfaces such 

as brain or nerves which are known to be invasive. Therefore, since these claims are 

backed by numerous papers that have utilised this method whilst also providing us 

with the capability of providing some kind of intuitive command control to the user, 

the myoelectric system route was chosen as a way forward for this project. This leads 

us to the next sections which underline the different myoelectric control systems that 

have been implemented.  

2.2. Myoelectric Prostheses Control Systems 

For the design of a myoelectric prosthetic system, developers usually follow a model 

which may be split into three stages, as shown in Figure 2.6. This includes a pre-

processing stage, an intent interpretation stage and an output stage, starting from signal 

capture instances to signal outputs to the actuators [3].  
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Figure 2.6 - Prostheses Control Model as explained by Fougner et al. [3]. 

The pre-processing stage of the model includes the acquisition of the signal from 

sEMG electrodes which provide qualitative and quantitative information to be able to 

process an output. This step includes all signal filtering and amplification methods 

which may be required to produce reliable signals for further computation of required 

features and parameters. Therefore, in this stage, the important information is extracted 

from the subject’s muscles which is in turn processed as a quantitative value to be used 

for the eventual outputs.      

The intent interpretation part of the model includes the analysis of the signal features 

obtained from the previous section of the model, according to the type of outputs used 

and EMG sites provided. These features are then decoded and mapped to a specific 

output, with the final step of this decoding usually being voltage levels for the targeted 

motors. This is seen as the most important part within this model since the information 

gathered is interpreted as the high-level control, as eventually experienced by the 

subject. 

The final stage of this model is the output stage which translates the different motor 

functions, such as the various different grips, into setpoints that the actuators are to 

follow. The motors are then controlled according to the defined setpoints and sensed 

feedback. In the case where there is feedback included in the system, the outputs of 

the motors are corrected according to information recorded from the sensors. 

Therefore, this stage implements the decisions made in the preceding stage [3]. 

Pre-
Processing 

• Input  Signal  Capture 
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• Action  Intent  Decoding 
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2.2.1. Control Schemes 

There are numerous control schemes which have been investigated and implemented 

for myoelectric prostheses. In this context, a control scheme refers to a paradigm by 

which the user actuates the prosthesis. The most popular and widely used schemes are 

the ‘On-Off Control’, ‘Agonist/Antagonist Control’, ‘Proportional Control’, ‘Finite 

State Machine Control’ and ‘Machine Learning and Pattern Recognition Techniques’. 

In the sections below, the differences between these control schemes will be 

underlined within the scope of myoelectric prosthetics.  

2.2.1.1.  On-Off Control 

On-Off control, also known as ‘bang-bang control’, ‘binary control’ and ‘crisp control’ 

is one type of simple prosthesis control. The functional ability of the prosthesis is 

turned either on or off as soon as the amplitude of the EMG signal, usually calculated 

using the Mean Absolute Value (MAV) or Root Mean Square (RMS), exceeds the set 

thresholds. In principle, this method provides the user with very limited functions 

which can either be activated or deactivated without any other user control and usually 

requires an electrode site for every single available grasping function. Even though 

highly unnatural, due to its simplicity, such controlled prostheses still occupy a good 

share of the market  [2] [3] [18].  

2.2.1.2.  Agonist/Antagonist Control 

This control method is simple and robust and is implemented on the basis of analysing 

electrode signals on agonist and antagonist muscle pairs. Upon contraction of one of 

the muscles in the pair, the hand opens while upon contraction of the other muscle, the 

hand closes. Meanwhile, co-contraction allows for switching between the different 

available grasping functions whilst all mechanical movements are done at a singular 

speed [2] [27]. A slight deviation from this control system is the two-channel 

amplitude-coded control system [8] [23] [28]. This system requires two control 

muscles (a flexor and a corresponding extensor) for each prosthetic degree of freedom. 

An example is provided in Figure 2.7 which illustrates how, if a muscle is active above 

a pre-set cut off threshold, its associated limb function is selected. Therefore, in this 

case, if S1 exceeds the set threshold, the prosthetic hand opens while if S2 exceeds the 

threshold, the hand closes. With co-contraction, the control system takes no action. 



12 

 

 
Figure 2.7 - Two-channel amplitude-coded myoelectric control where S1 and S2 are switching 

thresholds for flexor and extensor activity. Adapted from [8]. 

2.2.1.3.  Proportional Control 

An important disclaimer is that this proportional control scheme does not relate in any 

way to the feedback controllers which generate a control signal proportional to the 

error signal within a closed loop, which are known as proportional controllers [3].  

Battye et al. [29] were the pioneers who put forward the proposal to utilise recorded 

EMG signals for proportional control systems into action in 1955 [3] [22]. Fougner et 

al. [3] define the term proportional control for this application as follows: 

“Proportional control is exhibited by a prosthesis system if and only if the user can 

control at least one mechanical output quantity of the prosthesis (e.g., force, velocity, 

position, or any function thereof) within a finite, useful, and essentially continuous 

interval by varying his/her control input within a corresponding continuous interval.” 

Therefore, the relationship in proportional control prostheses between the controller 

output and their input is continuous, with the control system reacting accordingly. This 

definition also comprises the fact that the end user should be able to vary the output 

signal at a continuous rate with acceptable efforts from their end. Varied EMG 

amplitudes obtained during either flexion or extension could thus be mapped to pre-

set voltages according to the contraction intensities. Therefore, the speed and the force 

of the prosthetic device can be made to vary in proportion to the amplitude of the EMG 

signal [8] [30]. 

Since Battye et al.’s first system in 1955, there were various advancements in the 

myoelectric control field which ultimately led researchers to utilise several EMG 

features in relation to muscle force for information extraction. These EMG features 

are now more commonly known as Time-Domain (TD) feature sets, Frequency-
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Domain (FD) feature sets and Time-Frequency (TF) domain sets [3].  

2.2.1.4.  Finite State Machine Control 

A finite state machine system is designed to cater for different possible states and the 

transitions are pre-defined and fixed for a set number of grasps. Such control systems 

can also be designed to take multiple inputs from different sensors, such as force 

sensors, into consideration before taking the next decision and reaching the next state. 

Another type of state machine system includes one which has a mechanical system 

incorporated within the prosthesis to be able to switch from one state to the next, 

manually. A slight deviation to this includes systems which record co-contractions of 

antagonistic muscles and change state accordingly [3] [31].  

2.2.1.5.  Machine Learning and Pattern Recognition Techniques 

With advancements in machine learning, researchers have since preferred to shift their 

focus to machine learning solutions and pattern recognition techniques. With machine 

learning techniques, two widely used approaches are the classification and regression 

methods where the former reaches a decision with regard to what the user’s intended 

task is, while the latter results in continuous human motion estimation. Since 

continuous motion is difficult to decode, most pattern recognition techniques lead with 

regard to discrete control of the prosthesis [26]. 

For different human contractions, it has been noted that repeatable signal patterns 

usually contain control information within their intrinsic features, allowing the 

formation of a pattern feature vector [32]. Therefore, pattern recognition control 

includes feature extraction of the raw myoelectric signals obtained in the TD, FD 

and/or TF domains. TD features usually contain the signal amplitude information, the 

FD features provide the signal power spectral density while the TF features provide a 

combination of both. The feature set is to be chosen in a way that best separates the 

desirable output classes such that as soon as the signals are processed and the necessary 

features are extracted, these features could then be classified accordingly. Therefore, 

information is essentially identified from the extracted features, outputting class labels 

which represent the desired prosthetic movements [8] [9] [18] [26] [32]. 

In such intent interpretation systems, multiple electrodes are used to detect several 

myoelectric signals for information extraction at several muscle sites. This leads to the 
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processing and acquisition of the above-mentioned feature set which serves to 

discriminate between different movement classes. The chosen classifier would then 

need to exploit this information to determine the intended prosthesis action [8]. 

Therefore, the total number of functions that may be included within a prosthesis will 

only be limited by the number of distinct patterns that may be generated by the subject, 

sometimes also depending on the total number of electrodes used [32]. 

However, due to the very complicated nature of forearm muscles and their synergistic 

movements, the displacement of the muscles during contractions, cross talk due to 

multiple muscle layers detected at a single surface point and arm posture 

modifications, performance of such pattern recognition techniques is affected [2].  

2.2.2. Myoelectric Prostheses on the Market 

With a variety of myoelectric prosthetic hands on the market, it is essential to take note 

of what kinds of control systems are being used to drive these mechanical hands. A 

comparison between four different myoelectric prosthetic hands provided in          

Figure 2.8 was carried out by Atzori and Müller [4] to compare and contrast the 

different functionalities of the different systems. A comparison table as drawn-up by 

the authors is provided in Table 2.1, focusing on the control capabilities of the different 

hands. One is to note that since this publication, the Bebionic hand has been acquired 

by Ottobock. 

From this table, it can be noted how a large number of grip patterns are available for 

the user with a very limited number of EMG electrodes to provide the action intent 

commands with. It has also been observed that different control schemes may be used 

within the same prosthetic device for different functionalities. With the use of 

sequential schemes, signal triggers, as well as the use of mobile phone applications, it 

is specifically clear that the movement commands that these prosthetic hands require 

are completely unintuitive, requiring multiple activation of different sEMG electrodes 

for co-contraction as well as double and triple signal impulses, amongst others. 

Therefore, these prostheses’ control systems require unnatural intent instructions, 

unlike the use of intuitive pattern recognition techniques.  
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(a) (b) (c) (d) 

Figure 2.8 - (a) Touch Bionics’ i-limb Quantum [33], (b) Ottobock’s Michelangelo with Axon Bus 

Technology [34], (c) Steeper’s Bebionic v3 [35] and (d) Vincent GmbH’s Evolution 2 [36]. 

 

Table 2.1 - A table showing the most important control features for the four considered prosthetic 

hands, adapted from [4]; Touch Bionics’ i-limb Quantum [33], Ottobock’s Michelangelo with Axon 

Bus Technology [34], Steeper’s Bebionic v3 [35] and Vincent GmbH’s Evolution 2 [36]. 

Company Name Touch Bionics Ottobock Steeper Vincent GmbH 

Prosthesis Model i-limb Quantum 

Michelangelo with 

Axon Bus 

Technology 

Bebionic v3 Evolution 2 

Grip Patterns 7 7 11 20 

Proportional 

Control 
Yes Yes Yes Yes 

Number of 

Electrodes 
1-2 1-2-3 1-2 1-2 wired 

Movement 

Control Type 

Movement 

Triggers, Mobile 

App, Bluetooth 

Grip Chips, 

Favourite 

Environment, 

Gesture Control 

Sequential, 4-

Channel Control 

Sequential, Morph 

RFID GRIP 

Selection 

Compatible 

Single Trigger or 

Vincent Morse 

Code 

Movement 

Command 

Hold Open, Double 

Impulse, Triple 

Impulse, Co-

Contraction 

Different 

Switching Modes 

Available 

Co-Contraction / 

Open-Open Signal 

Hold Signal, 

Double Signal, Co-

Contraction, 

Alternating Signal 

 

Furthermore, while ‘sophisticated’ systems such as those controlled through mobile 

phone applications and Bluetooth grip chips are attractive to researchers, the actual 
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usability of such systems are questionable when one requires to use such a system in 

the real-world whilst performing day-to-day activities. 

Regardless of the fact that a lot of research has been recently focused on pattern 

recognition techniques, it is well known that the widely available myoelectric 

prosthetic hands still use simple, unintuitive intent interpretation systems, with the 

general idea being that pattern recognition techniques provide unreliable performance 

in real-life environments. Whilst it has been proven time and time again from different 

scientific studies [37] [38] [39] [40] [41] that pattern recognition control is capable of 

obtaining very high accuracies, even greater than 95%, it is also known that such 

systems still lack representation on the market. 

However, a few prosthetic pattern recognition systems have been introduced into the 

market in the recent years. The first pattern recognition system which was 

commercially released was the Coapt system, in 2014 [1] [4], followed by Ottobock’s 

Myo Plus system which can only be used with compatible Ottobock prosthetic models 

[42]. The release of such systems confirms that real-life use of prosthetics controlled 

by sEMG pattern recognition, is in fact possible and successful. This provides a new 

market to upper extremity amputees who are capable of performing distinguishable 

and most importantly, intuitive hand movements for less mind-burdening prosthetic 

control. 

2.2.3. Controlled Actuator States 

A movement intent does not solely depend on the final position or posture but may 

also include velocity at which the movement is performed, and force required to be 

exerted. A case in point is during a grasp motion where the movement can be divided 

into two parts, namely the reaching and the grasping. A feature which predominantly 

varies during the reach phase is the speed at which the hand closes, until contact is 

made with the object. Following this, grasping follows where speed is no longer 

quantified and force increases or decreases, according to the object being grasped and 

its characteristics. As shown in Figure 2.9, there is a loop that one goes through with 

regard to position, speed and force when opting to grasp something, such as, in this 

case, an apple [3]. This is very important since these experienced states make the 

movements feel natural. The higher the resemblance of the system to the actual human 

hand’s behaviour, the higher the usability of the prosthetic device. 
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Figure 2.9 - The interconnection between hand position, speed and exerted force [3]. 

2.2.4. Myoelectric User Training 

For successful prosthetic use, regardless of the myoelectric control scheme used to 

instruct the intent of the mechanical hand, user training is critical. User training 

involves the training of any patient who is to start utilising a prosthetic hand. It is 

important that an amputee fully understands how to wear and essentially correctly 

operate the prosthetic hand, with the ultimate focus on improving the patient’s 

performance to the best possible, in the least amount of time. Such training is known 

to potentially aid an amputee’s confidence, comfort and competence whilst using their 

new ‘addition to the body’. Myoelectric user training is typically composed of three 

stages; namely signal, control and functional training [9]. 

In signal training, the raw signals obtained from the patients in real time are on display 

in order for them to learn activation and relaxation movement requirements as well as 

isolation of the different muscles for co-contraction avoidance. The second step, 

control training, is more advanced, using systems such as simulators and video games 

in order to gauge whether the patient can exert the required signals for an eventual 

prosthetic fitting and also to teach the patients on how to generate the correct signals 

for the best prosthetic utility. The final step, functional training, is carried out with the 

actual fitted prosthetic device, to learn how to perform movements utilised during 

activities of daily living. Such movements usually start off with the most basic, leading 

to the most advanced. This step is very important since the ability to repetitively 

perform muscular commands in the same manner is crucial for a reliable performance, 
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in turn resulting in better prosthetic usability. However, our aim for this project is to 

also have a system which is so intuitively easy for the amputee to use, that both the 

intensive and training time aspects that are usually experienced during training, are 

reduced. 

2.2.5. Myoelectric Control Schemes Choice for this Project 

In order to be successful in developing a system which is simple while still highly 

usable, controlled actuator states as mentioned in Section 2.2.3 are important to be 

given attention. Therefore, from the control schemes listed in Section 2.2.1, pattern 

recognition techniques, as well as proportional control techniques were chosen to be 

the best collaborative choice for our intent interpretation system. Through pattern 

recognition techniques, the hand’s motion decisions would be based on the user’s 

intuitive motions and thus, the user would be in charge of controlling the hand’s joint 

movements towards a specific direction, as required. By using such an intent 

interpretation system, the user will be provided with an intuitive hand control solution, 

with no requirement of large amounts of re-learning and re-mapping of the brain’s 

usual intent.  

In the meantime, by using proportional control, the speed and force intentions of the 

user when approaching an object and grasping it could also be quantitatively extracted 

from the sEMG signals. These values, or levels, could then be utilised by the developed 

intent interpretation system to proportionally instruct the actuators to increase or 

decrease speed or force, accordingly. Since this part of the system gives the user further 

control on the prosthetic hand’s operation, the resemblance to normal hand 

functionality is increased, which should result in a more usable system.  

This work gives the highest importance to motion identification since it is the first step 

towards having a reliable prosthetic action intent system. Thus, a more detailed 

literature review on this scheme is provided in the next chapter, paving the way 

towards the intent interpretation framework implementation. 
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3. Myoelectric Pattern Recognition Review 

As has been mentioned in Section 2.2.1.5, with myoelectric pattern recognition 

schemes, different EMG channels are used to extract intent information. The 

information extracted from the different channels is then combined to recognise the 

intended hand movement. The signal patterns obtained for separate gestures are all 

unique. Therefore, by using this technique, the intuition of normal hand motion may 

be retained [43]. In addition, such pattern recognition systems can also exploit any 

consistent cross-talk and muscle coactivation related to specific hand movements, also 

improving the recognition of the intended movement [44]. 

The main steps which are typically followed for pattern recognition based prosthetic 

classifiers as demonstrated in Figure 3.1, are as follows [45]: 

1. Raw EMG data collection from all the EMG channels in specified time 

windows; 

2. Signal processing and feature extraction; 

3. Features input into the classifier; 

4. Selection of output class; 

5. Post processing performed on output classes to improve robustness; 

6. Actuation of DOFs dictated by the final output decision. Signals are passed to 

controllers driving the prosthesis mechanical motion. 

Different methodologies chosen for the above steps affect the final outcome. Due to 

the large number of study-dependent variables, comparisons between different studies 

is not straight-forward, though the movement classification accuracy is usually a 

comparable outcome. The variables known to hinder comparisons between studies 

include the electrode types, sizes and placements, the amplification hardware, filtering 

strategies, data analysis parameters, experimental protocols, type of classifier 

developed and training data set compositions, amongst others [45] [46].  

Raw EMG Data 
Collection in 

Windows 

Signal 
Processing 
& Feature 
Extraction 

Features 
Input into 

the 
Classifier 

Output 
Class 

Selection 

Post 
Processing 

Actuation 
Decision 

to 
Prosthesis 
Controller 

Figure 3.1 - Pattern Recognition Classifier Prosthetics Flow. 
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3.1. Data Collection and Pre-Processing 

There are various variables which concern data collection and pre-processing, namely 

electrode types, electrode sizes, method of electrode placements, number of electrodes, 

parts of the total captured signal which will be utilised, type and size of processing 

windows and data reduction techniques. The most important parameters shall thus be 

discussed in the following sections. 

3.1.1.  sEMG Electrode Configurations 

The muscles in the forearm, whether superficial or deep, have different 

responsibilities, mostly differing from wrist to finger movements. Some muscles are 

responsible for multiple actions, resulting in co-activation of multiple muscles, 

however, those muscles which are not situated towards the surface are more difficult 

to obtain clear signals from. The anatomy of the forearm muscles and their 

responsibilities are clearly shown in Figure 3.2 and Table 3.1. Therefore, if one wants 

to specifically monitor a particular muscle, this must be correctly located, accordingly. 

Otherwise, symmetric electrode positioning may be implemented, such that no specific 

muscles are located, aiming towards targeting a larger area of muscle activity. 

 

 

Figure 3.2 - A forearm cross section clearly showing all the muscles in the different compartments 

[47]. The Posterior compartment of the forearm is responsible for wrist and finger extension while the 

Anterior compartment of the forearm is responsible for wrist and finger flexion. 

 

 

 

 



21 

 

Table 3.1 - All the muscles acting on the wrist and fingers highlighting their actions and whether they 

are located on the anterior or posterior compartment of the forearm. The shaded muscles are 

superficial muscles while the others are deep muscles. ‘Pr’ refers to the muscle as being the prime 

mover of the action. Recreated from [48]. 

 
Acting 

Muscles 

Actions at the Wrist 
Actions on the 

Fingers 

 Flexion Extension Abduction Adduction Flexion Extension 

A
n

te
r
io

r 
C

o
m

p
a

rt
m

en
t 

Flexor Carpi 

Radialis 
✓ (Pr) 

 
✓   

 

Palmaris 

Longus 

✓ 

(Weak) 

 

   

 

Flexor Carpi 

Ulnaris 
✓ (Pr) 

 
 ✓  

 

Flexor 

Digitorum 

Superficialis 

✓ (Pr) 
 

  ✓ 

 

Flexor Pollicis 

Longus 

    
✓ 

(Thumb) 

 

Flexor 

Digitorum 

Profundus 

✓ 

   

✓ 

 

P
o

st
er

io
r 

C
o

m
p

a
rt

m
en

t 

Extensor 

Carpi Radialis 

Longus and 

Brevis 

 

✓ ✓  

  

Extensor 

Digitorum 

 

✓   

 
✓ (Pr & 

Abducts) 

Extensor 

Carpi Ulnaris 

 
✓  ✓ 

  

Abductor 

Pollicis 

Longus 

 

 ✓  (Abducts Thumb) 

Extensor 

Pollicis 

Longus and 

Brevis 

     

✓ 

(Thumb) 

Extensor 

Indicis 

 

✓ (Weak)  

  
✓ (Index 

Finger) 
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It is very evident in the literature that different researchers opt for different methods 

of electrode placements, also varying the number of electrodes used. Whilst clinical 

setting practicality favours untargeted electrode placement due to simpler 

implementation [45] [46], it has also been shown that classification accuracy 

sensitivity to electrode shifts is higher when using selective placement rather than 

symmetrical [46] [49]. Targeted electrode placement requires the researcher to locate 

the required muscle bellies which is known to be challenging, since anatomical 

landmarks may differ for different people. This is a problem when experimental 

repeatability is required and consistency in electrode placements is crucial [50]. 

Furthermore, studies have also shown that by targeting specific muscles for pattern 

recognition control, no significant improvements are deduced in classification outputs 

when compared to symmetrically placed electrodes [45] [51].  

A non-targeted approach is also ideal for signal detection on amputated limbs, since 

specific target muscles from the residual limb may not always be available. The 

extremity of this issue will then depend on the muscle states following the amputation 

which may, in turn, affect the required EMG signal’s quality [52]. Due to this, it was 

concluded that untargeted surface electrodes implementation is the best method due to 

the least cost, invasiveness and complications introduced in socket fabrication.  

Therefore, it has come as no surprise that more researchers have opted for symmetrical 

electrode placements rather than targeted placements when pattern recognition 

classification of certain gestures was the aim. In fact, there are abundant studies [45] 

[46] [53] [54] [55] [56] utilising symmetrical electrode positions, which aid in 

developing algorithms which are independent on specific electrode locations. In these 

cases, varying numbers of electrodes were used, ranging from four to 12 electrodes. In 

the majority of studies, the electrode pairs are usually placed a few (2-5) centimetres 

below the elbow whilst keeping an approximate equal distance between each electrode 

pair. 

The optimal number of electrodes used for pattern recognition systems has also been 

studied by several researchers [54] [56]. From the study by Li et al. [54], it was 

deduced that the original 12 electrode channels used to detect ten different wrist and 

hand classes may be reduced to 6 to 8 channels instead. Furthermore, when the motion 

classes were reduced to six, the classification accuracy plateaued at 4-6 electrodes.  
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Meanwhile, Hargrove et al.’s study [56] displayed classification accuracies resulting 

from subsets (symmetrical or optimal) of the 16 channels placed around the forearm 

to detect ten gestures. It was observed that as the number of channels used increased, 

the classification accuracy quickly increased up to a high value followed by a smaller 

further increase in accuracy, as shown in Figure 3.3.  

Different electrode specifications have also been listed in the literature, in accordance 

to different guidelines. Since two electrodes are required to obtain a single sEMG 

signal, apart from the electrode’s material, their recording areas as well as the electrode 

distance between them is to be specified. Several studies have used recording diameter 

and interelectrode distance values as recommended by Surface Electromyography for 

the Non-Invasive Assessment of Muscles (SENIAM) [57] for bipolar electrodes, these 

being 1 cm diameter recording areas as well as a 2 cm interelectrode distance (IED) 

[45] [53] [55]. Larger IEDs have also been found to yield performance improvement 

[49], however, the possibilities of using such distances depends on the subject’s 

residual limb’s length. 

Thus, it may be concluded that untargeted symmetric electrode positioning is the most 

beneficial, in comparison to targeted electrodes whilst a maximum of eight electrodes 

are envisaged to provide the best results. Meanwhile, IED is to be specified in 

accordance to electrode equipment limitations as well as stump length. 

 

Figure 3.3 - Classification Accuracy increased with respect to the number of channels with 

symmetrical and optimal electrode channel subsets [56] © 2007 IEEE. 
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3.1.2. Signal Windowing 

Studies have shown that EMG time window lengths of at least 100 ms to at most 

300 ms provide the highest information content. Nevertheless, for prosthetic pattern 

recognition, the optimal window length is suggested to be between 150 ms and 250 ms 

and should be chosen as a trade-off between the class information that it may hold and 

the feature estimated error [32] [44] [46] [58] [59]. Nevertheless, window length and 

processing time for prosthetic application should never exceed 300 ms due to the 

user’s perceived lag and thus, adequate window sizes should be chosen in accordance 

to feature variance and contribution to the best system performance [32] [40] [44] [60]. 

Therefore, the ultimate trade-off that is to be balanced is between the system’s 

accuracy and the overall response time. 

These extraction windows may be either disjoint from each other or overlapping one 

another. With an overlapping analysis window, a dense decision stream is obtained 

and is usually the most preferred for prosthetic classification since disjoint segments 

result in an idle processor for large segment portions [40] [58] [60]. Feature extraction 

windows implemented in the literature are varied, ranging from overlapping windows 

of 200 ms in length with overlap periods of 50 ms [41] [46] [61] to 256 ms windows 

with 32 ms overlaps [56], to 150 ms windows with 50 ms overlaps [54] [55]. 

3.2. Pattern Recognition Classifiers and Feature Sets 

Abundant research has been done by using different technologies and techniques to 

identify the best performing classifier and the most appropriate set of features, as will 

be discussed in Sections 3.2.1 and 3.2.2. 

Different combinations of feature sets and classifiers, in addition to other signal 

processing decisions are known to provide different levels of robustness. Nevertheless, 

the Linear Discriminant Analysis (LDA) classifier combined with a four time-domain 

feature set (made up of the MAV, Waveform Length (WL), number of Zero Crossings 

(ZC) and number of Slope Sign Changes (SSC)) is commonly known as a benchmark 

system. This is due to its balance between computational efficiency and algorithm 

performance, providing implementation simplicity, especially for implementation on 

microcontrollers [40] [43] [44] [58] [59] [62] [63].  
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3.2.1. Pattern Recognition Algorithms 

Several pattern recognition algorithms have been implemented to determine 

performance, reliability and robustness for use in prosthetic hand systems. These 

include the K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Neural 

Network (NN), Fuzzy Clustering (FC), Mahalonobis Distance (MD), Multi-layer 

Perceptron (MLP), Regulatory Feedback Network (RFN), Non-linear Logistic 

Regression (NLR), Convolutional Neural Network (CNN) and Linear Discriminant 

Analysis (LDA) [40] [41] [46] [61] [62] [63] [64]. From studies which have compared 

classification results between different pattern recognition algorithms, the majority 

have concluded [41] [46] [61] [63] [64] that the LDA classifier was either the best 

performer, or showed no statistical difference when compared to others.  

While others have found that the LDA is inferior in direct comparison to others [62], 

LDA classifiers based on time domain feature sets have been the most preferred in the 

field. This is due to their satisfactory classification accuracies obtained for both static 

conditions [40] and dynamic movements [41] and for both offline and real-time 

classifications. LDA uses labelled data samples to learn a linear discriminant function 

to discriminate between the different classes and is generally considered a very suitable 

classifier for prosthetic use due to its high performance as well as ease of 

implementation, simplicity, speed and accuracy, making it ideal for real-time 

classification [41] [58] [59].  

Meanwhile, pattern recognition testing on amputated arms rather than intact limbs 

have shown to lower classification accuracies by a significant amount [54]. Therefore, 

while satisfactory tests on normal limbed subjects might be easier to obtain, the 

challenge of reaching suitable classification accuracies for amputees is a critical 

requirement. However, while the absolute accuracy values are fairly different between 

normal limbed subjects and amputees, different classifiers are known to rank in the 

same ways when tested with amputees and when tested with normal limbed subjects. 

