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Abstract

Satellite imagery provides information which is fundamental to remote sensing ap-

plications. Two of such applications are image registration and fusion of hyperspec-

tral and multispectral imagery. Image registration is a fundamental pre-processing

step to image fusion. Conjunctively, in remote sensing little previous work aimed

at the registration of satellite imagery with significant scale differences and the

registration of multi-modal satellite images. The aim of this work was to do a

comprehensive analysis of registration techniques in remote sensing. The SIFT

algorithm with different parameter sets was utilised to register thermal-thermal

satellite imagery with significant scale differences. The work also examined and

compared the use of other feature-based, area-based and optical flow-based tech-

niques for the registration of multi-modal and multi-sensorial satellite imagery. The

multi-modal data includes optical satellite imagery from Sentinel-2 and Landsat-8.

SAR images from Sentinel-1 and thermal images from Landsat-8 and Sentinel-3.

The findings of this study show that the most common type of modality utilised in

the image registration of remote sensing data is Optical-Optical and synthetic ape-

rure radar (SAR)-Optical. For the registration of thermal Landsat-8 to Landsat-8

and thermal Landsat-8 to Sentinel-3, the general pattern was that as one upscaled

the sensed image, the misregistration and RMSE increased due to a higher scale

difference. For the registration of SAR-Optical satellite imagery the overall best

performing was SIFT-Flow. For the registration of single modality data, the overall

best was SIFT followed by the Enhanced Correlation Coefficient (ECC). For the

registration of multi-modal satellite imagery, the overall best was SIFT.
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Glossary

This glossary describes some common terminology used in various chapters of the

dissertation concerning the remote sensing domain.

Attitude the orientation angle of a satellite with respect to a geographical

reference system.

Band also known as channel. Consists of a segment of the electromag-

netic spectrum. Satellite data typically contain multiple bands

that collect radiation from various parts of the electromagnetic

spectrum.

Control Point (CP) or Ground Control Point (GCP) an accurate known lo-

cation on Earth which is typically used to georeference remote

sensing data.

Nadir Point on Earth which is directly below a satellite.

Image Pixel Size size of the image data in pixels

Spatial Resolution the value allocated to each pixel in terms of area on the

ground. For instance the thermal bands of Sentinel-3 have a spa-

tial resolution of 1 km [1]. Thus, 1 pixel corresponds to a spatial

resolution of 1000 m.

Spectral Resolution the utilised bandwidths in the electromagnetic spectrum.

Temporal Resolution refers to the observation frequency of the satellite. This

is typically defined by the orbit of the satellite.

Single-modality originating from the same type of sensor.

Multi-modality originating from different types of sensors such as Optical, Ther-

mal, Infrared and radar.
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Multi-sensor having different spectral and spatial resolutions.

Multi-Spectral Image related to spectral resolution. Refers to a remote sensing

image that contains data from more than one band.

Hyperspectral Image an image created from hundreds or thousands spectral

images.

Swath the area that the sensor of the satellite can observe. A wider swath

allows the satellite a faster revisit time.

Top of Atmosphere (TOA) refers to the altitude above the Earth’s surface.

This is typically around 100 km.

Bottom of Atmosphere (BOA) refers to the conversion of top of atmosphere

reflectance to surface reflectance.

Panchromatic a panchromatic band is formed when an image sensor is sensitive

to wavelengths of most of the visible spectrum.

Normalized Difference Vegetation Index (NDVI) is a graphical indicator that

is utilised to analyse remote sensing measurements to assess the

state of plant health.

Synthetic-Aperture Radar (SAR) is a type of radar that is utilised to from

three-dimensional or two-dimensional images of objects such as

landscapes.

Reprojection the act of transforming a georeferenced satellite image to another

projected coordinate system.

Orthorectification the process of removing relief/terrain effects and tilt effects.

The aim of orthorectification is to geometrically correct an satellite

or aerial image such that the scale of the image is uniform.

Geodesy the science of understanding and measuring Earth’s geometric shape,

gravitational field and orientation in space.
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Chapter 1

Introduction

1.1 Problem Definition and Motivation

The process of spatially aligning two images of a scene in order to have correspond-

ing points that have the same coordinate system is known as Image Registration.

In image registration, for each point that is found in the first image, the corre-

sponding point in the second image should also be found. In this process, the first

image is denoted as the reference image whereas the second image to be registered

is denoted as the sensed image. Throughout the entire steps of the image regis-

tration, the reference is kept the same whilst the sensed image is changed to map

the spatial and geometry coordinates of the master image. Image registration is

required as a preprocessing step in various image processing applications such as

fusion based hyperspectral super-resolution and video enhancement.

Due to the drastic increase in data volumes and variety of sensors originating from

a multitude of satellites, image registration is becoming one of the most crucial

issues in remote sensing. An important consideration for this given problem is

the source of misregistration. This misregistration can be caused by a change in

sensor position, sensor viewpoint, object deformation, object movement or even

from a difference in swath width from images originating from different satellites

which could lead to geometric distortion. The width at which satellite sensors can

observe is known as the swath.

In the remote sensing domain, satellite images have various characteristics that

make image registration harder than when compared to image registration for nat-
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ural images in applications such as for video, face recognition and medical images.

� Multi-Modality. The image registration method may be performed on images

that are taken from different sensors. Such as thermal-to-optical sensors.

Different satellites with distinct satellites imply that images are captured by

different camera specifications which will make the registration harder.

� The size of the data. For instance, on average the size of a Landsat scene

without any subset extractions is on average of size 7000× 7000 pixels. This

contains 7 bands whose wavelength cover the visible to the thermal infrared

range. Handling such huge amounts of data requires heavy computation.

Thus, such requirements must be taken into account.

� Lack of a known Ground Truth. The lack of well-distributed points known as

Ground Control Points (GCP) that aid to align images result in difficulties

to validate image registration methods for remote sensing images. Although,

prominent landmarks such as the Eiffel Tower can be utilised as fiducial

points, such landmarks are very scarce, and are not evenly distributed around

the world.

The most reliable way would be to actually record the GPS locations of

millions of such sites, but such approach is too tedious and prohibitively

expensive. Another approach is to compare the digital image with various

other sources of ground reference data such as air photos or relevant reference

maps. Nonetheless, such an approach can only be utilised if the features of

interest are detectable using these sources.

� Orbital Error. Various types of errors may occur in the navigation-based

correction, resulting in registration errors. Such errors may occur during

spacecraft manoeuvres or due to ageing of the spacecraft and its resulting

sensors which may cause them to perform differently from the way they were

initially modelled. Fig. 1.1 illustrates misregistration caused by such an error

in remote sensing.

� Cloud and Atmospheric interactions. Before radiation detected by remote

sensing reaches the sensor it has to travel through considerable distance of

the Earth’s atmosphere. The incoming radiation and light can be affected

by particles and gases found in the atmosphere. Atmospheric effects are

2
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Figure 1.1: Remote sensing misregistration caused by orbital error. I2 is the sensed image to be
registered to the reference image I1. u(x) denotes the displacement between the two images [2].

caused by scattering and absorption. Examples of such effects are atmospheric

humidity and volcanic aerosols.

Another issue in the image registration of remote sensing data is cloud in-

teraction. Clouds might occlude a particular important feature of an image.

Such occluded features are important for the image registration as these oc-

cluded features in a scene can improve the accuracy of the registration.

� Multitemporal effects. Multitemporal effects can be induced by natural effects

or by human-induced effects that happen over time. Multitemporal effects

caused by natural effects cause a change of the scene through natural occur-

rences such as a change in the Sun angle during the year. Season changes are

also another example of natural multitemporal effects. The same scene in dif-

ferent seasons might look differently. To all those natural induced effects, the

human-induced mulitemporal effects must also be included. Human-induced

effects are related to activities such as deforestation, urban development and

agricultural practices.

� Relief/terrain effects. Another source that affects image registration of re-

mote sensing imagery is the terrain or the topography. Depending on the time

of the day, the slope of the geographic terrain, the characteristics of the sen-

sor and the satellite orbit, terrain effects might appear exceptionally different

in the images to be registered. Such topographic differences are generally

corrected using terrain models but minor local effects will still be present.

� Multisensor. Multisensor refers to the difference in spectral and spatial reso-
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lutions. When dealing with several sensors, with different spatial and spectral

resolutions, the following image registration issues must be addressed:

1. Appropriate selection of geometric transformations that cater for the

different spatial resolutions as significant differences in spatial res-

olutions can cause spatial distortion.

2. Extraction of image features which are invariant to radiometric differ-

ences due to multitemporal and multispectral resolutions.

3. Choice of similar bands that lie in a similar region in the electromagnetic

spectrum when performing band-to-band registration.

(a) Landsat-8 Thermal Image (b) Sentinel-3 Thermal Image

Figure 1.2: Thermal satellite images of different spatial resolutions

Fig. 1.2(a) shows the extracted Landsat-8 thermal image that has a spatial reso-

lution of 100 m per pixel of size 1000× 1000 pixels. Fig.1.2(b) shows the extracted

Sentinel-3 image which has an original spatial resolution of 1 km per pixel. Fig.

1.2(b) was upscaled to a size of 1000 × 1000 pixels using bicubic interpolation to

match the spatial resolution of the Fig. 1.2(a). Fig. 1.2 depicts the problem posed

by the significant scale difference in spatial resolutions. The upscaling required for

the S3 image caused significant distortion in Fig. 1.2(b). Induced artificial pixels

can be observed in the coastal regions of the islands. Such an aspect can cause

problems in registration as the false induced pixels can be detected as features to be
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utilised for registration. In applications such as data fusion and super-resolution,

such misregistration problems can be a hindrance to the resulting outcome.

Y. Zhou et al. proposed a fusion algorithm to register and fuse hyperspectral and

multispectral images [24]. In their work they highlight the fact that despite image

registration is a major application for remote sensing, there is little work aimed at

the image registration of images with significant scale differences [24]. They also

highlight that for such an application in the remote domain for real datasets there

is no ground truth [24].

1.2 Objectives

1. Investigate the gap in literature concerning the image registration of remote

sensing images for multi-modal and multi-sensorial satellite images.

2. Utilisation of a feature-based technique for multi-modal and multi-sensorial

satellite image registration.

3. Evaluate and analyse the amount of misregistration between thermal-to-

thermal satellite imagery with significant scale differences.

4. Compare area-based, feature-based and optical flow-based methods for the

registration of multi-modal and multi-sensorial satellite imagery.

1.3 Dissertation Outline

In Chapters 2 and 3, the background and literature review are given. In Chap-

ter 4 an investigation for the registration between multispectral bands of various

satellites is analysed. In Chapter 5, the framework description of the proposed

methodology is presented. In Chapter 6, Results and their respective analysis are

shown. Finally, Chapter 7 draws some conclusions, outlines the limitations and

mentions some directions for future work.
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Chapter 2

Background

2.1 Remote Sensing Fundamentals

Remote sensing can be denoted as the process by which information about a phe-

nomenon or object is captured from a remote location such as a satellite or an

aircraft. More precisely, satellite or sensing images refer to images created from

the use of sensors located on space platforms to capture electromagnetic energy

which is emitted or reflected from planetary sources such as the Earth or the Sun.

Sensors can be either passive or active. In passive satellite sensors the energy de-

tected originates from the planetary surface (e.g. as a result of reflectance of solar

energy), whilst active sensors, utilise their own source of energy to capture images

such as radar systems.

Figure 2.1: Electromagnetic spectrum (EMS) [3]

All objects emit radiation at different wavelengths, the emitted energy varies with
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the temperature of the object and with the wavelength. The ideal body is a black-

body, a body which allows the absorption of all incident radiation, without reflecting

any. According to Wien’s and Stefan-Boltzman’s displacement laws, a dominant

wavelength, can be determined for all blackbodies. A dominant wavelength is the

wavelength at which the total amount of light, emitted by an area of surface of a

radiating body is at maximum.

Assuming that the Sun and the Earth act like blackbodies, their respective domi-

nant wavelengths are 500 nm (in the green visible part of the EMS) and 9700 nm

(in the Infrared (IR) region of the EMS). This infers that the emitted energy by

the Earth is best observed by sensors which operate in the microwave and ther-

mal infrared regions of the EMS whilst reflected Sun energy by the Earth is best

observed in the visible, near-infrared and mid-infrared regions of the EMS.

Figure 2.2: Satellite images of the region around Malta International Airport. a) RGB image
synthesised from red, green and blue bands from Sentinel-2 with 10m spatial resolution. b) NDVI
image synthesised from the red and NIR bands from Sentinel-2 with 10 m spatial resolution. c)
SAR image from Sentinel-1 [4] with 10 m resolution. The normalised reflected amplitude in the
vertical polarisation is shown. d) Thermal image from Landsat 8 showing brightness temperature
in degrees Celsius with a spatial resolution of 100m. The horizontal bars in each of the four images
correspond to a distance of 1 km. Images shown in a), b) and d) were acquired on 04/07/2018,
whereas c) was acquired on 06/07/2018.
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2.1.1 Optical Images

Optical images refer to recordings of the surface reflected solar radiation in the vis-

ible 1 and near-infrared 2 spectral regions. A typical instrument may record images

simultaneously in a number of discrete spectral bands, allowing a 3-dimensional

(two space and one spectrum) image of the surface to be derived from the data.

With respect to the satellites listed in Table 2.1, the highest resolution, freely avail-

able optical images are provided by Sentinel-2 [25] with a spatial resolution of 10 m

per pixel. In remote sensing, spatial resolution refers to the value allocated to each

pixel in terms of area on the ground in meters.

Multi-spectral instruments, contain discrete, separated bands, offering partial cov-

erage of the electromagnetic spectrum. An example is Operational Land Imager

on board Landsat 8 which records in 9 discrete bands. The central wavelength

and bandwidth of each of the bands are chosen with specific applications in mind.

For example, band 9 of the Sentinel-2 satellite covers wavelengths in the range

945± 10 nm. This region coincides with strong absorption by water vapour. Hence

the band 9 image can be used to estimate the density of water vapour in the at-

mospheric column between the surface and the satellite. A composite RGB image

formed from three bands of the Sentinel-2 satellite is shown in Fig. 2.2 a).

Less common are hyperspectral instruments, such as the Hyperion imaging spec-

trometer on board the now-decomissioned Earth Observation 1 satellite [26]. For

these instruments, the spectral coverage is more complete: in the case of Hyper-

ion there were 220 contiguous bands covering the spectral region between 0.4 and

2.5 µm. The trade-off is a very narrow swath (7.5 km) for the spatial resolution

(30 m). Nevertheless, spectroscopic applications, including element and mineral

detection [27] are enhanced by the higher spectral sensitivity of hyperspectral in-

struments.

2.1.2 Thermal Infrared Images

Thermal infrared images refer to recordings of light radiated by the Earth’s surface

as a result of its temperature. In the spectral region spanning 8− 25 µm in wave-

length, the satellite-recorded signal is dominated by thermal light, with reflected

solar radiation negligible in comparison. According to Planck’s law, for a fixed

1Wavelengths between 400− 700 nm.
2Wavelengths between 700− 1400 nm.
3At a mid-latitude location (i.e. the Mediterranean Sea), correct as of May 2019.
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Satellite Instrument
Name & Type

Spatial
Resolution (m)

Revisit Time
(days)3

Open
Data

Sentinel-1: C-SAR (SAR) 5, 20 & 25 2 Yes
Sentinel-2: MSI (Optical) 10, 20 & 60 2-3 Yes
Sentinel-3: OLCI (Optical) [28] 300 < 1.4 Yes
Sentinel-3: SLSTR (Thermal) 1000 < 1 Yes
Landsat 7: ETM+ (Optical) [29] 30 16 Yes
Landsat 7: ETM+ (Thermal) 60 16 Yes
Landsat 8: OLI (Optical) [30] 30 16 Yes
Landsat 8: TIRS (Thermal) 100 16 Yes
SPOT5: HRG (Optical) [31] 5, 10 & 20 3 No
RapidEye: MS (Optical) [32] 6.5 1 No
Pleiades: HR (Optical) [33] 0.5 26 No
TerraSAR-X: HR (SAR) [34] 1 2.5 No
RADARSAT-2: HR (SAR) [35] 3 3 No

Table 2.1: (Non-exhaustive) Summary of currently active satellite instruments including the
availability of the data.

wavelength, the brightness of the measured signal is related to the temperature of

the emitting body: the brighter the emission the higher the temperature. Hence

the radiance, as measured in the thermal infrared spectral region by a satellite,

can be related to a brightness temperature: the temperature of an equivalent black

body. Accounting for atmospheric absorption and the emissivity of the ground

location allows the brightness temperature to be corrected to better correspond

with the actual surface temperature. A brightness temperature image acquired

by the Landsat 8 satellite is shown in Fig. 2.2 d). With respect to the satellites

listed in Table 2.1, the highest spatial resolution, freely available thermal images

are provided by Landsat 7 ETM+ instrument, with a spatial resolution of 60 m.

This high spatial resolution comes at the cost of a large revisit time (16 days).

2.1.3 Synthetic Aperture Radar

As opposed to optical and thermal satellite imagery, Synthetic Aperture Radar

(SAR) images are produced by active remote sensing, in which microwaves are

beamed from the satellite towards Earth, and the reflected waves are detected

by sensors on board the satellite. The advantage of SAR remote sensing is that

images can be acquired in any type weather conditions, day or night, including

in the presence of cloud cover. A disadvantage is that SAR imagery suffers from

speckle and topography effects. Typically, side looking radar is used to correctly

9
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decipher the amplitudes and phases of the received signals. An example of a SAR

image acquired by Sentinel-1 is shown in Fig. 2.2 c). With respect to the satellites

listed in Table 2.1, the highest spatial resolution, freely available SAR images are

provided by Sentinel-1 in “stripmap” mode, with a resolution of just 5 m.

2.2 Processing Levels and Bands

This section defines the level of data processing and the bands for the most men-

tioned and utilised satellites in this dissertation.

2.2.1 Sentinel-2

The Sentinel-2 MSI (optical) samples 13 bands whose wavelengths range from

the Blue spectral region to the Short-wave infrared (SWIR) region in the EMS.

Sentinel-2 MSI data products contain two levels of processing: Level-1LC and

Level-2A. Levels 0 to 1B are not available to the users, only level-1LC and level-2A

products are available.

Name Description Size of Tile
Level-1C TOA reflectances in cartographic geometry 100×100 km2

Level-2A BOA reflectances in cartographic geometry 100×100 km2

Table 2.2: Sentinel-2 product types [16]

2.2.2 Landsat-8

Landsat-8 is the most recent satellite launched by Landsat. It carries two instru-

ments: the optical instrument known as the Operational Land Imager (OLI) and

the Thermal Infrared Sensor (TIRS) instrument. Landsat-8 samples 11 band whose

wavelengths range from the Blue spectral region to the TIRS region. Landsat-8

data products contain three levels of processing: L1TP, L1GT and L1GS as de-

noted in Table 2.4.

The Landsat-8 data product utilised in this dissertation and in most reviewed

literature is the Landsat-8 L1TP product. It is the highest quality level-1 product

from all three. It is orthorectified and radiometrically calibrated using digital

elevation model (DEM) data and ground control points (GCPs) to correct for
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Band
Spectral
Region

Spatial
Resolution (m)

Central
Wavelength (µm)

B1 Ultra Blue (Coastal and Aerosol) 60 0.443
B2 Blue 10 0.490
B3 Green 10 0.560
B4 Red 10 0.665
B5 Vegetation Red edge 20 0.705
B6 Vegetation Red edge 20 0.740
B7 Vegetation Red edge 20 0.783
B8 NIR 10 0.842
B8a NIR narrow 20 0.865
B9 Water Vapour 60 0.940
B10 SWIR (Cirrus) 60 1.375
B11 SWIR 20 1.610
B12 SWIR 20 2.190

Table 2.3: Spectral bands and spatial resolution of Sentinel-2 MSI [17]

relief displacement. GCPS utilised for the L1TP correction are extracted from the

Global Land Survey 2000 (GLS2000) data set [18].

Name Description Size of Tile
L1TP Terrain Precision Correction 185×180 km2

L1GT Systematic Terrain Correction 185×180 km2

L1GS Geometric Systematic Correction 185×180 km2

Table 2.4: Landsat-8 product types [18,19]

Band Spectral Region Spatial Resolution (m) Central Wavelength (µm)

1 Coastal aerosol 0.43-0.45 30
2 Blue 0.45-0.51 30
3 Green 0.53-0.59 30
4 Red 0.64-0.67 30
5 NIR 0.85-0.88 30
6 SWIR 1 1.57-1.65 30
7 SWIR 2 2.11-2.29 30
8 Panchromatic 0.50-0.68 15
9 Cirrus 1.36-1.38 30
10 TIRS 1 10.60-11.19 100
11 TIRS 2 11.5-12.51 100

Table 2.5: Spectral bands and spatial resolution of Landsat-8 OLI and TIRS [19]

A salient point to be noted is that the thermal TIRS bands of Landsat-8 have a
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spatial resolution of 100 m but are resampled at a pixel size of 30 m to match the

multispectral bands [36].

