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Abstract

In recent years, several attack vectors have emerged which enable mal-
ware to hijack the functionality of targeted, benign apps. Some of these
attack vectors have nearly been fully realised and give rise to a threat
model where malware offloads key attack steps to the hijacked benign app
functionality. In the process, attacks following this threat model evade
malware detection that assumes malware to be self-contained. Moreover,
through the same hijacked functionality, any attack traces can also be
erased, rendering log-based attack investigation tools ineffective. This
app hijack threat model needs anticipating through defensive measures
before it manifests into an unmitigated threat.
Regardless of the stealthiness of an attack, any evidence must reside in
volatile memory during its execution. However, collecting in-memory ev-
idence associated with the app-specific hijacked functionality on Android
devices is challenging. Current Android memory forensics methods for
app analysis involve using devices which are custom or whose default
security has been compromised. Moreover, randomly obtained memory
dumps overlook the ephemeral nature of memory, which requires timely
collection. Additionally, for the app hijack threat model, identifying
app-specific artefacts in memory linked to hijacked functionality and
extracting meaningful information from them necessitates an app-centric
approach. This in-depth analysis of individual apps is infeasible and may
require sacrificing default app protections.
This thesis aims to determine how attack steps offloaded to benign apps
can be recovered from volatile memory in a timely and minimally inva-
sive manner with respect to devices and apps. The proposed approach
uses process memory introspection to collect real-time evidence from app
memory, reducing reliance on app-specific logic. The study introduces
Just-in-Time Memory Forensics (JIT-MF), a framework designed to ex-
plore this proposed approach within the constraints of stock Android
devices and apps. JIT-MF consists of drivers that timely capture app-
specific artefacts from memory through trigger points, a driver runtime
supporting driver functionality, and produces JIT-MF logs containing
app-specific evidence from memory.
The experiments conducted and described in this thesis demonstrate the
feasibility of real-time app-specific evidence collection from the memory
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of Android stock devices using the JIT-MF framework. Results reveal
that leveraging widely-used codebases for trigger point selection and
app-specific artefact dumping avoids app and device-invasive methods
while maintaining accuracy. JIT-MF trigger-based memory dumping
improves state-of-the-practice by producing forensic timeline sequences
that accurately reconstruct app-specific attack steps for this threat model.
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1 Introduction

Android has established itself as a leader in the mobile OS market [84], making devices
a rich source of evidence and their users a primary target for cyberattacks. Several
protection and detection mechanisms exist in the Google Play Protect suite to hinder
the availability of malicious apps on the app store, complemented with on-device detec-
tion [37]. However, the attack vectors malware developers use are becoming increasingly
sophisticated, aiming to render malware stealthy enough to evade such detection.

A group of attack vectors have emerged in recent years, which have been shown to
have the potential to launch stealthy attacks by hijacking benign applications [71, 148,
110, 137]. Android’s accessibility feature is a case in point [49]. While rendering every app
on an Android device accessible to alternative means of interaction, accessibility services
also make it possible to backdoor the Android app containerisation security model. This
attack vector has been leveraged to hijack messaging conversations and fund withdrawals
through cryptocurrency wallet theft, bypassing two-factor authentication [70].

Such attack vectors elicit the app hijack threat model, which comprises malware
that offloads attack steps to legitimate benign app functionality. The same benign app
functionality can also be hijacked to hide or delete any traces of the executed attack steps,
thus remaining undetected. These attack vectors have been observed heavily in malware
for other purposes, including coercing the victim into clicking an unexpected prompt
or identifying when a sensitive app is in use. Yet, some have also been used to nearly
fully realise the app hijack threat model, as observed in the WhatsApp Pink worm [7],
which hijacks the message-sending functionality of installed benign instant messaging
apps. Consequences of such attacks range from personal information leakage and safety
to financial theft, depending on the hijacked app.

The attack steps executed by malware following the app hijack threat model are
carried out by hijacked benign app functionality. Therefore, typical malware detection at
the app store and on the device leveraging behaviour-based threat detection or assuming
malware to be self-contained [77, 80, 117] is rendered useless. When detection mecha-
nisms fail [66], an alert is raised after the consequences of the attack become evident to
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the victim. The onus then falls on incident response to recover and remediate attack
steps. Current incident response tools, including mobile forensics tools, still rely heavily
on stored data and logs belonging to third-party applications to collect evidence of attack
steps [76, 101, 31].

In the case of attacks following the app hijack threat model, evidence of attack steps
constitutes the targeted benign app functionality hijacked, resulting in the targeted app’s
logs as the primary source of forensic evidence. Therefore, investigators are at the mercy
of the hijacked app’s default logging abilities. Even if the logs contain the necessary
evidence for attack step recovery, previous research has shown that the same threat model
can be used to erase evidence of attack steps [70, 130], depending on the functionality
exposed by the app.

Regardless of the stealthiness of an attack, its execution must occur in volatile mem-
ory [27, 26]. However, memory forensics presents unique challenges on Android when
collecting evidence for attacks following the app hijack threat model. Firstly, memory
acquisition functionality is unavailable on stock Android devices. Additionally, the
ephemeral nature of volatile memory and the stealthiness of the app hijack threat model
signify that any artefacts in memory are short-lived and app-specific. Thus requiring
timely collection, ensuring any relevant evidence can be caught whilst still in memory
and app-specific knowledge.

1.1 Motivation
State-of-the-practice presents a gap. Namely, arbitrarily-timed memory dumps fail to
address the challenge of timely artefact acquisition from memory, required due to the
ephemeral nature of the stealthy attack’s evidence in memory. Furthermore, current
Android memory acquisition approaches are invasive; they require modifying the manu-
facturer’s stock device or third-party apps [119, 146, 147]. Installing customised Android
kernels that enable taking memory dumps requires device rooting, an irreversible process
unique to device manufacturers, which weakens the device’s default security mecha-
nisms that typically ensure apps operate with minimal privileges. This is a concern if
the user continues using the device after memory acquisition, as in an incident response
setting. Compatibility with stock apps is also required for similar reasons. An inva-
sive approach also concerns the understanding of app internals. Mapping app-specific
functionality to hijacked events as attack steps requires an in-depth analysis of the app
comprising app disassembling and compiled code analysis [65, 153]. Otherwise, only
objects containing character strings and primitive types would be retrievable [4, 154].
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Any app-specific approach is considered operationally infeasible due to the sheer number
of apps available in app stores and may introduce new concerns regarding the stability
of the hijacked app.

Android memory introspection is already used for app usage reconstruction [19, 102]
and extracting specific objects like TLS keys for network forensics [122]. It can also be
leveraged in sandboxed environments to detect malicious apps before uploading them to
the app store [5, 120]. Nonetheless, some malware evades detection, requiring incident
response to reconstruct and remediate the attack steps. The incident response cycle
calls for a context that bears the device user in mind. Typical Android users use stock
devices, as shipped by the manufacturer. However, stock Android devices do not expose
the functionality for dumping the contents of volatile memory, thus hindering memory
introspection and analysis. Rather arbitrarily-timed memory dumps must be taken from
Android devices with unlocked bootloaders and customised kernels installed [88, 48].
Further challenges related to the collection of app-specific attack steps involved in app
hijacking attacks include determining which app-specific objects in memory can be linked
to hijacked functionality and extracting object information related to the hijacked app
functionality that is meaningful.

1.2 Research overview
The current limitations of the existing forensic tools and the gaps present by the state-of-
the-practice in Android memory forensics in the context of the app hijack threat model
described present a research question. How can attack steps offloaded to hijacked app
functionality be timely recovered from volatile memory of stock Android devices,
in the least invasive way possible concerning both the device and the hijacked app?
The central hypothesis put forward is that timely and minimally invasive attack step
recovery from volatile memory is possible by focusing on the technology stack layers
below the application layer while still producing accurate forensic timelines as when
operating directly on the application layer.

Just-in-Time Memory Forensics (JIT-MF) is a novel conceptual framework that is
proposed in this thesis, for which implementation was made available, to explore the
underlying hypothesis of this work. It leverages process memory introspection to conduct
real-time memory forensics. The main components of this framework are: i) Evidence
objects: app-specific artefacts whose presence in memory implies the execution of some
specific app functionality, possibly a delegated attack step; ii) Trigger points: process
instructions associated with the presence of evidence objects in memory and hence when

3



CHAPTER 1. INTRODUCTION

memory dumps should be triggered; and iii) JIT-MF logs: the resulting logs JIT-MF
produces that contain evidence objects comprising app-specific artefacts, timely dumped
from memory. Trigger points and evidence objects are defined in JIT-MF Drivers that
drive the real-time collection of app-specific artefacts from memory and which produce
JIT-MF logs. The JIT-MF Driver Runtime provides all services the JIT-MF driver requires
to operate, specifically app instrumentation, memory introspection and persistence of
evidence to storage.

The concept of the JIT-MF Driver and Runtime, may be implemented at different
layers within the Android technology stack. The layers in the stack range from the
app-specific layer at the highest layer to the Linux kernel at the lowest. Yet implementing
JIT-MF within the different layers of the technology stack calls for varying degrees
of device and app-invasive approaches. Leveraging app-specific layers requires in-
depth knowledge of the hijacked app, whereas lower levels avoid this requirement and,
therefore, are less app-invasive. Conversely, leveraging services found in the lowest
levels of the stack requires knowledge and modification of device-specific functionality,
which results in a device-invasive solution.

1.3 Aims and objectives
This thesis aims to enable investigators to respond to this stealthy Android app hijack
threat model. While protection and detection mechanisms can aid in minimising the
possibility of attacks occurring in the first place, persistent attackers can bypass these
mechanisms through the app hijack threat model that hijacks benign app functionality.
Therefore, incident response is necessary to ensure any attack steps can be reconstructed
so they may be remediated. An optimal solution can faithfully reconstruct the attack
steps timeline, even if the stealthy malware has erased these steps and their evidence is
short-lived in memory. The research question and hypothesis put forward call for the
following objectives to be met by the research carried out as part of this thesis:

O1 Describe the app hijack threat model and understand how it exposes the limitations
of existing countermeasures.

O2 Determine how a minimally invasive approach affects the ability to collect necessary
app-specific artefacts from memory, linked to attack steps.

O3 Demonstrate how the collected evidence from memory comprising hijacked app-
specific artefacts is critical for reconstructing attack steps for the app hijack threat
model.
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1.4 Contributions
This thesis aims to meet the objectives defined in the previous section by proposing a
JIT-MF framework for the timely collection of attack steps from the volatile memory
of hijacked apps. Subsequently, through multiple attempts at JIT-MF tool realisation,
this thesis explores which layer of the Android technology stack is ideal for minimal
invasiveness while collecting the necessary app-specific artefacts from memory. Thus,
the main contributions of this work are the following:

• Trigger-based memory dumping can produce accurate forensic timeline sequences
with sufficient detail one would normally expect only from developer-provided
app logs.

• An exploration using an implementation of JIT-MF showed that by leveraging
lower layers of the technology stack, app-specific artefacts could be collected while
simultaneously being less app and device-invasive.

• The app-specific elusive evidence from memory found inside JIT-MF logs improves
the state-of-the-practice incident response tools in the case of app hijack attacks.

1.5 Document structure
This thesis is organised as follows. Chapter 2 presents a literature review and background
covering the current state of Android malware detection and incident response. The
chapter covers existing techniques and applications for artefact collection from Android
memory. Insight is given into the methods of Android app instrumentation, which
is the core enabler for JIT-MF real-time evidence collection. The chapter also shows
what invasiveness looks like across the Android stack and presents the Android security
model with corresponding attack surfaces, highlighting the potential for stealthy Android
malware developers. Chapter 3 describes the app hijack threat model and how attacks
that follow it can evade detection, thereby remaining stealthy. Given the motivation,
limitations of the state-of-the-art and potential benefit of memory as a forensic source,
Chapter 4 presents the core components of the Just-in-Time Memory Forensics framework.
Chapter 5 presents experimentation regarding the level of invasiveness needed for
selecting trigger points and app-specific artefacts from memory that produce accurate
evidence of attack steps from hijacked benign app functionality. Chapter 6 presents the
results from evaluating the impact of using JIT-MF logs as an additional forensic source
when using existing state-of-the-art forensic tools. Chapter 7 and Chapter 8 conclude
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this thesis by presenting a further discussion on experimentation and results, as well as
conclusions and directions for further research.
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2 Android malware detection &
response

This chapter describes existing detection mechanisms aiming to detect malicious apps
and activity in Android (Section 2.1), whose limitations are uncovered in the case of
evasive malware. These limitations require effective incident response practices and
tools to remediate evasive attack steps (Section 2.2). However, current incident response
tools fall short in collecting the necessary evidence to reconstruct attack steps of stealthy
attacks that hide their forensic footprints. These limitations present a gap, which can be
addressed through memory forensics (Section 2.3). Current Android memory forensics
research partially addresses these limitations. Yet these works do not consider the
requirements of an incident response setting or the timeliness of acquisition from memory
required to capture evidence of stealthy attacks that go undetected for a longer duration,
such as app hijack attacks. The timely capture of artefacts in memory remains a challenge,
which has only been addressed by few works focusing solely on carving objects in
memory on Android and virtual machine introspection, for which enabling technologies
are relevant (Section 2.4). Limitations regarding device and app-invasive approaches
(Section 2.5) related to Android memory forensics as part of incident response, as well as
possible enabling technologies for timely collection from memory, remain unaddressed.
This is a cause for concern for Android users in the face of the attack surface that the
Android security model exposes (Section 2.6).

2.1 Android malware detection
The primary protection against malware is early-stage detection; that is, malware pre-
vention. Several detection mechanisms exist in the Google Play Protect suite,1 both
within the Google Play Store to hinder the availability of malicious apps as well as to

1https://developers.google.com/android/play-protect
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provide on-device detection. Yet the increasing sophistication of Android malware to
evade detection presents a significant challenge for early-stage detection mechanisms
to keep pace. Between January 2016 and July 2021, 1,238 malware samples were found
to have penetrated the Google Play app store [25]. Even more concerning is that once
such malware is made available on a recognised platform, it quickly reaches Android
users’ phones. Fake versions of legitimate apps, banking trojans and malware bun-
dled up in benign-looking apps, near millions of downloads from Google Play Store
itself [92, 91, 93]. So much so that recent studies show that in 2019, 67% of unwanted
malware found running on victims’ phones originated from the app store [66].

Typical Android malware detection offered by existing tools falls into three main
categories: static detection, dynamic detection, and hybrid detection [74, 33]. Static
detection relies on known malware patterns to detect the presence of malware. In
contrast, dynamic and hybrid malware detection involve executing malware to some
extent in an emulated environment that enables analysis of its execution. Yet malware
authors actively develop evasion techniques to thwart these detection techniques.

Specifically for Android, other prevention methods include real-time permission
checks that check for permission misuse. This is typically carried out to avoid leaking
of personally identifiable information (PII) [42], ensuring apps access data with least
privilege [156] and safeguarding against permission-abuse attacks [98, 136]. Yet, not all
malicious apps require permissions classified as dangerous, to operate.

Mainstream malware detection tools are signature-based and can only detect malware
when a comprehensive list of malware signatures is provided [142]. Studies have shown
that by employing obfuscation techniques which modify the malware’s pattern in some
way, anti-malware tools leveraging signature-based detection are 48.69% less effective
at detecting malware, thus allowing malware to evade detection [34]. Even with the
adoption of machine learning frameworks for malware analysis, key feature selection
still relies on known malware patterns and techniques to flag harmful behaviour to the
user [77, 80, 117]

Dynamic code loading is an Android OS feature that enables benign Android ap-
plications to call another APK or malicious code to compile and execute it in real time.
However, malware developers can use this feature to load their malicious codes dy-
namically, thus evading any static checks [94, 97]. While dynamic analysis can assist in
detecting any malicious behaviour during the execution of malware, regardless of how
the malicious code was loaded [97], there are still limitations in detection that malware
developers can exploit. Stealthy malware that aims to evade detection can have features
such as triggering malware activities only if certain conditions, such as checking if it is
running in a real environment rather than an emulated environment (typically used for
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malware analysis) [143]. If the analysis time is limited to minimise resource consumption,
the malware may not exhibit its malicious behaviour within the allotted time, resulting
in false negatives.

The limitations of existing malware detection are even more evident in the case of
elaborate stealthy malware behaviour, such as fileless malware, which aims to oper-
ate without leaving traditional traces or files on the victim’s system. This can include
memory-based execution, whereby the malware operates primarily in the compromised
system’s memory. Another approach involves using living-off-the-land tactics, which
leverage legitimate system tools, processes, or scripts already on the device to execute
malicious activities. In the same way rootkits aim to infect the OS to hide and conceal
evidence of malicious behaviour, living-off-the-land tactics aim to weaponise OS func-
tionality to attack the OS, guided by thinking about what a forensic analyst will interpret
when looking at those events. The attacker is social engineering the analyst by creating
malicious effects that look like normal activity on the system [90, 68].

The standard enterprise threat solution are Endpoint Detection and Response (EDR)
tools that monitor and record events occurring on endpoints (devices, PCs, servers
etc.) in real-time, providing security teams with the necessary visibility to investigate
and mitigate threats. These tools provide advanced threat detection, investigation and
response capabilities [2] typically by leveraging known malicious tactics, techniques and
procedures (TTPs) or behavioural analytics to detect attack-related unusual behaviour.
Such tools have become essential, especially on desktop and server endpoints, to monitor
suspicious behaviour that evades detection using the above-mentioned methods. Yet
implementing such solutions on mobile phones is more complicated. Deep visibility
and monitoring require root permissions, meaning rooting the device in the case of
Android phones. Furthermore, similarly to forensic analysts, EDRs can still classify
stealthy malware leveraging living-off-the-land tactics as benign activity.

2.2 Android incident response
Once malware evades detection and successfully executes on a user’s device, alerts are
raised after the consequences of the attack become evident to the victim. Attack step
recovery is then needed to remediate the effects of the malware. Incident response is
the process of investigating a security incident to determine the root cause of the breach
so that the vulnerability and threat are mitigated. Typically, incident response requires
several forensic tools specific to the Android device (based on its manufacturer) where
the incident occurred. The main aim of these tools is to collect all the evidence available
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on the device from varying forensic sources to generate forensic timelines that enable
incident responders to analyse and detect possible attack steps.

2.2.1 Forensic sources
A critical step of the incident response process is identifying and collecting the necessary
evidence from sources that contain evidence of attack steps. Regardless of the analyt-
ical capabilities of the tools used, attack steps can only be detected if forensic sources
containing evidence of their occurrence are collected in the first place.

Android on-chip and removable flash memory constitute primary forensic sources
for device and app events. System-wide sources can provide supplementary information
about the underlying Linux kernel activities (via dmesg), system and device-wide app
event logging (via logcat), user account audits, running services, device chipset info,
cellular and Wi-Fi network activities (via dumpsys) [63]. Typically app-specific forensic
sources reside both in internal storage (the /data/data sub-tree of the Android filesys-
tem), which is accessible only to the app, and in external storage (sdcard). Internal
storage houses app persistent files and cache, whereas external storage contains app
media. Another forensic source typically associated with mobile devices is cloud storage.
Given the large multimedia files handled by Android apps, combined with on-device
storage constraints, cloud storage has become a popular medium for long-term storage,
even used seamlessly by apps for regular operation and backups.

App data is increasingly being stored in encrypted form for security and privacy
purposes (e.g. practically all mainstream messaging apps [12]). Beyond the app level,
device-wide disk encryption has evolved across Android versions. Full disk encryption
(FDE) has been replaced by file-based encryption (FBE) as of Android 10 [52], rendering
it more practical and stable. For instance, the alarm clock works even if the screen is
locked, and a full factory reset is no longer necessary, even if the device runs out of power
before it shuts down properly. While providing users with an additional layer of privacy,
FBE makes it more difficult for investigators to analyse forensic sources available on the
device without using users’ collaboration or exploits to decrypt the sources.

Collection methods and challenges Collecting forensic sources from Android devices
can be done using logical or physical imaging [113]. Logical collection relies on the OS
to parse the device file system from raw (non-volatile) flash memory content. There are
multiple ways to acquire forensic sources from a device logically. Generic approaches
include traversing Android’s filesystem and collecting the necessary files (using adb

pull) or using Android backups (available to devices as from Android 4.0+) via adb
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backup. This backup includes shared preferences files and files saved to an app’s
internal storage, external storage, and in the database directory [9]. On the other hand,
physical imaging provides exact bit-for-bit copies of flash memory partitions and can be
conducted purely at the hardware level (e.g. through JTAG). Both collection methods
have to deal with Android’s security barriers. For software-based collection, the barriers
range from locked screens, password-protected cloud storage to custom backup formats
and device rooting or downgrading the app to gain access to files stored in the app’s
internal storage [17]. While hardware-based/physical collections can bypass the above
barriers, any form of physical imaging has to deal with FDE and FBE.

Collecting app-specific evidence from an app’s internal storage requires device
rooting. This relies on exploiting a kernel or firmware flashing protocol vulnerabil-
ity [147, 113] or flashing a custom recovery partition2 to add root-privileged utility. The
latter may get further complicated by locked bootloaders. Restoring backups for forensic
analysis depends on the type of backup taken [9]. Default automatic backups cover apps
that run on Android 6.0 or later. Android preserves app data by uploading it to the user’s
Google Drive and protected by the user’s Google account credentials.

Further still, apps can implement their custom BackupAgent, which excludes all of
the app’s data files from a typical Android backup, and backups are handled directly by
the app. Backups are typically encrypted in the cloud or the device’s external storage.
While some apps give users the option to encrypt backups, store them on external storage
and restore them using a key, other apps make use of the Google Drive backup method,
which means that backups can only be accessed and restored via the implementation of
custom handlers for the onRestore() API [10].

Forensic Analysis. The starting point for forensic analysis depends on what kind of
collection is performed [63]. In the case of physical collection, it is first necessary to
identify the file system concerned (typically EXT and YAFFS), to extract the individual
files with possible decryption efforts. This first pass brings the evidence to a state
equivalent to a logically acquired one. A typical analysis pass for Android constitutes
SQLite file parsing, given its inherent Android support. From this point onward, the
decoding of app evidence is highly app-specific.

Even after app-specific evidence is parsed, the application logs’ content depends on
the application developers, and may not contain the necessary evidence to contribute to
forensic analysis. Application logs are the primary data source engineers, developers,
and analysts use to diagnose issues in deployed applications. However, it is difficult

2https://twrp.me/
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to know a priori where logs are needed to help diagnose problems that may occur in
the future, especially ones that concern evolving malware threats [126]. Several works
attempted to address this problem using different approaches, namely by inserting instru-
mentation at strategic locations within application code to identify known issues [150] or
divergence from normal execution leading to application failure [151]. These works rely
on the knowledge available before app runtime to diagnose known possible issues at
application runtime. Yet, other challenges abound when requiring logs for diagnosing
performance issues [126] or undesired output [155], for which no prior knowledge exists
and hence require the ability to customise logging choices during runtime. Furthermore,
the intentions of app developers concerning log entries may differ from those of investi-
gators who look to logging for security concerns and application misuse. Simultaneously,
exhaustively logging all application events that could be hijacked by default would incur
significant overhead on all application users.

2.2.2 Forensic tools
Mobile forensics tools, e.g. Belkasoft [18] and MSAB’s XRY [140], offer functionality for
both the collection and the analysis of forensic sources from stock mobile devices. While
each tool differs in how it collects evidence and analysis capabilities (including parsing
of application logs), the forensic sources these tools collect are described in the previous
section.

Each tool provides collection options with rooting exploits, hardware interfacing ca-
bles specific to different manufacturer devices and passcode brute-forcing methods.
In some cases, app downgrading options are also provided to circumvent custom
BackupAgent configurations that encrypt or omit app data from backups. They also
have parsing/analysis modules for file systems, databases, and app data formats. Ancil-
lary analysis features, including timeline generation, provide a final further aid to the
investigator that eases the analysis process. The resulting evidence of interest can even
be exported in a format as required by the investigator, typically CSV (Comma Separated
Value) or JSON (JavaScript Object Notation) format.

2.2.3 Forensic timelines
Timeline analysis is one of the main forensic activities used to investigate attacks [40].
Evidence of attack steps can be dispersed across many forensic sources on the device.
Forensic timeline generation is widely considered the forensic analysis exercise that
combines all the collected evidence with the resulting forensic timeline presenting the
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Figure 2.1: The forensic timeline generation process starting with an
incident alert raised by the device owner.

events before, during, and after a specific incident, providing the necessary context to
reconstruct the incidents. Therefore, the richer the timelines, the greater the support
for an investigator to reconstruct an intrusion/crime scene, answering critical questions
about an incident [28, 59, 115].

Figure 2.1 shows how once an incident is flagged (step 1), an investigator initiates an
investigation to recover and remediate attack steps by first collecting possible evidence
(step 2) from forensic sources to generate a forensic timeline of events. These sources
range from the device-wide logcat to app-specific sources inside /data/data, as well
as inside removable storage, which can be found in the sdcard partition and whose
mount point is device-specific (as described earlier in Section 2.2.1). Collecting some
forensic sources typically also requires device rooting or a combination of hardware-based
physical collection and content decryption. Following the collection of forensic sources,
all collected artefacts coming from different sources are parsed and processed (step 3)
to create a homogeneous series of events that can be inputted to a super timelining [56]
algorithm (step 4) that condenses all events collected and produces the final timeline (on
the right) (step 5).

When logs and evidence from different forensic sources have been collected, in-
vestigators are left with a list of events that occurred in the system, which need to be
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homogenised to create a single forensic timeline. The main technique for homogenising
forensic sources to aid in forensic timeline reconstruction requires combining multiple
"low-level events" comprising individual log entries from several forensic sources into
fewer "high-level events" that are human-understandable events that investigators can
use during analysis when reconstructing attack steps. Automated solutions that en-
able this process include event pattern matching [59], semantic-based correlation [28]
and ontology-based techniques [29]. Regardless of the timeline generation method, the
resulting events in forensic timelines depend on the available artefacts and forensic
sources.

Forensic timeline tools Other than homogenising events from different forensic sources
into a stream of events, further effort is required to parse artefacts from different sources
into a format that can be ingested for forensic supertimelining. Plaso [56] is a Python-
based engine equipped with a range of tools that can be used to create supertimelines,
given logs from forensic sources automatically. Timestamped data collected from several
sources can be parsed and chronologically ordered in one supertimeline using different
Plaso parsers available for different application data. Furthermore, having publicly
available source code, Plaso and its parsers can be extended to cater for additional
forensic sources as needed. Timesketch [53] is another open-source tool that enables
forensic analysis. It takes as input preprocessed timeline data (e.g. generated by Plaso
tools) in JSON or CSV format and outputs a visual timeline (called a sketch) that can be
analysed. Furthermore, like Plaso, it can produce a single sketch using multiple inputs of
preprocessed timeline data containing parsed forensic evidence generated by various
forensic analysis tools.

Identification of malicious events Generating forensic timelines is an important step
during incident response, that aids investigators in determining the context for a set
of events that occurred on the device. However, it is also crucial to identify events of
interest within that timeline, especially in cases where a manual search within the forensic
timeline does not narrow the set of events significantly, leading to a time-consuming and
infeasible feat [115, 116, 135].

Machine learning techniques, namely anomaly detection, can be used to establish
a baseline for normal activities in log files, which help identify those events within the
timeline that could indicate suspicious activity (for instance, a comparison between left
and right timelines in Figure 2.1 could indicate an anomaly) [115]. Several works [67,
73, 57] address challenges related to feature selection, automatic parsing of different,
high-volume logs and finding the appropriate anomaly detection methods. However, the
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premise of such work is that the log events on which anomaly detection models operate
include evidence of anomalous events.

2.3 Existing process memory forensics approaches on
Android

Stored evidence can fall short of making all possible forensic artefacts available to
generate a complete forensic timeline. This is especially true in the case of insufficient
application logs [151] and stealthy attacks that evade detection and operate with a
minimal forensic footprint [70]. As a result, recent approaches involve turning to memory
as an additional forensic source of evidence [27].

Table 2.1 summarises the research directions for Android memory forensics regarding
artefact reconstruction. These fall into two main categories i) Parsing of data structures
from memory dumps through knowledge of Linux kernel data structures (under col-
umn "Kernel" in Table 2.1) or Android data structures through knowledge of Android
heap memory manager data structures and those used by the system server (under
column "Android" in Table 2.1); and ii) Carving of specific data structures from memory
dumps based on expected data structure pattern. Parsing involves interpreting and
extracting structured data based on predefined format rules, which in the case of kernel
and Android data structures, comprise publicly-documented kernel and Android inter-
nals. Carving focuses on locating specific data structures in memory without explicit
formatting information, using expected data patterns.

2.3.1 Memory profiling of kernel data structures
State-of-the-practice Android memory forensics relies on memory dumps. Popular
memory forensics tools and frameworks, like Volatility and Rekall [132, 125] focus on
analysing content in kernel space, which requires an entire memory image of the device.
While tools like LiME [119] make retrieving such a memory image possible, using such
tools on Android devices is challenging [27]. Root privileges are required on the device,
and while this is typically easily achieved on systems via password access, mobile
devices are by default unrooted; that is, rightful owners do not have root access as part
of the safeguards that are in place on Android devices. Rooting a mobile device is an
irreversible action that removes these safeguards. In the case of already rooted devices,
LiME still requires an additional kernel module for collection to be inserted in the kernel,
which typically involves recompiling a custom kernel.
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Table 2.1: Summary of Android memory forensics research related to data
structure parsing and carving from memory, along with their features.
(marked in X).

Features

Parsing of data structures in memory Carving of data
structures in memory

Kernel Android

[132, 125, 86, 95] [103, 104, 102, 4, 118] [122]

Memory acquisition X X X

Works with stock devices X X -

Avoid device rooting - - -

Avoid app modification X X X

Triggered dump - X X

App-specific artefact col-
lection

- - X

Incident Response setting X X X

Given that memory analysis is typically carried out on memory dumps, existing
tools focus on improving kernel analysis [132, 95, 86] to recover and parse kernel data
structures related to running processes, network sockets etc. However, these artefacts
are limited when the objective is recovering app-specific data structures from memory.
Memory analysis frameworks focusing on kernel data structure recovery require app-
specific analysis plugins [27] that can parse kernel data structures to retrieve app-specific
data structures. Therefore, if no app-specific analysis plugin is available, memory foren-
sic analysis attempting to retrieve app-specific evidence from memory is restricted to
retrieving character strings with no further context regarding the nature of the object
within which these strings exist.

2.3.2 Parsing of Android data structures from memory dumps
Parsing of kernel data structures may help identify known malware that is present in
the device’s memory. However, evidence in memory can also be critical for providing
necessary context during forensic analysis [27]. Data structures in memory dumps can
be parsed to retrieve various object types; Primitives, Arrays, Strings, and Complex
classes [4, 118], with varying effort required, depending on the object being parsed. Aim-
ing to parse objects in memory related to apps’ internal data structures can be effective in
providing app-specific contexts such as app UI screens [102, 104] and photographic im-
ages [103], which could give forensic investigations further indication of app events. Yet
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this requires further knowledge of Android internals, including Android heap memory
manager data structures and system server data structures.

Parsing Android-related data structures can produce more evidence to give more
context during investigations than parsed kernel data structures. However, this type
of evidence is still, in many cases app-agnostic [103, 4, 102]. While this is useful for
producing contextual evidence from memory that can be used across apps, it still presents
a limitation in the context of app hijack attacks. During investigations of such app hijack
attacks, evidence of attack steps in memory comprises app-specific objects.

2.3.3 Carving of data structures from memory dumps
An alternative to parsing artefacts from memory dumps based on knowledge of Linux
kernel data structures and data structures used by Android involves carving objects from
unstructured memory dumps based on known object patterns. This avoids any memory
parsing issues related to manufacturer-specific profiles [133], which may differ across
varying manufacturer devices, while also being able to carve meaningful artefacts from
memory. This, however, requires knowledge of the specific object that needs to be carved.
Due to the specificity of the artefact to be carved, such approaches are limited in number.
They are typically well-suited for specific scenarios when the pattern of the object to be
retrieved can be predicted or has a specific pattern, for example, retrieving TLS master
keys [122] and identifiable JSON message objects from memory [130].

Android process memory forensic research related to data structure parsing and
carving assumes the presence of a memory dump. Such works, therefore, are not
concerned with the timely acquisition of artefacts from memory due to their ephemerality.
Moreover, they operate within a context that does not consider the implications of the
device rooting process required to retrieve the memory dump.

2.3.4 Trigger-based memory dumping
The premise of collecting artefacts from memory is that memory contains critical evidence
that can aid a forensic investigation of an incident. However, contents in volatile memory
are ephemeral, meaning memory dumps need to be captured in a timely manner, that
is, at specific instances when it is known that critical evidence is in memory. Otherwise,
that evidence might go uncollected.

DroidKex [122] (the closest work to that proposed in this thesis) uses triggered
Android memory dumps to ensure the presence of TLS keys that need to be carved
within the acquired memory dump. Several other works that focus on the timeliness of
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memory dumps concern monitoring specific system events for which further analysis
can be made through memory dumps triggered by that event. Most of the research in
this area concerns virtual machine introspection (VMI) that enables the monitoring and
detection of processes from a host machine [62] and addressing the semantic gap of VMI
tools [82].

While the applications of hooking for timely memory introspection vary across
different works [62], from malware detection to monitoring of connections and systems,
the common theme comprises intercepting a third-party process’s control flow through
trigger events that indicate the presence of sought-after objects in memory. In the case
of TLSKex [123], DroidKex [122] and SSHKex [108], this is done to monitor TLS and
SSH communication of possibly malicious actors by retrieving TLS keys and SSH keys,
respectively, from memory dumps. Therefore, triggers comprise function calls related
to TLS and SSH initialisation that indicate the presence of respective master keys in
memory. In these cases, once these functions are called, a memory dump is taken, and
the sought-after objects in memory are carved from the memory dump, using known
patterns and knowledge about the data structures used to store the SSH and TLS key
data.

Triggered memory dumps have also been leveraged to enable rootkit detection [69, 32].
Since rootkits can stay dormant, and interfere with the system when needed, timely
memory dumps triggered on the execution or events possibly related to rootkit activity
(related to the change in control registers [32] or bus traffic activity [69]) ensure the
memory dumps contain the evidence of possible rootkit activity. Hooktracer [26] uses the
same premise and leverages the SetWindowsHookEx API as a trigger, to identify instances
of fileless keylogger malware in memory.

2.3.5 Challenges of memory forensics
Memory forensics comprises both acquisition and analysis, which present several chal-
lenges within Android and in general. The main challenges regarding memory acquisi-
tion concern the: i) timeliness of acquisition [26]; ii) the availability of kernel profiles [85];
and iii) the reliability of the memory dump acquired [87, 27]. The ephemeral nature
of evidence in memory requires timely acquisition, similar to the approach of works
described in Section 2.3.4, which requires insight into the process for which evidence is
collected.

The key component to dumping structured memory is kernel modules or drivers
that enable the dumping and structured memory analysis, based on the running ker-
nel. While this does not present an issue for Mac OS X and Windows, Linux kernel
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modules need to be compiled for every version of the kernel, of which there are several
distributions [27, 87]. Android follows suit, however, with the additional challenges
that different device manufacturers may have in their kernel customisations, making
the process of maintaining and updating kernel modules for memory acquisition more
complex. Even if automatic kernel profile generation can aid in generating appropriate
kernel modules [85], Android still faces a unique problem whereby even installing the
kernel modules responsible for dumping memory requires device rooting.

Page smearing is an inconsistency that occurs in memory captures when the acquired
page tables reference physical pages whose contents changed during the acquisition
process. As such, the acquired memory dump’s reliability can be affected. Research
works have addressed this by ensuring that the atomicity of a memory dump can be
verified [27, 87]. Yet page smearing and potentially unreliable memory dumps present
an issue for systems with over 8GB of RAM [27]. While increasing rapidly, the average
RAM of Android devices is around 8GB. Therefore, page smearing does not present an
immediate concern within the Android context.

The challenges related to memory forensics analysis of memory dumps comprise re-
covering evidence from memory to give the analyst necessary app-specific context [105].
Out-of-the-box memory analysis tools provide analysts with parsable kernel data struc-
tures, which require manual analysis by examining strings to retrieve meaningful app-
specific information. This challenge applies to memory analysis in general and, therefore,
within the context of memory dumps from Android apps. Previous work [105] aimed to
tackle this using knowledge of internal Android data structures and program analysis to
retrieve specific app information, specifically UI screens and photographic images. Yet,
the evidence from memory required for further visibility during forensic analysis may
call for retrieving other types of data not covered by this work.

2.4 Dynamic Binary Instrumentation for memory intro-
spection

Dynamic binary instrumentation (DBI) is a candidate enabling technology for the timely
acquisition of artefacts in memory, which can be introduced in the different layers of
the Android technology stack. Binary instrumentation enables the insertion of code into
an existing compiled binary to observe and/or modify the binary’s behaviour. Instru-
mentation is typically used to gain insight into the application’s performance at runtime
regarding its behaviour, resource usage etc. DBI is a well-established technique [41]
which offers a set of properties indispensable for program analysis. Namely, it can han-
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dle dynamically generated code. Setting up DBI requires two fundamental operations:
i) Library injection: which allows a DBI library to be loaded inside the process to be
instrumented, and ii) Execution interception: the functionality as part of the DBI library
that intercepts the execution flow of the process [72]. Within the context of Android,
instrumentation refers to modifying the behaviour of apps.

2.4.1 Application format and launch flow
Android apps are compiled and packaged as a single file, an APK (Android Package
Kit) with .apk as the file extension. The typical makeup of an APK consists of an
AndroidManifest.xml file providing essential information about the app, including
permissions the app requests, a lib directory, and additional directories for resources
such as images/files required by the app. An app can use both Dalvik bytecode found in
<classes>.dex files and native code are compiled and stored in *.so binaries (shared
object files) residing in the lib directory of the app, both of which can be unpacked to
reveal the app source code.

Once an application is installed, it can be launched to run on the device in its process,
through a series of steps that involve the following entities: i) an Activity component
(i.e. an application component corresponding to an active interface on the screen) from
which the user can request the launch of an application; ii) the Activity Manager Service
at the Android API Framework layer; iii) a Zygote process, owned by root, the Android
Runtime, and a set of functions, i.e. the Zygote Library (at the Libraries layer); and iv) a
Zygote socket at the OS layer.

When a request is made to an app’s Activity component to launch the app, via
tapping on the app’s icon, the Activity Manager Service is activated through the Binder
IPC. The Activity Manager Service is responsible for issuing the necessary command
(Process.start()) to the Zygote socket to start a new process. If the process had
previously been started, the Activity Manager brings the application in question to the
foreground. The Process.start() command connects the Activity Manager Service
to the Zygote socket through a socket call, sending the Java class name whose static main
method (as defined in the Activity component) will be invoked to specialise the child
process associated with the app being launched.

The Zygote process, created on system startup, is the controlling process of the Zygote
socket. When a command is received on the socket to start a new process for launching
an app, the Zygote process invokes a fork system call at the Linux layer, to build a
new process associated with the application being launched. Unlike in Linux systems,
specialisation of the child process happens by loading the Java classes of the specific
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application inside the Dalvik VM or ART (Android Runtime), depending on the Android
version, hosted in the child process rather than by loading a new executable image.

The newly-created process contains an instance of the Android ActivityThread

class, which attempts to bind the process to the application, by loading the code corre-
sponding to the main method inside the new process. If the creation of the new process
and its binding to an application succeed, the Zygote process returns the PID to the
Activity Manager Service, and the launch flow terminates successfully [15].

2.4.2 Library Injection
DBI’s first step, library injection, involves injecting a library that allows the insertion
of instrumentation code (the code that will modify the app’s behaviour) into the inter-
cepted code’s process address space. This can be done in one of two ways: statically, or
dynamically using system calls provided by the kernel such as ptrace.3 The latter re-
quires having elevated privileges on the device; in the case of mobile phones, this means
that the device needs to be rooted, which is generally not the case and attaining such
privileges involves exposing the mobile phone users to significant security risks. When
elevated privileges are unavailable, static library injection becomes the only choice. This
involves either inserting / modifying entries inside the app’s Executable and Linkable
Format (ELF) linker-related headers (in Android, this is the .dynamic section of the
ELF file) [8] or patching the APK’s bytecode [30] to include instructions that load the
library when the process starts. Since these operations are performed statically on the
executable, access to privileged system services is avoided. The library contains the
hooking and instrumentation code which must be natively compiled for the required
target architecture(s).