This suggests that the choice of classifiers made for normal limbed subjects may be 

considered to still be an appropriate choice for amputees [44]. 

Since the LDA has often been found to be either the best classifier or a suitable 

classifier for this task, this suggests that it would be a good classifier to start deploying 

for such problems. However, these results also suggest that a linear discriminator may 
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not always be sufficient, depending on the conditions of the hand movement 

classification, in which case, more complex classifiers may need to be studied. 

3.2.2. Signal Features 

There is a variety of signal features which may be utilised for hand movement 

classification, with the main feature sets being the Time-Domain (TD) features, 

Frequency-Domain (FD) features, Time-Frequency (TF) domain features, 

Autoregressive (AR) model coefficients and Wavelet features, amongst others [45] 

[53] [58]. 

Ortiz-Catalan et al. [46] provided a non-exhaustive list of signal features which have 

been employed in different literature targeting pattern recognition for prosthetic 

control whilst also explaining how no generalised consensus has ever been reached on 

which features or groups lead to the best results. This list also highlights the fact that 

the most widely used TD features are the MAV, WL, ZC and SSC, since their resultant 

values provide information regarding the frequency, duration and amplitude of the 

captured signals. These features may also be recorded in a time-constrained scenario 

as in prosthetics [46] [53] [54] [55] [62] whilst providing computational simplicity, 

stability against varying segment length, high classification accuracy rates as well as 

low alteration over repeated sessions [58].  

Other popular TD features apart from those mentioned above are the Mean Absolute 

Value Slope (MAVS), Willison’s Amplitude (WAMP), Variance (VAR) and the Log 

Detector (LD) [41]. Additionally, the RMS feature is also a common feature extracted 

by some researchers for basic amplitude information, in addition to other feature sets 

mentioned above [45] [65] [66]. 

While TD features are usually chosen for prosthetic implementation due to their low 

complexity [41] [62], others [45] [58] have highlighted how TD and AR coefficient 

feature sets have been shown to outperform accuracies obtained from TD features only 

but at the expense of much larger processing overheads, which are not desirable in 

such applications. AR features are known to be a non-practical real-time feature in the 

scope of clinical embedded system implementation [41].  

Studies have also investigated the ideal number of features to be used in combination 

with classifiers. While high dimensional features have been found to result in the 

lowest classification errors [41], other studies [53] [67] deduced that the larger the 
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number of features used, the slower the process is, whilst obtaining lower or stabilised 

classification accuracy. 

With contradictory outcomes with regard to the number of feature sets as well as the 

feature types that are best to be used for such classification applications, it can be said 

that the standard group of MAV, WL, ZC and SSC features is still the most popular. 

The most important attribute of such features is the ease of computation in time-

constrained scenarios, unlike other features such as the high performing AR feature. 

Nevertheless, studies initiating their systems with a singular feature are not uncommon 

[37] [65] [68], which always provide a good, simple starting point, requiring further 

feature set experimentation once a stable system is established. 

3.3. Post-Processing 

Post-processing algorithms are sometimes implemented in order to improve the 

system’s real-time stability by providing smooth transitions between gestures and 

removing misclassifications. Typical post-processing algorithms include the Majority 

Voting algorithm and the Buffer Output algorithm. The former algorithm filters any 

sporadic misclassifications by acting on the most active classification predictions, 

usually leading to slower response times. The latter algorithm uses a percentage 

threshold to determine whether classes have been consistently predicted instead of 

choosing the most active class [32] [46] [58] [40].  

These methods are implemented such that the output is not based on the most recent 

decision but is rather taken more intelligently by choosing which class has appeared 

most in the previous class decisions. This helps to increase robustness [46].  

3.4. Experimental Methodologies 

Different researchers have opted for different methodologies when it comes to 

experimental design based on user intent classification. The differences between 

experiments could be noted in the different hand gestures/grasps tested and studied, 

the number of trials gathered, the number of subjects, gesture/grasp repetitions, 

contraction times and instructions provided to the participants.  

Firstly, the number of hand and wrist gestures that are usually performed to train 

classifiers for prostheses varies, with some solely focusing on wrist gestures, others 

only on hand gestures, and others combining both. The choice of the types of gestures 
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as well as the number of these gestures that are distinguished by a classifier are 

important to note, especially when comparing studies to each other.  

Wrist movements are known to be produced by easily detectable muscles on the 

forearm which are more dominant than the larger number of hand muscles which act 

together to produce a movement [69]. In fact, Li et al. [54] concluded that accuracy 

rates decreased when only considering hand gesture classification, in comparison to 

both wrist and hand gestures.  

Nevertheless, the most popular gestures that have been implemented in most studies 

are a combination of the following: wrist flexion, wrist extension, pronation, 

supination, open hand (extension of all fingers), close hand (flexion of all fingers), 

palmar grasp, radial deviation, ulnar deviation, lateral grasp, power grasp, pointing 

posture, side grip, fine grip and thumb up, amongst others [45] [46] [53] [54] [56]. 

It is also important to note how subjects were usually asked to remain in a comfortable 

posture, also allowing gravity to return their hand to a natural position following any 

hand movement, whilst providing the necessary rest times between movements [45] 

[54] [56] [59] [64]. It was also the norm that since data was usually extracted from the 

steady-state signals, whilst the subjects contracted their muscles in a specific hand 

grasp posture, the subjects had to be asked to hold their contractions at either specific 

force levels [56] [59] or at comfortable force levels [45] [54] [55]. Consistency in the 

performance of these force levels was usually required and expected, such that 

classifiers could be trained with consistently performed data [32] [54] [55]. However, 

Scheme et al. [69] have mentioned how the performance of ramp contractions has been 

found to improve classification robustness when compared to singular force 

contractions. 

It is also known that when a classifier is trained on sets gathered from different persons, 

classification accuracy diminishes. Therefore, user-dependent classification is usually 

encouraged, requiring intensive training sets for every patient [64].  

This shows how the ideal scenario is usually set up in order to obtain the first results 

from any devised classification system, prior to obtaining real-time results for less than 

ideal, but more realistic, set ups. This is done by allowing the subjects to be 

comfortable in a singular position whilst performing consistent hand/wrist gesture 

repetitions. Furthermore, the choice of hand/wrist gestures depends on the researchers’ 

objectives and thus, the number and types of movements are always to be decided at 
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design stage. Meanwhile, systems are typically trained to cater for individual subjects, 

focussing on user-dependent classification.  

3.5. Offline vs Real Time Classification 

Initial pattern recognition algorithm implementations are done in an offline 

environment where testing and benchmarking are carried out by solely using recorded 

sessions. Training and validation sets are used during the learning process of the 

classifier. After this process, testing sets are then used to assess the system’s 

performance with unseen data [46]. This provides classification accuracy values based 

on offline data gathered. In order to deduce whether a trained classifier is suitable and 

usable in real-life applications, its real-time performance would then need to be tested. 

It is known that high offline accuracies provide a false sense of high reliability which 

may not be reflected in real-time classifications [46], thus, this step is important to 

conclude whether a classifier is in fact, up to standard. 

In prosthetic research, such real-time testing would be carried out either with the use 

of an actual prosthetic arm [37] or by using a virtual prosthesis where a simulation of 

a prosthetic device or a normal hand is used to show decisions made by a system, in 

real-time, on a screen or through a virtual reality device [39] [54].  

3.6. Signal Phase Selection 

The motion of the hands can be split into dynamic and static contractions, relating to 

transient and steady-state EMG signals. Dynamic contractions relate to hand 

contractions during movement while static contractions relate to hand contractions 

held in a static position [38]. For example, in order to quantify a hand operation such 

as grasping an object, the required hand motion can be described to go through two 

different phases, which are the movement (dynamic) phase and the force (static) phase. 

The movement phase can be described to be the movement occurring in the time span 

where the fingers are approaching the object to be grasped, starting from an initial 

posture, until contact is made. This movement phase can be performed at different 

velocities, in accordance to the subject’s requirements. Subsequently, as soon as 

contact is made with the object to be grasped, the force phase is entered whereby the 

fingers apply the required force to the object.  

The transient and steady-state EMG signals corresponding to these dynamic and static 
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contraction phases have different signal characteristics, since muscle recruitment is 

performed dynamically in accordance to contraction type, as well as muscle type [38]. 

The scope of this work is to utilise these characteristics to determine motion 

instruction, and force estimation, separately, in the most intuitive manner possible to 

the end-user.  

From the literature, as noted in Section 3.4, the transient signal phases are usually 

neglected, focusing only on the use of steady-state signals, which correspond to static 

grasp contractions, for both motion and force intent interpretation. In such studies, data 

is usually collected from static contractions at different grasping positions for motion 

classifier training. Such systems usually also implement continuous classifiers, 

whereby feature sets are continuously extracted from the incoming signal streams, 

leading to a classification decision with every time step [40] [54]. Nevertheless, while 

most pattern recognition systems have been based on steady-state signals, some 

researchers have also opted to train their classifiers by using both transient and steady-

state signals [32] [38] [39] [45] [46] [53] [62]. This, however, usually means that the 

proportion of the steady state feature to transient feature is not balanced, with the 

transient signal features being sparse when compared to the steady state features [70].  

According to Gopura et al. [60], the preference of the steady-state phase in many EMG 

systems is justified by the large variations in transient phase signals, in comparison to 

the steady-state. There was also a time where it was believed that no valuable 

information could be extracted from transient signals, which Hudgins et al. [32] proved 

wrong. However, the use of transient signals was still eventually neglected due to the 

difficulties of switching between different gesture classes without always initiating a 

contraction from rest [40]. Nevertheless, for this work, this claim is not envisaged to 

be a limitation. 

Furthermore, Kanitz et al. [37] have argued that the belief of obtaining repeated steady-

state EMG signals with repeated static muscular contractions is, in fact, a common 

misconception. This is since these kinds of contractions require continuous muscle 

fiber recruitments and firing patterns. Also, EMG continuous classifiers that make use 

of the static phase for motion detection are problematic in terms of class prediction 

stability, requiring additional post-processing, thus affecting the overall system 

responsiveness.  
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Due to these conflicting arguments, there are only a few available papers on sEMG 

pattern recognition systems using solely transient signals for hand grasping 

classification. One recent study is by Kanitz et al. [37], where a system was 

implemented such that as soon as a movement from rest was detected, 300 ms of 

consecutive MAV values from the transient phase were collected and fed to a classifier 

to predict the movement class. Following the classifier’s prediction, proportional 

velocity control was used to control the prosthetic’s rate of opening and closing.  

Due to the conflicting arguments within the literature, most of which supporting the 

discrimination of different motions through steady-state signals, it was envisaged that 

experiments were to be devised on a major muscle to identify the differences in sEMG 

signals with different contractions. For these experiments, a singular major muscle was 

chosen to test the general concept using a simple muscle, which could later be applied 

in the context of forearm muscles used for the intent interpretation system. This 

exercise aims to identify whether the two types of EMG signals are capable of 

contributing information with relation to their contraction type (dynamic or static) as 

well as identify signal aspects which best characterise the different contractions. These 

experiments are described and discussed in Chapter 4. 

From these experiments, it could then be concluded which signals would best provide 

the most intuitive type of intent interpretation during both motion instruction, as well 

as force level instruction, ultimately leading to suitable action intent system 

implementation resulting in the simplicity, dexterity and usability trade-off.  

3.7. Conclusion 

The literature review discussion in the above chapters has laid out the different kinds 

of prosthetic control systems and schemes that are available on the market, as well as 

the systems that have been researched, including their advantages as well as 

limitations. By keeping the ultimate goal of this research in mind, i.e. that of achieving 

a balance between the simplicity, dexterity and usability attributes for a prosthetic 

action intent system, an active myoelectric prosthetic intent interpretation system 

which uses musculoskeletal signals as commands was to be developed. Furthermore, 

it had already been stated that providing the users with the ability to use their intuition 

would be most beneficial when it comes to maximising this design trade-off. This led 

to the choice of using a pattern recognition control system, capable of detecting 

different gestures, followed by proportional control. As has been discussed, there are 
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many variables that need to be taken into consideration when constructing such a 

system, including the classifier type, feature extraction windowing type, signal 

processing choices, and extracted features.  

Based on the literature reviewed, for this work, eight electrodes, symmetrically placed 

around the forearm, on the muscular bulge will be used to sense the muscle recruitment 

whilst an LDA classifier will be used to classify the intended hand gesture. The choices 

regarding the sEMG features as well as windowing and any requirement of post-

processing were to be decided with the implementation of the system, as will be 

discussed in Chapter 5. 

Furthermore, it has been discussed that a very important choice lies in the signal phases 

that are to be used for motion classification as well as force estimation. Due to the 

contradictory views on this topic, it was decided that further experimentation on a 

major muscle is required to aid with this decision. 
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4. sEMG to Joint Velocity and sEMG to Joint Force 

Relationships  

As has been discussed in Section 3.6, there have been many conflicting arguments 

regarding the use of transient or steady-state sEMG signals to determine user intention. 

In order to conclude whether sEMG signals contain information relating to the 

different contraction types, specific experiments were devised accordingly. The 

variable features which may be related to transient and steady-state contractions are 

velocity and force, respectively. Therefore, the aim of these experiments was to 

determine whether sEMG features have a relationship to the exerted force and to the 

velocity, thus concluding whether the different signals may both provide 

discriminatory information.  

These experiments were carried out on the large biceps muscle such that the best 

sEMG signal acquisition procedures could first be tested on easily located muscles 

with minimal crosstalk. Relationships obtained from such a straightforward muscle 

also do not need any further consideration with regard to multiple synergistic muscles 

which aid in the different contraction types, as is the case with muscles controlling the 

hand. Therefore, the biceps muscle was chosen as a simpler alternative to the 

synergistic hand muscles as an initial test of the general concept. Thus, sEMG features 

could firstly be related to elbow flexion velocities and force exertion at the wrist. 

In order to properly prepare for these experiments, the first step was to study the 

literature as to which contraction types should be used, how sEMG signals behave with 

anatomical differences and what relationships other researchers have found for similar 

studies. These topics will be discussed below. 

4.1. EMG Relationships with Anatomical Differences and 

Contractions 

For muscle force generation, the first link in the chain that initiates the process is nerve 

stimulation. Through afferent pathways, sensory input from the muscle travels to the 

Central Nervous System (CNS), promoting Motor Unit (MU) recruitment which 

stimulate muscle fibers, in turn resulting in muscle strength generation. The MU, 

known to be the muscle’s functional unit, consists of an alpha motor neuron and 

numerous fibers (depending on the muscle’s required overall strength and control) 

which are innervated by it. These muscle fibers contract when action potentials are 

activated in the motor unit that supplies these fibers. These fibers are also known to be 
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either of the ‘slow’ type or the ‘fast’ type. MU firing combinations and mechanisms 

operate in a way which differs for small and larger muscles due to being controlled by 

different schemes of recruitment and activation. In fact, an sEMG signal is composed 

of multiple Motor Unit Action Potential Trains (MUAPTs) generated from several 

motor units within a muscle [71] [72]. These processes are shown in Figure 4.1. 

According to Mustard and Lee [73], velocity, amplitude and force variations of a limb 

movement may be produced by altering the way the motor units activate and work, 

described by the authors as the ‘motor program’, resulting in adjustments in EMG 

burst characteristics. 

In order to understand the way muscles work during movement, muscle forces are 

required to be known, however, such forces cannot be measured directly from human 

muscle, but such forces may only be modeled, calculated or assessed [71]. As 

explained by Disselhorst-Klug et al. [74] and De Luca [75], the direct measurement of 

the force exerted by a skeletal muscle is difficult to be found and assigned, mostly due 

to the fact that one muscle is usually part of a larger group of muscles acting as either 

agonists, antagonists or synergists. Having said that, while certain relationships for 

specific muscles with sEMG features may be highly reproducible, the same 

relationships are not usually found for other muscles and thus, differently curved 

relationships are uniquely found for every muscle which may be caused by the 

muscles’ length and their structured organisation.  

  

(a) (b) 

Figure 4.1 - (a) Illustrations of the human nervous system and muscle activation. Reprinted from [76] 

with permission from Elsevier. (b) EMG pattern read from an activated muscle with permission from 

[77], [78], [79]. 
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4.1.1. The Different Types of Limb Contractions 

There are various contractions that humans can exert with their limbs. The most 

prominent contractions are namely isometric, isotonic and isokinetic contractions. 

Isometric contractions are generated whenever a force is exerted at a constant muscle 

length. Therefore, isometric contractions are carried out in a static position such that 

the joint angle and the muscle length are not varied during force generation. 

Meanwhile, isotonic contractions generate force whilst changing the muscle length in 

a concentric or eccentric manner. Concentric contractions occur when the muscle 

shortens while the energy is fluctuating while during eccentric contractions, muscles 

elongate in response to a greater opposing force. A more visual description is provided 

in Figure 4.2. Meanwhile, isokinetic/isovelocity contractions are similar to isotonic 

contractions, however, in this case, constant paced movements are performed. 

Therefore, the movement speed is controlled and paced while the muscle length 

shortens and lengthens according to the movements carried out by the limb [80]. 

Thus, in order to obtain sEMG-force and sEMG-velocity relationships, isometric and 

isokinetic contractions were decided to be performed, respectively. For isokinetic 

contractions, the velocity is usually kept constant with the help of isokinetic 

dynamometers, however, in this work, as will be mentioned in Section 4.2.4, the 

subject was only given an audio indication of these velocities. Since subjects are not 

as consistent with performing movements at specified set velocities, we follow the 

literature [72] [81] in referring to these contractions as anisometric instead.   

 

Figure 4.2 - Isometric, Concentric and Eccentric Contractions [82]. 
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4.1.2. The EMG-Force Relationship 

It has been previously suggested that sEMG amplitude is not directly proportional to 

force, however, it is also known that sEMG activity does reflect the amount of force 

exerted by any muscle, to a certain extent. Therefore, it is believed that when an sEMG 

signal is rectified and smoothed, the resulting amplitude can be qualitatively related to 

force measured at a joint, albeit providing an intangible quantitative relationship whose 

accuracy is questionable [75] [83]. This relationship has been studied by various 

researchers throughout the years [84] who have also found variability between subjects 

and experiments.  

The elusiveness of the relationships obtained from sEMG signals is known to be due 

to sEMG signals being complicated signals which are affected by numerous technical, 

anatomical and physiological factors, as De Luca [75] extensively describes, which 

may not be easily detected and disentangled. These factors have been grouped into 

three categories, namely: causative, intermediate and deterministic factors.  

In brief, causative factors are known to have a direct and elemental effect on the signal 

which may be divided into extrinsic or intrinsic factors. Extrinsic causative factors, 

unlike the intrinsic factors, may be controlled to achieve the expected results. This is 

since intrinsic factors are linked to anatomical, physiological and biochemical muscle 

characteristics. Even though intrinsic factors cannot be controlled, knowledge of these 

factors aids with EMG interpretation accuracy [85]. Meanwhile, intermediate factors 

are influenced by causative factors which in turn influence the deterministic factors. 

These intermediate factors are physiological and physical phenomena which take place 

due to various activities within the muscle, such as the crosstalk phenomenon [71] 

[75]. Meanwhile, deterministic factors which represent physical characteristics of 

EMG action potentials, directly affect the EMG signal information that may be 

extracted and the resultant force. Therefore, in order to fully understand the EMG 

signal, fundamental understanding of human physiology aspects is required [86] [87]. 

sEMG-force relationships for different muscles are known to vary due to their 

recruitment properties, muscle firing rates and other anatomical aspects such that 

smaller muscles usually result in quasi-linear relationships unlike larger muscles, such 

as the biceps and triceps muscles, which are known to produce a relationship which is 

more curvilinear. For mixed fiber type muscles, the sEMG-force relationship results 

to be curvilinear in contrast with muscles consisting of a singular muscle type [83]. 
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In fact, various experimental protocols were devised in several studies in order to 

obtain this sEMG-force relationship from isometric contractions. These protocols 

included various experimental setups, numerous subjects, differing resting and 

contraction times and also differing contraction directions and postures. For studies 

targeting the biceps muscle, contractions have been exerted at singular static angles, 

specifically at 90 º in some cases [88] [89] with other researchers analysing different 

elbow angles [90] [91] [92]. Importantly, all studies specified adequate resting periods 

in order to prevent fatigue, which is a vital factor for force exertion studies [88] [89] 

[90] [91] [92]. Finally, all these different studies have agreed on the fact that with an 

increase in force exertion, an increase in sEMG features is obtained.  

4.1.3. The EMG-Velocity Relationship 

The most investigated contraction is the isometric contraction, however most tasks in 

daily life involve dynamic contractions. These latter contractions are more challenging 

to study since during such contractions, muscle fibers change length whereas sEMG 

electrodes remain affixed to the original skin location. Thus, the relationship between 

the electrode and the muscle fibers is continuously changing, adversely affecting the 

sEMG signal [75].  

Furthermore, the factors mentioned in Section 4.1.2 are not only noticeable when 

obtaining a relationship between the EMG signal and force values but also when trying 

to obtain a relationship with contraction velocities. Therefore, relationships are 

expected to vary with changes in electrode placement, anisometric test values, 

differences in the range of limb motion, experiment duration, statistical analysis and 

the muscles investigated [89] [93]. The human motor variability phenomenon is an 

additional factor affecting such relationships since repetitive movements almost never 

result in identical sEMG signals [73] [94]. 

Differences in muscle postures and movements are also known to affect these 

relationships due to the changes in the way the muscle has to work, with linearity being 

dependent on the number of roles played by the muscle during the movement [95].  

There were several studies which carried out research to obtain relationships between 

sEMG features and different velocities. Exponential trend lines were obtained to 

describe relationships between maximum EMG RMS values and their respective 

maximum velocity and acceleration values for bicep curls performed over three 
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velocity ranges [96]. In the meantime, for forearm movements in a horizontal space 

and with a pronated hand, a quadratic relationship was obtained between Integrated 

EMG (IEMG) and velocity [95], where the IEMG is a subset of the procedure of 

obtaining the average rectified value with the difference that the average rectified value 

is divided by the number of samples over which the calculation has been carried out 

[97] [98]. In this case, the electrical activity of the biceps was examined from the start 

of the movement until the angular forearm velocity reached its peak, therefore during 

the first phase of acceleration.  

This technique of using only a section of the movement’s signals was also used for 

wrist movements where the EMG’s area was only calculated for the period containing 

the first agonist EMG burst, leading to the claim that for an increase in movement 

velocity, an almost linear increase in the first agonist burst area was obtained [73]. 

This leads to the fact that several authors opted to find EMG relationships by solely 

considering specific parts within the EMG signals. Gielen et al. [99] have also 

published their choice to calculate the IEMG activity for the duration of its burst rather 

than the whole movement’s duration. From horizontal forearm flexions, a linear 

relationship was found with respect to a range of peak velocities. Furthermore, these 

researchers found quadratic relationships between EMG excitation levels versus peak 

velocities for horizontal arm movements at two different inertial loads. 

Therefore, these studies all confirm that with an increase in velocity, an increase in the 

chosen EMG feature is expected, as was the case with the force feature. 

4.2. Isometric and Anisometric Experiment Methodology 

Keeping in mind all the relevant procedures followed by other researchers as 

mentioned in Section 4.1 as well as the aim of the experiments, the two experimental 

procedures required to obtain the two defined relationships were carefully devised. 

The experiments required were split into two, namely Isometric Contraction 

Experiments and Anisometric Contraction Experiments. For the Isometric Contraction 

Experiments, the forearm and upper arm muscles were required to be kept at a constant 

length whilst performing a specific force value against an immovable object. The 

Anisometric Experiments were based on the concept of Isovelocity or Isokinetic 

movements which consisted of concentric and eccentric movements performed at 

various constant set speeds, without changing the exerted force value.  
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While it had been initially decided that a minimum of five subjects were required for 

these experiments to obtain the required relationships, due to the disruptions caused 

by the COVID-19 pandemic, only three subjects had managed to participate before the 

laboratory was closed down due to precautionary restrictions. Furthermore, one of 

these subjects had participated prior to final posture decisions were made and thus, it 

was decided that this subject’s results would not be used due to the experimental 

discrepancies from the other two. Therefore, the results discussed here shall be based 

on two different subjects, referred to as Subject 0 and Subject 2.  

The two participants were a 23-year-old male and a 24-year-old female. Both subjects 

did not do physical training on a regular basis since this was an exclusion criterion 

which was set to retain subjects within the norm. The subjects were both right-hand 

dominant and the required relationships were obtained for this same dominant arm. 

All subjects also declared that they did not have any history of musculoskeletal pain 

or injury in their upper limb or muscles before recruitment and consented to 

participating in these experiments, which were in line with the University of Malta’s 

research ethics guidelines. 

4.2.1. Subject Pose, Orientation and Movement Features 

Since both isometric and anisometric experiments were performed by the same 

subjects on their same experimental day in order to have the same conditions for both 

experiments, a specific arm orientation was chosen which enabled exertion of constant 

force contractions as well as constant velocity movements. It was decided that the 

subjects were to be standing up with their right arm at a 90 ° shoulder flexion with the 

wrist in a natural position (i.e. the thumb is upwards). By providing a way to rest their 

elbow, the subjects were free to move their forearm in a lateral (external from the 

chest) and medial (internal towards the chest) manner, by adjusting the elbow joint. 

These movements shall be referred to as extension and flexion of the elbow joint, 

respectively. An adjustable tripod was chosen to perpendicularly secure the elbow to 

the chest. 

This posture with medial and lateral movements was chosen rather than proximal and 

distal joint rotations due to the effects of the gravitational pull that would have 

otherwise been imposed during the flexions of the dynamic experiments. 
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Since the participants were not strapped and restrained as has been found in some 

literature [88] [89] [90] [91], the subjects were made aware to keep a straight posture 

and a lunge posture for the anisometric and isometric experiments, respectively. The 

lunge posture was chosen to enable the subjects to exert their actual maximum force 

in a steadier posture without risk of toppling over. The participants were also required 

to minimize unnecessary shoulder and upper arm movements such that the biceps 

brachii muscle remained the main activator throughout both experiments. 

The upper arm was not restrained, so as not to deform the upper arm muscles from 

which the myoelectric signals were to be acquired from by using electromyographic 

electrodes. The subjects’ arm postures and movements from front and top views can 

be seen in Figure 4.3. 

  
(a) (b) 

Figure 4.3 - (a) Front and (b) Top views of the subjects’ arm posture. The images show the fully 

extended arm at a 90 º shoulder flexion. The blue and red arrows refer to the direction of forearm 

movement from the elbow joint in flexion and extension, respectively. 

4.2.2. The Setup 

In order to carry out the experiments, the whole setup consisted of the following: 

• A tripod adjusted and levelled according to the subject’s height such that the 

elbow could rest on it, in a perpendicular orientation to the rest of the body. 