2.2.3 Sentinel-3

The objective of the Sentinel-3 mission is to measure sea and land-surface tempera-

ture, sea-surface topography and ocean-and land-surface colour. Sentinel-3 samples

11 spectral bands and carries multiple instruments. Ocean and Land Colour In-

strument (OLCI), Sea and Land Surface Temperature Radiometer (SLSTR), SAR

Radar ALtimeter (SRAL), Microwave Radiometer (MWR) and Precise Orbit De-

termination (POD).

Sentinel-3 SLSTR thermal data contains three levels of processing. Level-0, Level-1

and Level-2. Only Levels-1 and Levels-2 are available to the public. This disserta-

tion utilises the Level-1 SL 1 RBT Sentinel-3 SLSTR data product that contains

radiance and brightness temperature measurements for both oblique and nadir

views.

Figure 2.3: Sentinel-3 SLSTR Levels of Processing [5]
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Band
Spectral
Region

Spatial
Resolution (m)

Central
Wavelength

Function

S1 VNIR 500 0.55427
Vegetation monitoring,

cloud screening,
aerosol

S2 VNIR 500 0.65947
Vegetation monitoring,

NDVI,
aerosol

S3 VNIR 500 0.868
NDVI,

cloud flagging
S4 SWIR 500 1.3748 Cirrus detection

S5 SWIR 500 1.6134
Ice, snow,

cloud clearing,
vegetation monitoring

S6 SWIR 500 2.2557
Cloud clearing,
vegetation state

S7 Thermal IR 1000 3.742 SST, LST, Active fire
S8 Thermal IR 1000 10.854 SST, LST, Active fire
S9 Thermal IR 1000 12.0225 SST, LST
F1 Thermal IR 1000 3.742 Active Fire
F2 Thermal IR 1000 10.854 Active Fire

Table 2.6: Spectral bands and spatial resolution of Sentinel-3 SLSTR [20]

2.3 Registration through Geocoding

Multi spectral and single modality satellite imagery are geocoded by assigned coor-

dinates to the image through the usage of Ground Control Point (GCP) collection.

The units that represent these assigned coordinates in a geographic coordinate sys-

tem are known as the latitude and longitude.

A GCP is an accurate known location on Earth which is typically used to georefer-

ence remote sensing data. An example of a GCP is the Eiffel Tower. As illustrated

in Fig. 2.4, a GCP determines the relationship between the raw image and the

ground by associating the pixel (P) and line (L) image coordinates to the x, y,

and z coordinates on the ground. These ground coordinate can come from various

sources such as ground surveys, topographic maps and GPS.

Both the geometrically corrected Sentinel-2 L1C TOA data and the equivalent

Landsat-8 L1T TOA utilise onboard GPS sensors, an attitude determination sys-

13



Chapter 2. Background

Figure 2.4: Ground Control Point [6]

tem and digital elevation models (DEM) to geolocate the sensed field of view [37].

Landsat-8 L1T products are their highest level one products. Orthorectified and

radiometrically calibrated Landsat-8 L1T products utilise digital elevation model

data and ground control points to correct for relief displacement. GCPs utilised for

the L1TP correction are extracted from the Global Land Survey 2000 (GLS2000)

data set [18].

Sentinel-3 data products are geolocated by calculating the geolocation parameters

(altitude, altitude rate, latitude and longitude) which are calculated using the orbit

file which is generated by the Precision Orbit Determination (POD) Sentinel-3 in-

strument [38].

2.4 General Process of Full Image Registration

In addition to geocoding, an image matching algorithm is required for full image

registration to achieve subpixel accuracy in the georeferenced satellite data.

A full image feature-based registration process typically consists of four main steps:

1. Feature extraction. In this step features such as contours, edges and regions

are extracted and utilised as tie-points. These extracted tie-points are then

utilised to match the images to be registered. Getting the correct tie-points

is essential for accurate registration.

Feature-based methods rely on the extraction of features from the images to
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be registered. Examples of such extracted features are lines, edges, intersec-

tions and contours. The choice of feature-based method utilised is application

dependent. Examples of feature-based algorithms include: Scale Invariant

Feature Transform (SIFT) [7], Speedup robust features (SURF) [39], KAZE

[40], Accelerated-KAZE (AKAZE) [41], Oriented FAST and Rotated BRIEF

(ORB) [42] and Binary robust invariant scalable keypoints (BRISK) [43].

From all the mentioned feature-based algorithms, for natural images, SIFT

was found to be the most accurate feature-detector descriptor for rotation,

affine and scale variations (overall) [44].

2. Feature matching. In this step, the correspondence between the features of

the two images to be registered is found. In feature-based methods the cor-

respondence is generally found by using distance metrics such as Hamming

distance or Euclidean distance.

3. Selection of Best Matching Keypoints. In this step the best matching key-

points are selected by rejecting outliers. A outlier detection method is typi-

cally utilised to reject outliers such as the Random Sample Consensus (RANSAC)

Algorithm [45].

4. Transformation estimation is the mapping function utilised to estimate trans-

formation parameters based on the previously established correspondence

between the extracted features. In remote sensing applications, the most

commonly used geometric transformation is affine transform.

5. Image Warping is the process that maps the sensed image to the reference

image based on the obtained transformation parameters from the affine ma-

trix. In the case that the images are of different sizes image resampling is

also required. Typical interpolation methods utilised for image resampling

are nearest neighbour, bilinear interpolation or bicubic interpolation.

In addition to feature-based methods, three other methods can also utilised for

full image registration. These are area-based methods, a hybrid approach where

both feature-based and area-based methods are combined and optical-flow based

methods.
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Area-based methods rely on the brightness consistency. The gray-levels of the im-

ages are utilised directly to match them. This matching is typically done through

statistical comparison of pixel values in a window area. The matching in area-

based methods is typically done using phase-correlation or cross-correlation. Area-

based methods are best suited for images that are captured from a highly similar

sensor or the same sensor. An example of area-based method is Enhanced cross-

correlation. [46].

In contrast to area-based methods, feature-based methods are robust to differences

in scale and rotation between the two images by detecting reliable features in both

reference and sensed images. Thus, feature-based methods can perform well for

the registration of images coming from heterogeneous sensors. Hybrid-approaches

utilise a combination of area-based and feature-based methods. These methods are

also useful when registering data coming from heterogeneous sensors.

Contrary to feature-based and area-based methods which typically require an es-

timation of a transformation homography optical-flow based methods try to find

the pixel wise correspondence. Optical-flow algorithms rely on motion vectors. An

optical-flow algorithm takes two frames and for each pixel in the first frame a vector

is derived. This vector is then utilised to display each pixel from the first to the

second frame. Optical-flow methods are best suited for video-analysis and to regis-

ter nonrigid images. Examples of optical-flow methods include Lucas–Kanade [47]

method and SIFT-Flow [48]. However, optical-flow methods are also considered to

register remote sensing images.
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2.5 SIFT Algorithm

SIFT is a patented feature detection algorithm that was published by David Lowe

[7] in 2004 to match or stitch images coming from different sources. It is used to

detect and describe local features. SIFT descriptors are invariant to illumination,

scale and rotation.

The SIFT algorithm consists of four main steps:

� Scale Space Extrema Detection

� Accurate Keypoint Localisation

� Orientation Assignment

� Local Descriptor Creation

2.5.1 Scale Space Extrema Detection

The scale space of an image is defined as a function L(x, y, σ), that is produced

from the convolution of a variable-scale Gaussian G(x, y, σ) with an input image

I(x, y).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

where ∗ is the convolution operator in x and y, (x, y) are the spatial coordinates

and σ is the spread of the Gaussian also known as the “scale” parameter.

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.2)

To efficiently detect stable key point locations proposed the difference-of-Gaussian

function convolved with the image, D(x, y, σ), which can be computed from the

difference of two nearby scales separated by a constant multiplicative factor k.

D(x, y, σ) = (G(x, y, kσ))−G(x, y, σ) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(2.3)

17



Chapter 2. Background

where typically k =
√

2 and σ = 1.6 [7].

As shown on the left of Fig. 2.5 an octave is a set of images where the blur of

the last image is double the blur of the first image. Within an octave the adjacent

images differ by a blur of k × σ. For each octave, the initial image is repeatedly

convolved with the Gaussian operator to form the blurred images known as the

scale space images shown on the left of Fig. 2.5.

The adjacent blurred images in each octave are subtracted to form the DoG images

shown on the right of Fig. 2.5. After each octave, the blurred image is downsam-

pled by half, and this process is iterated for the chosen number of octaves. The

number of octaves proposed by Lowe is 4 [7].

The DoG is an approximation for the Laplacian of Gaussian (LoG).

Figure 2.5: Difference of Gaussian (DoG) [7]
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2.5.2 Local Extrema Detection

Figure 2.6: Extrema Detection [7]

A check is done through each pixel in the DoG image of Fig. 2.6. In order to

detect the local maxima and local minima of D(x, y, σ), the point marked in X is

compared to its eight neighbours in the current image and nine neighbours in the

scale above and below as shown in Fig. 2.6. The point X is only selected if it is

larger than all of these neighbours or smaller than all of them. This process is used

to denote a list of candidate keypoints.

2.5.3 Accurate Keypoint Localisation

2.5.3.1 Local Extrema Detection

The next step is to reject low contrast and poorly localized edges. Therefore, this

is computed by approximating the difference of Gaussians using a Second Order

Taylor series denoted by:

D(x) = D +
∂DT

∂x
x +

1

2
xT +

∂2D

∂x2
x (2.4)

where x = (x, y, σ)T

The author of SIFT showed that the location of the extrema, x̂, is found by taking

the derivative of Eq. 2.4 and initialising it to zero, resulting in

x̂ = −∂
2D−1

∂x2

∂D

∂x
(2.5)
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Thus, D(x̂) is equivalent to

D(x̂) = D +
1

2

∂DT

∂x
x̂ (2.6)

|D(x̂)| is known as the contrast threshold and its value is utilised to eliminate low

contrast keypoints. All extrema values of |D(x̂)| less than a particular floating

value are rejected. Image pixel values in the algorithm are assumed to be within

the range [0, 1] and the contrast threshold utilised by Lowe is 0.03 [7].

2.5.3.2 Further Outlier Rejection by Eliminating Edge Responses

It is not enough to reject keypoints with low contrast, keypoints which have a

strong response along edges must also be rejected. Mathematically, this is accom-

plished using the Hessian Matrix. The eigenvalue decomposition of the Hessian H

is computed to derive the eigenvalues α and β as similarly done for Harris Corner

detection.

H =

[
Dxx Dxy

Dxy Dyy

]
(2.7)

Taking the differences of the neighbouring sample points estimates the derivatives.

The eigenvalues of H are proportional to the second order derivatives of D. They

are denoted by Dxx, Dxy and Dyy.

α is denoted as the eigenvalue with the largest magnitude and β is denoted as the

eigenvalue with the smallest magnitude. The sum of the eigenvalues is computed

from the trace of H and their product from the determinant:

Tr(H) = Dxx +Dyy = α + β (2.8)

Det(H) = DxxDyy − (Dxy)
2 = αβ (2.9)

Let r be the ratio between α and β, such that α = rβ. Then,

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(2.10)
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r is denoted as the edge threshold. To detect whether there is a corner or an edge

around the keypoint of an image, the SIFT algorithm checks

Tr(H)2

Det(H)
<

(r + 1)2

r
(2.11)

Based on the image around the keypoint three possibilities exist:

� A flat region - both gradients will be small and |r| is small

� An edge - one gradient will be big the other will be small, r < 0

� A corner - both gradients will be big, r > 0

Corners are the most discriminative features. The aim is to only keep corners.

This method only selects keypoints where r > 0. Lowe recommends that the edge

threshold r = 10 [7].

2.5.4 Orientation Assignment

In this step an orientation is assigned to prominent keypoints. This orientation is

required to achieve rotation invariance. This is done by computing the gradient

magnitude m and orientation θ at a scale of keypoint (x, y). Therefore, for every

detected keypoint both m(x, y) and θ(x, y) are computed using :

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.12)

θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
(2.13)

The orientation is computed by computing the histogram in a neighbourhood of

each keypoint identified by the blue circle in Fig. 2.7 (36 bins where one bin cor-

responds to 10◦).

The amount added to each bin is based on the magnitude of gradient at that point

and the Spatial gaussian filter (windows size) with σ = 1.5. The spatial gaussian

filter gives higher weights to vectors closer to the keypoint. The orientation of the

interest point is then assigned to the bin with the highest peak. In case of multiple

peaks (within 80% of highest peak), the histogram is assigned different directions.
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Figure 2.7: Histogram of Gradient based on Orientation [8]

2.5.5 Local Descriptor Creation

The previous operations have assigned an image location, scale and orientation to

each keypoint. Thus, these operations provide invariance to such parameters. The

next step computes a feature vector for each keypoint.

Figure 2.8: 16× 16 window broken down to into sixteen 4× 4 windows [9]

This is accomplished by creating a 16 × 16 window around the keypoint. This

16 × 16 is broken into sixteen 4 × 4 windows as shown in Fig. 2.8. Within each

4× 4 window, the gradient magnitudes and orientations are computed. These ori-

entations are allocated into an 8-bin histogram as shown in Fig. 2.9.

An orientation in the range 0◦− 44◦ is added to the first bin. 45◦− 89◦ is added to

the second bin and so on. The amount added to each bin depends on the magnitude

of the gradient and the distance from the keypoint. The distance is computed using

the weighted Gaussian filter which generates a gradient as shown in Fig. 2.10.

The previous steps are repeated for all sixteen 4 × 4 regions which results in 4 ×
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Figure 2.9: Allocating orientations into an 8-bin histogram [9]

Figure 2.10: The weighted Gaussian filter is multiplied to the magnitude of orientations which
results in the distance mentioned. [9]

Figure 2.11: Feature descriptor for one keypoint. [9]

4×8 = 128 numbers. These 128 numbers form the feature vector/descriptor. Each

keypoint in the image is identified by its own feature descriptor as shown in Fig.

2.11.
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2.6 Matching Keypoints

Figure 2.12: Matching SIFT keypoints (including outliers). [10]

Once the SIFT keypoints in the reference and sensed images are extracted, the

next step is to match each keypoint descriptor of the reference image against the

keypoint descriptor of another image.

This matching is accomplished by finding the nearest neighbour i.e. a keypoint with

minimum Euclidean distance. The ratio between the smallest distance and second

smallest distance is computed. Lowe rejects all matches which have a distance ratio

greater than 0.8 [7]. In Fig. 2.12, correct matched keypoints (inliers) are depicted

as parallel lines whilst incorrect matches (outliers) are depicted as non-parallel

lines. Thus, the rejection of additional outliers is still required.

2.7 Elimination of Outliers: RANSAC

To eliminate outliers in keypoint matching one utilises an outlier detection method

such as the Random Sample Consensus (RANSAC) algorithm. RANSAC estimates

parameters of a model by random sampling of observed data. Given a set of data

keypoints there are a number of inliers (parallel lines) and outliers, RANSAC uses

a form of voting scheme to find the optimal set of inliers. The RANSAC model is

an iterative model which is generally repeated for a maximum number of iterations.
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The RANSAC algorithm starts by selecting n points at random. In this case two

(marked in blue) as shown in Fig. 2.13.

Figure 2.13: Step 1 of the RANSAC algorithm. [11]

Figure 2.14: Step 2 of the RANSAC algorithm. [11]

In Fig. 2.14 assuming that both randomly chosen data points marked in blue are

inliers, the least squares method is utilised to estimate the best straight line be-

tween these n points. In this case n = 2.

Considering a tolerance margin (RANSAC threshold) as shown in Fig. 2.15 - all the

points lying within this margin are considered as inliers (for this first iteration!).

From the shown testing data (not utilised to model the (black) straight line), one

can observe that two blue (data) points are within the tolerance margin. Thus,

this model will give two inliers (in blue) and two outliers (in red). The above steps

are then repeated for a maximum number of iterations.
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Figure 2.15: Step 3 of the RANSAC algorithm. [11]

Consider an experimental example where the chosen number of random data points

is n = 3. The set maximum number of iteratons for the RANSAC algorithm is 100

iterations and the set RANSAC threshold/tolerance margin for this example is 0.1.

Figure 2.16: Regression model result using the Linear (Least Squares) and RANSAC regressors.
[11]

In the experimental result shown in Fig. 2.16, the RANSAC algorithm performs

better than linear (least squares) regressor. Whilst the RANSAC algorithm man-

ages to ignore the outliers (marked in yellow) in the regression model, the linear

regression is more supsceptible to outliers.
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Literature Review

The first section of this chapter provides an overview of the literature concerning

multi-multimodal and multi-sensor registration for satellite and remote-sensing im-

agery. The aim is to investigate the gap in literature with regards to the use of

multi-modal sensors utilised.

3.1 Multi-Modal Image Registration for Satellite

Imagery

Several approaches have been put forth to solve the problem of image registration

in remote-sensing. Tondewad and Dale presented a review of different registration

methodologies [49] with their involved challenges. In their findings they stated that

in literature concerning image registration in the remote sensing domain, the most

commonly used methodology are feature-based algorithms [49]. SIFT was found to

be the most utilised feature detection algorithms [49]. Based on their work it was

found that feature-based algorithms are more suitable for this task compared to

area-based methods as feature-based methods focus more on features rather than

intensity thus making area-based methods more sensitive to changes in illumina-

tion. Furthermore, their review also stated that utilising SIFT alone is not enough

since SIFT based techniques tend to suffer from insufficient feature points and a

high outlier ratio under severe appearance change. A suggested improved approach

is to combine traditional based methods such as SIFT with neural networks such

as a Convolutional Neural Network (CNN) [49].
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3.1.1 Area-based Methods

S. Skakun et al. [50] performed registration of optical-to-optical satellite imagery.

Multi-temporal Landsat-8 OLI images and Sentinel-2 MSI images at a spatial res-

olution of 30 m were utilised for registration. Phase-Correlation was utilised to

generate control points between the two images. The RANSAC model was then

utilised to establish the linear transformation model that detects inliers and out-

liers. S. Skakun et al. also applied a phase correlation method to detect pixel shifts

between multi-spectral bands of Sentinel-2A. Thus, the phase correlation assessed

the registration accuracy between intra multi-spectral bands [21]. Fig. 3.1 shows

the misregistration in Sentinel-2A intra multi-spectral bands in pixels.

Table 3.1: Table denoting the multispectral misregistration in Sentinel-2A data in pixels [21].

For the S2 L1C image, the red band (B4, an optical) was used as the reference im-

age whereas the panchromatic image was utilised for L8. This panchromatic image

was generated from three Sentinel-2 bands found in the visible spectra. Thus, the

work proposed in [51] co-registered optical-to-optical satellite imagery. Combined

binary cloud mask was first generated using the FMask algorithm [52]. The aim

was to exclude clouds, snow or water before commencing registration. The images

were then matched using an image-correlation algorithm [53] which yielded corre-

lation coefficients. These coefficients were then mapped using a systematic affine

transformation. The resulting homologous points were then improved further by

using the RANSAC algorithm.

R. Behling et al. [54] co-registered optical-to-optical images coming from differ-

ent satellites such as Landsat, RapidEye, SPOT-1, SPOT-5 and Aster. The focus

was on the multi-temporal aspect of optical satellite imagery. Common tie-points

between the reference and sensed images were generated using an area-based cross-
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correlation method to warp the reference and the sensed. A 30 m spatial resolution

was considered. The validation of tie-points which excluded potential outliers was

established using an affine transform that considered translation, rotation and

scale.

D. Scheffler et al. [55] co-registered satellite imagery coming from different satel-

lites such as L8, S2A, and RapidEye at different spatial resolutions (such as 10,

15, 20 and 30 m). The work in [55] registered optical-to-optical images and optical-

to-radar. A phase-correlation method in conjunction with the Mean Structural

Similarity Index (MSSIM) similarity metric was utilised.

D. Evangelidis et al. [46] proposed a modified version of the correlation coefficient as

the performance criterion for image registration. The proposed registration method

is called the Enhanced Correlation Coefficient (ECC). The proposed modification

aimed at maximizing the Enhanced Correlation Coefficient function to be robust

against geometric and photometric distortions. This method was compared to the

Forward Additive Lukas-Kanade method. Under photometric and noisy conditions

this proposed outperformed the Lukas-Kanade method by converging faster and

achieving better image registration.

3.1.2 Feature-based Methods

L. Yan et al. [56] coregistered L8 OLI L1T and S2A MSI L1C optical-to-optical

imagery in the NIR region. The proposed work utilises a hybrid-based method

which consists of feature and area-based methods. The proposed method has four

major steps: Image Gaussian pyramids : which is a hierarchy of low-pass images.

The pyramid utilised contains low-pass images, from the lowest spatial resolution

to the highest native spatial resolution. In the work proposed, four levels (120 m,

60 m, 30 m, 10 m) were utilised. Features were detected in one image (the S2A

image which has higher native resolution). The locally adaptive Forstner operator

was utilised at each pyramid layer to detect the features. An Area-based matching

between the feature points was applied. This was done sequentially from the lowest

to the highest spatial resolution pyramid level. The area-based matching was com-

puted by comparing the NIR reflectance values over a small square image patch

(n × n pixels) surrounding each feature point obtained in the S2 image with the

corresponding sized patch found in the L8 image. Rather than utilising the conven-
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tional cross-correlation method, the least square matching (LSM) was utilised. The

LSM results in a set of corresponding locations (tie-points) between the S2 and L8

images. Use of least-squares regression and various transformation functions such

as translation, affine, and second order polynomial followed to compute the needed

homography for image registration.