If the app to be instrumented already includes at least one native library, then the
static manipulation of its ELF .dynamic section provides a viable option. Specifically,
an additional entry is required to be added for the instrumentation library. Ultimately
the ELF meta-data must not be broken. Had the .dynamic section expansion caused the
follow-up sections to shift, then their pointers in the corresponding ELF headers must be
adjusted accordingly. The only way to introduce a library on a non-rooted Android device
is through an APK installation. That is, the hooking library must rather be included
inside an APK. The entire process comprises: 1) Unpack the APK to be instrumented; 2)
Modify the ELF header/.dynamic section of one of the existing libraries; 3) Add the
instrumentation library to the app’s lib/ directory. Multiple versions for each required

3https://man7.org/linux/man-pages/man2/ptrace.2.html
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architectural target must be included; 4) Repackage the app; and 5) Re-sign the APK
(overriding the developer’s original APK signature).

If, on the other hand, the app is not shipped with a native library, the APK’s bytecode
needs to be patched. The process would comprise the following steps: 1) Unpack
the APK to be instrumented; 2) Identify the class within the app implementing the
MainActivity, which executes when the app is launched, as listed in the app’s Manifest
file; 3) Statically patch its Smali code, that refers to the static constructor, to include the
Smali equivalent of the function call: ‘System.loadLibrary("library_name")’ that loads the
instrumentation library; 4) Repackage the app; 5) Re-sign the APK.

Listings 2.1 and 2.2 show how a successfully updated .dynamic section looks like
following library injection (libhook.so), using readelf (an ELF parser).

1 r e a d e l f −d ./ l ib tmessages . 3 0 . so | grep NEEDED
2 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b j n i g r a p h i c s . so ]
3 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b l o g . so ]
4 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b z . so ]
5 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libEGL . so ]
6 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libGLESv2 . so ]
7 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l ibandro id . so ]
8 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libOpenSLES . so ]
9 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b d l . so ]

10 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b c . so ]
11 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libm . so ]

Listing 2.1: .dynamic section of libtmessages.so (a library in the
Telegram apk) prior to library injection.

1 r e a d e l f −d ./ l ib tmessages . 3 0 . so | grep NEEDED
2 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l ibhook . so ]
3 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b j n i g r a p h i c s . so ]
4 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b l o g . so ]
5 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b z . so ]
6 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libEGL . so ]
7 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libGLESv2 . so ]
8 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l ibandro id . so ]
9 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libOpenSLES . so ]

10 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b d l . so ]
11 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ l i b c . so ]
12 0 x0000000000000001 (NEEDED) Shared l i b r a r y : [ libm . so ]

Listing 2.2: .dynamic section of libtmessages.so after injection
librarylibhook.so.
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While static injection of the library allows the insertion of instrumentation code in
devices that do not make root privileges available, this comes with challenges. Anti-
repackaging techniques may be employed to verify the integrity of the original app’s
codebase [78]. Such anti-repackaging techniques involve code integrity checks that
operate both at the device and app levels that check for the presence of app repackaging
techniques and codebase modifications.

2.4.3 Execution interception
Execution interception, the second component of DBI, allows control to redirect towards
the instrumentation code and eventually back to the original execution. Interception
can be carried out at various levels of granularity. At the most granular level, there
is instruction-level interception by employing code cache-based methods [23]. This
approach generally involves a just-in-time engine that performs dynamic compilation and
instruments code one basic block at a time before executing, while storing instrumented
code in code caches for faster access. This offers complete control over the instrumented
process, which comes at a significant cost in runtime overheads. Less invasive approaches
include bytecode manipulation and library function hooking [64]. Function hooking
allows interceptions to be applied more selectively at runtime. This approach is less
comprehensive and therefore has less control over the exact instructions being executed
at the basic block level. It may even allow for the instrumented process to realise that it
is instrumented [41], yet, it provides a practical real-time option.

GOT and PLT hooking. Since Android adopts Linux’s dynamic linking method, library
function/API hooking can follow the same Global Offset Table (GOT) and the Procedure
Linkage Table (PLT) overwrite techniques [75] used in Linux. Specifically, to resolve the
virtual addresses of imported functions from dynamically linked libraries (binding), the
GOT and PLT are central to the whole process. Essentially, the GOT stores all the resolved
library function virtual addresses, while PLT adds one further level of indirection to
support lazy binding. Figure 2.2 shows how calls to library functions are routed through
PLT instructions first. The call to the resolver (step 5) redirects execution to the link-loader
(ld) if the <addr> in the GOT is not yet set. The link loader resolves the address of the
required library function. Once resolved, the address is written to the corresponding
GOT entry and the function is executed. GOT overwrites library function hooking by
overwriting the resolved address (<addr>), with that of an address inside the injected
library (e.g. libhook.so). The hooking routine should be implemented as a function
designated to execute on library loading. PLT overwrites, on the other hand, achieves
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Figure 2.2: GOT and PLT library address resolution at runtime.

library function hooking by overwriting the GOT entry (GOT[n]), with that of an address
in the GOT that points to the injected library (e.g. libhook.so).

Inline hooking. An alternative option is inline function hooking [22]. This approach
disregards modifying ELF data structures and uses code patching directly. Inline hooking
works by overwriting the first instructions inside the function to be intercepted with
a jump (jmp) instruction to the instrumentation code. Apart from intercepting the
code and executing the necessary command, the instrumentation code must then (1)
include/handle any instructions that were ‘lost’ due to the instruction overwrite and
(2) return execution flow to the original function. The latter steps are carried out by
a function referred to as trampoline. This hooking technique modifies the instructions
directly, making it more flexible than GOT and PLT hooking, which are limited to hooking
only exported functions [8].

An Android app can use both Dalvik bytecode4 and native code5 (written in C or
C++ and compiled into binary code). The Java API Framework and Java bindings
are made available to Android developers. The former includes all the Android Java
classes developers can use when building an application. The latter allows access
to the functionality of native libraries. Since an app can run both native code and
Dalvik bytecode, any form of inline hooking within the app must cater for both. Native
code in the app runs directly on the CPU. It has access to the Android framework
using Java Native Interface, which enables the switching between native code and
Dalvik bytecode. Therefore, by employing an inline hooking approach that leverages the
Android framework, all functions/methods in both native code and Dalvik bytecode can
be intercepted.

4https://source.android.com/devices/tech/dalvik/dalvik-bytecode
5https://developer.android.com/ndk
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2.4.4 Bytecode-level hooking
Xposed-style method hooking [139] is an inline hooking approach used to manipulate
Android bytecode. It allows replacing the entire method body or introducing new code
before and after the original Java method invocation within an app. Similarly to hooking
done at the native runtime level, the Xposed-style method hooking uses a trampoline
to jump to injected code and then revert to the original function. Unlike inline hooking,
and similar to GOT/PLT hooking, given that the Android runtime operates on top of
the native runtime and makes use of its data structures rather than rewriting the actual
instructions of a function entry point, Xposed-style method hooking utilises the data
structures and mechanisms provided by ART to achieve the same effect of the inline
function hooking of native functions.

ART uses specific C++ classes to mirror Java classes, their methods and associated
instances within a process, specifically using Class, Object and ArtMethod data
structures. The ArtMethod data structure contains information about a particular
Java method called method descriptors. These include the modifier (access_flags), the
class in which it is declared (declaring_Class) and most importantly, the entry address
of the method’s code (entry_point_*). The address stored here points to the address
executed when the method/function is invoked. An ArtMethod instance can have
either of four entry points EntryPoint from Interpreter, EntryPoint from QuickCompiledCode,
EntryPoint from JNI and EntryPoint from PortableCompiledCode [83], depending on the
value in access_flags.

Figure 2.3 demonstrates how Xposed-style method hooking leverages the ARTMethod
data structure to hook specific functions. First, it patches the method modifier and sets it
to native (kAccNative).6 It then modifies the JNI entry point value (Step 2) to point to
the address of the instrumentation code, and also stores in it the original backup values
for the access_flags and entry_point_*. The value of entry_point_from_quick_compiled_code_,
which is the default entry point of a method ART follows at runtime, is modified (Step 3)
to point to the address of the Xposed instrumentation handler (similar to the GOT/PLT
trampoline). This handler obtains the address of the instrumentation code, executes
it and returns the execution flow to the original function. Native functions executed
during the app’s runtime can be hooked using well-known techniques established on
ARM architectures. These involve modifying a trampoline-based hook whereby the first few
bytes of the function assembly code are replaced with a jmp <hooking_function> to
the function containing instrumentation code [8].

6https://android.googlesource.com/platform/art/+/master/runtime/art_method.
h#118
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Figure 2.3: Instrumenting code via ArtMethod entry point.

2.4.5 Dynamic runtime manipulation
DBI enables diverting the process execution flow through the instrumentation of program
instructions. Yet changes to the app’s behaviour can also be affected by manipulating its
runtime environment; for instance, as used by app-level virtualisation frameworks [99, 3].
Android app-level virtualisation has emerged as a new technique that can load arbitrary
third-party APKs. It enables an app (container) to create a virtual environment where
other apps (plugins) can run. Plugins can execute independently from the underlying
Android OS and other virtual environments. DroidPlugin [124] and VirtualApp [131]
are the two most well-known frameworks supporting the generation of Android virtual
environments and share a common design, as shown in Figure 2.4.

Figure 2.4 shows how the container app loads and runs plugin apps through a
proxy. In this context, the app launch flow of a plugin app installed inside the app-level
virtualisation environment is launched through the container app, which emulates the
zygote process. The container app intercepts the Android API and inter-component
function calls of the plugin apps, modifies the parameters, forwards them to the Android
framework layer, and then intercepts and relays the responses back to the plugin apps,
through the proxy. Meanwhile, the container app predefines stub components and
permissions to cater for those required by plugin apps, and it encapsulates plugin app
components in stub components at run time. In this way, multiple instances of the same
app can bypass the UID restriction that disallows APKs with the same package name to
have a different UID, and can now run simultaneously [111]. To distinguish between the
different guest applications, the host application assigns them different process IDs. The
proxy layer relies heavily on hooking mechanisms to communicate between Android
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Figure 2.4: App-level virtualisation architecture with container app man-
aging the runtime of plugin apps in different processes but sharing the
same unique user ID (UID).

system services and plugin apps. For example, it hooks ClassLoader to load plugin
apps’ DEX files and the inter-application communication (IPC) to manage and maintain
the lifecycle of the plugin apps’ components (such as starting and stopping an app
Activity) [111]. Since the container app controls the launching flow of the plugin apps,
the container app can also manipulate the process space of the plugin app by including,
for instance, instrumentation libraries.

2.5 Minimal invasiveness of apps and devices
Similarly to memory forensics as carried out on desktops and servers, acquiring evi-
dence from memory and other sensitive locations (i.e. app’s internal storage) requires
root privileges. However, unlike other systems, mobile phones present an additional
challenge when requiring root privileges. The segregation of apps and their permissions
is ingrained in Android’s technology stack (see Figure 2.5). Therefore, root privilege on
Android requires modifying the device or app in some way rather than simply requesting
root permissions which can later be revoked.

Invasive acquisition approaches refer to collection methods that require app or device
modification, some of which may weaken default security mechanisms. Significant
modifications may be acceptable when dealing with virtual devices or confiscated devices
that are no longer in use; for example, in post-mortem analysis or investigations involving
perpetrator devices. However, this is not the case in the context of incident response
aiming to remediate attack steps suffered by the victim.
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Figure 2.5: Layers of the Android technology stack (based on the architec-
ture presented in [44].

2.5.1 The Android technology stack
The modifications required for acquisition can occur in any of Android’s technology
stack layers shown in Figure 2.5. The stack consists of components that fall into five
layers [43, 44]. Android applications fall into two categories: System apps and User apps.
System apps are typically manufacturer-specific and come pre-installed in the system
partition of stock devices, so they cannot be modified or uninstalled. These apps have
elevated privileges and can access certain core functions of the operating system, yet
this is not the same as having root privileges on the device. They are part of the device’s
firmware, and their updates are generally included in firmware updates provided by
the device manufacturer or Android system updates. User apps are managed (installed,
deleted and updated) by device users to extend the functionality of their devices. User
apps operate within the boundaries of the Android security model and have limited
access to system-level functions. They typically run in a sandboxed environment, with
restricted permissions defined by the app developer and granted by the user. Unlike
system apps, users have control over updating these apps, and they can receive updates
through the respective app store or be set to update automatically.

The development of user apps relies heavily on well-maintained and widely-deployed
underlying APIs that provide critical functionality through a well-documented interface.
These comprise i) third-party APIs that provide specific functionality; ii) the Android
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framework libraries, which expose the functionality of various Android services; and iii)
the Java runtime libraries on which the Android framework is built. Widely-deployed
APIs are typically well-maintained, publicly available and offer backwards compatibility
for specific functionality that may be required by the app, such as database functionality
to store app state. Common third-party APIs include SQLite API7 that manages the
storage of app data and Firebase API that enables app development related to database
communication, analytics and authentication.8

The Binder layer allows for communication between sandboxed apps and system
services, depending on the permissions of the app granted to the app by the user. The
native layer supports these layers. It contains the init binary components, which initiate
all the processes in Android. The native component also contains native libraries used
by the rest of the stack above. Some of these libraries may be common to all devices.
Others may be manufacturer-specific, such as hardware-related libraries. Finally, at the
lowest level of the stack is the Linux kernel, upon which Android is built. The kernel
provides hardware, networking, file system access and process management drivers.
The Linux kernel in Android differs from a regular Linux kernel due to the additional
features added to support the components present in the Android stack.

2.5.2 Invasive approaches for memory introspection at different
layers of the stack

Modifications made at different stack layers for acquiring app-specific artefacts in mem-
ory may incur app or device-invasive approaches. Such invasive approaches can be
observed in various works related to malware analysis whereby modifications are made
at different stack layers to monitor app or system behaviour. Taint analysis [149, 107]
and app monitoring [39] for malware detection may incur an app-invasive approach
comprising app repackaging that allows tools to monitor app internal functions and
execution flow. Similarly, understanding app internals to map app-specific function-
ality to hijacked events as attack steps requires an in-depth analysis of the app. For
closed-source proprietary apps, this requires app unpacking and compiled code analysis.
Such an app-invasive and specific process is operationally infeasible due to the many
apps available in app stores. Furthermore, an app-invasive solution may introduce new
concerns regarding the stability of the monitored app. In the case of app modification
due to static DBI library injection that can enable timely memory dumps, as described in
the previous section, app repackaging and re-signing become necessary. This is not only

7https://developer.android.com/training/data-storage/sqlite
8https://developer.android.com/studio/write/firebase
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app-specific and, therefore, operationally infeasible but is also incompatible with stock
apps. Moreover, app repackaging is incompatible with system apps as these cannot be
uninstalled and may require further compiled code analysis efforts to bypass app-specific
anti-repackaging checks.

The lower layers of the technology stack present another possibility for monitoring,
including memory introspection, as these layers are shared across apps and, therefore, do
not present the operational feasibility concerns as app-invasive and specific approaches.
Modifications at lower layers of the stack that could enable taking memory dumps
call for modifications of the device, at the Binder layer [109] specifically, the Android
runtime [141, 16] or directly modifying the OS (for rooting) [144], to add monitoring
functionality not exposed by the default native layers. In the case of memory acquisition,
this comprises adding kernel modules [119] that enable memory dumping functionality.
Yet such changes require custom devices (having customised kernels) or using a device-
invasive approach that requires device rooting, causing reliability and security issues.

Device rooting is an irreversible process unique to the device manufacturers, which
weakens the device’s default security mechanisms that ensure all apps operate with
minimal privileges. Custom devices are less widespread than stock Android devices
and may require manufacturer input. Due to limited usage and the multiple Android
device manufacturers, such custom devices may be less reliable than stock devices and
more challenging to adopt across manufacturers. Furthermore, within the context of
incident response, victims of attacks are more likely to own stock devices rather than
custom ones. On the other hand, manufacturers can create devices with memory forensic
preparedness in mind. This, however, relies on the manufacturer and can only be widely
adopted across individual device manufacturers.

The middle layers of the stack present an opportunity for acquiring artefacts from
memory using a minimally invasive approach that is neither too app-invasive nor device-
invasive, concerning both understanding app internals and memory introspection. Yet,
the accuracy of such an approach while aiming to remediate app hijack attack steps,
which leave behind app-specific evidence, remains to be explored.

2.6 Android security model and attack surfaces
The Android security model relies on app sandboxing and app isolation, which restricts
unauthorised access to system resources and other apps and implements a permission
model that allows authorised access to other apps and system resources [11, 121]. The
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enforcement of application sandboxing is implemented across different layers of the
Android technology stack [11]. At the Linux kernel layer, UID-based discretionary access
control (DAC) is implemented to assign apps separate UIDs that prevent them from
accessing processes and app resources other than their own. SELinux further extends
the underlying discretionary access control to allow applications to ask for permissions,
and users can grant or deny those permissions. At runtime, each application is executed
in a separate runtime that ensures isolation between apps during execution. Processes
(apps, services etc.) can communicate with each other through the Binder layer, which
enforces security policies between processes based on the permissions granted at the
application level [11, 44, 121]. At the application layer, applications request permissions
that the application may require during execution, which the user is asked to grant
during installation. These permissions are then reflected in permission enforcement
implemented at lower layers of the stack [11, 121].

Yet even with these isolation measures, the Android security model exposes attack
surfaces that attackers can exploit to compromise an Android device’s or its data’s
security. OS vulnerabilities, including vulnerabilities in the Linux kernel, native libraries
and system services, can enable escalation of privilege that grants unauthorised root
access and complete control over the device, including malicious interactions with victim
apps, which by default is inaccessible to apps [61]. At the Binder layer, vulnerabilities
can lead to unauthorised access to other processes, including process data and logic,
privilege escalation, or spoofing attacks [114]. Attackers can also target vulnerabilities
in individual apps, which affect the context of the targeted app [96]. Moreover, the
permission model can be abused through social-engineering attempts that trick users
into granting excessive or unnecessary permissions [42, 98, 136]. These attack surfaces
expose several possible threats malware developers constantly try to realise through
existing attack vectors.

2.7 Summary
The popularity and sensitivity of the apps available on Android devices make Android
a popular target amongst attackers. While protection and detection mechanisms are
available at the app store and device level, these have limitations. Motivated attackers
can employ a series of evasion techniques (ranging from obfuscation to dynamic code
loading enabled by Android) that enable them to evade widely-deployed detection
techniques.

The ability of malware to evade detection makes incident response necessary. Victims
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targeted by an attack eventually flag an incident after their consequences become evident.
This kickstarts the incident response cycle, which aims to remediate the attack steps,
which comprises the use of forensic tools to collect forensic artefacts from the device
and generate a forensic timeline that enables the investigator to get a clearer picture of
the events on the device. Current tools rely on stored evidence, which may not always
be sufficient for complete forensic timeline generation and subsequent identification of
malicious events.

Process memory introspection can contribute to the timely collection of app-specific
artefacts from memory. However, stock devices do not expose this functionality. Current
applications of Android memory introspection have been applied in the context of
virtualised sandbox environments, where customised kernels and device rooting are
acceptable. Nevertheless, in the context of incident response, such approaches are
incompatible with most stock devices and weaken the overall device security (in the case
of rooting). Furthermore, state-of-the-art Android memory forensics does not address
the timely manner in which evidence of stealthy attack steps from memory must be
captured and does not focus on collecting app-specific artefacts from memory that could
be hijacked.

Dynamic binary instrumentation is a core enabler for process memory introspection
on Android, which allows for memory introspection on stock devices. Yet, collecting
app-specific artefacts from memory using existing solutions requires invasive approaches
that require modifying the device or app to enable the timely capture of memory dumps.
Furthermore, an understanding of app internals is required to map app-specific func-
tionality to hijacked events as attack steps call for an in-depth analysis of the app. This
involves app unpacking and compiled code analysis, an app-invasive approach, thus
foregoing app protections and involving an app-specific approach that is infeasible to
carry out across several apps.

An overview of the Android security model shows the exposed threat landscape
that makes room for attack vectors, enabling threat models that allow unauthorised
malicious interactions between apps. Stealthy malware following such a threat model
and aiming for detection evasion requires an incident response. Due to the limitation
of stored forensic evidence, it becomes necessary to look towards memory forensics
approaches, which can aid the victim in recovering all the possible artefacts from mem-
ory that can reconstruct attack steps. Such an approach must be minimally-invasive,
ensuring compatibility with a victim’s stock device that is the most likely configuration
encountered by forensic investigators without weakening default security or protections.
Before delving deeper into the solution, the next chapter details the threat model this
work is concerned with and the attack surface it exploits. It describes the various attack
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vectors that enable it and presents a running example used throughout this thesis.
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3 App Hijack Threat Model

The same attack vectors that allow malware to interact maliciously with victim apps
can also be used to offload attack steps to them, disassociating the malicious binary
from actual malicious logic, thus complicating both code scanning-based detection and
incident response. This chapter expands on the App Hijack Threat Model, addressing the
first objective O1 of this thesis and making a case for an imminent class of malware that
is as hard to detect as much as they could be to respond to. This chapter first presents the
threat model (Section 3.1) which the research question of this thesis is concerned with
and the attack vectors that enable it (Section 3.2). A motivational case study is presented
(Section 3.3), highlighting an app hijack attack involving a messaging app and the current
limitations of incident response tools.

3.1 Threat model
The App Hijack threat model exploits vulnerabilities or features that enable interactions
between apps, typically used for inter-process communication and which expose app
functionality. Malicious apps following the app hijack threat model exploit communica-
tion channels between benign apps to hijack benign apps’ legitimate functionality and
offload attack steps that coincide with the benign app’s functionality.

The attacker’s capabilities depend on the functionality exposed by the app through
inter-process communication. These can range from personal information leakage via
reading text messages to financial theft through crypto exchange wallets.

Potential for detection evasion. In essence, the app hijack threat model executes attack
steps by hijacking legitimate app functionality through channels that enable interprocess
communication. Therefore, any code-based detection attempting to identify malicious
logic will be futile since this is never included in the malicious application, whether
installed as the original app or dynamically loaded at a later stage. Even if the challenges
with EDR implementation on Android had to be surmounted, behavioural detection
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would still miss malicious interactions with victim apps if that attack vectors are un-
known or, even worse, are legitimate.

Potential for reduced forensic footprint. Any retroactive detection focusing on evi-
dence of malicious behaviour is futile if logged attack steps are associated with benign
app functionality. Even worse, if the benign app exposes functionality that can erase
evidence of previously executed app functionality, the attack can hijack this functionality
to erase any traces from logs.

Figure 3.1 shows an example of this threat model in the case of benign messaging
app hijack attacks. In this case, attackers are interested in reading incoming messages
(spying) or sending messages behind the victim’s back (sending and deleting messages
immediately). This functionality coincides with the functionality of instant messaging
(IM) apps. Yet the initiator of these actions is a malicious actor, and the device owner is
unaware of these events.

Figure 3.1: Malicious apps installed on the victim’s device hijack benign
app functionality to carry out attack steps and avoid detection.
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3.2 Attack vectors enabling app hijack
Overall, any form of inter-app communication, whether for app functionality or testing
purposes, can be exploited to enable the app hijack threat model. The Android accessibil-
ity attack vector is a case in point. It exploits the accessibility features and functionalities
of the Android operating system designed to assist users with disabilities in using their
devices effectively, to interact with other apps maliciously. Early instances [58] demon-
strated how through phishing and the misuse of accessibility features, a malicious app
could steal a victim’s credentials and attack targeted benign apps and services by inter-
acting with them without the user’s consent. This misuse has since shifted from being
leveraged to perform the actual attack to being used to maintain stealth. Eventbot [46]
and BlackRock [21] malware only request accessibility permission upon installation; the
rest of the permissions required to perform the attack are obtained through the accessibil-
ity permission previously granted by the user. Even worse for the victim, the request
for accessibility permission can be hidden from the user using UI confusion techniques,
such as zero-permission tapjacking [137]. The accessibility attack vector has been shown
to enable stealthy Living-Off-the-Land (LOtL) tactics [24], where key attack steps are
delegated to benign apps, possibly only requiring the use of malware during an initial
setup phase to attain maximum stealth [130]. The limited forensic footprint that they
leave behind has also been demonstrated [70]. Listing 3.1 shows how the accessibility
attack vector can be leveraged to hijack message-sending and deleting functionality for
WhatsApp.

1 // sending message
2 List<AccessibilityNodeInfo> sendMessage = contentNodeInfo.findAccessibilityNodeInfosByViewId ("

com.whatsapp:id/send");
3 AccessibilityNodeInfo sendMessageButton = sendMessage.get(0);
4 if (!sendMessageButton.isClickable()) {
5 return;
6 }
7 sendMessageButton.performAction (AccessibilityNodeInfo.ACTION_CLICK);
8
9 // deleting sent message

10 List<AccessibilityNodeInfo> lastMessage = contentNodeInfo.findAccessibilityNodeInfosByViewId ("
com.whatsapp:id/message_text");

11 lastMessage.get(lastMessage.size() -1);
12 lastMessage.performAction (AccessibilityNodeInfo.ACTION_CLICK);
13
14 List<AccessibilityNodeInfo> deleteMessageButton = contentNodeInfo.

findAccessibilityNodeInfosByText ("Delete");
15 deleteMessageButton.performAction (AccessibilityNodeInfo.ACTION_CLICK);
16
17 List<AccessibilityNodeInfo> deleteForMeOnlyMessageButton = contentNodeInfo.

findAccessibilityNodeInfosByText ("Delete for me");
18 deleteForMeOnlyMessageButton.performAction (AccessibilityNodeInfo.ACTION_CLICK);

Listing 3.1: Use of accessibility to send and delete a WhatsApp messages
without the user’s knowledge.
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Cross-App WebView Infections (XAWI) [71] exploits the WebView component ex-
posed in mobile applications, exposing the security risks of navigating an app’s WebView
through a URL. While a legitimate need for displaying the app’s UI exists to enable
cross-app interactions, its abuse can lead to cross-app remote infection when misused by
malware that maliciously interacts with benign apps. In the case of messaging, attackers
can misuse this functionality to proxy messages via another benign app that exposes
this functionality, as shown in Listing 3.2. While XAWI refers to an attack vector as part
of legitimate app functionality, other unprotected app components exposed through a
benign application’s attack surface can also serve as potential attack vectors.

1 fb-messenger-secure://autocompose/post?id=userid&ttyype=2&s=1&m=content

Listing 3.2: URL scheme used to send a Facebook message without the
user’s consent [71].

Another example vector is SMASHeD [81], which exploits the Android debug bridge.
It enables malicious apps, requiring developer options to be enabled and requesting only
the INTERNET permission, to read and write to multiple sensor data files at will, thus
circumventing the Android sensor security model to stealthily sniff as well as manipulate
many of the Android’s restricted sensors (even touch input). PHYjacking [137] goes a
step further and demonstrates how physical inputs used for authorisation methods (e.g.,
fingerprint scanning), can also be hijacked through a threat model that exploits Android
app implementation flaws found in 44% of 3000+ apps tested as well as a powerful
race-condition attack that can break the Android Activity lifecycle model. Crucially,
the threat model presented requires zero permissions, thus minimising the malware
component and bypassing permission-based detection mechanisms. Zygote and binder
infection combined with a rooting exploit [127] and third-party library infections [42]
provide further attack vectors.

3.3 Motivational case study
WhatsApp Pink [7] is the closest possible malware to the threat model. It is an Android
messaging worm that hijacks pre-installed benign versions of instant messaging apps, in-
cluding WhatsApp. It propagates between contacts by hijacking legitimate pre-installed
instant messaging apps’ functionality, leveraging the XAWI attack vector to send mes-
sages via specific apps for which the URL scheme is known. The following sections
describe an example incident scenario, the modifications that can be made to WhatsApp
Pink to make it even stealthier and the limitations of state-of-the-art incident response
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tools in detecting and remediating the attack.

3.3.1 Incident Scenario
The scenarios involves a victim Android device owner who is an employee at their work-
place and has a legitimate version of WhatsApp app installed on their Android device.
They have been at the receiving end of a social engineering phishing campaign and
have unknowingly installed the WhatsApp Pink malware on their Android device. The
malware propagates by automatically replying to incoming messages with a download
link to the malware itself, akin to a message proxying attack.

WhatsApp Pink. Once this WhatsApp Pink is downloaded and installed on the victim’s
device, it requests some permissions. Namely, it requests for the Notification Access
permission, which in conjunction with Android’s Direct Reply action, is used by the
malware to achieve wormability by responding to incoming WhatsApp messages with
a custom message. The app also requests permissions to draw over other apps and to
ignore battery optimisation, which allows it to run in the background and prevents the
system from killing it off for any reason.

Figure 3.2 illustrates how WhatsApp Pink operates. The malware runs in the back-
ground and waits for a legitimate WhatsApp notification. When this happens, the
malware auto-replies to the victim’s contacts using the custom URL scheme provided
by the official WhatsApp app with a message containing a malicious link. The malware
propagates via legitimate WhatsApp messages to contacts that send a message to the
victim. Upon the receipt of a message, the malware automatically replies to the sender
with a link that installs the malicious app, provided that the last message received by the
device owner (victim of malware) was sent more than an hour before to avoid raising
suspicion among the victim’s contacts and maintain stealth.

The aim of this particular malware seems mainly to be used in an adware or subscrip-
tion scam campaign; however, it could be used for much worse. It could distribute more
dangerous threats (banking trojans, ransomware, or spyware) since the message text and
link to the malicious app are received from the attacker’s server [7].
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Figure 3.2: Enhanced WhatsApp Pink attack steps. The device on the left
is the target device running the malware and the device on the right is the
contact device from which a message was sent to the target.
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Table 3.1: Digital investigation configurations.

Incident Response
step

XRY Oxygen Forensics Belkasoft AXIOM

Collection XRY Agent OxyAgent Belkasoft Agent Magnet AXIOM Agent

Parsing XRY XAMN Oxygen Detective Belkasoft Magnet AXIOM

Analysis Timesketch

Evolving WhatsApp Pink to reduce its forensic footprint. As is, the WhatsApp Pink
malware evades detection since the call to various URL schemes is acceptable application
logic and, therefore, is not detected as a possible app hijack attack. However, application
logs may show this activity (depending on the application development), thus rendering
the malware less stealthy. Further improvements can be made to the malware to reduce
its forensic footprint, causing full attack step reconstruction during incident response
impossible.

Most messaging apps expose the functionality to delete sent messages. This function-
ality, however, is not exposed over a URL scheme but rather from the app’s UI. In this
case, the accessibility attack is a suitable attack vector that allows the malicious app to
hijack the benign messaging app’s delete functionality to hide its attack steps (as shown
in Figure 3.2) through the code shown in Listing 3.1 (lines 14-18).

3.3.2 State-of-the-art Mobile Forensics tools
Responding to an incident relies on three main steps: i) Collection, ii) Parsing, and iii)
Analysis of evidence to produce a timeline of events. Existing forensic tools are typically
equipped with collection and parsing features, enabling an incident responder to analyse
the forensic timeline produced through the available tools. Using forensic tools: Belkasoft
Evidence Centre X,1 MSAB’s XRY,2 Oxygen Forensics3 and AXIOM,4 an attempt is made
to recover key attack steps of the app hijack attack, using the set up as shown in Table 3.1
and a physical Android device. The table describes the sources gathered during the
collection, parsing and forensic timelining tools used for analysis.

1https://belkasoft.com/android
2https://www.msab.com/
3https://oxygenforensics.com/en/
4https://www.magnetforensics.com/products/magnet-axiom/
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Forensic tools setup. The forensic tools were set up to perform agent-based logical
collection, which comprised collecting all files available on the device’s file system
through the installation of respective forensic tools’ apps called agents. Since a physical
phone was used, any collection step that required device rooting was skipped to avoid
irreversibly weakened device security. In addition to the files collected by the tools, the
following sources were also provided to the tools: i) app data collected from the app’s
internal /data/data folder, obtained by setting the target app’s debuggable=true
property set in the AndroidManifest.xml, ii) data gathered from an BackupAgent

output, and iii) logcat and dumpsys logs.

3.3.3 Results from Incident Response tools
Figure 3.3 shows the ground truth timeline of known events executed by WhatsApp
Pink, via the hijacked benign WhatsApp app. Figures 3.4 to 3.6 show the forensic
timelines generated when using the digital forensic tools XRY, Oxygen, Belkasoft and
AXIOM, respectively, set up as described in Table 3.1. While none of the forensic tools’
outputs explicitly indicated that a WhatsApp message was stealthily deleted, some events
indicating possible attack steps were still recovered by some tools. XRY’s output does not
show the message-sending event at all. Since the content was missing in the WhatsApp
databases (due to deletion), the event was not even displayed to the investigator. Using
Oxygen, a message send event is shown, yet there is no information about the message
sent. Belkasoft and AXIOM retrieved the event of a WhatsApp Pink message being sent.
However, critical metadata that could be used for event correlation and that provides
more context, e.g. the message content, was missing.

Without the message content, it is unclear whether this was: a simple message deleted
by the target victim, a message with no content, or a malicious message propagated by
the malicious app. While an event comprising an empty message is suspicious, timeline
generation requires event correlation, which uses metadata to combine attack steps from
different sources. Furthermore, remediating attack steps as part of incident response
means knowing also the metadata of such events so that their affect can be mitigated.

3.4 Summary
The primary focus of the research question presented in this thesis is stealthy attacks
that aim to go undetected for longer by hijacking legitimate benign app functionality
of targeted benign apps to perform attack steps. The victim is a general Android user
with a stock Android device lured into installing a stealthy malware app that bypasses
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Figure 3.3: WhatsApp Pink incident ground truth forensic timeline.

Figure 3.4: WhatsApp Pink incident forensic timeline obtained using XRY.

Figure 3.5: WhatsApp Pink incident forensic timeline obtained using
Oxygen Forensics.
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Figure 3.6: WhatsApp Pink incident forensic timeline obtained using
Belkasoft and AXIOM (the same timeline was obtained using both tools).

all existing protections and detection mechanisms in the Google Play Protect suite. The
malware leverages attack vectors typically found on stock Android devices and apps to
enable inter-app communication with sensitive apps, which the attacker can hijack to
carry out attack steps.

The example incident scenario presented in this chapter shows that existing stealthy
attack vectors can significantly increase the stealth of existing malware by offloading
attack steps to benign apps and reducing their forensic footprint. By hijacking benign
app functionality that coincides with the malware attack steps (that is, worm propaga-
tion through message sending), this threat model enables the attack to go undetected.
Furthermore, any efforts of remediation using existing state-of-the-art Android forensic
tools are futile due to their reliance on third-party application logs which may be incom-
plete or erased by malware, and which leave investigators with an incomplete forensic
timeline of the attack steps. Since malware must execute in memory regardless of its
steps, any possible evidence of attack steps may be found in timely-collected memory
dumps. Throughout the rest of the thesis, this incident scenario setup will be used as a
benchmark and example, with which the main proposal of this thesis is explained and
evaluated.
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4 Just-in-Time Memory Forensics

The previous chapter showed how existing forensic sources fall short of identifying key
attack steps of app hijack attacks, that the research question in this thesis aims to address,
within the context of messaging. Previous works (Chapter 2) have identified memory
as a potential source of information that can contain evidence not available in stored
evidence and not fully leveraged by existing forensic tools, to remediate attack steps as
part of incident response.

This chapter describes Just-in-Time Memory Forensics (JIT-MF), a proposed frame-
work that aims to address the challenges of timely acquisition of app-specific artefacts
from Android memory to respond to app hijack threats. Timely acquisition of artefacts
in memory refers to an approach that ensures acquisition occurs while any relevant
evidence is still in memory, rather than attempting acquisition too late when the evidence
in memory is lost due to the ephemeral nature of volatile memory. By proposing a
framework for the timely collection of app-specific artefacts from memory, this chapter
presents the first step towards the second objective of this thesis O2, as it provides a
means to explore the hypothesis set in this thesis. The main challenges and requirements
of JIT-MF are outlined (Section 4.1). Subsequently, an overview of the framework is
presented (Section 4.2), along with its main components and how these provide a means
to address the challenges and requirements described. A prototype implementation is
outlined (Section 4.3) and the assumed operational context of JIT-MF is described along
with how it is incorporated within the incident response cycle (Section 4.4). Finally, a
security analysis of JIT-MF (Section 4.5) assesses the attack surfaces that JIT-MF exposes
and how these can be remediated using existing mitigation and protection measures.
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4.1 Requirements for timely-acquisition of app-specific
artefacts from memory

The second objective (O2) of this thesis is to understand how to perform the timely
collection of app-specific artefacts from memory that contributes to app hijack attack
steps in a minimally invasive manner; that is, by meeting the following requirements:

• Compatible with stock devices - In an incident response setting, stock Android de-
vices as shipped by the manufacturer, are the most likely device configuration
encountered by forensic investigators [133]. While custom devices can be used
in specifically designed scenarios, this solution aims to target any stock device on
which an incident occurs. Thus, aiming to provide a solution regardless of the
device, ensuring applicability across different devices.

• Minimally invasive at the app and device levels - Invasive approaches weaken device
and app security. Furthermore, they pose operational and stability concerns due
to their app and device-specificity (Chapter 2, Section 2.5). Therefore, a minimally
invasive approach is required to ensure that: i) the device and app’s security mech-
anisms are retained after incident response when the device owner continues using
it; and ii) JIT-MF is compatible across apps and devices with minimal operational
effort.

Android does not expose the functionality to collect evidence from memory. There-
fore, any solution that aims to work with any stock Android device and is minimally
invasive seems to contradict the objective of gathering app-specific evidence from mem-
ory required to respond to an app hijack attack.

4.2 JIT-MF framework overview
Just-in-Time Memory Forensics (JIT-MF) is the framework proposed to demonstrate the
thesis that the timely and non-invasive logging of hijacked functionality can be made
possible through process memory introspection, allowing for full attack steps recovery.
Unlike malware detection and forensics tools, JIT-MF focuses on collecting evidence from
hijacked benign target apps (rather than malware) that become the targets of app hijack
attacks.

The main components of JIT-MF are: i) Evidence_object, the app-specific objects whose
presence in memory implies the execution of some specific app functionality, possibly
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a hijacked attack step; ii) Trigger_point, the instructions associated with the presence of
Evidence_objects in memory which invoke a memory dump; and iii) JIT-MF_Logs which
is the output comprising Evidence_objects produced from the triggered memory dump
(via Trigger_point). Trigger_points and Evidence_objects are defined within JIT-MF Drivers
(by JIT-MF Driver developers) that drive the evidence collection process from memory
for a specific app hijack scenario. These two components are selected based on specific
app functionality of interest. The installation of JIT-MF with JIT-MF Drivers produces
JIT-MF_Logs. These components are formally defined below.

Definition 4.2.1. Let an observed process P be represented as a finite list of tuples, where
ij represents an instruction that is executed in the process and sj represents the process
state at instruction ij. The process states sj contain all the objects in volatile memory
during the process runtime.

P = {(i1, s1), (i2, s2), . . . , (ij, sj)}

Definition 4.2.2. App functionality of interest AF can be defined as follows, where each
AFj is app-attack specific, embodying an instance of an attack step offloaded to hijacked
app functionality.

AF = {AF1, AF2, . . . , AFn}

where AFj ⊂ P

Definition 4.2.3. Given the definitions above, Evidence_objects EO, associated with a
specific app functionality of interest (AFj), can be represented as the result of a function
Object_collector oc. Given a process state sj, the Object_collector function carves a set
of specific objects at location with size from memory. The definition below considers
non-contiguous data structures.

EOAFj = {(object_location1, object_size1), (object_location2, object_size2),

. . . , (object_locationn, object_sizen)}

ocAFj = sj 7→ EOAFj

Definition 4.2.4. Trigger_point tp, associated with a specific app functionality of interest
(AFj), can be represented as the following function that, given a process instruction i
returns a verdict of type true, f alse, which signifies whether objects in memory should be
dumped (true), or not ( f alse).

tpAFj = ij 7→ verdict
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The function tp can use predicates, possibly related to the device state, that influence the
verdict output.

Definition 4.2.5. Given the definitions for Trigger_points and Evidence_objects, JIT-MF
Drivers DP for a process P can be defined as a set of tuples as shown below. DP follows
the set of AFj, with each (ocAFj, tpAFj) being app-attack specific.

DP = {(ocAF1 , tpAF1), (ocAF2 , tpAF2), . . . , (ocAFn , tpAFn)}

Definition 4.2.6. JIT-MF_Logs are defined as the list of timestamp and Evidence_object EO
tuples returned by JIT-MF.

JIT-MF_Logs = [(@timestamp1, EO1), (@timestamp2, EO2), . . . , (@timestampn, EOn)]

Definition 4.2.7. Given these definitions, JIT-MF can be defined as a function that,
given a process P and the driver for that process DP and a universal clock C, produces
JIT-MF_Logs.

jit-mf = P× DP × C 7→ JIT-MF_Logs

The pseudo-code below (Algorithm 1) describes the JIT-MF function internals that pro-
duces JIT-MF_Logs. For every instruction and state tuple in process P, every JIT-MF
Driver DP associated with the process P, comprising tps and ocs associated with specific
app functionality of interest (AFj), if tp’s verdict is true, JIT-MF_Logs are populated with
a tuple comprising the current timestamp and EOs in the current state related to app
functionality of interest.