The tripod was utilised as a resting base for the elbow for both the isometric 

and anisometric experiments; 

• A screen showing the Graphical User Interface (GUI) developed for the 

isometric experiment; 

• A MARK-10’s M5-500 Force Gauge Model dynamometer [100] mounted on 
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an aluminium profile which in turn, was mounted to a brick wall. This 

aluminium profile also included a mounted pulley, situated underneath the 

dynamometer with both pulley and dynamometer having the ability to be 

adjusted upwards or downwards, according to the subject’s height. The pulley 

was required in order to direct a rope which was attached to the subject’s wrist, 

to the dynamometer in a perpendicular manner. The rope was attached to a 

Velcro band which could be easily strapped to the subject’s wrist. A setsquare 

was also used in order to ensure that the rope and the subject’s forearm were 

perpendicular to each other. This part of the setup was only utilised for the 

isometric experiments and can be seen in Figure 4.4; 

• A metronome to produce varying speed guidelines to the subjects for the 

anisometric experiments. A metronome website accessed through a smart 

phone was found to be suitable to provide these beats for this application; 

• A TSD130B twin-axis goniometer [101] attached to the subject by attaching 

one end of the sensor to the upper arm and the other end of the sensor to the 

forearm by using double sided tape for elbow joint angle data. Medical tape 

was also used to secure the goniometer to the subject’s arm. Since this sensor 

was not giving accurate values at the flexion ends, the readings from it were 

used to detect the static elbow angle during the isometric experiments as well 

as a tool to synchronise the Vicon motion captured angle data obtained (as will 

be mentioned below) with the sEMG signals; 

• A singular channel from the wireless, ZeroWire sEMG system [102] which 

allows digital transmission of the EMG signal to a receiver device. The 

wireless bipolar electrode module was used to record bicep sEMG data with 

the use of two 8 mm, pre-gelled silver/silver chloride (Ag/AgCI) disposable 

electrodes, as shown in Figure 4.5. 

• The Vicon Nexus motion capture system [103] and MP150 BIOPAC 

acquisition system [104] connected with all required sensors. By using these 

two systems, proper kinesiological analysis could then be possible. Angle and 

force sensors as well as EMG data could be synchronously recorded from the 

BIOPAC system which provided kinematic, kinetic and electromyography 

data, using a sampling rate of 1 kHz. This was done by using the UIM100C 

[105] and DA100C [106]. The subject’s anthropometric data as well as elbow 

angle values could be obtained from the Vicon system, using a sampling rate 

of 100 Hz.  
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(a) (b) 
Figure 4.4 - (a) The height adjustable dynamometer and pulley mounted on an aluminium profile and 

(b) a Velcro strapped wrist exerting force on the dynamometer through the rope with the setsquare 

showing a perpendicular angle between the forearm and the rope. 

 

  

(a) (b) 

Figure 4.5 - (a) The ZeroWire, wireless sEMG module [102] and (b) the 8 mm diameter Ag/AgCI, 

pre-gelled adhesive back with non-irritating gel, disposable surface electrodes [107]. 

For the Vicon motion capture system, in order to gather the right amount of data whilst 

not overwhelming the subjects with the number of optical motion markers, in addition 

to the other sensors which had to be attached to their arm; twelve markers were used. 

During post-processing, these twelve markers were eventually split into four segments, 

namely the Left Arm Segment (L_A), Right Arm Segment (R_A), Right Leg Segment 

(R_L) and Left Leg Segment (L_L). By obtaining data from these four segments, the 

posture of the subjects during experimentation periods was then able to be deduced. 

The most critical segment for the required results was the Right Arm Segment; most 

specifically, the shoulder, elbow and wrist markers. These markers were used to 

calculate the elbow angle values for the anisometric experiments. Figure 4.6 (a) shows 

some of the markers as placed on the body for an anisometric experiment posture while 

Figure 4.6 (b) shows all the markers captured by the motion capture system. 

EMG ACQUISITION 

MODULE 

POWER SUPPLY AND 

EMG INPUT MODULE 
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(a) (b) 

Figure 4.6 - (a) Six of the twelve markers as attached to the subject during experimentation and (b) 

the twelve markers as captured from the Vicon system at a fully extended arm position during 

Anisometric Experiments. The green, red, blue and pink segments are the Left Arm, Right Arm, Right 

Leg and Left Leg Segments respectively. 

4.2.3. Skin Preparation and Electrode Sensor Configurations 

For the best sEMG signal characterisation, maximal care had to be taken during skin 

preparation and electrode sensor positioning. Electrode-skin impedance and noise 

reduction, proper electrode fixation and overall better sEMG recordings are obtained 

from appropriate skin preparation, thus, the standards listed by Hermens et al. [108], 

in line with SENIAM guidelines were followed. Therefore, during skin preparation, 

the subjects’ skin was shaved, abraded and cleaned with alcohol wipes.  

Since for biceps experiments, the muscle under analysis is not covered by other 

muscles or bones, skin surface electrodes were noted to be sufficient to obtain the 

necessary myoelectric information. Such surface electromyography electrodes are 

non-invasive, unlike needle or fine-wire electrodes. Furthermore, the use of wet-gel 

disposable electrodes, as were used in these experiments (Section 4.2.2) are known for 

their best hygienic aspects whilst also being easier and quicker to handle.  

The Ag/AgCI disposable electrodes had an 8 mm diameter conductive area and 

following adjacent electrode placements, the inter-electrode distance was 24 mm, in 

line with SENIAM guideline recommendations [10] [57] [108].  
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4.2.3.1.   Biceps-Brachium Electrodes Placement 

At least three muscles contribute to the force output during bicep movement, namely 

the biceps brachii, brachialis and brachioradialis [90] [109]. While it is not feasible to 

separate forces into the component forces of each muscle of the group, it was 

concluded that the relationships between the joint torque and the myoelectric signals 

for the separate muscles are dependent during isometric conditions [109]. Thus, the 

joint torque may essentially be written as a function of the myoelectric signal from any 

one of the three muscles. Since the signals from the brachioradialis and the brachialis 

cannot be reliably obtained using surface electrodes, the best muscle to examine is the 

biceps brachium, as was done for these experiments. 

Positioning of the electrodes was also made in accordance to the SENIAM guidelines, 

ensuring that the electrodes remained on the active muscle mass during movements, 

also targeting the most dominant middle portion of the muscle belly by placing them 

on the line between the medial acromion and the fossa cubit at a third from the fossa 

cubit as shown in Figure 4.7 [57]. The electrodes were placed in parallel to the muscle 

fibers and in the centre of the mass in a longitudinal arrangement [110]. Despite some 

sources [90] [109] [111] suggesting a transversal arrangement instead, the SENIAM 

guidelines were still followed for this project, as do most studies [49] [50] [112]. 

 

Figure 4.7 - Biceps Brachii electrode location as per SENIAM guidelines [57]. 
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4.2.4. Anisometric Contractions Experiment Procedure 

The focus of the Anisometric Experiments was for the subjects to perform forearm 

flexions and extensions at a constant velocity, to the best of their ability, for five 

repetitions, at five different reference beats, namely 50, 85, 120, 155 and 190 beats per 

minute (BPM). The speed guidelines were provided to the subject by a metronome, 

and necessary resting times were indicated clearly whenever required. Flexions were 

initiated at a 0 ° elbow joint angle (wrist in line with the shoulder) and halted when the 

hand reached the chest at an approximate elbow joint angle of 120 ° and vice-versa for 

extensions. The subjects were to move their arm as naturally as possible without the 

fear of striking themselves since this would lead to bias of the results obtained and 

were also instructed to have a relaxed fist such that no unnecessary gripping takes 

place. While extensions were not to be analysed, these were included for the subject 

to keep up a constant pace between repetitions. 

A visual process of the above experimental procedure is provided in Figure 4.8. A 

minimum of a five-minute rest time was granted to the subjects between the 

Anisometric and Isometric Experiments.  

4.2.5. Isometric Contraction Experiments Procedure 

For the Isometric Experiments, the main aim was to obtain an sEMG signal relative to 

different force values exerted by the biceps during static contractions. Therefore, 

isometric contractions were exerted at a 90 ° elbow joint angle while the force was 

applied at the wrist to ensure that the biceps and triceps muscles were primarily 

involved. Real-time goniometer readings aided with elbow joint angle monitoring.  

 

Figure 4.8 - The Anisometric Experimental Flow. 
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The subjects were required to exert five levels of force for five seconds each. These 

force levels were determined in accordance to the greatest Maximum Voluntary 

Contraction (MVC) performed by the subject such that other prescribed sub-maximal 

forces were exerted at approximately 20%, 40%, 60%, 80% and 100% of the MVC, 

using the display of a dynamometer as feedback. All contractions were to be performed 

in non-fatigued conditions, thus, suitable resting times were provided between trials. 

The subject was instructed to follow the procedure indicated by a Graphical User 

Interface (GUI) projected on a screen. This clearly indicated the actions required from 

the subject as well as the required force levels to be exerted. Through the GUI, the 

subject and experimenter were notified when the subject was to get ready for the next 

contraction, the instant when the contraction was to start and when the subject was to 

release the contraction and rest. The followed procedure in conjunction with the GUI 

visual and sound cues, as well as manual inputs, are provided in Figure 4.9. 

 

 

Figure 4.9 - The Isometric Experiment Flow as followed by the subjects. The text shown in the shaded 

boxes are inputs to or outputs from the GUI to aid the subject and experimenter during acquisition. 

The yellow parts of the flow depict the state where the subject was asked to start getting ready for the 

next contraction; The blue parts depict the initial contraction stage before the required contraction 

force is reached and kept steady; The purple parts depict the five seconds of required contraction; 

The green parts depict the subject’s rest state. 
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4.3. Signal Processing Methodologies 

Due to their nature, recorded raw EMG signals need to be properly processed before 

being used for further analysis. There are several methods and steps involved with 

suitably processing these signals, depending on the nature of the signals as well as the 

nature of contractions. Some of these techniques are explained below. 

Since the EMG baseline quality determines the signal’s noise and offset when at rest 

[10], for this work, the sEMG signals were chosen to first be detrended by eliminating 

these offset or DC levels on which the signals were mounted. 

4.3.1. Filtering 

It is known that EMG electrodes, apart from the wanted and useful EMG data, also 

pick up noise, therefore creating signal distortions. Noise mixed with the pure EMG 

signal is obtained from various sources and as explained by De Luca [97], may be 

caused by ambient noise, motion artefacts, signal instability and electronic component 

inherent noise, amongst others. Nevertheless, while the EMG signal is limited from 10 

to 500Hz, the dominant energy is that between 50 and 150Hz. Stegemen and Hermens 

[113] state that while 95% of sEMG power is provided for by the harmonics up to 

400Hz, low-pass cut-off frequencies are to be close to 500Hz while high-pass filtering 

should have a cut-off frequency between 10 and 20Hz, in order to preserve the most 

important sEMG frequencies. Meanwhile, whilst ambient noise is known to be a great 

contributor to noise whilst analysing an EMG signal, some researchers opt to include 

a notch-filter at this frequency, which is dominant at the mains power frequency (50Hz 

or 60Hz in most cases). Nevertheless, such filters will not only remove the unwanted 

power line frequencies but also adjacent dominant frequency components and thus, it 

is not always advisable [97].  

For these experiments, EMG signals were filtered using a 4th order Butterworth filter, 

having cut-off frequencies at 10Hz and 450Hz. The filter was implemented using the 

‘filtfilt’ Matlab function such that no lag was introduced to the original signal. This 

filtering was done on the raw EMG signals, following their detrending. 
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4.3.2. Normalization 

EMG normalization is commonly used where an electrical signal value at any point in 

time is expressed as a percentage of the muscle’s activity recorded at a specific 

calibrated contraction. In order to be able to compare such signals to each other, a 

referencing point such as the MVC that one can exert is useful. In fact, there are 

guidelines regarding subject positions and exercises that are to be followed in order to 

obtain the actual MVC value. The most important part of the MVC exercise is very 

good fixation and contraction against rigid resistance [10] [114]. 

For this work, the results from the isometric experiments shall be presented in 

accordance to the normalization to these MVC values. Meanwhile for anisometric 

data, there was no subject-specific maximum velocity value, therefore the largest 

velocity measured across all trials and subjects was found and an upper bound of 

240 º/s was used for velocity normalization. 

4.3.3. sEMG Feature Choice for Analysis 

The several features mentioned in Section 3.2.2, all allow a researcher to obtain 

different quantitative data from EMG signals. However, it has been argued [72] [97] 

that the RMS feature has a physical meaning regarding the power of the signal, which 

is why it is preferred when obtaining relationships of this kind. This is usually done in 

comparison to the popular MAV feature which simply provides the area under the 

signal without a specific physical meaning. The RMS feature is also said to show less 

variability when compared to MAV over successive isometric time windows, which 

results in the RMS feature having the capability of detecting smaller signal changes 

[115]. Conversely, no such claims were found regarding which feature is best for 

characterising EMG signals with respect to movement velocity relationships, although 

the IEMG feature is one of the most commonly used [95] [99]. However, this feature 

is simply a subset of the MAV procedure [97] [98]. Thus, it was decided that the 

relationships that were to be obtained from these experiments were to be found with 

respect to the sEMG RMS value. 

4.4. Data Processing and Analysis 

Following data collection, several post-processing scripts were created on Matlab such 

that dynamic relationships between average velocities and sEMG RMS, as well as 
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relationships between the forces exerted by every subject and their respective sEMG 

RMS values could be obtained. 

4.4.1. Data Processing for the Anisometric Experiments  

Due to the fact that for every subject’s anisometric experiment, five repetitions of 

lower arm flexions and extensions per metronome trial were performed, 25 different 

flexion instances and another 25 different extension instances were obtained. Since the 

biceps is the main muscle acting on the flexion movements rather than extension 

movements, only the former contraction instances were analysed for this experiment. 

A flow chart showing the process that the collected data was processed through in 

order to achieve the RMS values for their respective flexion average velocities is 

provided in Figure 4.10.  

Since the goniometer was unreliable with correctly recording the higher end of the 

angle spectrum, the motion capture marker data were used to determine the elbow joint 

angle, θ, by using Equation (4.1), where SE⃗⃗ ⃗⃗   and EW⃗⃗ ⃗⃗ ⃗⃗   are the two-dimensional vectors 

obtained from the shoulder (S) and elbow (E) markers, and the elbow (E) and wrist 

(W) markers, respectively. This relates to Figure 4.11. 

cos θ =
SE⃗⃗ ⃗⃗  ∙EW⃗⃗ ⃗⃗ ⃗⃗  

|SE⃗⃗ ⃗⃗  ||EW⃗⃗ ⃗⃗ ⃗⃗  |
 (4.1) 

 

Since the Vicon and BIOPAC systems were not hardware synchronised, the joint angle 

motion data was manually aligned to the sEMG data using the goniometer data since 

the latter two are hardware synchronised through the BIOPAC system. 

 

Figure 4.10 - A flow chart showing the data processing for the Anisometric Experiments. 
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Figure 4.11 - The motion markers on the Shoulder (S), Elbow (E), and Wrist (W) and their resultant 

vectors used for elbow joint angle calculation. 

The flexion movement period was defined as that interval where the calculated 

velocity exceeded 5% of the peak velocity of that specific flexion. The average 

velocity of each flexion was calculated by dividing the change in the joint angle during 

this interval by its duration.  

Meanwhile, for every flexion trial, the sEMG onsets were determined using the single-

threshold method [116]. In this method the resting mean, 𝜇𝑟𝑒𝑠𝑡, and standard deviation, 

𝜎𝑟𝑒𝑠𝑡, were estimated and a suitable value for 𝑐  was chosen manually to ensure proper 

onset detection. The threshold, 𝑇, was set using: 

𝑇 = 𝜇𝑟𝑒𝑠𝑡 + (𝑐 ∗ 𝜎𝑟𝑒𝑠𝑡). (4.2) 

 

The average RMS value for each flexion trial was therefore estimated starting from 

the sEMG signal onset up till the end of the movement period as illustrated in Figure 

4.12. The estimated RMS values therefore considered all agonistic bursts within the 

single joint movement triphasic sEMG pattern, which usually consists of the initial 

agonist muscle burst, followed by an antagonist and several smaller agonistic bursts 

[73]. For this work, this was considered to be the best representation of the average 

velocity contraction [117], in contrast to some of the literature listed in Section 4.1.3, 

where only the initial sEMG agonistic burst was considered. 

4.4.2. Data Processing for the Isometric Experiments  

Following data gathering from the different subjects, the data analysis process carried 

out for the isometric experiments was according to the flow chart shown in Figure 

4.13. 
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Figure 4.12 - The recorded elbow joint angle and sEMG signal from a flexion during an anisometric 

experiment, as well as the determined sEMG onset instance and the movement period. The average 

RMS value was estimated from the sEMG onset up till the end of the movement period whilst the 

average velocity was calculated by dividing the change in joint angle of the movement period by its 

duration. 

 

Figure 4.13 - A flow chart showing the data processing for the Isometric Experiments. 

Since the force values were recorded by the MP150 data acquisition system as a raw 

voltage value from the dynamometer, a re-scaling, calibrating relationship between 

this raw voltage to the actual exerted force (as shown on the dynamometer screen) was 

required. Following a systematic calibration experiment, a linear relationship was 

obtained between the received raw voltage input and the actual force value, with a 

correlation coefficient of 1, as follows: 

𝑓(𝑥) = −0.0004468𝑥 + 0.01348 (4.3) 

where 𝑥 is the force value in Newtons and 𝑓(𝑥) is the raw voltage input. 

This force data was then smoothened using a 300 ms averaging window with a 50% 

overlap. The single thresholding method was applied to the signal to detect those 

segments where the prescribed force levels were reached and remained stable for at 

least three seconds. For each isometric contraction level, sEMG RMS features and 

average force levels were computed from 20, 150 ms non-overlapping windows, 

yielding 100 sEMG RMS values and their corresponding average force values. 
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4.5. Results and Discussion 

Matlab’s built-in Curve Fitting application was utilised to find the optimal relationship 

for each subject’s isometric and anisometric results, where the final best fit decision 

was taken based on the fitted curve shape, the square of correlation (R2), the adjusted 

R2, and the Root Mean Squared Error (RMSE) resulting from every fit. For better curve 

fitting results, any obvious outliers were removed and excluded from the curve fitting 

process.  

Following the curve fitting process carried out for all the obtained results, the best 

fitting relationship between EMG RMS and average velocities was found to be that of 

a first order exponential as shown in Equation (4.4) whilst the best fitting relationship 

between EMG RMS and exerted force was found to be a second order polynomial as 

provided in Equation (4.5). 

𝑓(𝑥) = 𝑎𝑒𝑏𝑥 
(4.4) 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 
(4.5) 

where, 

𝑓(𝑥) is the EMG RMS amplitude; 

𝑥 is the velocity or force value in (4.4) and (4.5), respectively; 

a, b and c are coefficient constants. 

For ease of comparison, curve fitting was performed on the normalized data for both 

experiments. The constant values as well as the square of correlation (R2), the adjusted 

R2, and the Root Mean Squared Error (RMSE) for the separately fitted curves are 

provided in Table 4.1 and Table 4.2 for both subjects’ anisometric and isometric fits, 

respectively. 

Meanwhile, plots showing the data and their respective fitted curve are provided in 

Figure 4.14 and Figure 4.15 for Subject 0 and Subject 2, respectively.  

Table 4.1 - The First Order Exponential Constants obtained from curve fitting the normalized 

anisometric data obtained for Subjects 0 and 2 as well as the resulting R2, Adj. R2, and RMSE values. 

Subject a b R2 Adj. R2 RMSE 

0 0.053 1.882 0.803 0.793 0.033 

2 0.033 1.707 0.670 0.656 0.016 
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Table 4.2 - The Second Order Polynomial Constants obtained from curve fitting the normalized 

isometric data obtained for Subjects 0 and 2 as well as the resulting R2, Adj. R2, and RMSE values.  

Subject a b c R2 Adj. R2 RMSE 

0 1.246 -0.484 0.211 0.919 0.917 0.090 

2 1.149 -0.350 0.190 0.899 0.897 0.102 

 

Figure 4.14 - Normalized EMG RMS vs Normalized Average Velocity and Normalized Force 

respectively, for Subject 0’s Trial. The Plots also show the first order exponential relationship and 

second order polynomial relationship found between the Normalized EMG RMS and the Normalized 

Velocity and Force, respectively. 

 

Figure 4.15 - Normalized EMG RMS vs Normalized Average Velocity and Normalized Force 

respectively, for Subject 2’s Trial. The Plots also show the first order exponential relationship and 

second order polynomial relationship found between the Normalized EMG RMS and the Normalized 

Velocity and Force respectively. 
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One is to note how for Subject 2, exerting a constant force was found to be more 

challenging, resulting in more scattered points on the x-axis, when compared to the 

plots obtained for Subject 0. It is also clear that different subjects performed their 

flexion movements at different average velocities when compared to each other, even 

when provided with the same reference metronome beats whilst also given time to 

train. In fact, the average velocity range of the 25 movements performed by Subject 0 

was from 93.4 º/s up to 230.7 º/s whilst the range for Subject 2 was from 58.3 º/s to 

189.6 º/s. Thus, the flexions exerted by Subject 2 were slower than those performed by 

Subject 0.  

From the graphs obtained, it is also evident that the flexions instructed to be performed 

in line with the different metronome beats were not always performed in distinct 

velocity ranges from each other, with some points overlapping other metronome 

guided points. This was especially highlighted in Subject 2’s plots, where the flexions 

performed with the 120BPM reference were slower than those performed with the 

50BPM reference. Nevertheless, it is also to be noted that Subject 0 had longer training 

and better practise with this exercise than Subject 2 which should have been the main 

contributor to the more defined ranges obtained by Subject 0. Mustard and Lee [73], 

in fact, have also commented how even when the instructions provided to the subjects 

are very specific, different subjects implement varying movement strategies when 

compared to each other. They have also discussed how it is easier for subjects to learn 

fast movements rather than slow movements, which is also visible in this study. 

In the meantime, for easier comparison between the two subjects’ relationships, an 

average fitted curve was computed for both relationships by averaging the parametric 

curves of both subjects. This averaging was done on the curves, rather than fitting a 

new curve to pass through all the points since there is less variability in the myoelectric 

signals obtained for one person when compared to a group of subjects [118]. These 

plots are provided in Figure 4.16. It is evident that while the relationships found for 

both subjects for the isometric experiments are very similar, the anisometric 

relationship obtained for Subject 0 gives us more confidence than that obtained for 

Subject 2, since it shows the change in RMS value with increase in velocity more 

clearly.  
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Figure 4.16 - Plots showing Subject 0’s and Subject 2’s Normalized EMG RMS Feature Values 

against Normalized Averaged Velocities and Force Values (red and green in both graphs), including 

the fitted first order exponential functions obtained from the anisometric experiments and the fitted 

second order polynomial functions obtained from the isometric experiments (solid blue and dashed 

purple for Subjects 0 and 2) respectively. The averaged fitted curves are also shown in dashed 

orange. 

Nevertheless, all relationships obtained clearly indicate the increase in RMS with 

either feature. Despite the differences in the protocol and details of the experimental 

set-up from those reported in the literature, for the reasons elaborated in Sections 4.1.2 

and 4.1.3 and the variations in the literature itself, the relationships obtained generally 

match those reported in the literature.  

Although these results have provided useful insight, the specific relationships found in 

Section 4.5 relate to the elbow joint with biceps agonistic muscle recruitment.  

Therefore, these relationships cannot be directly applied to the hand and finger muscles 

which differ in many ways from the above. Lawrence and De Luca [118] specifically 

found that isometric relationships were found to be different for smaller muscles than 

those of larger muscles.  

Nevertheless, the main scope of these experiments was to determine whether the same 

sEMG electrode can provide us with information in relation to their contraction type. 

Since positive relationships have been found for both contraction types, both signal 

states may be used for the prosthetic action intent system design, accordingly. 

Furthermore, these results showed that the single EMG feature chosen, the RMS 

feature, could be used to discriminate between different levels of the same contractions 

which led us to propose to use this feature for both transient and steady-state signals 
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for information distinction. Thus, sEMG signal aspects which best characterise the two 

contraction types were to be identified. 

4.6. Velocity and Force Characterisation 

In the previous analysis, average RMS values were extracted to describe the energy 

within every flexion and static contraction. However, since raw EMG signals obtained 

from any muscle cannot be precisely reproduced on different occasions, digital 

smoothing algorithms are applied to the signals in order to create an envelope of the 

signal’s development in time. This signal envelope also contains useful interpretation 

information and while there are several algorithms which may be used, enveloped 

RMS signals have been obtained in this work to determine motion and force 

contraction characterisations [10] [119]. The enveloped RMS signal that was obtained 

with time during elbow flexions and extensions, in relation to the elbow joint velocity, 

is shown in Figure 4.17.  

This plot shows five continuous flexion and extension repetitions. Since the biceps 

muscle is the primary mover for flexion motions, as is clearly indicated in the plot, 

only the signal behaviours during flexions will be considered in this discussion. 

From this relationship between the EMG RMS profile and the arm motion profile, it 

may be roughly concluded that the peak RMS values for every flexion correspond to 

the peak arm velocity. By only considering this peak point, which is also the point of 

the largest muscle recruitment, it is envisaged that the best characterisation of the 

movement may be obtained.  

 

Figure 4.17 - The Biceps EMG RMS signal showing to vary with respect to the increase and decrease 

in elbow joint velocity during elbow flexions. The above zero velocities refer to elbow flexions while 

below zero velocities refer to elbow extensions. Since the biceps muscle is the primary mover for 

flexion motions, a high EMG response is only obtained during flexions. 
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Therefore, it may be concluded that the peak RMS value obtained during flexion 

generally represents the maximal kinetics of the arm movement. This peak RMS point 

may be described to be the maximum instance following the RMS transient stage of a 

dynamic movement. 

For the best characterisation of static contractions, the behaviour of the EMG RMS 

envelope profile is to be related to changes in force levels, as shown in Figure 4.18. 

EMG signals during a static contraction are termed as steady-state. As shown in this 

plot, as soon as a static contraction level is reached, the EMG signal settles within a 

small range, ranging in amplitude levels with force level fluctuations. In contrary to 

the dynamic contractions discussed above, due to the nature of EMG signals during 

such static contractions, the best contraction characterisation is at any point in time.  

The best characterisation points identified for both contractions relate to the way that 

an intuitive intent interpretation system may be designed. Whilst such 

characterisations have been obtained from a singular biceps sEMG channel, it is 

expected that finger movements as well as grasp contractions are similarly performed. 

4.7. Conclusion 

This chapter was aimed at identifying whether the EMG signals extracted during the 

two contraction types may contribute information in relation to the force and velocity 

parameters as well as identify which sEMG signal aspects best characterise these 

contraction types. The relationships obtained between the sEMG RMS feature and the 

force and velocity parameters confirmed that both transient and steady-state sEMG 

signals contain information in relation to the respective contraction exerted.  

 

Figure 4.18 - The Biceps EMG RMS envelope signal increases with an increase in force exertion, 

which then settles within a narrow band during static force exertion of approximately 80N, and then 

decreases again with a decrease in force exertion.  
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This means that intuitive action intent could actually be achieved by separating motion 

contractions from force contractions, utilising the necessary information when 

required. 

In order to identify motions from dynamic contractions, it has been concluded that the 

peak RMS point following the transient signal appears to be the best characterisation 

of the maximal kinetic of the motion. Meanwhile, there is no particular RMS point 

which best characterises static contractions, with the signal fluctuating with the 

contracted force level, in time. This singular EMG feature could therefore be used to 

discriminate between different hand motions as well as different grasping levels 

through intuitive hand use.  

With appropriate use of this feature, a suitable prosthetic intent interpretation system 

could thus be implemented, with the aim of maximising the simplicity, dexterity and 

usability trade-off as identified in Chapter 1. This was to be done by keeping in mind 

the overall action intent system’s efficiency, delay and reliability for intuitive control. 