R. Ambati et al. [57] performed co-registration between optical-to-optical L8 L1T

and S2 L1C bands using a combined feature-based method. The proposed algorithm

has five major steps: Extraction of feature points using SURF [39] and SIFT [7]

features. Matching of keypoints between the L8 and S2 images using Fast Ap-

proximate Nearest Neighbor (FANN) [58]. Selection of best-keypoints based on a

threshold. The threshold value (20%) that corresponds to the percentage of the Eu-

clidean distance from a perfect match. Chosen threshold value was found through

empirical data that minimised the RMSE. Estimation of homography was com-

puted using conformal, affine and projective transformations. Image resampling

was then performed using Nearest Neighbour, Bilinear and Bicubic interpolation.

Eugenio et al. [59] proposed a feature-based algorithm for the registration of mul-

titemporal and multisensorial oceanographic satellite imagery. Optical and SST

images from different dates and sensors were utilised for registration. Examples of

satellites utilised are MODIS and SeaWIFS. The proposed algorithm first utilised

the MODIS cloud mask to exclude clouds. Feature extraction was then performed

through contour extraction of the coastline region using the Sobel operator to esti-

mate the edges. Furthermore, the cloud overlay was also utilised to obtain reliable

non-occluded coastline areas (edges). Feature matching was performed through

the use of an algorithm that minimised local energy [59]. The local energy refers to

the matrix of gradient energies. Once points of the overlapping reliable edges were

obtained, an affine transformation matrix which catered for translation, scaling

and rotation was utilised.

Wahed et al. [60] performed registration between optical, panchromatic and near-

infrared images from the Landsat and QuickBird satellites. Images utilised for

registration all lie close the visible spectra. Both the reference and sensed image

were first image enhanced through the use of a median filter. Then both images

were also decomposed in a Steerable Pyramid Transform [61]. A steerable pyramid
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transform is a linear multi-scale, multi-orientation image decomposition that con-

sists of a class of filters. It was developed to overcome the limitations imposed by

wavelet decompositions. For both images, features at every decomposition pyra-

mid level were extracted using SIFT. Features in both images were matched by

calculating the ratio of the Euclidean distance of the feature descriptor vector from

the closest neighbour to the distance of the second closest. Outliers were then

filtered out using RANSAC. The homography was then estimated using an affine

transform. According to the obtained transform parameters image resampling on

the sensed image was then performed.

Ding et al. [62] proposed a multi-sensor registration algorithm between optical-to-

infrared images. Satellite images utilised were taken from the satellite, Seasat.

Both images have a size of 225× 225 pixels. The proposed algorithm has four ma-

jor steps: Feature extraction is done by extracting corners using the Harris Corner

Detector algorithm. Once the corner points in the reference and sensed images

were found, establishing the correspondences between the points in both images

followed. The corner point matching was performed in two steps. Firstly, cross-

correlation was utilised to find the cross correlation coefficients of every corner in

both images. Secondly, the corresponding corners that have a cross correlation

coefficient greater then a chosen threshold were selected. These were then sorted

according to their value and the top twenty were chosen as the matched features.

The removal of mis-matching corners was performed using a mis-matching corner

removal algorithm. The algorithm utilised the Mahalanobis distance to remove mis-

matches. After a minimum of at least three corner points are established, the affine

matrix was utilised to compute the needed homography for image registration. The

affine matrix was estimated using the Least Square Method. In the computed affine

matrix scale, translation and rotation were considered. In the final step, based on

the obtained affine transformation parameters, the sensed image was resampled on

to the reference using bi-linear interpolation.

F. Dellinger et al. proposed an algorithm to register SAR images called SAR-

SIFT [63]. In this work they proposed a modified version of the SIFT algorithm

for SAR images. The major step changed in SAR-SIFT is the keypoint detection

step. Rather than utilise the DoG approach they utilised the LoG-Harris detec-

tor [63] to detect keypoints to cater for the speckle-noise found in SAR images.
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The SAR data utilised for this work originated from TerraSAR-X which as a 1 m

and 2 m spatial resolution.

Xiang Y. et al. proposed an algorithm known as Optical-to-SAR (OS) SIFT (OS-

SIFT) [64] to register optical-to-SAR satellite images. In the traditional SIFT

algorithm, a Gaussian image is constructed by convolving the image with Gaussian

filters at various scales then a series of DoG images were computed. This is an ap-

proximation of LoG. However, the LoG method cannot detect reliable key points

for SAR images. The cause of detecting unreliable key points is due to speckle

noise. Instead of constructing the DoG scale space, OS-SIFT constructs two Har-

ris scale spaces. In the two Harris scale spaces, key points are detected. The local

maxima in the Harris scale space was then established to find candidate key points

at each level. This was followed by suppressing non-maxima and thresholding. The

conventional SIFT method localises key points by using the Hessian matrix, which

is not suitable for SAR data. OS-SIFT proposed a localisation refinement method

to replace the step of the Hessian matrix.

Contrary to SIFT, OS-SIFT restricted the orientation between an interval [0, 180◦]

due to the fact that in multisensor images it is very common that the gradients of

corresponding parts of the images change their direction by 180◦. The next step

involved finding the feature descriptor. In the conventional SIFT algorithm a 4×4

square neighbourhood is utilised. In OS-SIFT a GLOH-like circular neighbour-

hood with a radius of 12α and 17 location bins were utilised to form the feature

descriptor. The next step is keypoint matching. The conventional SIFT algorithm

matches key points by using a matching strategy that finds the distance between

descriptors. In OS-SIFT, the NNDR method was utilised. The Nearest Neighbour

Distance Ratio (NNDR) method [7] consisted of finding the nearest Euclidean dis-

tance between the descriptors. Then a threshold was applied on the ratio of the

closest distance to the second closest distance to filter out unreliable matches. The

outliers were then removed by using the Fast Sample Consensus (FSC) algorithm

over the RANSAC. The FSC was found to establish more correct matches over

RANSAC in less number of iterations [65].

J. Li et al. proposed a feature-based method for multi-modal image matching [12].

The proposed algorithm is called Radiation-Variation Insensitive Feature Trans-
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form (RIFT). Traditional feature-based methods such as SIFT, utilise intensity

or gradient information to detect feature points; nonetheless, such methods that

utilise intensity or gradient information are easily affected by nonlinear radiation

distortions (NRD).

Instead of image intensity, RIFT used phase congruency (PC) for feature detec-

tion. PC is based on the convolution of a 2D image with even-symmetric and

odd-symmetric wavelets. These wavelets resulted from the 2D Log-Gabor Filter.

On the PC map for feature detection, RIFT considers both corners and edges.

To construct the feature vector, contrary to SIFT which utilises the histogram

distribution, RIFT used a measure known as Maximum Index Map (MIM). MIM

is established from the log-Gabor convolution sequence. Through the utilisation

of MIM maps, RIFT is also rotation invariant. Outliers after matching were re-

moved by using the Normalised barycentric coordinate system (NBCS) method [66].

Figure 3.1: Multi-modal sample data utilised in RIFT [12].

As shown in Fig. 3.1, six types of multi-modal image datasets are utilised in RIFT.

Among these, (a) has translation, small rotation and small-scale changes; (b) con-

tains a translational change and a 90◦ rotation change; (c), (e) and (b) include

both translational and rotation changes; (d) includes a translational change. Since

these images are multi-modal pairs, they contain significant NRD.

Based on the results shown in Fig. 3.2, RIFT outperforms SIFT and SAR-SIFT

[63]. This is due to the fact that gradient maps utilised in SIFT are very susceptible

to NRD [12]. It is very important to note that in this work, the SIFT parameters
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Figure 3.2: Multi-modal matching results [12]. The yellow and red lines refer to the correct
matches and outliers, respectively.

utilised were the (default) Lowe SIFT parameters and that the RIFT algorithm

is not invariant to significant scale differences due to a lack of scale space during

feature detection. The authors of RIFT pointed this aspect in the limitations

section [12].

3.1.3 Optical Flow-based Methods for Remote Sensing

The current state of the art Optical-flow algorithms for the registration of remote-

sensing imagery are: GeFolki [2], SIFT Flow [48] and OS-Flow [13].

GeFolki [2] stands for Geoscience Extended Flow Optical Lucas–Kanade Iterative.

GeFolki is an optical-flow method that registered SAR-Optical images and SAR-

LIDAR images. The GeFolki algorithm is based on the classical Lucas-Kanade

optical flow algorithm [67]. In GeFolki, a multi-scale implementation of the Lucas-

Kanade method was utilised with various filters such as rank filtering, rolling guid-

ance filtering and low contrast inversion.

SIFT-Flow [48] is an optical-flow algorithm that is based on SIFT features. The

SIFT-Flow algorithm consists of matching densely sampled, pixel-wise SIFT fea-

tures amongst two images. In the process spatial discontinuities are also preserve.

The utilised SIFT features allow robust matching across different scenes. Addi-
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tionally, the use of the proposed discontinuity preserving spatial model allows the

matching of objects that are found at different parts of a scene [48]. The purpose

of SIFT-Flow was to match non-rigid scenes and different instance of the same

scene. Chen. J et al. [68] utilised SIFT-Flow to register remote sensing images.

The chosen images were panchromatic aerial photographs provided by the Chi-

nese Academy of Surveying and Mapping. These chosen images had structural

deformation. To eliminate incorrect matches after matching the SAR-SIFT feature

descriptors in the reference and sensed images, a modified version of RANSAC

called MAC-RANSAC [69] was utilised.

The proposed Optical-to-SAR Flow (OS-Flow) [13] tries to find pixel wise corre-

spondence between optical and SAR images. This OS-Flow involves three main

steps: Establish the Dense Feature Descriptors for both images. For SAR images,

the dense feature descriptors were extracted using the SAR-SIFT algorithm [70].

For the optical images, the SOBEL edge detector was utilised to compute the gra-

dients in the optical images. To compute the descriptor similar to OS-SIFT, the

GLOH structure with 17 location bins is utilised. The second step of OS-Flow

involves Flow-Estimation. In OS-Flow two optical flow methods were utilised. The

first method is a global method that used an objective function known as EOS−HS

which is based on the global Horn and Schunck method. Whereas the local method

used an objective function EOS−LK based on the Lucas-Kanade method. The third

step involved the optimisation for Flow-Field Computation for both global and lo-

cal methods. A coarse to fine pyramid structure approach was utilised. In the

descriptor pyramid for OS-HS the Belief Propagation method was utilised for flow-

field estimation whereas for OS-LK the Gauss Newton method was utilised. In

the majority of the results both qualitatively and quantitatively, OS-Flow shows

higher registration accuracy [13] as compared to GeFolki [2], SIFT-Flow [48] and

OS-SIFT [64].

3.1.4 Evaluation of Registration Accuracy between Single

and Multi-Modal Satellite Imagery

The biggest limitation of evaluating the registration of remote sensing images is

the lack of known ground truth. If one took an image from the same satellite

and registered that image with a shifted version of itself, the RMSE after registra-
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tion should be zero as the ground truth is known. But, in images coming from

multi-modal sensors, the RMSE before registration and the amount of

pixel shifts before registration are not known.

3.1.4.1 Qualitative Comparisons

Qualitatively, one can utilise various approaches such as: Error plots, Overlay plots,

checker board and quadrant plots and the utilisation of known control controls where

one knows the parameters of an affine transform. Thus, the sensed image is mapped

to the geocoded known location by using the affine transform.

Figure 3.3: Example of an overlay plot. In this example radar and lidar images are registered
using the GeFolki algorithm [2]. The image on the left is the result before registration and the
image on the right is the result after registration. The radar image is the reference image.

In overlay plots, the reference, sensed and registered are assigned colours. For

instance the reference image is assigned a magenta colour whilst the sensed and

registered images are assigned a green colour. In this plot, the reference is over-

layed/blended with the sensed image before registration. If the images are not well

registered one should see and offset in the colours. Whereas when the reference

image is overlayed with the registered image, assuming very good registration, the

magenta and green colours should overlap in the well registered regions. An exam-

ple of such an overlay plot is shown in Fig. 3.3.
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In the case of error plots, if one considers the registration of a coastal region. De-

pending on the amount of misregistration between the two images to be registered,

the error field generated before registration in the coastal regions should result in

thicker coastal edges whilst after registration one expects the lines at the coastal

edges to be thinner due to improved subpixel registration accuracy.

Figure 3.4: Example of a checkerboard plot. This example is taken from the proposed algorithm,
OS-flow [13]. The image shows the misregistration between optical and SAR images.

Checker board and quadrant plots consist of combining images of the same scene in

the form of a checker board to form a single image. The idea is to use an image that

is already well registered and combine this with the registered image. If the image

is well registered the formed checker board image should lead to the same structure

as the well registered images but with an induced change in texture similar to a

checker board. When using such an approach, typical structures such as roads and

roundabouts are utilised to assess qualitatively the misregistration in pixel shifts.

An example of a checkerboard plot is shown in Fig. 3.4.
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3.1.4.2 Quantitative Comparisons

In the presented review of different registration methodologies in the previous sub-

sections of Section 3.1, the authors found that the mostly commonly used quan-

titative metric for the registration of remote sensing imagery using feature-based

and area-based methods was the RMSE [49]. Another quantitative metric utilised

in remote sensing is the Mean Absolute Error (MAE). The equations of the RMSE

and MAE are denoted as follows:

1. Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

N

N∑
i,j

[I2(xi, yj)− I1(xi, yj)]2 (3.1)

2. Mean Absolute Error (MAE)

MAE =
1

N

N∑
i,j

|I2(xi, yj)− I1(xi, yj)| (3.2)

where N is the total number of pixels in the image, (x, y) are the spatial

coordinates, image I1 is the ground truth image which refers to the reference

image and image I2 is the sensed or registered image.

The smaller the RMSE or MAE the more identical the two images are, with

similar images having a RMSE or MAE of 0.

With the use of the RMSE metric, the biggest limitation is its sensitivity

to outliers [71]. For the application of image registration this implies that

if an image has any zeros and the corresponding image does not have any

zeros in those pixel locations the RMSE will increase due to this bias. Thus,

in practice, it might be justifiable to discard these outliers when computing

the RMSE [71]. For the work of this dissertation any NaNs or zeros are

excluded from RMSE calculation. This step is required because if zeros are

not excluded, it would affect the min-max normalisation to convert the ref-

erence and sensed images to uint8. The joined cloud masks are also utilised

to exclude cloud pixels from Landsat-8 and Sentinel-3 images.

One distinct advantage of the RMSE metric over the MAE is that RMSE

avoids the use of the absolute value [71]. Thus, contrary to the MSE, the
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RMSE does account for negative or positive values. This aspect is very

important for mathematical calculations. For instance, it might be hard

to calculate the gradient or sensitivity of MAEs. The RMSE is also better in

terms of reflecting performance when dealing with large error values whilst

the MAE is less biased for larger values and might not adequately reflect the

actual performance when dealing with larger error values.
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Investigation

In this chapter, the multispectral intra-band misregistration of both Sentinel-2 and

Landsat-8 will be assessed separately. Secondly, the misregistration of equivalent

bands between Landsat-8 and Sentinel-2 is also assessed. Lastly, the misregistra-

tion of equivalent thermal bands between Landsat-8 and Sentinel-3 is examined.

Phase-correlation is an area-based method that is utilised to estimate the relative

translative offset between two images. Contrary to cross-correlation which works in

the spatial domain, phase correlation works in the Fourier domain. In the remote-

sensing domain, the obtained translative offset is equivalent to the misregistration.

The utilised Phase-Correlation method for this entire chapter is based on the work

proposed by H. Foroosh et al. [72] where they proposed a phase correlation method

for the subpixel registration of images of different nature and across different spec-

tral bands.

4.1 Assessing Multispectral Misregistration for

Sentinel-2

Fig. 4.1 illustrates the registration through geocoding of bands 2, 3, 4 and 8 for

multispectral bands of Sentinel-2B. The size of the quadrant diagram is 500× 500

pixels. The joined circle which is formed as a result of the four geocoded bands

shows that the geocoding registration amongst the multispectral bands of a spatial

resolution of 10 m is of excellent quality.

40



Chapter 4. Investigation

Figure 4.1: Plot of concatenated subsets in grayscale to assess qualitatively the misregistarion of
geocoding in Sentinel-2B with level L1C processing taken on 2018/04/04. Location is the runway
of the Malta International airport. Band 2 (Top Left), Band 3 (Top Right), Band 4 (Bottom
Left) and Band 8 (Bottom Right). Spatial resolution of all bands is 10 m. Cloud cover is at 0%.

Reference Sensed Misregistration (pixels)
Band Band ∂x ∂x ∂x2 + ∂y2

B2 Quadrant 0.0674 0.0752 0.1010
B2 B3 0.1543 0.0801 0.1738
B2 B4 0.0930 0.1139 0.1471
B2 B8 0.0973 0.1586 0.1860

Table 4.1: Phase correlation between the Sentinel-2B bands with a spatial resolution of 10 m.

The quadrant image utilised in Table 4.1 is the same as used in Fig. 4.1 but without

the circle. The chosen reference image is Band 2. Since all chosen bands have the

same spatial resolution, no interpolation was required for the sensed image. Size of

both the reference and sensed images in Table 4.1 are 500× 500 pixels. All chosen

band subsets originate from the same date as utilised in Fig. 4.1.

Table 4.1 shows the obtained misregistration values between the reference and re-

spective sensed images. The misregistration was calculated using the phase corre-
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Figure 4.2: Multi-Spectral co-registration performance for S2B.

lation method proposed by by H. Foroosh et al. [72]. From this table, it was shown

that ESA indeed reached the required target of 0.3 pixel for the co-registration of

multispectral bands for Sentinel-2B. Fig. 4.2 highlights the latest co-registration

performance for the multispectral bands of Sentinel-2B products. In meters, the

highest misregistration for Table 4.1 for a spatial resolution of 10 m was 1.86 m.

Key difference between S2A and S2B is that S2B has better control of on-board

vibrations.

The added red circles depicted in Fig. 4.3 outline subtle details of the accurate

qualitative registration obtained through geocoding for Sentinel-2B bands 2, 4 and

8. Despite a cloud cover percentage of 100% qualitative registration is very good.

The bands utilised in Table 4.2 have the same location, date, size and cloud cover

percentage as utilised in Fig. 4.3. Bands 3, 4 and 8 did not require any upsampling

as they have the same spatial resolution as band 2 (10 m).

Fig. 4.4 highlights the latest co-registration performance for the multispectral

bands of Sentinel-2A products which was taken from the Sentinel-2 product data

quality report issue 55 of September 2020 [73]. This report states that the ESA

target is of 0.3 pixels [73]. With the exception of the cirrus band (B10) and the

SWIR band (B11), from Table 4.2 it was shown that ESA also reached the required

target of 0.3 pixels for the co-registration of multispectral bands for Sentinel-2A.

In all cases in Table 4.2, the misregistration was below 0.65 pixels. For a spatial

resolution of 60 m, the achieved misregistration in meters was not greater than

20 m.
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Figure 4.3: Quadrant diagram covering the runway of the Malta Interational airport. Bands are
extracted from a Sentinel-2A L1C dataset on 2017/11/04. Top half of quadrant consists of band
2. Bottom left is extracted from B4. Bottom right is extracted from B8. Spatial resolution of all
bands is 10 m. Cloud cover is at 100%. Quadrant size is of 500× 500 pixels.

Figure 4.4: Multi-Spectral co-registration performance for S2A.

43



Chapter 4. Investigation

Reference Sensed Misregistration (pixels)

Band U.F. a Band S.R.(m) b ∂x ∂x ∂x2 + ∂y2

B2 / B3 10 0.1206 0.0722 0.1405
B2 / B4 10 0.1228 0.3185 0.3413
B2 / B8 10 0.1573 0.0222 0.1589
B2 2 B5 20 0.2867 0.0182 0.2873
B2 2 B6 20 0.2757 0.2481 0.2808
B2 2 B11 20 0.2777 0.0502 0.2823
B2 2 B12 20 0.1899 0.6076 0.6366
B2 6 B9 60 0.2213 0.2109 0.3057
B2 6 B10 60 0.2314 0.3281 0.4015
B2 6 B1 60 0.2272 0.2184 0.3152

Table 4.2: Phase correlation for the same location of Fig. 4.3 between bands of Sentinel-2A with
different spatial resolutions. The reference (B2, 10 m) remained with the same spatial resolution
whereas the sensed image was upsampled to the same spatial resolution as the reference. The
interpolation method used is bicubic interpolation.

aUpsampling Factor
bSpatial Resolution

4.2 Assessing Multispectral Misregistration for

Landsat-8

Requirement Specification
TIRS-to-OLI Registration Accuracy 30 m
TIRS Band-to-Band Registration Accuracy 18 m
TIRS Absolute Geodetic Accuracy 76 m
TIRS Geometric (L1T) Accuracy 42 m
TIRS Image Registration Accuracy 45 m

Table 4.3: Landsat-8 TIRS Geometric Performance Requirements [22].