Algorithm 1: JIT-MF function (Definition 4.2.7) implementation
Input : Process P, Driver DP, Clock C
Output : JIT-MF_Logs=[]

1 function jitmf(Process P, Driver DP, Clock C):
2 foreach (ij, sj) ∈ P do
3 foreach (ocAFk , tpAFk) ∈ DP do
4 if tpAFk(ij) then
5 JIT-MF_Logs.append(Clock.getTime(), ocAFk(sj))

6 end
7 end
8 end
9 return JIT-MF_Logs
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4.2.1 Evidence object and trigger point selection
The evidence collected using JIT-MF relies heavily on the selection of Evidence_objects and
Trigger_points, which rely on the selected app functionality of interest. Yet the selection of
app functionality of interest, and the Evidence_objects and Trigger_points that depend on it
is not prescriptive. An app may have multiple functions; however, not all these functions
can be considered app functionality of interest. Only some may be of interest to attackers
for potential hijacking, depending on the aim of the app hijack attack. For instance, in the
case of a messaging hijack attack, app functionality of interest would comprise message
sending or reading functionality that an app hijack attack could misuse for proxying or
stealing messages.

It follows that, not all objects in memory upon the execution of app functionality
of interest may be valid Evidence_objects. Only some may correspond to evidence of
possibly hijacked app steps, which are the critical objects enabling the app functionality
of interest. For instance, in the case of a messaging hijack attack, the in-memory objects of
interest are those supporting the execution of messaging functionality and which may be
hijacked during eventual attacks. Evidence_object, in this case, comprise precisely those
objects in memory that contain the messages themselves.

Trigger_point functions define when objects in memory should be dumped, based
on the current process instruction and some predicate (Definition 4.2.4). This predicate
should be selected so that the Trigger_point function returns true when the current process
instruction implies that Evidence_objects are in memory. While several instructions may
lead to the presence of Evidence_objects in memory, the following operations on data
objects can serve as a guide for JIT-MF Driver developers to select relevant instructions
as Trigger_points.

1. Storing and loading from storage;

2. Transferring over the network (e.g. Wi-Fi, 4G, etc.); or else

3. Transforming in some way (e.g. display on screen etc.).

In the case of an app hijack attack involving a messaging app, malware aims to
proxy messages through a benign messaging app. The messaging app runs in a process
P = {(call open(), Memory1), (call send(), Memory2), (call receive(), Memory3),
(call exit(), Memory4)...}. The app functionality of interest here comprises message send-
ing functionality that can be hijacked by malware following the app hijack attack threat
model and targeting the messaging app; that is, AF = {(call send(), Memory2)}. In this
case, the Evidence_object selected is the Message object (as defined by an app-specific
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class), where oc(Memory2) = EO = {(addresso f (Message1), sizeo f (Message1))...}. The
operations related to these objects involve storing/loading messages from local content
repositories and sending/receiving messages over communication networks. Therefore, a
network send instruction can be selected as a Trigger_point; that is, tp(call send()) = true.
While set individually, the combined definition of Trigger_point and Evidence_object can
give context into the hijacked app functionality. Therefore, JIT-MF having a JIT-MF Driver
DP = {(oc, tp)} with a message object set as Evidence_object and send() as Trigger_point re-
sults in JIT-MF_Logs whose contents are indicative of app functionality that involves mes-
sage sending jit-mf = JIT-MF_Logs = [(@timestamp1, Message1)...(@timestampn, Messagen)].
For example, in the case of the WhatsApp Pink worm attack steps shown in Fig-
ure 3.2, JIT-MF_Logs = [...(1659880140, Message{“content” : “ f irst_test_message”, “in” :
True, “time” : “1659880140”, “contact” : “contact_phone”}), (1659881400, Message{“content” :
“Normal_message_1”, “in” : True, “time” : “1659881400”, “contact” : “contact_phone”}),
(1659881400, Message{“content” : “Apply New Pink Look on Your ...”, “in” : False, “time” :
“1659881400”, “contact” : “contact_phone”}), (1659881400, Message{“content” : “ f irst_
test_message”, “in” : True, “time” : “1659881400”, “contact” : “contact_phone”}) ...].

4.2.2 JIT-MF within the Android technology stack
JIT-MF installation can be implemented at any layer within the Android technology
stack. Similarly, Evidence_objects and Trigger_points selection can comprise objects and
instructions at different stack layers, respectively. Yet, the different layers carry different
implications related to app and device invasiveness which may not align with the
requirements set at the beginning of this chapter. Table 4.1 presents the different stack
layers along with the type of Evidence_object and Trigger_point that can be selected at
each layer. Every stack layer also has two types of implications (separated by ‘/’ in the
table) that are of concern: i) the installation of JIT-MF and ii) the comprehension of layer
internals required for Evidence_object and Trigger_point selection.

Regarding JIT-MF installation, the lower three stack layers (Binder - OS, and Android
or Java APIs whose libraries are prepackaged on the device) require device rooting
since modifications need to be made to the underlying kernel and OS to make JIT-MF
operational in these layers. However, minimal device invasiveness is a requirement of
JIT-MF, making these three layers unsuitable for JIT-MF installation. Simultaneously,
modifications for JIT-MF installation in the upper layers require app repackaging.

App repackaging presents an opportunity that does not outright invalidate the
security of the whole device. Yet it does not comply with the requirements set out as
it calls for an app-invasive approach that is incompatible with app default protections
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Table 4.1: Evidence_objects and Trigger_points available per layer, along
with the Implication of installation / Implication of internals comprehen-
sion, per layer.

Stack Layer Evidence Object Trigger Point Implications

App App data objects App functions App repackaging / App-specific (typically closed-source)
code

API App data embedded
in API objects

API functions App repackaging (for third-party APIs). Custom kernel -
device rooting and reflashing (for Android and Java APIs) /

Well-documented API interface with app-specific usage

Binder Android data objects Android internal
functions and

runtime

Custom kernel - device rooting and reflashing /
Well-documented Android Binder internals

Native Native objects (C
primitives)

Native functions Custom kernel - device rooting and reflashing /
Well-documented native runtime internals

OS Kernel objects Kernel instructions Custom kernel - device rooting and reflashing /
Well-documented Linux and Android-specific internals

that perform app-specific integrity checks. App-level virtualisation, however, offers a
possible remediation whereby JIT-MF can be installed at the app level within the app
runtime environment without requiring app repackaging. JIT-MF installation at the API
layer is marginally more cumbersome than installation at the app layer as it requires
modification of the API within the app where it is in use. App repackaging is still in
the end required to repackage the modified API. Therefore, JIT-MF installation at the
app-level seems to be the better trade-off overall.

Regarding Evidence_object and Trigger_point selection, the lower layers of the stack
(Binder - OS) may be much better documented, whether open or closed-sourced. The
opposite applies to the app layer, where the code is typically closed-source, optimised
and obfuscated. The API layer is the middle-ground, whereby the interface of the API
may be well-documented, but their usage within the app may involve app-specific
aspects. Therefore increased comprehension efforts of the respective layer internals is
required in the topmost layers of the stack, even more so at the app layer. The increased
comprehension effort required for the stack’s topmost layer calls for an app-invasive
approach, comprising an in-depth analysis of the app that requires app-unpacking and
compiled code analysis that does not comply with the requirements set out for JIT-MF.
Furthermore, such an approach would be infeasible to adopt across multiple apps due to
the app-specific effort required to comprehend individual app logic.

The resulting JIT-MF_Logs produced comprising Evidence_objects from the app layer
are most likely to include the relevant evidence to remediate app hijack attacks that leave
evidence of attack steps through app artefact in memory. Evidence_objects at lower levels
in the stack comprise objects that are not app-specific and do not align with the exact
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app artefact involved in the hijacked app step. Thus, this evidence will contribute to a
less accurate forensic timeline. Similarly, Trigger_points at lower levels are more generic
and less tightly coupled app-specific events that result in possibly hijacked app artefacts
in memory.

Therefore, while selecting Evidence_object and Trigger_point at higher levels in the
stack results in a more accurate forensic timeline, this results in an app-invasive approach
that is infeasible across apps. Simultaneously, selecting Evidence_object and Trigger_point
at lower levels in the stack is more feasible due to the shared logic across apps. Yet, the
selection from this layer results in a less accurate forensic timeline.

4.3 JIT-MF framework implementation
JIT-MF Drivers drive the evidence collection process from memory, while JIT-MF Driver
Runtime provides the services required by the JIT-MF Drivers. JIT-MF Drivers are specific
to the Evidence_objects and Trigger_points set, yet the JIT-MF Driver Runtime is common
across different JIT-MF Drivers.

Figure 4.1 demonstrates how the JIT-MF framework operates. JIT-MF Drivers first
filter an incoming trace of instructions based on some Trigger_point and only proceed to
the next step if Trigger_point returns true. The JIT-MF Driver then searches for relevant
Evidence_objects in memory and generates output (step 3) by carving Evidence_objects
from memory, including any metadata of the evidence object. The result is appended
to JIT-MF_Logs, which may need to be parsed to reveal app-specific artefacts. The
services required by the JIT-MF Driver to register Trigger_point (that is, place hooks on
instructions), collect and carve Evidence_object from memory, and store the evidence to
JIT-MF_Logs are provided by the JIT-MF Driver Runtime. A tool that implements and
automates the JIT-MF elements shown in Figure 4.1 is a JIT-MF tool.

Figure 4.1: JIT-MF Concept.
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4.3.1 Offline and online collection
Evidence_object collection from memory through function oc (Definition 4.2.3) can be
defined as online or offline. That is, the function ocAFj can either carve EOAFj from
memory in an online fashion, as soon as the tp returns true (Algorithm 1 line 4. This frugal
approach leverages ART’s Garbage Collector (GC) to dump the specific Evidence_object
in memory at runtime. Otherwise, the JIT-MF_Logs can be populated with a memory
dump comprising entire ART heap sections as in hprof dumps, with ocAFj carving
Evidence_objects offline using an hprof parser, e.g. Eclipse MAT.

Table 4.2: A summary of the object collection options, given the online
and offline carving and parsing approaches.

Offline parsing Online parsing

Offline carving Offline collection -

Online carving Online collection Online collection

Object carving refers to identifying and extracting in-memory objects from live mem-
ory (in the online case) or a memory dump (in the offline case). Object parsing follows
from object carving, as it involves extracting meaningful information from the carved raw
object bytes, e.g. the timestamp of a messaging event, its contents, etc. This operation is
based on a class definition obtained through code comprehension or publicly-available
documentation in the case of open-source code. Table 4.2 shows how offline evidence
collection results from the object carving and parsing stages carried out offline; that is, at
a later stage on a dumped partial memory image. In the case of online collection, object
carving is carried out online as specific objects are carved out from live process memory
and then dumped; however, object parsing can still be carried out online or offline.
Objects may be parsed in real-time or later (offline), depending on the computational
effort required to parse the object and retrieve the meaningful information.

4.3.2 JIT-MF Driver and Runtime
JIT-MF tools built on the JIT-MF framework must implement or leverage existing tools to
create a JIT-MF Driver and Runtime. Listing 4.1 and Listing 4.2 present templates that
generically describe the make-up and functionality of JIT-MF Driver and Driver Runtime,
respectively.

Lines 1-3 identify the driver (Driver_ID) and link it with its intended app/incident
Scope as well as the Processes that are of interest in the case of apps having multiple
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1 Driver_ID: string
2 Scope: <app, incident_scenario>
3 Processes:[optional <namespace.classname>,...]
4 / ∗ Attributes ∗ /
5 Evidence_objects: {<event: string,object_name: string,carve_object_type(),

parse_object_type(),{trigger_ids}>, ...}
6 Trigger_points: {<trigger_id: string,<hooked_function_name: string,level: {native|rt},

trigger_predicate(), trigger_callback()>>,....}
7 Collection_method: {online | offline}
8 Parsing_method: {online | offline}
9 Log_location: string

10 Globals: optional {<key,value>, ...}
11
12 / ∗ Exposed inter f ace ∗ /
13 bool init (config: {<key,value>, ...}) {
14 for entry in Trigger_points:
15 place_native_hook() ⊕ place_rt_hook();
16 }
17 / ∗ Internal f unctions ∗ /
18 bool trigger_predicatei(params: {<key,value>, ...}) {
19 decide on whether to fire the corresponding trigger;
20 }
21 void trigger_callbacki(thread_context: {<key,value>, ...}) {
22 if trigger_predicatei() :
23 perform memory forensics on the current app state;
24 }
25 [object: address,...] carve_object_typej(from: address, to: address) {
26 if Collection_method == online:
27 attempt object carving in the given memory range;
28 else:
29 carve_object_typej_o f f line(from, to);
30 }
31 @OFFLINE
32 [object: address,...] carve_object_typej_o f f line(from: address, to: address) {
33 use an hprof parser to carve objectj in the given memory range;
34 }
35 [<field:value>,...] parse_object_typej(at: address) {
36 if Parsing_method == online:
37 parse object fields starting at the given address;
38 else:
39 parse_object_typej_o f f line(at);
40 }
41 @OFFLINE
42 [<field:value>,...] parse_object_typej_o f f line(at: offset) {
43 if Collection_method == online:
44 use custom parser to parse objectj at the given offset
45 else
46 use an hprof parser to parse objectj at the given offset from memory dump;
47 }

Listing 4.1: JIT-MF Driver template.

processes; that is, those classes in the app that fire the selected trigger points but are
run as a separate process. If the Processes attribute is not set, the app is assumed to have
only one main process, initiated by the class containing the main activity.1 Lines 5-10
enlist a driver’s attributes and their types (attribute : type), with tuples denoted by <>,
sets by {x, y, z...}, ordered lists by [], key-value pairs by < key, value > and enumerations

1https://developer.android.com/guide/components/activities/intro-activities
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with {val1|val2|...}. Function parameters are identified by the final parenthesis (), which
correspond to the drivers’ internal functions (lines 21-50). carve_object_typej_offline and
parse_object_typej_offline (lines 32-34 and 42-46 respectively), annotated with @OFFLINE,
are the offline counterparts of carve_object_typej and parse_object_typej respectively, ex-
ecuted after a memory dump is taken. Globals is a key-value meant for miscellaneous
usage; for instance, a variable timestamp is set by one function and used by another
and is made accessible via the Globals variable.

Lines 5, 6 define the main elements of the specific JIT-MF Driver (as described in
Definition 4.2.5), through the definition of the Evidence_object and Trigger_point, respec-
tively. init() presents the only interfaces exposed to the JIT-MF tool’s main environ-
ment. It is called during tool initialisation and sets up registers Trigger_point hooks
by calling place_native|rt_hook(). This function returns a boolean (bool) indicating suc-
cess or otherwise. Trigger_predicate() and Trigger_callback() must be defined per en-
try in Trigger_points, whereby Trigger_callback() is executed if the hooked Trigger_point
instruction executes and Trigger_predicate() is True (as shown in Algorithm 1 line 4).
Trigger_points may concern either native or rt function hook, with the latter implying
the device’s runtime environment, e.g. ART in the case for Android. The same ap-
plies for carve_object_type() and parse_object_type(), which have to be defined per entry in
Evidence_objects, at least for online Collection. In scenarios where online collection is opted
for and additional supporting objects need to be carved and parsed to obtain the neces-
sary metadata (e.g. recipient object containing the recipient’s metadata), supplementary
carve_object_type() and parse_object_type() need to be created for the said object, whereas
the Evidence_object remains the same. carve_object_type() returns the list of addresses (in
case of online collection) or offsets (in case of offline collection) in memory containing
an Evidence_objects. These values are then passed to the parse_object_type() function as
parameters so that the function may parse and return the list of meaningful field values
(object metadata) that are of interest. Their offline counterparts carve_object_typej_offline
and parse_object_typej_offline offer the same functionality, but their execution is deferred
to after a memory dump is taken.

All these functions require a JIT-MF runtime for their implementation. Listing 4.2
presents a specification for the runtime that JIT-MF Drivers can assume and which
needs to be catered for by the JIT-MF tool’s main environment. Lines 1-2 are native/rt
function-hooking functions called from init() and any other driver internal functions
as needed, that enable pseudocode lines 2,3 in Algorithm 1. Lines 3-11 are process
memory interacting functions, starting list_memory_segments() to ensure the driver does
not attempt to access un-mapped memory, or segments for which it has insufficient
permissions. Memory dumping may therefore require adjusting permissions through
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1 bool place/remove_native_hook(module,function,trigger_callback_function,[Processes]);
2 bool place/remove_rt_hook(namespace.object.method,trigger_callback_function,[Processes]);
3 [<start:address,end:address,permissions:{--|r-|rw-|rwx|...},mapped_file:string>,...]

list_memory_segments();
4 bool set_memory_permissions(segmentbase: address, permissions : {---|r--|rw-|rwx|...});
5 [byte, ...] read_memory(at: address, length: integer);
6 bool dump_memory_segment(from: address, to: address, location: string);
7 bool dump_native_object(from: address, to: address, location: string, carve_object_typej(),

parse_object_typej());
8 bool dump_rt_object(namespace.object, carve_object_typej(), parse_object_typej());
9 return_type call_native_ f unction(at: address);

10 return_type call_rt_ f unction(namespace.object.method,[parameters to function]);
11 bool append_log(path: string, value: string);

Listing 4.2: JIT-MF Driver Runtime template.

set_memory_permissions(), as well as checking memory content through read_memory().
While for offline Collection, calling dump_memory_segment suffices, the driver must
carve objects and parse their fields for online collection. dump_native_object() and
dump_rt_object are utility functions that first locate the Evidence_object in memory, then
execute the appropriate carve_object_type() and parse_object_type() callback functions
that are passed as parameters. Separate rt and native versions are needed since the rt
version may leverage calling runtime functions to locate the required objects. Simi-
larly, the native version may leverage any memory allocators to manage native objects.
call_native_function() and call_rt_function() functions allow to call existing code, at the
native or runtime level respectively, that can support driver implementation, e.g., to call
mmap() in case a scratchpad for the driver is needed. Finally, append_log() (line 11) is
responsible for producing the actual JIT-MF_Logs, as defined in Definition 4.2.6, to the
location specified by the driver’s Log_location.

JIT-MF Driver Example. Listing 4.3 outlines a specific sample JIT-MF Driver created to
collect evidence of a messaging hijack attack involving proxying of Telegram messages,2

based on the JIT-MF Driver template in Listing 4.1, with its resulting JIT-MF_log shown
in Listing 4.4.

1 Driver_ID: TG_CP

2 Scope: <telegram, crime-proxy>

3

4 Evidence_objects: {<"Telegram Message Sent","org.telegram.messenger.MessageObject",

carve_message_object(),parse_message_object(), {"1"}>}

5 Collection_method: online

6 Parsing_method: online

7 Trigger_point: {<"1",<"send",native, trigger_predicate(), trigger_callback()>>}

8 Log_location: "/sdcard/jitmflogs"

9

10 bool init (config) {

2https://telegram.org/

55



CHAPTER 4. JUST-IN-TIME MEMORY FORENSICS

11 for entry in Triggers:

12 if entry[1] == native:

13 place_native_hook("libc.so", entry[0], entry[3]);

14 }

15 bool trigger_predicate(params) {

16 file_descriptor = params[1];

17 if file_descriptor type is tcp:

18 return true;

19 else:

20 return false;

21 }

22 void trigger_callback(thread_context) {

23 if trigger_predicate(thread_context.args) :

24 if Collection_method == online:

25 object = Evidence_objects[0];

26 object_name = object[1];

27 object_carve_callback_fn = object[2];

28 object_parse_callback_fn = object[3];

29 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

30 }

31

32 [object,...] carve_message_object(from: address, to: address) {

33 carve MessageObject in the given memory range using metadata provided by the

Garbage Collector;

34 }

35

36 [<field,value>,...] parse_message_object(at) {

37 if Parsing_method == online:

38 current_time = get_time();

39 MessageObject = object starting from at;

40

41 message_content = MessageObject.messageText.value;

42 message_date = MessageObject.messageOwner.date;

43 message_id = MessageObject.messageOwner.id;

44

45 recipient_id = MessageObject.recipient.id;

46 recipient_name = MessageObject.recipient.name;

47 recipient_phone = MessageObject.recipient.phone;

48

49 sender_id = device_owner;

50 sender_name = device_owner;

51 sender_phone_number = device_owner;

52

53 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects[0][0],

’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’message_id’:

message_id, ’text’:message_content,’to_id’:recipient_id, ’to_name’:

recipient_name, ’to_phone’:recipient_phone_number, ’from_id’:sender_id, ’

from_name’:sender_name, ’from_phone’:sender_phone_number}}");

54

55 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>, <’to_id’,recipient_id>, <’to_name’,
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recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

56 }

Listing 4.3: JIT-MF Driver for Telegram Messaging hijack attack.

The Evidence_object is set (line 4) to Telegram’s app-specific object class representing
a message. The Trigger_point instruction is set (line 4) to the native system call send,
signifying that when send is called to send an outgoing message to a socket (over the
network or to a file). The JIT-MF Driver starts by registering the Trigger_point set (line
10-14). Once the system call registered is called to execute, the trigger_callback() function
is called (lines 22-30).

The function first checks whether or not the trigger should be fired by executing the
trigger_predicate() function. In this case, the Trigger_point is further filtered based on the
type of file descriptor argument. Since Telegram sends messages over the network, this
check is in place to ensure that the specific send function that is being intercepted com-
prises message-sending functionality over the network (lines 15-21). The trigger_callback()
function then proceeds to dump instances of the Evidence_object in memory (line 29) using
functions provided by the JIT-MF Driver Runtime. This function takes additional param-
eters which allow the JIT-MF Driver Runtime to carve and parse the specific object. In the
example listing shown, the JIT-MF Driver is set to use online carving and parsing methods
(lines 5,6) is used. As a result the carve_message_object() and parse_message_object() func-
tions that carve and parse Evidence_objects execute at runtime, as soon as the Trigger_point
returns True (Algorithm 1 line 4). The parsing of the collected Evidence_object requires
insight into app-specific logic that defines the make-up of the Evidence_object (lines37-51).
The parsed object is then appended to the JIT-MF_log (line 53) residing in Log_location
defined in line 8. A sample output of the JIT-MF_log is shown in Listing 4.4.

4.3.3 JIT-MF installation
The JIT-MF Driver and Runtime drive and provide memory introspection capabilities
through dynamic binary instrumentation, which involves loading instrumentation li-
braries inside the process memory that enables instrumentation. The loading of such
libraries in process memory can be done dynamically or statically. A dynamic approach
calls for device rooting required so that a root process can gain control over the app
through ptrace(). Alternatively, library injection can be done statically by unpacking
the app followed by minimal patching that does not affect the app’s logic and plac-
ing the library inside the app’s lib/ directory. The library must then be loaded inside
the process memory at runtime. While bytecode is not easily read or manipulated,
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1 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614879434", "message_id": "421", "text":
"Noise_yxUGVtS6UuShA6CuJI4lCpuP6eZ2cP5F67v", "to_id": "1168085392", "to_name": [
contact_name], "to_name": [contact_phone], "from_id": "1679923803", "to_name": [
owner_name], "from_phone": "[owner_phone]"}}

2 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614902759", "message_id": "723", "text":
"Noise_hBE9b8TluuibnvHA4Fx6CDcmNdNAG5BXR52alG0Z08uyzxKME500vgyyLTrgWzYcruQCDDIYxz",
"to_id": "961166549", "to_name": [contact_name], "to_name": [contact_phone],
"from_id": "1679923803", "to_name": [owner_name], "from_phone": "[owner_phone]"}}

3 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614902789", "message_id": "724", "text":
"Noise_0cHWaPUDsv7pv2PwV3QXJccLs4d4TBIx0mM6IrBnEKbqtURD1Abl0K28cDCpVyOfCN66cTBwtQ",
"to_id": "891591776", "to_name": [contact_name], "to_name": [contact_phone],
"from_id": "1679923803", "to_name": [owner_name], "from_phone": "[owner_phone]"}}

4 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614888830", "message_id": "552", "text":
"Noise_lwoPcxoe1cgfyX80r2caP0LzK7G42KD9L0u3SZX1ENmExnngQ2ccFTLEMnkZrMYYfRWpn0m",
"to_id": "891591776", "to_name": [contact_name], "to_name": [contact_phone],
"from_id": "1679923803", "to_name": [owner_name], "from_phone": "[owner_phone]"}}

5 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614889190", "message_id": "556", "text":
"Noise_8ytLXb6y8LXUJVnAbVhQvjGE0TFHQAFD2Gj4ji4PJN", "to_id": "891591776", "to_name"
: [contact_name], "to_name": [contact_phone], "from_id": "1679923803", "to_name": [
owner_name], "from_phone": "[owner_phone]"}}

6 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614889324", "message_id": "558", "text":
"Noise_KELADQloIFUVGHqM4JNtd42DH", "to_id": "891591776", "to_name": [contact_name],
"to_name": [contact_phone], "from_id": "1679923803", "to_name": [owner_name],
"from_phone": "[owner_phone]"}}

7 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614890015", "message_id": "561", "text":
"Noise_jaWWAqo3e83MsIZ8bCZop7bBviqEepR5J3P7ecUllD5frTsiv7OPdiVIhxwAK0PE6xjEDTRlxu",
"to_id": "891591776", "to_name": [contact_name], "to_name": [contact_phone],
"from_id": "1679923803", "to_name": [owner_name], "from_phone": "[owner_phone]"}}

8 {"time": "1614902986","event": "Telegram Message Sent","trigger_point": "native",
"object": {"date": "1614890459", "message_id": "565", "text":
"Noise_KIBWB2GNH9knGog", "to_id": "891591776", "to_name": [contact_name], "to_name"
: [contact_phone], "from_id": "1679923803", "to_name": [owner_name], "from_phone":
"[owner_phone]"}}

Listing 4.4: Sample of JIT-MF_log containing Evidence_object from a
Telegram messaging hijack scenario.

an intermediate language Smali, can be used to patch the code. The library must be
loaded early in the app’s lifecycle to ensure that all functions executed during the app’s
runtime can be instrumented. Therefore, the class within the app implementing the
MainActivity, which executes when the app is launched and is listed in the app’s
Manifest file, is patched. Its Smali code, found in the decompiled files of the app, contains
a static constructor, which is modified to include the Smali equivalent of the function
call: System.loadLibrary("instrumentation-library").

A static approach is preferred to abide by the requirements set out for this solution
and avoid device rooting. Yet, the static injection of an instrumentation library inside
an app, as required by DBI frameworks, still calls for an app-invasive solution that
involves app repackaging. Alternatively, app-level virtualisation can emulate a runtime
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for the targeted app, which loads the instrumentation library before loading the app
through a customised APK loader. Therefore, app-level virtualisation allows JIT-MF to
be installed and operate in a minimal app and device-invasive approach that does not
involve app-repackaging or device rooting. Yet, given that app-level virtualisation is still
an emerging technology, its use exposes concerns regarding the effects on performance
and app stability. Experimentation regarding the further exploration of JIT-MF Driver
properties and the value of JIT-MF in forensic investigations used both approaches.

4.3.4 JIT-MF Driver Runtime technology enabler
The JIT-MF Driver Runtime exposes the required services for the JIT-MF Driver to
function and produce JIT-MF_Logs. The critical service that the Driver Runtime exposes
is registering Trigger_point, enabling timely dumping of Evidence_objects. A primary
enabler for this is dynamic binary instrumentation.

Frida [50] is a dynamic binary instrumentation toolkit that allows code instrumenta-
tion on Android through inline hooking. It implements Xposed-style method hooking
and native inline hooking, enabling functions invoked from native or bytecode (by the
app at runtime) to be instrumented. Thus enabling function calls from programs at any
layer of the Android technology stack to be registered as Trigger_points. Frida, operates
in multiple modes: injected, preloaded and embedded. The embedded mode offers an
option that aligns more with the requirements set out for JIT-MF. Frida’s embedded mode,
known as Frida Gadget,3 allows for hooking through a shared library (frida-gadget.so) that
can be loaded inside apps, either through app repackaging or a virtualised environment
using a customised APK loader.

The memory introspection capability required by the JIT-MF Driver Runtime (List-
ing 4.2 lines 1,2) can be satisfied by Frida’s Java API built-in module.4 This module allows
interoperability with the Java runtime, and exposes functionality which enumerates live
instances of the Java classes in memory through the exported Heap::GetInstances function
in libart.so. This suffices to enable the online collection and carving of evidence objects
from memory required by JIT-MF Drivers (listed as separate functions in Listing 4.2
lines 3-8). The same interoperability with the Java runtime allows for the persistence of
evidence to storage through the File module5 that writes to file streams. Dumping the
entire process memory space (for offline collection) is also possible by calling the Java
runtime function android.os.Debug.dumpHprofData() (as shown in Listing 4.2 line 10). This

3https://frida.re/docs/gadget/
4https://frida.re/docs/javascript-api/#java
5https://frida.re/docs/javascript-api/#file
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functionality is sufficient to provide the services the JIT-MF Driver Runtime requires.
Furthermore, Frida allows custom scripts (written in Javascript) that drive the instru-
mentation process to be loaded at runtime. Thus, JIT-MF Drivers can be implemented
as supplementary scripts, defining which specific definitions for Evidence_objects and
Trigger_points that are custom to specific scenarios and are loaded at runtime. Therefore,
this toolkit is used as a starting point for implementing the JIT-MF Driver Runtime and,
consequently, the JIT-MF Drivers that use it.

4.4 Operational context
JIT-MF Driver developers develop JIT-MF Drivers to be used within JIT-MF tools to
produce JIT-MF_Logs for a specific app and attack scenario. The process by which a JIT-
MF Driver developer develops a JIT-MF Driver is shown in Figure 4.2. The Evidence_object
is set as an initial step through knowledge of the app and the hijack scenario. In the case
of messaging hijack attacks, Evidence_object constitute message objects which may have
been generated by the app while under the influence (hijacked) by malware.

The Trigger_point of a JIT-MF Driver can be set based on the selected Evidence_object
and knowledge of the context (operating system and investigation scenario) within
which the driver will operate. The JIT-MF Driver developer then must decide whether
evidence carving will occur at runtime (online) or at a later stage (offline). Online
evidence carving would require the JIT-MF Driver runtime to provide an enabler by
which app-specific Evidence_objects can be carved out from memory in real-time through
mechanisms like garbage collectors. Offline evidence carving means that any parsing of
the object metadata into meaningful information that can later be correlated and used for
analysis must be carried out offline. When object carving is set to be online, the JIT-MF
Driver developer must decide whether evidence parsing will occur at runtime (online)
or after the evidence has been dumped (offline). This decision is based on the amount of
processing required for parsing the evidence object and the developer’s insight into the
impact on the stability of the setup that this additional parsing will have.

Chain of custody. The JIT-MF Driver developer needs to know the context within
which the evidence generated will be used. In investigations involving attack scenarios
requiring the involvement of legal entities and law courts, the integrity of the evidence
generated plays a crucial role. A proper chain of custody ensures that regardless of the
process involved in collecting, transporting and handling the evidence, the integrity
of the evidence can be verified. This is typically done by using hashing functions that
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Figure 4.2: Process for developing a JIT-MF Driver.

allow investigators to verify that the hash value of the evidence remains the same.
For evidence collected through a JIT-MF Driver, the JIT-MF Driver developer must
implement the functionality to keep a digital chain of custody that can be used to verify
the integrity of the JIT-MF_Logs produced. This chain of custody implementation would
need to record the steps carried out throughout each stage of the JIT-MF tool. At each
step, the hash values for any outputs generated (such as enhanced apps, JIT-MF_Logs)
are stored alongside the hash of the JIT-MF Driver itself. The same applies to any
parsing functionality or tool that processes the JIT-MF_Logs once they are produced and
collected [36].

JIT-MF_Logs collection. The resulting JIT-MF_Logs produced by JIT-MF, per instruc-
tions inside JIT-MF Drivers, are stored on the device by default. Therefore another
concern for the JIT-MF Driver developer is the accumulation of these logs on the device,
which may exhaust the storage resources of the device. To avoid such a scenario, the
JIT-MF Driver developer must be aware of the owner usage patterns of the targeted
app usage and resulting JIT-MF_Logs size. Following this analysis, the JIT-MF Driver
developer can devise a plan for scheduled extraction of JIT-MF_Logs to be stored on
separate storage. This ensures that the device resources are not exhausted while the
JIT-MF_Logs are retained in case an investigation is needed.

JIT-MF Drivers are used by JIT-MF tools built on the JIT-MF framework. Any JIT-MF
tool comes into play at the forensic readiness stage [75] to forensically enhance Android
devices before an incident is flagged. Figure 4.3 shows how a JIT-MF tool fits within the
incident response cycle stages. At the forensic readiness stage, targeted users and their
devices and apps are identified during an asset management exercise (step 1). These
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Figure 4.3: JIT-MF within the Incident Response cycle.

users can be high-profile employees of government agencies or even private citizens
whose devices may be the target of resourceful attackers for various reasons. After this
stage, those apps that pose a particular risk, say messaging apps, are instrumented post-
deployment with JIT-MF Drivers and Driver Runtime (step 2). While the app executes,
forensic artefacts are collected from memory inside JIT-MF_Logs, based on the properties
defined in the JIT-MF Drivers (step 3). Once suspicious activity is noticed, with alerts
possibly raised by the device owners or by incident responders during routine checks,
JIT-MF_Logs can be merged with other forensic sources to produce a more comprehensive
forensic timeline (steps 4 and 5). A JIT-MF tool automates this workflow.

4.5 Security analysis of JIT-MF
JIT-MF_Logs are by default stored on the device and can potentially contain sensitive
information. Therefore these logs expose an attack surface that malware could exploit.
Should these logs fall prey to any malware on the device, these logs may be subject to
anti-forensics techniques that tamper or delete JIT-MF_Logs. Crucially, if these logs are
accessible by the malware, sensitive data may be exfiltrated by the malware. Similarly,
but from an operational point-of-view, JIT-MF Drivers are also stored on the device to
instrument a targeted app. Therefore, these are also susceptible to tampering by malware
with malicious intent, with the result being total control over the targeted app. While
these issues are of concern in a real-world setting, mitigations for these attacks surfaces
are not an open research problem. Existing measures and techniques can be used to
protect JIT-MF usage in practice.
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Privacy-aware forensics solutions exist [45] through which the proposed JIT-MF
Drivers can collect the necessary evidence to reconstruct stealthy attack steps while
protecting sensitive information to protect users’ privacy. The use of work profiles is
recommended for enterprise settings,6 which respect employee privacy through separate,
dedicated work and personal profiles that give investigators more flexibility concerning
privacy when retrieving data related to work profiles. Finally, scoped storage can ap-
propriately store JIT-MF_Logs and Drivers, thus ensuring secure access to these critical
contents.

Other adversarial tactics can include the exploitation of JIT-MF for resource exhaus-
tion. JIT-MF-aware malware may purposefully invoke Trigger_points to produce large
enough JIT-MF_Logs files that exceed the resource capacities of the device while render-
ing the app unusable due to constant execution of Trigger_points. On the other hand,
JIT-MF-aware malware may use adversarial tactics to avoid leaving a trail of evidence.
Similarly to API unhooking techniques used to evade EDR detection [13, 79], the malware
developer may attempt to avoid invoking specific instructions that constitute trigger
points during malware execution. This is difficult for app hijack attacks to do since this
functionality is specific to the app being hijacked and, therefore, out of the malware’s
reach. The alternative for the malware developer is hijacking another app on the device
that provides the malware with similar functionality but has not yet been enhanced with
a JIT-MF Driver.

JIT-MF Driver developers can mitigate JIT-MF-aware malware resource exhaustion
attempts by introducing frequency checks in Trigger_point predicates within the JIT-MF
Driver. These frequency checks can rate-limit the dumping of Evidence_objects, thus
avoiding exceeding the device’s resource capacity. Furthermore, at a forensic readiness
stage, all apps on the device owner’s phone that have the potential to be hijacked due to
their functionality should be enhanced with a JIT-MF Driver to ensure evidence is still
collected regardless of the hijacked app.

4.6 Summary
This chapter presented Just-in-Time Memory Forensics (JIT-MF), a framework aiming to
provide a blueprint for implementing tools that timely collect app-specific objects from
volatile memory which can be linked to app hijack attack steps. The framework’s main
elements comprise: i) Evidence_objects, the app-specific objects whose presence in memory
implies the execution of some specific app functionality, possibly a hijacked attack step; ii)

6https://www.android.com/enterprise/work-profile/
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Trigger_point, the instructions associated with the presence of Evidence_objects in memory
which invoke a memory dump; and iii) JIT-MF_Logs which is the output comprising
Evidence_objects produced from the triggered memory dump (via Trigger_point).

Dynamic binary instrumentation is identified as the primary enabler for timely
evidence collection from memory. Trigger_points and Evidence_objects are defined within
JIT-MF Drivers that drive the evidence collection process from memory for a specific app
hijack scenario. While JIT-MF Driver Runtime provides the necessary services required
by the Driver, namely process memory introspection and carving objects from memory.

The requirements set out in the beginning of this chapter aim to address the inva-
siveness challenges highlighted in this thesis’ research question. This chapter described
how the installation of JIT-MF can be minimally invasive thus compyling with the re-
quirements set out at the beginning of this chapter, by using app-level virtualisation
to instrument apps while avoiding app repackaging and device rooting. However, the
research question is also concerned with the level of invasiveness requried for code
comprehension effort, to identify app-specific artefacts related of app hijack attack steps.
Thus, an exploration of Evidence_object and Trigger_point selection within the Android
technology stack is required to determine the level of app invasiveness necessary for
JIT-MF tools to collect accurate evidence. This can be explored through the application
JIT-MF in realistic case studies involving app hijack attacks. The next chapters explore the
minimum level of app-level invasion possible without compromising forensic timeline
accuracy and comparisons to the state-of-the-art.
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5 Exploration of JIT-MF positioning
within the Android Technology stack

The previous chapter proposed Just-in-Time Memory Forensics (JIT-MF) as a means
to explore collecting app-specific evidence from memory, uncovering the execution
of hijacked app functionality in a manner that is timely (that is before evidence from
memory is lost) and not prone to forensic trace deletion. This is achievable through the
definition and selection of JIT-MF Evidence_objects and Trigger_points as set in JIT-MF
Drivers, provided the functionality of the underlying JIT-MF Driver Runtime. The result
is timely collected app-specific artefacts from memory stored in JIT-MF_Logs. Yet further
exploration is still required to determine how the tools implementing this framework
can meet the minimal invasiveness requirements of this thesis’ research question; that is,
ensuring compatibility with stock devices while also being minimally invasive at the app
and device levels to produce accurate forensic timelines. Specifically, this chapter aims to
test the hypothesis by exploring which layer within the Android technology stack is the
optimal layer in terms of accuracy and minimal app invasiveness through the selection
of JIT-MF Trigger_points and Evidence_objects, thus addressing the second objective O2 of
this thesis.

The experimentation in this thesis focuses on messaging apps as the targeted benign
apps of app hijack attacks. Messaging is a current concern regarding the sensitivity
of its usage (Section 5.1). An initial experiment (Section 5.2) is carried out to establish
the difference in the accuracy of evidence produced in JIT-MF_Logs when selecting
Trigger_points from different layers in the technology stack contributing to different
levels of app invasiveness. Once the optimal Trigger_point selection layer is established
concerning both invasiveness and accuracy, a follow-up experiment (Section 5.3) aims
to establish whether Trigger_points at this layer can help produce more accurate forensic
timeline sequences with sufficient detail, when used in conjunction with commonly-used
open source forensic sources. An exploration of Evidence_object selection, concerning
the varying layers of the stack, is also carried out similarly to Trigger_point selection
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exploration, aiming for an even more minimally invasive approach while retaining
accuracy (Section 5.4). Finally, the effects on app stability are considered (Section 5.5) and
possible solutions are evaluated regarding app stability and accuracy.

5.1 Methodology
The experiments carried out to explore JIT-MF positioning across the Android technology
stack require a shared methodology regarding experimentation setup. Mainly, this
concerns the attack scenarios used in the experiments and the JIT-MF Driver and Runtime
prototype and installation used for experimentation.

5.1.1 Attack scenarios
The experiments comprise a suite of messaging hijack case studies inspired by real-life
app hijack attacks that target messaging apps [7]. The messaging hijack scenarios that
are considered involve: i) crime-proxying; and ii) unlawful interception. Crime-proxying
refers to app hijack attacks that hijack the messaging functionality of Android devices
to hide compromising communication of a criminal nature behind victim devices. This
can be done by hijacking a victim’s messaging app functionality to proxy messages with
incriminating content and deleting them immediately after to avoid suspicion from the
victim. Unlawful interception refers to spying on a victim’s incoming and outgoing
messages. In these scenarios, app functionality of interest comprises message-sending
and reading functionality, respectively. Benign apps were selected during experiments
to simulate the targeted apps to be hijacked. These apps were chosen based on their
functionality as SMS or Instant Messaging (IM) apps.