Therefore, in this next chapter, the use of sEMG signals obtained from multiple skin 

surface locations on the forearm will be discussed in relation to the performance of 

different hand motions and grasps.  
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5. Intent Interpretation Framework Design 

Following the specifications listed in the Introduction Chapter, as well as the 

information collected during the experiments reported in Chapter 4, one could devise 

the intent interpretation framework required to operate a prosthetic hand. For this 

framework to be in accordance with the required balanced trade-off, shown in Figure 

5.1, various decisions had to be made throughout the different design and 

implementation stages, as will be explained in the upcoming sections. 

5.1. Proto-Motions Characterisation 

In order to provide the amputee with the capability of performing a large number of 

Activities of Daily Living (ADLs), the choice of grasping techniques which were to 

be made available had to be chosen carefully. The main aim was that the number of 

available commands was kept low for the sake of device simplicity and usability whilst 

still offering a fairly dexterous tool. In the literature, various grasps have been utilised, 

with the numbers and types varying between different research, as mentioned in 

Section 3.4. An analysis of the joint finger kinematics of various hand movements 

useful for ADL was carried out by a colleague within the context of the MAProHand 

project [120]. The conclusions from that analysis is reported in the next page and used 

in this study. 

 

Figure 5.1 - The defined requirements for a balanced trade-off intent interpretation framework for 

hand prostheses. 
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Volunteers carried out ADLs with their constrained non-dominant hand while wearing 

a measurement glove to acquire finger joint kinematics. A principal component 

analysis of the joint kinematic data was carried out to obtain the Principal Components 

(PCs) which described most of the variance in the finger joint space. Since the obtained 

PCs could not be intuitively performed by the human hand, three human-like gestures, 

each transitioning between two grasps representing the extreme ends of the gestures, 

were chosen after careful analysis such that each gesture approximated one of the PCs, 

as shown in Figure 5.2. These gestures are here referred to as Proto-Gestures (PGs). 

The range of grasps within the first Proto-Gesture, PG1, is the most useful to a 

prosthetic user due to the highest joint angle variance, with the second and third Proto-

Gestures, PG2 and PG3, respectively, contributing to less generally used grasps for 

ADLs. In this present work, it was sought to provide the user with acceptable dexterous 

capability of controlling a mechanical hand through the range of motions identified for 

these three PGs. 

These PGs therefore allow the user to utilise any of the grasps which lie on the 

respective PG lines during the prosthetic arm’s travelling, ultimately resulting in more 

grasping variations that may be exploited during task execution by the user. The grasps 

represented by the two extremes of each PG are listed in Table 5.1. Grasp 1+ and Grasp 

1- are the grasps lying at the opposite extremes of PG 1. The same notation applies for 

the four other Grasps representing the other two PGs. 

 

Figure 5.2 - The 3 resultant Proto-Gestures made up of 2 different grasp extremes each [120]. 
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Table 5.1 - Defining the 3 grasp pairs representing the two extremes of the 3 Proto-Gestures. 

Proto-

Gesture 
PG 1 PG 2 PG 3 

Grasp 

Number 
1+ 1- 2+ 2- 3+ 3- 

Grasp 

Type 

Toothpaste 

Cap Grasp 

a.k.a. 

Closed 

Fingers 

Grasp 

Tablet 

Grasp 

a.k.a. 

Open 

Hand  

Paper 

Grasp 

Medium-

Sized Cup 

Grasp 

Body 

Cream 

Container 

Grasp 

Sewing 

Pin 

Grasp 

 

For this work, it was concluded that as a means of intuitive instruction, the subject 

should perform the movements in the same manner as the mechanical prosthetic hand 

would be required to perform. Thus, in order to make it easier for the subject to 

transition between the grasps without having to learn a lot of different grasping 

combinations, it was decided that only four movement sequences (relating to input 

control commands) should effectively be used. These motion sequences, referred to as 

Proto-Motions (PMs), consist of three different hand-closing PMs and one generic 

hand-opening PM. Proto-Motions involve movement performance from an initial hand 

grasp to an end grasp, in accordance to the PG end grasps listed in Table 5.1, with the 

difference that the relatively open hand Grasp 2- and Grasp  3+ are replaced by the 

open hand Grasp 1-. Therefore, these Proto-Motions allow the subject to navigate the 

mechanical prosthetic hand between the grasp extremes: Grasp 1- to/from Grasp 1+; 

Grasp 1- to/from Grasp 2+; and Grasp 1- to/from Grasp 3-. These yield the four Proto-

Motions listed in Table 5.2.  

Table 5.2 - The Initial and End Hand Postures which make up the four Proto-Motions. 

Proto-Motion  PM 1 PM 2 PM 3 PM 4 

Initial Hand 

Grasp 

Closed Fingers 

Grasp/ Neutral 

Posture/ Paper 

Grasp/ Sewing 

Pin Grasp 

Open Hand 

Grasp 

Open Hand 

Grasp 

Open Hand 

Grasp 

End Hand Grasp 
Open Hand 

Grasp 

Closed 

Fingers 

Grasp 

Paper Grasp 
Sewing Pin 

Grasp 
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Proto-Motion PM 1 refers to the generic hand-opening motion, which may be activated 

by starting from any of the three closed hand grasps or the neutral hand state (the 

effortless posture which our hand naturally settles in with the least muscle tension). 

Meanwhile, Proto-Motions PM 2, PM 3 and PM 4 are the three hand-closing motions, 

which are activated by starting the movement from the ‘Open Hand’ grasp and ending 

in the ‘Closed Fingers’, ‘Paper’ or ‘Sewing Pin’ grasps, respectively. 

In this manner, the subject would be able to choose the required Proto-Gesture and the 

direction of travel (opening or closing). It should be noted that this is different from 

the static posture methods used for posture classification in the literature described in 

Section 3.4. The subject would then be able to instruct the grasping levels of the 

prosthetic hand in accordance to the end grasp of the instructed motion as soon as 

contact with an object is made to achieve the intuitive flow discussed in Section 3.6. 

5.2. sEMG Data Acquisition Equipment 

In the literature review of Section 3.1.1, it was noted that six to eight symmetrically 

placed electrodes would be suitable for hand movement data collection. The Myo 

armband [121] is a widely-used device [122] [123] for hand EMG data acquisition. 

This armband consists of eight active EMG electrodes, referred to as pods, arranged 

in a band-like fashion in a manner which can be easily worn by subjects on their 

forearm. The in-built transmission module allows wireless data transmission through 

the Bluetooth Low Energy (BLE) protocol. Figure 5.3 shows a schematic of the Myo 

armband which operates at a sampling frequency rate of 200Hz, thus providing a 

frequency range from 0Hz to 100Hz. Despite this small range, it is known [123] [124] 

that this is still useful for hand movement classification. In view of the suitability of 

this portable and wireless EMG acquisition system, the Myo armband was chosen to 

acquire hand EMG data for the design of the EMG analysis algorithms. 

 

Figure 5.3 - The Myo Armband [125]. 

Logo LED 

Status LED 

Electrical 

Sensors 

Expandable Flex 

Micro-USB 

Charging 

Port 



63 

 

5.3. Signal Phases Identification 

As has been confirmed in Chapter 4, sEMG signals are capable of providing us with 

information during both isometric and anisometric contractions. In order to exploit the 

two contraction types suitably, it was decided that the two kinds of contractions shown 

in Figure 5.4 were to be utilised during different parts of the intent interpretation 

framework. The sEMG features obtained during anisometric contractions were to be 

used to determine the user’s commands with respect to the hand’s desired movement 

direction according to the Proto-Motions defined in Table 5.2. The sEMG features 

obtained during isometric contractions were to be used to determine the prosthetic 

hand’s grasping force. As can be seen in Figure 5.4, in order to determine the intended 

Proto-Motion, features need to be extracted from the brief time period of anisometric 

contraction, here referred to as the Movement Phase.  

Conversely, features from the isometric contractions, here referred to as the Force 

Phase, are extracted from the period that comes after the Proto-Motion has been 

determined. These features are used to determine the level of force that the subject 

wishes to exert and which the user will ramp up to the required force level.  

As was stated in Section 2.2.5, pattern recognition and proportional control techniques 

were thus implemented for intent interpretation of the Movement Phases and Force 

Phases, respectively. 

       

Figure 5.4 - Plots showing the behaviour of the eight EMG signals’ during anisometric (shaded in 

blue) and isometric (shaded in pink) contractions, respectively. The top plot shows the raw EMG 

signals while the bottom plot shows the processed, EMG RMS signals using a 250 ms sliding window. 
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It may be noted that the sEMG plots have arbitrary units since the Myo armband 

converts the EMG analogue voltage signal sample to a digital number without any 

calibration information.  This however does not pose any limitation on the use of the 

Myo armband since the EMG analysis algorithms only require relative EMG values. 

For easier visual phase distinction, Figure 5.4 shows the two contraction types relating 

to the two phases, separately. However, for final prosthetic system use, the Force 

Phase is to be initiated as soon as the intended Proto-Motion is identified from the 

Movement Phase, lasting for as long as a pre-determined condition is met. This creates 

a loop such that the system always initiates in the Rest Phase, where the system is 

neither in the Movement Phase, nor the Force Phase. In this phase, the continuous 

extracted signal features could either indicate Movement Phase detection or no change 

in state. Once the Movement Phase is entered, sEMG features for motion command 

are extracted. Following Proto-Motion identification, the system then automatically 

enters the Force Phase where sEMG features are then extracted for force estimation 

commands until a pre- determined condition is reached, returning the system back to 

the Rest Phase. This flow is provided in Figure 5.5. 

Nevertheless, for this work, the implementation of the two contraction type commands 

obtained from their respective phases were separately identified and analysed. Thus, 

the sub-systems within this flow were individually recognised. 

 

 

Figure 5.5 - The prosthetic framework flow, looping from the Rest Phase (blue blocks) to the 

Movement Phase (pink blocks) and the Force Phase (green blocks). 
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5.4. Movement Phase Intent Interpretation System 

The Movement Phase intent interpretation system refers to the system developed to 

detect a Movement Phase from a Rest Phase, as well as identify the user’s intended 

motion command. While a prosthetic action intent system is required to run online, or 

in real time, such that a decision can be made with regard to the prosthetic hand’s state 

with every sample in time, an offline system is often used during the development 

stages to permit the study of different parameters. The main difference between the 

two is the ability of real-time feedback that may be provided to the user of an online 

system, which is not provided with offline systems. 

The developed Movement Phase system can be divided into four stages as shown in 

Figure 5.6, namely: data collection, signal processing, movement detection and Proto-

Motion identification. These four steps have been designed in a way as to ensure that 

the final system is balanced with respect to the three-attribute trade-off of simplicity, 

dexterity and usability, as will be explained throughout the text.  

5.4.1. Data Collection 

For sEMG data acquisition to take place through Matlab, the Myo band’s Software 

Development Kit (SDK), which allows third party application interactions with the 

device, was used. For a successful interaction, a MEX file developed by Tomaszewski 

[126] was used such that EMG data could be enabled and streamed through the Matlab 

platform.  

 

Figure 5.6 - The Movement Phase intent interpretation system flow made up of the data collection, 

signal processing, movement detection and Proto-Motion identification stages. [Some Resources for 

this design have been obtained from Freepik.com] 
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5.4.2. Signal Processing 

The Myo armband does not provide developers with all the necessary specifications, 

in particular, it gives no information regarding the electronic low-pass filtering used. 

In order to obtain further understanding of the recorded sEMG signals, a frequency 

analysis was performed on some preliminary signals.  

Figure 5.7 shows the magnitude spectrum of one sEMG signal corresponding to a hand 

movement. It may be noted that a 50Hz notch filter is being employed, however there 

is no clear indication of any other filtering being employed. A DC value was also noted 

and in an attempt to investigate whether signal detrending and high-pass filtering 

reduce the DC, preliminary tests were performed where signals were detrended and 

also high-pass filtered at a cut-off frequency of 10Hz. While this DC value was indeed 

reduced, no improvements were yielded on the Proto-Motion system, thus, it was 

decided that the signals were not to be digitally filtered or detrended.  

Based on the discussions held in the literature review provided in Section 3.2.2 as well 

as that of Section 4.3.3, it was decided to extract solely the RMS feature from the EMG 

signals for the determination of the intended Proto-Motion, as well as for force 

estimation. Based on the discussion of Section 3.1.2, as well as from initial 

experimental analysis of the overall developed system as discussed in the next 

sections, the RMS feature was decided to be extracted from a sliding window of 

250 ms with a single sample displacement of 5 ms. This window length was chosen as 

a balanced trade-off between keeping low feature variance and high sensitivity for 

action onset. Shorter window lengths, such as 100ms, increased the feature variance 

and negatively affected motion classification accuracy.  

 

Figure 5.7 - Single-Sided Magnitude Spectrum of an sEMG signal from one electrode for one 

movement performance. 
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5.4.3. Movement Detection 

In order to remove the need for a classifier to continuously predict the user’s current 

state and thus reduce the number of misclassifications that may result from this 

classifier, a Movement Detection Stage was introduced.  

This stage should be robust to random muscle twitching or contractions, therefore, it 

cannot be a simple sEMG onset algorithm [37] [38], ideally only detecting the 

intentional movement commands. Therefore, the implemented method was based on 

Binary Linear Discriminants. 

The Binary Linear Discriminant Classifiers were designed to determine the class 

conditional posterior probability of an RMS feature belonging to a movement or a rest 

class. Section 3.2.1 showed that Linear Discriminant Classifiers have been 

successfully used for myoelectric systems, making the choice of this classifier a natural 

one. Since there are four Proto-Motion (PM) classes, four Binary Linear Discriminant 

Classifiers were used to pair-wise discriminate between each one of the four PM 

classes and the Resting class [127] [128] [129].  

According to Bayes’ Theorem, when only considering two classes, the posterior 

probability for class 𝐶1, 𝑝(𝐶1|𝒙) with respect to class 𝐶2 is given by Equation (5.1): 

𝑝(𝐶1|𝒙) =  
𝑝(𝒙|𝐶1)𝑝(𝐶1)

𝑝(𝒙|𝐶1)𝑝(𝐶1) +  𝑝(𝒙|𝐶2)𝑝(𝐶2)
=  

1

1 + 𝑒𝑥𝑝(−𝑎)
=  𝝈(𝑎) (5.1) 

 

where, 

𝑎 =  𝑙𝑛
𝑝(𝒙|𝐶1)𝑝(𝐶1)

𝑝(𝒙|𝐶2)𝑝(𝐶2)
 ; (5.2) 

𝝈(𝑎) is the logistic sigmoid; 

𝑝(𝒙|𝐶𝑘) is the class conditional probability density function for 𝐶𝑘; 

𝑝(𝐶𝑘) is the class prior for 𝐶𝑘; 

𝒙 is the feature vector. 

 

The class prior, 𝑝(𝐶𝑘) specifies the probability that a feature vector 𝒙, may belong to 

𝐶𝑘. The class priors may be estimated by using Equation (5.3) [130]. 
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𝑝(𝐶𝑘)  =  
𝑛𝑘

𝑁
  (5.3) 

where, 

𝑛𝑘 is the number of training instances belonging to 𝐶𝑘; 

𝑁 is the total number of training instances. 

 

Consider that the features of the classes are assumed to be Gaussian distributed. The 

multivariate Gaussian distribution density function for class 𝐶1, 𝑝(𝒙|𝐶1) is given by: 

 𝑝(𝒙|𝐶1) =  
1

(2𝜋)
𝐷
2  |𝜮𝟏|

1
2

 𝑒𝑥𝑝 {−
1

2
(𝒙 − 𝝁𝟏)

𝑇𝜮𝟏
−1(𝒙 − 𝝁𝟏)} (5.4) 

  
where, 

D is the dimension of the feature vector; 

𝜮𝟏 is the covariance matrix of the training feature vectors for class 𝐶1; 

|𝜮𝟏| is the determinant of 𝜮𝟏; 

𝝁𝟏 is the mean of the training feature vectors for class 𝐶1. 

 

For Linear Discriminants, the classes are modelled with equal covariance matrices for 

both classes, 𝐶1 and 𝐶2, as shown in Equation (5.5). This is modelled by pooling-in the 

two class covariance matrices to obtain the common covariance matrix as shown in 

Equation (5.6). In order to eliminate issues of singularity and ill-conditioned matrices, 

a regularisation term is included for covariance matrix inversion, as shown in 

Equation (5.7) [131] [132]. 

𝜮𝟏 = 𝜮𝟐 = �̂� (5.5) 

  

�̂� =  
∑ ∑ 𝑀𝑛𝑘(𝒙𝒏 − 𝝁𝒌 )(𝒙𝒏 − 𝝁𝒌 )

𝑇𝐾
𝑘=1

𝑁
𝑛=1

𝑁 − 𝐾
 (5.6) 

  

�̂�𝜸 = (1 − 𝛾) �̂� +  𝛾𝑰 (5.7) 

 

 

where, 

𝑀 is an 𝑁 by 𝐾 class membership matrix such that 𝑀𝑛𝑘 = 1 if observation 𝑛 is from 
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class 𝑘 and 𝑀𝑛𝑘 = 0 if otherwise; 

𝐾 is the total number of classes; 

𝑁 is the total number of training feature vectors; 

𝝁𝒌 is the mean of the training feature vectors for class 𝑘; 

𝒙𝒏 is the feature vector at observation 𝑛; 

𝜮𝒌 is the covariance matrix of class 𝐶𝑘; 

�̂� is the pooled-in covariance matrix; 

�̂�𝜸 is the regularised covariance matrix; 

𝛾 is the regularisation term in the interval [0,1]; 

𝑰 is the Identity Matrix having the same dimensions as 𝜮. 

 

Hence, for a two-class problem, the posterior probability for 𝐶1, representing the 

probability of the PM, can be obtained from Equation (5.8), as derived from 

Equations (5.1) and (5.2). 

𝑝(𝐶1|𝒙) =  𝝈((�̂�−1(𝝁𝟏 − 𝝁𝟐))
𝑇

𝒙 −
1

2
𝝁𝟏

𝑇�̂�−1𝝁𝟏 + 
1

2
𝝁𝟐

𝑇�̂�−1𝝁𝟐 + ln
𝑝(𝐶1)

𝑝(𝐶2)
) (5.8) 

 

The four posterior probabilities obtained at every time sample during rest and motion 

instances have been empirically found to mainly result in a 0 or 1 value, as shown in 

Figure 5.8. In this figure, for different PM performances, all four posterior probabilities 

increase to a value of 1, albeit at slightly varying instances, clearly identifying the 

boundary within which a motion has been detected. It may also be noted that in those 

time instants where the subject is at rest in any of the grasp postures, all four 

discriminants detect that the subject is, in fact, at rest, with the class conditional 

probabilities resulting in a value of 0. Furthermore, while this figure shows very crisp 

probability changes, this is not the case for all subjects in all instances, with changes 

in the behaviour of these probabilities depending on the training data as well as the 

motion performance.  
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Figure 5.8 - The sEMG RMS signals obtained during different PM Performances and their respective 

Binary Linear Discriminant Probabilities. The numbers at the top of the first plot indicate the PM 

occurring in the EMG signal train. The PM numbers represent the PMs described in Table 5.2. The 

bottom plots in blue, green, grey and pink refer to the probability of a movement detection 

occurrence, M, obtained from the four PM – Rest pair-wise discriminants. 𝑝1(𝑀|𝒙) refers to the 

PM 1 – Rest binary Classifier such that the subscript number relates to the PM class. These 

probabilities are solely used for Movement Detection. 

Movement detection is required to occur within the transient phase of the motion, prior 

to reaching the EMG RMS peaks. Therefore, the threshold for movement detection 

has been set to be the point where at least one of the four class conditional posterior 

probabilities have exceeded 0.5. Once this threshold is exceeded, a motion detection 

indicator flags this instance in variable 𝑀𝐷(𝒙), as provided in (5.9). 

𝑀𝐷(𝒙) = {
0, 𝑝(𝐶1|𝒙) < 0.5  ∧  𝑝(𝐶2|𝒙) < 0.5 ∧  𝑝(𝐶3|𝒙) < 0.5  ∧  𝑝(𝐶4|𝒙) < 0.5 

1, 𝑝(𝐶1|𝒙) > 0.5  ∨  𝑝(𝐶2|𝒙) > 0.5 ∨  𝑝(𝐶3|𝒙) > 0.5  ∨  𝑝(𝐶4|𝒙) > 0.5
 (5.9) 

where, 

𝑀𝐷(𝒙) is the movement detection flag for feature vector 𝒙; 

𝑝(𝐶𝑘|𝒙) is the class conditional posterior probability for PM 𝑘 with respect to the Rest 

class. 

1               2         1         3         1          4             1 
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It has been empirically determined that the same threshold value may be set for all four 

binary classifiers. This threshold value needs to be carefully set to obtain a trade-off 

such that false movement detection is minimised and true movement detection is 

maximised. For this work, a value of 0.5 has been found to be satisfactory.  

In order to reduce the chances of false movement detection, a minimum period of 

samples is required for the class conditional posterior probability to continuously 

remain above the probability threshold to accept this as a valid movement detection. It 

was empirically found that 20 samples, corresponding to 100 ms, were sufficient for 

this purpose. This time window is denoted by 𝑊𝑇. Therefore, if 𝑊𝑇 consecutive 

samples are above the probability threshold, it is considered that a motion has been 

detected and consequently, the system enters the Proto-Motion Identification stage to 

identify the specific motion intended by the subject. 

𝑊𝑇 was carefully chosen to satisfy a trade-off between the maximisation of actual 

movement detections and minimisation of non-movement detections whilst also 

minimising detection delay. As shown in Figure 5.9, the three initial pink-shaded 

periods which occur during an instant where the subject should have been at rest 

indicate that the class conditional posterior probability for at least one Proto-Motion 

exceeded the threshold, however, these were short-lived at lengths of 18, 12 and 10 

samples respectively, and were therefore ignored. Conversely, at around the 2750 ms 

instant, where the subject actually performed an intended hand movement, a class 

conditional posterior probability exceeded the threshold and remained above the 

threshold for 168 samples, satisfying 𝑊𝑇, hence leading on to the Proto-Motion 

Identification stage. This condition makes the movement detection more robust to false 

movement detections.  

This figure also supports the chosen 𝑊𝑇 since with a shorter 𝑊𝑇, the three initial 

instances may be falsely detected as movements. Meanwhile with a slightly longer 𝑊𝑇, 

the intended movement shown in this figure would still be detected. However, other 

performed movements resulting in signals which vary from the norm, may result in 

fewer samples where a class conditional posterior probability exceeds the threshold, 

risking them to be incorrectly ignored. 
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Figure 5.9 - A plot showing a period where the subject should have been at rest in the initial grasp, 

the performance of a Proto-Motion at around 2750 ms, and the return to rest in the final grasp. The 

pink shaded areas show the instances where the probability threshold was exceeded for at least one of 

the four discriminants. The first three areas were short-lived, indicating that these were not actual 

movements while the actual Proto-Motion was clearly detected, with the number of samples above 

threshold satisfying 𝑊𝑇. 

5.4.4. Proto-Motion Identification 

As indicated in Section 4.6, the peak EMG RMS values observed during elbow 

anisometric contractions closely corresponded to the peak movement velocity. This 

indicates that the peak RMS value is a suitable characterisation of movement kinetics. 

During Proto-Motion performances, similar EMG RMS profiles to those obtained 

during the arm movements were recorded. Therefore, by only considering the peak 

RMS values after motion onset, a general representation of the maximal kinetics of the 

Proto-Motion may be obtained. Thus, it was suggested that the eight RMS signal 

maxima values could be extracted and used as a feature to represent the Proto-Motion. 

Since the RMS peaks of different channels have been generally found to occur within 

a few milliseconds from each other, the peak value from each channel may be extracted 

such that all the peak values are combined into one feature vector to characterise the 

Proto-Motion, as shown in Figure 5.10.   

This can also be represented with a mathematical notation as follows: 

Let the RMS of EMG Pod 𝑘 be 𝑥𝑘(𝑡) and the total number of EMG Pods be 𝐾, where 

𝑘 ∈ {0,… , 𝐾 − 1}. Since the motion detection onset occurs at time 𝑇, the peak of 

𝑥𝑘(𝑡), defined as 𝑥𝑘
∗ , occurs at 𝑡 >  𝑇, resulting in the feature vector in (5.10). 

𝒙∗ = [

𝑥0
∗

⋮
𝑥(𝐾−1)

∗
] (5.10) 
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Figure 5.10 - A plot showing the 8 EMG RMS signals during a Proto-Motion performance, and their 

individually detected peaks. The areas which are not shaded in pink are the resting instances in the 

starting grasp and end grasp, respectively. 

Thus, once a valid movement as discussed in Section 5.4.3 is detected, the RMS 

maxima occurring after the first valid above-threshold movement detected sample are 

sought for each EMG channel. For real-time systems, the prosthetic hand is to act on 

the user’s movement intention within the electromechanical delay (EMD) range [70], 

to provide a sense of agency to the user [133] [134]. This delay is defined to occur 

between the time when the central nervous system (CNS) sends the motion instruction 

to the limb muscles and the actual contraction of these muscles and it is typically less 

than 300 ms [135] [136].  

While it is important that any Proto-Motion performed by the subject is to be identified 

within this EMD range, one is to also ensure that the trade-off between the motion 

identification delay and the identification accuracy is maximised. 

The search for the RMS maxima is done within a time-window 𝑊𝐿𝑀, which is initiated 

from the first valid above-threshold movement detected sample. From preliminary 

testing, the 𝑊𝐿𝑀 values shown to detect all channel RMS maxima were identified to 

be between 200 ms and 300 ms. Figure 5.11 shows the discrepancies in the RMS 

maxima detected for 𝑊𝐿𝑀 = 200 ms and for 𝑊𝐿𝑀 =  300 ms for the same motion 

shown in Figure 5.9.  

As can be noted, the 𝑊𝐿𝑀 window is completely dependent on the movement 

detection instance. Therefore, if the movement detection threshold is exceeded as soon 

as the motion is initiated, then a longer window is required to enable the identification 

of the signal maxima. However, a shorter 𝑊𝐿𝑀 window is sufficient if the threshold 

is exceeded halfway through the motion transient. 
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Figure 5.11 - Plots showing the Above Threshold Instances as well as the windows used for Proto-

Motion RMS maxima detection. The top and bottom plots demonstrate the peaks detected with 200 ms 

and 300 ms 𝑊𝐿𝑀 values, respectively. The purple windows, indicating the RMS peak detection 

windows, start at the first Movement Detection Instance depicted by the underlying pink window. 

The RMS maxima found in this window constitute the feature vector which is used to 

determine the Proto-Motion. As has been concluded in Section 3.7, a multi-class 

Gaussian LDA is used to classify the feature vector into one of the four Proto-Motions 

(PMs) and a Rest class. The inclusion of a Rest class at this stage makes it possible 

that any false movement detections may still be potentially identified as being none of 

the PMs. 

Similar to the Gaussian LDA used for movement detection in Section 5.4.3, the 

assumption that the class distributions are normally distributed with equal covariance 

matrices is still retained [127] [128]. In this case, the class of any feature vector 

instance is found by using (5.11) [127]. 

𝐶𝑘(𝒙) =   𝑎𝑟𝑔 max
𝑘

𝛿𝑘(𝒙) (5.11) 

where, 

𝐶𝑘(𝒙) is the class determined by the classifier for feature vector 𝒙; 
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𝑘 ∈ {1,… , 4} is the class index each representing the Proto-Motion 𝑘, and 𝑘 = 5 is the 

class index representing the Rest class; 

𝛿𝑘(𝒙) is the linear score function of class 𝐶𝑘 for feature vector 𝒙, shown in 

Equation (5.12) [127]. 