Requirement OLI Specification
OLI Absolute Geodetic Accuracy 65
OLI Geometric (Terrain Corrected) Accuracy 12
OLI Band-to-Band Registration Accuracy 4.5
OLI Image Registration Accuracy 12

Table 4.4: Landsat-8 OLI Geometric Performance Requirements [23].

Absolute geodetic accuracy refers to the geolocation accuracy of geometrically cor-

rected products prior to the application of ground control points. The geolocation
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accuracy achieved is mainly dependent on the spacecraft performance such as the

satellite trajectory and its velocity. The geolocation accuracy also depends on

knowledge of the OLI instrument. [23]

The OLI band-to-band registration accuracy specification defines the accuracy with

which corresponding Level 1T product pixels from different OLI spectral bands

must be co-aligned. This requirement only applies to products after geometric

correction and resampling, i.e L1T products [23]. For TIRS Band-to-Band regis-

tration accuracy it is the same notion as OLI Band-to-Band, but applied for the

TIRS sensor.

The term utilised in both Tables 4.3 and 4.4 of image registration accuracy in this

case refers to the quantification of the accuracy with which corresponding L1T

product pixels from images of the same area acquired at separate times (multitem-

poral), must be co-aligned. Thus, for this subsection the two salient aspects are the

TIRS-to-OLI Registration Accuracy and OLI Band-to-Band Registration Accuracy

which are 30 m and 4.5 m respectively. Thus, for an Landsat-8 OLI to OLI the

tolerated misregistration for 1 pixel is 4.5 m.

Figure 4.5: Landsat-8 B2 subset Figure 4.6: Landsat-8 B10 subset

Both Figures 4.5 and 4.6 have a size of 500×500 pixels and they were both extracted

from the same Landsat-8 L1T product on 2018/07/17. The reference image is Fig.

4.5 and the sensed image is Fig. 4.6. No interpolation was required for the sensed

image as B10 has the same pixel size as B2 (B10 is resampled at 30 m grid size). At-
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tained phase correlation amongst Figures 4.5 and 4.6:
√
∂x2 + ∂y2 = 0.6222 pixels.

Reference Sensed Misregistration (pixels)

Band Band S.R. (m) ∂x ∂y
√
∂x2 + ∂y2

B2 B3 30 0.0319 0.0685 0.0755
B2 B1 30 0.0059 0.0262 0.0268
B2 B4 30 0.0231 0.0861 0.0891
B2 B5 30 0.0422 0.0423 0.0953
B2 B6 30 0.0370 0.0576 0.0685
B2 B7 30 0.0082 0.0712 0.0717
B2 B9 30 0.2854 0.4782 0.5569
B2 B10 100 0.5066 0.3613 0.6222
B2 B11 100 0.5434 0.3357 0.6388
B2 B8 15 0.1959 0.2561 0.3225

Table 4.5: Phase correlation for the same location of Figures 4.5 and 4.6 between bands of
Landsat-8 with different spatial resolutions. The chosen reference image is B2 with a spatial
resolution of 30 m. Only B8 needed to be interpolated. It was donsampled by a factor of 2 to
match the same spatial resolution as B2. The interpolation method used is bicubic interpolation.
Bands 10 and 11 were not upsampled because they have the same image pixel size as B2 (but
different spatial resolution).

In Table 4.5, for the optical bands 1, 3, 4 and 5 the largest obtained misregistration

was of 0.0953 × 30 = 2.859 m which is less than the tolerated misregistration of

4.5 m between OLI Band-to-Band Registration accuracy as quoted from Table 4.4.

For the panchromatic band (in Table 4.5), B8, the obtained misregistration was

of 0.3225 × 30 = 9.675 m. For both the SWIR bands, B6 and B7, the largest

obtained misregistration was of 0.0717×30 = 2.151 m. For the cirrus band, B9, the

obtained misregistration was of 0.5569×30 = 16.707 m. For the two thermal bands

the largest obtained misregistration was 0.6388× 30 = 19.164 m misregistration of

30 m between TIRS-to-OLI Registration accuracy as quoted from Table 4.4.
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4.3 Assessing Multispectral Misregistration be-

tween Sentinel-2 and Landsat-8

Figure 4.7: Sentinel-2 B2 subset Figure 4.8: Landsat-8 B2 subset

Both Figures 4.7 and 4.8 have a size of 500 × 500 pixels. The Landsat-8 subset

was extracted from an L1T product on 2018/07/04 whereas the Sentinel-2 subset

was extracted from an L1C product on 2018/07/04. The gap in time between both

products is 17 minutes. Location: South Eastern region of Malta, next to Wied

il-Ghajn. The sensed imaged which has a spatial resolution of 30 m needed to be

resampled to the same spatial resolution as band 2 of S2 (10 m). Interpolation

method utilised is bicubic interpolation. Attained phase correlation between the

subsets:
√
∂x2 + ∂y2 = 0.2927 pixels.

In Table 4.6, band 2 was assumed as the reference image whereas the Landsat-8

bands were assumed as the sensed images. The sensed subsets were upsampled

using bicubic interpolation to obtain the same spatial resolution as the reference

image. The highest obtained misregistration was between B2 of Sentinel-2 and B9

(cirrus) of Landsat-8, which represents a misregistration of 0.4309× 10 = 4.309 m

which is less than the tolerated misregistration of 4.5 m between OLI Band-to-

Band Registration accuracy as quoted from Table 4.4. Thus, from Table 4.6 it

was also shown that the registration between multispectral bands of Sentinel-2 and

Landast-8 is also very good. The optical-to-optical bands between Sentinel-2 and

Landsat-8 bands achieved the overall lowest misregistration.
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Reference Sensed Misregistration (pixels)

Band U.F. Band S.R. (m) dx dy
√
∂x2 + ∂y2

B2 3 B1 30 0.2278 0.1831 0.2922
B2 3 B2 30 0.2362 0.1729 0.2927
B2 3 B3 30 0.2774 0.1166 0.3009
B2 3 B4 30 0.2777 0.0913 0.2923
B2 3 B5 30 0.2036 0.0482 0.2092
B2 3 B6 30 0.2378 0.0062 0.2379
B2 3 B7 30 0.2525 0.0466 0.2567
B2 1.5 B8 15 0.2903 0.2548 0.3862
B2 3 B9 30 0.3542 0.2455 0.4309
B2 3 B10 100 0.1609 0.1326 0.2085
B2 3 B11 100 0.1687 0.1369 0.2173

Table 4.6: Phase correlation between Band 2 of Sentinel 2 and Landsat 8 Bands 1-11. Same
location and gap in time was chosen as Figures 4.7 and 4.8 between the reference and sensed
images. Note: Bands 10 and 11 were upsampled with a scale factor of 3 and not 10 because the
band is being represented in a 30 m grid despite a spatial resolution of 100 m.

4.4 Assessing Multispectral Misregistration be-

tween Sentinel-3 SLSTR and Landsat-8 TIRS

The utilised phase correlation in sections of this chapter proposed by H. Foroosh

et al. [72] was meant for the sub-pixel registration for similar images. Even if the

images were similar, but one of them had a significant translational difference, the

obtained results for this phase correlation method would be inaccurate. The H.

Foroosh phase correlation method should only be utilised for identical images with

subpixel misregistration [72].

The phase correlation method is known to fail in the following situations:

� Error caused from nonoverlapping regions amongst the two images.

� Errors caused from periodicity due to not having a single peak.

� Errors caused due to wide band random noise.

� Errors caused due to aliasing. The phase correlation method is known to

fail for large scale and rotation differences due to aliasing in low frequencies,

which result in false peaks, resulting in an inaccurate alignment [74].

Both Figures 4.9 and 4.10 were extracted on 04/07/2018 covering an area patch of

15 km×15 km. Chosen location is Gozo. The time gap between L8 B10 and S3 B8 is
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Figure 4.9: Native Landsat-8 B10 subset of
size 500× 500 pixels
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Figure 4.10: Native Sentinel-3 B8 subset of
size 15× 15 pixels.

8 minutes apart. Since the resampled spatial resolution of L8 B10 and S3 B8 is 30 m

and 1 km per pixel the native size is 500×500 pixels and 15×15 pixels respectively.

It is important to note that the Landsat-8 thermal B10 is initially in radiance and

this had to be converted to brightness temperature as the Sentinel-3 thermal B8 is

in brightness temperature. This conversion will be explained in the next chapter.
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Figure 4.11: Downscaled Landsat-8 B10 sub-
set to a size of 15× 15 pixels
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Figure 4.12: Native Sentinel-3 B8 subset of
size 15× 15 pixels.

In Fig. 4.11, Landsat-8 B10 was downscaled to the same spatial resolution as

Sentinel-3 B8. The obtained misregistration (in pixels) between Figures 4.11 and

4.10 in the x and y direction is ∂x = 0.2082 pixels and ∂y = 0.2295 pixels respec-

tively. In metres, the obtained misregistration in the x and y direction for a spatial

resolution of 1 km is 208.2 m and 229.5 m respectively. For a spatial resolution of

30 m the obtained misregistration in the x and y direction is 6.246 m and 6.885 m
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respectively.
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Figure 4.13: Native Landsat-8 B10 subset of
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Figure 4.14: Sentinel-3 B8 subset upscaled
to a size of 500× 500 pixels.

In Fig. 4.14, Sentinel-3 B8 was upscaled to the same spatial resolution as Landsat-

8 B10. The obtained misregistration (in pixels) between Figures 4.13 and 4.14 in

the x and y direction is ∂x = 0.1034 pixels and ∂y = 0.1661 pixels respectively.

In metres, the obtained misregistration in the x and y direction for a spatial res-

olution of 1 km is 103.4 m and 166.1 m respectively. For a spatial resolution of

30 m the obtained misregistration in the x and y direction is 3.102 m and 4.983 m

respectively.
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Methodology

The aims of this chapter are the following:

� Outline what tools were utilised to implement the main methodology/algo-

rithm and other subsidiary algorithms utilised for comparisons.

� Give a detailed explanation of how the problem was tackled through the im-

plementation of the main algorithm. This detailed explanation also involves

justifications for all decisions taken in the course of the solution.

5.1 Implementation

The main algorithm of this dissertation was implemented in Python version 3.7.6.

Salient details of the programming tools utilised:

� Sentinel-3 data was read using the Python library Satpy [75] version 0.20.0.

� The Landsat-8 data was read using the Python library rasterio [76] version

1.1.1.

� The Sentinel-S3 cloud masks were extracted from the cloud in band found in

the Sentinel-3 SLSTR L1 SL 1 RBT product.

� The Landsat-8 cloud masks were extracted from the BQA band found in the

Landsat-8 L1T data product.

� For the SIFT algorithm, the SIFT implementation from the opencv-contrib-

python Python library [77] was utilised. Version 4.4.0.44.
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� Implementation of the RANSAC algorithm is taken from the book [78] writ-

ten by H. Singh.

� The proposed SIFT Python implementation for the registration of multi-

modal and single modality data in Section 6.3 can be found in the following

GitHub repository [79].

In addition to the main algorithm, subsidiary algorithms are also utilised for com-

parisons. Salient details of the programming tools utilised for the implementation

of these subsidiary algorithms include:

� Unless stated otherwise, the implementation of these subsidiary algorithms

was done in MATLAB version R2020a.

� The implementation of the Area-based method known as Enhanced Correla-

tion Coefficient (ECC) is taken from the work proposed by Georgios Evan-

gelidis [46, 80].

� The implementation of the Optical Flow based method known as SIFT Flow

is implemented by the authors of the paper [48].

� For the implementation of the SIFT image registration in MATLAB with

default parameters, the VLFEAT open source library was utilised [81]. This

SIFT MATLAB implementation was only utilised for the next subsection for

the preliminary comparisons between area-based, feature-based and optical

flow-based methods. For the remainder of the results, the main Python SIFT

algorithm was utilised.

� The utilised Phase Correlation method in Chapter 4 is based on the work by

H. Foroosh et al. [72] implemented in Python.

� The implementation of the RIFT algorithm [12] is based on the work of the

authors . It is implemented in C++ and MATLAB [82].

� The implementation of the SAR-SIFT is based on the work of F.Dellinger et

al. [70] and also implemented by the authors in MATLAB and C++ [83].
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5.2 Preliminary Comparison between Area-based,

Feature-based and Optical Flow-based Meth-

ods

In this subsection the ECC (area-based) method, the SIFT RANSAC (feature-

based) method and SIFT Flow (optical flow-based) method will be compared as

a preliminary analysis to justify why a feature-based method was chosen over an

area-based method. Generally area-based methods should fail to register images

that have different intensities. As mentioned in Section 5.1 all these subsidiary

algorithms were implemented in MATLAB. In all the upcoming tests cases, the

parameters used were the default parameters.

5.2.1 Test Case 1: Optical vs Optical

The chosen satellite for the first test case is Kompsat-2 [84]. The data is acquired on

2009/08/17 at 09:07:55. Both chosen bands are extracted from the same Kompsat-

2 product. The chosen reference image is Fig. 5.1 and the chosen sensed image is

Fig. 5.2. Prior to registration one can observe that the sensed image has vertical

misregistration.

In Fig. 5.3(a) magenta denotes the reference image and green denotes the sensed

image. From this figure, the vertical misregistration is quite apparent as the green

segment is not perfectly overlayed on the magenta segment.

In Figures 5.3(b), 5.3(c) and 5.3(d), the magenta represents the reference image

and the green represents the registered image. Compared to Fig. 5.3(a), SIFT

Flow did improve the registration (Fig. 5.3(b)), but the ECC and SIFT RANSAC

obtained better qualitative registration as the green part overlayed exactly on the

magenta part as shown in Figures 5.3(c) and 5.3(d) respectively.

Quantitatiely, the ECC algorithm obtained the smallest RMSE followed by the

SIFT RANSAC and SIFT Flow. It is to be noted that the ECC improvement

in RMSE was marginal. The ECC algorithm was expected to work well as the

intensities between the reference and sensed image in the first test case are similar.
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Figure 5.1: Kompsat-2 Panchromatic Band with 1 m
spatial resolution of size 1211×692 pixels. Location:
East-North of Malta

Figure 5.2: Kompsat-2 Band 2 with 4 m spatial res-
olution of size 1211× 692 pixels.

RMSE Before Registration

9.5486
RMSE After Registration

SIFT Flow ECC SIFT RANSAC
8.6060 8.5590 8.5628

Table 5.1: RMSE results before and after registration for the first test case using SIFT Flow,
ECC and SIFT RANSAC.
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(a) Overlay of the reference and sensed image
before registration

(b) Overlay of the reference and registered im-
age after registration using SIFT Flow

(c) Overlay of the reference and registered im-
age after registration using ECC

(d) Overlay of the reference and registered im-
age after registration using SIFT RANSAC

Figure 5.3: Registration results before and after registration for the first test case (optical vs
optical). Magenta denotes the reference image and green denotes the sensed or registered image.
The registration methods utilised were SIFT RANSAC, SIFT Flow and ECC. The chosen dataset
is taken from the Kompsat-2 satellite.
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5.2.2 Test Case 2: Optical vs SAR

The chosen satellites for the second test case are Sentinel-1 and Sentinel-2. The

chosen reference image is Band 3 extracted from a Sentinel-2A L1C data product

acquired on 2020/07/31. The selected sensed image is the Amplitude VH S1 SAR

band extracted from a S1B IW GRDH data product acquired on 2019/11/11. The

aims of this test case are to show registration between different modalities and to

show multitemporal registration.

Figure 5.4: Sentinel-2 Band 3 subset of size 1215 ×
692 pixels. Location: Malta and Gozo.

Figure 5.5: Sentinel-1 Amplitude VH S1 Band sub-
set of size 1215× 692 pixels.

As the registration between Fig. 5.4 and Fig. 5.5 was already very good, the

sensed image in Fig. 5.5 (originally without translation) was translated in the x

and y-direction by 10 pixels respectively.
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Both Figures 5.4 and 5.5 were resampled and reprojected using the Sentinel Appli-

cation Platform (SNAP) [85] toolbox. It is to be noted that the Sentinel-1 image

was also terrain corrected using SNAP to remove any geometric distortions typi-

cally found in SAR imagery.

Fig. 5.6(a) illustrates the registration before in which the sensed image in green is

translated in the x and y direction by 10 pixels respectively.

In all three algorithms, compared to Fig. 5.6(a) where the sensed image in green

was translated by 10 pixels both in the x and y direction, the registration improved

as shown in Figures 5.6(b), 5.6(c) and 5.6(d). In all three figures the green segment

is overlapping on the magenta segment. The improvement in registration is evident

in the coastal regions of Malta and Gozo.

RMSE Before Registration
with Translated Sensed Image

2.4143
RMSE After Registration of the Translated Sensed Image
SIFT Flow ECC SIFT RANSAC

1.8048 1.8024 1.8864

Table 5.2: RMSE results before and after registration for the second test case using SIFT Flow,
ECC and SIFT RANSAC.

As shown in Table 5.2, SIFT Flow and the ECC algorithms resulted in similar

RMSE followed by the SIFT RANSAC algorithm. Nonetheless, all three algorithms

had a reduction in the RMSE for the registration of Fig. 5.4 and the translated

image of Fig. 5.5.
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(a) Overlay of the reference and translated
sensed image before registration

(b) Overlay of the reference and registered im-
age after registration using SIFT Flow

(c) Overlay of the reference and registered im-
age after registration using ECC

(d) Overlay of the reference and registered im-
age after registration using SIFT RANSAC

Figure 5.6: Registration results before and after registration for the second test case (optical vs
SAR). Magenta denotes the reference image and green denotes the sensed or registered image.
The registration methods utilised were SIFT RANSAC, SIFT Flow and ECC. The chosen dataset
is taken from the Sentinel-2 and Sentinel-1 satellites.
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5.2.3 Test Case 3: Day vs Night

The chosen images for this subsection are taken from the multimodal dataset [82]

of the RIFT algorithm [12]. The reference is the day view whilst the sensed image

is the night view.

Figure 5.7: Reference image: day shot of size 500× 500 pixels taken from the RIFT multimodal
dataset [12].

Figure 5.8: Sensed image: night shot of size 500 × 500 pixels taken from the RIFT multimodal
dataset [12].
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(a) Overlay of the reference and sensed
image before registration

(b) Overlay of the reference and reg-
istered image after registration using
SIFT Flow

(c) Overlay of the reference and reg-
istered image after registration using
ECC

(d) Overlay of the reference and reg-
istered image after registration using
SIFT RANSAC

Figure 5.9: Registration results before and after registration for the third test case (Day vs
Night). Magenta denotes the reference image and green denotes the sensed or registered image.
The registration methods utilised were SIFT RANSAC, SIFT Flow and ECC. The chosen dataset
is taken from the RIFT dataset.
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RMSE Before Registration

10.9705
RMSE After Registration

SIFT Flow ECC SIFT RANSAC
10.9590 11.8 8.8586

Table 5.3: RMSE results before and after registration for the second test case using SIFT Flow,
ECC and SIFT RANSAC. Note: a large RMSE is expected as the reference and sensed image
have a significant difference in intensity.

The best registration from all three algorithms resulted from the SIFT RANSAC

algorithm. This is both apparent qualitatively and quantitatively, as shown in Fig.

5.9(d) and Table 5.3 respectively. Additionally, contrary to a feature-based method

(SIFT RANSAC), this test case showed that if the two images have different inten-

sities the area-based method (ECC) will fail to register both images. Furthermore,

SIFT even outperforms SIFT flow for the registration of the multi-modal aspect.
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5.3 Proposed Methodology

In this section, the proposed methodology will be explained thoroughly. In the first

part of this section, an illustration is given which depicts a high level overview of

the proposed methodology. Subsequently, each step of the proposed methodology

will be outlined in detail.

5.3.1 Pre-processing: Extraction of Reference and Sensed

Images

In Fig. 5.10, the chosen reference and sensed images are Landsat-8 and Sentinel-3

Thermal brightness temperature (BT) bands respectively. Originally, the Landsat-

8 thermal band is in radiance. This needs to be converted to brightness tem-

perature. Furthermore, both Landsat-8 and Sentinel-3 subset images need to be

extracted from their respective data products. The steps required to extract the

two images as shown in Fig. 5.11 are as follows:

1. The Landsat-8 B10 tile and the Sentinel-3 B8 tile were extracted from Landsat-

8 L1C and S3A SL 1 RBT data products respectively. The size of the Landsat-

8 tile and Sentinel-3 tile is 7831 × 7701 and 1200 × 1500 respectively. Both

products were acquired on 2020/08/06.

2. As depicted in Fig. 5.11 the size of the area-patch and the geo-coordinates

must be initialised for both tiles. The choice depends on the required size of

the subset to be extracted and the required location. In Fig. 5.11 the chosen

area-size is 100 km× 100 km and the chosen location is Annaba (Algiers).