Simulations of these attacks were implemented following the app hijack threat model,
using the accessibility attack vector. A separate attack was created per targeted app
and attack scenario (crime-proxy or spying). Various implementation methods were
used to implement these attacks, according to the aims and automation requirements of
the experiment. Some attacks were implemented in the Metasploit pentest framework,
as part of the Android Meterpreter payload. Once the idea of stealthy attack capabil-
ities was rendered, simulations of the same attack were carried out using adb via the
AndroidViewClient1 (for ease of automation), emulating any existing or future attack
vector through which app functionality can be hijacked.

1https://github.com/dtmilano/AndroidViewClient
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5.1.2 JIT-MF prototype and installation
JIT-MF was installed at the app level to ensure the use of stock devices (as per the first
requirement of JIT-MF). All case studies for the experiments described in this chapter
involved installing JIT-MF Driver and Driver Runtime via app repackaging as the ex-
ploration described in this chapter focuses on the level of app-invasiveness required
for selecting Trigger_points and Evidence_objects. For the case studies used during this
exploration, application functionality of interest comprised message-sending and reading
functionality that app hijack malware can hijack for crime-proxying and spying purposes,
respectively.

The JIT-MF Driver runtime was provided by a subset of the Frida2 runtime, and
JIT-MF Drivers were implemented as Javascript code for Frida’s Gadget shared library.
The JIT-MF Drivers created for each case study, based on the JIT-MF Driver template, and
resources for experiment setup can be found in the associated open source repository3.

5.2 Trigger point accuracy across Android stack layers
Selecting Trigger_points and Evidence_objects from higher levels in the Android technology
stack requires increasingly app-invasive approaches, that impose infeasible development
effort unique to each app. Specifically, this requires increased and individual effort
per app in comprehending its codebase, which is likely obfuscated and close-source.
Regarding the layer for Evidence_objects selection, the app layer presents the most obvious
choice in the Android technology stack. This layer comprises app-specific artefacts that
can be directly linked to attack steps of attacks following the app hijack threat model,
thus having the potential to generate the most accurate forensic timelines. However, it is
possible that the optimal layer for Trigger_point position can be found in lower layers of
the stack, resulting in a less app-invasive approach.

The experiment described in this section compares the accuracy of the attack steps
recorded and the associated storage overhead costs when selecting Trigger_points from
different layers in the Android technology stack. The same Evidence_objects per app
were selected from the app layer since this layer presents the most obvious choice for
producing app-specific evidence objects that can be linked to hijacked app functionality
and therefore used to reconstruct attack steps on a forensic timeline accurately.

2https://frida.re/docs/android/
3https://gitlab.com/bellj/dissertation_resources
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5.2.1 Experiment setup
Pushbullet4 and Telegram5 are popular SMSonPC and IM apps, respectively, used as
targeted apps in case studies for this experiment. The experiment involves four case
studies comprising messaging hijack scenarios involving spying and crime-proxying
attack scenarios hijacking the two aforementioned targeted benign apps.

All four attack scenarios were implemented as extensions to Metasploit’s Meterpreter
for Android6. For the Telegram IM case study, the attack was carried out using the
Android Metasploit attack suite. App hijack attack on Pushbullet, being an SMSonPC
app allowing for remote messaging, comprised using phished credentials. The remaining
attack steps to send messages made direct use of Pushbullet’s remote web portal and
were automated using Selenium7 whereas any incoming messages could be obtained
from browser logs. The full setup comprises: Pushbullet (v17.7.19) and Telegram (v6.1.1)
Android apps enhanced with JIT-MF Drivers, both installed on an Android 10 emula-
tor. The JIT-MF Drivers used implemented both online and offline evidence collection
methods (as described in Section 4.3.1), leveraging Frida’s Java.choose() and Android’s
API Debug.dumpHprofData() respectively. The attack scenarios were repeated ten times
since it sufficed to reach convergence for all measurements taken.

Eight JIT-MF Drivers were created per case study. The chosen Evidence_objects listed
in Table 5.2 were selected from the app stack layer (for each app), yet in both cases, the
object was easily discernible from the documentation. In Telegram’s case, the app is
open source and available on Github8. Therefore identifying the Evidence_object required
inspecting the code and using search prompts that could identify the object holding
a Telegram message along with available documentation. Pushbullet is closed-source.
However, it exposes an interface that enables users to send messages over HTTPS.
The related documentation and network traffic analysis during app usage enabled the
Evidence_object selection. From preliminary analysis, three stack layers were identified
as promising candidates for Trigger_point positioning to start experimentation: the App,
API layer and Native layers as shown in Table 5.1. Two Trigger_points were selected from
each layer, attempting to leverage all available candidate Trigger_points in terms of disk
input/output, network send/receive, and miscellaneous object transformations. The
native layer was further leveraged for experimentation using Trigger_predicate(). For this

4https://www.pushbullet.com/
5https://telegram.org/
6https://github.com/rapid7/metasploit-framework/tree/master/documentation/

modules/payload/android
7https://selenium-python.readthedocs.io/
8https://github.com/DrKLO/Telegram
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layer, four Trigger_points were selected comprising functions from the native libc library.
Two were combined with native-level predicates, while the others had device-level
predicates triggered by generic device events, such as increased network traffic. While
Trigger_points at the API level could have sufficed for creating Trigger_points that leverage
device events, for example, HttpURLConnection.connect(), native layer function calls recv
and send represent a chokepoint for multiple functions at the API level, and therefore is
simpler to work with. The chosen list of Trigger_points is presented in Table 5.3, where
the first Trigger_point (TP1) is either file/disk or object transformation-related, and the
second (TP2) is network-related.

Table 5.1: Android stack layers associated trigger predicates identified for
exploration of Trigger_point positioning and classification in terms of app
internals comprehension required.

Stack layer Trigger_predicate() Classification Description

App - Most app-invasive Function calls specific to the app
APIs (Android &
third-party)

- Least app-invasive Android API calls

Native Native-level Least app-invasive Generic native system calls
Native Device-level Least app-invasive Generic events related to the device state

Table 5.2: Evidence_objects selected per app.

App Evidence_object

Pushbullet org.json.JSONObject
Telegram org.telegram.messenger.MessageObject

Trigger point accuracy comparison. Accuracy of the Trigger_point selected is measured
by identifying whether or not the proxied or stolen messages (depending on the hijack
scenario) can be found in the JIT-MF_Logs produced when the respective Trigger_point,
selected from a specific stack layer.

Performance overheads. An initial analysis is carried out to measure the potential
runtime performance overheads in storage and execution time. These performance
indicators were measured for both apps while application functionality of interest was
executing: message sending and reading/retrieving during which JIT-MF Trigger_points
are invoked.
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Table 5.3: Trigger points selected.

Case Study Stack layer TP # Instruction Trigger Predicate

(SMS)
Pushbullet -
Crime-proxy

App
TP 1 com.pushbullet.android.sms.SmsSyncService.a -

TP 2
com.pushbullet.android.providers.syncables.
SyncablesProvider.insert

-

API
TP 1 android.content.ContentResolver.insert -
TP 2 android.telephony.SmsManager.sendTextMessage -

Native (combined with native-level
Trigger_predicate())

TP 1 write() To file descriptor
TP 2 read() From TCP Socket as file descriptor

Native (combined with device-level
Trigger_predicate())

TP 1 Increase in app directory size
app_directory_path=Context().getFilesDir().
getParent()

TP 2 Increase in network traffic Incoming

(SMS)
Pushbullet -
Spying

App
TP 1 com.pushbullet.android.sms.SmsSyncService.a -
TP 2 com.pushbullet.android.gcm.GcmService.a -

API
TP 1 android.content.ContentResolver.registerContentObserver -
TP 2 com.google.android.gms.gcm.GcmReceiver.onReceive -

Native (combined with native-level
Trigger_predicate())

TP 1 read() From file descriptor
TP 2 write() To TCP Socket as file descriptor

Native (combined with device-level
Trigger_predicate())

TP 1 Increase in app directory size
app_directory_path=Context().getFilesDir().
getParent()

TP 2 Increase in network traffic Outgoing

(IM)
Telegram -
Crime-proxy

App
TP 1 org.telegram.tgnet.ConnectionsManager.native_sendRequest -

TP 2
org.telegram.messenger.SendMessagesHelper.
performSendMessageRequest

-

API
TP 1 android.widget.EditText.setText -

TP 2
android.app.SharedPreferencesImpl\$EditorImpl.
commitToMemory

-

Native (combined with native-level
Trigger_predicate())

TP 1 open() File descriptor
TP 2 send() To TCP Socket as file descriptor

Native (combined with device-level
Trigger_predicate())

TP 1 Increase in app directory size
app_directory_path=Context().getFilesDir().
getParent()

TP 2 Increase in network traffic Outgoing

(IM)
Telegram -
Spying

App
TP 1 org.telegram.ui.Cells.DialogCell.update -
TP 2 org.telegram.messenger.MessagesStorage.putMessages -

API
TP 1 android.view.ViewGroup.dispatchGetDisplayList -
TP 2 android.app.ContextImpl.sendBroadcast -

Native (combined with native-level
Trigger_predicate())

TP 1 open() File descriptor
TP 2 recv() From TCP Socket as file descriptor

Native (combined with device-level
Trigger_predicate())

TP 1 Increase in app directory size
app_directory_path=Context().getFilesDir().
getParent()

TP 2 Increase in network traffic Incoming
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Table 5.4: Trigger point effectiveness: % accuracy over ten runs. Values
highlighted in grey represent the Trigger_points that performed best in
layers (with associated trigger predicates) that fall under the least app-
invasive classification, per investigation scenario.

Trigger point classification & Stack layer
(with associated trigger predicates /

Scenario

Crime-proxy - IM Spying - IM Crime-proxy - SMS Spying - SMS

Online Offline Online Offline Online Offline Online Offline

Most app-
invasive

App
TP 1 100 100 100 100 0 0 0 0
TP 2 0 0 60 60 100 100 80 80

Least app-
invasive

API
TP 1 90 90 100 100 100 100 0 0
TP 2 80 60 100 100 100 100 80 80

Native (combined with
native-level

Trigger_predicate())

TP 1 100 80 100 100 30 80 80 80

TP 2 50 50 100 100 100 100 0 30

Native (combined with
device-level

Trigger_predicate())

TP 1 40 40 100 90 50 80 20 30

TP 2 50 50 100 100 100 100 0 30

5.2.2 Results
Table 5.4 compares the Trigger_points based on accurately dumping Evidence_objects
related to the proxied or intercepted SMS/IM messages over ten runs per attack. The
first two rows are the results obtained for the most app-invasive Trigger_points (selected
from the app layer), while the next six rows are for the least app-invasive Trigger_points.
The results column-wise (across Trigger_points) from different stack layers, show that the
assumption that app-specific and app-invasive Trigger_points positioned at the app layer
are more accurate than less app-invasive counterparts does not hold. For each of the case
studies, the collected evidence contains the following metadata: i) the contents of the
message sent/read; ii) the sender/recipient (for crime proxy and spying, respectively);
and iii) the time at which the message was received/intercepted.

At first glance, it seems that selecting accurate Trigger_points could be possible solely
within the layers requiring the least app-invasive approaches and minimal app-specific
knowledge. Furthermore, the results presented in Table 5.4 also show that the effective-
ness obtained using offline and online collection methods has very similar results.

Least app-invasive Trigger_points show promise. The fact that Trigger_points selected
from lower levels in the technology stack can be as effective and efficient as those selected
from the app layer bodes well for the second requirement set out for JIT-MF, i.e. ensuring
a minimal app invasive approach, since lower layers of the stack require less code
comprehension effort than app-specific compiled code analysis. Yet comprehension of
app functionality remains a factor for selecting Evidence_objects since these have so far
been selected from the app layer.

Considering only the best-performing Trigger_points within each of the least app-
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invasive layers and associated trigger predicates, per investigation scenario (highlighted
in grey), it is noticeable that across the four scenarios, Native (combined with device-
level Trigger_predicate()) Trigger_points were the least effective, with the rest at a tie.
Furthermore, in the cases where Trigger_points positioned at the Native layer (combined
with device-level Trigger_predicate()) underperformed, the discrepancy was substantial,
e.g. in the Spying - SMS case, 60% fewer events were caught when compared to the
results obtained by the best-performing Trigger_points in the other two least app-invasive
layers. These results, therefore, suggest that in the case of Native (combined with device-
level Trigger_predicate()) Trigger_points, several Trigger_points may have to be evaluated
to determine their effectiveness before deployment. While for certain app functionality,
one can assume underlying app events (e.g. send syscall in case of an outgoing message
over the network), this functionality’s effects on the devices may differ depending on
app usage and the device itself. For instance, if an app stores data in a cache store until a
limit is reached and then empties the cache, selecting a Native (combined with device-level
Trigger_predicate()) Trigger_point that monitors an increase in app directory size may
not be sufficient since the frequency with which the device owner is sending messages
hinders the effectiveness of said Trigger_point. Therefore gaining access to a typical app
usage profile becomes valuable in assisting the driver developer in generating better
Native (combined with device-level Trigger_predicate()) Trigger_points targeted to a scope.

Furthermore, considering the Trigger_points positioned in the two most successful
stack layers and associated trigger predicate under the least app-invasive classification
(Native (combined with native-level Trigger_predicate()) and APIs), results show that the
distinction in effectiveness between file/disk-related Trigger_points (TP1) and network-
related Trigger_points (TP2), remains unclear. This is evident as results vary substantially
between the two types of Trigger_points even in the same stack layer and scenario. That
said, network-related fared consistently in the scenarios involving the Telegram IM
app. The scenarios involving SMS show mixed results, demonstrating that even within
the context of message hijack attacks, different types of Trigger_points leveraging both
file/disk and network might be required depending on the type of messaging app
involved in the scenario.

Overhead performance costs. Given that Trigger_points positioned at the least app-
invasive layers can be as effective as those in the app layer, the focus shifts onto the
performance overheads these Trigger_points incur since these Trigger_points are more
aligned with the requirements set out for JIT-MF. Considering only the best-performing
Trigger_points within each of the least app-invasive layers and associated trigger pred-
icates, per investigation scenario (highlighted in grey), the results show that these
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Table 5.5: Trigger point performance overheads: Additional kB required
in storage and execution time (in seconds). The results in this table reflect
overheads for the most effective Trigger_points during online collection.

Trigger point classification & Stack
layer (with associated trigger

predicates / Scenario

Crime-proxy - IM Spying - IM Crime-proxy - SMS Spying - SMS
Average
storage

(kB)

Average
time

increase (s)

Average
storage

(kB)

Average
time

increase (s)

Average
storage

(kB)

Average
time

increase (s)

Average
storage

(kB)

Average
time

increase (s)

App 45.704 - 10.234 - 1.857 0.1068 0.611 0.1068
API 43.383 - 10.363 - 0.1384 0.0669 2.762 0.0669
Native (combined with native-level
Trigger_predicate()) 61.166 - 11.133 - 20.054 0.8265 90.228 2.4885

Native (combined with device-level
Trigger_predicate()) 126.06 - 40.657 - 30.381 0.3026 46.95 2.9532

- Average increase in execution time of app functionality of interest is negligible.

Trigger_points do not necessarily incur higher storage costs, with online collected dumps
requiring as little as 0.1kB to be effective for one case study. However, these results
must also be analysed in the context of practical JIT-MF tool deployment in a realistic
setting. When one considers that dumps are triggered per critical app functionality,
corresponding to SMS/IM sending/viewing in the experiment case studies, dumps are
expected to be very frequent. While perhaps SMS is less concerned nowadays, IM is an
entirely different story that could result in daily triggers on the order of hundreds to
thousands, even in the case of online collected dumps.

The effectiveness of offline and online collection methods have very similar results.
Yet, it is of note that the average dump size required by online collection is around 143kB.
In contrast, that required by the offline method is 203MB (three orders of magnitude more
on average), per attack scenario and Trigger_point chosen. Therefore, the offline collection
method becomes less preferred due to the size of the resulting JIT-MF_Logs on the device.
As a result, the following analysis and experiments consider online collection.

Table 5.5 shows the average storage cost and additional execution time incurred
(optimal in case TP1 and TP2 are equally effective), for the best-performing Trigger_points
considering only online collection. This table shows that execution overheads incurred
while app functionality of interest executed were negligible in Telegram’s case. For
Pushbullet, this value increases to 2.9s at worst. However, given that Pushbullet operates
from a browser setting, this execution overhead does not incur any lag on the phone’s
main UI thread, enabling the user to continue using the phone normally. Moreover, while
both effectiveness and runtime overheads so far do not overwhelmingly favour any of
the layers which are least app-invasive across the board, it seems that optimal performing
least app-invasive Trigger_points selected from certain layers of the stack (specifically
those at the API layer) might be less resource-intensive than others, Trigger_point-wise.
This merits further field analysis and possible mitigation, which is explored in Section 5.5.
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5.3 Accuracy of forensic timelines using JIT-MF_Logs
The previous experiment demonstrated that the accuracy of app artefacts found in JIT-
MF_Logs is not impacted when selecting Trigger_point from lower layers of the Android
technology stack, which require a less app-invasive approach in terms of layer internals
comprehension. This offers a basis upon which Trigger_points are selected from this point
onwards. While the accuracy of JIT-MF_Logs, based on Trigger_points selection from
different stack layers, has been observed from experimentation results, the accuracy that
these Trigger_points provide in terms of forensic timeline generation for investigations
of app hijack attacks, has yet to be determined. This experiment aims to determine the
accuracy of the forensic timelines generated in the case of messaging hijack attacks when
using JIT-MF_Logs produced by JIT-MF Drivers with minimally invasive Trigger_points
as an additional forensic source of evidence to the forensic sources typically used by
forensic tools.

A series of case studies involving messaging hijack attacks are simulated to assess
the added accuracy of the newly-created forensic timelines. For each case study, a
comparison is made between the recorded app-specific artefacts found in JIT-MF_Logs
(in the form of Evidence_objects) and the ground truth attack steps executed as part of
the simulated attacks. Further comparison is made to assess further how the timeline
generated using JIT-MF_Logs as an additional forensic source compares to typically
generated forensic timelines that do not include JIT-MF_Logs, which are referred to as
baseline sources.

5.3.1 Forensic timeline generation
Forensic timeline generation considers all forensic sources that can shed light on app us-
age. These range from the device-wide logcat to app-specific sources inside /data/data,
as well as inside removable storage which can be found in the sdcard partition and
whose mount point is device-specific. Evidence collection from the device is opted for,
rather than cloud or backups, to facilitate experimentation whenever the same data
could be obtained from multiple sources (see Section 2.2). These forensic sources repre-
sent those collected by state-of-the-art mobile forensics tools, typically requiring device
rooting or a combination of hardware-based physical collection and content decryption.
These baseline sources can be complemented by JIT-MF_Logs if they do not produce the
necessary evidence for hijacked attack steps.

Figure 5.1 shows the process that transforms the evidence obtained from the afore-
mentioned forensic sources into finished forensic timelines. This pipeline is based on
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Figure 5.1: The forensic timeline generation processes.
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Chabot et al.’s [28] methodology. It revolves around the creation of a knowledge rep-
resentation model as derived from multiple forensic sources. It presents a canonical
semantic view of the combined sources upon which forensic timeline (or other) analysis
can be conducted. This model is populated with scenario events derived from forensic
footprints and the raw forensic artefacts collected from different forensic sources. These
events are associated with subjects that participate or are affected by the events and the
objects acted upon by subjects. Events can then be correlated based on common subjects,
objects, temporal relations, or expert rule sets. Event correlation starts with a seed event,
an alert the victim raises that investigators consider suspicious due to its unusual nature
or pinpointed by the user as not the result of intended device usage. Relations established
by this process correspond to a relation of composition or causation.

The first three steps in Figure 5.1 consist of forensic artefact extraction. JIT-MF_Logs
comprise unique Evidence_objects timely dumped from memory, readily carved and
parsed. All sources are decoded and merged as a Plaso [56] super timeline using the
psteal utility, and for which JIT-MF_Logs Plaso parser was developed that processes
readily-parsed JIT-MF_Logs into a single JSON file. A loader utility was developed for
Step 4 that traverses the super timeline and populates the knowledge model imple-
mented as an SQLite database table. The events in this table correspond to messaging
events of some form, depending on the forensic source. For example, JIT-MF Drivers
and messaging backups can pinpoint events at the finest possible level of granularity,
indicating whether a specific messaging app event is of type send or receive, the re-
cipient/sender. Other sources, such as the file system source (file stat), can only
provide a coarser level of events related to the reading/writing of app-specific messaging
database files on the device. A flat storage model suffices for this experiment, with
events considered atomic and their associated subjects and objects corresponding to
message recipients and content. Step 5 takes alerts of suspicious activity as input. Alert
information associated with some seed event is converted into SQL queries that encode
the required subject/object/temporal/event type correlations. The query then outputs
those events associated with the initial alert. This event sequence provides the timeline
for the incident in question, and for which (step 6), Timesketch [53] was used for the
visualisation of the said timeline.

5.3.2 Experiment setup
Each case study assumes a high-profile target victim ("John"), whose Android mobile
device stores confidential data. John uses multiple messaging apps (SMS and IM) that
have been forensically enhanced with JIT-MF due to the potentially heightened threats
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that his device may face. John receives an email to download a free version of an app
that he currently pays for on his mobile device. He downloads it and becomes a victim
of a long-term stealthy attack.

Setup. Pushbullet (v18.4.0), Telegram (v5.12.0), and Signal (v5.4.12)9 are popular SMS
and IM apps, respectively, used as targeted apps for messaging app hijack in these case
studies. The six case studies comprise messaging hijack scenarios involving spying
and crime-proxying by hijacking the functionality of the three aforementioned targeted
benign apps. For the case studies involving Telegram and Signal, these attacks are carried
out using the Android Metasploit attack suite, whereas, for Pushbullet these attacks are
executed through Selenium assuming the attacker procured the victim’s credentials.

All possible third-party application logs likely to contain evidence of hijacked attack
steps were collected for each app. Yet preliminary analysis showed that for the apps
involved (to varying degrees): i) the availability of these logs is improbable; and ii) the
content of these logs is subject to tampering as with any other trace deletion techniques.

As a result, JIT-MF Drivers were developed using the Trigger_points and Evidence_objects
shown in Table 5.6, selected for the six case studies involved in this experiment. Simi-
larly to the setup described in the previous section, app-specific Evidence_objects were
selected from the app layer since it is most likely that these types of objects will allow
JIT-MF to generate JIT-MF_Logs that contribute to the most accurate forensic timeline.
The selection of Evidence_objects was unique to each app, based on analysis of individual
app internals. The app-specific Evidence_objects for Telegram and Pushbullet remain the
same as from the previous experiment. Signal is also an open-source app; therefore, the
Evidence_object selection process followed that explained for Telegram in the previous
section. Since the case studies involve messaging hijack attacks, each app’s unique object
is the Message object representative. Trigger_points were selected from the native layer
(with native-level Trigger_predicate()) and API layer, which produce the most accurate
JIT-MF_Logs while imposing the least app invasive and development effort in terms
of stack layer comprehension for Trigger_point selection (as shown in the results of the
previous experiment Section 5.2). From preliminary usage of the apps considered, it was
noted that the apps either store/load messages from a local database on the phone or
read/send/synced messages over the network. Therefore related system calls (e.g. send,
write, etc.) and API network-related function calls were used as Trigger_points and are
listed in each of the case studies below. The drivers used are Listing A.1 - Listing A.6
found in Appendix A.

9https://signal.org/en/

77



CHAPTER 5. EXPLORATION OF JIT-MF POSITIONING WITHIN THE ANDROID
TECHNOLOGY STACK

Table 5.6: Trigger_points and Evidence_objects selected.

Case
Study

Attack Scenario
Trigger_point selection Evidence_object selection

Stack layer Trigger_point Stack layer Evidence_object

A Telegram Crime-Proxy Native send() App
org.telegram.messenger.
MessageObject

B Signal Crime-Proxy Native write() App
org.thoughtcrime.
securesms.conversation.
ConversationMessage

C Pushbullet Crime-Proxy Native write() App org.json.JSONObject

D Telegram Spying Native recv() App
org.telegram.messenger.
MessageObject

E Signal Spying Native open() App
org.thoughtcrime.
securesms.conversation.
ConversationMessage

F Pushbullet Spying API android.content.Intent$1.
createFromParcel()

App org.json.JSONObject

A rooted Google Pixel 3XL developer phone running Android 10 emulator was used
in this experiment. This enabled ease of automation and ensured all possible forensic
sources were collected from the device (even those found in internal storage) to benefit the
baseline timeline generation. Table 5.7 lists the properties of the state-of-the-art forensic
sources considered, their method of collection and required parsers for populating the
Plaso super timeline. These sources comprised individual app databases, app-specific
files including write-ahead log files, system logs and JIT-MF_Logs. The write-ahead log
files (cache4.db-wal files) serve as a cache for maintaining an app’s database integrity.
They typically contain partial app events which have yet to be inserted inside the app’s
database and are subject to frequent log rotation. Apart from the JIT-MF Plaso parser,
additional parsers for the app-specific databases (including write-ahead-log database)
and logcat were developed.

Case study setup. In each of the case studies: i) the emulator is started; ii) the targeted
app is enhanced with JIT-MF Driver and Driver Runtime; iii) legitimate traffic (noise) is
constructed iv) a messaging hijack attack comprising of attack steps is simulated within a
controlled setup; v) all available forensic sources of evidence are collected (those typically
collected and JIT-MF_Logs); and vi) timelines are produced based on a knowledge model.
As a result of these steps, the following timelines are generated:

• A Ground Truth Timeline generated by logging the attack steps of the executed hijack
attack.

• Baseline Timelines generated by querying a knowledge model made up of state-of-
the-art forensic sources, and

• JIT-MF Timelines generated by querying a knowledge model made up of both
baseline sources and JIT-MF_Logs.
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Table 5.7: Forensic sources and parsers.

Case study Location on device Source type Contents Collection & Decoding Requires
rooting

Plaso parsers

A,D /data/org.telegram.messenger/..
./cache4.db

Baseline Telegram database adb pull, Teleparser Yes Teleparser parser

A,D /data/org.telegram.messenger/..
./cache4.db-wal

Baseline Latest changes to
Telegram’s database

adb pull, Walitean Yes Walitean parser

B,E /<removable_storage>/.../signal.
backup

Baseline Signal backup database Signal DB decryptor Yes Signal database
parser

D,F /data/data/com.android.providers.
telephony/.../mmssms.db

Baseline SMS database adb pull Yes mmssms.db Plaso
parser

D,F /data/data/com.pushbullet.
android/.../pushes.db

Baseline Pushbullet message
database

adb pull Yes Pushbullet parser

A-F /data/<app_pkg_name>/* Baseline App specific files, cache
files

adb pull Yes File stat Plaso parser

A-F /<removable_storage>/<app_pkg_
name>

Baseline Media files adb pull No File stat Plaso parser

A-F logcat Baseline System logs adb logcat No Logcat parser

A-F /<removable_storage>/jitmflogs JIT-MF_Logs Evidence_objects
dumped from memory

adb pull No JIT-MF parser
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While there is only one ground truth timeline, multiple JIT-MF and baseline timelines
can be created per case study depending on the different seed event correlations. These
timelines are populated with events outputted from a query run on the knowledge model
that starts from a seed event.

Background noise was generated, taking into account the app’s functionality. That
is, the messaging app was loaded and messages were exchanged via the targeted app
involved in the messaging hijack attack simulation. Each attack simulation comprised
background noise and three malicious events (three crime-proxy events or three spying
events). Some of the attacks in these case studies target victim apps that use rate-limited
API calls to a server backend, allowing only 150 consecutive calls from the same device.
Since each attack comprised three such events per case study, and the API call limit is
150, each attack simulation was executed fifty times — each time obtaining the timelines
above. For each case study, the specifics of the simulated attack are described along with
the complete experiment setup (including background noise and attack parameters) and
the investigation process (including the seed event and matching criteria).

Timeline comparison. The JIT-MF Timeline and Baseline Timeline are compared to the
Ground Truth Timeline based on: i) completeness of timeline, i.e. lack of missing events; ii)
accuracy of the timelines concerning the sequence in which the events happened and the
difference between the recorded time of an event in the ground truth timeline and the
JIT-MF timeline. Preliminary runs showed that baseline forensic sources could provide
different metadata depending on the benign app hijacked. Therefore, the matching
criteria for a matched event between the generated and ground truth timelines are
adjusted in the case studies to benefit from the evidence typically found in baseline
forensic sources.

A: Telegram Crime-Proxy

Accessibility attack. An accessibility attack targets John’s Telegram app and is used by
an attacker to send messages to a co-conspirator using the username "Alice" on Telegram.
The attacker misuses the victim’s Telegram app to send messages to "Alice" and instantly
deletes them.

Setup. John uses his Telegram app regularly to communicate with his family and
friends. He sends six Telegram messages to his relatives before entering a meeting,
then goes silent. The attacker notices the decrease in Telegram activity and uses this
time to communicate with "Alice" three times. He waits ten to twenty seconds (ran-
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domly generated using rand) every time before messaging "Alice". The attacker tries
to execute the attack as quickly as possible to retain stealth but gives an allowance
of ten seconds to allow for any delays within the app. John continues using Tele-
gram thereafter and sends six messages to his friend. John’s messages take this form:
Noise_ < Random10− 100− letters > whereas those sent by the attacker are similar to
Sending_Attack_#Iteration.

Investigation. John notices a new chat on his phone with the username "Alice" with no
messages. He brushes it off but is contacted later that week by investigators who told
him that his phone was used to send messages containing the specific keywords. He
takes his phone to be examined. His phone is already equipped with a JIT-MF Driver as
shown in Listing A.1.

This attack step involves the sending of a message over the network. Therefore the
selected Trigger_point is the send system call, and the Evidence_object is the Telegram
message itself.

The seed event is generated based on the alert flagged, which gives the investigators
three possible starting points to use when formulating the queries to be executed on the
different knowledge models.
Seed Event: Subject: Alice, Object: *specific keywords*, Event type: Message Sent, Time: last
seven days
Matching criteria: The criteria for an event in the baseline or enhanced timelines to
match the ground truth timeline is the presence of the specific message content that was
sent within the event.

B: Signal Crime-Proxy

Accessibility attack. An accessibility attack targets John’s Signal app and is used by
an attacker to send messages to a co-conspirator using the username "Alice" on Signal.
The attacker misuses the victim’s Signal app to send messages to "Alice" and instantly
deletes them.

Setup. This case study is identical to the one described in the previous section.

Investigation. John’s phone is already equipped with a JIT-MF Driver as shown in
Listing A.2. Like the previous case study, the Evidence_object is the Signal message itself.
The send system call is not called when sending a message. Thererfore, the write

system call is used as a Trigger_point instead, which writes to the local database and over
the network.
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Seed Event: Subject: Alice, Object: *specific keywords*, Event type: Message Sent, Time: last
seven days
Matching criteria: An event stating that a message was sent to Alice’s number.

C: Pushbullet Crime-Proxy

Accessibility attack. John’s Facebook credentials are stolen by an attacker using a phish-
ing accessibility attack akin to Eventbot [138]. The attacker uses the stolen credentials to
proxy SMSs, through John’s Pushbullet app, from his web browser.

Setup. John does not use SMS functionality on his phone but is aware that he receives
many advertisement messages. John receives six ad messages before entering a meeting.
The attacker notices the decrease in activity and uses this time to communicate with
"Alice" three times. He waits ten to twenty seconds (randomly generated using rand),
then opens his browser and sends three messages to "Alice". Messages received by John
take this form: Noise_ < Random10− 100− letters > whereas those sent by the attacker
are similar to this: Sending_Attack_#Iteration.

Investigation. John receives a hefty bill from his telephony provider at the end of the
month, attributing most of the cost to message sending. He notices a new number not on
his contact list and initiates a forensic investigation. His phone is already equipped with
a JIT-MF Driver as shown in Listing A.3.

Pushbullet stores message objects in JSON structures. A write system call Trigger_point
occurs when a message is sent, at which point the process memory contains the message
sent, stored in JSON.
Matching criteria: A message sent to the suspicious number.

D: Telegram Spying

Accessibility attack. An accessibility attack targets John’s Telegram app and is used by
an attacker to intercept messages sent to the username "CEO" (John’s boss - with whom
confidential data is shared). The attacker misuses John’s Telegram app to grab messages
exchanged with "CEO" and Telegram.

Setup. John regularly uses his Telegram app to communicate with his CEO. John
sends messages to his CEO multiple times during the day but goes silent during three
meetings. The attacker notices the decrease in Telegram activity and decides to use this
time to spy on John’s correspondence with his CEO. He waits ten to twenty seconds
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(randomly generated using rand), then opens Telegram, loads the "CEO" chat, intercepts
the messages loaded on the screen, then closes the app quickly. Messages sent by John
take this form: Confidential_ < Random10− 100− letters >.

Investigation. John’s phone is already equipped with a JIT-MF Driver as shown in
Listing A.4. In the case of spying, one of the attack steps involves reading a message.
Therefore, the Evidence_object is the message itself. Since Telegram is a cloud-based app,
some messages are stored on the device, and others are loaded and received from cloud
storage over the network. Therefore the selected Trigger_point is the recv system call.
Seed Event: Subject: CEO, Object: *confidential message*, Event type: Message Read/Load-
ed/Chat activity, Time: date of message sent/received
Matching criteria: An event type indicating chat activity, loading, or reading of "CEO"
messages. The message object itself does not correspond directly to an attack step. The
message object in memory does not contain metadata about whether it was read but
rather that it was either sent or received at some point. JIT-MF forensic sources identify
a chat interception event instead as multiple message objects exchanged with the same
contact, all having been dumped at the same timestamp. Furthermore, the timestamp of
these events must occur in the database after the sending time to avoid including data
related to when the message was initially sent or received.

E: Signal Spying

Accessibility attack. An accessibility attack targets John’s Signal app and is used by an
attacker to intercept messages sent to the username "CEO". The attacker misuses John’s
Signal app to open a confidential chat with the username "CEO" and grabs the messages
that appear on the screen. Finally, the attacker closes Signal.

Setup. This case study is identical to the previous one.

Investigation. John’s phone already has a JIT-MF Driver, as shown in Listing A.5. Like
the previous case study, the Evidence_object is the intercepted Signal message. Signal is
not a cloud-based app and uses solely on-device storage. Therefore the open system call,
used to open the database file from which messages are loaded to be read, was selected
as a Trigger_point.
Seed Event: Subject: CEO, Object: *confidential message*, Event type: Message Read/Load-
ed/Chat activity, Time: date of message sent/received
Matching criteria: As previous case study.
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F: Pushbullet Spying

Accessibility attack. John’s Facebook credentials are stolen by an attacker using a
phishing accessibility attack. The attacker now has access to any messages sent or
received by John through a syncing event on John’s phone.

Setup. John regularly uses his SMS app to communicate with his CEO. John sends
messages to his CEO multiple times during the day but goes silent during three meetings.
Unbeknownst to him, the attacker immediately intercepts John’s ongoing SMS activity.

Investigation. John’s phone is already equipped with a JIT-MF Driver as shown in
Listing A.6. Unlike Telegram and Signal, Pushbullet spawns several sub-processes to
sync activity generated on the device with that stored in the cloud. While in Case Study
C the attack involves a level of interaction with the device (since the SMS has to be sent
from the device after receiving an instruction from the browser), in this case, any message
sent or received is assumed to have been intercepted automatically. The Trigger_point
selected is one of the Android API calls used by the Pushbullet to sync sent/received
messages via Firebase. The only Evidence_object, related to an attack step, that can be
retrieved from memory for this case study, is a JSON object containing "push" event
metadata which indicates message content has been synced and can be remotely read.
Seed Event: Subject: CEO, Object: *confidential message*, Event type: Message Read/Load-
ed/Chat activity, Time: date of message sent/received
Matching criteria: As previous case study.

5.3.3 Results
Table 5.8 compares the generated JIT-MF timelines and Baseline timelines, per seed
event correlation, to the ground truth timeline. The generated timelines included events
unrelated to the attack steps (noise generated when sending and receiving legitimate
messages); therefore, precision and recall were used. Precision is a value between 0
and 1, which denotes the average relevant captured events. The higher the value, the
larger the portion that attack steps make up the timeline, i.e. little noise was present.
Recall denotes how many of the executed attack steps were uncovered. Similarly, the
higher the value between 0 and 1, the more attack steps in the ground truth timeline
were captured. Timeline difference in the captured attack events from the ground truth
timeline was calculated using Jaccard dissimilarity on the set of attack events uncovered
by the generated timelines. In this case, the higher the value between 0 and 1, the more
dissimilar (undesirable) the generated timeline is to the ground truth.
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Table 5.8: Forensic timeline comparisons.

Case
study

Seed event -
Correlation

Baseline JIT-MF Timeline

Recall Precision Timeline
difference

Recall Precision Timeline
difference

A
Subject 0 - 1 0.98 1 0.02
Object 1 0.66 0 1 0.66 0

Event Type 1 0.01 0 1 0.01 0

B
Subject 1 0.07 0 1 0.06 0
Object 0 - 1 0.87 1 0.13

Event Type 1 0.11 0 1 0.07 0

C
Subject 1 1 0 1 1 0

Event Type 1 0.23 0 1 0.23 0

D
Subject 0 - 1 0.49 0.46 0.51
Object 0 - 1 0.49 0.45 0.51

Event Type 0 - 1 0.49 0.45 0.51

E
Subject 0.99 0.97 0.01 0.99 0.21 0.01
Object 0 - 1 0.58 0.23 0.42

Event Type 0.13 0.01 0.87 0.63 0.02 0.37

F
Subject 0 0 1 0 0 1
Object 0 0 1 0 0 1

Event Type 0 - 1 0.02 1 0.98
- denotes no events were captured, so precision could not be calculated.

Primary contributors to timeline similarity. The timeline difference values in the table
show that overall JIT-MF timelines are at least as similar to the ground truth as baseline
timelines. While the dissimilarity for the baseline timelines varies substantially within
a single case study, depending on the seed event - correlation, this is not the case for
JIT-MF timelines whose distance from ground truth remains roughly the same. Since
JIT-MF forensic sources include crucial evidence metadata (message content, recipient,
date ...), the chosen seed event correlation has little to no effect on the output timeline.
In contrast, evidence from baseline sources is not as rich, with correlation becoming
a critical factor affecting the resulting timelines. Yet even in scenarios where JIT-MF
timelines are equivalent to the baseline in event sequences, the metadata available in
JIT-MF forensic sources can provide the investigator with richer timelines through more
informative events. For case study C where the timeline similarity of the JIT-MF timeline
was equal to the baseline and this was consistent across different seed events, this can be
attributed to the fact that the Pushbullet attack was not as stealthy and did not include
removing forensic footprints (as the app does not expose this functionality). This shows
that the impact of JIT-MF_Logs on the forensic timeline is more significant when the
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attack is stealthier.
The table also shows that JIT-MF timelines are still more similar to the ground truth

in the case of spying (case studies D-F) when compared to the baseline sources, which do
not include evidence pointing to message reading or browsing chat activity.

A point of concern is that in the instances when the JIT-MF timeline difference is
low; that is, the JIT-MF timeline is close to the ground truth, the precision value is low,
indicating that a lot of Evidence_objects are present in the timeline that are not part of
the attack steps. While collected Evidence_objects mean that evidence of attack steps is
present, this also shows that further post-processing effort is required to address precision
in forensic timeline generation of attack steps. This is addressed in a separate evaluation
presented in Section 6.2.

Primary contributors to timeline dissimilarity. JIT-MF timelines were most dissimilar
from the ground truth in the last case study F. In Pushbullet’s case, the app is hijacked
differently than Telegram and Signal. For the Telegram and Signal attack scenarios, the
malware is present on the device, taking over the hijacked app directly. Whereas with
Pushbullet, the attack is leveraging compromised credentials from a remote device or
workstation, and no malware may be present on the victim’s device. Yet, JIT-MF Drivers
are attack vector agnostic; therefore, this should not affect JIT-MF_Logs contents. The
factors that could have contributed to this include: i) many of the app’s functionality
was delegated to a sub-process that was not instrumented; ii) the Evidence_object defined
in the JIT-MF Driver was coarser-grained (a JSON object containing "push" event that
synced changes) that did not include the necessary metadata for correlating spying
events. These limitations in the JIT-MF’s driver implementation contributed to a JIT-
MF timeline whose gain on the baseline timeline was minimal regarding ground truth
timeline similarity.

Modifications needed to be made to the JIT-MF Driver template to mitigate issues
related to an app having delegated functionality to multiple processes. Listing 4.1
line 3 indicates how JIT-MF Drivers may be fine-tuned, so specific app processes are
instrumented rather than automatically instrumenting the main app process. Yet, this
may still be insufficient to address the other reason for dissimilarity in the Pushbullet
spying case study.

