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Abstract 

Background 

Obesity is accompanied by metabolic abnormalities which increases risk for type 2 

diabetes (T2 DM), cardiovascular diseases (CVD) and some cancers.  However, some 

individuals with obesity may present a favourable metabolic profile (metabolically 

healthy obese (MHO)) while,  paradoxically, a subset of normal weight individuals exhibit 

an adverse cardiometabolic phenotype (the metabolically unhealthy normal weight 

(MUHNW)). Thus, the presence or absence of metabolic health (MH) creates different 

body composition phenotypes with metabolically healthy normal weight (MHNW) at 

one end of the spectrum, metabolically unhealthy obese (MUHO) at the other end, and 

MUHNW and MHO somewhere in between. To date there is still no standard definition 

of what constitutes MH, leading to heterogeneity both in prevalence as well as in long 

term outcomes between studies. The  commonly used definitions are those based on 

the metabolic syndrome (Met S) criteria, the presence of insulin resistance (IR), or a 

combination of the two. Furthermore, impaired mitochondrial function is implicated in 

the pathogenesis of several chronic metabolic conditions including IR, Met S, T2DM, and 

obesity. Quantification of mitochondrial DNA copy number (mtDNA CN) is increasingly 

used as a biomarker of mitochondrial function and has been observed to correlate with 

visceral adiposity, body mass index (BMI), hyperlipidaemia, CVD, and mortality. 

However, the association between mtDNA CN and the different metabolic subtypes of 

obesity has not been clearly evaluated so far.   
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Aims 

From an epidemiological perspective, this research sets out to investigate, for the first 

time, the prevalence, sex distribution and characteristics of the different body 

composition phenotypes within a Maltese Caucasian population. This study also aimed 

to compare the prevalence when using different definitions to identify MH and to 

explore which one of them most strongly associates with IR in males and females. 

Another purpose of this study was to explore the discriminatory power and respective 

cut-points of various readily available anthropometric and biochemical parameters in 

predicting IR. The molecular analysis entailed the assessment of the relationship 

between peripheral blood leukocyte mtDNA CN, Met S and the different body 

composition phenotypes using various definitions of MH.  

Methodology 

A cross-sectional study consisting of 521 individuals (63.3% females) aged 41±5 years 

was conducted. Body composition phenotypes were created based on the combined 

consideration of each participants’ BMI category and MH, defined as the presence of ≤1 

components of the NCEP ATPIII criteria.  Four body composition phenotypes were 

generated: metabolically heathy normal weight (MHNW), metabolically unhealthy 

normal weight (MUHNW), metabolically healthy overweight or obese (MHOW/O), and 

metabolically unhealthy overweight/obese (MUHOW/O), and subsequently participants 

with overweight and obesity were considered as separate categories.  Relative leukocyte 

mtDNA CN was determined by qPCR and corrected for leukocyte and platelet count.  
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Results 

Overall, 70% of the studied population were living with  overweight or obesity and 32.8% 

of participants  exhibited the metabolically unhealthy phenotype. The population 

prevalence for each of the body composition phenotypes was as follows: MHNW 27.8%, 

MUHNW 2.1%, MHOW 28.6%, MUHOW 8.1%, MHO 10.7%, MUHO 22.6%. Generally, the 

MHOW/O phenotype presented a worse anthropometric and cardiometabolic profile 

than MHNW, and, in turn, the MUHNW displayed a worse cardiometabolic profile than 

MHOW/O. Males exhibited the metabolically unhealthy phenotype more frequently 

than females (41.3% vs 27.8% respectively), were more likely to be insulin resistant (i.e., 

having a HOMA-IR ≥2.5) (22.9% vs 15.3% respectively), and overall presented a worse 

anthropometric and metabolic profile compared to females even when classified as 

being metabolically healthy. Furthermore, significant differences in sex distribution 

were noted for each body composition phenotype. The lifestyle determinants for the 

MHOW/O phenotype were regular physical activity and alcohol consumption, non-

smoking status and age <40 years. No significant associations were observed for the 

MUHNW phenotype. When using different definitions to define metabolic health, the 

prevalence of MHO ranged from 2.1 to 19.0% and that of MUHNW from 0.6 to 13.5%. 

In females, adopting the presence of  ≤2 Met S components of the NCEP ATPIII definition 

had the highest odds for predicting IR (OR 19.7, 95%CI 16.6-22.3), whereas the Aguilar-

Salinas et al. definition had the strongest association in males (OR 18.7, 95%CI 12.3-

21.9). With respect to anthropometric and biochemical parameters, the lipid 

accumulation product (LAP), visceral adiposity index (VAI) and waist circumference   

(WC) had the best discriminatory power to detect IR in both males and females, 

however, the cut-off for WC was observed to be lower than those currently used in both 
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sexes. A lower mtDNA CN was observed in individuals with Met S (p<0.05), however no 

difference in copy number was detected between MHOW/O and MUHOW/O. 

Moreover, compared to MHNW, a significantly lower mtDNA CN was observed in both 

metabolically healthy and unhealthy overweight/obese phenotypes (p<0.001).  