𝛿𝑘(𝒙) =  (�̂�−1𝝁𝑘)
𝑻𝒙 − 

1

2
𝝁𝑘

𝑇 �̂�−1𝝁𝑘 + ln 𝑝(𝐶𝑘) (5.12) 

where, 

𝝁𝑘 is the mean vector obtained from the training data of 𝐶𝑘; 

𝑝(𝐶𝑘) is the prior probability of class 𝐶𝑘 as shown in Equation (5.3). 

�̂� is the common pooled covariance as provided in Equation (5.6); 

 

Therefore, for any feature vector, 𝒙, the linear score function 𝛿𝑘(𝒙) is estimated for 

the five different classes and 𝒙 is assigned to the class with the largest linear score. 

From this score, separate class probabilities could also be found by using the sigmoid 

function as was done in Section 5.4.3. The linear decision boundaries created by such 

an LDA for three classes in a two-dimensional space is illustrated in Figure 5.12. 

The LDA classifier for this work’s system has been designed on Matlab by using the 

fitcdiscr function for the five classes, namely, PM 1, PM 2, PM 3, PM 4 and Rest. This 

function implements a regularised LDA, such that the covariance matrix used is 

regularised, as had been provided in Equation (5.7) [132]. 

 

 

Figure 5.12 - Linear decision boundaries found by an LDA to classify three classes [137]. 
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For motion detection, the amplitude of the channels is the most suitable deterministic 

factor to discriminate resting instances from movement instances and thus, no data 

standardization or normalization is performed. However, for motion identification, it 

was noted that the different EMG pattern sequences which are physiologically created 

by the muscle fibers in the different forearm areas are a more suitable discriminant 

than the signal amplitudes. Thus, for better separability between the feature vectors of 

the five different classes, feature vector normalization is carried out. This is done by 

firstly centering the data by removing the mean data vector, resulting in zero-mean 

data. The feature vector is then transformed into a unit norm vector such that it is 

effectively projected onto the unit sphere. This normalization is done with regard to 

the muscle recruitment pattern such that motion discrimination is based on the muscle 

synergistic pattern rather than the actual level of recruitment and this computation is 

provided in Equation (5.13). 

�̂�𝑖 = 
𝑥𝑖 − 𝜇𝑖

√∑ (𝑥𝑖 − 𝜇𝑖)27
𝑖=0

 
(5.13) 

where, 

𝑖 ∈ {0,… , 7} is the EMG channel index; 

�̂�𝑖 is the normalized feature value for channel 𝑖; 

𝑥𝑖 is the EMG RMS feature value for channel 𝑖; 

𝜇𝑖 is the mean value over all classes for channel 𝑖. 

 

By only targeting the RMS maxima of the motion for identification, the multi-class 

classifier is only required to make a class prediction once per detected movement. This 

removes the need for additional post-processing which has to be implemented with 

continuous classifiers. Such a step would otherwise be important, especially when 

considering the temporal changes in the transient signals. Due to this decision, training 

data is also drastically reduced, reducing the overall memory requirements of an 

onboard system to store such data in those cases where the classifiers would need to 

be re-trained. 

The EMG signals recorded during Proto-Motion performances that were shown in 

Figure 5.8 are now shown in Figure 5.13, where these same motions are identified by 

the multi-class classifier. In the top plot, the samples which exceeded the binary class 
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threshold as described in Section 5.4.3 are shown in pink. Since the above-threshold 

period exceeds 𝑊𝑇 for every individual motion, the Proto-Motion Identification stage 

is initiated every time such that a 200 ms 𝑊𝐿𝑀 window, depicted in purple, is used to 

find the channel maxima from which the feature vector for proto-motion classification 

is constructed.  

 

 

 

 

 

 

 

Figure 5.13 - The sEMG RMS signals recorded during seven PM performances and their respective 

multi-class posterior probabilities during Motion Identification Instances. The top plot shows those 

samples which were found to be above the movement detection threshold, the windows used to find the 

8-channel peaks, the peaks detected, as well as the instance where a motion identification prediction 

was prompted. The numbers adjacent to every motion indicate the Proto-Motion performed. The PM 

numbers represent the PMs described in Table 5.2. The bottom plots show the posterior probabilities 

of the five classes within the multi-class classifier in time. 
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This 𝑊𝐿𝑀 window overlaps the pink, above-threshold window, such that it initiates at 

the first above-threshold sample. The motion identification decision is then made at 

the last 𝑊𝐿𝑀 sample, as shown in the figure with a black dot. At this instant, the 

recorded channel maxima from the 𝑊𝐿𝑀 window are utilised as the feature vector used 

to determine the posterior probabilities of the five classes within the multi-class 

classifier. The five bottom plots show the class-conditional posterior probabilities 

during these seven motion identification instances. 

The numbers adjacent to every motion in the top plot indicate the Proto-Motion 

performed. Therefore, by comparing the resulting class posterior probabilities 

illustrated in the bottom plots, it can be concluded that the system correctly predicted 

all seven motions. 

Since the system does not perform continuous multi-class classification, the 

probabilities for the five classes for all the non-motion identification samples are 

automatically set to 0. 

5.4.5. Alternative to the LDA Classifiers 

As has been mentioned above, LDA classifiers make two assumptions; that the data is 

normally distributed and the covariance matrices of the classes are equal. In order to 

test whether these conditions were met for different subjects, Mardia tests [138] and 

Bartlett tests [139] were implemented to determine multivariate normality and 

covariance matrix equality of Proto-Motion data collected from different subjects. A 

5% level of significance was used for both tests. 

Multivariate normality was also tested by using Quantile-Quantile (Q-Q) plots. Since 

the number of variables in this work was not singular, the squared distance from the 

centre of the data quantiles were plotted against a chi squared distribution. The choice 

of using squared distance values was since a specific positive or negative direction to 

the mean of the centre of the data cannot be defined when dealing with multiple 

dimensions [140]. 

Whilst the covariance matrices were not found to be equal for all subjects, multivariate 

normality varied between subjects and classes. Normality significance also varied for 

normalized and non-normalized data for different subjects. The Rest class was also 

found to not satisfy normality in all cases, for all subjects. This was expected since this 
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class was a combination of iterations recorded with the subject in different grasps, at 

resting levels. 

Since the above suggests that linear discriminant conditions are violated to some extent 

by any subject, the LDA classifiers are not optimal. However, reduction in optimality 

may still be deemed as acceptable whenever simplicity is regarded as a large 

advantage. Due to their ease of computation, a less than optimal LDA classifier may 

still be regarded as a suitable choice, especially in work when the overall system would 

ultimately be required to operate on-board a microprocessor, as is the case with this 

work. The overall simplicity of these discriminants is also the reason why researchers 

opt for their implementation as the initial classifiers for any newly developed system 

[128].   

While empirical classification results indicated that the boundaries found by LDAs 

were suitable for the implemented Movement Phase system, a natural step was to 

determine whether another classifier which does not make any assumptions regarding 

the data could give better results.  

The Support Vector Machine (SVM) classifier is a non-probabilistic classifier [141] 

[142]. Whilst SVMs can be used as linear classifiers, the kernel trick makes it possible 

for the classifier to also have other decision boundaries if required [127]. However, for 

this work, the aim was to compare the performance of linear SVMs to LDAs, leaving 

higher dimensional space kernels unexplored. 

A linearly separable two-class SVM classification problem makes use of the linear 

model in (5.14) which serves as the decision boundary hyperplane [127]. 

𝑦(𝒙) =  𝒘𝑇𝜙(𝒙) + 𝑏 (5.14) 

where, 

𝒙 is the feature vector; 

𝜙(𝒙) is a fixed feature space transformation; 

𝑏 is a bias parameter; 

𝒘 is a vector containing the coefficients which define an orthogonal vector to the 

hyperplane.  

 

If 𝑡𝑛 is the target class, where 𝑡𝑛  ∈ {−1,1}, and 𝑛 is the input feature vector number, 
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𝒘 and 𝑏 should be chosen such that for all data points, 

𝑡𝑛𝑦(𝒙𝒏) > 0 (5.15) 

 

While many solutions may exist for 𝒘 and 𝑏, SVMs choose the values which lead to 

a maximised margin, where a margin is defined to be the perpendicular distance 

between the closest data point to the decision boundary and the boundary itself. The 

margin is maximised by utilising a subset of data points, termed as support vectors, 

rather than the closest data point, as provided in Figure 5.14. 

For margin maximisation, all training data points need to satisfy (5.16) and (5.17), 

leading to a quadratic programming problem, where  𝑛 = 1,… ,𝑁.  

𝑡𝑛(𝒘
𝑇𝜙(𝒙𝑛) + 𝑏) ≥ 1 (5.16) 

arg min
𝒘,𝑏

1

2
‖𝒘‖2 (5.17) 

 

Through the use of Lagrange multiplier terms, 𝑎𝑛 ≥ 0, new feature vectors may be 

classified using the model in (5.18). 

𝑦(𝒙) =  ∑ 𝑎𝑛𝑡𝑛𝑘(𝒙, 𝒙𝑛)

𝑁

𝑛=1

+ 𝑏 (5.18) 

 

where, 

 𝑘(𝒙, 𝒙𝑛) is the kernel function defined by: 

𝑘(𝒙, 𝒙′) =  𝜙(𝒙)𝑇𝜙(𝒙′). (5.19) 

 

𝑏 is found by: 

𝑏 =
1

𝑁Ѕ
∑(𝑡𝑛 − ∑ 𝑎𝑚𝑡𝑚𝑘(𝒙𝑛, 𝒙𝒎)

𝑚∈Ѕ

) .

𝑛∈Ѕ

 (5.20) 

where, 

Ѕ is the set of indices of the support vectors; 

𝑁Ѕ is the number of support vectors. 
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Figure 5.14 - Points from two classes (blue stars and red circles) are divided by a decision boundary 

hyperplane. This is chosen by the maximised margin, which is dominated by the support vectors (the 

points which lie on the margin hyperplanes, indicated by a bolder perimeter).  

Slack variables, 𝜉𝑛 ≥ 0 may also be included for each training data point such that 

data points are allowed to cross their margin boundary, at a penalty, changing the 

classification constraints in (5.16) and (5.17) to (5.21) and (5.22). The introduction of 

𝐶 > 0 is responsible for controlling the trade-off between the margin and the slack 

variable penalty. (5.18) could then be updated accordingly.  

𝑡𝑛(𝒘
𝑇𝜙(𝒙𝑛) + 𝑏) ≥ 1 − 𝜉𝑛 (5.21) 

arg min
𝒘,𝑏,𝜉

𝐶 ∑ 𝜉𝑛  +

𝑁

𝑛=1

 
1

2
‖𝒘‖2 (5.22) 

 

For this work, the four binary classifiers implemented as an alternative to the binary 

LDAs implemented in Section 5.4.3 were designed on Matlab by using the fitcsvm 

function [143]. The data, in this case, was standardised such that predictors were made 

insensitive to the measuring scales.  

Essentially, SVMs are binary classifiers, thus, a multiclass classifier using SVMs may 

be obtained through approaches such as the One-Versus-One and One-Versus-All 

methods [127]. For this work, an Error-Correcting Output Codes (ECOC) approach 

[144] [145] was implemented with a One-Versus-One coding design for the Proto-

Motion Identification stage. For this approach, the number of classifiers that were 

implemented using the fitcecoc Matlab function [146] were according to (5.23), where 

K is the number of classes.  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 =  
𝐾(𝐾 − 1)

2
 (5.23) 
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For this work, 10 binary SVMs were therefore required to be implemented to exhaust 

all class pair combinations with a coding matrix, 𝑴, as provided in Table 5.3.  

A feature vector could then be assigned to one of the five classes which minimises the 

overall loss value for all binary learners by using (5.24). 

�̂� = arg min
𝑘

∑ |𝑚𝑘𝑐|𝑔(𝑚𝑘𝑐, 𝑠𝑐)
𝐶
𝑐=1

∑ |𝑚𝑘𝑐|
𝐶
𝑐=1

 (5.24) 

where, 

�̂� is the classified class, 

𝑘 is the class number ∈ {1,… ,5}; 

𝑐 is the classifier number ∈ {1,… ,10} such that 𝐶 = 10; 

𝑚𝑘𝑐 are elements within the coding design matrix, 𝑴; 

𝑠𝑐 is the predicted classification score for the positive class of classifier 𝑐; 

𝑔(𝑚𝑘𝑐, 𝑠𝑐) is the binary loss formula provided in (5.25). 

𝑔(𝑚𝑘𝑐, 𝑠𝑐)  =
max(0, 1 − 𝑡𝑘𝑐 ∙ 𝑠𝑐)

2
 (5.25) 

 

The results from the implementation of this alternative approach, in comparison to 

LDA classifiers are discussed in Section 7.1.6 

 

Table 5.3 - The Coding Matrix used by the SVM ECOC where 10 classifiers are implemented such 

that for every one, only the two classes listed with a ‘1’ or ‘-1’ are considered as the binary classes to 

be classified. 

  Classifier 

  1 2 3 4 5 6 7 8 9 10 

C
la

ss
 

PM 1 1 1 1 1 0 0 0 0 0 0 

PM 2 -1 0 0 0 1 1 1 0 0 0 

PM 3 0 -1 0 0 -1 0 0 1 1 0 

PM 4 0 0 -1 0 0 -1 0 -1 0 1 

Rest 0 0 0 -1 0 0 -1 0 -1 -1 
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5.5. The Force Phase Intent Interpretation System 

Based on the discussion in Section 2.2.3, force control helps to make the behaviour of 

the prosthetic hand resemble that of the human hand, leading to increased prosthetic 

usability.  

As discussed in Section 4.6, EMG RMS values during a steady-state contraction 

represent the continuous contraction magnitude. For this prosthetic system, as 

discussed in Section 5.3, such contraction instances have been termed as Force Phases.  

Thus, when the system enters the Force Phase, each channel’s instantaneous RMS 

value may be combined into a vector from which a continuous force value is estimated 

for every time sample. 

This can also be represented with a mathematical notation as follows: 

Let the RMS of EMG Pod 𝑘 be 𝑥𝑘(𝑡) and the total number of EMG Pods be 𝐾, where 

𝑘 ∈ {0,… , 𝐾 − 1}. Since the Force Phase starts and ends at time 𝑇𝑓𝑠 and 𝑇𝑓𝑒, 

respectively, a feature vector is obtained for every time sample where 𝑇𝑓𝑠 ≤ t < 𝑇𝑓𝑒, as 

provided in (5.26). 

𝒙(𝑡) = [
𝑥0(𝑡)

⋮
𝑥𝐾−1(𝑡)

] (5.26) 

 

Since the robustness of such a force estimation system cannot be determined in an 

offline manner for the Force Phase signals, this system, unlike the Movement Phase 

system was only implemented with online conditions in mind. The data collection and 

signal processing steps discussed in Sections 5.4.1 and 5.4.2 for the Movement Phase 

system were also applied for this force estimation design. 

The most common force estimation methods consist of simple averaging across all the 

different EMG channels [69] [147] [148], requiring manual adjustment of class 

specific gain values and thresholds. Scheme et al. [69] tested three different 

proportional control systems for amputee hand speed performance. The best 

performing method made use of the subjects’ whole contraction dynamic range. In this 

method, instantaneous averages across all EMG channels are found for the different 

grasps which are then normalized between grasp specific maxima and minima. 

Training data for such a system requires contraction level ramping to maximum force 

levels. Due to its efficient usage of the whole dynamic contraction range and low 
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computational requirements, this method was chosen for force estimation 

interpretation in this work.   

Whilst Scheme et al. utilised MAV signals, RMS values were used in this work, as 

follows [69]: 

𝑃𝐶𝑖(t) =
∑ 𝑥𝑗(𝑡) − 𝑇𝐻𝑚𝑖𝑛,𝑖

𝑁
𝑗=1

𝑇𝐻𝑚𝑎𝑥,𝑖 − 𝑇𝐻𝑚𝑖𝑛,𝑖
 (5.27) 

  

𝑇𝐻𝑚𝑖𝑛,𝑖 = (1 − 
𝑃𝑇𝐻𝑚𝑖𝑛

100
) 𝑥𝑀𝑖𝑛,𝑖

𝑇𝑟 + 𝑃𝑇𝐻𝑚𝑖𝑛 𝑥𝑀𝑎𝑥,𝑖
𝑇𝑟  (5.28) 

 

𝑇𝐻𝑚𝑎𝑥,𝑖 = (1 − 
𝑃𝑇𝐻𝑚𝑎𝑥

100
) 𝑥𝑀𝑖𝑛,𝑖

𝑇𝑟 + 𝑃𝑇𝐻𝑚𝑎𝑥  𝑥𝑀𝑎𝑥,𝑖
𝑇𝑟  (5.29) 

 

𝑥𝑀𝑖𝑛,𝑖
𝑇𝑟 = 𝑚𝑖𝑛

𝑘=1:𝑘𝑖

∑𝑥𝑖,𝑗,𝑘
𝑇𝑟

𝑁

𝑗=1

 (5.30) 

 

𝑥𝑀𝑎𝑥,𝑖
𝑇𝑟 = max

𝑘=1:𝑘𝑖

∑𝑥𝑖,𝑗,𝑘
𝑇𝑟

𝑁

𝑗=1

 (5.31) 

where, 

𝑃𝐶𝑖(𝑡) is the proportional control force estimation interpretation signal for Grasp i; 

𝑁 is the number of EMG Channels used; 

𝑥𝑗(𝑡) is the RMS value of EMG Channel j at time t; 

𝑃𝑇𝐻𝑚𝑖𝑛 and 𝑃𝑇𝐻𝑚𝑎𝑥 are the desired lower and upper boundaries expressed in terms of 

the maximum contraction; 

𝑇𝐻𝑚𝑖𝑛,𝑖 and 𝑇𝐻𝑚𝑎𝑥,𝑖 represent the lower and upper bounds of Grasp i; 

𝑥𝑖,𝑗,𝑘
𝑇𝑟  is the RMS of the Training Data from Grasp i, Channel j and Computation 

Window k; 

𝑥𝑀𝑖𝑛,𝑖
𝑇𝑟  is the minimum computed RMS value from the Training Data for Grasp i; 

𝑥𝑀𝑎𝑥,𝑖
𝑇𝑟  is the maximum computed RMS value from the Training Data for Grasp i. 



85 

 

These equations lead to normalized proportional control force values in the range of 0 

to 1, in accordance to the desired lower and upper boundaries set. The minimum and 

maximum force control thresholds could then be defined according to subject 

preference. For this work, force estimation was quantised to four force levels, namely: 

Resting Level, Low Level, Medium Level and High Level.  

In order to mitigate noisy signals, the proportional control force signal was averaged 

over a 100 ms sliding window and then assigned to one of the four quantised force 

levels. Furthermore, in order to further prevent frequent switching between levels, a 

hysteresis concept as shown in Figure 5.15 was used such that the force level was 

incremented if the force estimation signal exceeded some upper threshold, and 

decremented if it decreased below a lower threshold. For this work, these upper and 

lower thresholds were empirically defined, noting which force levels required 

higher/lower thresholds for the subject’s setup. The final mitigation procedure ensured 

changes between force estimation levels to only occur once a 200 ms continuous 

decision stream was at the same force level. Admittedly, such measures may cause 

force control lag, however, a balance is to be found between user perceivable delay 

and reliability of the output force levels. This algorithm resulted in an estimated force 

signal which consisted of the estimated force level output per sample in time. 

5.6. The Three-Attribute Trade-Off 

Both implemented Movement Phase and Force Phase systems have been designed in 

such a way as to provide amputees with an intent interpretation framework which has 

a balanced trade-off between the three attributes of simplicity, usability and dexterity. 

The attributes have been satisfied as provided in Figure 5.16, relating to the 

requirements that have been listed in Figure 5.1.  

 

 

Figure 5.15 - Example of a Hysteresis Output, y(t), for a given Input Signal, x(t) [149]. 

Upper 

Threshold 

Lower 

Threshold 
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Figure 5.16 - A Diagram showing how the three attributes are being balanced in the developed intent 

interpretation framework. 

Through the use of the sEMG phenomenon, human intuition is being exploited, 

allowing the prosthetic user to actuate the prosthesis through intuitive motions, 

providing natural control. This phenomenon removes the need for the user to re-learn 

the fundamentals of limb operation, thus reducing the steep learning curve that is 

introduced with non-intuitive intent interpretation systems. Through such a choice, 

simplicity is satisfied. 

System reliability, and in turn, usability, are increased by the elimination of continuous 

motion predictions by introducing a movement detection algorithm. Additionally, the 

implementation of an intuitive sEMG grasping force estimation algorithm contributes 

towards making the behaviour of the prosthesis resemble human hand grasping 

functionality. These functionalities contribute towards a more practical and useful 

system.  

Meanwhile, through pattern recognition motion discrimination between the four Proto-

Motions and the Rest state, system simplicity and usability are retained whilst 

providing a good level of dexterity due to the sufficient degrees of freedom provided 

by the specifically chosen Proto-Motions.  
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5.7. Intent Interpretation Framework Design Conclusion 

This chapter has described in detail a system that may be trained using EMG data to 

detect intentional hand actuation, identify the intended Proto-Motion and estimate a 

grasp force level to drive a mechanical prosthetic hand. The design decisions taken 

were in accordance to the aim of balancing the initially identified three-attribute trade-

off. Several testing protocols were thus devised in order to obtain quantitative, as well 

as qualitative, performance results of the systems, as will be discussed in Chapter 6. 

Since the prosthetic hand is still under development in a separate task of the 

MAProHand project and it is out of scope of this project, the performance of this 

system could only be virtually tested, where required. The results of offline and real-

time tests are presented in the next chapter. 

 

  



88 

 

6. Testing Methodology 

For the different testing protocols that were devised to obtain quantitative and 

qualitative results of the offline system’s performance, five normal limbed subjects 

(S0-S4) and two transradial amputees (A1, A2) were recruited in accordance to the 

University of Malta’s research ethics guidelines. The five normal limbed subjects were 

two males and three females within the age group of 22 to 25 years old. All normal 

limbed subjects, except for subject S4, were right-hand dominant. In the meantime, 

subjects A1 and A2 were both right-hand dominant males and left-hand amputees. 

Subject A1 was a congenital amputee while subject A2 had to undergo amputation due 

to trauma. Both amputees had no previous experience with myoelectric prosthetics, 

having only utilised cosmetic prostheses which provide no useful functionality 

features. The participation of the amputee subjects was intended to provide invaluable 

insight into the differences in training and usability from that of normal limbed 

subjects as well as assess the suitability of the framework for the amputee target group. 

6.1. sEMG Data Acquisition Protocols 

For the sake of consistency, a protocol was determined for the donning of the Myo 

armband on the dominant forearm for the normal limbed subjects and on the amputated 

limb for the amputees. Pod 0 was always placed on the forearm flexor bundle which 

can be felt with the aid of palpation during subject finger clenching and wrist flexion. 

This quasi-specific site is found on the forearm’s ventral aspect, as shown in Figure 

6.1. The logo on Pod 3 of the band was always placed facing the fingers whilst having 

it positioned on the forearm’s bulge, four fingers (approximately 5 cm) distal from the 

elbow. Clip add-ons were inserted between the pods, when necessary, to ensure a snug 

fit and direct contact with the skin. 

 

Figure 6.1 - The Forearm Flexor Bundle.  
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As shown in Figure 6.2, the overall setup consisted of a chair, two towels secured on 

the chair’s arm rest, a laptop and monitor. The subjects were always seated on the chair 

with their forearm placed on these towels and they were asked to keep their wrist in a 

semi-supinated position, being extra cautious that no wrist movements were performed 

during motions. The towels allowed arm elevation whilst ensuring that the sEMG 

sensors were not in contact with any materials that could have shifted their position.  

6.2. Offline Movement Phase Testing Sessions 

In order to obtain performance measures for the offline Movement Phase system 

without real-time feedback as designed in Section 5.4, several controlled motion 

repetitions had to be recorded. To enable proper cross-validation of the data, four data 

runs were collected consisting of nine repetitions per Proto-Motion (PM), resulting in 

36 repetitions per PM. Since PM 1 consists of four variations as explained in 

Section 5.1, only one of these variations was to be performed per run, with a different 

variation performed on every run. The data collected from a session was termed as 

Episodic Data from an Episodic Session. 

During these experiments, the subjects were seated with the same arm posture 

throughout the whole experiment whilst eight seconds of data per repetition were 

acquired. During these eight seconds, sufficient EMG data was collected, covering the 

initial resting grasp, the performance of the instructed Proto-Motion and the final 

resting grasp.  

 

Figure 6.2 - The Testing Setup which included the seated subject with the forearm placed on the 

towels, with the wrist in a semi-supinated position. The Myo band was placed on the forearm bulge of 

the subject’s dominant hand whilst not being in contact with any materials. The laptop and monitor 

were placed in a comfortable position for the subject to follow the experiment.  
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Prior to data collection, all subjects were provided with a brief training session where 

motion reproducibility at the required speeds and in the correct posture was promoted. 

Subjects were also allowed to rest whenever necessary to prevent muscle fatigue. 

In order to assess inter-session performance, in particular whether system training on 

one day could be used to operate the system on a different day without training afresh, 

subject S0 performed this episodic session on two different days, referred to as Day 1 

Episodic Session and Day 2 Episodic Session, approximately three months apart. Due 

to the challenges brought about by the COVID-19 pandemic, such an inter-session 

analysis could only be done for a single subject. 

6.2.1. Amputees Testing Sessions 

The amputee subjects do not provide the same visual feedback to the experimenter as 

the normal limbed subjects due to their absent hand. Thus, in order to ensure that the 

amputees were in fact performing distinct Proto-Motions (PMs) prior to data 

collection, EMG signals from a small number of motion repetitions were initially 

recorded and processed using two methods.  

The first method calculated the cosine angle between the feature vectors of each PM 

pair by using Equation (6.1), providing an indication of PM vector similarities. The 

closer the cosine angle was to 1, the higher the similarity was concluded to be. 

cos 𝜃 =  
𝒖 . 𝐯

|𝒖| . |𝒗| 
 (6.1) 

where, 

𝒖 and 𝒗 are the mean RMS motion maxima feature vectors of the PM pair. 

The second method plotted the PM RMS maxima feature vectors as radar charts for 

visual assessment, as shown in Figure 6.3. In this case, the plot clearly shows that the 

different PMs have different sEMG RMS feature vector patterns, except for PM 1 and 

PM 4. Nevertheless, PM 1 shows slightly higher amplitudes when compared to PM 4. 

These similarities were mostly attributed to the similarities between the extension of 

the middle, ring and little fingers during PM 4 performances to the extension of all 

five fingers during PM 1 performances. Thus, such a Radar Plot allowed the 

experimenter to qualitatively assess whether the PMs being executed by the amputee 

were sufficiently distinct as represented in the RMS feature vector space. 
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Figure 6.3 - A radar chart showing the mean RMS values obtained from the four PM and Resting 

Instances, for the 8 different sEMG Channels.  

While this plot shows the non-normalized feature vectors, additional radar charts 

showing the normalized feature vectors as well as standard deviations of these vectors 

were also plotted, providing the experimenter with the most information possible.       

6.2.2. Offline Results Methodology 

From the episodic data collected, four runs of nine, 8 s repetitions added up to 36 

repetitions per Proto-Motion (PM). In order to effectively obtain reliable and 

generalised performance results for the offline system, cross-validation [150] was 

implemented, such that these 36 repetitions per PM were split into 6 sets, each having 

6 repetitions per PM. 