Furthermore, while JIT-MF timelines are more similar to the ground truth timeline
than baseline timelines in case studies D-F involving spying, they are less similar to
the ground truth timelines when compared to JIT-MF timelines obtained for the crime
proxy case studies A-C. The difference between these sets of case studies is that in crime
proxy scenarios, the Evidence_object and Trigger_point defined in the JIT-MF Driver are
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tightly linked. The results are JIT-MF_Logs containing message objects with metadata
that can be linked to the hijacked app functionality of interest. In spying scenarios, events
are coarse-grained (an indication of a chat being intercepted/synced rather than an
individual message). Moreover, these events are not tightly coupled with Trigger_points
since key objects in memory are either absent or do not contain indicative metadata of the
ongoing event. This shows that the selection of Evidence_objects and Trigger_points merits
further effort in different attack scenarios to ensure that they reflect app functionality of
interest and that they can be linked to the hijacked attack step that the JIT-MF Driver was
developed to log.

JIT-MF timeline sequence accuracy. When performing order-sensitive comparisons
using Kendall Tau coefficient, one can conclude that the sequence of captured events in
JIT-MF timelines (containing only ground truth events) is always identical to that in the
ground truth timeline, i.e. a coefficient of 1 is observed in all cases. Additionally, the
standard deviation between the time of the events logged in the ground truth timelines
and that logged in JIT-MF timelines is at most 62s. While any additional cost to complete a
typical app function diminishes the app’s performance, the delay occurs during message
sending and receiving without affecting the user interface; therefore, the lag is not
noticeable.

Performance overheads. Since Pushbullet offers remote SMS-on-PC functionality, per-
formance overhead was calculated based on the increase in turnaround time. With
Telegram and Signal, these apps are generally used through the phone’s UI; therefore,
performance overhead was measured in Janky frames,10 an indicator of non-smooth
user interactions with GUI apps. With JIT-MF Drivers enabled, only an average increase
of 0.5s was registered in Pushbullet turnaround times for SMS operations, as observed
from the web browser’s Javascript console. Telegram and Signal had an average increase
of 1.59% and 3.53% of Janky frames, respectively, with JIT-MF Drivers enabled; the
performance penalty overall was less than 3.53%.

While Janky frames indicate how smooth the app’s UI is while running, this does not
factor in performance issues such as the app crashing, a few instances of which were
observed during experimentation with Telegram and Signal apps. Furthermore, while
the experiment ran relatively short, logs generated by JIT-MF and stored on the device
accumulate until they are collected and removed by a potential investigator. Therefore,
if the magnitude of these logs increases exponentially over time, the device would be

10https://developer.android.com/topic/performance/vitals/render
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rendered unusable. Both of these issues influence the feasibility of JIT-MF in a realistic
setting and require further experimentation that contributes to maintaining app stability.
An experiment addressing this concern is presented in Section 5.5.

5.4 Evidence object accuracy in lower layers of the stack
Results from the previous section show that app-specific artefacts within JIT-MF_Logs
can contribute towards a more accurate forensic timeline, concerning baseline sources.
Specifically, forensic timelines generated using Trigger_points from lower levels in the
stack, produce accurate forensic timelines for IM crime-proxy messaging hijack attacks.
The selection of Trigger_points from lower levels in the stack assists towards achieving a
minimally invasive approach that requires less development effort due to Trigger_point
instructions selected from layers of the stack that are more openly documented than
app-specific instructions. Yet so far, the selection of Evidence_objects has been made from
the app layer. This approach the most obvious way to associate memory artefacts with
an application functionality of interest; and therefore guarantees the accuracy of the
app-specific artefacts collected and which contribute to forensic timeline generation.
Therefore, an app-invasive approach is still required to comprehend app layer internals
and establish Evidence_objects. Thus imposing infeasible JIT-MF Driver development,
due to required knowledge of app internals to determine app-specific Evidence_objects
associated with app functionality of interest.

The experiment described in this section aims to determine how JIT-MF Drivers can be
generalised further without compromising timeline accuracy. It evaluates the accuracy of
JIT-MF_Logs when using JIT-MF Drivers whose both Trigger_points and Evidence_objects
are selected from the API layer of the Android technology stack. While Trigger_points
from this layer are expected to be more app-specific than those selected from the native
layer due to app-specific usage, the publicly-available documentation and widespread
usage of APIs across apps show the potential for Trigger_points positioned in this layer.
Furthermore, given the performance overheads resulting from the previous experiment
utilising Trigger_points from the native layer and initial indications from performance
results obtained in the first experiment (Table 5.5), it is possible that Trigger_points at this
layer are likely to cause the least concern regarding storage and execution overheads.

5.4.1 API-based JIT-MF Driver development
The API layer in the Android technology stack is generally more stable and widespread
across different applications and versions, allowing JIT-MF Drivers to be developed
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Figure 5.2: Proposed process for creating and deploying API-based JIT-MF
Drivers.

in a minimally-invasive approach. In return, JIT-MF Drivers with Trigger_points and
Evidence_objects selected from the API layer remain usable across different applications
and versions using the same API for app functionality of interest (unlike application-
specific JIT-MF Drivers, which need to be developed anew). Figure 5.2 presents the
process for creating API-based JIT-MF Drivers as part of this new proposed approach.

Step 1: The first step in developing an API-based JIT-MF Driver requires that, given
a third-party application, a JIT-MF Driver developer must first identify the scope of
the JIT-MF Driver by determining which key application functionality requires deeper
visibility (application functionality of interest) and hence needs to be logged. In the
case of stealthy messaging attacks, for instance, key application functionality constitutes
messaging events that an attacker could hijack.

Step 2: Application developers use readily-available infrastructure (such as services,
libraries and APIs) to develop key functionality commonly carried out among applica-
tions. Given a third-party application, the JIT-MF Driver developer must determine the
underlying APIs and their instructions used to perform the identified key application
functionality; for example, storage/database libraries that persist messaging events in
the application’s local database.

Step 3: Applications using the same underlying infrastructure may use custom APIs
at higher abstraction levels that better fit a specific application’s needs. However, at the
native level, these APIs typically use the same native libraries. Therefore the JIT-MF
Driver developer must determine the underlying infrastructure at the most native level,
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which is expected to be consistent among application versions and applications; for
instance, the native sqlite.c library.

Step 4: Given a forensic enhancement technique and the underlying infrastructure iden-
tified, publicly available documentation of the interface exposed by the infrastructure’s
API can be used to determine Evidence_objects and Trigger_points. In the case of API-based
JIT-MF Drivers, the Trigger_points selected comprise infrastructure instructions which
include Evidence_objects as parameters that comprise evidence of the hijacked attack steps
as a result of application functionality of interest being executed. Since the focus is on
API instructions, this step involves analysing only a subset of the application codebase
that interacts with the API. This is typically publicly well-documented through the API
interface and can be common for applications that use the same underlying infrastructure.

Step 5: An infrastructure codebase is expected to expose the same interface across the
different applications in which it is used. However, applications may make application-
specific use of the interface and the instructions carried out by the infrastructure. There-
fore, the final step is expected to be unique to each application and involve application-
specific parsing of the generated and collected log entries. This means that an element
of compiled app code analysis is still required to make sense of the application-specific
elements in the log entries, the extent of which is difficult to predict as it requires a large-
scale qualitative exploration of the solution. However, it is expected that the definition
of the parser will be similar for applications using the same underlying infrastructure.
Since infrastructure code is more stable and less likely to change, modifications to the
log parser between an application’s versions are expected to be minimal. While the
parsing element may need revising, the collection element remains functional. Therefore,
evidence is collected regardless of whether or not a parser is readily available or a new
one needs to be developed.

5.4.2 Common infrastructure adoption
A preliminary analysis is necessary to identify which infrastructure is widely adopted
among messaging apps to ensure that an API-based JIT-MF Driver can function across
app versions and on multiple apps. Not only does this infrastructure need to be in use
by the app, but it also needs to be taking an active role when application functionality of
interest that needs to be logged is taking place. AppBrain [14] is a service that provides
statistics on the Android application’s ecosystem, including library adoption by different
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apps in different categories. In this case, the data provided by AppBrain specifically on
Android messaging apps is used per the scope of this evaluation.

AppBrain categorises libraries used in Android applications by tags, depending on
the functionality provided by the library. As described in step 2 of Figure 5.2, when
developing an API-based JIT-MF Driver, the selected infrastructure must support core
app functionality that is within the JIT-MF Driver’s scope and requires deeper visibility
(Figure 5.2 step 1). Out of the 41 possible categories, Network and Database libraries are
identified as critical infrastructures used by messaging apps to support key messaging
functionality. Network functionality allows messages to be sent and received over the
network, and Storage allows messages (both sent and received) to be stored and retrieved
on the devices where the app is installed.

At the time of this analysis, AppBrain statistics showed that the most widely used
network library was Retrofit.11 In contrast, the most widely used database infrastructure
was Android Architecture Components,12 which at its most native level (see Step 3
Figure 5.2) refers to storage management through an SQLite Database.13 AppBrain
statistics revealed that at the time, 86.62% of communication (messaging) apps used
Android Architecture Components, while only 14.6% used Retrofit.

5.4.3 Case study experiment
This experiment was carried out using representative apps from the same category; that
is, instant messaging (IM) apps. To this end, the Pushbullet app used in the previous
case studies was replaced with the WhatsApp app. Furthermore, given that results
from previous experiments showed that further research is required to devise better
JIT-MF Drivers for spying scenarios, the experiments within this case study focus on a
crime-proxy attack scenario.

Telegram (v8.8.5), Whatsapp (v2.22.17.70) and Signal (v5.44.4) were installed on two
Google Pixel 3XL emulators running Android 10 (API 29). JIT-MF was used to enhance
the three apps on one of the emulators (Device A) with a JIT-MF Driver. The JIT-MF
Drivers from the previous experiment (with Evidence_object selected from the App layer)
were used to forensically enhance Telegram and Signal. A new JIT-MF Driver was created
for WhatsApp using an app-specific Evidence_object. A single new SQLite API-based
JIT-MF Driver14 was also developed to be used on all three apps. AndroidViewClient15

11https://square.github.io/retrofit/
12https://www.appbrain.com/stats/libraries
13https://developer.android.com/training/data-storage/sqlite
14https://gitlab.com/bellj/infrastructure_based_agents
15https://github.com/dtmilano/AndroidViewClient
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was used to simulate normal messaging traffic, whereby 20 messages were sent, and
20 messages were received by Device A. Each message was formulated as follows:
Normal_Message_ < #msgnumber >.

API-based JIT-MF Driver accuracy comparison. Resulting JIT-MF_Logs produced by
the drivers are expected to include any messages sent and received by the enhanced app.
The accuracy of an SQLite API-based JIT-MF Driver is compared to JIT-MF Drivers with
app-specific Evidence_objects, based on the log entries found in JIT-MF_Logs using the
different JIT-MF Drivers.

API-based JIT-MF Driver development. Following the steps shown in Figure 5.2, the
SQLite API-based driver was developed, as follows. Message send functionality was
identified as the key application functionality of interest the SQLite API-based JIT-MF
Driver must log. Log entries produced by JIT-MF are invoked at Trigger_points contain-
ing Evidence_objects. In the case of an SQLite API-based JIT-MF Driver, Trigger_points
were defined as the functions exposed by the sqlite C interface16 and Evidence_objects
are defined as the parameter within these functions that contains the SQL statements
executed.

Log collection. The publicly available documentation for SQLite indicates that pre-
pared statements allow applications to execute all SQL statements. Furthermore, the
second parameter of any prepared statement contains the SQL query to be executed.
Subsequent bind functions (BIND_INT,BIND_TEXT,BIND_BLOB) are used to populate
the parameterised values of the query, depending on a query ID.17 Therefore log entries
produced by SQLite API-based JIT-MF Driver should consist of SQL statements that
were executed to populate messages in the messaging app local database.

Log parsing. A log parser was required to parse the resulting JIT-MF_Logs. While the
SQLite API-based JIT-MF Driver was the same for all three apps, the log entries contained
app-specific knowledge requiring unique parsing logic per app. For instance, not all
apps use the same SQL statements to populate their respective local databases. However,
SQLite databases include a schema that describes the tables within a database. Therefore
the developed parser could use this information to carve out the necessary portions from
the log entries.

16https://www.sqlite.org/c3ref/funclist.html
17https://www.sqlite.org/c3ref/stmt.html
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1 INSERT INTO message_ftsv2(fts_jid,docid,content,fts_namespace) VALUES (0 b,null,normal_message_1
,0 b)

2 REPLACE INTO messages_v2 VALUES(2328, 1679923803, 2, 0, 1662483779, n8\"QY[!d\"QY[!dC}
cNormal_message_1 , 0, 0, 18446744073709552000, NULL, 0, 0, 0, undefined, 0, 0, 0, undefined
)

3 INSERT INTO sms(thread_id,subscription_id,address,protocol,expires_in,server_guid,date_sent,body
,date,read,type,unidentified,date_server,reply_path_present,service_center,address_device_id
) VALUES (3,18446...0,3, 31337,0,d500 3b3d-ce8e-41cf-ba67-1cf592fa81c2,1662485982439,
Normal_message_1Âğ,1662485983160,0,10485780, 1,1662485974012,1,GCM,1)

Listing 5.1: Unparsed log entries generated by infrastructure-based JIT-MF
Driver for WhatsApp (1), Telegram (2) and Signal (3) respectively

1 {"time": "1662481636", "event": "WhatsApp Message Sent", "trigger_point(s)":
"sqlite3_clear_bindings|sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|
sqlite3_bind_int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize"
, "object": {"date": "", "message_id": "","text": "normal_message_1", "to_id": "", "to_name"
: "", "to_phone": "", "from_id": "", "from_name": "", "from_phone": ""}}

2 {"time": "1662483789", "event": "Message Sent", "trigger_point(s)": "sqlite3_clear_bindings|
sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_int64|
sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize", "object": {
"message_number": "2328", "date": "1662483779", "text": "Normal_message_1 ", "type":
"received", "to_id": "5181266731", "to_name": "target_phone;;;", "to_phone": "35699626972",
"from_id": "1679923803", "from_name": "contact_phone;;;", "from_phone": "35679247196"}}

3 {"time": "1662485983", "event": "Message Sent", "trigger_point(s)": "sqlite3_clear_bindings|
sqlite3_prepare_v2|sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_int64|
sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|sqlite3_finalize", "object": {"date"
: "1662485983160", "text": "Normal_message_1", "type": "received", , "to_id": "_", "to_name"
: "target_phone", "to_phone": "+35699626972", "from_id": "3", "from_name": "contact_phone",
"from_phone": "+35679247196"}}

Listing 5.2: JIT-MF log entry sample generated while using WhatsApp,
Telegram and Signal, produced through an SQLite infrastructure-based
JIT-MF Driver.

Listing 5.1 shows three unparsed log entries generated by an SQLite infrastructure-
based driver, while sending messages from WhatsApp, Telegram and Signal, respectively.
Each entry comprises an INSERT | REPLACE statement, signifying a new message
that will be inserted in the local database. App-specific parsers were developed which
could: i) identify the names of the message table unique to each app (message_ftsv2,
messages_v2 and sms), and ii) map the appropriate field values with the key applica-
tion functionality metadata; for instance, the second field value of a REPLACE INTO

messages_v2 table generated when using Telegram reflects the time at which a message
was sent. The respective parsed log entries are shown in Listing 5.2.

Results. Publicly-available documentation allowed the development of an SQLite API-
based JIT-MF Driver minimising substantially the app-specific compiled code analysis.
The same SQLite API-based JIT-MF Driver was effective on all three apps; however,
app-specific log parsing was required per app as expected due to app-specific usage of
the API, after JIT-MF_log collection.

Output generated by the SQLite API-based JIT-MF Driver was compared with that
produced by the application-based JIT-MF Drivers. The final column in Table 5.9 shows
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Table 5.9: The table shows the maximum lines of application code (LoC)
that need to be analysed to develop an app-specific JIT-MF Driver and an
SQLite API-based JIT-MF Driver, along with the percentage of log entries
retrieved by an SQLite API-based JIT-MF Driver, when compared with
log entries generated using an app-specific JIT-MF Driver.

Application Maximum LoC analysed for
app-specific JIT-MF Driver

Maximum LoC analysed for
SQLite API-based JIT-MF

Driver

% of log entries retrieved by
SQLite API-based JIT-MF

Driver

WhatsApp 1,515,334 36,778 100
Telegram 1,025,467 50,964 100
Signal 1,552,171 61,496 100

that the SQLite API-based JIT-MF Driver produced the same number of log entries con-
taining the same text metadata, as each app-specific driver. While text metadata in log
entries generated by the SQLite API-based JIT-MF Driver (Listing 5.2) and application-
based JIT-MF Drivers (Listing 4.4) is the same, closer inspection of the two sample log
entry outputs generated, shows some difference in the other Evidence_object metadata
generated. Evidence_object metadata generated by SQLite API-based JIT-MF Driver trans-
lates roughly to the same metadata obtained by the application-based JIT-MF Drivers in
the case of Telegram and Signal. With WhatsApp, however, Evidence_object log entries
are missing the recipient value. Unlike Telegram and Signal, WhatsApp is closed-source.
Therefore, parsing the generated logs was not as straightforward and possibly required
further in-depth compiled code analysis efforts to parse metadata within SQLite API-
based log entries fully. That said, given that the log entries generated by the JIT-MF
Driver contain all the Evidence_object involved in interactions with the database, addi-
tional code comprehension effort can be carried out at a later stage to parse the generated
JIT-MF_Logs.

App-specific Evidence_objects as defined in JIT-MF Drivers are selected based on
comprehension and analysis of the application codebase, which calls for compiled and
possibly obfuscated app-specific code analysis. Lines of code (LoC) are used as a metric
to highlight the effort needed to analyse compiled application code when developing
app-specific and SQLite API-based JIT-MF Drivers. The second and third columns of
Table 5.9 show the maximum LoC that need to be analysed using both approaches (app-
specific and SQLite API-based JIT-MF Driver) to select the relevant Evidence_object and
thus develop a JIT-MF Driver for each app. For app-specific JIT-MF Drivers, LoC for
each app reflects the lines of code in the respective unpacked java source files. For the
SQLite API-based JIT-MF Driver, the LoC reflects the lines of code of unpacked java

source files that interact with the SQLite API. In all three cases, the app codebase that
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needs to be analysed to parse the JIT-MF_Logs produced by SQLite JIT-MF Driver is
much smaller than each of the applications’. The LoC values in the table portray the
worst-case scenario, as analysis efforts can be reduced further in the case of app-specific
JIT-MF Driver by using keyword searches (e.g. Message) – assuming an unobfuscated
codebase – to narrow the search for the Evidence_object to a couple of classes. Similarly,
public documentation of the infrastructure’s interface can outline key exposed functions
that can narrow the search even further to the select classes that use those functions.

Regarding performance, no UI degradations were observed during experimentation,
indicating no app performance degradation or slow-down. Given initial performance
results in Table 5.5 and observation during this experiment, it is possible that API-based
JIT-MF Drivers are not only optimal in terms of the minimally invasive approach required
to select Trigger_points and Evidence_objects but also in terms of performance overheads,
thus avoiding the need for sampling, altogether. This, however, would require further
experimentation to deduce and may not necessarily generalise across different attack
scenarios and APIs.

5.4.4 Prevalence across app versions
The benefits of a generic driver can be measured across apps and across app versions,
whose frequent changes in codebases may require JIT-MF Driver developers to update
JIT-MF Drivers just as frequently. Results from the preliminary analysis show that storage
libraries, specifically managed through SQLite, are the most commonly-used storage
library and surpass the usage of network libraries in messaging apps by 68.02%. While
results from the case study for WhatsApp, Telegram and Signal, show that an API-Based
JIT-MF Driver is effective across the latest versions of these apps, it remains to be seen
whether or not this API can be relied on across previous versions of the apps.

AppBrain does not provide statistics on the previous versions of Android applications.
Therefore, a quantitative static analysis approach is used within a qualitative set of
applications (comprising WhatsApp, Telegram and Signal) to assess the longevity of an
SQLite API-based JIT-MF Driver across application versions.

5.4.4.1 Experiment setup

Previous versions of each app were obtained from August 2017 every six months up
until August 2022 (10 past versions per app, 30 apps in total), using APKCombo,18 a
repository for apps and their previous versions. Versions of the apps dating more than

18https://apkcombo.com/
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six months prior could not be installed successfully due to limitations and restrictions
presented by each app. Telegram was the only exception which allowed versions from
six-month before being run. Due to this limitation, a static check was used to assert
SQLite library usage in the unpacked sources of an app’s version. This check is carried
out based on a signature that encapsulates how a library can be used in an Android
app. To use a library, Android apps can either: i) call Android’s API wrapper or ii) use a
custom implementation that interfaces with the infrastructure using JNI by including a
shared object in the APK.

The search aims to (1) find smali code in unpacked code that calls functions from the
SQLite Android package or (2) find the SQLite shared object in the application library
folder of the unpacked app. If the search is successful, the search returns the parent
folder name; that is, the app version folder.

1 grep -Priq --include *.smali "Landroid/database/sqlite.*;->"

$app_version/smali*/ |

2 grep -riq sqlite $app_version/lib/

Listing 5.3: Signature for checking the presence of SQLite usage in an
APK.

5.4.4.2 Results

Table 5.10 shows the results obtained when the signature in Listing 5.3 is used to check
for SQLite usage within the unpacked application versions obtained. These results show
that bindings with the common underlying SQLite infrastructure are present across all
apps and previous versions from the last five years, even if the interfacing method has
changed. Therefore, selecting an infrastructure-based JIT-MF Driver based on SQLite in
the case of WhatsApp, Telegram and Signal is likely to remain compatible with upcoming
versions of the apps.

Table 5.11 shows the frequency by which newer versions of the apps and SQLite are
released. Application-specific JIT-MF Drivers for WhatsApp, Telegram and Signal are
based on application codebases that are updated on average every 6 - 15 days. Therefore,
a compatibility test would be required to ensure that application-specific logic within the
Driver was not altered in the update. On the other hand, updates to the SQLite library
are much less frequent and optional, hence not necessarily reflected in the apps that use
them. Furthermore, in the case of SQLite, stable interfaces are maintained indefinitely in
a backward-compatible way,19 which means that the JIT-MF Driver relying on an older

19https://www.sqlite.org/capi3ref.html
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version of SQLite will remain compatible, even if the infrastructure is updated.

Table 5.10: The table shows whether or not the SQLite usage signature was
matched in different versions of Signal, Telegram and WhatsApp, since
2017.

Release Date App App version
Found SQLite function calls in

disassembled smali code (1)
Found shared object in

library folder (2)

23-08-2017

Signal

v4.9.9 ✓ ✕

28-02-2018 v4.16.9 ✓ ✓

06-08-2018 v4.24.8 ✓ ✓

09-02-2019 v4.33.5 ✓ ✓

09-08-2019 v4.45.2 ✓ ✓

12-02-2020 v4.55.8 ✓ ✓

20-08-2020 v4.69.4 ✓ ✓

18-02-2021 v5.4.6 ✓ ✓

20-08-2021 v5.21.5 ✓ ✓

18-02-2022 v5.32.7 ✓ ✓

05-08-2017

Telegram

v4.2.2 ✕ ✓

19-02-2018 v4.8.4 ✕ ✓

30-08-2018 v4.9.1 ✕ ✓

09-02-2019 v5.3.1 ✕ ✓

24-08-2019 v5.10.0 ✕ ✓

16-02-2020 v5.15.0 ✕ ✓

16-08-2020 v7.0.0 ✕ ✓

18-02-2021 v7.4.2 ✕ ✓

07-08-2021 v7.9.3 ✕ ✓

14-02-2022 v8.5.2 ✕ ✓

11-08-2017

WhatsApp

v2.17.296 ✓ ✓

09-02-2018 v2.18.46 ✓ ✓

18-08-2018 v2.18.248 ✓ ✓

08-02-2019 v2.19.34 ✓ ✓

07-08-2019 v2.19.216 ✓ ✓

13-02-2020 v2.20.22 ✓ ✓

05-08-2020 v2.20.196.16 ✓ ✕

06-02-2021 v2.21.3.13 ✓ ✕

09-08-2021 v2.21.17.1 ✓ ✕

17-02-2022 v2.22.4.75 ✓ ✕

Table 5.11: The frequency of Signal, Telegram, WhatsApp and SQLite
library version releases, since 2017.

Codebase Average Release time (in days) over the last five years

WhatsApp 6.324
Telegram 14.917
Signal 7.319
SQLite 39.48*

* Releases here reflect changes in the library source code. These updates
do not necessarily imply changes in the API and are not mandatory for
applications that use it.
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5.5 Maintaining app stability
While collecting app-specific artefacts from memory is critical for accurate forensic
timeline generation, apps enhanced with JIT-MF must remain usable by the device owner.
Results from previous experiments (Sections 5.2.2 and 5.3.3) have shown that JIT-MF,
while within a lab setup, performance overheads may not appear high. This may not
be the case in a real-life setting where app usage may vary significantly. Furthermore,
experimentation revealed possible UI degradations (Section 5.3.3) can be present when
using specific JIT-MF Drivers. While this was not observed when using SQLite API-based
JIT-MF Drivers during the experiment described in the previous section (Section 5.4),
one cannot assume this is the general case. Different apps may leverage other APIs
to execute application functionality of interest, whose resulting performance when
equipped with the respective API-based JIT-MF Driver does not follow from SQLite
API-based JIT-MF Drivers as used for the messaging apps used in the aforementioned
case studies. Furthermore, app usage in a real-world rather than a lab setting may result
in performance degradation, even in the case of SQLite API-based JIT-MF Drivers.

Even in such case, Trigger_point sampling can effectively maintain app stability by
minimising overhead performance costs, without adversely affecting timeline accuracy.
Possible performance overhead costs comprise storage costs impacting the device re-
sources and app performance degradation due to a high frequency of memory dump
triggering.

In the case of JIT-MF tools, storage costs can be attributed to two factors: i) the size
of memory fragments dumped; and ii) the number of times a Trigger_point is invoked,
causing the Trigger_point (TP) callback to be executed and a memory dump to be taken
(TP Frequency), which can be limited to an extent by declaring a Trigger_predicate().

The experiment described in this section aims to determine how sampling methods
can be used to aid Trigger_predicates in reducing the frequency with which Evidence_objects
are dumped from memory to JIT-MF_Logs. Simultaneously an analysis is carried out to
verify which sampling methods and parameters are optimal in reducing performance
overheads while maintaining accuracy in the outputted app-specific artefacts comprising
attack steps.

5.5.1 Trigger_point sampling methods
The size of memory fragments dumped is reduced significantly when opting for online
collection within a JIT-MF Driver, rather than a full process memory dump. Yet, the
burden on the device storage resources can still accumulate to large quantities depending
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on the TP frequency (Trigger_point Frequency).

Table 5.12: Sampling methods.

Sampling
Method

Implementation
Sampling
Window

Periodic
Sampling

1 bool sampling_predicate() {
2 current_time = get current time;
3 get current_second from current_time;
4

5 if (current_second % sample_window_value == 0):
6 reset random value;
7 return true;
8 else:
9 return false;

10 }

A period of time
(minutes)

Systematic
Sampling

1 bool sampling_predicate() {
2 tp_hit_counter = get current tp_hit_counter;
3

4 if (tp_hit_counter % sample_window_value == 0):
5 reset random value;
6 return true;
7 else::
8 return false;
9 }

App dependent
number of TP
hits (number)

The two sampling methods shown in Table 5.12 are proposed to minimise the number
of times a Trigger_point is invoked, thus reducing TP frequency and overall storage costs
over time. A sampling window is defined as the range of possible values from which
a sampling value is randomly chosen to determine whether the Trigger_point callback
is executed. Periodic sampling refers to a generic sampling approach, using the current
time to determine whether or not a memory dump should be taken. A random value
in seconds (sampling value) is selected from an acceptable range of minutes (sampling
window), and depending on whether or not the current time in seconds is exactly
divisible by the randomly selected sampling value; the Trigger_point callback is executed.
Systematic sampling is more specific to the JIT-MF framework, as it uses a counter storing
the number of times the chosen Trigger_point was executed/hit at runtime (TP Hit) to
determine whether or not a memory dump should be taken. A random counter value
(sampling value) is selected, from an acceptable range of numbers representing TP hits
(sampling window), and depending on whether or not the current counter value matches
the randomly selected sampling value, the Trigger_point callback is executed.

When implementing either approach, selecting the sampling window size requires
insight into the device owner’s app usage pattern; however, systematic sampling requires
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more app code comprehension effort. Specifically, the JIT-MF Driver developer must
gauge how often a Trigger_point is invoked in an acceptable time range (assuming typical
app usage involving message sending and loading). For instance, if a chosen Trigger_point
is hit very frequently during the app’s runtime upon a single messaging event, then a
small sampling window; e.g. a range of possible values between zero to five TP hits,
would have little to no effect in reducing the burden JIT-MF Drivers have on running
apps. In each method, once Trigger_point callback is executed, a new random value is
selected, and in the case of systematic sampling, the counter is reset to zero.

While the primary motivation behind introducing sampling is eliminating app crashes
and reducing the amount of storage required on the device to render JIT-MF forensically-
enhanced apps as usable as their original counterparts, this is expected to come at a
cost. When sampling is adopted, Trigger_point callback functions are only executed when
the sampling_predicate() function in a JIT-MF Driver returns true, based on a random
sampling value selected from a sampling window. This means that with an increasing
sampling window, the number of Trigger_point callbacks executed decreases, resulting in
fewer calls to dump app-specific Evidence_objects from memory. This allows for JIT-MF
Drivers to fall prey to adversarial tactics. Since the random value generated for periodic
sampling may not be a true random value, depending on the number of sources for
randomness that the phone has, this creates a possibility whereby attackers carefully
time messaging hijack attacks so that they occur outside the sampling value selected.

Furthermore, a large sampling window (e.g. a range between zero and thirty minutes)
may lend itself useful to an attacker; since a large sampling window means that an attack
step has larger periods during which no Trigger_point callbacks are executed. In the
case of systematic sampling, if the sampling window is set to a high value because the
typical usage behaviour of the user on the app calls for such a value, an adversarial actor
may monitor the app usage to schedule the attack in a period when the app has been
comparatively quiet. Therefore, even if TP hit count is relatively low, the attack step can
still be missed.

Nevertheless, results from recent studies [4, 19] show that garbage collection algo-
rithms available on Android devices, allow for the complete reconstruction of even
complex objects from userland memory, in some cases much after the creation of said
objects. Therefore, while objects from memory are collected less frequently when adopt-
ing sampling, this does not necessarily reflect in less Evidence_objects collected. Garbage
collection algorithms running on the device should work in JIT-MF’s favour, such that
Evidence_objects not immediately retrieved due to sampling may still be in memory when
the sampling_predicate() function returns true and the Trigger_point callback function
is eventually executed. Hence, while a decrease in the number of messaging objects
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collected is expected, preliminary results indicate that this decrease will be minimal.

5.5.2 Experiment setup
JIT-MF Drivers with Evidence_objects selected from the app layer and Trigger_points from
the native layer were shown to produce accurate JIT-MF_Logs (Section 5.2.2) and forensic
timelines (Section 5.3.3). Yet these drivers were observed to have the worst performance
overheads when used with Pushbullet and Telegram apps (Section 5.3.3). The same type
of driver was also used for Signal (Section 5.3.3), with similar observations regarding
UI degradation. Therefore, this experiment was carried out using these JIT-MF Drivers
(with app-layer Evidence_objects and native-layer Trigger_points shown in Listing A.1 -
Listing A.6 found in Appendix A) and the Pushbullet (v18.4.0), Telegram (v5.12.0), and
Signal (v5.18.5) apps. The apps enhanced with JIT-MF Drivers were installed on two
Google Pixel 3XL emulators running Android 10 (API 29). An emulator was used for
ease of automating message sending. While specific drivers and apps are used to conduct
this experiment, the sampling methods are stack layer and app-agnostic. Therefore,
the insight gained from the results of this experimentation can be transferred to other
scenarios with different apps and JIT-MF Drivers with Evidence_objects and Trigger_points
selected from other layers, for which performance degradation is observed.

This experiment aims to observe how random sampling values selected from increas-
ing sampling windows, for each sampling method proposed in Table 5.12, affect the
app’s performance at runtime (in terms of stabilisation; i.e. the number of crashes and
device storage resources) under typical app usage. For the scope of this experiment,
typical messaging functionality comprises chat loading and message sending carried out
via adb input keystrokes in the case of Telegram and Signal and through Selenium for
Pushbullet. A sampling window range is set per sampling method. This range defines
the maximum and minimum values of the sampling windows considered per sampling
method. In the case of periodic sampling, the sampling window ranges between zero to
five minutes. This value is based on the time taken for the experiment outlined above
to be carried out. For systematic sampling, preliminary observations were carried out
to understand how many times the specific Trigger_point chosen for an app is hit in five
minutes. The sampling window ranges were between one TP hit to 5000, 400 and 32000
TP hits for Pushbullet, Telegram, and Signal, respectively.

Performance degradation metrics. The logcat crash buffer determines whether or not
the app crashes during either run. Statistics related to Janky frames were also gathered
to determine any slow interactions with the app’s GUI. Janky frame statistics can only be
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generated while the app is running; therefore, if Janky frame statistics are not outputted,
this is an indicator that the app has crashed. The accumulated size of JIT-MF_Logs is used
to measure the impact on the device’s storage capacity.

The experiment was carried out as follows. Preliminary runs were used for each
app to determine the interval between the different sampling windows used, up to
the maximum value in the sampling window range, per sampling method. A JIT-MF
Driver was created for each sampling window with the relevant implementation of
the sampling_predicate() function. The sampling_predicate() function can be implemented
within the Trigger_predicate() function in a JIT-MF Driver or as a separate function and
called from the Trigger_predicate() function. Any residue logs are deleted, and Janky
frame statistics are reset. The respective driver is pushed on the device. A chat is
loaded and a pseudo-random message with the same prefix is sent at random five times,
every ten seconds. This process is repeated five times for each to reach convergence.
Preliminary runs indicated that when an app hangs/crashes during the experiment run
described above, it never "recovers" unless it is closed and reopened. Therefore, the
number of messages sent was kept at par with manual app usage.

5.5.3 Results
Figure 5.3(a), Figure 5.3(c), Figure 5.3(e) present the results obtained when using periodic
sampling, while figures Figure 5.3(b), Figure 5.3(d), Figure 5.3(f) present those obtained
when using systematic sampling, for Pushbullet, Telegram and Signal, respectively. In each
of the figures, the number of crashes (blue) and total storage taken up on the device by
JIT-MF dumps (red), are plotted against varying sampling values (up until the maximum
sampling window value set in the experiment).

As expected, across both sampling methods, the increase in sampling window causes
the number of crashes and storage required to reduce significantly until a plateau is
reached. Furthermore, while the number of crashes becomes negligible, the size of the
output JIT-MF dumps is higher than 0MB, meaning that even with an increase in the
sampling window, the output is still produced, and, JIT-MF is still effective in dumping
Evidence_objects in memory. Table 5.13 shows the percentage of events retrieved, for
the sampling window where it is evident from the graphs presented in Figure 5.3,
that a plateau has been reached. Results from this table show that, even when a large
sampling window is adopted, most ground truth events are still found in JIT-MF_Logs,
demonstrating that the Garbage Collector is working in JIT-MF’s favour. This bodes well
for the applicability of JIT-MF in a realistic scenario, especially when considering the
improvement of the app’s performance in terms of the number of crashes.
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(a) Pushbullet: Average number of app crashes and
storage requirements (MB) against increasing peri-
odic sampling window (in seconds).
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(b) Pushbullet: Average number of app crashes and
storage requirements (MB) against increasing sys-
tematic sampling window (in number of TP hits).
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(c) Telegram: Average number of app crashes and
storage requirements (MB) against increasing peri-
odic sampling window (in seconds).
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(d) Telegram: Average number of app crashes and
storage requirements (MB) against increasing sys-
tematic sampling window (in number of TP hits).
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(e) Signal: Average number of app crashes and stor-
age requirements (MB) against increasing periodic
sampling window (in seconds).
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(f) Signal: Average number of app crashes and stor-
age requirements (MB) against increasing system-
atic sampling window (in number of TP hits).

Figure 5.3: Sampling results obtained for Signal, Telegram and Pushbullet
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Table 5.13: % Ground truth timeline events captured per performance-
optimal sampling window size.

App Sampling Method
Optimal Sampling

Window
% Ground Truth
Collected Events

Pushbullet
Periodic 9s 86

Systematic 500 TP hits 58

Telegram
Periodic 48s 62

Systematic 200 TP hits 70

Signal
Periodic 24s 92

Systematic 8000 TP hits 92

The amount of storage on the SD Card is 512MB. Therefore, at worst, JIT-MF_Logs
took ∼4% of the storage available. While there is a correlation between crashes and
the total percentage of storage taken (0.28 and 0.44 when using systematic and periodic
sampling, respectively), this is not strong. Therefore the crashes are most likely resulting
from IO operations rather than the increase in the usage of storage resources.

Results from Figure 5.3 show that both sampling methods were equally successful
in significantly reducing overhead costs. That is, a specific sampling window size is
identifiable in each of the graphs, for which the number of crashes and storage required
on the device is the same for both sampling methods per app. However, a distinction
between the two methods can be made regarding the implementation effort required
for each method and the likelihood of each sampling method falling prey to adversarial
tactics.

Sampling implementation effort. Periodic sampling requires a few more computa-
tional steps, as it involves obtaining the current time, translating it to seconds and then
checking if it is exactly divisible by the random value of seconds selected, as opposed
to systematic sampling, where only the Trigger_point hit counter is needed and checked
against a random value. Nevertheless, while periodic sampling can be implemented
without prior knowledge of the app’s usage pattern or understanding of how the app
functions, the same cannot be said for systematic sampling. The latter sampling method
is based on the number of times a Trigger_point is hit. While the measure of time is
constant across apps and different scenarios, the number of times a Trigger_point is hit
varies depending on how the user uses an app and how it functions. Therefore, a prelim-
inary exercise must be done before applying this sampling method, whereby the average
number of Trigger_point hits in a time range is determined, per app, scenario, and usage

104



CHAPTER 5. EXPLORATION OF JIT-MF POSITIONING WITHIN THE ANDROID
TECHNOLOGY STACK

pattern.

Risk of adversarial tactics. While both sampling methods rely on randomness to
generate a value within a sampling window, the sources of randomness for a specific
device differ on each device and are independent of implementation. In the case that
an attacker can determine the random value, an attacker can perform a messaging
hijack attack during the portion of the sampling window where the sampling_predicate()
criterion is not met and a memory dump is not taken; i.e. at the wrong time or not the
right amount of TP hit count. From the attacker’s point of view, the periodic sampling
method would be easiest to evade since it requires no additional knowledge except for a
measure of time itself. The systematic sampling method would require more effort for
the same reason that it requires more implementation effort. It may be more difficult
for the attacker to determine the current value of the Trigger_point hit counter, especially
without knowing how the app is being used. While an attacker may still circumvent this
sampling method by monitoring periods of inactivity, it raises the bar for the attacker
requiring increased sophistication to carry out the attack.

5.6 Summary of Experimental Findings
This chapter leveraged the JIT-MF framework proposed in Chapter 4 to determine the
least level of invasiveness required for timely and accurate acquisition of app-specific
artefacts from memory related to app hijack attack steps. Using different implementation
approaches to the JIT-MF framework, this exploration comprised finding the optimal
positioning of JIT-MF Trigger_points and Evidence_objects within the Android technology
stack. The objective of the experiments discussed in this chapter was to determine
the accuracy of the app-specific artefacts collected while minimising the level of app
invasiveness required to obtain these artefacts from memory, contributing to increased
app comprehension efforts and app stability as much as possible. This was achieved by
progressively selecting Trigger_points and Evidence_objects from lower levels of the stack.
The experimental methodology used a realistic simulation of messaging app (IM and
SMS) hijack attacks and leveraging JIT-MF to obtain JIT-MF_Logs as an additional source
of evidence. JIT-MF Drivers and Runtime were installed at the app level: i) to avoid
device-invasive methods (e.g. rooting), and ii) since the app level is the most obvious
choice for collecting app-specific artefacts required for remediating app hijack attacks.
Trigger_points and Evidence_objects were selected from different layers of the Android
technology stack to identify how the JIT-MF_Logs’ accuracy is affected when selecting
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these critical JIT-MF components from lower layers in the stack that are less app invasive.
The execution of simulated attacks and background traffic, along with the collection and
analysis of JIT-MF_Logs, is completely automated within a setup comprising emulators
and actual Android devices.

Table 5.14 summarises the experiments carried out during this exploration within
the setting of messaging hijack attacks. The table outlines each experiment (denoted by
the section in which it was described) and its main objectives concerning the hypothesis
presented in this thesis (that is, that timely and non-invasive logging of hijacked func-
tionality is possible through process memory introspection). The stack layers explored
within each experiment, for both Evidence_objects and Trigger_points selection, are listed
along with the main conclusions and impact on follow-up experiments.