3. Steps for the extraction of the reference image include:

� Extract the L8 B10 radiance subset from the L8 tile depending on the

chosen area-patch and location. In this case the subset has a size of

3333× 3333 pixels due to the 30 m spatial resolution.

� Check whether the subset contains any NaNs. If so an new location has

to be chosen for both the reference and sensed images otherwise one goes

to the next step.

� The chosen L8 B10 subset needs to be converted from radiance to bright-

ness temperature. This is done by using the following equation which is
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derived from the Landsat-8 Data Users Handbook [86]:

T =
K2

ln K1

Lα
+ 1

(5.1)

where

– T is the TOA brightness temperature in Kelvin

– Lα is the spectral radiance in Wa
m2×srad×µm . Lα refers to the ex-

tracted radiance subset multplied by (Multiplicative Factor (ML)

+ Additive Factor (AL)) chosen for the respective band. For B10,

Lα = extracted radiance subset × (ML + AL) where ML =

3.3420E − 04 and AL = 0.10000

– K1 is Band-specific thermal conversion constant from the metadata

of the L1C data product. KB10 = 774.8853

– K2 is Band-specific thermal conversion constant from the metadata.

KB10 = 1321.0789

� The converted Landsat-8 B10 brightness temperature subset results in

the Reference Image to be utilised in the proposed algorithm.

4. Steps for the extraction of the sensed image include:

� Extract the S3 B8 brightness temperature subset from the S3 tile de-

pending on the chosen area-patch and location. In this case the subset

has a size of 100× 100 pixels due to the 1000 m spatial resolution.

� Check whether the subset contains any NaNs. If so a new location has

to be chosen for both the reference and sensed images otherwise one goes

to the next step.

� The extracted S3 B8 brightness temperature subset is the Sensed Image

to be utilised in the proposed algorithm.
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Figure 5.10: High-level schematic of proposed algorithm.
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Initialise :
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as L8 Tile
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Extract S3 Brightness 
Temperature Subset 
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geo-coordinates and 

reprojection

Sensed Image

Extract S3
Subset based from S3 Tile  

Figure 5.11: Pre-processing steps to extract the Reference and Sensed Images.
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5.3.2 Generation of Joined Cloud Mask

The basic technique of cloud detection consists in the use of a threshold. This tech-

nique consists in thresholding the image of a spectral band in the short wavelength

range. Typically, the blue band is preferred. The pixels which have a reflectance

value higher than the threshold are defined as clouds. This method generally does

not detect thin clouds and is very susceptible to false positives.

For both reference and sensed cloud masks the same area patch and geo-coordinates

are utilised as mentioned in Fig. 5.11. The steps required to generate the joined

cloud mask for the reference and sensed image are as follows:

1a. In Fig. 5.12, the L8 cloud mask is first extracted from the BQA L8 band

found in the L8 L1C data product.

1b. The L8 cloud mask in 1a. in Fig. 5.12 is resampled to the same spatial

resolution as the S3 sensed image i.e. 100× 100 pixels. The L8 cloud mask is

resampled using nearest neighbour interpolation. This resampled cloud mask

is also mapped to a binary mask. Where 3 represents clouds, 2 might be

clouds and 1 is no clouds. These are mapped as shown in 1b. in Fig 5.12.

1c. The clouds in the L8 cloud mask in 1b. are first eroded using an erosion kernel

of 1 pixel followed by dilation using a dilation kernel of 2 pixels. Lastly, an

NOT operation is performed to represent the clouds as a 0 and the non-

clouded parts as a 1.

2a. The original S3 cloud mask is extracted from the cloud in band found in the

S3 L1 RBT product.

2b. The S3 cloud mask in 2a. is reprojected to the same coordinate reference

system (CRS) as the reference cloud mask.

2c. The cloud mask in 2b. is first eroded using an erosion kernel of 1 pixel

followed by dilation using a dilation kernel of 2 pixels.

2d. The binary values in the S3 cloud mask in 2c. are inverted using an NOT

operation to represent the clouds as a 0 and the non-clouded parts as a 1 as

done for the reference L8 cloud mask.
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3. As illustrated in Fig. 5.12, to form the required joined cloud mask for both the

reference and sensed images, a bitwise AND operation between the reference

and sensed cloud mask is utilised. This results in the joined cloud mask which

will be used for both the reference and sensed images to ignore any features

that are detected as cloud pixels when using the SIFT algorithm.
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Figure 5.12: Required steps to generate the joined cloud mask for the reference and sensed cloud
masks.
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5.3.3 Resampling and Min-Max Normalisation

In this section the step of Min-Max normalisation illustrated in Fig. 5.10 is ex-

plained. The SIFT algorithm was designed to be utilised for natural images not

thermal images. Thus, this step converts the reference and sensed images from

brightness temperature to Uint8 images.

1a. In Fig. 5.13, the reference image is downsampled to the same spatial reso-

lution as the sensed i.e. 100 × 100 pixels. It is important to note that the

reference image can remain the same and instead the sensed image is upsam-

ple. Most important aspect is that both the reference and sensed image have

the same image size.

1b. For the sensed image since the reference image is downscaled, the sensed

image remains in its own native resolution.

2a. A histogram for all the respective brightness temperatures (in Kelvin) for

each pixel in the reference image (L8 BT image) is plotted.

2b. Similarly, a histogram for all the respective brightness temperatures for each

pixel in the reference image (S3 BT image) is plotted.

3. As illustrated in Fig. 5.13, both histograms in 2a. and 2b. are joined

together to find the minimum and maximum temperature for both images.

It is to be noted that the minimum temperature chosen correlates with the

temperature of the land. Cloud and sea temperatures are excluded. In this

example the min = 292.9K and the max = 316.3K.

3a. In Fig. 5.14, in the downscaled (BT) reference image, any temperature that

is below the min temperature is assigned this minimum. In this example,

since the max temperature was extracted from the blue histogram (in Fig.

5.13) in this aspect the reference image remains unchanged.

3b. Once the min and max temperatures are assigned to the downscaled reference

image, the next step required is min-max normalisation:

IN = (I −min)
maxnew−minnew

max−min
+minnew (5.2)

where
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– max and min are as explained in step 3.

– maxnew is 255

– minnew is 0

– I is the downscaled (BT) reference with the assigned min and max

temperatures as explained in step 3a..

– IN is the Uint8 reference image.

4. In Fig. 5.14, after min-max normalisation, the downscaled (BT) reference

image is converted to Uint8.

5a. In Fig. 5.14, in the (BT) sensed image, any temperature that is below the

min (of step 3.) temperature is assigned this minimum. Similarly, if any

temperature in the sensed image is greater or equal to the max (of step 3.)

temperature it is assigned the max temperature. Since the new maximum is

taken from the downscaled (BT) reference image, in this aspect the sensed

image remains unchanged.

5b Once the min and max temperatures are assigned to the downscaled sensed

image, the next step required is min-max normalisation. This is computed by

using eq. (5.2). In this case I is the sensed (BT) image with the assigned min

and max temperatures as explained in step 5a. and IN is the Uint8 sensed

image.

6. In Fig. 5.14, after min-max normalisation, the sensed (BT) reference image

is converted to Uint8.
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Figure 5.13: Establishing the minimum and maximum temperatures from the reference and sensed
images for min-max normalisation.
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Figure 5.14: Note: The numbering of this figure, from 3a to 6 continue from the numbers shown
in Fig. 5.13. Min-max normalising the reference and sensed images to convert the two images
from brightness temperature to Uint8.
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5.3.4 Selecting Best Matching Keypoints

1. In Fig. 5.15, the SIFT keypoints and their respective descriptors are extracted

for both the reference and sensed images. The SIFT parameters utilised are

the default parameters for both images. It is important to note that the unit8

images for both the reference and sensed images are only utilised for the SIFT

algorithm. The rest of the methodology utilises the brightness temperature

images.

2. The SIFT feature descriptors of both images are matched by finding the

nearest neighbour. The Euclidean distance between the SIFT keypoints of

the reference and sensed image is calculated. The ratio between the smallest

distance and second smallest distance is computed. All matches which have

a ratio greater than 0.9 are rejected.

3. Additionally, an outlier detection method is utilised to eliminate incorrect

matches found in step 2. of Fig. 5.15. The outlier detection method utilised

is the RANSAC algorithm as explained in Section 2.7. For the example in

Fig. 5.14, the utilised RANSAC threshold is 3. Thus, the RANSAC algo-

rithm only retains the best matches between the sensed and reference images.

Assuming there is no rotation and scale differences between the two images, a

correct match is generally depicted as a parallel line. The remaining lines that

are not parallel are incorrect matches and they are discarded by RANSAC.

This aspect is clearly observed in Fig. 5.15. This assumptions comes from the

fact that the two images to be registered originate from the same modality.
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Uint8 Reference Image Uint8 Sensed Image 

SIFT Feature 
Extraction

Feature 
Correspondence

Elimination of Incorrect 
Matches using RANSAC

  1.

  2.

  3.

Figure 5.15: Extraction of best matching keypoints between the Reference and Sensed images.
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5.3.5 Homography Estimation

Once the inliers/best maatches (from RANSAC) between both images were found,

the next step is to register the two images. A geometric transformation known

as an Affine transform is utilised to compute the homography. In this proposed

methodology, two type of affine transformations are utilised.

Figure 5.16: Affine Transformations [14]

As depicted in Fig. 5.16, there are five fundamental types of affine transforma-

tions. These include the identity, scaling, rotation, translation and shear. Based

on these five affine matrices, one can combine one or more of the mentioned affine

transformations to form a single affine transformation. In fact, the first affine

transformation utilised in this proposed methodology considers rotation, scale and

translation. Whilst the second utilised affine transformation considers only trans-

lation.
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5.3.5.1 Affine Transformation with Rotation, Scale and Translation

Assume that a matrix A contains the x and y coordinates of the inliers (after

RANSAC) in the sensed image. Additionally, assume that the row vector b contains

the x and y coordinates of the inliers in the reference image. The aim is to solve:

Ax = b (5.3)

Aim is to solved eq. (5.3) using the Linear Least Squares method.

x = ‖Ax− b‖2 = (ATA)−1ATb (5.4)

Matrix X is the reshaped vector x. The proof of equations (5.3) and (5.4) can be

found in [87].

H = XT (5.5)

where H is of the following form:

H =

a11 a12 atx

a13 a14 aty

0 0 1

 (5.6)

where a11 = cx cos θ, a12 = sin θ, a13 = − sin θ, a14 = cy cos θ, atx is the horizontal

translation tx, aty is the vertical translation ty, cx and cy cater for scale and θ

represents the rotation.

5.3.5.1.1 In-Depth Algebraic Example

1. Assume one has 2 arrays of size (2, n) called s and r

� n denotes the number of inliers i.e. the number of sensed and matched

reference keypoints

� Array s and array r contain the pixel locations of the matched keypoints

resulting after using SIFT and RANSAC

� First row in both arrays contains the x-coordinate

� Second row in both arrays contains the y-coordinate
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2. Aim is to solved the equation Ax = b using the Linear Least Squares method

� x = ‖Ax− b‖2 = (ATA)−1ATb

3.

A =



s[0, i] s[1, i] 1 0 0 0

0 0 0 s[0, i] s[1, i] 1
...

...
...

...
...

...

s[0, n] s[1, n] 1 0 0 0

0 0 0 s[0, n] s[1, n] 1



b =



r[0, i]

r[1, i]
...

r[0, n]

r[1, n]


from i to n, where A is of size (2n, 6) and b is of size (2n, 1)

4. � x = pinv(A)·b in python is accomplished by: np.dot(np.linalg.pinv(A),

b) or by np.linalg.lstsq(A, b, rcond=None) to compute eq.

(5.4)

� Reshape x of size (6, 1) to matrix X of size (3,3)

� Initialise right column of matrix X to [1, 0, 0]T

� H = XT where H is of the following form as shown in eq. (5.6)

Refer to Appendix A for a numeric example.
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5.3.5.2 Affine Transformation with Translation Only

From the chosen reference and sensed images as shown in Fig. 5.14, after reproject-

ing the Sentinel-3 B8 (sensed) image and bringing both images to the same spatial

resolution (i.e downscale the reference to the same size as the sensed or upscale

the sensed to the same size as the reference), there is minimal difference in terms

of rotation and scale between the reference and sensed images. Thus, the affine

transformation with translation alone was also considered.

The procedure to compute the H homography for translation alone is as follows:

1. Plot x = v + tx

� Where x is the x-coordinates of the inliers (after RANSAC) of the ref-

erence image which is to be plotted in the y-axis.

� v is the x-coordinates of the inliers of the sensed image which is to be

plotted in the x-axis.

� A line of best-fit using the Non-linear least squares method [88] is taken

for these points and the obtained y-intercept of this line is equivalent to

tx.

2. Similarly, plot y = w + ty

� Where y is the y-coordinates of the reference image which is to be plotted

in the y-axis.

� w is the y-coordinates of the inliers of the sensed image which is to be

plotted in the x-axis.

� A line of best-fit using the Non-linear least squares method [88] is taken

for these points and the obtained y-intercept of this line is equivalent to

ty.

3. In both plots the gradient is fixed to 1.

4. Once tx and ty are found, the homography with translation alone is:

H =

1 0 tx

0 1 ty

0 0 1

 (5.7)
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5.3.6 Registration

As illustrated in Fig. 5.10 which depicts a high-level schematic of the proposed

algorithm, once the homography is found, the next step is to find the registered

image. This is accomplished by using the established homography and forward

warp the sensed image to the reference image.

Figure 5.17: Registered image of size 100× 100 pixels for the example shown in Fig. 5.15.

The vertical and horizontal paddings shown in the registered image of Fig. 5.17

illustrate the vertical and horizontal displacement of the sensed image after regis-

tration. The obtained homography for Fig. 5.17 which includes translation only is

as follows:

H =

1 0 −0.4073

0 1 −0.2613

0 0 1

 (5.8)

Thus, from eq. (5.8), the obtained displacement in the x-direction tx = −0.4073

pixels and the obtained displacement in the y-direction ty = −0.2613.
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5.4 Improving the Parameter Search

In Section 5.3, the default SIFT parameters were utilised. In this proposed method-

ology, a major focus was to find parameters that are best suited to register the two

chosen remote sensing images such as a subset of Landsat-8 B10 and a subset of

Sentinel-3 B8 as shown in the previous sections of chapter 5.

5.4.1 Salient Parameters

The salient parameters that were chosen to be optimised to improve registration are

the following: RANSAC threshold, Number of Octaves, Sigma Blur, Edge Threshold

and the Contrast Threshold.

5.4.1.1 RANSAC Threshold

As explained in Section 2.7, the RANSAC threshold is a tolerance margin where all

the points lying within this margin are considered as inliers. Concerning the choice

of this parameter, the aim is to choose a value that results in retaining the best

keypoint matches possible with the fewest possible number of false positives. The

value of the RANSAC threshold can range from 1 to 10. 10 being the most lenient

which results in many false positive matches whilst 1 being the most strict which

might result in no matches if few features were detected between the reference and

sensed images.

5.4.1.2 Number of Octaves

The number of octaves utilised is dependent on the size of the reference image.

This is determined through the following equation:

noct = floor(log2(minwidth, height)− 3) (5.9)

Subtracting 3 in eq. (5.9) ensures that there is a minimum size patch that the SIFT

feature detection requires to obtain a good output. Thus, subtracting 3 ensures

that this minimum patch size is met once one gets to the lowest octave of the DoG

pyramid in the Scale Space Extrema detection step as outlined in Section 2.5.1.

Taking a numerical example. Assume one has an octave patch of size 64× 64 pix-

els. As outlined in Section 2.5.1, one knows that at each octave, the size of each
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dimension is divided by 2. Thus, taking the log2 of the smallest of the width and

height will theoretically result in the total number of octaves.

Octave Size
1 64× 64
2 32× 32
3 16× 16
4 8× 8
5 4× 4
6 2× 2
7 1× 1

Table 5.4: Theoretical number of octaves for an octave patch of size 64× 64.

Nonetheless, from Table 5.4 one can observe that at octaves 5, 6 and 7 will result

in no useful information and can be ignored. Thus by subtracting 3 from the total

number of octaves, one will stop analysing the information at octave 4. Hence, the

smallest patch to analyse is 8× 8 pixels.

5.4.1.3 Sigma

As outlined in Section 2.5.1, sigma refers to the spread of the Gaussian operator

applied to the input image at the first octave. It determines the amount of blur

added to the image. A larger σ increases the added blur. Typically this value

ranges from 0.5 to 2.

In Fig. 5.20, the reference image chosen is a L8 B10 patch found in parts of Croa-

tia taken on 2019/06/03 with a size of 1000 × 1000 pixels covering an area patch

of 30 km. The sensed image to be registered is the same L8 B10 patch but down-

scaled and upscaled by a scale factor of 10 and it is also shifted to the left by 1 pixel.

In this test the RANSAC threshold was set to 3 and the number of iterations

for RANSAC was set to 2000 iterations, all the SIFT parameters are the default

parameters and the only parameter that was modified is σ. From Fig. 5.20 it

can be observed that beyond a σ value of 1.6 the number of matches saturate.

Interestingly enough this is a similar observation noted by the author of SIFT in

his work. In the repeatability plot shown in Fig. 5.19, the plot flattens beyond a

σ value of 1.6.
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Figure 5.18: Plot of Mean Number of Matches vs Sigma.

Figure 5.19: Graph showing the percent of keypoint locations that are repeatedly detected in a
transformed image as a function of the σ smoothing for the first level of each octave taken from
David Lowe’s work [7].
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5.4.1.4 Contrast Threshold

As outlined in Section 2.5.3.2, the contrast threshold |D(x̂)| is the threshold utilised

to discard low contrast keypoints. The larger the contrast threshold, the less features

are produced by the detector. Similarly to the σ plot, the same test was conducted

for the contrast threshold. Thus, all parameters remained fixed other than contrast

threshold. From Fig. 5.20 it can observed that as the contrast threshold increases,

less features are produced by the detector.

Figure 5.20: Plot of Mean Number of Matches vs the Contrast Threshold |D(x̂)|.

5.4.1.5 Edge Threshold

As outlined in Section 2.5.3.2, the edge threshold r is the threshold utilised to

eliminate keypoints which have a strong response along the edges. The aim of this

threshold is to detect keypoints found at corners. Contrary to the contrast thresh-

old, the larger the edge threshold the less features are filtered out.

Similarly to the previous plots, the same test was conducted for the edge threshold.

Thus, all parameters remained fixed other than edge threshold. From Fig. 5.21, one

can observe that contrary to the contrast threshold, the larger the edge threshold

the less features were filtered out.
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Figure 5.21: Plot of Mean Number of Matches vs the Edge Threshold r.

5.4.2 Default Parameters

In the results of this dissertation, one of the major focus was to find values of the

mentioned parameters that are best suited to register two chosen remote sensing

images. The initial parameters utilised are the default parameters used by the

author of the SIFT algorithm [7]:

� σ = 1.6

� Contrast Threshold |D(x̂)| = 0.03

� Edge Threshold r = 10

With regards to the RANSAC threshold for the first chosen parameter set this was

set to 3.
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5.4.3 Monte Carlo

The second approach utilised to find values for the mentioned parameters to register

two chosen remote sensing images is the Monte Carlo approach. The Monte Carlo

search method is a problem solving technique used to approximate the probability

of certain outcomes by running multiple trial runs using random variables. This

requires a good source of random numbers.

Algorithm 1 Monte Carlo Approach
1: RMSEOld = RMSEBeforeReg
2: for iterations = 1, 2, . . . , N do
3: RANSACThreshold Initial = random.uniform(arans, brans)
4: SigmaInitial = random.uniform(asig, bsig)
5: ContrastThreshold Intial = random.uniform(acont, bcont)
6: EdgeThreshold Initial = random.uniform(aedg, bedge)
7:

8: Run registration algorithm using above parameters
9:

10: RMSENew ← RMSEAfterReg
11:

12: if RMSENew < RMSEOld then
13: RMSENew ← RMSEOld
14: RANSACThreshold F inal ← RANSACThreshold Initial
15: SigmaFinal ← SigmaInitial
16: ContrastThreshold F inal ← ContrastThreshold Intial
17: EdgeThreshold F inal ← EdgeThreshold Intial
18: end if
19: end for

In Algorithm 1, the utilised registration algorithm is the proposed algorithm outlined

in Section 5.3, N refers to the number of Monte Carlo iterations. N is set to

1000 iterations. The set number of iterations for the RANSAC algorithm is 2000

iterations. a and b for the four salient parameters refer to limits of the respective

randomly generated parameter. The SIFT parameter limits are chosen based on

the illustrated plots shown before. The assumed limits are as follows:

� arans = 3 and brans = 5

� asig = 1.2 and bsig = 1.8

� acont = 0.025 and bcont = 0.055
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� aedg = 5 and bedg = 13

As shown in the Monte Carlo algorithm, the objective function to be minimised is

the RMSE. When registering thermal images such as Landsat-8 B10 and Sentinel-

3 B8, the RMSE excludes any cloud pixels and any NaNs that might result from

rotation or translation differences before and after registration. Additionally, before

and after registration, the RMSE is always computed on brightness temperature

subsets in Kelvin. The RMSE excludes the cloud pixels through the utilisation

of the joined cloud mask as shown in Fig. 5.12. The defined way of how the

RMSE is computed in the Monte Carlo algorithm also applies for all the

results of this disseration.