The system’s performance relies on the correct detection of movement instances as 

well as correct prediction of the motion classes. Thus, one of the data sets was used to 

train the movement detection binary classifiers, and the remaining five sets were used 

in 5-fold cross-validation for Proto-Motion identification multi-class LDA training and 

overall testing. This was repeated by training the movement detection binary classifiers 

each time with a different set, as illustrated in Figure 6.4. The ‘Movement Detection 

Training Set’, ‘Proto-Motion Identification Multi-Class LDA Training Set’ and 

‘Testing Set’ refer to the sets used for movement detection binary classifiers training, 

multi-class LDA training, and Movement Detection and Proto-Motion Identification 

testing, respectively. 

PM1 

PM2 

PM3 

PM4 

Rest 
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 Proto-Motion 

Identification Multi-

Class LDA Training 

Set 

Movement Detection 

and Proto-Motion 

Identification Testing 

Set 

Movement Detection 

Training Set 

Figure 6.4 - Full cross-validation technique where six, 5-fold cross-validations are performed, 

ensuring that with every set that acts as the Movement Detection Training set, the other sets are 5-fold 

cross-validated. 

 

Thus, when a set acted as the ‘Movement Detection Training Set’ or as the ‘Proto-

Motion Identification Multi-Class LDA Training Set’, the extracted motion feature 

vector per repetition within the set, consisting of the EMG RMS maxima, was used for 

training the movement detection binary classifiers and the Proto-Motion identification 

classifier, respectively.  

Feature vectors for the Rest class were extracted from before and after the movement 

phases of the four PM repetitions within these sets to represent the rest states at the 

different grasps. Since the resting instances exceeded the motion instances, only a 

random sample of these was kept to keep the classes balanced. 

When a data set was used as a ‘Proto-Motion Identification Multi-Class LDA Testing 

Set’, the full 8 seconds of recorded data per repetition within that set was used to 

determine the number of detected movements, as well as their respective class 

predictions. These 8 seconds per repetition consisted of the initial resting grasp phase, 

the performance of the instructed Proto-Motion and the end resting grasp phase.  

6.2.2.1.  Movement Detection Testing 

For every 5-fold cross-validation iteration, 6 repetitions x 4 PMs x 5 folds amount to 

120 expected PM detections and identifications, i.e. 6 repetitions/PM x 5 folds amount 

to 30 expected detections and identifications per PM. The full cross-validation 
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technique consists of six, 5-fold cross-validations. Thus, with each fold having 30 

instances of each PM, in total, there are 6 x 30 = 180 instances per PM to be detected 

and identified, and 180/PM x 4 PMs = 720 Proto-Motion instances in total to be 

detected and identified. 

However, since the full 8-second trials were used for testing, these did not only consist 

of the movement phase, but also included the grasp resting phases prior and post 

movement, as illustrated in Figure 6.5 (a). This led to additional movement detections 

in the Movement Detection Stage due to the sufficient number of samples having 

exceeded the thresholds set for the movement detection binary classifiers, 

accumulating the number of rest class instances. Since such instances were not the 

cued Proto-Motions, these were considered as False Positives (FPs) for the movement 

detection. Five kinds of movement detection FPs have been identified from the 

different subjects’ results, resulting from: uncued random hand or arm movements, 

uncued Proto-Motion performances, multiple movement detections of the cued Proto-

Motions, involuntary twitching, and erroneous classification decisions. The first three 

causes are illustrated in Figure 6.5 (b-d). Such false movement detections were 

subsequently processed by the Proto-Motion Identification Stage. 
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(a) 

  

 

(b) 

  

 

(c) 

  

 

(d) 

Figure 6.5 - (a) Full 8 s trials showing: the resting phase in the initial grasp prior to performing the 

Proto-Motion, the detected Proto-Motion, and the resting phase post the Proto-Motion in the end 

grasp; (b) an uncued small random hand or arm movement detected prior to the Proto-Motion; (c) a 

Proto-Motion performed on cue and another uncued Proto-Motion; (d) multiple movement detections 

of the cued Proto-Motion performance. 
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Movement detection testing can be analysed from a confusion matrix as illustrated in 

Figure 6.6, such that the sum of True Positives (TPs) and False Negatives (FNs) 

labelled within a red box should always be 720, relating to the 720 cued PM instances. 

The number of False Positives (FPs) is dependent on the EMG signals, muscle 

recruitment and subject behaviour, as well as the sensitivity of the binary classifiers, 

as discussed above. In this work, the number of True Negatives (TNs) cannot be 

defined since this relates to all the samples in time at which a movement was not cued 

and a movement was not detected. 

The most general measure of classifier performance is the accuracy measure as 

provided in (6.2), however, this does not entail a detailed analysis of the performance 

of the separate classes. Two widely used measures for class specific analysis are the 

sensitivity and specificity. Sensitivity quantifies the identification rate of TPs, as in 

(6.3). Specificity quantifies the identification rate of TNs, as in (6.4) [151]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(6.2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (6.4) 

 

For movement detection testing, since the TNs cannot be quantified, only the separate 

TP, FP and FN counts as well as the sensitivity measure may be presented, and are 

thus provided as analysis measures for the separate subjects in Section 7.1.1. 

 

 

Figure 6.6 - A confusion matrix for Movement Detection testing, showing the TPs, FPs, FNs and TNs. 
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6.2.2.2.  Proto-Motion Identification Testing 

Proto-Motion identification testing involves testing of the movement detection TPs 

and FPs, as illustrated in the confusion matrix of Figure 6.7. Due to the nature of the 

false positive movement detections discussed in Section 6.2.2.1, these are not 

accounted for in the testing of the Proto-Motion Identification Stage with the other 

four PMs, and are separately analysed in Section 7.1.4. This is since it was not always 

possible to determine whether these detected uncued instances were in fact 

performances of any one of the PMs or not, making it impossible to determine whether 

these were then correctly identified in the Proto-Motion Identification Stage or not. 

Meanwhile, the performance of the separate PM classes for the multi-class LDA 

classifier was assessed on the basis of the intended Proto-Motion in each trial, 

excluding FNs of the Movement Detection Stage. The accuracy, sensitivity and 

specificity of each class are analysed in Section 7.1.2 using (6.2), (6.3) and (6.4). For 

a complete analysis, the specificity of the Rest class is also determined and presented 

alongside all the measures for the PM classes, depicting the number of PM 

performances which were misclassified as not being any of the four PMs. 

 

 

Figure 6.7 - A confusion matrix for Proto-Motion testing where the green cells represent the number 

of movement detection FPs, as well as how they were then classified in the Proto-Motion 

Identification Stage. The cells in orange indicate the movement detection TPs for the four PM classes 

and their classification in the Proto-Motion Identification Stage. The analytical measures were 

separately and independently obtained for the two groups. 
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6.2.2.3.  Overall System Testing 

A confusion matrix layout for the whole Movement Phase intent interpretation system, 

consisting of both stages listed above is as illustrated in Figure 6.8, where the cells in 

green indicate the number of movement detection FPs, as well as how they were then 

classified in the Proto-Motion Identification Stage. The cells in blue indicate the 

movement detection FNs (i.e. missed movements), as well as Proto-Motion 

identification FPs for the Rest class (i.e. those PM instances which were misclassified 

as Rest instances in the Proto-Motion Identification Stage).  

Finally, the cells in orange indicate the movement detection TPs and Proto-Motion 

identification TPs, FNs and FPs for the four PM classes. All the cells within the red 

border should always total to the 720 cued Proto-Motions, as discussed above. 

For a more generalised measure between subjects and classifiers, an overall accuracy 

measure was obtained using (6.5) such that the accuracy of the Movement Phase 

system could be described as the sum of correctly detected and identified motions from 

the 720 cued Proto-Motions. This measure therefore takes into consideration the 

performance of both the movement detection testing as well as the Proto-Motion 

identification testing. These accuracy results are provided in Section 7.1.3. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑃𝑀 1 + 𝑇𝑃𝑃𝑀 2 + 𝑇𝑃𝑃𝑀 3 + 𝑇𝑃𝑃𝑀 4

720
 

(6.5) 

 

 

Figure 6.8 - A confusion matrix for the whole tested system where the green cells represent the 

number of movement detection FPs, as well as how they were then classified in the Proto-Motion 

Identification Stage. The cells in blue indicate the movement detection FNs, as well as Proto-Motion 

identification FPs for the Rest class. The cells in orange indicate the movement detection TPs for the 

four PM classes as well as how they were then classified in the Proto-Motion Identification Stage. The 

cells within the red border should always total to the 720 Proto-Motion tested instances. 
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6.2.3. Episodic Inter-Session Results Methodology 

As mentioned in Section 6.2, only subject S0 performed the episodic test on two days 

for inter-session assessment. Apart from obtaining the cross-validated measures 

discussed above for the separate day tests, further analysis was then done by using Day 

1 episodic data as the training group and Day 2 data as the testing group, and vice-

versa. In this case, the data was not cross-validated. This resulted in 144 PM instances 

in total (36 per PM) to be detected and identified per test. These results are discussed 

in Section 7.3.1. 

6.3. Online Movement Phase Testing Session 

Besides the offline episodic testing sessions, an online continuous testing protocol was 

designed for Movement Phase testing where the subject performed a continuous trail 

of Proto-Motions for an extended period of time at the subject’s own pace, and where 

the system was carrying out movement detection and Proto-Motion classification in 

real-time.  

It was deemed that a sequence of around 100 different PM movements was 

appropriate, therefore a systematic flow was chosen such that all the different PMs 

could be equally performed. Since the motions used for this work allow the subject to 

transition from all the closed grasps to the single open grasp and vice-versa, the subject 

was instructed to loop between one grasp and the next by following the PM sequence 

shown in Figure 6.9. The sequence was repeated 17 times, such that the ‘Neutral to 

Open’ motion was only performed once, resulting in 103 motions. Due to this 

sequence, PMs 2, 3 and 4 were performed 17 times each, while PM 1 was performed 

52 times. In the case where the subject misplaced one of these motions by another, this 

was corrected at a later stage in the flow. 

 

 

Figure 6.9 - Continuous Testing Sequence, adding up to 103 Movements. 
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The subject was provided with visual feedback of the motion predictions made by the 

intent interpretation system in real-time through a Unity project interface. This 

interface included a visual representation of a hand, developed mainly by another 

member of the research team [120], which behaved according to the identified 

motions.  

For the same reasons mentioned in Section 6.2, only subject S0 performed this session 

from the normal limbed subjects, which was carried out on the same day as that of the 

Day 2 Episodic Session. The data obtained from this episodic session was used as 

training data for the continuous session. These results are discussed in Section 7.2. 

This testing session was used to identify how well the system can detect and identify 

motions in a continuous scenario, as well as for inter-session analysis.  

Inter-session results were obtained by using the system trained with Day 1 Episodic 

Session data. Note that the continuous online session was only performed once with 

the same day training data and then re-analysed offline, with different day training 

data. These results are presented in Section 7.3.2. 

Subject A2 was also a participant for one continuous session, which was held on a 

different day from the episodic testing session. In this case, this subject was not asked 

to participate in a Day 2 Episodic Session, thus, inter-session results could be obtained 

from this subject’s data by using the continuous system trained with Day 1 Episodic 

Session data. These results are also presented in Section 7.3.2. 

6.4. Force Phase Intent Interpretation System Testing Session 

For force estimation system analysis in real-time, a testing protocol was devised to test 

subject S0’s performance when instructed to alter the step-wise contraction levels in 

specified time frames for the three grasps. The Matlab to Unity interface mentioned 

above was utilised to provide force level feedback through the use of four different 

hand colours (white, grey, blue, red) as shown in Figure 6.10. The force feedback 

colours remained the same, irrespective of the grasp being tested. Thus, the figure 

shows a combination of the grasps and force level feedback colours, accordingly. 
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(a) (b) (c) (d) 

Figure 6.10 - The Unity Interface during (a) a Rest Force Level, depicted by a white colour, (b) Low 

Force Level, depicted by a grey colour, (c) Medium Force Level, depicted by a blue colour and (d) 

High Force Level, depicted by a red colour. These force level colours occurred for all grasps, with 

these figures illustrating the Closed Fingers Grasp in (a) and (b), the Paper Grasp in (c), and the 

Sewing Pin Grasp in (d). 

The devised protocol instructed the subject to settle in the first grasp, the Closed 

Fingers grasp, at a Resting Force Level. On the first sound cue, the subject was then 

instructed to increase the grasp contraction to generate a Low Force Level for a 

5 second frame. After these 5 seconds, the subject was then instructed to increase the 

force to Medium Level, and then to High, accordingly. After these steps, the required 

force levels descended back in sequence, with 5 seconds between each level, as shown 

in Figure 6.11. This whole process was repeated five times per grasp, with each 

repetition referred to as a cycle. This protocol was repeated for the Paper grasp and 

Sewing Pin grasp, respectively. 

 

 

Figure 6.11 - Force Estimation Testing Sequence. 
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6.4.1. Force Estimation Training Session 

Prior to this online force estimation testing session, training data was collected such 

that the 𝑇𝐻𝑚𝑖𝑛 and 𝑇𝐻𝑚𝑎𝑥 values required for normalized proportional control value 

computations, 𝑃𝐶𝑖, used to eventually determine the quantised estimated force level 

output described in Section 5.5, could be determined. This brief testing session 

consisted of ten force contraction runs of five seconds each, for the three closed grasps. 

During each run, the force level of a closed grasp posture was ramped up from the 

resting condition up to the highest capable force. This training session included ten 

EMG contraction ramping instances, amounting to 50 s of EMG contraction data, per 

grasp. Since this experiment was only performed by one subject, these boundary values 

were only required to be found once. 

The top plot in Figure 6.12 shows the EMG RMS signals recorded during the ten 

ramping instances for the Closed Fingers grasp, and is also representative of the other 

two grasps. The instantaneous EMG RMS values from the eight channels were 

summed according to the method described in Section 5.5, providing a single force 

signal shown in the middle plot of Figure 6.12. By setting 𝑃𝑇𝐻𝑚𝑖𝑛 and 𝑃𝑇𝐻𝑚𝑎𝑥 to the 

desired values, the lower and upper bounds for that grasp, 𝑇𝐻𝑚𝑖𝑛,𝑖 and 𝑇𝐻𝑚𝑎𝑥,𝑖, could 

be determined. Through the use of these boundary values, the normalized proportional 

control values, 𝑃𝐶𝑖, could then be obtained in real time, as shown in the bottom plot 

of Figure 6.12. Due to this normalization step, based on the set lower and upper 

bounds, any EMG instances that fell below the normalized 0 and 1 force values were 

capped to these minimum and maximum values, accordingly. Therefore, the objective 

was to set this to work in a range within a comfortable subset of contraction levels for 

the subject. 

𝑃𝑇𝐻𝑚𝑖𝑛 and 𝑃𝑇𝐻𝑚𝑎𝑥 were found to be optimal at 0.05 and 0.25, respectively, and were 

set for all three grasps. These values were empirically chosen, based on a few online 

trial runs prior to actual data collection. The training ramped forces reached maximum 

contraction levels in this work, however, the higher levels were not as easily reached 

during the actual experiments, leading to choosing much lower boundaries. In real-life 

settings, it is not ideal for users to exert maximum possible contractions to set the 

prosthetic’s force level, especially since this causes discomfort and pain, with the sense 

of unease increasing with time. Boundary discrepancies are dependent on subject 

comfort as well as the force range of the training data. 
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Figure 6.12 - The top plot shows all EMG RMS signals during the ten ramping contractions 

performed in the Closed Fingers grasp. The middle plot shows the signal obtained following the eight 

channel EMG RMS summation, as well as the lower and upper bounds, 𝑇𝐻𝑚𝑖𝑛,𝑖 and 𝑇𝐻𝑚𝑎𝑥,𝑖 

obtained. The bottom plot shows the normalized Proportional Control output value for this grasp, 

specifically outlining the lower and upper bounds that would need to be considered in real time at 0% 

and 100%. 

6.4.2. Force Estimation Results Methodology 

For quantitative performance analysis of the force level estimation during the three 

different grasp contractions, system accuracy was defined on the basis of the number 

of correctly output force level samples, in comparison to the instructed force levels, 

termed as the ideal signal. Since the output force levels, termed as the estimated signal, 

included an obvious delay at the start of every cycle for every grasp type, the accuracy 

between the ground truth force signal and the estimated force signal was estimated by 

shifting the ideal signal so as to align with the first Rest to Low force level rising edge 

of the estimated signal. This was done per cycle as shown in Equations (6.6) and (6.7), 

ensuring that the accuracy measure was not penalised due to system and human reflex 

delays whilst obtaining measures that most faithfully represent the graphics. Average 

accuracy and delay values were obtained for the separate grasps, in accordance to (6.8) 

and (6.9).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑚  =  
1

𝑆𝑖,𝑚
 ∑ 𝐶𝑖,𝑚(𝑠)

𝑆𝑖,𝑚−1

𝑠=0

 (6.6) 
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𝐶𝑖,𝑚(𝑠)  = {
0, 𝑥𝑖,𝑚(𝑠 − 𝑑𝑖,𝑚) ≠ 𝑦𝑖,𝑚(𝑠)

1, 𝑥𝑖,𝑚(𝑠 − 𝑑𝑖,𝑚) = 𝑦𝑖,𝑚(𝑠)
 (6.7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖  =  
1

5
 ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑚

𝑚=5

𝑚=1

 (6.8) 

𝑑𝑖  =  
1

5
 ∑ 𝑑𝑖,𝑚

𝑚=5

𝑚=1

 (6.9) 

where, 

𝑖 ∈ {1,… , 3} is the grasp index representing the Closed Fingers, Paper and Sewing Pin 

grasps, respectively; 

𝑚 ∈ {1, … , 5} is the cycle number; 

𝑆𝑖,𝑚 is the total number of samples for grasp 𝑖, cycle 𝑚 force testing; 

𝑠 ∈ {0,… , 𝑆𝑖,𝑚 − 1} is the sample number; 

𝑑𝑖,𝑚 is the number of samples that represents the delay between the first rising edge of 

the ideal and the estimated signals for grasp 𝑖, cycle 𝑚; 

𝑦𝑖,𝑚(𝑠) ∈ {0,… , 3} is the estimated force level signal for grasp 𝑖, cycle 𝑚, at sample 𝑠 

where the range reflects the Rest to High force levels in ascending order; 

𝑥𝑖,𝑚(𝑠 − 𝑑𝑖,𝑚) is the ideal force level signal for grasp 𝑖, cycle 𝑚, at sample (𝑠 − 𝑑𝑖,𝑚), 

such that: 

𝑥𝑖,𝑚(𝑠 − 𝑑𝑖,𝑚)  ∈ {
{0,… , 3}, (𝑠 − 𝑑𝑖,𝑚) ≥ 0

0, (𝑠 − 𝑑𝑖,𝑚) < 0.
 

 

The actual signals as well as quantitative accuracy, sensitivity and specificity measures 

for the three grasps are provided and discussed in Section 7.4. 

6.5. Testing Methodology Conclusion 

All the above-mentioned tests were carefully devised such that a suitable analysis 

could be made on the capability of the designed systems from an offline and online 

point of view for the eventual movement and force action intents of a prosthetic hand. 

The results obtained are presented and discussed in the following chapter.  
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7. Results and Discussion 

As has been explained in Chapter 6, in order to analyse the performance of the 

designed systems, numerous tests were devised and performed by different subjects. 

The results obtained following data processing, their analysis, as well as a discussion 

on these measures are all provided in the sections below. 

7.1. Offline Movement Phase Testing Results and Discussion 

This section presents the results obtained following the Movement Phase testing 

methodologies described in Section 6.2.2 for offline episodic experiments performed 

by the five normal limbed subjects and the two amputees. Unless stated otherwise, 

these results relate to the LDA classifiers. 

7.1.1. Movement Detection Classification 

As discussed in Section 6.2.2.1, the success of the Movement Detection Stage could 

be quantitatively defined from the True Positive (TP) counts, False Negative (FN) 

counts, False Positive (FP) counts and the sensitivity measure. The results obtained for 

the seven subject tests are shown in Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4. 

As discussed earlier, the TP and FN counts for every subject add up to the 720 cued 

PM instances whilst the FP counts may vary depending on the several factors discussed 

in Section 6.2.2.1. 

From these plots, it is clear that the sensitivity of this part of the system is high, 

exceeding 95% for all subjects. Whilst the system only managed to detect all the cued 

PMs for one subject, S4, subject A2 had the least successful movement detection rate. 

It can also be noted how for the two amputees, higher FN rates, leading to lower TP 

and sensitivity rates were obtained, when compared to the normal limbed subjects. If 

the two subject groups are treated separately, the normal limbed subjects obtained a 

movement detection mean sensitivity rate of 99.19% ± 0.94% whilst the amputees 

obtained a mean rate of 96.81% ± 1.18%. Inconsistencies in PM performances have 

been noted to be a great contributor to missed movement detections, especially when 

the sample training data consists of specific amplitudes for which the testing data lies 

out of the norm. 
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Figure 7.1 - Movement detection true positive counts for the seven subjects, out of a maximum of 720. 

 

Figure 7.2 - Movement detection false negative (missed cued movement) counts for the seven subjects. 

 

Figure 7.3 - Movement detection Sensitivity measure for the seven subjects. 

 

Figure 7.4 - Movement detection false positive counts for the seven subjects. 
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The discrepancy between the subject groups is also evident in the number of detected 

movement FPs, with the highest normal limb subject count being 45 and the lowest 

amputee subject count being 200. As discussed in Section 6.2.2.1, five types of causes 

have been identified for these instances being labelled as movement FPs. The evident 

amputee movement inconsistencies leading to signal inconsistencies also played a 

large part in the larger number of detected FPs since in those cases where the training 

data consisted of lower amplitudes, the classifiers became prone to happy triggering. 

Multiple false positive movement detections, however, were obvious muscle 

recruitment detections, which occurred when the subjects should have been at rest. The 

experimenter had limited control over this behaviour, especially when there was no 

visual feedback of the subject’s limb activity. It was also noted that amputees showed 

a greater difficulty with resting while holding a grasp posture. This led to more 

fluctuating muscular activations, reflecting the subjects’ high efforts to remain in 

posture resulting in higher contribution to movement detection FPs. 

Nevertheless, normal limbed subjects were also prone to performing uncued 

movements. This was especially true for subject S2 who was very fidgety and was not 

as cooperative, even after being corrected. In fact, this subject resulted in the highest 

FP value from the normal limbed subjects. Due to there being multiple causes for 

movement detection FPs, with most proving to be difficult to determine their root 

cause, it was decided that their classification analysis in the Proto-Motion 

Identification Stage was to be separated from the other four PM classes. These results 

are provided in Section 7.1.4. 

7.1.2. Proto-Motion Identification Classification 

As discussed in Section 5.4.4, the time-window 𝑊𝐿𝑀 used to detect RMS maxima as 

soon as a movement detection is confirmed was found to empirically cover the signal 

maxima when set between 200 ms and 300 ms. For an appropriate classification 

performance analysis, episodic testing of the Proto-Motion Identification Stage was 

done according to Section 6.2.2.2 for three different 𝑊𝐿𝑀 values; 100, 200 and 

300 ms. Figure 7.5, Figure 7.6 and Figure 7.7 provide a graphical illustration of the 

class sensitivity, specificity and accuracy measures for all subjects combined for 

systems implementing the 100, 200 and 300 ms 𝑊𝐿𝑀 values, respectively. For each 

plotted box, the mark in the middle indicates the median TPR value (50th percentile), 

with the top and bottom edges indicating the 75th and 25th percentiles for that class.  
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Figure 7.5 - Sensitivity, Specificity and Class Accuracy measures for the four PM classes and the 

Specificity measure for the Rest class for Proto-Motion identification testing at 𝑊𝐿𝑀 = 100 ms. These 

box plots contain measures from all seven subjects. 

 

Figure 7.6 - Sensitivity, Specificity and Class Accuracy measures for the four PM classes and the 

Specificity measure for the Rest class for Proto-Motion identification testing at 𝑊𝐿𝑀 = 200 ms. These 

box plots contain measures from all seven subjects. 

 

Figure 7.7 - Sensitivity, Specificity and Class Accuracy measures for the four PM classes and the 

Specificity measure for the Rest class for Proto-Motion identification testing at 𝑊𝐿𝑀 = 300 ms. These 

box plots contain measures from all seven subjects. 
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Outliers and extreme data points are shown as plus signs and whiskers, respectively. 

The indicated outliers, in this case, have a value of more than 1.5 times the interquartile 

range, defined by the subtraction of the 25th percentile from the 75th percentile [152]. 

The median indicators provide information with regard to sample skewness. 

It is clearly noticeable that the three 𝑊𝐿𝑀 values contributed towards sensitivity, 

specificity and accuracy improvements for some classes and reductions in others. 

Sensitivity measures at a 𝑊𝐿𝑀 value of 100 ms resulted in lower medians when 

compared to the other two, whilst also experiencing very low sensitivity instances for 

individual subjects for the PM 2, PM 3 and PM 4 class. The specificity measure 

compares well to the others, however, lower extremities in the PM 3 and Rest classes 

are a further disadvantage. The larger range of Rest class specificities in the 100 ms 

𝑊𝐿𝑀 case also suggests that for this value, more motion instances were incorrectly 

classified as falling in the Rest class. These discrepancies are also reflected in lower 

class accuracy ranges. As was also visually noted, such a performance decrease was 

expected due to the window being too short to capture the RMS maxima required for 

classification. 

Meanwhile, the differences between the 200 ms and 300 ms tests are less obvious, 

showing that the two values resulted in very similar outcomes, leading to the 

conclusion that a 200 ms window was only unsuitable to capture the RMS maxima for 

a very limited number of instances. Whilst these similarities are clear from the two 

plots, the final conclusion with regard to which window would provide the best 

quantitative results is discussed in Section 7.1.3. 

Nevertheless, since decision delay plays an important factor in the success of 

prosthesis acceptance, the preferance of the 200 ms window over the 300 ms window 

is natural. For more in-depth, subject specific analysis, the sensitivity, specificity and 

class accuracy measures of the four PM classes and the specificity of the Rest class are 

shown for the seven individual subjects in Figure 7.8 to Figure 7.14, respectively, for 

a 𝑊𝐿𝑀 value of 200 ms. 
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Figure 7.8 - Subject S0’s Proto-Motion identification Class Sensitivity, Specificity and Accuracy 

measures for the four PM classes and the Specificity for the Rest class. 

 
Figure 7.9 - Subject S1’s Proto-Motion identification Class Sensitivity, Specificity and Accuracy 

measures for the four PM classes and the Specificity for the Rest class. 

 
Figure 7.10 - Subject S2’s Proto-Motion identification Class Sensitivity, Specificity and Class 

Accuracy measures for the four PM classes and the Specificity for the Rest class. 

 
Figure 7.11 - Subject S3’s Proto-Motion identification Class Sensitivity, Specificity and Class 

Accuracy measures for the four PM classes and the Specificity for the Rest class. 
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Figure 7.12 - Subject S4’s Proto-Motion identification Class Sensitivity, Specificity and Class 

Accuracy measures for the four PM classes and the Specificity for the Rest class. 

 
Figure 7.13 - Subject A1’s Proto-Motion identification Class Sensitivity, Specificity and Class 

Accuracy measures for the four PM classes and the Specificity for the Rest class. 

 
Figure 7.14 - Subject A2’s Proto-Motion identification Class Sensitivity, Specificity and Class 

Accuracy measures for the four PM classes and the Specificity for the Rest class. 