Overall, these results show that the timely and minimally invasive logging of hijacked
functionality is possible through i) trigger-based memory dumps containing app-specific
artefacts as implemented by JIT-MF Trigger_points and Evidence_objects in JIT-MF Drivers
and ii) the implementation of JIT-MF at app level using Trigger_points and Evidence_objects
from the API layer of the Android technology stack. Specifically, the API layer of the
Android technology stack was shown to be the optimal layer for Trigger_points and
Evidence_objects selection as: i) resulting JIT-MF_Logs maintained accuracy; ii) minimal
invasiveness was required for selection due to publicly available documentation of
APIs; and iii) these JIT-MF Drivers resulted in observable stable app performance. An
initial comparison of the generated forensic timelines using JIT-MF_Logs was made,
with baseline forensic sources to establish the accuracy of lower level Trigger_points
in generating forensic timelines for messaging hijack investigations. However, results
showed that the precision of the generated timelines is low, possibly due to further post-
processing and analysis required to identify Evidence_objects directly related to attack
steps. This hinders the ability of JIT-MF_Logs to aid in complete and accurate attack steps
recovery (from malware entry point), as required for incident response which has yet to
be demonstrated.
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Table 5.14: Summary of experiments carried out for JIT-MF positioning
exploration.

Experiment Objective
Stack layer

Main conclusions Impact
Evidence_object Trigger_point

Section 5.2

Comparison of accuracy in the attack steps
recorded and the associated storage overhead
costs when selecting Trigger_points from differ-
ent layers in the Android technology stack.

App

App, API, Na-
tive, Native with
device-level
predicates

• Trigger_points selected from lower levels in the tech-
nology stack can be as effective and efficient as app-
specific ones.

• Offline and online collection methods have very simi-
lar results. Yet offline collection requires significantly
more storage space on the device on average.

• Selecting JIT-MF Trigger_points at lower levels is suffi-
cient for collecting app-specific artefacts.

• Opting for online collection.

• Requires further experimentation concerning app sta-
bility.

Section 5.3
Assessment of the added accuracy of forensic
timelines generated using JIT-MF_Logs.

App Native, API
• JIT-MF Drivers can produce accurate forensic timeline

sequences with sufficient detail one would normally
expect only from developer-provided app logs.

• Selecting Trigger_points at lower levels produces accu-
rate timelines, but JIT-MF Driver development is still
app invasive due to app-specific Evidence_object.

• Requires further experimentation concerning app sta-
bility.

Section 5.4

Comparison of accuracy in the attack steps
recorded when selecting Trigger_points and
Evidence_objects from lower layers in the tech-
nology stack.

API API

• API-based JIT-MF Drivers require less frequent up-
dates due to fewer codebase updates.

• API-level Trigger_points and Evidence_objects require
minimal invasiveness, as they rely on publicly-
available API documentation.

• JIT-MF Driver can be generalised without compro-
mising timeline accuracy by basing Trigger_points and
Evidence_objects on widely adopted APIs.

• Multiple apps can use the same API-based JIT-MF
Driver.

• App-specific usage of API requires some parsing of
collected JIT-MF_Logs.

Section 5.5
Maintaining app stability while timely collect-
ing app artefacts from memory.

App Native

• JIT-MF Drivers with Native-level Trigger_points re-
quire sampling to avoid app performance degradation
comprising app crashes.

• Optimal Trigger_point sampling results in reduced JIT-
MF_Logs size, which may still contain app-specific
artefacts.

• Two possible sampling strategies are made available.
JIT-MF Driver developers can perform a parameter
analysis to see which parameters fit their app-attack
scenario best.
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6 Evaluation of JIT-MF with the
State-of-the-Art

In the previous chapters, JIT-MF was proposed as a framework that can timely collect
app-specific evidence from memory relating to possibly hijacked benign apps. Further-
more, several JIT-MF implementation approaches were used to explore the hypothesis
of whether timely and accurate dumping of Evidence_objects related to attack steps, can
be carried out while incurring minimal invasiveness. Thus, the previous chapter de-
tailed an exploration of JIT-MF positioning within the Android technology stack, which
demonstrated that the selection of Evidence_objects and Trigger_points from the API layer
contributes towards timely and non-invasive logging of app-specific artefacts from mem-
ory that represent hijacked attack steps. Yet, to address the main hypothesis, further
experimentation is required to evaluate the ability of JIT-MF_Logs to enable the complete
reconstruction of attack steps during a forensic investigation. This chapter explores this
in the context of messaging hijack attacks and state-of-the-art forensic tools, thus address-
ing the third objective O3 of this thesis. Experimentation is conducted by leveraging
SQLite API-based JIT-MF Drivers that were shown to be non-invasive with respect to the
stack layer comprehension required for both Trigger_point and Evidence_object selection,
without compromising forensic timeline accuracy.

Several forensic tools are used at different stages of the incident response cycle, each
fulfilling different purposes. At the preparation stage, Endpoint Detection and Response
(EDR) tools can help monitor and record events occurring in real time on devices. After
an incident occurs, Mobile Forensic tools are used to extract and analyse data from mobile
devices. Their focus is on normalising data from different forensic sources stored on the
device to present the investigator with a single chronological timeline of events.

Just-in-Time Memory Forensics can contribute to real-time evidence collection from
memory and produces JIT-MF_Logs as an additional forensic source. The purpose and
value of JIT-MF_Logs can only be evaluated along with other sources collected and
analysed by EDR and mobile forensic tools. To this end, this chapter aims to demonstrate
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how JIT-MF_Logs improve state-of-the-art mobile forensics in terms of collected hijacked
app steps in the case of real-world app hijack case study involving messaging apps
(Section 6.1). Furthermore, a complete anomaly detection setup shows that the evidence
found in JIT-MF_Logs is detectable as anomalous and carries sufficient features to be
correlated with the attack’s entry point on the device (Section 6.2). Therefore, using
a detection and correlation algorithm that leverages evidence uniquely found in JIT-
MF_Logs, the complete and precise forensic timeline of app hijack attack steps can be
generated, and malware entry points can be identified. * "

6.1 Evaluating JIT-MF in combination with mobile foren-
sic tools

This experiment aims to demonstrate how evidence of a realistic app hijack attack found
in JIT-MF_Logs can uniquely contribute to forensic timelines generated by state-of-the-
practice mobile forensic tools by collecting evidence of hijacked messaging attack steps
in the form of message objects that are not found in any other forensic source or collected
by any other forensic tool.

6.1.1 MobFor: A JIT-MF tool
MobFor is an open-source and publicly available1 JIT-MF tool that was created for
this experiment. The tool has multiple JIT-MF Drivers, including those targeting the
WhatsApp messaging app. MobFor uses an app-invasive approach to install JIT-MF
Drivers and Driver Runtime in targeted apps, which involves app repackaging. For this
experiment, the JIT-MF Driver used comprised SQLite API-based driver.

6.1.2 Incident scenario
The incident scenario follows from the motivational case study presented in Section 3.3.
A target victim’s WhatsApp app on their Android device was forensically enhanced
through MobFor. They have been at the receiving end of a social engineering phishing
campaign and have unknowingly installed the WhatsApp Pink malware on their Android
device. The malware propagates by automatically replying to incoming legitimate
WhatsApp messages with a download link to the malware itself akin to a message-
proxying attack.

1https://gitlab.com/mobfor/mobfor-project
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Table 6.1: Forensic tools used.

Forensic Tool Version Description

MSAB XRY XRY Office v9.6 Proprietary (Trial Version)
Belkasoft 1.10.8387 Proprietary (Trial Version)

Evolved malware for stealth. The original WhatsApp Pink malware conceals its actions
by leveraging messaging apps to propagate and even hides the app’s icon from the home
screen. Yet the propagated message by the malware is still visible in the chat.

The WhatsApp Pink malware was enhanced further to increase its stealth by enabling
it to remove any forensic footprints of the attack steps. Any messages propagated by
the stealthier version of WhatsApp Pink are deleted from the owner’s phone, leaving
no visible trace of the malware’s actions, as shown Figure 3.2. AndroidViewClient2

was used to simulate stealthy attack steps comprising the deletion of messages and
uninstallation of the WhatsApp Pink malware. This enables the malware to operate with
maximum stealth by leaving no trace of the malicious app, further reducing its forensic
footprint.

6.1.3 Mobile forensic tools setup
Responding to an incident relies on three main steps: i) Collection, ii) Parsing, and iii)
Analysis of evidence to produce a timeline of events. Existing forensic tools are typically
equipped with collection and parsing features, enabling an incident responder to analyse
the forensic timeline produced through the available tools. Two mobile forensic tools
are used in this experiment, to demonstrate how MobFor can contribute to existing
digital forensics tools in the incident scenario described: Belkasoft Evidence Centre X and
MSAB’s XRY (see Table 6.1). Table 6.2 describes how each tool was configured regarding
the sources gathered during the collection phase, the parsing tool used, and the tool used
to generate a forensic timeline for analysis.

Mobile forensic tools evidence collection. Although not publicly disclosed, one way
with which mobile forensic tools (including Belkasoft and XRY) collect private app data
(found in internal storage containing decrypted database files on disk) is through the use
of adb backup. Since newer app versions typically have their custom BackupAgent

(defined in the app’s Manifest file), this process first requires an app downgrade which
calls for app uninstallation. Open-source forensic collection tools like WhatsApp DB

2https://github.com/dtmilano/AndroidViewClient
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Table 6.2: Digital investigation configurations.

Incident Response
step

XRY Belkasoft MobFor

Collection
• XRY Agent • Belkasoft Agent

• JIT-MF_Logs
• Additional forensic sources • Additional forensic sources

Parsing XRY XAMN Belkasoft JIT-MF_Logs MobFor
Parser

Analysis Timesketch

Extractor3 [128, 129] enable the uninstallation of apps, without deleting private app data
containing texts using the following command: adb uninstall -k com.whatsapp.
While this solution has been shown to work, it is less stable on newer versions of Android
and may require the complete uninstallation of the app in some cases, causing the loss of
data and potential evidence.

This evidence extraction method, however, cannot be used simultaneously with
MobFor since the forensically enhanced version of the targeted benign app carries a
different signature than the original one, as shown in Figure 6.1. The partial uninstallation
of the enhanced app and the older app’s signature mismatch cause Android to produce
an error, preventing the older app from being installed. Therefore, when implementing
JIT-MF using app repackaging, changes to the app must include modifications to the
Manifest file to set debuggable=true. This allows private files to be stored on external
storage so that mobile forensic tools may eventually collect them. The result is equivalent
to the adb backup method. When implementing JIT-MF using app-level virtualisation,
the backup capabilities of the app rely on the container app. Regardless, the same
approach of modifying the Manifest file can be used to obtain private files related to
plugin app data.

Mobile forensic tool setup. While the version of tools used were trials, this did not im-
pact the experimentation results. Most of the functionality withheld from trial versions is
related to the availability of rooting exploits and iOS features. Since the experimentation
scenario involves Android OS and the device belongs to a victim who intends to continue
using it, rooting is considered a non-viable option. Therefore these features were not
needed. The Belkasoft trial version presented limitations regarding the amount of data
from findings that could be exported to a file format. However, all the findings are still
available through the user interface.

3https://github.com/EliteAndroidApps/WhatsApp-Key-DB-Extractor
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Figure 6.1: XRY Log output showing WhatsApp downgrade failure.

Both XRY and Belkasoft were configured similarly. An agent-based collection was
used by each respective tool, targeting logical collection (see Figure 6.2 and Figure 6.3).
This comprised each tool installing proprietary apps (agent) on the device via USB
connection, as part of the forensic collection process. For this experimentation, "Logical"
collection with "Full read" capabilities was initiated for all tools (see Figure 6.2); that is,
all data accessible to the forensic tool agent is collected, bar any data that requires device
rooting. Whenever a collection step required rooting, it was skipped. In this case, data
available to the agent comprised of Device data, Memory card data, and SIM card data,
as shown in Figure 6.3.

Furthermore, each tool also accepts additional data sources that the analyst has in
their possession to support the findings gathered by the tool. Once the sources are
gathered, each tool parses them and presents them in a way that can be useful to the
investigator, as shown in Figure 6.4. Figure 6.5 shows the parsed forensic artefacts from
different sources (four in this case) gathered for forensic analysis. The first entry in the
image comprises the findings collected by the tool’s agent. The next one consists of
private data collected from the app’s internal storage (/data/data folder), obtained
through its debuggable=true property set in the Manifest. A third entry consists
of data gathered from an adb backup output, and finally, the last additional source
consists of additional logs of use, in this case, logcat and dumpsys.
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Figure 6.2: XRY Collection Method - 1 of 2. The ’Logical (Full read)’ option
is chosen, which collects all possible data from the device’s file system
under investigation.
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Figure 6.3: XRY Collection Method - 2 of 2. The image shows the data
collected during the ’Logical (Full read)’ acquisition.
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Figure 6.4: XRY Output containing sample WhatsApp messaging events.
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Figure 6.5: XRY Additional Forensic Sources.
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Table 6.3: Mobile device specifications.

Model OS Chipset CPU RAM Storage

Nexus 5
(low-end)

Android 6 (upgraded
to Android 8)

Qualcomm MSM8992
Snapdragon 808 (20 nm)

Hexa-core (4x1.4 GHz
Cortex-A53 & 2x1.8 GHz

Cortex-A57)

2GB 32GB

Google Pixel 4
(mid-range)

Android 10 Qualcomm SM8150
Snapdragon 855 (7 nm)

Octa-core (1x2.84 GHz Kryo 485
& 3x2.42 GHz Kryo 485 & 4x1.78

GHz Kryo 4

6GB 64GB

Samsung S21
(high-end)

Android 11 Snapdragon 888 / Exynos
2100

Octa-core (1x2.84 GHz Kryo 680
& 3x2.42 GHz Kryo 680 & 4x1.80

GHz Kryo 680) - USA/China

12GB 128GB

6.1.4 Experiment setup
MobFor is evaluated across three commercially available stock Android physical de-
vices listed in Table 6.3, reflecting a range of device capabilities and limitations. Each of
the devices has a JIT-MF enhanced version of WhatsApp v2.21.14.25 installed through
MobFor and the additional JIT-MF Driver defined in Listing A.7 (in Appendix A). Re-
garding JIT-MF Driver development, WhatsApp is a privately-owned, closed-source
app with protections against app repackaging. Therefore, an SQLite API-based JIT-MF
Driver (whose accuracy and widespread use across messaging apps has also been previ-
ously demonstrated (Section 5.4)) was used to alleviate extensive compiled obfuscated
code analysis that would have otherwise been required to select Evidence_objects and
Trigger_points. In this case, some compiled code analysis was still required to mitigate the
app repackaging checks, which prevented the app from being enhanced with a JIT-MF
Driver.

This experiment is carried out three times, once for each device available. Each
experiment run involves using two devices: i) target device (D); and ii) contact device
(C). The stealthy WhatsApp Pink malware is installed and set up each time on the target
device (D) while contact phone (C) emulates communication via WhatsApp to and from
device D. Figure 6.6 (reproduced from Chapter 3) shows how a conversation initiated
by device C, is then simulated by both devices using AndroidViewClient to send
100, fifteen character-long, pseudo-random messages back and forth across devices D
and C. Since device C initiates the conversation, the stealthy WhatsApp Pink malware
installed on target device D immediately propagates the malicious link. It then deletes
the message on device D. The malware is then uninstalled.

Late detection is simulated by a thirty-minute wait, at the end of which all JIT-
MF_Logs containing memory dumps are collected from the device, along with the ad-
ditional sources highlighted in Section 6.1.3. The available forensic tools (including
MobFor) are used as described in Table 6.2. Finally, the parsed forensic artefacts populate
a forensic timeline using Timesketch.
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Figure 6.6: Enhanced WhatsApp Pink attack steps (reproduced from
Chapter 3).
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Table 6.4: Incident Response tools artefact recovery.

Key Attack Steps
Metadata Recovered

Forensic Configuration

Nexus 5 Google Pixel 4 Samsung S21

Belkasoft XRY MobFor Belkasoft XRY MobFor Belkasoft XRY MobFor

Message Content - - X - - X - - X

Message Sent Event X - X X - X X - X

Message Deleted Event - - - - - - - - -

Message Recipient X - X X - X X - X

Message Sender X - X X - X X - X

Message Timestamp X - X X - X X - X

6.1.5 MobFor real-world scenario: Results
While Belkasoft and XRY gathered several artefacts, the results presented here focus
on those related to WhatsApp messaging, given that the incident scenario in question
concerns this messaging app.

Table 6.4 describes the findings of each forensic analysis configuration and device,
concerning the known attack steps executed (the ground truth). While none of the
forensic tools’ outputs explicitly indicated that a WhatsApp message was stealthily
deleted, critical key attack steps were still recovered. Crucially, MobFor was the only
forensic tool out of the three that was able to recover the contents of the deleted message
as shown in Figure 6.7 and Figure 6.8. Belkasoft was able to retrieve the event of a
message being sent. However, the message content was missing. While this event is
suspicious, without the message content, it is unclear whether or not this was: a simple
message deleted by the target victim, a message with no content, or a malicious message
propagated by the malicious app. XRY’s output does not show the message-sending
event at all. It is probable that since the content was missing in the WhatsApp databases,
the event was not even displayed to the investigator to start with due to deletion.

Forensic analysis. Timesketch is used to create a unified version timeline, including
all WhatsApp evidence produced by the three forensic tools used. Since neither of the
forensic tools used parses dumpsys logs, another parser was created for this purpose.
Unlike the output generated by the three forensic tools described in Table 6.2, dumpsys
provides information about system services rather than that related to a single app and
therefore produces more events that tend to be noisier and may not be directly related to
the incident that is under investigation. In this case, the critical attack steps involve a
single message sent once to a single contact. Due to the minimal activity produced by the
malware, as is typical with stealthy malware campaigns, it is difficult to highlight which
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Figure 6.7: Identification of a suspicious event due to differences between
forensic sources outputs related to the same event.
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Figure 6.8: Additional metadata produced by MobFor in the case of a
suspicious messaging event.

121



CHAPTER 6. EVALUATION OF JIT-MF WITH THE STATE-OF-THE-ART

events in a timeline should be considered suspicious, especially amidst a substantial
amount of evidence that is gathered. In this case, on average, 1,598 events were generated
for the duration of the experiment (∼ thirty minutes), of which only three events were
related to the malware’s activities. Therefore, the investigation focuses solely on the
events produced by forensic tools in Table 6.2.

Figure 6.9 shows the evidence produced by the three sources when a typical WhatsApp
message is sent. All three sources can produce the following: i) The event itself and ii)
The metadata of the event, including the message content. This pattern is common in
all messages sent between devices D and C, except for one event. Specifically, evidence
for this event is missing in XRY and no metadata is available in Belkasoft. In contrast,
MobFor output shows that the message content contains a link as shown in Figure 6.7.
The discrepancy between the tools’ outputs regarding the same event already suggests
that this event is suspicious. This message is not visible on the target’s device (Figure 6.6),
which allows investigators to conclude that the message has been deleted from the
target’s device.

The investigation is broadened to include evidence from dumpsys and assess contents
for potential attack steps. Due to this source’s large number of events, the scope can
be narrowed by creating a query to look for artefacts containing whatsapp data or
package-related events. The steps the malware executes are retrieved as shown in
Figure 6.10. The steps show the malware being installed, the presence of a message that
has since been deleted, and the stealthy self-removal of a malicious app. This sequence of
footprints is enough for the investigator to conclude that these steps were indeed carried
out by malware on the victim’s device. Crucially, while all forensic sources obtained were
required to derive the exact and complete steps executed by the malware on the device,
MobFor uniquely contributed to the forensic timeline, providing key elements whose
presence steered the investigation in the right direction. Simultaneously, the results of
this experiment demonstrated that further experimentation is required to determine how
possibly hijacked attack steps can be better brought to the investigator’s attention, in
light of all the possible events collected to be forensically analysed.
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Figure 6.9: Combined timeline of events produced by Belkasoft, XRY and
MobFor, in Timesketch.
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Figure 6.10: Recovered sequence of attack steps from Timesketch timeline.
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6.2 JIT-MF_Logs for anomaly detection and malware en-
try point identification

Results from the previous section demonstrate how JIT-MF_Logs contain unique evidence
that complements mobile forensic tools in the case of a real-world app hijack case
study. Crucially, JIT-MF_Logs have been shown to contain evidence that is critical to
investigating app hijack threats, which other forensic tools do not collect. Yet, using an
app-invasive approach (app repackaging) for JIT-MF installation that conflicts with app
protection measures complicates matters. Moreover, applying JIT-MF_Logs for forensic
analysis requires further experimentation to demonstrate its potential value in uniquely
collecting evidence of app hijack and enabling anomaly detection resulting in precise
(Section 5.3) and full attack step reconstruction (up to malware entry point).

The experiment described in this section aims to demonstrate how JIT-MF_Logs can
be used in a SOC (Security Operations Center) setup, whereby forensic analysis on logs
enables the detection and malware entry point identification of app hijack attacks. In this
setup, JIT-MF compliments a mobile EDR, which collects all possible evidence from the
device in real-time. Furthermore, for the first time, app-level virtualisation was used in
this experiment to enhance the target app, rather than app repackaging. Thus opting for
a non-invasive installation of JIT-MF and, therefore, the most feasible and compatible JIT-
MF installation approach among apps. An additional detection component, sensitive to
JIT-MF_Logs, was created for anomaly detection. To demonstrate an automated forensic
analysis process involving JIT-MF_Logs, a range of IM hijack attack case studies were
simulated based on realistic WhatsApp Pink worm propagation techniques.

6.2.1 VEDRANDO: Anomaly detection using JIT-MF_Logs
VEDRANDO (Volatile-memory-enhanced EDR for ANDrOid) is an enhanced EDR that
was developed for this experiment. Figure 6.11 gives an overview of its architecture,
which consists of two main components: the Events Collector and the Attack Detector.
The Events Collector collects evidence from the device. The Attack Detector detects and
reconstructs attack steps of stealthy app hijack attacks through a detection methodology
that applies standard anomaly detection and correlation techniques.

6.2.1.1 Events Collector

The Events Collector component in Figure 6.11 illustrates a high-level view of the EDR
setup comprising of the following components: an EDR server, an EDR client (mobile
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Figure 6.11: Overview of VEDRANDO architecture.

app) and trusted app-level virtualisation containers that each host an app which may be
targeted in an app hijack attack. Each container contains an additional library to serve
as the JIT-MF Driver Runtime and JIT-MF Drivers. The trusted app-level virtualisation
containers are implemented to load the JIT-MF Driver and Runtime when the targeted
app is launched. This enables the operation of JIT-MF to timely collect artefacts from the
plugin app memory without requiring app repackaging.

While the make-up of each container is the same, different sensitive apps are hosted
in different containers to maintain the application sandbox protections that Android
offers between apps out-of-the-box.

Implementation. The Events Collector component of VEDRANDO was implemented
by extending ReLF [152]. ReLF is the only open-source EDR tool available for mobile
phones, with the ability to collect critical evidence of sensitive app events found in
memory produced by JIT-MF Drivers. ReLF extends GRR [35], an open-source, scalable
system developed by Google for remote live forensics and incident response. It enables
forensic investigations of Android devices by acquiring various forensic artefacts from
devices, as many as any other such forensic tools, as shown in Table 6.5. As with typical
EDRs, the setup involves having ReLF clients on mobile phones, from which events
will be collected and sent to a ReLF server. The ReLF client may be built and deployed
as a user or system app. The latter has access to more forensic sources (see sources
marked with ∗ in Table 6.5) but requires root access. ReLF client apps built as user apps
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Table 6.5: Forensic artefacts sources collection comparison of Android
Forensic EDR tools, as shown in [152], as of 2021. Commercial tools in
this study included: Oxygen Forensic Suite, MOBILedit, XRY Forensic
Examiner’s Kit, UFED and EnCase Mobile Investigator
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06
]

C
om

m
er

ci
al
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s

R
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F
[1

52
]

Sy
st

em

OS info ✓ ∗ ∗ ✓
Hardware info ✓ ∗ ∗ ✓
System settings ✓ ✓ ∗ ✓
Battery statistic ✓ ✓ ✓ ∗ ✓

A
pp Installed packages ✓ ✓ ✓ ✓ ∗ ✓

Running processes ✓ ✓ ✓ ∗ ∗

Te
le

ph
on

y Contacts ✓ ✓ ✓ ∗ ∗ ✓
Call logs ✓ ✓ ✓ ✓ ✓ ∗ ∗ ✓

SMS/MMS ✓ ✓ ✓ ✓ ✓ ∗ ∗ ✓
SIMs & subscriptions ✓ ∗ ∗ ✓

Cellular info ✓ ✓ ✓ ∗ ✓

C
on

ne
ct

iv
it

y Wi-Fi status & hotspots ✓ ✓ ✓ ✓ ∗ ✓
Bluetooth info ✓ ✓ ∗ ✓

NFC status ∗ ✓
VPN profiles ∗

NIC info & Netstat ✓ ✓ ∗ ∗

St
or

ag
e Storage volume info ✓ ✓ ∗ ✓

Filesystem & file stats ✓ ✓ ∗ ∗
Retrieve arbitrary file ✓ ✓ ∗ ∗

Se
ns

or
s Location ✓ ✓ ✓ ∗ ✓

Microphone ✓ ∗
Sensor info & logging ✓ ✓ ∗ ✓

U
se

r
D

at
a User accounts ✓ ∗ ∗ ✓

Device user profiles ∗ ∗ ∗
Calender ✓ ✓ ∗ ∗

Browser history ✓ ∗ ∗ ∗

O
th

er Screen state & capture ✓ ✓ ✓ ∗ ∗ ∗
Key & touch logging ∗

Remote logging ✓ ✓ ✓ ✓ ✓

✓ refer to forensic artefacts that can be collected by the EDR tool.
∗ refer to forensic artefacts that can be collected only if the EDR tool has system privileges (adb or root) on the
device.

interact with the underlying system through Android APIs or the low-level ReLF native
service using Inter-Process Communication (IPC) [152]. JIT-MF Drivers in different
containers may be the same if the sensitive apps (1,2 and 3 in Figure 6.11) use a common
infrastructure (which evaluation results demonstrate this is very likely the case). In this
case, the EDR client and server are the ReLF client app and server, respectively.

While the app is in use, JIT-MF_Logs are populated at runtime, based on Evidence_objects
and Trigger_points defined in the JIT-MF Driver located in the container. When an alarm
is raised, the ReLF server can invoke artefact collection flows, instructing the ReLF client
to collect any pending logs not yet collected through continuous monitoring to send
back to the server as part of evidence collection to aid the ongoing investigation. As
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shown in Figure 6.11, the ReLF client leverages the Android API to collect all Android
forensic sources, including logs containing in-memory evidence collected by the JIT-MF
Driver deployed within VirtualApp [131]. For JIT-MF_Logs generated by JIT-MF Drivers
containing evidence from app memory, the client uses the Android API to search for files
on the device with a *.jitmflog extension.

6.2.1.2 Attack Detector

Anomaly detection of logs is commonly used to detect anomalous behaviour. In the
case of stealthy app hijack attacks, existing log sources, such as third-party application
logs, do not provide enough evidence to enable anomaly detectors to detect a specific
app event as anomalous. The additional JIT-MF_Logs containing evidence from memory
collected by VEDRANDO’s Events Collector provide the necessary additional context with
which standard anomaly detection methods can observe a difference between normal
app usage and app hijack, thus enabling the detection of anomalous events as hijacked
benign app events, even in the case of stealthy attacks. While evidence of attack steps
from hijacked apps can be found in logs produced by the Events Collector component,
stealthy attacks may consist of several steps whose footprints are dispersed across many
separate logs on different victims’ devices.

The Attack Detector component of VEDRANDO comprises the detection algorithm
outlined in Algorithm 2. The algorithm uses an existing, standard anomaly detection
method to detect anomalies in the JIT-MF_Logs, then correlates anomalies with events
collected from other logs found on the device to reconstruct all the attack steps, including
malware entry point. The algorithm takes as input logs produced by the Events Collector
component, comprising JIT-MF_Logs with evidence objects from app memory and other
logs found on the device (see Table 6.5), and a user-defined configuration Config c. The
configuration variable Config c holds settings for generating the anomaly detection model.
Namely, it comprises: i) the anomaly detection method (a); ii) associated features selected
([ f1... fn]); iii) the anomaly threshold value t, which will be used to identify data points
as anomalous; and iv) a list of app-specific regex keywords ([p1...pn]) used during the
correlation of events. The algorithm outputs a list of events Correlated_Events e, attributed
to the complete attack steps.

Anomaly detection. All the entries from different log sources are parsed (line 1 in
Algorithm 2), so each entry has three main fields: i) timestamp, ii) log source, and iii)
activity. JIT-MF_Logs are filtered to remove duplicates. Furthermore, in the case of the
third-party app and JIT-MF_Logs, logs are filtered so that only sources of evidence related
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Algorithm 2: Anomaly detection and correlation algorithm
Input : JITMF Logs J, Other Logs O, Config c= {Anomaly Detection Method a,

Anomaly Detection Features [ f1... fn], Anomaly Detection Threshold t,
Correlation Keywords Regex [p1...pn]}

Output : Correlated_Events e=∅
1 J, O← ParseLogs(J, O)
2 J, O← GetAnomalies(J, O, c)
3

4 function GETANOMALIES(JITMF Logs J, Other Logs O, Config c):
5 m← GenerateModel(O, J, c[a], c[[ f1... fn]])
6 jitm f _anomalous_log_entries← DetectAnomalies(J, m, c[t])
7 e← Correlate(jitm f _anomalous_log_entries, J, O, c[[p1...pn]])
8 return e
9

10 function CORRELATE(jitm f _anomalous_log_entries, JITMF Logs J, Other Logs O,
Correlation Keywords Regex [p1...pn]):

11 Events e=∅
12 foreach an ∈ jitm f _anomalous_log_entries do
13 if IsTimestamp(an) then
14 jitm f _log_entry← GetJ ITMFLogEntryAt(an)
15 else
16 jitm f _log_entry← an
17 end
18 obj← GetEvidenceObject(jitm f _log_entry)
19

20 / ∗ Feature− based correlation ∗ /
21 foreach pi ∈ [p1...pn] do
22 if obj.match(pi) then
23 keyword← obj[pi]
24 e← e

⋃
FindEventsWithKeyword(O, J, pi)

25 end
26 end
27 end
28

29 / ∗ Time− based correlation ∗ /
30 jitm f _anomalous_logs← SortByTime(jitm f _anomalous_log_entries)
31 start_time← GetFirstEventTime(jitm f _anomalous_logs)
32 end_time← GetLastEventTime(jitm f _anomalous_logs)
33 e← e

⋃
GetEventsInTime(O, start_time, end_time)

34 return e
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to the evidence object are considered. For instance, in a messaging hijack attack, where
the evidence object is a message sent from the user’s phone, the evidence collected from
the app is its database comprising many tables possibly containing data unrelated to mes-
saging, e.g. app themes, which may cloud the investigation. The function GetAnomalies()
is then called with the following parameters: i) parsed JIT-MF_Logs (J; ii) logs from other
sources (O); and iii) configuration settings (Config c).

The function GetAnomalies() first generates a machine learning anomaly detection
model based on the machine learning method and features defined in the user-inputted
configuration (line 5). The model m is then applied on the parsed and filtered set of
JIT-MF_Logs J using the threshold defined in the configuration settings (line 6). The
anomalous JIT-MF log entries revealed by the anomaly detection model are considered
anomalous JIT-MF events. These are then correlated (line 7) with other log events (JIT-
MF_Logs and logs from other sources) using the app-specific correlation regex keywords
given parameter ([p1...pn]). The function returns the result of the Correlate() function.

Correlation. Individual entries in JIT-MF_Logs include a timestamp and metadata of
the Evidence_object definition as described in the JIT-MF Driver. Regardless of the driver
implementation or the app, the contents of the Evidence_object can be parsed to derive
relevant keywords used during an attack step. App-specific correlation keyword regexes
retrieve the relevant keywords from anomalous JIT-MF log entries. While an API-based
JIT-MF Driver means that the same Evidence_object can be used across different apps
that use the same API, the make-up of the Evidence_object is still app-specific. Therefore,
the regex pattern used to retrieve this metadata or identifier from a log entry must also
be app-specific. That said, there are cases where keyword regex is the same across apps
due to formatting standards e.g., object ID format may be in UUID format, which is a
standard format.

The Correlate() function accepts as input the anomalies detected, JIT-MF_Logs, logs
from other sources and the app-specific correlation regex keywords. If the anomaly is
a timestamp (as is the case with time-based anomaly detection), JIT-MF_Logs at that
time are retrieved (lines 11-17 in Algorithm 2). The Evidence_object of the anomalous
JIT-MF log entry is retrieved (lines 18) and used to perform correlation as follows. The
algorithm correlates anomalous JIT-MF log events with events in other log sources based
on two mechanisms: i) Feature-based correlation and ii) Time-based correlation. It is unlikely
that normal events have identical keywords in their Evidence_object. However, in the
case of malware, especially during propagation, Evidence_objects containing matching
keywords is expected. Therefore events in other log sources which contain the identical
keywords as those found in anomalous JIT-MF log events (lines 21-26) are considered
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further attack steps, and are added to the list of Correlated_Events e. This is referred to as
Feature-based correlation. Any other attack steps performed by the attack are assumed to
have happened in the period within which the correlated list of attack steps occurred.
Therefore Time-based correlation is used to search for other events that occur in other
logs when JIT-MF log anomalies are detected (lines 30-33). This ensures any attack steps
carried outside the app functionality are also disclosed. Any log entries found through
correlation are entered into a set of correlated events and returned to the analyst or
investigator as the complete list of attack steps carried out.

6.2.2 Setup performance overheads
VEDRANDO’s Events Collector set-up requires apps to be run in a virtual environment
(through app-level virtualisation), having a JIT-MF Driver and Runtime installed. Using
app-level virtualisation instead of app repackaging calls for a non-invasive approach
to JIT-MF installation. Therefore, this increases the potential compatibility of JIT-MF
installation across multiple Android apps. Yet this introduces additional performance
costs due to the additional proxying done by the virtualisation layer.

The performance overheads of JIT-MF installed in a virtualised environment are
calculated, based on the implementation of VEDRANDO. A set of apps from the most
popular 100 apps in Google PlayStore in February 2022 (as listed on AppBrain), which
were not previously installed on the phone or manufacturer-specific, are selected (a total
of 33 apps).

Experiment setup. A stock (unrooted) Google Pixel 3a physical phone, with eight
processors and 4GB RAM, was used, which runs on arm64-v8a CPU architecture and
Android version 9 (as required by VirtualApp). The apps selected were downloaded
from APKPure4 using apkeep5 to ensure that the APKs downloaded complied with the
architecture and Android version. App activity was simulated using the UI Exerciser
Monkey tool,6 by injecting 20 random UI events with a throttle of 30s. This time buffer
allows the virtual environment to spawn the app but cannot be reset to execute the rest
of the events due to limitations of UI Exerciser Monkey. A seed value was used to ensure
that the same app events could be repeated due to multiple runs.

The 33 apps were installed and used directly on the device to check typical resource
usage. The apps ran in a standard VirtualApp container to evaluate their compatibility

4https://apkpure.com/
5https://github.com/EFForg/apkeep
6https://developer.android.com/studio/test/other-testing-tools/monkey
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with the virtual environment. In this step, the overhead introduced by the Android
virtualisation regarding CPU and memory usage were measured. At the end of this
phase, five apps were identified as having triggered an exception due to incompatibility
with the virtual environment. These apps were discarded from the rest of the experiments.
The remaining 28 apps were executed three times i) directly on the device, ii) inside
a simple VirtualApp container and iii) inside a VirtualApp container equipped with
a generic SQLite API-based JIT-MF Driver (as implemented in VEDRANDO’s Events
Collector). The results were averaged over ten runs.

Results. Table 6.6 shows the minimum, average, and maximum overhead values ex-
pressed in percentage points (pp). In the first column, the execution of apps in a plain
VirtualApp is compared to the traditional execution method (no virtualisation). In the
second column, overheads introduced by the VirtualApp container as implemented
in VEDRANDO’s Events Collector component (i.e. with JIT-MF Driver and Runtime
installed) is compared to the execution in a plain VirtualApp environment. Since the
execution of an app under virtualisation is composed of two processes (the container and
plugin), the overall amount of CPU and memory is given by the sum of the overhead of
these two processes.

Table 6.6: Overall CPU and Memory usage overheads in percentage points
(pp) of 28 most popular apps, when executing within VirtualApp and a
JIT-MF-enhanced version of VirtualApp, respectively.

VirtualApp
VirtualApp with

JIT-MF
(added pp overheads on

device)
(added pp overheads on

plain VirtualApp)

C
PU

min. -0.46 +1.2
avg. +2.83 +2.06
max. +2.76 +6.79

M
em

or
y min. -0.48 +0.23

avg. +0.56 +0.18
max. +1.19 +0.29

Results from Table 6.6 show that when introducing virtualisation through VirtualApp,
there is an average increase of 2.83pp in CPU usage and 0.56pp in memory usage. The
results for the container as implemented in the Events Collector component, using an SQLite
API-based JIT-MF Driver (shown to be effective among instant messaging apps Section 5.4),
show that the additional average overhead introduced is negligible, i.e., an increase
of 2.06pp for the CPU usage and 0.18pp for the memory. This increase is caused by
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the overhead required by JIT-MF Drivers to capture memory dumps on trigger points
done through instrumenting methods. The overall additional CPU usage incurred by
VEDRANDO’s Events Collector component when using SQLite API-based JIT-MF Drivers, is
on average 4.89pp, rendering it feasible in terms of runtime performance in a real-world
scenario. This, however, may vary depending on the type of JIT-MF Driver used in the
VirtualApp container.

6.2.3 Attack investigation case studies
VEDRANDO’s Attack Detector is evaluated by measuring its ability to reveal attack steps
related to stealthy app hijack attacks in a realistic scenario. Rather than assessing the
performance of existing anomaly detection models on a large dataset, these case studies
aim to demonstrate how anomaly detection methods typically available to SOC analysts
through their SIEM (Security information and event management7) setup, can be used to
detect anomalous events related to app hijack attacks when provided with JIT-MF_Logs
produced by VEDRANDO’s Events Collector component. To this end, similarly to other
event reconstruction-related work [89, 6, 145], a qualitative case study is conducted. The
study focuses on instant messaging (IM) hijack attacks and simulates the WhatsApp Pink
attack to target Android’s ten popular IM apps shown in Table 6.7.

Table 6.7: List of applications used in the case study.

App
#

App Name Package Version
# of Down-

loads

1 Facebook com.facebook.orca 392.0.0.12.106 5B+
2 WhatsApp com.whatsapp 2.23.2.4 5B+
3 Imo com.imo.android.imoim 2023.01.1031 1B+
4 Skype com.skype.raider 8.92.0.401 1B+
5 Telegram org.telegram.messenger.web 9.3.2 1B+
6 WhatsApp Business com.whatsapp.w4b 2.23.5.77 500M+
7 Kik kik.android 15.49.0.27501 100M+
8 Signal org.thoughtcrime.securesms 6.12.5 100M+
9 Plus Messenger org.telegram.plus 9.4.9.0 50M+
10 Slack com.Slack 23.01.40.0 10M+

6.2.3.1 Case study setup

Figure 6.12 shows the experiment setup and flow, comprising an implementation of the
working prototype for VEDRANDO, shown previously in Figure 6.11, and the inves-

7https://www.splunk.com/en_us/data-insider/what-is-siem.html
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Table 6.8: Ground truth timeline of events for IM hijack case study.

Event Event Description Comments

1 Authorised messages
Normal traffic consisting of outgoing messages using the app,
occurring at a random time offset.

2 Malware entry point
An incoming message via the app that contains a link to a
malicious app: DHL: Your parcel is arriving, track here: <URL>

3
Malicious demo.apk in-
stalled

The user clicks on the link which automatically downloads
and installs the malicious app (demo.apk) silently.

4
Link propagated to
contacts in messaging
app

demo.apk propagates itself by sending the same message with
the malicious link to all the contacts available in the app.

5
Propagated messages
deleted

demo.apk deletes the sent messages from the victim’s app.

6 Trigger event

After one hour, a recipient of the message containing ma-
licious content, alerts the victim that suspicious activity is
occurring on their phone: “Hey, I think something is wrong with
your phone. You sent me a suspicious message.”.

tigation flow indicated by arrows. A stock (unrooted) Google Pixel 3a physical phone
was used on which an implementation of VEDRANDO’s Events Collector component,
was deployed, using an SQLite API-based JIT-MF Driver,8 whose accuracy has been
demonstrated in previous experiments (Chapter 5). Normal traffic on each app consisted
of loading and sending instant messages. This was simulated using AndroidViewClient,9

assuming that the user messages random contacts from his list of contacts, waiting a
random amount of seconds (between one and ten) before sending the message. While the
simulation of normal traffic may threaten the validity of this experiment, the simulated
traffic generated within the case study time window is a realistic enough representation
to provide a basis for this study.