5.4.4 Grid Search Method

The last approach utilised to find values for the mentioned parameters to register

two chosen remote sensing images is the Grid Search approach. The aim of this

method is to find the minimum value that satisfies a cost function.

One chooses a point in the cost function and starts moving in steps towards the

minimum value. The step size to converge to this minimum value is known as the

Learning Rate α. With a higher learning rate one can cover more area. Nonethe-

less, this can lead to overshooting the minima. Contrarily, choosing a very small

step size can lead to no convergence.

The cost function to be minimised for the problem of registering two re-

mote sensing images is the RMSE and the input parameters of that cost

function are the SIFT parameters and the RANSAC threshold. Utilis-

ing the RMSE as the cost function to be minimised leads to multiple

minima. Thus, there are multiple parameter sets that can lead to that

same minimum value.

In Algorithm 2, the utilised registration algorithm is the proposed algorithm out-

lined in Section 5.3. N refers to the number of Grid Search iterations which is set

to 100 iterations. The set number of iterations for the RANSAC algorithm is 2000

iterations. a and b for the four salient parameters refer to limits of the respective

parameters as outlined in Section 5.4.3.
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Algorithm 2 Grid Search Approach
1: RMSEOld = RMSEBeforeReg
2: ContrastThreshold = bcont
3: EdgeThreshold = bedg
4: Sigma = bsig
5: RANSACThreshold = brans
6:

7: α0 = (bcont − acont)/N
8: α1 = (bedg − aedg)/N
9: α2 = (bsig − asig)/N

10: α3 = (brans − arans)/N
11:

12: for iterations = 1, 2, . . . , N do
13:

14: Run registration algorithm using the initialised threshold and α parameters
15:

16: RMSENew ← Output of registration algorithm
17:

18: if RMSENew < RMSEOld then
19: RMSENew ← RMSEOld
20: RANSACThreshold F inal ← RANSACThreshold
21: SigmaFinal ← Sigma
22: ContrastThreshold F inal ← ContrastThreshold
23: EdgeThreshold F inal ← EdgeThreshold
24: end if
25:

26: ContrastThreshold = ContrastThreshold − α0

27: EdgeThreshold = EdgeThreshold − α1

28: Sigma = Sigma− α2

29: RANSACThreshold = RANSACThreshold − α3

30:

31: end for
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The initial starting values of the SIFT and RANSAC parameters for the Grid

Search method are the upper limits b for each parameter as defined in Section

5.4.3. The step size α for each of those parameters is based on the difference be-

tween their lower and limits divided by the total number of Grid Search iterations.

In both the Monte Carlo and Grid Search methods, the final SIFT and

RANSAC values established are then utilised as the input parameters

for the registration of the two chosen remote sensing images such as

Landsat-8 B10 and Sentinel-3 B8.
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Results and Evaluation

The process of registering two remote sensing images has no ground truth. Inher-

ently, even if the registration was a success the RMSE can never be zero. Thus, the

best way to initially show that the proposed registration algorithm indeed works is

through the use of single modality satellite imagery. Thermal images from Landsat-

8 were used in the following Section 6.1.

In the first section a Landsat-8 B10 is registered with the same Landsat-8 B10

image but with some induced bias in the sensed image such as blurring and trans-

lation shifts. Since the same Landsat-8 is utilised, one knows that the RMSE after

registration should be close to zero. In the second section, the Landsat-8 B10 is

registered with a Sentinel-3 B8. In the third section, the proposed registration

method is compared to phase correlation, RIFT, ECC and SIFT Flow algorithms

for the registration of single multi-modal and single modality remote sensing data.

6.1 Registration of Landsat-8 vs Landsat-8

6.1.1 Blurring the Sensed Image

The first aim of this subsection is to create a registration test that mimics the scale

difference between Landsat-8 B10 and Sentinel-3 B8, but using only Landsat-8 B10

images. The reference BT image in Fig. 6.1 was extracted from a Landsat-8 B10

band. The location is Samothrace, a Greek island taken on 2020/07/31. There is

no cloud cover in this chosen patch. The covered area patch is of 100 km× 100 km.

For a spatial resolution of 30 m this represents a size of 3333×3333 pixels. As shown
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in Fig. 6.1 this reference image was downscaled from 3333 × 3333 to 1000 × 1000

pixels using bicubic interpolation. The sensed image initially is the reference BT

image at 3333×3333 pixels and then was downscaled and upscaled by a scale factor

n to mimic the scale difference between Landsat-8 B10 and Sentinel-3 B8. In Fig.

6.1, the chosen scale factor was 10.

The workflow shown in Fig. 6.1, is repeated for different scale factors, from n = 1

to n = 10. The reference and sensed images of size 1000× 1000 are then registered

using the proposed method of Chapter 5. The RANSAC algorithm was set to 2000

iterations and the SIFT parameters utilised are the default parameters as outlined

in Section 5.4.2. The number of Octaves used are 6 calculated using eq. (5.9). The

two homographies utilised to register the images is as described in Section 5.3.5.

The registration result for each scale factor was repeated for 100 times taking the

mean for each result.

The above steps explained for the location of Samothrace were also repeated for

three other locations. All the specified parameters and processing are as explained

for the first location. The aim is to get the mean result for all locations and show

the mean result in various plots. All the chosen locations are shown in Fig. 6.2.

Fig. 6.3 shows the effect of introducing more blur to the sensed image as a result

of downscaling and upscaling by the same scale factor. As this scaling factor in-

creases the number of matches decrease due to this added blur. It should also be

noted that at a high scaling factor such as 10, false information is introduced in

the sensed images. This can be observed in the coastal region areas in the Sensed

BT image after upscaling in Fig. 6.1. This introduced false information can cause

misregistration.

In Fig. 6.4, as the scaling factor increases the misregistration in the horizontal

direction tx for the homography which includes rotation, scale and translation in-

creases. For the homography that includes translation only misregistration in the

horizontal direction is almost zero. The achieved horizontal misregistration for the

homography with translation only is not greater than 0.2 pixels. For a spatial res-

olution of 30 m this represents a misregistration of 6 m.
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In Fig. 6.5, a similar pattern for the misregistration in the vertical direction ty was

observed. The homography with translation only achieved the lowest misregistra-

tion. The achieved vertical misregistration for the homography with translation

only is not greater than 0.24 pixels. For a spatial resolution of 30 m this represents

a misregistration of 7.2 m.

From Fig. 6.6 one can observe that the both the RMSE before and after registra-

tion increase as the scaling factor increases. This is to be expected as increasing

the scaling factor causes the sensed image to be more dissimilar than the reference

image. Thus, the RMSE increases. For all scaling factors the RMSE after registra-

tion for the homography with translation only is equal or smaller than the RMSE

before registration.

The general trend observed in the mean plots shown in Figures 6.3, 6.4, 6.5, and

6.6 was observed in all the plots for each individual location.
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Downscale Reference 
Image

to
1000 by 1000 pixels

Downscale Sensed Image 
by a Scale Factor n = 10

Upscale Sensed Image by a 
Scale Factor n = 10

Reference BT Image Sensed BT Image

Figure 6.1: Workflow of test that registers a Landsat-8 B10 image with its blurred version.
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(a) Reference Image of Location 1 (Sardegna)
taken on 2020/08/06.

(b) Reference Image of Location 2 (Annaba in
Algiers) taken on 2020/08/06.

(c) Reference Image of Location 3 (Athens)
taken on 2020/08/07.

(d) Reference Image of Location 4 (Samoth-
race, Greek Island) taken on 2020/07/31.

Figure 6.2: Reference images of the four chosen locations to be utilised for the test of registering
a Landsat-8 B10 image with its blurred version. All chosen subset locations cover an area patch
of 100 km×100 km which is equivalent to an image size of 3333×3333 pixels. All shown locations
are in brightness temperature (Kelvin) and are extracted from their respective Landsat-8 L1C
B10 data.
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Figure 6.3: Plot of µ matches pre and post RANSAC vs scaling factor for all four locations as
shown in Fig. 6.2
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Figure 6.4: Plot of µ tx vs scaling factor for all four locations as shown in Fig. 6.2
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Figure 6.5: Plot of µ ty vs scaling factor for all four locations.
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Figure 6.6: Plot of µ RMSE before and after registration vs scaling factor for all four locations.
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6.1.2 Translating the Sensed Image

In this section, the sensed image is the reference BT image with added translation.

The induced translation is done through a change in the geolocation coordinates

which equates to pixels shifts.

6.1.2.1 Location 1: Mallorca

The first chosen location is in Mallorca. The reference and sensed images are ex-

tracted on 2020/08/09 from their respective Landsat-8 L1C B10 data.

(a) Reference Image (b) Sensed Image

Figure 6.7: Reference and sensed images of the Mallorca location. Both images are located in the
South-West of Mallorca shown in brightness temperature with a size of 1000× 1000 pixels.

Both reference and sensed images of Fig. 6.7 cover an area patch of 30 km×30 km.

For a spatial resolution of 30 m this is equivalent to a size of 1000 × 1000 pixels.

The difference between the reference and sensed images is that in the sensed image,

Fig. 6.7(b), the geolocation coordinates are translated in the both the tx and ty

direction by 450 m which is equivalent to a pixel shift of 15 pixels respectively.

The two images are registered using the proposed method of Chapter 5. The num-

ber of RANSAC iterations is 2000, the RANSAC threshold is set to 3 and the

SIFT parameters are the default parameters. The two homographies utilised are
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as discussed in Section 5.3.5. The result was simulated for 100 iterations and the

mean values are taken.

RMSE After
(Kelvin)

tx ty

RMSE Before
(Kelvin)

HR,T,S HT HR,T,S HT HR,T,S HT

2.1030 0.0012 0 15.0186 15.0047 15.0072 14.9984

Table 6.1: Table illustrating the obtained µ RMSE before and after registration for the Mallorca
location and the obtained µ misregistration values. Standard error for all obtained values was
zero.

As shown in Table 6.1, for both homographies the RMSE after registration is ap-

proximately 0. Similarly, for the obtained misregistration values in the horizontal

tx and vertical ty direction is approximately 15 pixels respectively.
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(b) Absolute Difference After

Figure 6.8: Absolute difference before and after registration for the reference and sensed images
of the Mallorca location.

In Fig. 6.8(a), the yellow and light blue indicate an error between the reference

and sensed images due to the added translations caused by the difference in the

geolocation coordinates. In Fig. 6.8(b), the absolute difference is solely a purple

colour as after registration the observed patch between the reference and the reg-

istered image is the same. Thus, there is no difference.
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(a) Overlay Before Registration (b) Overlay After Registration

Figure 6.9: Overlay image before and after registration for the reference and sensed images of the
Mallorca location.

In Fig. 6.9(a), the green colour represents the sensed image whilst the magenta

colour represents the reference image before registration. Similarly, to the absolute

difference before registration, the two colours do not overlap due to the transla-

tional difference between the two.

In Fig. 6.9(b), the green colour represents the registered image whilst the magenta

colour represents the reference image after registration. The green square repre-

sents the overlapping region between the two images. The padded parts in magenta

represent the translational difference between the reference and registered image.

6.1.2.2 Location 2: Corfu

The exact same test as shown in the first location (Mallorca) is done for a second

location. The second location chosen covers an area found in Corfu (Greece). The

chosen area patch is of 20 km× 20 km. For a spatial resolution of 30 m this repre-

sents an image of size 666× 666 pixels.

For this location, compared to the reference image shown in Fig. 6.10(a), the

sensed image geolocation coordinates have an induced translation of 30 m in the

horizontal direction tx and 60 m in the vertical direction ty which represents 1 and
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(a) Reference Image (b) Sensed Image

Figure 6.10: Reference and sensed images of the Corfu location. Both images are located in the
South of Corfu shown in brightness temperature with a size of 666× 666 pixels.

2 pixels respectively as shown in Fig. 6.10(b).

RMSE After
(Kelvin)

tx ty

RMSE Before
(Kelvin)

HR,T,S HT HR,T,S HT HR,T,S HT

0.17436 0.01324 0.0030 1.0437 0.9758 1.9571 2.0038

Table 6.2: Table illustrating the obtained µ RMSE before and after registration for the Corfu
location and the obtained µ misregistration values. Standard error for all obtained values was
zero.

As shown in Table 6.2, for both homographies the RMSE after registration is ap-

proximately 0. Similarly, for the obtained misregistration values in the horizontal

tx and vertical ty direction is approximately 1 and 2 pixels respectively.

In Fig. 6.11(a), the green colour represents the sensed image whilst the magenta

colour represents the reference image before registration. Qualitatively the differ-

ence is minimal due to the small translational difference.

In Fig. 6.11(b), the green colour represents the registered image whilst the magenta

colour represents the reference image after registration. The green square repre-

sents the overlapping region between the two images. The padded parts in magenta
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(a) Overlay Before Registration (b) Overlay After Registration

Figure 6.11: Overlay image before and after registration for the reference and sensed images of
the Corfu location.

represent the translational difference between the reference and registered image.

Since the translational difference is not greater than 2 pixels the non-overlapping

area is less than compared to the Mallorca result. Nonetheless, one can observe

that in the vertical direction the magenta area that is not overlapping is twice as

much as compared to the horizontal direction.
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6.1.3 Effect of Cloud Cover

The aim of this section is to show the effect of cloud cover on the registration be-

tween two Landsat-8 B10 BT images. The chosen location is the Maltese archipelago.

Fig. 6.12(a) is chosen as the reference image whilst Fig. 6.12(b) to Fig. 6.12(h)

are chosen as the sensed images to be registered. The chosen reference image has

0% cloud cover (CC) whilst the sensed images have a cloud cover that varies from

11.58% to 61.25%.

Both the reference and sensed images are extracted using the same geolocation co-

ordinates from L8 B10 L1C products and the sensed images have no shifts or added

blur. The chosen area patch for all images is 40 km × 40 km× which for a spatial

resolution of 30 m represents an image size of 1333×1333 pixels. The size of the di-

lation and erosion kernel is 3 and 2 pixels respectively. The cloud cover percentage

was computed from the L8 cloud mask of each chosen image in Fig. 6.12 through

the following equation:

CC% =
100× nc

N
(6.1)

where nc is the number of cloud pixels found in the L8 cloud mask and N is the

total number of pixels found in the image.

The registration algorithm utilised is the one proposed in Chapter 5. The SIFT

parameters utilised are the default. The RANSAC threshold was set to 3 and the

number of RANSAC iterations was set to 2000. The chosen reference image was

registered respectively to all the sensed images found in Fig. 6.12. Each registration

result was repeated for 100 times and the mean for that respective result is taken.
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(a) 0.04% cloud cover taken on
2018/06/02.
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(b) 11.58% taken on 2018/09/22.
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(c) 13.41% taken on 2018/10/08.
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(d) 13.78% taken on 2020/09/11.
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(e) 15.26% taken on 2018/08/21.
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(f) 24.9% taken on 2018/05/01.
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(g) 26.7% taken on 2018/08/05.
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(h) 61.65% taken on 2016/06/12.

Figure 6.12: Images of the Maltese archipelago taken in different days with different percentages
of cloud cover. Fig. 6.12(a) is chosen as the reference image. Fig. 6.12(b) to Fig. 6.12(h) are
sensed images.
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Figure 6.13: Plot of µ matches vs the cloud cover percentage for each registered sensed image
found in Fig. 6.12.
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Figure 6.14: Plot of µ RMSE vs the cloud cover percentage for each registered sensed image found
in Fig. 6.12. Note: for each image, the cloud cover % was rounded off to the nearest integer.
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From Fig. 6.13, one can observe that as the cloud cover percentage increases, the

number of matches before and after RANSAC decrease. This is expected since

more cloud cover will occlude features in the sensed image. Thus, SIFT will detect

less features to utilise for registration. With regards to the sensed image of Fig.

6.12(h) which had the highest cloud cover (61.6%), the registration failed. Fig.

6.12(h) is too occluded to detect any meaningful matches.

In Fig. 6.14, one can observe that as the cloud occlusion increases the RMSE be-

fore registration without the joined cloud mask increases. This is expected as more

cloud coverage implies a bigger temperature difference between the reference and

sensed images since the reference does not have any clouds. Apart from the sensed

image of Fig. 6.12(h) in which the registration failed, the RMSE after registration

for both homographies was equal to the RMSE before registration with the joined

cloud mask.

In Fig. 6.14, the registered sensed image with 27% cloud cover obtained the second

smallest RMSE after registration. It is even smaller than the sensed image with

11% cloud cover. This is due to the fact that in Fig. 6.12(g), the clouds are mainly

concentrated in one region, at sea.

The RMSE after registration along with the joined cloud mask, is not expected to

decrease less than the RMSE before registration since the images before are already

well registered as they originate from the same band of the same satellite. It is

to be noted that the only way the RMSE before and after registration both using

the joined cloud mask can decrease is by increasing the size of the dilation kernel.

Nonetheless, increasing the dilation will lead to less features which will also effect

the matching.

tx ty

HR,T,S HT HR,T,S HT

0.2856 0.1153 0.2239 0.1183

Table 6.3: Obtained µ misregistration in the x and y direction for all registered sensed images of
Fig. 6.12(h). The obtained standard error for all four values was zero.

In Table 6.3, the highest obtained misregistration in the x and y direction was

0.2856 pixels and 0.2239 pixels respectively. In meters, for a spatial resolution
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of 30 m, the obtained misregistration was 8.568 m and 6.717 m respectively. The

highest registration in x and y both resulted from, the homography HR,T,S which

considered rotation, scale and translation.

Figure 6.15: Matched features between the reference image Fig. 6.12(a) which has 0% cloud cover
and the sensed image Fig. 6.12(h) which has 26.7%.

In Fig. 6.15, since the joined cloud mask is utilised to avoid detecting features from

clouds, before even commencing the algorithm, SIFT avoids detecting any features

coming from cloud pixels. The predominant matches in Fig. 6.15 occurred in the

coastal regions, the areas with the highest change in gradients between land and

sea and the areas with the most corners.
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Figure 6.16: Registered image.

Fig. 6.16 shows the registered image for the images found in Fig. 6.15. Since

the attained misregistration in Table 6.3 is subpixel in accuracy, no translational

borders appear.
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6.2 Registration of Landsat-8 vs Sentinel-3

6.2.1 Downscaling the Landsat-8 Image

In this subsection the Landsat-8 B10 subset is downscaled to the same spatial res-

olution of Sentinel-3 B8 subset which is 1 km. The chosen area patch for both

images is 100 km×100 km. For the Landsat-8 image at a spatial resolution of 30 m

this equates to a size of 3333 × 3333 pixels and for the Sentinel-3 image at 1 km

spatial resolution this equates to a size of 100× 100 pixels.
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Reference Image in BT 

Downsample 
reference image to 
same size as the 

sensed image 

Sensed Image in BT 

Shift the sensed 
image by -2000 
metres to 2000 

metres

   1.    2.

Figure 6.17: Workflow for the preprocessing steps done on the reference and sensed images for
the registration of the downscaled L8 B10 subset with the S3 B8 subset. Covered geolocation
for both images before shifting the sense image in step 2 is the same. Chosen locations for this
example is Sardegna.
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(a) Reference Image of Location 1 (Sardegna)
taken on 2020/08/06.

(b) Reference Image of Location 2 (Sicily)
taken on 2019/05/11.

(c) Reference Image of Location 3 (Athens)
taken on 2020/08/07.

(d) Reference Image of Location 4 (Samoth-
race, Greek Island) taken on 2020/07/31.

Figure 6.18: Reference images of the four chosen locations to be utilised for the test of registering
a downscaled Landsat-8 B10 image with its respective Sentinel-3 B8 image. All chosen subset
locations cover an area patch of 100 km× 100 km. All shown locations are in brightness tempera-
ture and are extracted from their respective Landsat-8 L1C B10 data and Senintel-3 SLSTR data
products respectively.
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1. In Fig. 6.17, the reference Landsat-8 B10 image of size 3333× 3333 pixels is

downscaled to the same spatial resolution as the sensed Sentinel-3 B8 image

of size 100× 100 pixels using bicubic interpolation.

2. The geolocation coordinates of the sensed image is shifted from −2000 m to

2000 m. In pixels for a spatial resolution of 1 km this equates to −2 to 2 pixel

shifts.

3. The reference image is registered respectively to each of the shifted sensed

images. For registration the default parameters with RANSAC threshold of 3,

the parameters generated using the Monte Carlo approach and the parameters

generated using the Grid Search method were utilised. For all methods the

Monte Carlo and Grid Search method were repeated for each shifted sensed

image. RANSAC in all utilised approaches was set to 2000 iterations and the

size of the dilation and erosion kernels were set to 2 and 1 pixel respectively.

The Monte Carlo approach was repeated for 1000 iterations whereas the Grid

Search approach was repeated for 100 iterations.