From all seven subjects, the highest performing multi-class classifier was for subject 

S0, achieving perfect sensitivity, specificity and accuracy for PM 2; and subject S4, 

achieving perfect sensitivity, specificity and accuracy for PM 2 and PM 3; apart from 

all the other class measures, well exceeding the 94% mark. Subject A2’s results also 

show the high success of the classifier, exceeding 90% for all measures across all 

classes. In fact, PM 2 and PM 4 class instances were all correctly identified whilst 

there were no motions which were incorrectly identified as PM 1 or PM 3. The results 

for this subject also suggest higher success in comparison to the other three normal-
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limbed subjects S1, S2 and S3. Meanwhile, subject A1’s results suggest that this was 

the least successful classifier, obtaining the least sensitivity value of 48.89% for the 

PM 4 class. Another two classes resulted in sensitivities less than 70%, which are also 

low in comparison to those obtained by other subjects.  

When considering the results from all subjects, there is no noticeable pattern of which 

class is superior or inferior to the others. In general, the multi-class LDA has been 

successful, achieving individual class accuracies higher than 92% for all subjects 

except for subject A1, who achieved a minimum class accuracy of approximately 80% 

for PM 4. Meanwhile, the high Rest class specificities for all subjects also suggest that 

the number of motion instances misclassified as not being one of the four motions was 

very limited.  

7.1.3. Overall Movement Phase System Accuracy 

The measure that encapsulates the performance of the whole Movement Phase system, 

including the Movement Detection Stage and Proto-Motion Identification Stage, is the 

overall accuracy, as described in Section 6.2.2.3. As a continuation of the discussion 

of Section 7.1.2, the overall accuracies of the system considering the three 𝑊𝐿𝑀 values 

are shown in Figure 7.15. This figure confirms the previous conclusion that while the 

smaller window of 100 ms presents the advantage of shorter decision delays, the 

overall system accuracy is much lower when compared to longer windows. Whilst this 

is not always the case, the majority of subject results suggest so. The similar 200 and 

300 ms window length accuracies confirm that an increase in window length does not 

automatically warrant higher system accuracies. Therefore, the rest of the discussion 

shall only consider the 200 ms 𝑊𝐿𝑀 results.  

Through comparison of the 200 ms results, it may be concluded that subject S0 

obtained the highest accuracy from both normal limbed and amputee subject groups. 

This was expected since this subject had additional training opportunities, in 

comparison to all others. All normal limbed subjects exceeded the 80% overall 

accuracy mark with the lowest overall accuracy obtained by subject S2. This was also 

expected since this subject was very fidgety whilst being highly inconsistent with the 

performed movements.  
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Figure 7.15 - The Overall Accuracy of the Movement Phase Intent Interpretation System for all seven 

individual subjects, considering the three different Proto-Motion identification 𝑊𝐿𝑀 tests. These 

accuracies represent the number of correctly detected and identified PMs, from the total 720 cued 

motions. 

The high overall accuracy obtained by subject S4 is very promising, especially when 

considering that this subject had no previous training. This indicates that this subject 

has very good control over the hand muscles during the exertion of different 

movements, irrespective of the lack of training experience. This subject was also the 

only left-handed participant, however, it cannot be concluded that this high accuracy 

was a direct cause of the difference in hand dominance. 

Meanwhile, the two amputees obtained large overall accuracy discrepancies, with 

subject A1 achieving the lowest overall accuracy rate of 67.22% and subject A2 

achieving a fairly high overall accuracy of 91.94%. The overall accuracy of subject A2 

exceeded the overall accuracy of normal limbed subjects S2 and S3, whilst faring very 

closely to the overall accuracy of subject S1.  

The lowest accuracy result by the first amputee subject A1 was expected. Subject A1 

was a congenital subject, who had no life experience with exerting such finger 

movements. Thus, his brain is not used to sending such signals to his missing limb, 

requiring more effort from the subject to try to differentiate between the movement 

contractions. Nevertheless, the subject’s experience was improved when the 

experimenter suggested looking at the intact limb performing the same motion at the 

same time. The subject indicated that he had no singular finger sensations from the 

missing limb and the only control that he had was on flexor and extensor groups. The 

lack of experience with using this hand in a natural way also contributed to muscle 

recruitment inconsistencies, resulting in less movement detections and correct 
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identifications. These inconsistencies may have also been caused due to subject 

adaptation in a bid to achieve better signals. Other variables such as the lack of visual 

feedback from the experimenter’s end to guide the subject as required, when compared 

to normal limbed subject sessions, are also envisaged to have affected the end results. 

As is usually the case with prosthetic fittings, the subject would need to undergo 

further rigorous training in order to determine whether such a system would ultimately 

be well-suited.  

In comparison, the other amputee, subject A2, had the arm amputated due to a work-

related accident. This means that this subject had learnt to move the fingers of his own 

hand before amputation. This was evident from the control shown over the voluntary 

contraction of the different phantom fingers. Nevertheless, while the subject was 

comfortable with the closing motions, this subject struggled with PM 1 where finger 

extension was required. The exercise of looking at the intact limb performing the 

motions also aided this subject with recruiting the appropriate muscles representing 

the motion performances of the amputated limb. However, the subject commented that 

this reduced the mental concentration that could be afforded to contract the amputated 

limb’s muscles. Whilst this subject had such limitations, the overall accuracy results 

proved that the subject managed to be mostly consistent in the performed motions, 

except for those instances which were missed in the Movement Detection Stage. 

The results obtained by the amputee subjects suggest that congenital subjects may 

achieve lower Movement Phase intent interpretation system accuracies when 

compared to non-congenital subjects. However, since the pool of local amputee 

subjects eligible to participate in this experiment was small, and this aggravated further 

by the COVID-19 restrictions, it is not possible to verify this observation at this stage. 

Nevertheless, it is to be considered that every amputee will have different capabilities, 

different movement restrictions as well as different muscular atrophies. The latter 

mostly depends on amputation surgical outcomes, with no amputation procedure being 

identical to the other. Thus, while these results show extremely satisfactory results 

with very limited training, one may be hopeful that higher accuracies may eventually 

be obtained with more rigorous and regular training, especially with direct feedback 

from a mechanical prosthetic hand. In future work, a longitudinal study may be done 

with congenital and non-congenital amputees to determine whether improvement is 

possible from both groups. Nevertheless, the results obtained from both amputees 

confirm that the designed system may in fact be used by the transradial focus group. 
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From the above discussed results, it can be concluded that the system accuracy rates 

obtained for all these subjects are satisfactory, also providing us with the insight that 

different subjects would require different training, for performance improvement. 

Subjects who showed PM pairs signal similarities (typically between PMs 1 and 4, and 

PMs 2 and 3), would require further muscle isolation training, aiding with contraction 

isolations for different motions. In the meantime, for subjects who showed specific 

difficulties such as subject A2, a lot more training is required for PM 1 performance 

improvements, with subject A1 requiring overall training on the control and 

performance of all PMs.  

Whilst the analysis above has been done on the individual subjects’ results, the box 

plot in Figure 7.16 provides a graphical insight on the overall accuracies when the 

subjects are split into the two groups, namely the normal limbed and amputee subject 

groups. The lowest extreme data point for the normal limbed subjects exceeds the 

amputees’ median whilst the normal limbed median exceeds the amputees’ highest 

extreme data point. The mean overall accuracies of the two subject groups are provided 

in Table 7.1. 

 

 

Figure 7.16 - Box plots containing the overall accuracies for a 𝑊𝐿𝑀 value of 200ms for the five 

normal limbed and two amputee subjects, separately. 

 

Table 7.1 - The Overall Accuracy Mean for the two subject groups. 

 
Normal Limbed 

Subjects Group 

Amputee Subjects 

Group 

Overall Accuracy Mean 92.31% ± 6.57% 79.58% ± 17.48% 
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7.1.4. Identification of Movement Detection False Positives 

The movement detection FPs for the individual subjects have been illustrated in 

Section 7.1.1 and their respective Proto-Motion identification TP measure is shown in 

Figure 7.17. This TP measure relates to how many of these movement detection FPs 

were then identified to not be any of the four PM classes. It is evident from the plot 

that these false movement detections were never fully corrected to fall within the Rest 

class. As has been discussed in Section 6.2.2.1, there were multiple causes for these 

false detections, which in reality, may have not been false detections at all. Since it 

was out of the scope of this project to identify whether every movement detection FP 

was in fact a movement or simply a binary classification error, a more detailed analysis 

on this concept needs to be carried out in future work. In such offline analysis, this is 

not possible, especially when there was no visual feedback of the hand movements 

performed by the amputee subjects. A more practical analysis of this concept may be 

done in an online setting, where movement detections are traced in real-time, giving 

the experimenter more flexibility over determining which false movement detections 

were legitimate and which ones were not, as discussed in Sections 7.2 and 7.3.2.  

Furthermore, whilst the aim of the Movement Detection Stage was to reduce the 

detection of unnecessary motion, the detection of these instances was dependent on 

the training data set used for the four, binary class LDAs, changing their sensitivity 

accordingly. Thus, a more in-depth analysis could also be carried out in order to 

identify which training sets resulted in specific false detections, and which did not. 

 

 

Figure 7.17 - The seven subject movement detection FPs and their respective PM identification 

measure, represented as the Rest class TP measure. 
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7.1.5. Results Comparison with Literature 

To analyse the performance of the offline Movement Phase intent interpretation 

system, the obtained results will be compared to three chosen results reported in the 

literature who have all implemented different intent interpretation systems. 

The study by Li et al. [54] provides an insight as to how data extracted from intact and 

amputated limbs differ. The five participants within the study were all non-congenital 

transradial amputees, the majority of which having experience with myoelectric 

prosthetics. This experience may be regarded as advantageous due to muscular control 

experience. For 12 sEMG channels and 11 motion classes (including both hand and 

wrist motions), and by using a continuous LDA classification method, the results 

showed that the amputated arm accuracy results were significantly lower than intact 

limbed results. The average accuracies were of 94% ± 3% and 79% ± 11% for the 

intact and amputated hand experiments, respectively. The latter accuracy was reduced 

to 69% ± 18% when only the five hand-grasp patterns were considered. The normal 

limbed subject results are very similar to what has been achieved in our study, for the 

four hand motion classes. For the amputee subjects, the accuracy obtained in this work 

relates closer to the combined hand and wrist motions accuracy presented by Li et al, 

showing an increase in accuracy percentage for hand movement classes in this work. 

It is also evident from both studies that with amputated limbs, the deviation in 

accuracies is typically increased.  

Hudgins et al. [32] used both transient and steady-state data as training data for four 

contraction types (forearm supination, elbow extension, wrist flexion and forearm 

pronation), which were correctly classified at an average of 91.2% ± 5.6% for normal 

limbed subjects and 85.5% ± 9.8% for amputees. The contractions studied by Hudgins 

et al. should have been more easily detectable due to the larger muscles responsible 

for their actions, which may explain the better performance obtained for the amputees 

when compared to our work.  

In the study by Kanitz et al. [37], which used hand movements similar to those in our 

study, only a segment of the transient EMG signals was used to make a prediction, 

resulting in average true positive rates of 96% and 95% for normal limbed subjects 

and myoelectric experienced amputees, respectively. The performance of the 

experienced amputees is comparable to that of the normal limbed subjects, which 

leaves open the question on whether experience helps amputees to perform better. 
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7.1.6. Classifier Types Comparison 

As discussed in Section 5.4.5, linear SVM classifiers were also implemented to 

compare the degree of performance of such model free classifiers to the performance 

of the less than optimal classifiers, the LDAs, as provided above. 

7.1.6.1.  Movement Detection Classification Comparison 

For ease of comparison, movement detection TP and FN counts as well as sensitivity 

measures obtained for all subjects with the separate implementation of LDA and SVM 

classifiers are shown in Figure 7.18, Figure 7.19 and Figure 7.20, respectively. From 

the TP and FN counts as well as the resultant sensitivity measures, it can be noted that 

whilst the detection of the cued Proto-Motions increased for the normal limbed 

subjects with the SVM classifiers implementation, this decreased for both amputees.  

In order to determine whether the difference in movement detection sensitivity 

between the use of LDA and SVM classifiers was statistically significant, a paired, 

one-tailed t-test [153] was performed on the normal limbed subjects’ sensitivity results 

using a statistical significance value of 0.05 [154]. As mentioned in Section 7.1.3, the 

amputee subject pool was not homogenous and thus, statistical conclusions could not 

be drawn on them. The null hypothesis of this test claimed that the movement detection 

sensitivity mean for binary LDA classifiers was equal to the movement detection 

sensitivity mean for binary SVM classifiers. The alternative hypothesis claimed that 

the movement detection sensitivity mean for binary SVM classifiers was greater than 

the movement detection sensitivity mean for binary LDA classifiers. The resultant p-

value of 0.07 concluded that the null hypothesis could not be rejected and there was 

no evidence to support the claim that the SVM classifiers provided better movement 

detection results. 

 

Figure 7.18 - Movement detection true positive counts out of a maximum of 720, for the seven subjects 

for the LDA and SVM binary classifier systems. 
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Figure 7.19 - Movement detection false negative counts for the seven subjects for the LDA and SVM 

binary classifier systems. 

 

Figure 7.20 - Movement detection Sensitivity measure for the seven subjects for the LDA and SVM 

binary classifier systems. 

Movement detection FPs for both LDA and SVM classifiers are shown in Figure 7.21 

and it may be clearly noted that this count decreased with the latter classifier for all 

subject testing. This decrease was analysed to be primarily due to the SVMs being less 

sensitive to amplitude fluctuations caused by changes in muscle recruitments in the 

middle of Proto-Motion performances as well as being less sensitive to small muscle 

recruitments caused by unintended small movements, which were otherwise captured 

by the LDAs. The scope of the Movement Detection Stage was to only prompt for a 

multi-class PM decision whenever required, thus reducing the risks of 

misclassifications. Thus, this decrease in FPs may warrant a conclusion that binary 

SVMs are a more suitable option for this stage within the system. One, however, needs 

to keep in mind whether LDA systems which detected more movement detection FPs 

would still be capable of correcting these instances in the Proto-Motion Identification 

Stage.  
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Figure 7.21 - Movement detection false positive counts for the seven subjects for the LDA and SVM 

binary classifiers. 

Figure 7.22 shows how only a small number of movement detection FPs for SVM 

systems were then corrected during PM identification testing. Since it was out of the 

scope of this project to identify whether every movement detection FP was in fact a 

movement or simply a classification error, it cannot be concluded whether the SVM 

binary classifiers in fact prove to be superior to the LDAs for the movement detection 

stage. A more detailed analysis on this concept needs to be carried out in future work. 

7.1.6.2.  Proto-Motion Classification Comparison 

As was concluded in Sections 7.1.2 and 7.1.3, the best value found for 𝑊𝐿𝑀 for Proto-

Motion identification was of 200 ms. Thus, the Proto-Motion identification SVM tests 

were only implemented with this feature value, for all seven subjects. For performance 

comparison of the two multi-class classifiers, a graphical depiction of the sensitivity, 

specificity and class accuracies for each class are shown in Figure 7.23 and Figure 

7.24, for LDA and SVM classifiers, respectively. These box plots include the 

collective data of the seven participating subjects, regardless of their subject group.  

 

 

Figure 7.22 - Movement detection false positive counts for all subjects for SVM binary classifiers and 

their respective Proto-Motion identification Rest class true positive counts. 
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Figure 7.23 - Sensitivity, Specificity and Class Accuracy measures for the four PM classes and the 

Specificity measure for the Rest class within the multi-class LDA. These box plots contain measures 

from all seven subjects. 

 

Figure 7.24 - Sensitivity, Specificity and Class Accuracy measures for the four PM classes and the 

Specificity measure for the Rest class within the multi-class SVM. These box plots contain measures 

from all seven subjects. 

From these figures, it can be noted that in general, higher specificity measures for both 

classifiers was obtained. The largest differences noted between the classifier measures 

were the sensitivity and accuracy measures, with all SVM sensitivity median measures 

exceeding the 90% mark and all SVM class accuracy median measures closely 

approaching the 100% mark. An interesting point is the Rest class specificity measure. 

For the SVM classifier, this measure resulted in 100% for six subjects out of all seven, 

suggesting that this classifier was well suited for discriminating the PM classes from 

the Rest class. Whilst the LDA classifier resulted in high Rest class specificity values, 

these were lower than the SVM, confirming that the model free classifier is more 

capable of discriminating the motion classes from the singular non-motion class. 
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The remaining measures showed very similar ranges for both classifiers. Thus, paired 

one-tailed t-tests were performed using the normal limbed subjects’ class accuracy 

values using a statistical significance value of 0.05. The null hypothesis of these tests 

claimed equal class accuracies for both classifiers while the alternative hypothesis 

claimed that class accuracies obtained with the SVM classifiers system were greater 

than those using the multi-class LDA classifier. The resultant p-values of 0.58, 0.49, 

0.42 and 0.57 for classes PM 1 to PM 4, respectively, concluded that the null 

hypothesis could not be rejected for all classes and there was no evidence to support 

the claim that the SVM classifiers resulted in better Proto-Motion identification. 

7.1.6.3.  Overall System Accuracy Comparison 

For comparison of both stages within the system, the performance of the LDA and 

SVM systems may essentially be compared through the overall system accuracy 

obtained for every subject. This subject-specific comparison is shown in Figure 7.25, 

where it is evident that the SVM system achieved higher overall accuracies than the 

LDA system for all subjects, except two.  

The accuracy difference between the two is provided in Table 7.2 and a paired, one-

tailed t-test was also performed on the normal limbed subjects’ results in order to 

determine statistical significance, as was done for the separate movement detection 

and identification stages above. The test used a statistical significance value of 0.05 

where the null hypothesis claimed an equal mean overall accuracy for both 

classification systems while the alternative hypothesis claimed that the mean overall 

accuracy obtained with the SVM system was greater than that using LDA classifiers. 

The resultant p-value of 0.14 concluded that the null hypothesis could not be rejected 

and there was no evidence to support the claim that the use of SVM classifiers in both 

movement detection and Proto-Motion identification stages resulted in better overall 

accuracies in comparison to LDA classifiers. 

This also suggests that unless data is projected to a higher dimensional space by using 

SVM kernels or other non-linear classifiers, more accurate results using a linear system 

will not be obtained. Such analysis with non-linear classifiers, however, would need 

to be done in future work. 
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Figure 7.25 - Overall system accuracy only considering the 720 cued Proto-Motions. 

Table 7.2 - The overall accuracy difference between SVM and LDA systems. 

 S0 S1 S2 S3 S4 A1 A2 

SVM - LDA 

Overall Accuracy (%) 
0.69 -0.69 0.97 3.19 0.00 3.47 1.12 

 

7.2. Continuous Detection and Classification 

As was explained in Section 6.3, an online continuous session was also performed by 

subject S0 on Day 2. This continuous testing session was performed by using Day 2 

episodic data to train all the LDA classifiers within the system stages. The subject took 

a total of approximately four and a half minutes to perform all the requested continuous 

motions, with a subset of them shown in Figure 7.26. The 𝑊𝐿𝑀 value set for real time 

peak detection was that of 200 ms. Due to the conclusions reached in Section 7.1.6, 

only a system using LDA classifiers was implemented. 

With regard to movement detection, all 103 performed movements were detected, 

reaching a sensitivity of 100%, whilst no false positive movements were recorded. 

From the plot, it may be noted that from a total of nine movements, whilst all were 

correctly detected, only seven were correctly identified. As shown from the sensitivity, 

specificity and class accuracy measures in Figure 7.27, only PM 2 had perfect 

sensitivity, specificity and accuracy rates. The most common misclassifications were 

of PM 1 being identified as PM 4 whilst there were two instances where PM 3 instances 

were incorrectly identified as the Rest class.  
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Figure 7.26 - A small range of the performed continuous session motions, showing detected 

movements, and classifier Proto-Motion identifications with same day training data. The shaded 

areas in purple are the 200 ms 𝑊𝐿𝑀 windows used to detect the RMS movement peaks, following 

movement detection, which the multi-class LDA then correctly identified. The shaded red areas are 

the same as the purple areas, however, which the multi-class LDA incorrectly identified. The black 

dots at the top show identification instances and the black numbers indicate the predicted PM 

number. The numbers in red indicate the actual PM class, whenever the prediction was incorrectly 

made. The PM numbers relate to the Proto-Motions listed in Table 5.2 whilst ‘R’ refers to a predicted 

Resting class. 

 

Figure 7.27 - Subject S0’s Proto-Motion identification Sensitivity, Specificity and Class Accuracy 

measures for the four PM classes and the Specificity for the Rest class for the same day continuous 

experiment. These results were obtained by using an LDA classifier and 𝑊𝐿𝑀 of 200 ms. 

The overall accuracy of this continuous test resulted in 94.17%, which is less than the 

99.03% overall accuracy rate obtained from the Day 1 episodic test, but still 

comparable to the mean overall accuracy obtained from the normal limbed subject 

episodic tests. Thus, it may be concluded that the system is capable of high 

performance even in less controlled, continuous detection settings.  

In comparison to a popular online study, Hargrove et al.’s [39] virtual clothes pin test 

obtained classification accuracies higher than 90% for seven contraction types. Since 

these motions included elbow flexion/extension, wrist flexion/extension, hand 

        3      1      4      1 ‘R’     2    1  4       3      1      4 
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open/close and no motion, the fact that the muscles responsible for wrist and elbow 

movements differ from the intricate hand motion muscles, it may be concluded that 

the results obtained from the continuous classifier of this work compare very well to 

the results of Hargrove et al.  

In future work, online system analysis would also need to include other real-time 

control performance metrics, such as motion selection time, motion completion time 

and motion completion rate [54]. These metrics, however, may only be obtained from 

specific tests, requiring larger design and implementation efforts, which was not within 

the scope of this work. 

7.3. Inter-Session Reliability Results 

The results that have been discussed until now have only treated same day training and 

testing, for both episodic as well as continuous testing. Ideally, prosthetics do not have 

to be trained every time they are donned, thus, inter-session reliability is critical. Due 

to the conclusions reached in the above sections, all results presented have been 

obtained from systems which implemented LDA classifiers for all stages and used a 

𝑊𝐿𝑀 value of 200 ms. 

7.3.1. Episodic Inter-Session Testing 

In Section 7.1, a detailed analysis of the movement detection, Proto-Motion 

identification and overall accuracy measures for subject S0’s Day 1 Episodic Data was 

provided. For this data set, an overall accuracy of 99.03% was obtained. The same 

analysis was done for subject S0’s Day 2 Episodic Data, resulting in an overall system 

accuracy of 98.19%. This result shows that if the classifiers are trained for each 

session, high accuracies may be obtained.  However, it is desirable to explore whether 

the classifiers trained for one session may be re-used in a subsequent session without 

re-training. 

For the inter-session tests described in Section 6.2.3, movement detection, Proto-

Motion identification and overall accuracy measures were also obtained. Whilst both 

testing data resulted in no movement detection FPs, only the Day 2 test resulted in a 

100% movement detection sensitivity. For Day 1’s test, this reduced to 70.83%, as 

shown in Table 7.3. The identification measures for those Proto-Motions that were in 

fact detected are shown in Figure 7.28 and Figure 7.29 for Day 1 and Day 2, 

respectively, whilst the overall accuracies of the system are provided in Table 7.4.  
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Table 7.3 - The number of movement detection FPs and the movement detection Sensitivity obtained 

for the two inter-session episodic tests. 

 Day 1 Testing Data Day 2 Testing Data 

Movement Detection FPs 0 0 

Movement Detection 

Sensitivity 
70.83% 100% 

 

 

Figure 7.28 - Subject S0’s Proto-Motion identification Sensitivity, Specificity and Class Accuracy 

measures for the four PM classes and the Specificity for the Rest class for the inter-session, episodic 

test where Day 1 data was used for testing, with the system trained with Day 2 data. 

 

Figure 7.29 - Subject S0’s Proto-Motion identification Sensitivity, Specificity and Class Accuracy 

measures for the four PM classes and the Specificity for the Rest class for the inter-session, episodic 

test where Day 2 data was used for testing, with the system trained with Day 1 data. 

Table 7.4 - The Overall Accuracy obtained for the two inter-session episodic tests. 

 Day 1 Testing Data Day 2 Testing Data 

Overall Accuracy 49.31% 90.28% 

 

From these results, it is highly evident that Day 1 Training Data was more successful 

with detecting and identifying Day 2’s data, than vice versa, with a substantial 

difference between the final accuracies obtained.   
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A quick comparison between the mean and variance values obtained from Proto-

Motion EMG signals on different days concluded that higher EMG RMS maxima 

magnitudes were recorded on Day 2. This change in training data directly affected the 

performance of the Movement Detection Stage, with a drastic sensitivity reduction of 

this stage for Day 1, in comparison to Day 2. For Day 1 testing, the largest majority of 

undetected movement were PM 4 movements, amounting to 27 out of the total 36 

PM 4 movements.  

From the Proto-Motion identification results, it is also evident that the change in 

training and testing sets also affected the sensitivity, specificity and class accuracy 

measures recorded for the two day sessions as shown above. The decrease in Proto-

Motion identification specificity of Day 1’s Rest class shows how a number of PM 

movements were incorrectly identified to fall within the Rest class. The majority of 

these were found to be PM 1 and PM 3 movements. The lowest sensitivity measure 

for Day 1 testing has been concluded to be due to a large number of PM 1 movements 

having been misclassified as PM 4 movements.  

The artefacts causing such signal changes are ideally identified and mitigated, aiming 

towards a final system which is robust enough to detect and adapt to changes. Further 

discussion on the causes of such signal changes will be held in Section 7.3.3. 

7.3.2. Continuous Inter-Session Testing 

From subject S0’s continuous inter-session test, movement detection sensitivity 

remained at 100%, successfully detecting all 103 movements, as was also noted for 

the same day continuous test in Section 7.2. However, in this test, one movement 

detection false positive was also detected towards the end of one PM 1 movement. 

This was then incorrectly identified by the PM identification stage as a PM 4 instance.  

The sensitivity, specificity and class accuracy measures for all PM classes and the 

specificity for the Rest class for this test are shown in Figure 7.30. Whilst the 

sensitivities for the PM 2 and PM 4 classes remained at 100%, in comparison to the 

same day continuous test results, the sensitivities of PM 1 and PM 3 were reduced, 

with the lowest reaching 58.82%. The specificity measures also show that no 

movements were falsely identified to belong to the PM 1, PM 3 and Rest classes.  
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Figure 7.30 - Subject S0’s Proto-Motion identification Sensitivity, Specificity and Class Accuracy 

measures for the four PM classes and the Specificity for the Rest class for the inter-session continuous 

experiment.  

The class accuracies obtained for this test were also lower than those obtained for the 

same day continuous test, leading to an overall accuracy of 83.50%, compared to 

94.17% for the same day continuous test. This suggests that the overall accuracy of 

the system is expected to decrease when trained with data acquired on a different day.  

Meanwhile, the same nine motions presented in Section 7.2, Figure 7.26, are shown in 

Figure 7.31. This plot shows how these same nine motions were identified. In 

comparison to Figure 7.26, the majority of these motions were correctly predicted in 

both experiments. Nevertheless, whilst one PM 1 instance was misclassified by both 

systems, albeit predicting it to belong to different classes, both figures show a 

movement which was incorrectly predicted in one experiment and correctly predicted 

in the other. This concludes that system capability of different motion instance 

identification differs in accordance to the training data used.  

It is also to be noted that instant motion identification feedback was provided to the 

subject during the same day continuous test, but not for the inter-session continuous 

test. With feedback, the subject had the advantage of identifying the causes of incorrect 

identifications, serving as an adaptation opportunity, which may have contributed to 

the better results.  