IM App Hijack attack simulation. Following the stealthy WhatsApp Pink attack
outlined in Section 6.1, IM hijack attack scenarios misusing messaging functionality for
propagation are simulated using adb shell commands and AndroidViewClient.10

Table 6.8 shows the ground truth timeline of events carried out to simulate the attack
scenario for this case study. A malicious message is received containing a link to a
malicious app (Table 6.8 2 ). Once the user clicks on the link, the app (a fake app called
demo.apk) is silently installed (Table 6.8 3 ) and propagates to the user’s contacts via
the default IM app installed (in this case, the apps in Table 6.7). To attain stealth, the

8https://gitlab.com/bellj/vedrando/-/tree/main/sqlite-jitmf-driver.js
9https://github.com/dtmilano/AndroidViewClient

10https://github.com/dtmilano/AndroidViewClient
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Figure 6.12: Complete case study experimentation flow.

simulated attack deletes the sent messages from the victim’s phone (Table 6.8 5 ) and
hides by removing the malicious app icon from the home screen so that the victim is
unaware of the malicious app and it goes unnoticed by the victim for longer. 6 in
Table 6.8 is a Trigger Event; that is, it alerts the user that a suspicious event has possibly
occurred, which initiates an investigation process. It is typical for realistic malware
aiming to be stealthy to wait until it is the right time to execute [100]. In this case, the
malware waits until the hijacked app is not in use so as not to alert the user of abnormal
behaviour. Due to these stealthy measures and additional ones that the malware uses
to hide its attack steps, the trigger event occurs much after (in this case, almost an hour
later) the attack, meaning that the malware would have cleared its tracks leading to
delayed detection.

Investigation setup. Assuming the role of an SOC analyst in an enterprise, an investi-
gation process starts with the analyst who interacts with the GRR ReLF server (step 1 in
Figure 6.12) to collect evidence artefacts from the victim’s phone, including JIT-MF_Logs
produced by the JIT-MF Driver (steps 2,3). SOC analysts are typically equipped with
SIEM services that provide access to out-of-the-box anomaly detection tools. The GRR
ReLF server has bindings to Google BigQuery,11 a service that enables scalable analysis
over petabytes of data and provides machine learning capabilities including anomaly
detection. This service is used as a SIEM equivalent for this experiment. During the

11https://cloud.google.com/bigquery
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investigation procedure followed in this evaluation, the artefacts collected by the ReLF
client and sent to the GRR ReLF server are saved in Google BigQuery datasets (step
4). VEDRANDO’s Attack Detector detection and correlation algorithm uses Google Big-
Query’s machine learning API to detect anomalies in the collected JIT-MF_Logs. These
anomalies are correlated to events from other logs to reconstruct the attack steps executed
by the messaging app hijack attack (step 5). The SOC analyst then analyses and interprets
the attack steps detected (step 6).

6.2.3.2 Detection and correlation configuration

The investigation procedure outlined above was carried out after the attack hijack sce-
nario was executed on each targeted messaging app shown in Table 6.7. Once the logs
after each case study were retrieved, the detection and correlation algorithm (Algo-
rithm 2) as part of VEDRANDO’s Attack Detector component was implemented and
executed using the configuration described below.

Anomaly detection models. Google BigQuery ML [54] provides anomaly detection
capabilities through four machine learning model types: ARIMA_PLUS, K-means, PCA
and Autoencoder. All these models are unsupervised and can therefore detect anomalies
without needing labelled data. ARIMA_PLUS detects anomalies in time series data, while
the others detect anomalies in independent and identically distributed random variables.
For this evaluation, these models were used with selected applicable parameters and
features as configuration input to the detection algorithm (Algorithm 2) to measure the
algorithm’s effectiveness in detecting and reconstructing attack steps. All collected logs
(including JIT-MF_Logs) are processed in BigQuery, and preprocessed log content is
used for building the different models. Hyperparameter tuning is commonly used to
improve model performance by searching for optimal hyperparameters. During this
evaluation, the default and recommended Vertex AI Vizier algorithm was used to tune
hyperparameters.12

Dataset. The evaluation of machine learning algorithms typically involves using large,
established datasets. However, this evaluation aims to demonstrate the value that JIT-
MF_Logs bring to the incident response process by showing that evidence in these logs
enables existing machine-learning anomaly detection models to detect anomalies in
benign app activity related to app hijack that can help reconstruct attack steps. Therefore

12https://cloud.google.com/bigquery/docs/reference/standard-sql/
bigqueryml-hyperparameter-tuning
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the dataset used to train anomaly detection models in this evaluation is realistic to what
an SOC would have available in such an incident. This comprises logs typically collected
by EDRs (shown in Table 6.5) and JIT-MF_Logs that were populated during the case
study (which involved both the attack and normal traffic) and collected as part of the
investigation process by VEDRANDO’s Events Collector component.

The VirtualApp container used by the Event Collector was built and deployed to the
phone in debug mode, and therefore its app data could be retrieved. VirtualApp app
data houses the data produced by plugin apps, and therefore relevant third-party app
forensic sources could also be accessed and collected as forensic sources. When working
with a VirtualApp container app that is not running in debug mode, forensic analysts
can opt to use app features like ’Backup’ or collaborate with the device owner to collect
the evidence that is present in the app. Once the sources were collected, relevant data
was extracted, related to the app’s main functionality (in this case, messaging), converted
into logs and transferred to the Google BigQuery dataset.

Evidence collected from the app (both JIT-MF_Logs and app-specific logs) comprised
its database consisting of many tables possibly also containing data unrelated to mes-
saging (e.g., app themes etc.), which do not contribute to the main app functionality.
Therefore logs were filtered to include only evidence related to messaging activity.
The timestamp, forensic source and activity fields of log entries for each source were
identified, parsed and used to build anomaly detection models.

Features. Table 6.9 shows the features used per anomaly detection method to generate
the anomaly detection models during the execution of Algorithm 2. Features were
selected based on the anomaly detection method and knowledge that JIT-MF_Logs may
contain evidence of offloaded attack steps that are not visible in other forensic sources.
Log entries from multiple sources were parsed so that each had a timestamp, forensic
source and activity. However, the format of the content inside the activity field differed
from one forensic source to another, both across sources and in the case of app-specific
logs and JIT-MF_Logs, even across apps. Rather than parsing each log type individually
for each app and forensic source, derived features in the form of log entry amounts were
used per feature grouped by a time window.
Feature 1 represents the discrepancy in log entry amount between that produced by all
forensic sources (excluding JIT-MF_Logs) and the amount found in JIT-MF_Logs.
Feature 2 represents the total amount of log entries collected from all sources of the Events
Collector component.
Features 3 represents the log entry amount collected from JIT-MF_Logs.
Features 4 - 9 represent the log entry amounts collected from distinct forensic sources
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Table 6.9: The list of features used for anomaly detection model generation,
as implemented in Algorithm 2. The time units used for each model
generated are described in Table 6.10.

Method Feature Description

ARIMA_PLUS Feature 1
Discrepancy between the amount of JIT-MF_Logs and other
logs

K-Means, PCA,
Autoencoder

Feature 2 Total amount of logs
Feature 3 Amount of JIT-MF_Logs
Features 4 - 9 Amount of logs per forensic source
Feature 10 Amount of JIT-MF_Logs related to Data Retrieval (SELECT)
Feature 11 Amount of JIT-MF_Logs related to Data Insertion (INSERT)

Feature 12
Amount of JIT-MF_Logs related to Data Replacement
(REPLACE)

Feature 13 Amount of JIT-MF_Logs related to Data Update (UPDATE)
Feature 14 Amount of JIT-MF_Logs related to Data Deletion (DELETE)

(excluding JIT-MF). While Table 6.5 shows that a typical collection involves retrieving
multiple forensic sources, only five contained evidence during this case study.
Features 10-14 represent the log entry amounts collected from JIT-MF_Logs with distinct
SQL statements. Since JIT-MF_Logs in these case studies are generated using an SQLite
JIT-MF-based driver, log entries include SQL statements which process the message
object (shown in Listing 6.1). The SELECT, INSERT, REPLACE, UPDATE and DELETE

SQL statements are considered to reflect app functionality related to the processing of
the message object. The amount of logs having a specific SQL statement is a feature.

1 {"time": "1681643999", "event": "Telegram Message Sent", "trigger_point(s)": "sqlite", "object":

{"REPLACE INTO messages_v2 VALUES(19037, 961166549,..., 1676821892, n8<J’QY<J9xcRHey, I

think something is wrong with your phone. You sent me a suspicious message.,...)"}}

2 {"time": "1676928079", "event": "Whatsapp Message Sent", "trigger_point(s)": "sqlite", "object":

{"INSERT INTO message(...,sender_jid_row_id,...receipt_server_timestamp,text_data,...)

VALUES (...4,18446744073709552000,...,18446744073709552000,DHL: Your parcel is arriving,

track here: https://flexisales.com/dhl1eep7j88cc5z3,...)"}}

3 {"time": "1678038113", "event": "Signal Message Sent", "trigger_point(s)": "sqlite", "object": {

"INSERT INTO message(view_once,receipt_timestamp,..,body..,recipient_id) VALUES

(0,18446744073709552000,...,DHL: Your parcel is arriving, track here: https://flexisales.com

/dhl18446744073709552000eep7j88cc5z3v,...,4)"}}

Listing 6.1: JIT-MF log entry sample containing SQL statements, generated
while using WhatsApp, Telegram and Signal Android apps using
SQLite JIT-MF-based Driver. Metadata which does not contribute to the
investigation was redacted but can be found in the repository13.

The models in Table 6.10 were generated based on the features described. Two models
were created for each combination of anomaly detection method and feature or feature

13https://gitlab.com/bellj/vedrando/-/tree/main/forensic_artefacts_collected
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set (in the case of K-means, PCA and Autoencoder). In the case of Google BigQuery’s
ARIMA_PLUS, log entries are automatically grouped in sixty-second time windows.
For ARIMA_PLUS two different feature normalisation properties (Standard Scaler and
Min Max Scaler14) are used, whereas for K-means, PCA and Autoencoder events are
aggregated and counted every thirty and sixty seconds. Each model in Table 6.10 was
created for every targeted app in the case study.

Table 6.10: Models generated based on the selected features.

Model AD Method Feature Feature Options

M1 ARIMA_PLUS Feature 1 Standard Scaler
M2 ARIMA_PLUS Feature 1 Min Max Scaler
M3 K-Means Feature 2 -11 Grouped by 30s
M4 PCA Feature 2 -11 Grouped by 30s
M5 Autoencoder Feature 2 -11 Grouped by 30s
M6 K-Means Feature 2 -11 Grouped by 60s
M7 PCA Feature 2 -11 Grouped by 60s
M8 Autoencoder Feature 2 -11 Grouped by 60s

Anomalies are detected depending on the model used and the threshold set. ARIMA_
PLUS is a univariate time-series model that uses a single feature to detect anomalous
data points across historical data. In contrast, K-means, PCA and Autoencoder models
use multiple features for clustering (K-means) and dimensionality reduction (PCA,
Autoencoder) that identify anomalies based on outliers and reconstruction loss. Each
model supports a custom threshold for anomaly detection in Google BigQuery ML.15

For ARIMA_PLUS models anomalies are identified based on the confidence interval
for that timestamp. If the probability that the data point at that timestamp occurs
outside of the prediction interval exceeds a given probability threshold, the data point is
identified as an anomaly. Furthermore, since Google BigQuery returns the feature value,
the detection algorithm implementation also checks that for the given anomaly found,
Feature 1 (the discrepancy between logs) is greater than 0. For the other models, anomalies
are identified based on the value of each input data point’s normalized distance to its
nearest cluster. The data point is identified as an anomaly if that distance exceeds
a threshold determined by the given contamination value. The contamination value
defines the proportion of anomalies in the training dataset. This value ranges from 0.1
to 0.5, where 0.1 and 0.5 mean that 10% and 50% of the training data used to create the

14https://cloud.google.com/bigquery/docs/reference/standard-sql/
bigqueryml-preprocessing-functions

15https://cloud.google.com/blog/products/data-analytics/
bigquery-ml-unsupervised-anomaly-detection
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input model, respectively, is anomalous. Whereas for the ARIMA_PLUS models, a lower
threshold value makes data points more likely to be considered anomalous, for the other
models, a larger contamination value (threshold) makes data points more likely to be
considered anomalous.

High-level event reconstruction and correlation. Before executing the Attack Detector
component of VEDRANDO, preliminary manual analysis was carried out to identify how
low-level JIT-MF log entries can be combined to form more indicative high-level events.
The analysis revealed that, in the case of SQLite API-based JIT-MF Drivers and the apps
used in the case studies, a regex pattern for JIT-MF_Logs generated by each app could
identify a log entry that reflects the actions of several JIT-MF low-level events generated
after an action has occurred. Listing 6.2 shows the log entries obtained for the WhatsApp
case study. In this case, the SELECT, UPDATE, and INSERT OR IGNORE log entries
shown between lines 2-21 all occur at the same timestamp and reflect a message send
event. These SQL statements are executed to update several tables in the database that are
affected by this event. For instance, log entries shown on lines 13-16 set the last updated
chat, which is reflected in the UI, whereas log entries on lines 2-4 reflect execution related
to opening a chat and drafting a message before sending. In this case, however, the
high-level event that reflects the message sent with all its metadata (including message
content) can be seen on line 5. This pattern was seen to be the case for WhatsApp
message-sending activities. Therefore the regex used to identify a high-level WhatsApp
messaging event was: INSERT INTO message.*VALUES (.*), with resulting events
also grouped by timestamp, under the assumption that a normal user cannot send more
than one message at precisely the same millisecond. The result is the high-level event
shown on line 25. The same approach was taken for the rest of the case studies.

1 --- Low-level Events

2 1676928079,SELECT _id, jid, serial, issuer, expires, verified_name,... FROM wa_vnames WHERE jid

=...@s.whatsapp.net

3 1676928079,INSERT INTO message_details(author_device_jid,message_row_id) VALUES (...)

4 1676928079,INSERT INTO message_ftsv2(fts_jid,fts_namespace,content,docid) VALUES (...)

5 1676928079,INSERT INTO message_ftsv2(fts_jid,fts_namespace,content,docid) VALUES (1 o,flo,dhl :

your parcel is arriving , track here: https://flexisales.com/dhl29eep7j88cc5z3,?)

6 1676928079,UPDATE chat SET last_read_receipt_sent_message_row_id=...,show_group_description=...

7 1676928079,UPDATE chat SET last_read_receipt_sent_message_row_id=10,show_group_description=0,...

8 1676928079,SELECT jid_row_id, type, message_count FROM frequent)q

9 1676928079,SELECT user, server, agent, device, type, raw_string FROM jid WHERE _id=...

10 1676928079,SELECT user, server, agent, device, type, raw_string FROM jid WHERE _id=4s

11 1676928079,SELECT user, server, agent, device, type, raw_string FROM jid WHERE _id=null

12 1676928079,SELECT user, server, agent, device, type, raw_string FROM jid WHERE _id=15s

13 1676928079,UPDATE frequents SET message_count=... WHERE jid=... AND type=...

14 1676928079,UPDATE frequents SET message_count=2 WHERE jid=35679247196@s.whatsapp.net AND type=0

15 1676928079,UPDATE frequent SET message_count=undefined WHERE jid_row_id=... AND type=...

16 1676928079,UPDATE frequent SET message_count=2 WHERE jid_row_id=14 AND type=0

17 1676928079,COMMIT;

18 1676928079,BEGIN EXCLUSIVE;p
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19 1676928079,INSERT OR IGNORE INTO message_link(message_row_id,link_id,chat_row_id) VALUES (...)

20 1676928079,INSERT OR IGNORE INTO message_link(message_row_id,link_id,chat_row_id) VALUES (...)

21 1676928079,COMMIT;

22
23 --- High-level Event

24 1676928079,INSERT INTO message_ftsv2(fts_jid,fts_namespace,content,docid) VALUES (1 o,flo,dhl :

your parcel is arriving , track here: https://flexisales.com/dhl29eep7j88cc5z3,?)

Listing 6.2: Low-level event to high-level event mapping for the
WhatsApp case study.

This manual process was also required to select the correlation regex keyword specific
to each app. In these case studies, keyword regexes aim to extract the message content
and identifier (ID). Therefore regex string patterns were defined for these two keywords
for each app so that any message content or message ID found in log entries can be
correlated with related events. Once the list of events correlated by message ID and text is
produced, time-based correlation occurs (as shown in Algorithm 2) by retrieving events
from other log sources within the period of the first and last correlated events. Listing 6.3
shows this for the WhatsApp case study. In the case of WhatsApp, the message content
was retrieved via a position index within log entries that follow the regex: INSERT
INTO message.*VALUES (.*), where the content is found as position 15 within the
parametrized values (the final group of the regex (.*)). The message ID, similarly,
is found at position nine having regex: ^.*,([1-9]),. Given the initial and last
timestamps (1676927672 - 1676928330) retrieved for the list of logs correlated by
message ID and content, a period is established within which a package install (line 2),
comprising malware installation, is also disclosed. The same approach was followed in
the rest of the case studies.

1 Timestamp, Log Entry, Forensic Source

2 1676927672,mid: 19039| uid: 961166549| in/out: out| message:

DHL: Your parcel is arriving, track here: https://flexisales.com/dhl?eep7j88cc5z3, Telegram

Logs

3 1676927682,com.example.demo|2023-02-20 21:14:42+00|2023-02-20 21:14:42+00, Android Package Info

4 1676928312,INSERT INTO message(broadcast,message_add_on_flags,key_id,origin,participant_hash,

sender_jid_row_id,recipient_count,message_type,chat_row_id,...,text_data,from_me,status,

timestamp,received_timestamp) VALUES (0,0,99F904041FAFC5864CF7A590AB0F13BD,0,null,0,0,0,

58975,...,

DHL: Your parcel is arriving, track here: https://flexisales.com/dhl1eep7j88cc5z3)x037j88cc

5z3,0,1676928307435,0,?), JIT-MF_Logs

5 1676928330,DELETE FROM message WHERE _id IN (SELECT _id FROM deleted_messages_ids_view WHERE

chat_row_id = 58975 AND sort_id>=31 ORDER BY sort_id ASC LIMIT 100), JIT-MF_Logs

Listing 6.3: List of events correlated by message ID, content and time for
the WhatsApp case study.
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6.2.4 Attack investigation: Results
For each targeted app, the ground truth attack steps of the simulated app hijack were
recorded as shown in Table 6.11 (a subset of the events shown in Table 6.8). VEDRANDO’s
Events Collector is evaluated based on the logs produced compared to those produced by
plain EDRs (without JIT-MF installed). VEDRANDO’s Attack Detector is evaluated based
on its ability to detect the app hijack malware entry point, given evidence in JIT-MF_Logs.

Table 6.11: Comparison of ground truth attack steps disclosed and de-
tected by a typical EDR and by VEDRANDO (columns 3 and 4, 5 and 6),
respectively.

Event Event Description
Collected
by EDR

Collected by
VEDRANDO

Detected
by EDR

Detected by
VEDRANDO

2 Malware entry point ✓ ✓ ✕ ✓

3 Malicious demo.apk installed ✓ ✓ ✕ ✓

4 Link propagated to contacts ✕∗ ✓ ✕ ✓

5 Propagated messages deleted ✕∗ ✓ ✕ ✓

✓ refers to disclosed attack steps.
✕ refers to undisclosed attack steps.
∗ these attack steps were recovered during the Skype case study only.

Artefacts recovered by JIT-MF_Logs. Table 6.11 summarises which critical attack steps
executed on all targeted messaging apps were found in logs typically collected by an EDR
and collected by VEDRANDO’s Events Collector component that include JIT-MF_Logs.

The results show that VEDRANDO’s Events Collector, using app-level virtualisation
enhanced with JIT-MF Drivers, collects JIT-MF_Logs comprising evidence from memory
from all the apps in the case studies without requiring app repackaging. In nine out of
the ten case studies carried out (except for the Skype case study), critical attack steps ( 4

and 5 ) were only collected when considering JIT-MF forensic log sources. This evidence
was located given knowledge of the ground truth. However, investigators and analysts
investigating an attack scenario require a detection methodology that points to these
specific events to detect anomalous behaviour. Specifically, events 2 and 3 can only be
considered anomalous after having been correlated to events 4 and 5 , collected solely
by JIT-MF (except for one case study).

Reconstruction of attack steps. Now that results show that only JIT-MF_Logs uncover
these anomalies, an analysis of the thresholds and model parameter selection is carried
out to identify the ideal parameters for the Attack Detector to uncover these anomalies.
Tables 6.12 and 6.13 show the effectiveness of the detection and correlation algorithm
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in VEDRANDO’s Attack Detector component at reconstructing stealthy attack steps
executed during the stealthy IM hijack case studies, with the input parameters defined
in Section 6.2.3.2. For each model and threshold input combination, the average recall,
precision and F1-scores are calculated to measure the overall accuracy of the reconstructed
set of events returned by the Attack Detector when compared to the ground truth set
of events executed by the attack. The F1-score combines precision and recall values.
Therefore, the higher the F1-Score, the more accurate the list of attack steps returned by
VEDRANDO’s Attack Detector.

Table 6.12: Table showing the average F1-scores for the reconstructed
attack steps across all case studies, generated by the combined anomaly
detection and correlation algorithm when using ARIMA_PLUS models,
with varying threshold values. The threshold values, in this case, are
inversely-proportional to the allowance for anomaly probability.

Model Model Description
Threshold (anomaly probability)

0.95 0.90 0.85 0.80

M1 ARIMA_PLUS using Standard Scaler 70.70% 73.08% 82.60% 82.60%
M2 ARIMA_PLUS using Min Max Scaler 67.96% 72.50% 82.17% 82.17%

Table 6.13: Table showing the average F1-scores for the reconstructed
attack steps across all case studies generated by the combined anomaly
detection and correlation algorithm when using K-means, PCA and Au-
toencoder models, with varying threshold values. The threshold values,
in this case, are proportional to the allowance for anomaly probability.

Model Model Description
Threshold (contamination)

0.1 0.2 0.3 0.4 0.5

M3 K-means Grouped at 30s 34.74% 51.19% 65.34% 68.09% 72.16%
M4 PCA Grouped at 30s 14.60% 57.55% 65.94% 77.61% 80.69%
M5 Autoencoder Grouped at 30s 34.74% 51.19% 65.34% 68.42% 72.16%
M6 K-means Grouped at 60s 32.60% 50.85% 70.68% 69.95% 76.90%
M7 PCA Grouped at 60s 17.35% 60.23% 78.99% 77.55% 83.53%
M8 Autoencoder Grouped at 60s 32.60% 50.85% 70.68% 70.09% 76.90%

The tables above show the averaged results over all the attack case studies carried
out during experimentation. The results demonstrate that, overall, threshold parameter
values with greater allowance for anomalies (< 0.9 for ARIMA_ PLUS and >0.3 for K-
means, PCA and Autoencoder models) return more accurate reconstruction of attack
steps. Specifically, three models (PCA models - M4 and M7 - and the ARIMA_PLUS
model using a standard scaler - M1) result in an F1-score of 80% and have 100% recall
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Figure 6.13: Average for recall and precision values for a given threshold,
when using PCA model M7 across the ten case studies.

value; that is, full attack step reconstruction.
Further analysis of the results obtained by these three models revealed that the

average recall value across apps was increasing at a faster rate than the precision value
was decreasing. This is because, for individual case studies (which vary depending on
the model used), a more lenient threshold value was required to obtain the same recall
value that other apps obtain at less lenient threshold values. Figure 6.13 shows this for
the specific case of the model input parameter resulting in the best overall F1-score value
(M7). In this case, 90% of the apps used in the case studies reached an average of 100%
recall value on the reconstructed set of attack steps when the threshold was set at 0.3.
However, WhatsApp Business attack steps were only detected as anomalies when the
threshold was set to 0.5.

Overall, results show that PCA works well with the features selected to detect anoma-
lies in JIT-MF_Logs, due to the high F1-scores when using both PCA models. Crucially, by
using PCA (an existing anomaly detection algorithm available to SOC analysts) with a 0.5
threshold, using the set of features described in Table 6.9 and correlation settings defined
in Section 6.2.3.2, the detection algorithm used by VEDRANDO can fully reconstruct
attack steps of app hijack attacks with relatively high precision (∼72.4%)across all case
studies based on evidence collected from JIT-MF_Logs.

The sensitivity of the implemented detection and correlation algorithm to the thresh-
old value given as a parameter was evaluated using Wilcoxon signed rank test.16 Results

16https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
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Table 6.14: p-value results for Wilcoxon signed rank test given pairwise
threshold values for K-means, PCA, Autoencoder and ARIMA models.

K-means, PCA, Autoencoder models ARIMA models

Pairwise
thresholds

p-value
Statistically significant?

(p-value < 0.05)
Pairwise

thresholds
p-value

Statistically significant?
(p-value < 0.05)

0.1, 0.2 0.03501 Yes 0.8, 0.85 1 No
0.2, 0.3 0.03501 Yes 0.85, 0.9 0.3333 No
0.3, 0.4 0.4375 No 0.9, 0.95 0.3333 No
0.4, 0.5 0.03125 Yes

shown in Table 6.14 demonstrate that the change-in-value of F1-scores between thresh-
old values for K-Means, PCA and Autoencoder is overall statistically significant (with
p-value less than 0.05 [51]). Therefore when using such models, the algorithm is con-
sidered sensitive to the threshold set. On the flip side, the change in threshold values
for ARIMA_PLUS models values is not. This is already visible in Table 6.12, where the
F1-scores for the most lenient threshold values (0.8,0.85), remain the same. Given this,
one still has to consider that the size for the set of ARIMA models, comprised two models,
whereas that for K-Means, PCA and Autoencoder models was larger (six models in total),
offering a more stable result.

6.3 Summary of findings
This chapter demonstrated that the resulting JIT-MF_Logs produced by minimally inva-
sive JIT-MF Driver implementations enable full attack step recovery, both when using
traditional mobile forensic tools and EDR tools. Thus, the case studies show evidence
supporting the hypothesis that minimally invasive attack step recovery from volatile
memory can produce accurate forensic timelines that aid forensic investigators during
app hijack incidents. This was demonstrated in qualitative case studies comprising
benign IM hijack scenarios inspired by realistic malware. Generic API-based JIT-MF
Driver implementations were used, which, while being the least app-invasive, produce
accurate JIT-MF_Logs (as demonstrated by results obtained from exploration described in
previous chapters). This API-based JIT-MF Driver specification enabled experimentation
to be carried out on a range of IM apps while using stock devices and apps.

Table 6.15 summarises the experiments carried out during this evaluation. The table
outlines each experiment (denoted by the section in which it was described) and its
main objectives in relation to the hypothesis presented in this thesis (that is, that app-
specific artefacts from memory enable the complete recovery of attack steps in the case
of app hijack attacks). The tools used in each experiment are listed along with the main
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conclusions and impact of the results.
The overall results show that JIT-MF_Logs improve on state-of-the-practice forensic

tools and EDRs in the context of attacks following the app hijack threat model by collect-
ing evidence of attack steps in memory that is not recorded by standard forensic tools
(Belkasoft and XRY). Results from experimentation demonstrate that only JIT-MF_Logs
contained evidence of message propagation, including object metadata (Section 6.1).
Having obtained results showing that evidence of app hijack attack steps can only be
found in JIT-MF_Logs, the next experiment described an EDR and detection workflow
that is sensitive to evidence in JIT-MF_Logs (Section 6.2). The results from the experiment
showed that evidence in JIT-MF_Logs can be detectable as anomalous, using anomaly ma-
chine learning with a set of specific parameters, and a correlation and detection algorithm
can be used to fully recover attack steps in the case of a messaging hijack app.
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Table 6.15: Summary of experiments carried out to evaluate JIT-MF_Logs
with state-of-the-art forensic tools, within the context of IM app hijack
attacks.

Experiment Objective
State-of-the-art
Forensic tools

Main conclusions Impact

Section 6.1
Demonstrate the ability of a JIT-MF tool to
contribute to forensic timelines generated by
state-of-the-practice mobile forensic tools

Belkasoft, MSAB XRY

• JIT-MF_Logs uniquely contribute to forensic timelines gener-
ated by state-of-the-practice mobile forensic tools through
recorded attack steps that are deleted or inaccessible to other
forensic tools.

• Both MSAB XRY and Belkasoft proprietary tools could not
recover critical metadata related to hijacked attack steps,
unlike MobFor. This JIT-MF tool was able to produce the
missing metadata.

• Artefacts found in JIT-MF_Logs complement
those retrieved by forensic tools.

• Experimentation confirmed that app repackag-
ing to include JIT-MF Drivers for forensic en-
hancement can conflict with app protection mea-
sures related to anti-repackaging checks.

Section 6.2
Demonstrate how full attack step recovery of
benign hijack attacks is only possible using
JIT-MF_Logs.

ReLF EDR using GRR
Server

• Attack steps executed through app hijacking and recorded
in JIT-MF_Logs are detectable as anomalies.

• JIT-MF_Logs carry sufficient features to be correlated with
the attack’s entry point on the device.

• Full attack step recovery (up to malware entry
point) is possible for app hijack attacks, using
JIT-MF_Logs alongside other forensic sources typ-
ically collected, allowing for attack step remedia-
tion.

• Non-invasive approach avoiding app unpack-
aging and repackaging is possible through API-
based JIT-MF Driver and JIT-MF installation at
app level leveraging app-level virtualisation.
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7 Discussion

The research question and hypothesis set in this thesis called for an exploration to
determined the minimum level of invasiveness possible for the timely collection of app-
specific artefacts from memory without compromising forensic timeline accuracy. It also
involved evaluating artefacts in JIT-MF_Logs alongside those collected by state-of-the-
art forensic tools. To this end, experimentation comprised implementing the JIT-MF
framework (described as a means to explore the research question of this thesis) and
analysing the results from case studies comprising simulated messaging hijack attacks.
This involved the creation of JIT-MF Drivers with Evidence_objects and Trigger_points
from different layers of the stack, JIT-MF tools and JIT-MF-enhanced EDRs.

This chapter presents an overall analysis of the experimentation results and what
these results demonstrated in terms of the initial objectives set for experimentation
(Section 7.1) in line with the research question, along with the threats to their validity and
experimentation limitations (Section 7.2). Finally, an overview of the development effort
and challenges involved in developing the JIT-MF tools used during experimentation is
also presented (Section 7.3).

7.1 Analysis of experimentation results
Timely-collected evidence from volatile memory is necessary for the complete attack step
recovery of app hijack investigation. The experiments involved simulated app hijack
scenarios that emulate realistic malware [7]. Results from case studies used during explo-
ration showed that typically collected forensic sources lacked the necessary app-specific
artefacts to disclose attack steps comprising hijacked app functionality. The presence of
app-specific artefacts does not directly imply a complete forensic timeline comprising all
the recovered attack steps, as this relies on several factors, including the investigator’s
analytical abilities and the forensic analysis tools used. However, if these artefacts are
missing or uncollected in the first place, then complete forensic timeline generation is
guaranteed not to be a possibility. Results from the case studies used during experimen-
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tation show that in the case of app hijack attacks, app-specific artefacts contribute to
a complete forensic timeline and therefore are necessary for attack step reconstruction
and remediation. However, the messaging application logs of many apps used dur-
ing experimentation did not disclose this evidence. JIT-MF_Logs were used instead to
compensate with evidence collected from memory. Application developers could aid
in this respect by including a heightened level of forensic readiness to complement the
current security trend by design. Such capabilities enable forensic investigations, yet it is
difficult to predict which events should be logged or can be hijacked. Simultaneously,
logging all possible events related to application functionality of interest would render
any app unusable. JIT-MF can alleviate this challenge whereby it can be possible for
application developers to embed JIT-MF capabilities within apps, having configurable
options that enable investigators or even developers to modify the Evidence_object and
Trigger_point depending on the functionality of interest that needs to be logged in the
case of a specific app hijack attack scenario. JIT-MF can be used in a setting similar to
Runtime Application Self-Protection (RASP) [60] solutions used post-deployment for
app hardening to monitor possibly unauthorised access and interactions; however, for
timely dumping of evidence in memory, instead.

Evidence from memory alone is not enough for full attack step recovery. Results
from the experiments show that while the evidence in JIT-MF_Logs is necessary, it is
not sufficient in isolation for a complete reconstruction of attack steps. This has been
demonstrated in other research [89], where advanced cyber attacks execute their attack
steps in multiple stages, aiming to be stealthy and elusive. This means that any evidence
of attack steps is dispersed across multiple sources and requires a process of log event
correlation for full attack step reconstruction. Case studies with other forensic tools, EDRs,
and anomaly detection mechanisms show that JIT-MF_Logs contain missing evidence of
attack steps not found in other sources. Moreover, the evidence in JIT-MF_Logs carries
enough features in metadata that this evidence can be correlated to other forensic sources
collected to generate a complete forensic timeline comprising all attack steps, including
the malware entry point. This implies that incident response is then able to remediate all
attack steps.

App-specific evidence of app hijack attacks can be timely collected from memory
by identifying app objects that need to be dumped and associated app instructions that
result in these objects being in memory. Experiment results have shown that this is
possible through function hooking of app instructions to dump the identified object in
memory. This was implemented through Trigger_points and Evidence_objects. Yet, the
process of function hooking so far involved device or app-invasive approaches. Timely
collecting of app-specific artefacts from memory can be non-invasive by instrumenting
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the app runtime level and identifying publicly-documented APIs that handle application
functionality of interest. In all the experiments, JIT-MF was implemented at the app level
avoiding device rooting and even shown to operate using app-level virtualisation to
avoid app repackaging while still timely collecting evidence from memory. This means
that stock apps and devices can be used, ensuring that the approach is compatible across
different devices and apps used by potential victims and that the device and app’s default
security are not weakened. App invasiveness also concerns JIT-MF Driver development
regarding Trigger_points and Evidence_objects selection. App-specific artefacts required as
evidence for app hijack attacks call for app-specific Evidence_objects which can be linked
to app-specific instructions (Trigger_points). Yet identifying such objects and instructions
requires compiled code analysis to gather knowledge of app internals comprising app-
invasive approaches such as app unpacking. Such approaches not only break stock apps
but also means that the JIT-MF Driver is app-specific, making for an infeasible approach
from an operational point of view.

The key results from the exploration of JIT-MF positioning demonstrate that JIT-MF
Driver development can also be non-invasive without compromising forensic timeline
accuracy in the case of messaging hijack attacks. These drivers can be generalised by
selecting Trigger_points and Evidence_objects from the API layer of the Android technology
stack, which typically provides publicly-available documentation. This means that
triggering app-specific artefacts from process memory does not necessarily require an
app-specific approach that is infeasible to carry out across multiple apps. While the
resulting logs produced require some parsing due to the application-specific usage of
the API, the execution of experiments has shown that the effort required is reasonable
since the API used is publicly documented. During experimentation, it was noted
that the developed API-based JIT-MF Drivers rendered the app more stable regarding
performance. Yet further exploration is required to assess whether this depends on the
API selected or a reflection on the selection of the Trigger_points and Evidence_objects from
the Android API stack layer.

7.2 Threats to validity
Due to the rigorous setup required to emulate the app hijack attack scenarios, which
are app-specific by design, and the forensic investigation environment, the experiments
were qualitative; i.e., the case studies were limited in scope (messaging app category)
and number. Furthermore, the analysis and JIT-MF Driver development involved in the
experiments relies on the investigator’s analytical abilities, which is impossible to isolate,
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and which was crucial to recover Evidence_objects in memory that could be related to
hijacked app functionality.

While the concept of the JIT-MF framework is applicable across app hijack attack sce-
narios targeting different app categories, further experimentation involving other app cat-
egories would be required to assess the implication on Trigger_point and Evidence_object
selection when enhancing these apps. Within the case studies involved in experimenta-
tion, selecting Trigger_points and Evidence_objects followed from app storage and network
interactions. Yet it is possible that instructions and objects related to UI transformation
for other app categories would provide more insight into attack steps. While APIs for UI
functionality exist, UI-related instructions would likely be invoked more frequently due
to the number of UI elements involved in an app. This leads to increased Trigger_point
frequency and possibly impacts the app stability more. In this case, the sampling strate-
gies described in Section 5.5 can be adapted to the scenario. It is also possible that while
still leveraging APIs for JIT-MF Driver development, generalising the same driver across
apps is more challenging when focusing on UI APIs. For instance, the scope of the SQLite
API is relatively narrow in that apps use it to store essential data typically linked to app
functionality of interest. UI functionality, on the other hand, is broad and specific to the
app.

With regards to the number of messaging apps involved in the experimentation,
while the apps used (specifically instant messaging apps) comprise a large majority of the
messaging market share,1 the number of apps still was relatively small and comprised a
single category; that is messaging.

Despite simulating the environment within which JIT-MF is expected to operate as
best as possible, the results reflect experiments conducted in a lab setup. This is especially
true concerning normal traffic generated through individual app usage patterns. This
should not impact the accuracy of the app-specific artefacts collected by JIT-MF Drivers.
However, app stability may be affected, depending on app usage. Anomaly detection
features and threshold parameters must also be adjusted to account for normal app usage
patterns.

Internal threats to validity comprise using emulated devices for experimentation
and static analysis for determining common API usage across apps. Initial experiments
leveraged emulated devices for ease of automation. Although emulated environments
enable device rooting through a simple command, this was not leveraged to enable the
operation of JIT-MF. This is mainly reflected in experiments Sections 5.4, 6.1 and 6.2,
where stock unrooted Android devices were used for experimentation. On the other hand,

1https://www.similarweb.com/blog/research/market-research/
worldwide-messaging-apps/
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the performance of emulators is expected to be worse than actual devices. Therefore
where storage and performance results indicate possible degradation, the results may
improve on a physical device.

The use of SQLite API enabled the generalisation of a non-invasive JIT-MF Driver.
SQLite is a popular library many developers use, yet AppBrain was used to identify
popular APIs across a category of apps for the experiments described. AppBrain is closed-
source; however, it provides insight into how it derives information regarding Android
apps on Google PlayStore. It analyses all Android apps on Google Play and performs
some analysis on the package file of the app (APK). Statistics regarding development
tools and libraries usage are obtained by matching package names inside the apps “with
known package names from development tools. Therefore, these statistics reflect whether
the code of a certain library is present in an app." [14]. While this does not guarantee
that a particular app actively uses a library, “it still gives a good idea of the market share
and the list of the top Android development tools." [14]. Furthermore, regarding the
permanence of API usage across app versions, a static signature was used following the
logic of how apps interact with the underlying infrastructure. Being a static check, this
does not guarantee that the app actively uses the code, as there is also the possibility that
the code or libraries found reflect dead or legacy code. That said, the API identified as
generic across messaging apps (SQLite) was sufficient to develop a generic JIT-MF Driver
that functioned across ten of the most popular IM apps.

Beyond the setting of the Android platform, the concept of JIT-MF can be applied
in the context of other operating systems, yet both the challenges and the concept itself
change in the context of other platforms. Similarly to how the app hijack threat model
hijacks app functionality to offload attack steps and evade detection, living-off-the-land
techniques have been shown to take advantage of functionality in binaries and libraries
native to the OS to carry out malicious steps. While different attack vectors may be
used, the threat model remains the same: leveraging existing device or workstation
functionality to offload attack steps that aid malware in evading detection. A case
in point is the malicious use of PowerShell, a powerful native Windows tool that can
execute commands as part of attack steps [20]. Similarly to the app hijack threat model,
these steps evade traditional defences since this tool is legitimate to execute Windows
commands. Therefore, the threat and need for attack step reconstruction is still present
on other platforms. The availability and access to third-party application logs may be
easier on other workstations, as access to them is not bound by the OS security model, as
is the case with Android. However, issues related to whether or not the contents of these
logs are sufficient for forensic investigators and subject to malware tampering are not
specific to a platform but related to applications in general. Therefore, timely collected
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evidence from memory can still contribute to such attack scenarios. The challenges of
EDR deployment differ significantly on workstations from an Android OS since the
security model of workstations does not rely on limiting administrator privileges. As
such, challenges on Android related to invasive approaches for evidence collection are
not as much of a concern on general-purpose workstations. However, EDRs still rely
on known attack vectors for detection and monitoring. Therefore, unless benign app
instructions are also monitored for potential hijack activity, evidence in memory of
hijacked attack steps would still go uncollected.

7.3 JIT-MF Drivers, tool and EDR development
To assess the JIT-MF framework, experimentation involved implementing various JIT-MF
Drivers, a JIT-MF-based tool (MobFor) and an enhanced EDR, complete with detection
and correlation workflow (VEDRANDO).