4. Steps 1 to 3 are repeated for three additional locations shown in Fig. 6.18.

For all locations, both the Landsat-8 and Sentinel-3 images are taken on the

same day approximately 40 minutes apart. In the results of Landsat-8 vs

Landsat-8, HT outperformed HR,T,S (as shown in Fig. 6.2). Thus, for the

remaining results of this section, only HT is considered.

Fig. 6.19, shows the plot of the µ RMSE for all locations before and after regis-

tration for all the respective shifts using all three parameter methods. The RMSE

before registration shows a parabolic effect. This is expected due to the shifting.

As the shift in the sensed image increases, the sensed and reference images become

more dissimilar. Thus the RMSE before registration should increase. The standard

error for the 100 repetitions for each result of each method for each shift was ap-

proximately zero implying that the obtained result for all the 100 repetitions was

identical. All three methods resulted in a smaller RMSE after registration than the

RMSE before registration. The Grid Search method obtained the smallest RMSE

after registration followed by the Monte Carlo and default parameters. It is to be

noted that the improvement is marginal as all three methods obtained a similar re-

sult. The RMSE after registration can never be zero as the two images are coming

from two different satellites.
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Figure 6.19: Plot of µ RMSE vs Shift using HT
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Figure 6.20: Plot of µ tx vs Shift using HT. The green represents y = x. The aim of this
line is to illustrate how far off are the attained points from the green line. This represents
the misregistration. The highest attained misregistration was at a zero shift using the default
parameters of 0.1999 pixels.

Fig. 6.20 and Table 6.4 show the obtained misregistration in the x direction. The

obtained misregistration is subpixel. The largest obtained misregistration was at a

zero shift using the default parameters of 0.1999 pixels which represents a misregis-

tration of 199.9 m for a spatial resolution of 1 km. This misregistration might imply

that the downscaled Landsat-8 image and the Sentinel-3 image might be slightly
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tx
Default

parameters
−2.0825 −1.1004 −0.1999 0.8032 1.8057

Monte Carlo
parameters

−2.1354 −1.0256 0.0594 0.9360 1.8271

Grid Search
parameters

−2.1476 −1.1418 −0.1316 0.8781 1.8899
.

Table 6.4: Obtained µ misregistration in the x direction for all registered shifted sensed images
for the plot of Fig. 6.20

misregistered before registration. It should be noted that since the two im-

ages are coming from two different satellites the correct misregistration

value is not known due to a lack of ground truth. This notion applies for

the explained misregistration analysis between all multi-modal satellite

imagery.
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Figure 6.21: Plot of µ ty vs Shift using HT

Fig. 6.21 shows the obtained misregistration in the y direction. The obtained

misregistration for all three parameter methods for all shifts in the y direction is

also subpixel, below 0.3 pixels which is equivalent to a misregistration of 300 m for

a spatial resolution of 1 km.
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6.2.2 Upscaling the Sentinel-3 Image

In this subsection, the Sentinel-3 B8 subset (sensed image) is shifted then upscaled

at different upscaling factors whilst the Landsat-8 B10 subset (reference image) is

downscaled to the same resolution as the upscaled sensed image. The chosen initial

area patch for both images before downscaling or upscaling is 100 km×100 km which

equates to a size of 3333× 3333 pixels (for L8) and 100× 100 (for S3) for a spatial

resolution of 30 m and 1 km respectively. The chosen location is Samothrace as

shown in Fig. 6.18(d).
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Figure 6.22: Workflow for the preprocessing steps done on the reference and sensed images for
the registration of the downscaled L8 B10 subset with the shifted and upscaled S3 B8 subset.
Covered geolocation for both images before shifting the sense image is the same. Chosen location
is Samothrace.

1. In Fig. 6.22, the reference Landsat-8 B10 image of size 3333× 3333 pixels is

downscaled to the same spatial resolution as the upscaled sensed Sentinel-3

B8. Both downscaling and upscaling were done using bicubic interpolation.
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2. The geolocation coordinates of the sensed image is shifted from −2 to 2 pixel

shifts. The geolocation is shifted in m, but the amount of meters is dependent

on the chosen upscaled size of the Sentinel-3 sensed image. If the sensed image

is upscaled by n = 2 and shifted by 2 pixels this is equivalent to a shift of

500 m. The upscaled sensed is shifted from −2 to 2 pixels for each upscaled

image from n = 2 to n = 10 as shown in Fig. 6.22.

3. The reference image is then registered respectively to each of the shifted and

upscaled sensed images. For registration the set parameter conditions are as

utilised in the case of downscaling the Landsat-8 image to the same native

spatial resolution as Sentinel-3 as shown and explained in Section 6.2.1.
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Figure 6.23: Plot of µ tx vs Shift using HT for 200× 200

Fig. 6.23 shows the plot of the attained mean µ misregistration in the x direction

for each shift using HT for an upscaled size of 200× 200. Attained standard error

for all shifts was approximately zero for all upscaled sensed images. In this plot

the best parameter method was the method with default parameters since the

values of that parameter set are the closest to the green line. The largest attained

misregistration occurred at a shift of −1 using the Grid Search method which

attained −1.4887 with a misregistration of 0.4887 pixels and 244.35 m for a spatial

resolution of 500 m. It is worth noting that all three methods seem to have a

common offset that forms a straight line. This might infer that there is a common

misregistration amongst the Landsat-8 and Sentinel-3 images. The obtained |µ|

112



Chapter 6. Results and Evaluation

offset for the Default, Monte Carlo and Grid Search was 0.1930, 0.3428 and 0.3593

pixels respectively.
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Figure 6.24: Plot of µ tx vs Shift using HT for 400× 400

In Fig. 6.24, the best parameter method was the Grid Search followed by the

Default and Monte Carlo methods. The largest attained misregistration occurred

at a shift of −2 using the Monte Carlo method which attained −2.9148 with a

misregistration of 0.9148 pixels and 228.7 m for a spatial resolution of 250 m. The

obtained |µ| offset for the Default, Monte Carlo and Grid Search at 400× 400 was

0.6674, 0.7986 and 0.5692 pixels respectively. Compared to the 200 × 200, the

pattern is an increase in misregistration when the sensed image gets upscaled by

a larger upscaling factor. In fact, this can be observed both from the plots as the

values are getting further away from the green line and from the |µ| offset which is

getting larger. The |µ| offset approximately increased by a multiplication factor of

2.

In Fig. 6.25, the obtained |µ| offset for the Default, Monte Carlo and Grid Search

at 600×600 was 0.9777, 1.0924 and 1.0962 pixels respectively. The largest attained

misregistration occurred at a shift of 1 using the Grid Search method which at-

tained −0.8120 with a misregistration of 1.8120 pixels and 301.87 m for a spatial

resolution of 166.6 m.

In Fig. 6.26, the obtained |µ| offset for the Default, Monte Carlo and Grid Search
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Figure 6.25: Plot of µ tx vs Shift using HT for 600× 600
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Figure 6.26: Plot of µ tx vs Shift using HT for 800× 800

at 800×800 was 1.2874, 1.2843 and 1.1203 pixels respectively. The largest attained

misregistration occurred at a shift of 2 using the Grid Search method which at-

tained −0.0151 with a misregistration of 2.0151 pixels and 251.89 m for a spatial

resolution of 125 m.
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Figure 6.27: Plot of µ tx vs Shift using HT for 1000× 1000

In 6.27, the obtained |µ| offset for the Default, Monte Carlo and Grid Search at

1000 × 1000 was 1.6308, 1.4310 and 1.7809 pixels respectively. The largest at-

tained misregistration occurred at a shift of −2 using the Grid Search method

which attained −2 with a misregistration of 2.5840 pixels and 258.4 m for a spatial

resolution of 100 m.

Highest
Misregistration

(pixels)

Highest
Misregistration

(m)

Upscaled
Size of Sensed
Image (pixels)

Spatial
Resolution

(m)
0.4887 244.35 200× 200 500
0.9148 228.7 400× 400 250
1.8119 301.87 600× 600 166.6
2.0144 251.8 800× 800 125
2.584 258.4 1000× 1000 100

Table 6.5: Obtained highest misregistration in the x direction for each upscaled sensed image in
meters

From Fig. 6.23 to Fig. 6.27, two general trends were observed:

1. As the upscaling of the sensed image increased, the misregistration in the x

direction increased. This is evident from the points as they get further away

from the green line and from the absolute |µ| offset which increases. This

increase in misregistration is caused from the effect of upscaling using bicubic
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interpolation. Bicubic interpolation not only adds blur to the upscaled sensed

image but also introduces false information in the image. This is clearly

illustrated in Fig. 1.2 where the sensed image was upscaled from 100 × 100

to 1000 × 1000 pixels. In the coastal regions of the sensed image false parts

of land are introduced.

2. Despite the increase in misregistration in pixels, the largest misregistration for

the x direction in meters for all upscaled sensed images was roughly similar.

This is shown in Table 6.5, for all sizes a µ misregistration in the x direction

of 257 m was attained. This occurred as a result of the upscaling which causes

the spatial resolution to increase accordingly.
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Figure 6.28: Plot of µ ty for all the parameter methods vs Shift using HT for the different upscaled
sensed images

In Fig. 6.28, a similar misregistration in the y direction was also observed, as the

upscaling increased, the misregistration in the y direction also increased. Since no

shift was induced in the y direction of the sensed image, the obtained misregistra-

tion in the y direction was less than the obtained misregistration in the x direction.

Similarly to the x direction, despite the increase in misregistration in pixels, the

largest misregistration for the y direction in meters for all upscaled sensed images

was roughly similar. This is shown in Table 6.6, for all sizes a µ misregistration in

the y direction of 121.45 m was attained. This occurred as a result of the upscaling

which causes the spatial resolution to increase accordingly.
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Highest
Misregistration

(pixels)

Highest
Misregistration

(m)

Upscaled
Size of Sensed
Image (pixels)

Spatial
Resolution

(m)
0.2130 106.5 200× 200 500
0.4014 100.35 400× 400 250
0.6407 106.74 600× 600 166.6
1.0820 135.25 800× 800 125
1.2376 123.76 1000× 1000 100

Table 6.6: Obtained highest misregistration in the y direction for each upscaled sensed image in
meters
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Figure 6.29: Plot of µ RMSE vs Shift using HT

Fig. 6.29 shows the plot of the µ RMSE of all the upscaled sensed images for

each parameter method at each respective shift. The RMSE before registration

shows a parabolic effect. This is expected due to the shifting. As the shift in the

sensed image increases, the sensed and reference images become more dissimilar.

Thus the RMSE before registration should increase. Standard error for each result

was zero. All the parameter methods obtained a smaller RMSE after registration

with an attained identical RMSE performance. Inherently, this shows that

for the tackled problem of registering thermal-to-thermal remote sens-

ing data different parameter sets will lead to an identical RMSE after

registration.
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6.3 Registration of Multi-Modal Remote Sensing

Data

In this section remote sensing single/multi-modal data is registered using the fol-

lowing registration algorithms:

� Area-based Algorithms:

1. Phase Correlation (POC) [89]

2. Enhanced Correlation Coefficient (ECC) [46]

� Feature-based Algorithms:

1. SIFT based algorithm outlined in Chapter 5

2. Radiation-Variation Insensitive Feature Transform (RIFT) [12]

� Optical Flow-based Algorithm:

1. SIFT Flow [48]

The implementation utilised for the phase correlation method is done by Y. Ri

and H. Fujimoto [89] where they utilised it to estimate drift-free motion estimation

from video images. The utilised phase correlation method simply consists of using

2D FFT to convert images to the frequency domains, and then they calculate the

IFFT of the correlation of those two images resulting in a peak which indicates

the highest correlated area between the two images [89]. In the case no peak is

established, the proposed method did not find any correlated parts between the

two images. In addition Y. Ri et al. also utilise linear optimzation to find any

translational differences between the two images [89]. The proposed phase correla-

tion method is implemented in Python or MATLAB [90].

The implementation of the SIFT algorithm is in Python as explained in Chapter 5.

For the regisration of the RIFT dataset, the only difference in the implementation

was that the min-max normalisation step was not required since the images are

already in Uint8. In addition, all the implementation used for the remainder of the

algorithms is as mentioned in Section 5.1. Unless stated otherwise, all methods used

the default parameters. In Sections 6.3.1 and 6.3.2, the SAR-SIFT algorithm [70]

is also utilised to register Optical to SAR image pairs.
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6.3.1 RIFT Dataset

The utilised image dataset in this section involves six image pairs taken from the

RIFT dataset [82].

(a) Night-Day

(b) Depth-Optical

(c) Infrared-Optical
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(d) Map-Optical

(e) Optical-Optical

(f) SAR-Optical

Figure 6.30: RIFT image dataset. Images on the left column are the sensed images whilst images
on the right are the reference images.

Authors of RIFT state that these image pairs shown in Fig. 6.30 are very difficult

to register as they contain severe radiation distortions [12]. Fig. 6.30(b) contains
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translation change and a 90◦ rotation change [12]. With regards to the five remain-

ing image pairs whether they have any translational, scale or rotation changes is

not known as the remaining image pairs provided in the dataset are not the same

images utilised in the results of the RIFT paper [12].

Modality of
Image Pair

RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

Night-Day 10.9705 7 7 7 8.9586 8.9199 8.8567 9.0077
Depth-Optical 6.2562 7 7 5.6783 7 7 7 6.1291

Infrared-Optical 12.7390 12.5521 10.9320 7 7 7 7 10.9018
Map-Optical 0.3660 7 0.1802 0.1744 0.1874 0.1478 0.2025 0.2374

Optical-Optical 9.4798 8.7781 8.2049 8.9239 8.2134 8.7065 8.2111 8.9228
SAR-Optical 14.0206 7 14.0502 14.1113 7 7 7 13.9702

Table 6.7: Table of results for each image pair found in the RIFT dataset. MC and GS refer to
the proposed Monte Carlo (MC) and Grid Search (GS) parameter methods respectively. These
methods were discussed in Sections 5.4.3 and 5.4.4.

Table 6.7 shows whether each registration result for each image pair using the re-

spective algorithm was successful or not. Fields that have a number indicate the

respective attained RMSE after registration whilst a 7 indicates that the registra-

tion failed. The registration is deemed as a failure if the sensed image

is not correctly warped qualitatively. Additionally, the smallest RMSE

denotes the algorithm which best registered the sensed image both quan-

titatively and qualitatively.

For the rmse calculation any translational borders are excluded from calculation and

for the infrared-to-optical when using the ECC algorithm, a translation transfor-

mation over a affine (default) was utilised. In all image pairs, the H that considers

rotation, translation and scale was utilised for the SIFT algorithm.

In the Night-day image pair, the two feature-based algorithms, SIFT and RIFT

were successful. POC, ECC and SIFT flow failed the registration. With regards to

the two area-based methods, they were expected to fail as the two image pairs have

a huge difference in intensity. Furthermore, the POC method may yield ambiguous

results for images that have several peaks such as periodic images. It is to be noted

that the Enhanced Correlation Coefficient function was modified to be robust to

geometric and photometric distortions such as contrast and brightness but in this

Night-day image pair the intensities are too different. In the attempt to register

the two images, SIFT Flow gave a higher priority to the deformation found in the

top-left of the reference in (day) image in Night-Day pair. Thus, causing failure in
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registration. Fig. 6.32(a) shows the overlay of the failed registration. SIFT Flow

was not designed for images that have little overlap or geometric distortions. Fig.

6.31 shows two failed examples of when using SIFT Flow. SIFT flow was designed

for scene alignment with common overlap such as motion detection. Additionally,

SIFT Flow can also be utilised for the registration of non-rigid deformations.

(a) Image 1 (b) Image 2

Figure 6.31: Failed cases of registration when using SIFT Flow.

As shown in Table 6.7, in the Depth-Optical image pair, the only two algorithms

that had successful registration were SIFT Flow and RIFT. Fig. 6.33 shows the

overlay after registration using SIFT Flow. The two area-based algorithms, POC

and ECC were expected to fail as the two images have completely different intensity.

Based on the RIFT literature, the SIFT algorithm was expected to fail due to the

fact that the matching in SIFT depends heavily on the similarity of the gradient

histograms of the image pair. They emphasise that the fundamental reason for its

poor matching is down to its sensitivity to “nonlinear radiation distortion” (NRD).

Fig. 6.34 shows the failed matching between the depth-optical using SIFT.

As given in Table 6.7, in the Infrared-Optical image pair, the algorithms that were

successful in the registration were the two area-based methods (POC and ECC)

and RIFT. Before registration, it was expected that the two area-based methods

succeed in the registration of this pair as both images lie in a similar wavelength

of the electromagnetic spectrum with similar intensity. Fig. 6.35 shows the failed
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(a) Overlay After Registration using
SIFT Flow

(b) Overlay After Registration using
SIFT with the Grid Search Parameters

Figure 6.32: Overlay of the night-day image pair after registration. Magenta denotes the reference
image and the green denotes the registered image. The overlay before registration is shown in
Fig. 5.9(a).

(a) Overlay Before Registration (b) Overlay After Registration using
SIFT Flow

Figure 6.33: Overlay of the Depth-Optical image pair before and after registration. Magenta
denotes the reference image and the green denotes the registered image. Before registration green
refers to the sensed image.

matching when using SIFT. It was not expected that SIFT Flow and especially

SIFT do not register this image pair. Since SIFT is the most widely feature-based

algorithm to register optical images in the remote sensing domain as outlined in

literature.

To challenge this failed registration case a test was made. In this test the optical

image of Fig. 6.30(d) was complemented to reverse the black and white of the
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Figure 6.34: Failed matching for the Depth-Optical image pair using SIFT.

Figure 6.35: Failed matches when registering the infrared-optical image pair using SIFT. Left
image is the optical. Right is the infrared.

optical image. The infrared image remained untouched.

After complementing the optical image for the infrared-optical pair SIFT was suc-

cessful in matching and registering the images. Fig. 6.36 shows the matched

features using SIFT with the default parameters.

Fig. 6.37 shows the successful registration of the infrared-optical pair after com-

plementing the optical image using SIFT. In the left image the magenta colour

represents the reference image which is the complemented optical image and the

green image represents the infrared image. On the right, the magenta represents
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Figure 6.36: Obtained matches after complementing the optical image of the infrared-optical pair
using SIFT with the default parameters. Left image is the complemented optical. Right image is
the infrared.

(a) Before Registration (b) After Registration

Figure 6.37: Overlay image before and after registration for the infrared and complemented
optical image pair using SIFT with the default parameters.

the reference which is the complemented optical and the green represents the reg-

istered image.

Furthermore, similarly to the SIFT algorithm, after complementing the optical im-

age the SIFT Flow algorithm was also successful in registering the infrared-optical

image pair. Fig. 6.38 shows the overlay plot between the reference and registered

image using SIFT Flow.
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Figure 6.38: Overlay image before and after registration for the infrared and complemented
optical image pair using SIFT Flow with the default parameters.

As shown in Table 6.7, the only algorithm that failed to register the map-optical

image pair is the POC. Contrary to the POC, the ECC algorithm managed to reg-

ister the map-optical pair. This is due to the fact that Evangelidis et al. modified

the criterion of the correlation coefficient to be invariant to geometric distortions

and photometric distortions in contrast and brightness [46].

For the Optical-Optical image pair all algorithms were successful in their regis-

tration. This was expected as the image pair has a single modality with similar

intensity. All the SIFT parameter methods obtained a smaller RMSE than RIFT.

For the SAR-Optical image pair, POC and SIFT failed to register the image pair.

The POC was expected to fail as no single peak was found and the two images are of

different intensity. The ECC managed due to the modification done to the criterion

of the correlation coefficient which makes it invariant to contrast and brightness

changes. For the RMSE values, the RMSE for the ECC and POC is slightly larger

as the image pair is already well registered before registration and the RMSE is

always expected to differ when images are of different modality. RIFT obtained

the best registration result, but decrease in RMSE was still minimal as the image

pair is already well registered before registration.

For SIFT, it is worth noting the SAR-SIFT algorithm was created to tailor for such

an image pair. The SIFT algorithm was not primarily designed to register SAR-
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optical images and in some instances such as this case it might fail. For the optical-

SAR image pair, the SAR-SIFT was also utilised. Using the default parameters of

SAR-SIFT, SAR-SIFT also failed to register the image pair. Fig. 6.39 shows these

failed matches. In the proposed work of RIFT, the authors showed that for their

tested multi-modal datasets, in terms of matching RIFT outperformed both SIFT

and SAR-SIFT [12].

Figure 6.39: Obtained failed matches using SAR-SIFT for the RIFT dataset Optical-SAR image
pair.

(a) Before Registration (b) After Registration

Figure 6.40: Overlay image before and after registration for the SAR-Optical image pair using
ECC. Magenta denotes the reference. Green denotes the sensed and registered image in the left
and right image respectively.

In the top-right and bottom left of Fig. 6.40(b) one can actually observe trans-

lational borders due a slight translational difference in the reference and sensed

images.
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6.3.2 Optical to SAR

(a) Sentinel-1 GRD Amplitude VH with
speckle noise

(b) Sentinel-1 GRD Amplitude VH with re-
duced speckle noise

Figure 6.41: Sensed image for the first registration test of Optical-SAR. Size of the image is
596× 698 pixels. Covered Location is Sicily.