Meanwhile, in order to obtain an inter-session result from one of the amputees, since 

subject A2 was the best performing among the two amputee subjects, this subject was 

chosen to perform a continuous test on Day 2 using an online system trained using the 

episodic data collected from this subject on Day 1. Note that for this subject, the 

continuous test using same day training data was not performed due to the much longer 

session time required.  
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Figure 7.31 - A small range of the performed continuous session motions, showing detected 

movements, and classifier Proto-Motion identifications with different day training data. The shaded 

areas in purple are the 200 ms 𝑊𝐿𝑀 windows used to detect the RMS movement peaks, following 

movement detection, which the multi-class LDA then correctly identified. The shaded red areas are 

the same as the purple areas, however, which the LDA incorrectly identified. The black dots at the top 

show identification instances and the black numbers indicate the predicted PM number. The numbers 

in red indicate the actual PM class, whenever the prediction was incorrectly made. The PM numbers 

relate to the Proto-Motions listed in Table 5.2. 

Movement detection for this session also achieved 100% sensitivity. However, the 

number of movement detection false positives amounted to 44 and only eight out these 

44 were then corrected and identified as Rest class instances, with the remaining 36 

detected Rest instances classified as one of the four PM classes. From visual analysis 

of the sEMG data, it was concluded that this high FP detection occurred because the 

subject was struggling to maintain a relaxed force level in the Open Hand position, 

leading to unnecessarily high amplitudes. This suggests that it may be more intuitive 

for amputees to simply relax their muscles as soon as a motion is performed, rather 

than remain in the final grasp posture with minimal muscle recruitment. 

The sensitivity, specificity, and class accuracy measures for the Proto-Motion 

Identification Stage are shown in Figure 7.32. Whilst all PM 3 and PM 4 movement 

instances were correctly identified, PM 2 showed the least sensitivity at 47.06%. In 

this case, none of the movements were incorrectly identified to fall in the Rest class. 

The overall accuracy for this system was 90.29% which is higher than subject S0’s 

inter-session continuous test accuracy of 83.50%, also faring very closely to the overall 

accuracy of the same subject’s episodic test of 91.94%.  

 

    3  2      1      4      1  4      2        1       3      1      4 
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Figure 7.32 - Subject A2’s Proto-Motion identification Sensitivity, Specificity and Class Accuracy 

measures for the four PM classes and the Specificity for the Rest class for the inter-session continuous 

experiment. 

If these measures are compared to the episodic testing measures of this subject, shown 

in Figure 7.14, it can be noted that the PM 1 sensitivity increased whilst the PM 2 

sensitivity decreased between sessions. The increase in PM 1 accuracy is attributed to 

better motion performances, resulting in better discrimination of this class. 

Furthermore, while episodic data for this class were only recorded with a starting 

Closed Fingers grasp, the continuous session was performed as intended, with PM 1 

instances rotating between starting gestures. This indicates that by the second session, 

the subject gathered enough experience to confidently perform these motions. The 

decrease in accuracy for PM 2 has been linked to inaccurate positioning of the Myo 

band. Whilst such positioning did not affect the classifier’s ability to distinguish 

between the other classes, analysis of the misclassification types concluded that the 

classifier became more prone to identifying PM 2 as PM 3. This concludes that the 

classifier may be more sensitive to electrode positionings for some classes than for 

others. 

The results obtained from this subject have also shown that subjects are also capable 

of improving and adapting to the system when provided with the necessary feedback. 

7.3.3. Inter-Session Results Discussion 

Electrode positioning discrepancies and lack of motion performance homogeneity, 

including wrist movements, could have been the external factors responsible for signal 

inconsistencies in the episodic and continuous sessions performed by subjects S0 and 

A2.    

With regard to sEMG electrode positioning, the ultimate care was taken to ensure 

similar lateral and distal Myo band positioning for all sessions. In fact, prior to Day 2 
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data capture, a small testing session utilising Day 1 training data was held in order to 

determine whether the Myo band could be more optimally placed so as to maximise 

the performance of the system using the already trained classifiers. This explains why 

subject S0’s inter-session Day 2 results showed higher accuracies than Day 1 results.    

However, as has also been visually analysed from separate brief experiments, even the 

most minor electrode positioning discrepancies could contribute to large signal 

changes. From a prosthetic point of view, it is envisaged that electrodes would 

ultimately be fixed in place to the mechanical prosthetic device. Therefore, repetitive 

electrode positioning may be mechanically solved, by ensuring that the prosthetic arm 

always fits the amputated limb in the same manner. This also solves between-electrode 

spacing irregularities. Nevertheless, further insights on electrode displacements effects 

on this intent interpretation system may be obtained through specified testing. 

Meanwhile, for these tests, both correct subject posture as well as motion consistency 

were imposed. Nevertheless, humans are inconsistent by nature and slight differences 

in major muscle exertion, such as wrist muscles, may impact recorded data. Whilst 

subjects were discouraged to activate any wrist muscles during motions, jolting of the 

wrist during fast motions could have been subconsciously performed. On the other 

hand, it is envisaged that transradial amputees do not incur such wrist activation issues 

since motions are not physically performed.  

While these inter-session results are promising, future work would need to look into 

the above-mentioned external causes of such between-session signal discrepancies to 

determine whether training data sets could be accumulated by intentionally varying 

such external variables.  

7.4. Force Phase Estimation Results and Discussion 

To quantitatively analyse the Force Phase intent interpretation system explained in 

Section 5.5, subject S0 performed a testing session which required grasping 

contraction levels to be varied in specified time frames, as explained in Section 6.4. 

These consecutive force output levels, which have been termed as the estimated output 

signals, for the three different grasps are shown in Figure 7.33. 
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Figure 7.33 - The Force Output Levels which describe the five cycle Estimated signals, y
i,m

(s), 

obtained during the Real Time Force Estimation Testing Session where subject S0 performed 

contractions in the Closed Fingers Grasp, Paper Grasp and Sewing Pin Grasp, respectively. The 

dashed vertical lines show the instances where the subject was instructed to increase or decrease the 

Force Level. The shaded areas in grey are the first instance per cycle which cued the subject to reach 

a Low Force Level from a Rest Force Level. Every grey area suggests a new cycle start. Levels 0,1,2 

and 3 refer to the Rest, Low, Medium and High Force Levels, respectively. 

It is to be noted that due to the testing sequence design, the number of samples that 

were spent in the Rest and High force levels were half as much as that for the Low and 

Medium force levels. This permits an analysis on the estimated contraction levels 

which should follow a step-wise increase and decrease, accordingly.  

As discussed in Section 6.4.2, an algorithm was followed such that grasp and cycle-

dependent accuracy and delay values were obtained, leading to average grasp 

accuracies and delays. Figure 7.34 illustrates how for the first cycle of the Closed 

Fingers grasp, the ideal signal was aligned with the estimated signal in accordance to 

its first rising edge. This was done for all five cycles within the three grasp types, in 

accordance to the delay incurred between the initial cued cycle start and the actual 

change in estimated force level. The accuracy and delay values obtained per cycle as 

well as their average are provided in Table 7.5 and Table 7.6, respectively.  
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Figure 7.34 - The Estimated signal, y
1,1

(s), Ideal signal, x1,1(s) and Ideal signal shifted by the 

alignment sample value of 331, x1,1(s-331), for Cycle 1 of the Closed Fingers Grasp performed by 

subject S0. Levels 0,1,2 and 3 refer to the Rest, Low, Medium and High Force Levels, respectively. 

The sampling rate was 200Hz. 

 

Table 7.5 - The Accuracy of the Estimated force levels in comparison to the Ideal force levels 

following signal alignment in accordance to the delays listed in Table 7.6 for the separate cycles for 

all three grasps, as well as the mean grasp Accuracy.  

 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊,𝟏 

(%) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊,𝟐 

(%) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊,𝟑 

(%) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊,𝟒 

(%) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊,𝟓 

(%) 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒊 

(%) 

Closed 

Fingers 

Grasp 

(𝒊 = 𝟏) 

91.64 91.50 90.49 72.01 87.30 86.59 

Paper 

Grasp  

(𝒊 = 𝟐) 

58.24 74.58 93.46 75.05 90.96 78.46 

Sewing Pin 

Grasp 

(𝒊 = 𝟑) 

53.57 77.68 81.26 66.67 75.29 70.89 
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Table 7.6 - The Delay in number of samples incurred between the first rising edge of the Ideal signal 

per cycle and the first rising edge of the Estimated signal per cycle, also referred to as the alignment 

sample. The mean grasp Delay is also provided. 

 𝒅𝒊,𝟏 𝒅𝒊,𝟐 𝒅𝒊,𝟑 𝒅𝒊,𝟒 𝒅𝒊,𝟓 𝒅𝒊 
Closed 

Fingers 

Grasp 

(𝒊 = 𝟏) 

331 282 319 385 238 311 

Paper 

Grasp 

(𝒊 = 𝟐) 
862 198 268 503 290 424.2 

Sewing Pin 

Grasp 

(𝒊 = 𝟑) 
400 539 351 163 344 359.4 

 

From Table 7.6, it can be deduced that for a sampling rate of 200Hz, the average grasp 

delays corresponded to 1555 ms, 2121 ms and 1797 ms for the Closed Fingers grasp, 

Paper grasp and Sewing Pin grasp, respectively. Since such long delays are user 

perceivable, it was important to factor out the sources of delay. Figure 7.35 shows the 

331 sample delay between the initial cued instance of the first cycle of the Closed 

Fingers grasp and the first rising edge instance recorded from the estimated force level 

output. The normalized proportional control signal is shown since it provides the best 

visual representation of the subject’s muscular efforts. From Figure 7.35, it is clear 

that the subject started to react to the sound cue at approximately 200 samples after the 

intended software cue, amounting to a delay of approximately one second. Since 

human response delay is only a fraction of this delay, typically approximate to 300 ms, 

the majority of this delay was traced back to an intrinsic delay within the Matlab 

software when instructed to perform the audio cue. 

 

Figure 7.35 - A visualisation of the causes amounting to the long delays between the first intended 

cued instance for the first cycle of the Closed Fingers grasp and the actual instance of the first rising 

edge recorded from the estimated force level output. 

Total  Delay 

Matlab Cue & Human 

Response Delay 

Ramp-Up 

& Steady-

State Delay 
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The remaining delay of approximately 130 samples was caused by ramp-up and 

steady-state delay which was partly dependent on the subject’s muscular control. This 

delay includes the algorithm specifications, including the smoothing of the 

proportional control signal and the 200 ms force level estimation steady-state 

requirement. Thus, it may be concluded that the delays obtained for each cycle were 

partly contributed by the delayed behaviour of the cued signal itself, muscular 

contraction ramping-up speed as well as system delays introduced for a more stable 

force level output. 

Whilst the exact instance of the audio cue is unknown for all cycles, even in between 

the different levels of the cycles themselves, further work is required to determine the 

exact delays that are introduced when switching between the different force levels, by 

considering a more reliable cuing alternative.  

The discrepancy between the delay and accuracy results obtained for all three grasps 

suggested that the subject had the best control over the force levels whilst in the Closed 

Fingers grasp, achieving the highest mean accuracy of 86.59% and the shortest average 

delay of 1555 ms. This muscular control proved to be tougher during the Paper grasp 

experiment in terms of delay, and tougher during the Sewing Pin grasp experiments in 

terms of force estimation accuracy. These difficulties may have been due to the subject 

having had a harder time ramping-up or ramping-down the muscular levels from the 

previous force levels whilst exerting steady muscular levels within the pre-defined 

activity bands for the set amount of time. 

The accuracy results are also in line with what can be visually seen in Figure 7.33, 

with more force level overshoots occurring for the Sewing Pin grasp with much 

smoother and more stable transitions happening for the Closed Fingers grasp. This 

suggests that the set force level threshold values may need to be individually treated, 

specifying algorithm boundary values as well as hysteresis boundary levels in 

accordance to the grasp. 

For a more in-depth analysis of the level of control that the subject had in the different 

grasps for the different force levels, sensitivity and specificity plots are shown in 

Figure 7.36 and Figure 7.37, respectively. These sensitivity and specificity values were 

obtained after taking all cycles within a grasp into consideration.  
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Figure 7.36 - The overall Sensitivity considering the four force levels for the aggregate of all five 

cycles for the Closed Fingers Grasp, Paper Grasp and Sewing Pin Grasp experiments, respectively. 

 

Figure 7.37 - The overall Specificity considering the four force levels for the aggregate of all five 

cycles for the Closed Fingers Grasp, Paper Grasp and Sewing Pin Grasp experiments, respectively. 

From these figures, it is evident that the sensitivities for all levels followed the same 

pattern, such that the Closed Fingers grasp resulted in the highest sensitivities, 

followed by the Paper grasp and Sewing Pin grasp accordingly. This pattern was also 

noted for the specificities plot, except for slight differences in the Rest force level. The 

system was the least capable of detecting the Low force level for all three grasps with 

the highest number of FPs having been detected for the Medium force level, indicating 

that the threshold values for these two levels require the most attention and 

adjustments. 

Scheme et al. [69] noted that wrist flexion/extension force control resulted in 

significantly better results when compared to other wrist and hand contractions. They 

discussed that this may be due to the physiological differences that comes about with 

the different contractions, such that the best performers are known to be driven by 

large muscles. Other gestures requiring larger combinations of deeper and smaller 

forearm muscles, which are more difficult to detect, resulted in poorer results. In this 

work, the large wrist muscles were not being used, only focusing on the detection of 

the wider range of deeper and smaller muscles, which may be the cause of the less 
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accurate (< 90%) force control. Whether this accuracy would increase with further 

rigorous training and system threshold tweaking would need to be studied in future 

work. Reducing the experienced delay for the best accuracy between grasps is also 

desirable. 

Furthermore, since this test has only been performed by one subject, it is envisaged 

that for different subjects, different boundary feature values will need to be set, with 

the goal of setting realistic contraction ranges that are comfortable for the user to 

achieve, whilst also being distinguishable from the other force levels. 

7.5. Final Results Discussion and Conclusion 

From these results, different subjects have obtained different motion detection results, 

Proto-Motion identification measures, and overall accuracy rates, also showing diverse 

capabilities of the implemented system with detecting and differentiating between the 

four PMs and the Resting state. Nevertheless, whilst only subject S0 had multiple 

training opportunities, the results have clearly shown that very high motion 

identification accuracies may still be obtained with very little training. The suitability 

of the designed Movement Phase intent interpretation system has also been confirmed 

from the results obtained by both upper limb amputees.  

It has been discussed how the congenital amputee faced a bigger struggle with 

discriminating between the instructed motions, unlike subject A2, who felt comfortable 

performing the different motions, except for the Open Hand. Whilst this cannot be 

confirmed without further testing with a larger number of amputees, it is envisaged 

that congenital amputees, unlike non-congenital amputees, might have less success 

with operating such a control system, due to differences in their brain cortical mapping 

[155]. After all, due to their non-existent experience with performing such motions, 

the sense of intuition is essentially missing, requiring large amounts of training for 

successful results. Nevertheless, the results obtained from both subjects are very 

promising. 

From statistical tests performed on LDA and SVM system results, it was concluded 

that the differences in mean measures obtained for the different Movement Phase 

stages were not statistically significant. Thus, there was no reason to believe that the 

non-parametric SVM classifiers were superior for the implemented intent 

interpretation systems in comparison to the less than ideal LDAs. 
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Continuous tests performed by subjects S0 and A2 also provided highly satisfactory 

results whilst inter-session reliability proved to be sufficient. Such reliability, however, 

is only satisfactory when electrode placement is done in accordance to the 

maximisation of results with the use of systems trained with previously recorded data. 

Meanwhile, all results obtained in this work, including the inter-session results, were 

all based on data collected from ideal setups, such that the subjects were not fatigued 

whilst they remained in the same arm posture throughout the sessions. This was the 

scope of this work, with this design acting as the first step towards obtaining a system 

which may eventually be integrated with a mechanical prosthetic hand.  

The Force Phase intent interpretation system was also tested by one subject and it was 

concluded that satisfactory performance rates were obtained for the three different 

grasps, for the four force levels. The Closed Fingers grasp resulted in the highest 

accuracy with the smallest delay, indicating that it was easier for the subject to control 

the force levels for this grasp, in comparison to the others. The large delays that were 

incurred per cycle were also broken down, such that it was also deduced that the 

Matlab software was introducing delays which were out of the experimenter’s control. 

A more in-depth analysis is required in future work to determine whether algorithm 

boundaries and thresholds need to be set for the individual grasp types, with the 

participation of more subjects whilst also looking into further detail as to whether the 

subject and system dependent delays may be reduced. 
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8. Conclusion and Future Work 

As has been identified in the introduction of this dissertation, the primary objective of 

this research project was to systematically develop a practical solution for the control 

of an artificial hand which best addresses the trade-off problem between simplicity, 

dexterity and usability. Due to this, these three attributes were defined, highlighting 

what prosthetic intent interpretation system capabilities would satisfy each and every 

attribute. Following a thorough literature review, the main elements that were to be 

considered for a successful solution were identified, leading to the development of the 

final implemented systems considering the Movement Phases and Force Phases, 

accordingly. The main findings and achievements of this work as well as suggested 

future work are discussed below. 

8.1. Findings 

From the reviewed literature, it was concluded that for this work, the sEMG 

phenomenon was to be used as the intuitive myoelectric mean to provide the user intent 

to the intent interpretation system for an upper limb prosthetic device. This review also 

led to choosing a pattern recognition system and a proportional control system for 

intent interpretation during Movement Phases and Force Phases, respectively, due to 

the advantages that they offered with respect to the three-attribute trade-off. 

A disagreement found in the literature was whether transient signals provided 

discriminatory information as steady-state signals did. Since this work focussed on 

providing the user with the most intuitive solution for prosthetic control during both 

Movement and Force Phases, specific experiments were performed on the biceps 

muscle to determine whether both dynamic and static contractions contained 

discriminatory information. Whilst this was proved to be true, sEMG signals during 

both contraction types were characterised with respect to the exerted velocities and 

forces. It was concluded that the peak EMG RMS point during a dynamic contraction 

generally represents the maximal kinetics of the arm movement whilst the best 

characterisation of a steady state signal with respect to force is with every sample in 

time. These findings were then separately used in the Movement Phase and Force 

Phase intent interpretation strategies. 

From these findings, the novel proposed system was devised such that the developed 

system is capable of tracking the natural flow of the user’s intended motions, in 



139 

 

accordance to the transition between the initial and end grasp postures of the four 

chosen Proto-Motions.  

Through the separation of transient and steady state EMG signals which are due to 

dynamic and static contractions, respectively, the system has also been designed to be 

more intuitively controlled. Motion detection and identification algorithms have 

therefore been solely based on the maxima values extracted from the transient portion 

of the sEMG signals generated through the motion itself. This implementation 

specifically targets the transient maxima, such that no classification post-processing is 

required, also reducing system delay. Meanwhile, continuously extracted steady-state 

sEMG features are utilised to estimate the force level of the three closing grasps. 

The literature overwhelmingly proved that the LDA classifier was the most popular 

classifier in the upper limb prosthetic field, mostly due to its simplicity and high 

performance. The high performance of this classifier was also proved in this work, 

which was also compared to linear SVM classifiers in Section 7.1.6 such that no 

statistical significance was found between the two. While many different feature sets 

have been used in the literature for pattern recognition, the RMS feature proved to also 

obtain good results, even though it was not used in conjunction with other features. 

The extraction of the RMS feature from a sliding window of 250 ms with a single 

sample displacement of 5 ms was also found to be successful.  

From this work, it was also concluded that the errors that may be introduced with 

continuous class classification as implemented in some literature, could be reduced by 

the introduction of the Movement Detection Stage. An additional conclusion was that 

the search for the RMS maxima in the Movement Identification Stage following the 

Movement Detection Stage was optimally done within a time-window 𝑊𝐿𝑀 of 200 ms. 

This work has also highlighted the fact that congenital and non-congenital amputees 

may have different abilities and may require different training regimes in comparison 

to each other. It was also determined that amputees may also achieve high performance 

values, similar or better than normal limbed subjects, as was the case for subject A2. 

Nevertheless, the amputee pool in this work was very small and statistical conclusions 

could not be reached. 

From inter-session tests, it was concluded that changes between the signals on different 

recording days are the cause of decline in system performance. However, the results 

obtained from both subjects S0 and A2 showed that inter-session success is possible. 
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From the Force Phase tests, it was noted that large delays were present between the 

first cued instance to the first rising edge of the estimated force signal. In Section 7.4, 

this was deduced to be a culmination of Matlab delays in performing the audio cue, 

human reaction delays, ramping-up delays as well as steady-state contraction delays. 

Whilst the latter two were partly subject controlled, also having been affected by the 

implementation of the algorithm, the others were not. These delays are to be 

considered for future system improvements.  

8.2. Achievements 

One of the main achievements is that the designed intent interpretation framework 

satisfies the trade-off between the simplicity, dexterity and usability attributes. 

Simplicity has been satisfied through the use of the sEMG phenomenon, utilising eight 

different sEMG electrodes, symmetrically placed around the forearm, to continuously 

detect the user’s intentions. In the meantime, dexterity has been satisfied through the 

use of a multi-class linear pattern recognition system (LDA/SVM) which is capable of 

discriminating between the four chosen Proto-Motions, as well as the resting state. 

Meanwhile, usability has been satisfied through the introduction of a Movement 

Detection stage in the Movement Phase intent interpretation system, such that 

reliability is increased with less class predictions required to be made. Further usability 

was also introduced through the utilisation of sEMG amplitudes to estimate the force 

levels of the grasps, in real-time. This resemblance to human hand functionality helps 

users to more readily accept the device, leading to a more usable system. 

Thus, the system was designed in such a way such that it successfully maximised the 

trade-off between the simplicity, dexterity and usability attributes. The natural human 

sense of intuition was exploited while still providing the user with the capability of 

performing a vast majority of activities of daily living, in a reliable and practical way. 

It was also important that the design resembled human hand operation in all its 

different aspects. This successful trade-off is in comparison to the prosthetic devices 

and systems listed in Chapter 2 such as the highly simple on/off controlled prosthetics 

which then offer minimal dexterity, or the highly dexterous hands listed in Table 2.1, 

which require unintuitive and less than simple control commands. 

For offline Movement Phase systems using LDA classifiers, Movement Detection 

sensitivities exceeded 95% for all seven subjects. Meanwhile, class sensitivities, class 

specificities and class accuracies for the Proto-Motion Identification Stage varied per 
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subject. Overall accuracies encapsulating the results from the two stages resulted in a 

mean accuracy value of 92.31% ± 6.57% for the normal-limbed subjects and overall 

accuracies of 67.22% and 91.94% for amputee subjects A1 and A2, respectively. 

Overall, subject S0, who had the most training experience out of all the subjects, 

achieved the highest accuracy rates. Considering the fact that subject A1 was a 

congenital amputee with minimal experience of missing limb muscular activation, all 

the results achieved are highly satisfactory. These results proved to be satisfactory also 

in comparison to the literature, as discussed in Section 7.1.5. 

Continuous tests performed by subjects S0 and A2 resulted in comparable results to 

the episodic tests, indicating high performance of the system in real-time. Meanwhile, 

inter-session analysis concluded that the overall accuracy of the Movement Phase 

system has been found to decrease when trained with data acquired on a different day, 

as was expected. Nevertheless, the results were still satisfactory when the EMG 

electrodes were placed as close as possible to the optimal positions which guaranteed 

high signal repeatability in comparison to previous data acquisition. 

From the Force Phase experiments performed by subject S0, a mean accuracy larger 

than 70% was achieved for all the three tested grasps. It was also concluded that the 

subject had more control over the Closed Fingers grasp than over the other two grasps, 

resulting in a higher accuracy and a smaller mean delay than the Paper grasp and the 

Sewing Pin grasp. 

In order to achieve the results presented in this work, a lot of work was required in 

order to design and program all the different algorithms within different stages of the 

project. These algorithms included different signal processing techniques, especially 

with the various experimental protocols. Other specific algorithms were also 

implemented in order to post-process all the data that was recorded, to finally obtain 

meaningful results. All algorithmic work was programmed on Matlab, which also 

required interfacing with the third party Myo band SDK for real-time EMG data 

collection. Interfacing was also done with the Unity software through the Internet 

protocol suite (TCP/IP) in order to provide the subjects with real-time feedback of the 

hand simulation developed by my MAProHand colleague.  

The work done on the biceps in Chapter 4 also required further training on how to use 

the different sensors as well as how to synchronise them using BIOPAC’s 
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AcqKnowledge data acquisition and analysis software. Training was also required to 

use the Vicon system, and its software. 

One of the largest achievements in this work was the success of recruiting subjects, 

albeit the challenges caused by the global pandemic. This was especially challenging 

due to the small pool of transradial amputees on the island, which resulted to be even 

smaller once it was decided that only those amputees below the COVID at-risk age 

would be made eligible. The promise of keeping a safe environment for all subjects 

who willingly participated in this work was always kept, ensuring safe practise.   

The biggest achievement of this work, however, was the fact that the amputee subject 

A2 enjoyed experiencing real-time feedback of his performed motions during his 

second testing session. Through the Unity interface, the subject could feel, even if for 

a short while, that his missing limb was actually functioning the way he intended it to, 

even though it was physically absent. 

8.3. Future Work 

Whilst the work done on this project was substantial, further work is required in order 

to have a more reliable and successful system to be used in conjunction with a 

prosthetic hand in the real world.  

In future work, the Movement Phase and Force Phase intent interpretation systems 

need to be combined, as was briefly explained in Section 5.3, such that a complete 

system could be fully integrated with a mechanical prosthesis. Such an integration 

would allow the system to be tested in a real-life setup where the subjects are required 

to perform ADLs in specified amounts of time. This would determine how well the 

system operates with changes in arm posture, longer times of the system in use, muscle 

fatigue and contraction variations, amongst others. Furthermore, the determination of 

the cause(s) of EMG signal differences between sessions is required so that attempts 

can be made to minimize them. 

This system has only been implemented by considering one signal feature, the RMS 

and by implementing linear classifiers, LDAs and SVMs. In order to determine 

whether any accuracy improvements may be made to the intent interpretation 

framework, different combinations of features and (linear and non-linear) classifiers 

would also need to be analysed, such that the ideal combination could be determined. 

The detection of the movement detection false positives also needs further analysis 
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such that the analysis could then be fairly done in accordance to whether such instances 

were classifier misclassifications or actual uncued movements. 

A more in-depth analysis on the Force Phase intent interpretation system is also to be 

done such that it is determined whether different algorithmic threshold levels are 

required to be set for the different grasps. Since the Force Phase system analysis was 

only done on one subject, the implemented algorithm is to be tested on more subjects, 

especially including amputees. 

Since the end use of such a system is for amputees, a longitudinal study is to be done 

with a larger pool of amputee subjects, including both congenital and non-congenital 

amputees to determine whether improvements over muscular contractions are in fact 

possible with further training. Further discussions with amputees are also to be held in 

order to better determine what results in the most natural action intent system since it 

was especially noted that the amputee subjects found it challenging to rest in the end 

grasp after performing any of the Proto-Motions, which was not the case for the 

normal-limbed subjects. 

In conclusion, while it is clear that a lot of future work is still required in order to 

determine whether the designed system is in fact reliable to use in a real-time setup, 

the results that have been obtained in this dissertation have been satisfactory for use in 

an ideal laboratory setup. Furthermore, such results were obtained from a system 

which was specifically designed to successfully balance the trade-off between the 

simplicity, dexterity and usability attributes. This is the first step towards obtaining a 

finalised system which may eventually be used by amputees, in conjunction with the 

physical minimal anthropomorphic hand currently under design, to achieve the end 

objective of MAProHand.  
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