The development of JIT-MF Drivers for use in experiments was narrowly scoped.
The selection of Trigger_point and Evidence_object focused on different stack layers and
functionality related to network or storage interactions. Yet, this still comprised a large
number of possible instructions. JIT-MF Driver development process first required famil-
iarisation with the app to identify which app functionality of interest could be hijacked.
Trigger_point and Evidence_object selection comprised identifying the Evidence_object first,
then identifying a set of instructions that could be potential Trigger_points. Preliminary
runs informed the decision regarding which Trigger_point is ideal, in terms of minimum
frequency yet high accuracy, to dump the Evidence_object timely. Once JIT-MF_Logs are
collected, a post-processing process involved ensuring no duplicate entries and parsing
of Evidence_object. Parsing was minimal in the case of app-specific Evidence_object. How-
ever, API-based drivers generated JIT-MF_Logs that required parsing since the objects
reflected app objects as API-specific parameters. While apps make app-specific use of
APIs, the parsing effort was relatively straightforward due to publicly available API
documentation and the well-known schema of these apps.

MobFor is a JIT-MF-based tool2 built for experimentation, whose development consid-
ered feedback from cyber security blue teams that are practising incident response teams.
This tool enhanced apps and collected JIT-MF_Logs to generate an accurate forensic
timeline, along with evidence collected by other mobile forensics tools. As per feedback,
it enables the concept workflows that handle the entire process from enhancing apps to
collecting JIT-MF_Logs and transferring evidence to a given server for analysis. MobFor

2https://gitlab.com/mobfor/mobfor-project
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also enabled a chain of custody, comprising a log file with the list of commands executed
on the device and hashes of outputs at each workflow stage. While MobFor does not
cater for forensic analysis as the tool was developed to collect evidence from a connected
device having an enhanced app. Yet the outputs from the device (JIT-MF_Logs) are parsed
and sanitised from any duplications to produce a JSON file that can be uploaded into
Timesketch to produce a forensic timeline of JIT-MF_log events.

App repackaging is mitigated to enable the use of stock apps through app-level
virtualisation. Current app-level virtualisation frameworks are still in their infancy. This
means they are limited in functionality, rendering them non-functional or limited when
using specific apps that require Google Play services, for instance. Further app-level
virtualisation limitations exist when the targeted apps are system apps, which this work
has not addressed. Therefore further development effort is needed to create more stable,
open-source virtualisation frameworks before the solution proposed in this thesis can be
fully realised.

Similarly to popular memory forensics tools like Volatility [132], JIT-MF adopted the
notion of plugins in JIT-MF Drivers specific to the app and attack scenario pairs. This
enables the JIT-MF framework to be applied in different hijack attack scenarios. Like
Volatility plugins, the JIT-MF Drivers allow for collecting app-specific parsed data, giving
forensic investigators additional context. The use of underlying technology enablers
(such as Frida in the prototype implementation of JIT-MF) allows for a platform-aware
implementation required by memory forensics tools. Existing research focusing on
trigger-based memory collection is similar to our work addressing the ephemerality of
evidence in memory through trigger-based dumps. Yet these works are not concerned
with device [122] or app [130] invasiveness, thus foregoing device security or requiring
an operationally infeasible approach across apps, especially those that employ anti-
repackaging checks. JIT-MF tools mitigate these challenges by leveraging the app layer
and app-level virtualisation for implementation. By operating at this layer and using
Evidence_objects from the API layer, the effort of app or tool comprehension and carving
app or tool-specific evidence from memory is lessened.

Regarding challenges related to memory forensics, JIT-MF tools address the timely
collection of ephemeral objects and mitigate app and device invasiveness required by
standard memory forensics tools on Android. Similarly to how Volatility plugins for iden-
tifying application-specific analysis require effort to develop, selecting Evidence_objects
and Trigger_points for the right attack scenario still requires insight and forensic analytical
skill. Moreover, JIT-MF tools face further challenges due to their dependency on technol-
ogy enablers, namely its reliance on the underlying hooking framework that enables the
JIT-MF Driver runtime, which may be subject to changes to the Android runtime. The
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same can be said for the app-level virtualisation technology enabler that JIT-MF tools
rely on to avoid app repackaging.

Throughout experimentation, the use of rich technology enablers enabled the exper-
imentation to focus on the selection of Evidence_objects and Trigger_points and whether
or not these could be categorised to enable JIT-MF Driver development while reducing
invasiveness and maintaining accuracy. The selection of an API JIT-MF Driver and
the use of app-level virtualisation frameworks allowed for a broader experiment en-
compassing multiple messaging apps and avoided app-specific efforts to mitigate any
anti-repackaging that proprietary apps employ as part of their default security protection.
However, most case studies involved apps that ran using a single process. Using apps
that run multiple processes in future experiments could disclose potentially interesting
insights about limitations or further development required for JIT-MF to work with such
apps.
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8 Conclusions

This thesis set out to address the limitations of existing incident response tools and
invasive memory forensics approaches available to investigators when responding to
the app hijack threat model on Android. Attacks following this threat model were
shown to have the potential for stealth as they hijack benign app functionality to carry
out attack steps, thus evading detection. Furthermore, these attacks can potentially
delete any forensic footprints from the device and are typically used during incident
response. Existing incident response tools that perform memory forensics do not address
the ephemerality of evidence in memory and require invasive approaches (such as device
rooting), typically used on an attacker’s device rather than a victim’s device, which
weakens the device’s overall security.

The exploration carried out in this thesis aimed to answer the research question:
How can attack steps offloaded to hijacked app functionality be timely recovered
from volatile memory of stock Android devices, in the least invasive way possible
concerning both the device and the hijacked app? The hypothesis proposed that timely
and non-invasive attack step recovery from volatile memory is possible by implementing
memory introspection through dynamic binary instrumentation at the app level and
focusing on lower layers of the tech stack to identify triggers and objects that could
represent hijacked app functionality.

This chapter concludes this thesis by summarising how existing challenges and
limitations related to Android memory forensics and incident response were overcome
through a novel concept for responding to app hijack attacks on Android using triggered
memory dumps (Section 8.1). As a result of the experimentation carried out, further
research gaps are identified and are presented (Section 8.2) along with the final thoughts
and main conclusions of this work (Section 8.3).
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8.1 Timely, non-invasive evidence collection from An-
droid volatile memory

App hijack attacks have been identified as a stealthy and evasive threat, which comprises
malware that offloads attack steps to legitimate benign app functionality. This study
has shown that on-device detection techniques cannot detect such malware, thus ad-
dressing the first object of this thesis O1. Moreover, the forensic sources collected during
the incident response process, which follows much later after an alert is raised (once
malicious behaviour is detected through its consequences), are incomplete. Existing tools
and forensic techniques rely on stored evidence collected from app data and devices,
which typically require device rooting to collect evidence from internal storage. Not
only has this evidence been proven futile due to the reduced forensic footprints of such
stealthy attacks, but the victim is left with a device whose security has been compromised
during the investigation. Any evidence of the attack can only be found in memory. Yet,
the stealthiness of such attacks means that any ephemeral evidence in volatile memory
would no longer be present when the victim notes the malicious behaviour. Furthermore,
memory forensics on stock Android devices remains a challenge that investigators must
adapt to using invasive approaches such as custom kernels. An optimal solution can
faithfully reconstruct the attack steps timeline, even if the stealthy malware has erased
these and is short-lived in memory, while able to operate within the constraints of stock
Android devices and apps.

This thesis presents a novel approach, Just-in-time Memory Forensics (JIT-MF), that
uses triggered memory dumps to timely collect evidence objects from memory by enhanc-
ing targeted apps in the preparation stage of incident response before an incident occurs.
Challenges related to device rooting and collection of app-specific evidence as necessary
by the app hijack threat model are mitigated by taking an app-level approach. App
runtime is modified to include instrumentation that triggers memory dumps containing
evidence of hijacked app steps. Yet the concept presented new challenges related to
the selection of evidence objects, which indicate the presence of a potential attack step,
and triggers, the instructions invoking the existence of these objects in memory. The
challenges arose from the app-specific code comprehension potentially required to select
them. The creation of this novel approach was the first step towards addressing the
second objective O2 of this thesis, which allowed an exploration of the technology stack
for a minimal app and device-invasive approach.

An exploration involving different layers of the Android technology stack was carried
out to determine which layers are ideal for sufficient app-specific detail yet do not impose
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an app-invasive approach, contributing to the second objective of this thesis O2. The
exploration took into account different layers in the stack, the resulting accuracy of
the objects dumped and the app’s stability. The exploration demonstrated that this
novel non-invasive timely approach to app-specific evidence collection from volatile
memory is possible and operationally feasible across various apps without compromising
accuracy, by leveraging the API layer of the technology stack for Evidence_object and
Trigger_point selection. Documentation of API layer code is typically publicly-available,
rather than requiring compiled code analysis, and is leveraged by multiple apps for app
functionality of interest. Experimentation was also carried out to verify that app stability
can be achieved through sampling while maintaining evidence accuracy.

Crucially, an evaluation with state-of-the-art forensic tools (addressing the third
objective of this thesis O3) showed that this novel approach enables the completion of
forensic timelines, using timely evidence from memory while working with stock devices
and stock apps through runtime manipulation. Furthermore, through the development
of a novel correlation and detection algorithm for JIT-MF_Logs, the evidence of hijacked
attack steps found in these logs are detectable as anomalies and carry sufficient features
to be correlated with events leading up to the attack’s entry point on the device.

8.2 Future work
The exploration of JIT-MF provided initial insight into this approach, showing that
triggered memory dumps taken at the app level are promising for the timely collection of
evidence related to app hijack attacks while also being non-invasive. However, a larger-
scale exploration is needed to evaluate this concept in a real-world setting. This calls
for realising further attack scenarios that follow the app hijack threat model, specifically
targeting categories of apps other than messaging. An evaluation of JIT-MF in these
scenarios could shed light on how the conclusions concerning the operational aspect
of JIT-MF that were determined in this thesis translate to app hijack attacks targeting
other app categories. For example, exploring whether or not the generalisation of JIT-MF
Drivers through selecting trigger instructions from the API layer applies to other app
categories and the effect of enhancing different app categories on device resources. An
analysis could be made to conclude whether specific stack layers benefit a specific app
category and whether or not this applies to most apps within that category. Furthermore,
the relationship between the evidence object and the attack step may vary from one
category to another, and perhaps further conclusions could be drawn from the evidence
objects. Therefore, further experimentation could look into developing app or app
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category profiles that indicate how the evidence object could be interpreted for a specific
app and if this can be generalised to the app category.

Another aspect of a larger-scale evaluation comprises evaluating JIT-MF Drivers in
a more realistic setting that exposes typical usage patterns of the targeted apps. This
would be useful to explore the effects of JIT-MF on app stability and device resources
for long-term use. The result could be used to identify log collection duration based on
typical app usage patterns that could alleviate the strain on device resources and app
stability due to accumulated logs.

Further analysis is required regarding the usability aspect of JIT-MF. App and device
performance and stability contribute to this aspect. However, another concern is privacy.
Evidence of app-specific artefacts collected from memory may contain sensitive data the
user does not wish to expose. The premise of this novel approach is that it operates in a
setting aiming to aid end-users that may eventually become subject to stealthy app hijack
attacks. While it is within the interest of the device owner that the evidence is collected
and analysed when and within the parameters of the incident, the collection of sensitive
data may incur additional heavy lifting on the processing side to comply with GDPR
standards. To this end, future work can look into the possibility of adopting privacy-
aware forensics [45] through which the necessary evidence to reconstruct stealthy attack
steps is collected from memory while sensitive information is withheld to protect users’
privacy. Searchable Symmetric Encryption (SSE) [38] can be adopted to allow privacy-
preserving forensic analysis of evidence by encrypting the contents of JIT-MF_Logs in such
a way that it is concealed yet still searchable by investigators, through pre-generated
indices. In the case of messaging hijack attacks, indices can be generated based on
the keywords that identify texts to be suspicious, for instance, the text format of URL
addresses known to be propagated by specific malware or suspicious phone numbers
found in the list of contacts. Investigators can then flag suspicious events that a malicious
actor may have caused without access to the device owner’s private data.

From a practical point-of-view, other usability issues concern installing JIT-MF and
shipping logs, especially within large organisations comprising multiple personnel
equipped with individual devices. Mobile Device Management (MDM) tools provide a
solution for the administrative management of devices in large organisations. Within the
context of JIT-MF_Logs, such tools can facilitate the automatic shipping of logs followed
by a possible proactive response, for example, through SIEM integration. Therefore, a
possible research direction for this work could look into embedding the concept of JIT-MF
within MDM tools for ease of deployment and management in large-scale settings.

Full attack step reconstruction was possible through a detection and correlation
algorithm enabled by generic online services with machine learning capabilities that
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offer default machine learning. Further work in this area could focus on JIT-MF_Logs log
analysis, which could look into feature selection and identify which machine learning
models and parameters are appropriate for specific apps and attack scenarios. This could
also aid in utilising JIT-MF_Logs more proactively. So far, this thesis explored the value
of timely-collected evidence from memory for app hijack attacks in a reactive setting.
That is, a victim grows suspicious of malicious behaviour on their device after some of
the consequences of the malware are revealed. Subsequently, an alert initiates a forensic
investigation as part of the incident response. Therefore another research direction could
explore the possibility of automated shipping of JIT-MF logs and detection through JIT-
MF-sensitive anomaly detection. Automation can be carried out on periodically-shipped
logs to alert the user if the evidence in JIT-MF_Logs may indicate possible app hijack
malware.

8.3 Final remarks
The work presented in this thesis aimed to address the limitations of incident response
on Android within the context of the app hijack threat model. The novelty of this
work lies in a new concept, Just-in-time Memory Forensics (JIT-MF), devised to tackle
the ephemerality challenges present in volatile memory without imposing invasive
approaches on the device or app. Unlike other mobile forensics and EDR tools, JIT-
MF can timely collect app-specific evidence from memory through trigger points. By
enhancing an app’s runtime with instrumentation capabilities, JIT-MF can timely dump
objects from memory as evidence of hijacked attack steps that may not be found stored in
the app data or on the device, aiding investigators during incident response. Moreover,
this evidence carries sufficient features to indicate which objects may be the result of
hijacked app functionality. Crucially for the device owner, and unlike other state-of-the-
art forensic tools, enhancing the device does not require invasive techniques comprising
device rooting or app repackaging that weaken the overall device security and default
app protections.

This work has shed light on the usefulness of timely collected evidence from memory,
specifically demonstrated for case studies involving messaging hijack attacks. This was
achieved through complete investigation setups involving tools developed based on this
concept, simulated app hijack attacks and state-of-the-art forensic tools. The result of
the case studies showed that for attack scenarios following the app hijack threat model,
evidence from memory is crucial to detect and recover all attack steps. Whilst this work
has also resulted in several possible research directions and identified further exploration

160



CHAPTER 8. CONCLUSIONS

required to adapt to real-world scenarios, the concept of Just-in-Time Memory Forensics
already presents an opportunity to advance existing mobile incident response practices
to produce more accurate forensic timelines in the case of app hijack attacks on Android.
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A JIT-MF Drivers

1 Driver_ID: TG_CP

2 Scope: <telegram, crime-proxy>

3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Telegram Message Sent","org.telegram.messenger.MessageObject",

carve_message_object(),parse_message_object(), {"1"}>}

6 Collection_method: online

7 Parsing_method: online

8 Triggers: {<"1",<"send",native, trigger_predicate(), trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3]);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 file_descriptor = params[1];

24 if file_descriptor type is tcp:

25 return true;

26 else:

27 return false;

28 }

29 void trigger_callback(thread_context) {

30 / ∗ the native f unction < send > takes a f ile
31 descriptor as its only parameter ∗ /
32 if trigger_predicate(thread_context.args) && sampling_predicate(thread_context):

33 if Collection_method == online:

34 object = Evidence_objects[0];

35 object_name = object[1];

36 object_carve_callback_fn = object[2];

37 object_parse_callback_fn = object[3];

38 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

39 else:

171



APPENDIX A. JIT-MF DRIVERS

40 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

41 }

42

43 [object,...] carve_message_object(from: address, to: address) {

44 carve MessageObject in the given memory range using metadata provided by the

Garbage Collector;

45 }

46

47 @OFFLINE

48 [object,...] carve_message_object_o f f line(from: address, to: address) {

49 // use an hprof parser to carve objectj in the given memory range;

50 }

51

52 [<field,value>,...] parse_message_object(at) {

53 if Parsing_method == online:

54 current_time = get_time();

55 MessageObject = object starting from at;

56

57 message_content = MessageObject.messageText.value;

58 message_date = MessageObject.messageOwner.date;

59 message_id = MessageObject.messageOwner.id;

60

61 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects[0][0],

’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’message_id’:

message_id, ’text’:message_content,");

62

63 dump_rt_object(["org.telegram.messenger.MessageControllerObject",

carve_message_controller_object(), parse_message_controller_object()]);

64

65 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>>];

66 else:

67 parse_message_object_o f f line(at);
68 }

69

70 @OFFLINE

71 [<field,value>,...] parse_message_object_o f f line(at) {

72 // if Collection_method == online:

73 // use custom parser to parse objectj at the given offset

74 // else

75 // use an hprof parser to parse objectj at the given offset from memory dump;

76 }

77

78 [object,...] carve_message_controller_object(from: address, to: address) {

79 carve MessageControllerObject in the given memory range using metadata provided by

the Garbage Collector;

80 }

81

82 @OFFLINE

83 [object,...] carve_message_object_controller_o f f line(from: address, to: address) {

84 // use an hprof parser to carve objectj in the given memory range;
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85 }

86

87 [<field,value>,...] parse_message_controller_object(at) {

88 if Parsing_method == online:

89 MessageControllerObject = object starting from at;

90 recipient_id = MessageControllerObject.getUser();

91 recipient_name = to_user.username.value;

92 recipient_phone = to_user.phone.value;

93

94 sender_id = device_owner;

95 sender_name = device_owner;

96 sender_phone_number = device_owner;

97

98 append_log(Log_location, "’to_id’:recipient_id, ’to_name’:recipient_name, ’

to_phone’:recipient_phone_number, ’from_id’:sender_id, ’from_name’:sender_name,

’from_phone’:sender_phone_number}}")

99

100 return [<’to_id’,recipient_id>, <’to_name’,recipient_name>, <’to_phone’,

recipient_phone_number>, <’from_id’,sender_id>, <’from_name’,sender_name>, <’

from_phone’,sender_phone_number>];

101 else:

102 parse_message_controller_object_o f f line(at);
103 }

104

105 @OFFLINE

106 [<field,value>,...] parse_message_controller_object_o f f line(at) {

107 // if Collection_method == online:

108 // use custom parser to parse objectj at the given offset

109 // else

110 // use an hprof parser to parse objectj at the given offset from memory dump;

111 }

112

113 bool sampling_predicate(thread_context) {

114 current_time = get_time();

115 get current_second from current_time;

116

117 if (current_second \% 5 == 0):

118 return true;

119 else:

120 return false;

121 }

122

123 / ∗ Helper f unction ∗ /
124 datetime get_time(){
125 return current time;

126 }

Listing A.1: JIT-MF Driver for Section 5.3 Case Study A: Telegram Crime-
Proxy.

1 Driver_ID: SIGNAL_CP

2 Scope: <signal, crime-proxy>
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3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Signal Message Sent","org.thoughtcrime.securesms.conversation.

ConversationMessage", carve_conversation_message(),parse_conversation_message(),

{"1"}>}

6 Collection_method: online

7 Parsing_method: online

8 Triggers: {<"1",<"write",native, trigger_predicate(), trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3]);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 return true;

24 }

25 void trigger_callback(thread_context) {

26 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

27 if Collection_method == online:

28 object = Evidence_objects[0];

29 object_name = object[1];

30 object_carve_callback_fn = object[2];

31 object_parse_callback_fn = object[3];

32 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

33 else:

34 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

35 }

36

37 [object,...] carve_conversation_message(from: address, to: address) {

38 carve ConversationMessage in the given memory range using metadata provided by the

Garbage Collector;

39 }

40

41 @OFFLINE

42 [object,...] carve_conversation_message_o f f line(from: address, to: address) {

43 // use an hprof parser to carve objectj in the given memory range;

44 }

45

46 [<field,value>,...] parse_conversation_message(at) {

47 if Parsing_method == online:

48 current_time = get_time();

49 ConversationMessage = object starting from at;

50

51 MessageRecord = ConversationMessage.messageRecord;
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52

53 message_date = MessageRecord.dateSent.value;

54 message_id = MessageRecord.id.value;

55 message_content = MessageRecord.body.value;

56

57 if MessageRecord.isOutgoing():

58 recipient_id = messageRecord.individualRecipient.id.value;

59 recipient_name = messageRecord.individualRecipient.username.value;

60 recipient_phone = messageRecord.individualRecipient.e164.value;

61

62 sender_id = owner Signal ID;

63 sender_name = owner Signal username;

64 sender_phone_number = owner phone number;

65 else

66 recipient_id = owner Signal ID;

67 recipient_name = owner Signal username;

68 recipient_phone = owner phone number;

69

70 sender_id = messageRecord.individualRecipient.id.value;

71 sender_name = messageRecord.individualRecipient.username.value;

72 sender_phone_number = messageRecord.individualRecipient.e164.value;

73

74

75 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>,<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

76 else:

77 parse_conversation_message_o f f line(at);
78 }

79

80 @OFFLINE

81 [<field,value>,...] parse_conversation_message_o f f line(at) {

82 // if Collection_method == online:

83 // use custom parser to parse objectj at the given offset

84 // else

85 // use an hprof parser to parse objectj at the given offset from memory dump;

86 }

87

88 bool sampling_predicate(thread_context) {

89 current_time = get_time();

90 get current_second from current_time;

91

92 if (current_second \% 5 == 0):

93 return true;

94 else:

95 return false;

96 }

97

98 / ∗ Helper f unction ∗ /
99 datetime get_time(){

175



APPENDIX A. JIT-MF DRIVERS

100 return current time;

101 }

Listing A.2: JIT-MF Driver for Section 5.3 Case Study B: Signal Crime-
Proxy.

1 Driver_ID: PUSHBULLET_CP

2 Scope: <pushbullet, crime-proxy>

3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Pushbullet Message Sent","org.json.JSONObject",

carve_json_object(),parse_json_object(), {"1"}>}

6 Collection_method: online

7 Parsing_method: offline

8 Triggers: {<"1",<"write",native, trigger_predicate(), trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3],Processes);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 return true;

24 }

25 void trigger_callback(thread_context) {

26 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

27 if Collection_method == online:

28 object = Evidence_objects[0];

29 object_name = object[1];

30 object_carve_callback_fn = object[2];

31 object_parse_callback_fn = object[3];

32 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

33 else:

34 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

35 }

36

37 [object,...] carve_json_object(from: address, to: address) {

38 carve JSONObject in the given memory range using metadata provided by the Garbage

Collector;

39 }

40

41 @OFFLINE

42 [object,...] carve_json_object_o f f line(from: address, to: address) {

43 // use an hprof parser to carve objectj in the given memory range;

44 }
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45

46 [<field,value>,...] parse_json_object(at) {

47 if Parsing_method == online:

48 // parse object fields starting at the given address;

49 else:

50 parse_json_object_offline(at);

51

52 }

53

54 @OFFLINE

55 [<field,value>,...] parse_json_object_o f f line(at) {

56 if Collection_method == online:

57 current_time = get_time();

58 JSONObject = object starting from at;

59

60 str1=’{"active":.*"message":.*}}’;

61

62 res1 = regex match for str1 in JSONObject.toString();

63

64 if(res1!==null){

65

66 obj = JSON.parse(res1);

67 message_date = obj.data.timestamp;

68 message_id = obj.iden;

69 message_content = obj.data.message;

70

71 recipient_phone_number = obj.data.addresses[0] ;

72 recipient_id = "";

73 recipient_name = "";

74

75 if (obj.data.status == "sent") {

76 sender_phone_number = owner phone number;

77 sender_id = "";

78 sender_name = owner name;

79 }

80 object = ’{"date": "’ + date + ’", "message_id": "’ + msg_id + ’", "text": "’

+ text + ’", "to_id": "", "to_name": "", "to_phone": "’ + to_phone + ’", "

from_id": "", "from_name": "", "from_phone": "’ + from_phone + ’"}’;

81

82 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects

[0][0], ’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’

message_id’:message_id, ’text’:message_content,’to_id’:recipient_id, ’to_name’:

recipient_name, ’to_phone’:recipient_phone_number, ’from_id’:sender_id, ’

from_name’:sender_name, ’from_phone’:sender_phone_number}}");

83

84 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>,<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

85 else:

86 // use an hprof parser to parse objectj at the given offset from memory dump;
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87 }

88 }

89

90 bool sampling_predicate(thread_context) {

91 current_time = get_time();

92 get current_second from current_time;

93

94 if (current_second \% 5 == 0):

95 return true;

96 else:

97 return false;

98 }

99

100 / ∗ Helper f unction ∗ /
101 datetime get_time(){
102 return current time;

103 }

Listing A.3: JIT-MF Driver for Section 5.3 Case Study C: Pushbullet Crime-
Proxy.

1 Driver_ID: TG_SP

2 Scope: <telegram, spying>

3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Telegram Message Intercepted","org.telegram.messenger.

MessageObject", carve_message_object(),parse_message_object(), {"1"}>}

6 Collection_method: online

7 Parsing_method: online

8 Triggers: {<"1",<"recv",native, trigger_predicate(), trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3]);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 file_descriptor = params[1];

24 if file_descriptor type is tcp:

25 return true;

26 else:

27 return false;

28 }

29 void trigger_callback(thread_context) {

30 if trigger_predicate(thread_context.args) && sampling_predicate(thread_context):
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31 if Collection_method == online:

32 object = Evidence_objects[0];

33 object_name = object[1];

34 object_carve_callback_fn = object[2];

35 object_parse_callback_fn = object[3];

36 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

37 else:

38 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

39 }

40

41 [object,...] carve_message_object(from: address, to: address) {

42 carve MessageObject in the given memory range using metadata provided by the

Garbage Collector;

43 }

44

45 @OFFLINE

46 [object,...] carve_message_object_o f f line(from: address, to: address) {

47 // use an hprof parser to carve objectj in the given memory range;

48 }

49

50 [<field,value>,...] parse_message_object(at) {

51 if Parsing_method == online:

52 current_time = get_time();

53 MessageObject = object starting from at;

54

55 message_content = MessageObject.messageText.value;

56 message_date = MessageObject.messageOwner.date;

57 message_id = MessageObject.messageOwner.id;

58

59 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects[0][0],

’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’message_id’:

message_id, ’text’:message_content,");

60

61 dump_rt_object(["org.telegram.messenger.MessageControllerObject",

carve_message_controller_object(), parse_message_controller_object()]);

62

63 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>>];

64 else:

65 parse_message_object_o f f line(at);
66 }

67

68 @OFFLINE

69 [<field,value>,...] parse_message_object_o f f line(at) {

70 // if Collection_method == online:

71 // use custom parser to parse objectj at the given offset

72 // else

73 // use an hprof parser to parse objectj at the given offset from memory dump;

74 }

75

76
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77 [object,...] carve_message_controller_object(from: address, to: address) {

78 carve MessageControllerObject in the given memory range using metadata provided by

the Garbage Collector;

79 }

80

81 @OFFLINE

82 [object,...] carve_message_object_controller_o f f line(from: address, to: address) {

83 // use an hprof parser to carve objectj in the given memory range;

84 }

85

86 [<field,value>,...] parse_message_controller_object(at) {

87 if Parsing_method == online:

88 MessageControllerObject = object starting from at;

89 sender_id = MessageControllerObject.getUser();

90 sender_name = to_user.username.value;

91 sender_phone_number = to_user.phone.value;

92

93 recipient_id = device_owner;

94 recipient_name = device_owner;

95 recipient_phone = device_owner;

96

97 append_log(Log_location, "’to_id’:recipient_id, ’to_name’:recipient_name, ’

to_phone’:recipient_phone_number, ’from_id’:sender_id, ’from_name’:sender_name,

’from_phone’:sender_phone_number}}")

98

99 return [<’to_id’,recipient_id>, <’to_name’,recipient_name>, <’to_phone’,

recipient_phone_number>, <’from_id’,sender_id>, <’from_name’,sender_name>, <’

from_phone’,sender_phone_number>];

100 else:

101 parse_message_controller_object_o f f line(at);
102

103 }

104

105 @OFFLINE

106 [<field,value>,...] parse_message_controller_object_o f f line(at) {

107 // if Collection_method == online:

108 // use custom parser to parse objectj at the given offset

109 // else

110 // use an hprof parser to parse objectj at the given offset from memory dump;

111 }

112

113 bool sampling_predicate() {

114 current_time = get_time();

115 get current_second from current_time;

116

117 if (current_second \% 5 == 0):

118 return true;

119 else:

120 return false;

121 }

122

123 / ∗ Helper f unction ∗ /
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124 datetime get_time(thread_context){
125 return current time;

126 }

Listing A.4: JIT-MF Driver for Section 5.3 Case Study D: Telegram Spying.

1 Driver_ID: SIGNAL_SP

2 Scope: <signal, spying>

3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Signal Message Intercepted","org.thoughtcrime.securesms.

conversation.ConversationMessage", carve_conversation_message(),

parse_conversation_message(), {"1"}>}

6 Collection_method: online

7 Parsing_method: online

8 Triggers: {<"1",<"open",native, trigger_predicate(), trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3]);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 return true;

24 }

25 void trigger_callback(thread_context) {

26 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

27 if Collection_method == online:

28 object = Evidence_objects[0];

29 object_name = object[1];

30 object_carve_callback_fn = object[2];

31 object_parse_callback_fn = object[3];

32 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);

33 else:

34 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

35 }

36

37 [object,...] carve_conversation_message(from: address, to: address) {

38 carve ConversationMessage in the given memory range using metadata provided by the

Garbage Collector;

39 }

40

41 @OFFLINE

42 [object,...] carve_conversation_message_o f f line(from: address, to: address) {

43 // use an hprof parser to carve objectj in the given memory range;
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44 }

45

46 [<field,value>,...] parse_conversation_message(at) {

47 if Parsing_method == online:

48 current_time = get_time();

49 ConversationMessage = object starting from at;

50

51 MessageRecord = ConversationMessage.messageRecord;

52

53 message_date = MessageRecord.dateSent.value;

54 message_id = MessageRecord.id.value;

55 message_content = MessageRecord.body.value;

56

57 if MessageRecord.isOutgoing():

58 recipient_id = messageRecord.individualRecipient.id.value;

59 recipient_name = messageRecord.individualRecipient.username.value;

60 recipient_phone = messageRecord.individualRecipient.e164.value;

61

62 sender_id = owner Signal ID;

63 sender_name = owner Signal username;

64 sender_phone_number = owner phone number;

65 else

66 recipient_id = owner Signal ID;

67 recipient_name = owner Signal username;

68 recipient_phone = owner phone number;

69

70 sender_id = messageRecord.individualRecipient.id.value;

71 sender_name = messageRecord.individualRecipient.username.value;

72 sender_phone_number = messageRecord.individualRecipient.e164.value;

73

74 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects[0][0],

’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’message_id’:

message_id, ’text’:message_content,’to_id’:recipient_id, ’to_name’:

recipient_name, ’to_phone’:recipient_phone_number, ’from_id’:sender_id, ’

from_name’:sender_name, ’from_phone’:sender_phone_number}}");

75

76 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>,<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

77 else:

78 parse_conversation_message_o f f line(at);
79 }

80

81 @OFFLINE

82 [<field,value>,...] parse_conversation_message_o f f line(at) {

83 // if Collection_method == online:

84 // use custom parser to parse objectj at the given offset

85 // else

86 // use an hprof parser to parse objectj at the given offset from memory dump;

87 }
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88

89 bool sampling_predicate(thread_context) {

90 current_time = get_time();

91 get current_second from current_time;

92

93 if (current_second \% 5 == 0):

94 return true;

95 else:

96 return false;

97 }

98

99 / ∗ Helper f unction ∗ /
100 datetime get_time(){
101 return current time;

102 }

Listing A.5: JIT-MF Driver for Section 5.3 Case Study E: Signal Spying.

1 Driver_ID: PUSHBULLET_SP

2 Scope: <pushbullet, spying>

3

4 / ∗ Attributes ∗ /
5 Evidence_objects: {<"Pushbullet Message Synced","org.json.JSONObject",

carve_json_object(),parse_json_object(), {"1"}>}

6 Collection_method: online

7 Parsing_method: offline

8 Triggers: {<"1",<"android.content.Intent.createFromParcel",rt, trigger_predicate(),

trigger_callback()>>}

9 Sampling_method: sampling_predicate()

10 Log_location: "/sdcard/jitmflogs"

11

12 / ∗ Exposed inter f ace ∗ /
13 bool init (config) {

14 for entry in Triggers:

15 if entry[1] == native:

16 place_native_hook("libc.so", entry[0], entry[3],Processes);

17 else:

18 place_rt_hook(entry[0], entry[3]);

19 }

20

21 / ∗ Internal f unctions ∗ /
22 bool trigger_predicate(params) {

23 return true;

24 }

25 void trigger_callback(thread_context) {

26 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

27 if Collection_method == online:

28 object = Evidence_objects[0];

29 object_name = object[1];

30 object_carve_callback_fn = object[2];

31 object_parse_callback_fn = object[3];

32 dump_rt_object(object_name,object_carve_callback_fn,object_parse_callback_fn);
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33 else:

34 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

35 }

36

37 [object,...] carve_json_object(from: address, to: address) {

38 carve JSONObject in the given memory range using metadata provided by the Garbage

Collector;

39 }

40

41 @OFFLINE

42 [object,...] carve_json_object_o f f line(from: address, to: address) {

43 // use an hprof parser to carve objectj in the given memory range;

44 }

45

46 [<field,value>,...] parse_json_object(at) {

47 if Parsing_method == online:

48 // parse object fields starting at the given address;

49 else:

50 parse_json_object_offline(at);

51 }

52

53 @OFFLINE

54 [<field,value>,...] parse_json_object_o f f line(at) {

55 if Collection_method == online:

56 current_time = get_time();

57 JSONObject = object starting from at;

58

59 str1=’{"type":"push",.*"push":{"type":"sms_changed","source_device_iden":.*]}}’;

60

61 res1 = regex match for str1 in JSONObject.toString();

62

63 if(res1!==null){

64

65 obj = JSON.parse(res1);

66 message_date = "";

67 message_id = "";

68 message_content = "";

69

70 recipient_phone_number = "";

71 recipient_id = "";

72 recipient_name = "";

73

74 if (obj.data.status == "sent") {

75 sender_phone_number = owner phone number;

76 sender_id = "";

77 sender_name = owner name;

78 }

79

80 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects

[0][0], ’trigger_point’:Triggers[0][0], ’object’:{’date’:message_date, ’

message_id’:message_id, ’text’:message_content,’to_id’:recipient_id, ’to_name’:

recipient_name, ’to_phone’:recipient_phone_number, ’from_id’:sender_id, ’
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from_name’:sender_name, ’from_phone’:sender_phone_number}}");

81

82 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>,<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

83 else:

84 // use an hprof parser to parse objectj at the given offset from memory dump;

85 }

86 }

87

88 bool sampling_predicate(thread_context) {

89 current_time = get_time();

90 get current_second from current_time;

91

92 if (current_second \% 5 == 0):

93 return true;

94 else:

95 return false;

96 }

97

98 / ∗ Helper f unction ∗ /
99 datetime get_time(){
100 return current time;

101 }

Listing A.6: JIT-MF Driver for Section 5.3 Case Study F: Pushbullet Spying.

1 Driver_ID: WHATSAPP_MSG_HIJACK

2 Scope: <whatsapp, msg-hijack>

3

4 / ∗ Attributes ∗ /
5 Collection_method: online

6 Parsing_method: offline

7 Triggers: {<"1",<"android.database.sqlite.SQLiteDatabase.insert",rt,

trigger_predicate_insert(), trigger_callback_insert()>,<"2",<"android.database.

sqlite.SQLiteDatabase.update",rt, trigger_predicate_update(),

trigger_callback_update()>>}

8 Sampling_method: sampling_predicate()

9 Log_location: "/sdcard/jitmflogs"

10 Globals:{<timestamp,>}

11 Evidence_objects: {} // the evidence object is added at runtime, since it is an

argument to the trigger point

12

13 / ∗ Exposed inter f ace ∗ /
14 bool init (config) {

15 for entry in Triggers:

16 if entry[1] == native:

17 place_native_hook("libc.so", entry[0], entry[3]);

18 else:

19 place_rt_hook(entry[0], entry[3]);
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20 }

21

22 / ∗ Internal f unctions ∗ /
23 bool trigger_predicate_insert(params) {

24 return true;

25 }

26 void trigger_callback_insert(thread_context) {

27 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

28 if Collection_method == online:

29 evidence_object = thread_context.args[2]

30 Evidence_objects.add(<"Whatsapp Messaging Event", evidence_object,

carve_object_type(), parse_object_type(), {1}>})

31 dump_rt_object(evidence_object,carve_content_values,parse_content_values);

32 else:

33 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

34 }

35

36 bool trigger_predicate_update(params) {

37 return true;

38 }

39 void trigger_callback_update(thread_context) {

40 if trigger_predicate(thread_context) && sampling_predicate(thread_context):

41 if Collection_method == online:

42 object = thread_context.args[1]

43 carved_content_value_object = carve_content_values(evidence_object start

address, object end address);

44 parse_content_values_for_timestamp(carved_content_value_object start address);

45 else:

46 call_rt_function("android.os.Debug.dumpHprofData",[Log_location]);

47 }

48

49

50 [object,...] carve_content_values(from: address, to: address) {

51 carve ContentValues in the given memory range using metadata provided by the

Garbage Collector;

52 }

53

54 @OFFLINE

55 [object,...] carve_content_values_o f f line(from: address, to: address) {

56 // use an hprof parser to carve objectj in the given memory range;

57 }

58

59 [<field,value>,...] parse_content_values(at) {

60 if Parsing_method == online:

61 // parse object fields starting at the given address;

62 else:

63 parse_json_object_offline(at);

64 }

65

66 @OFFLINE

67 [<field,value>,...] parse_content_values_o f f line(at) {

68 if Collection_method == online:
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69 current_time = get_time();

70 ContentValuesObject = object starting from at;

71 ContentValuesObject_strings = base64 decode strings in ContentValuesObject;

72

73 message_content = last string in ContentValuesObject_strings;

74 message_id = "";

75 message_date = Globals["timestamp"];

76

77 if ’SendE2EMessageJob’ in ContentValuesObject_strings:

78 recipient_phone_number = match for regex search "@s.whatsapp.netsr[0-9]+\\n"

in ContentValuesObject_strings;

79 recipient_id = "";

80 recipient_name = "";

81

82 sender_phone_number = owner phone number;

83 sender_id = "";

84 sender_name = owner name;

85 event_additional_info = "sent";

86 else if ’SendReadReceiptJob’ in ContentValuesObject_strings:

87 sender_phone_number = match for regex search "@s.whatsapp.netsr[0-9]+\\n" in

ContentValuesObject_strings;

88 sender_id = "";

89 sender_name = "";

90

91 recipient_phone_number = owner phone number;

92 recipient_id = "";

93 recipient_name = owner name;

94 event_additional_info = "read";

95 }

96

97 append_log(Log_location,"{’time’: current_time, ’event’: Evidence_objects

[0][0]+’-’event_additional_info, ’trigger_point’:Triggers[0][0], ’object’:{’date

’:message_date, ’message_id’:message_id, ’text’:message_content,’to_id’:

recipient_id, ’to_name’:recipient_name, ’to_phone’:recipient_phone_number, ’

from_id’:sender_id, ’from_name’:sender_name, ’from_phone’:sender_phone_number

}}");

98

99 return [<’time’, current_time>, <’event’, Evidence_objects[0][0]>, <’

trigger_point’,Triggers[0][0]>, <’object’,<’date’,message_date>, <’message_id’,

message_id>, <’text’,message_content>,<’to_id’,recipient_id>, <’to_name’,

recipient_name>, <’to_phone’,recipient_phone_number>, <’from_id’,sender_id>, <’

from_name’,sender_name>, <’from_phone’,sender_phone_number>>];

100 else:

101 // use an hprof parser to parse objectj at the given offset from memory dump;

102 }

103 }

104

105 [<field,value>,...] parse_content_values_ f or_timestamp(at) {

106 ContentValuesObject = object starting from at;

107 Globals["timestamp"] = ContentValuesObject["sort_timestamp"];

108 return [<>];

109 }
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110

111 bool sampling_predicate(thread_context) {

112 return true;

113 }

114

115 / ∗ Helper f unction ∗ /
116 datetime get_time(){
117 return current time;

118 }

Listing A.7: JIT-MF Driver for WhatsApp Section 6.1 Case Study.
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