Figure 6.42: Reference image Landsat-8 L1TP B3 (green) for the first registration test of SAR-
optical. Size of the image is 596× 698 pixels.

The shown sensed image of Fig. 6.41 was terrain corrected, reprojected and re-

sampled to the same CRS and spatial resolution of the reference Landsat-8 image

shown in Fig. 6.42. Terrain correction is required to remove any geometric dis-

tortions in the Sentinel-1. Without terrain correction, the SAR image is inverted.

Reprojection is required to bring the SAR image to the same coordinate system

as the reference Landsat-8 image. Terrain correction, reprojection and resampling
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were done using the SNAP ESA toolbox [85]. The reference image was acquired

on 2020/08/01 whilst the sensed image was acquired on 2020/10/18.

In addition, the sensed SAR image needs to be filtered to reduce the speckle noise

found in SAR images. The speckle noise was reduced using the Lee sigma filter

proposed by Lee et al. [91] for the speckle filtering of SAR imagery. A σ of 0.9

and a window size of 9 × 9 were utilised with this filter. Fig. 6.41(a) shows the

sensed image without speckle noise reduction and Fig. 6.41(b) shows the sensed

with speckle noise reduction.

Amongst all algorithms, the only algorithm that registered Fig. 6.41(b) and Fig.

6.42 was SIFT Flow. Fig. 6.43 shows the attained registration before and after.

The biggest culprit of the failed registration was the speckle noise. Despite reducing

the speckle noise, the POC algorithm failed to find a single peak. The SIFT

algorithm picked up mostly features from the speckles and RIFT picked up incorrect

matches which failed the registration. The SAR-SIFT was also utilised to try and

register this image pair using the default parameters and it also failed to match the

images as not enough matches were found. Fig. 6.44 shows the established matches

using SAR-SIFT.

(a) Before Registration (b) After Registration

Figure 6.43: Overlay image before and after registration for the first Optical-SAR pair using
SIFT Flow with the default parameters. In both images, magenta is the reference. Green is the
sensed in Fig. 6.43(a) and the reference in Fig. 6.43(b) respectively.

As claimed in their work the RIFT algorihtm did manage to find more matches

than both SAR-SIFT and SIFT, but the obtained matches by RIFT were still not

good enough to register the first Optical-SAR pair.
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Figure 6.44: Obtained matches using SAR-SIFT for the first Optical-SAR test.

(a) Sentinel-1 GRD Amplitude VV with re-
duced speckle noise

(b) Landsat-8 L1TP B5 (NIR)

Figure 6.45: Sensed and reference images for the second registration test of Optical-SAR. Size of
the image is 596× 756 pixels. Location: Cyprus.

The sensed image 6.45(a) was again preprocessed as done in the first Optical-SAR

test. The chosen optical band for this test is the NIR shown in Fig. 6.45(b).

Image
Pair

RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

SAR-
SIFT

RIFT

L8 B5 -
S1 Amplitude VV

8.2695 7 8.2011 8.0615 8.1752 8.1689 8.1622 8.1590 7

Table 6.8: Attained RMSE for the registration of the images found in Fig. 6.45.
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Table 6.8 shows the attained RMSE for the registration of the images in Fig.

6.45(b). Fig. 6.46 shows the attained qualitative registion using SIFT Flow. In

this test the phase correlation and RIFT completely failed in the registration.

For the second consecutive time SIFT Flow attained the best registration. It is

worth noting that from the two SIFT methods for this test SAR-SIFT achieved the

lowest RMSE. Additionally, to the best of ones knowledge, based on literature in the

remote sensing domain, Optical-Flow methods were specifically only utilised for the

registration of Optical-SAR images. The known optical-flow algorithms of GeFolki

and OS-Flow were created for the registration of Optical-SAR imagery. This might

justify why SIFT-Flow was the best performing method for the conducted Optical-

SAR tests.

(a) Overlay Before Registration (b) Overlay After Registration

Figure 6.46: Registration before and after of the second Optical-SAR image pair using SIFT
Flow. In both images magenta is the reference. Green is the sensed and registered in the left and
right images respectively.

6.3.3 Optical to Thermal

In this section an optical band of Sentinel-2 is registered with the thermal band

of Landsat-8. Landsat-8 image in Fig. 6.47 was resampled to the same spatial

resolution as the Sentinel-2 image. Covered location is Samothrace. The reference

Sentinel-2 B2 subset was acquired on 2020/07/29. The sensed Landsat-8 B10 was

acquired on 2020/07/31. Resampling was done using bicubic interpolation.

Table 6.9 shows the attained RMSE for each method for the registration of the

optical-thermal pair of Fig. 6.47. The RMSE after registration did not differ much

from the before due to the fact that before registration the two images already had
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(a) Landsat-8 L1T B10 (b) Sentinel-2 MSI L1C B2

Figure 6.47: Reference and sensed images for the registration of Thermal-Optical images. Size of
the images is 692× 767 pixels.

Image Pair
RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

S2 B2 - L8 B10 15.4627 15.5625 15.5222 15.4911 15.4381 15.4649 15.4617 15.4640

Table 6.9: Table of results for the registration of the optical-thermal pair of Fig. 6.47.

good geocoding as shown in Fig. 6.48(a).

(a) Overlay Before Registration (b) Overlay After Registration

Figure 6.48: Registration before and after of the image pair found in Fig. 6.47 using SIFT with
the Monte Carlo parameters.

Fig. 6.48 shows the overlay of the registration for the optical-thermal pair before

and after. In both images the magenta represents the reference (S2) image. In Fig.
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6.48(a), the green represents the sensed image whilst in Fig. 6.48(b) represents the

registered image. Fig. 6.48(a) indicates that before registration the images already

had good gecoding. Fig. 6.48(a) shows the registration after using SIFT with the

Monte Carlo parameters.

6.4 Registration of Single Modality Remote Sens-

ing Data

In this section satellite imagery of the same modality are registered using the dif-

ferent algorithms. The chosen single modalities are Optical-Optical and Thermal-

Thermal.

6.4.1 Optical to Optical

(a) Sentinel-2 MSI L1C B3 (b) Landsat-8 L1T B3

Figure 6.49: Reference and sensed images for the registration of Optical-Optical images. Size of
the images is 692× 767 pixels. Location: Cyrpus

The sensed Landsat-8 B3 image was acquired on 2020/10/09 whilst the reference

Sentinel-2 B3 images was acquired 2020/10/10. Since the images have good geocod-

ing prior to registration, the sensed image was translated by 2 pixels in both the

x and y direction. Sensed image was resampled using bicubic interpolation to the

same spatial resolution as the reference L8 image i.e. at 30 m.
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Image Pair
RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

L8 B3 - S2 B3 8.7293 8.7060 8.3524 8.4476 7.3132 7.3247 7.3196 8.3266

Table 6.10: Table of the RMSE results for the registration of the optical-thermal pair of Fig.
6.47.

In Table 6.10, the SIFT algorithm obtained the smallest RMSE after registration.

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

tx ty tx ty tx ty tx ty
2.0393 2.0001 2.0595 2.0326 2.0408 2.0131 2.9885 1.8458

Table 6.11: Table of the translation results for the registration of the optical-thermal pair of Fig.
6.47.

Table 6.11 shows the attained translation results in the x and y direction for the

SIFT and RIFT algorithms. SIFT attained the closest tx and ty results compared

to the induced shifts of 2 pixels in both directions. Attained tx and ty for SIFT

is approximately 2 pixels for all parameter methods. Whilst in the x direction,

RIFT has a misregistration of almost one pixel. The attained misregistration by

RIFT for the x and y direction in meters for a spatial resolution of 30 m is 29.6 m

and 4.6 m respectively. Highest attained misregistration by SIFT using the Monte

Carlo was 1.244 m and 0.978 m.

Fig. 6.50 shows the qualitative registration before and after using SIFT with the

GS parameters. From 6.50(b) it can be seen that the green image which represents

the registered image was translated. This improved registration is evident in the

coastal regions. The magenta in both images represents the reference (S2).

POC ECC
SIFT
Flow

SIFT
Default

RIFT

5.5 s 29.6 s 60.9 s 6.7 s 53.3 s

Table 6.12: Table of the runtime results for the registration of the optical-thermal pair of Fig.
6.47.

Table 6.12 shows the runtime results for the registration of the optical-thermal

pair of Fig. 6.47. This attained runtime result accounts for the registration of that

image pair for a single time using the default parameters. It is to be noted that the

default parameters of the ECC algorithm uses 2 multimode levels whilst SIFT Flow
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(a) Overlay Before Registration (b) Overlay After Registration

Figure 6.50: Registration before and after of the optical-optical image pair using SIFT with the
GS parameters.

uses 4 multimode levels. At 4 multimode levels the runtime for ECC was 34.2 s.

The two least computationally intensive algorithms are SIFT and POC. This is

an aspect that needs to be taken into account if one wants to register many image

pairs. The RIFT algorithm takes approximately 7.72 times more computation time

than SIFT to register the same pair of images.
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6.4.2 Thermal to Thermal

(a) Landsat-8 B10 (b) Sentinel-3 B8

Figure 6.51: Reference and sensed images for the registration of Thermal-Thermal images. Size
of the images is 1000× 1000 pixels. Location: Samothrace

The image pair chosen for the registration of the thermal-thermal image pair is

the same location used in Fig. 6.18(d). The sensed image is upscaled by a scale

factor of 10 using bicubic interpolation to the same size as the reference image i.e.

1000× 1000 pixels. Sensed image does not contain any shifts.

Image
Pair

RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

L8 B10 - S3 B8
Samothrace

5.8094 7 5.7915 7 5.7939 5.8012 5.7819 7

Table 6.13: Table of the RMSE results for the registration of the thermal-thermal pair of Fig.
6.51.

As shown from Table 6.13, the only two algorithms that registered the thermal-

thermal images are ECC and SIFT. The ECC algorithm succeeded because it is

somewhat robust to geometric distortions and the two images have similar inten-

sity. The RMSE before and after registration did not vary that much because the

two images are already well geocoded before registration.

POC, SIFT Flow and RIFT failed because of the huge scale difference. The phase

correlation method failed to find any single peak. The RIFT algorithm failed be-

cause the algorithm itself does not use a scale space to cater for a scale differences
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between the two images. This limitation was even mentioned in the literature of

RIFT by the authors in the respective limitations section [12].

POC ECC
SIFT
Flow

SIFT
Default

RIFT

17.5 s 50.533 s 137.97 s 7.76 s 55.89 s

Table 6.14: Table of the runtime results for the registration of the thermal-thermal pair of Fig.
6.51.

Table 6.14, again shows that SIFT was the most computationally efficient for the

registration of a 1000× 1000 image.

(a) Landsat-8 B10 (b) Sentinel-3 B8

Figure 6.52: Reference and sensed images for the registration of second thermal-thermal image
pair. Size of the images is 1000× 1000 pixels. Location: Athens

The image pair chosen for the registration of the second thermal-thermal image

pair is the same location used in Fig.6.18(c). The sensed image is upscaled by a

scale factor of 10 using bicubic interpolation to the same size as the reference image

i.e. 1000× 1000 pixels. Sensed image does not contain any shifts.

Image
Pair

RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

RIFT

L8 B10 - S3 7.7859 7 7.7900 7 7.8007 7.8243 7.7967 7

Table 6.15: Table of the RMSE results for the registration of the second thermal-thermal pair of
Fig. 6.52.
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Similarly to the first test, POC, SIFT Flow and RIFT failed because of the huge

scale difference. The phase correlation method failed to find any single peak and

the RIFT algorithm failed because it does not use a scale space.
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Conclusion

7.1 Findings

� The first objective was to investigate the gap in literature concerning the im-

age registration of remote sensing images for multi-modal and multi-sensorial

satellite imagery. It was found that the most common type of registration

is between Optical-Optical and SAR-Optical registration. To the author’s

knowledge, till now no literature considered the use of thermal satellite im-

agery. In addition, few literature considered the aspect of registering images

with a high scale difference.

In the work by Y. Zhou et al. [24] where they proposed a fusion algorithm

to register and fuse hyperspectral and multispectral images they highlight

this aspect. Despite the fact that image registration is a major application

in remote sensing there is little work that aimed at the image registration of

images with significant scale differences [24].

� In relation to the registration of thermal satellite imagery using the feature-

based approach explained in Chapter 5 the findings are as follows:

1. In relation to the registration of Landsat-8 with Landsat-8, results showed

that for this single-modality the highest attained misregistration was

1.2063 and 1.5352 pixels in the x and y direction respectively. This oc-

curred when the sensed Landsat-8 image was downscaled and upscaled

by a scale factor of 10 using HR,T,S. At a scale factor of 9 the attained
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misregistration was of 0.6410 and 0.808 pixels in the x and y direction

respectively.

2. For the registration of Landsat-8 with Sentinel-3, when the Landsat-

8 was downscaled to a spatial resolution of 1 km the highest attained

misregistration was 0.1999 and 0.3 pixels in the x and y direction re-

spectively. When the Sentinel-3 image was upscaled by a scale factor of

10 to a spatial resolution of 100 m the highest attained misregistration

was 2.584 and 1.2376 pixels in the x and y direction respectively.

3. For both the Landsat-8 to Landsat-8 and Landsast-8 to Sentinel-3 the

general pattern was that as one upscales, the misregistration and RMSE

increases due to a higher scale difference. Upscaling with bicubic inter-

polation causes the addition of false information and more blur which

are causes of this increased misregistration.

4. The effect of clouds was another observed aspect in the image registra-

tion of satellite imagery. From the obtained results it was found that

as the cloud coverage increased, for a feature-based method the num-

ber of matches decreased and the RMSE increased. Misregistration was

not affected that much until there are no salient features that can be

matched due to the predominant cloud occluded images. Once the cloud

cover covered most of the salient features in both images, registration

was no longer possible. This was evident in Fig. 6.12(h) with 61.65%

cloud cover.

Image
Pair

RMSE
Before

POC ECC
SIFT
Flow

SIFT
Default

SIFT
MC

SIFT
GS

SAR-
SIFT

RIFT

Night-Day 10.9705 7 7 7 8.9586 8.9199 8.8567 N/A 9.0077
Depth-Optical 6.2562 7 7 5.6783 7 7 7 N/A 6.1291

Infrared-Optical 12.7390 12.5521 10.9320 7 7 7 7 N/A 10.9018
Map-Optical 0.3660 7 0.1802 0.1744 0.1874 0.1478 0.2025 N/A 0.2374

Optical-Optical 9.4798 8.7781 8.2049 8.9239 8.2134 8.7065 8.2111 N/A 8.9228
SAR-Optical 14.0206 7 14.0502 14.1113 7 7 7 7 13.9702

Optical-SAR 1 12.9106 7 7 12.9009 7 7 7 7 7

Optical-SAR 2 8.2695 7 8.2011 8.0615 8.1752 8.1689 8.1622 8.1590 7

Optical-Thermal 15.4627 15.5625 15.5222 15.4911 15.4381 15.4649 15.4617 N/A 15.4640
Optical-Optical 8.7293 8.7060 8.3524 8.4476 7.3132 7.3247 7.3196 N/A 8.3266

Thermal-Thermal 1 5.8094 7 5.7915 7 5.7939 5.8012 5.7819 N/A 7

Thermal-Thermal 2 7.7859 7 7.7900 7 7.8007 7.8243 7.7967 N/A 7

Table 7.1: Table of the RMSE results for the registration of multi-modal and single modality
remote sensing imagery. A number in red, blue and green denotes the first, second and third
smallest RMSE respectively. The SAR-SIFT algorithm was only utilised for the registration of
SAR-optical images. First six rows are the attained results for the images of the RIFT dataset.
Remaining rows are the attained results for the chosen satellite imagery.
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� In relation to the comparison between area-based, feature-based and optical

flow-based methods for the registration of multi-modal and multi-sensorial

satellite imagery based on the attained smallest RMSE as shown in Table

7.1. The findings are as follows:

1. For the registration of SAR-Optical the overall best performing was

SIFT-Flow. Coincidentally, to the author’s knowledge, till now based

on literature in the remote sensing domain, Optical-Flow methods were

specifically only utilised for the registration of Optical-SAR images. The

known optical-flow algorithms of GeFolki and OS-Flow were created for

the registration of Optical-SAR imagery.

2. For the registration of single-modality, the overall best were SIFT fol-

lowed by ECC.

3. For the registration of multi-modal data, the overall best was SIFT

(including all three parameter methods).

� General findings for all results include:

1. For the SIFT based method with default, Monte Carlo and Grid Search

parameters, the biggest conclusion was that different parameter sets can

lead to the same/identical minima and identical registration.

2. An salient aspect to be mentioned is the Lack of Ground Truth when util-

ising satellite and remote sensing data. Since there is a lack of ground

truth one does not knowing the actual misregistration. It is for this

reason that the results started off with a Landsat-8 to Landsat-8 com-

parison as one knows that for that same modality the misregistration

and RMSE were zero. Additionally, this aspect and problem of having

a lack of ground truth is also noted in the literature such as the fusion

paper proposed by Y.Zhou et al. [24] and in RIFT [12]. In these two

examples, they highlight this encountered challenge.

To cater for this challenge both in the proposed fusion algorithm and

in RIFT, the authors used an approximate ground truth. For the ap-

proximate ground truth in RIFT, they selected five evenly distributed

correspondences in the chosen reference image and then they utilised

these correspondences to estimate an accurate affine transformation as
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the approximation of the ground truth for the geometric transforma-

tion [12]. The authors first performed feature matching on the image

pair and then incorrect matches/outliers were removed using the NBCS

method [66]; then they calculated the residuals of these image corre-

spondences under the estimated affine transform. The correspondences

with residuals less than 3 pixels were deemed as correct matches [12].
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7.2 Limitations and Future Work

In the registration of multi-modal and single modality satellite imagery found in

Sections 6.3 and 6.4 respectively, more data products and locations could have

been utilised. Similarly, in Section 6.1.3 more locations could have been chosen to

analyse the effect of cloud cover and the cloud cover percentage could have been

quantified in a more systematic manner.

SIFT was not designed or created to be utilised for the registration of remote-

sensing satellite imagery. In the review paper proposed by Tondewad and Dale

where they presented a review of different registration methodologies [49] with

their involved challenges, in their findings they stated that in literature concerning

image registration in the remote sensing domain, the most commonly used method-

ology are feature-based algorithms [49]. SIFT was found to be the most utilised in

feature detection algorithms [49]. Nonetheless, their review also stated that utilis-

ing SIFT alone is not enough since SIFT tends to suffer from insufficient feature

points and a high outlier ratio under severe appearance change.

A suggested improved approach is to combine traditional based methods such

as SIFT with neural networks such as a CNN. Hence, to improve this proposed

work, SIFT could be combined with a neural network scheme or even an area-

based/optical flow-based method to create a hybrid scheme. The choice of combi-

nation also heavily depends on the type of satellite images to be registered.

Figure 7.1: Visualisation of a deep learning intensity-based registration network [15].

Fig. 7.1 shows the workflow of a deep learning intensity-based registration network.

The aim of Fig. 7.1 is to show how one would utilise deep learning in conjunc-
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tion with image registration. The Fixed Image is the reference image whilst the

Moving Image is the sensed image to be registered. The neural network utilised

in this workflow is a CNN. An intensity-based registration requires both a met-

ric which quantifies the similarity between the reference and sensed image and an

optimisation based algorithm which updates the transformation parameters such

that the similarity amongst the two images is maximised. For an area-based image

algorithm examples of such metrics include the cross-correlation, normalised cross-

correlation, mutual information, normalised mutual information and the sum of

squared-differences. For a feature-based approach the metric would consist of the

distance between the matched features such as Euclidean distance. The solid lines

represent the work flow required during training and testing whilst the dashed lines

represent the workflow required during training alone. For the training data, the

Ground Truth images consist of reference images whilst the testing data consists of

reference images and sensed images. The Loss function would refer to the attained

RMSE after registration.
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Appendix A

Numeric Example

This appendix contains a numeric example for the derivation of the Affine Trans-

formation with rotation, scale and translation as explained in Section 5.3.5.1.

Aim is to derive the Affine transformation suitable to register a sensed image to a

reference image. Assume we have two vectors that contain the pixel locations of

the matched keypoints resulting after using SIFT and RANSAC.

� Sensed Points s = [[1373,1430, 1382, 1366, 1383, 1409], [314, 316, 337, 380,

376, 379]]

� Reference Points: r = [[30, 98, 64, 48, 64, 80], [30, 30, 64, 98, 98, 98]]

where both s and r are of size (2, 6)

Aim is to solve (5.3)

� Size of A: (12, 6)

� Size of b: (12, 1)

� Size of x: (6, 1)

� x = (ATA)−1ATb

� Reshape x of size (6, 1) to matrix X of size (3,3):

X =

0.961947439 −0.0610228279 0

0.200522694 1.03187293 0

−1343.83770 −206.980576 1


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Appendix A. Numeric Example

�

H = XT =

 0.961947439 0.200522694 −1343.83770

−0.0610228279 1.03187293 −206.980576

0 0 1


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