Conclusion 

A high prevalence of the metabolically unhealthy phenotype was observed in this 

relatively young population which may result in increased CVD burden in the future 

unless timely assessment and management of modifiable risk factors are  implemented. 

This study also demonstrates that the MHO phenotype is not completely benign, and 

that its risk may lie somewhere between that of MHNW and MUHNW. Furthermore, the 

prevalence of the various body composition phenotypes is definition dependent 

highlighting the need for having standard criteria. Since normal weight males were more 

inclined to be metabolically unhealthy than normal weight females,  BMI cut-offs may 

need to be lowered in males. Additionally, cut-offs for WC may also need to be lowered 

in both sexes at least in this population. Furthermore, this study expands on the 

spectrum of associations between reduced leukocyte mtDNA CN, obesity, and Met S in 

different populations. Moreover, the presence of obesity irrespective of whether it is 

healthy or unhealthy, is associated with a reduced mtDNA CN (and therefore a degree 

of mitochondrial dysfunction), implying that the distinction between these two 

phenotypes may not be directly explained by pathophysiological changes at the level of 

the mitochondrion.   
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1-1  Introduction 

The prevalence of obesity has increased to pandemic proportions globally over the past 

30 years making it an urgent public health concern. Obesity is now recognised as being 

a chronic, complex and relapsing  disease entity within its own right and not just a risk 

factor for other non-communicable diseases (including metabolic, mental, mechanical 

and malignant diseases). Furthermore, an increased understanding of the role of the 

adipocyte in the pathogenesis of obesity and its associated morbidities has led to the 

perception that obesity is a heterogenous condition with multiple different phenotypes.    

Therefore this literature review aims to discuss different aspects of obesity in terms of 

its epidemiology, definition, complications as well as a description of the different 

obesity phenotypes.  

The literature review is based on data obtained from cross-sectional, 

prospective/longitudinal studies and consensus obtained from systemic review and 

meta-analyses using PubMed/Medline and Google Scholar databases from inception up 

to February 2023. The search terms (medical subject headings [MeSH]) used for Section 

1-2 ‘Epidemiology and Prevalence of Overweight and obesity’ were: ‘obesity’, 

‘overweight’, and ‘epidemiology’.  For Section 1-3 ‘Definition and indices of 

measurement of obesity’ the MeSH terms used were: ‘obesity’, diagnostic criteria’ and 

‘obesity assessment’.  For Section 1-4 ‘Complications of obesity’ the MeSH terms were: 

‘obesity’, ‘metabolic disorders’, insulin resistance’, ‘adipose tissue’, ‘adiposopathy’, 

obesity-related adipose tissue disease’.  For section 1-5 ‘Metabolically healthy obesity 

(MHO) and metabolically unhealthy normal weight (MUHNW)’ the MeSH terms used 

were: ‘metabolically healthy obesity’, ‘unhealthy obesity’, ‘metabolically unhealthy 
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normal weight’, in combination with ‘cardiometabolic disease’, ‘type 2 diabetes’, 

‘mortality’, ‘transition’, ‘interventions’.  For Section 1-6 the following MeSH terms were 

used: ‘mitochondrial DNA copy number’, ‘mtDNA’, ‘mitochondrial dysfunction’, in 

combination with ‘metabolic diseases’, ‘insulin resistance’, ‘obesity’, ‘lipotoxicity’, ‘type 

2 diabetes’.  Additionally, a manual search of the bibliographies for each of the retrieved 

articles was also carried out.  Only articles written in the English language and published 

in peer-reviewed journals were considered.   
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1-2 Epidemiology and Prevalence of Overweight and Obesity 

Recent data by the World health Organization (WHO) has shown that globally 

overweight and obesity prevalence has nearly tripled over the past forty years. In 2016 

it was estimated that around 1.9 billion adults aged 18 years and older were overweight 

of whom 650 million were obese, translating to around 39% and 13% of the global 

population respectively.  Within the paediatric population the problem of excess body 

weight is also prevalent with recent statistics stating that more than 240 million children 

and adolescents between the ages of 5 and 19 were either overweight or obese. 

Moreover, the problem of excess body weight is also afflicting low-and middle-income 

countries where previously the major contributors towards morbidity and mortality 

were from under nutrition and communicable diseases  (WHO, 2015; WHO, 2016a).   

In view of such revelations WHO has since issued a statement stating that we are now 

facing the ‘double burden of disease’  (WHO, 2016b).  This is characterized by the 

coexistence of undernutrition along with overweight/obesity (also known as diet related 

non-communicable diseases [NCDs]) within individuals, households and populations 

especially in rural areas and countries with low-income status (Min et al., 2018). Thus, 

whilst such territories are still combatting infectious diseases, they are also experiencing 

a rapid surge in non-communicable disease and lifestyle-related chronic diseases such 

as T2DM and CVD.  As an example of such countries, both Ethiopia and Nepal have seen 

an increase in prevalence of overweight with a concomitant reduction in prevalence of 

underweight during the 1990s and 2000s (Bygbjerg, 2012). In addition to urbanization 

and industrialization and the associated changes in food systems, other mechanisms 

have been postulated as potential drivers for this double burden of disease.  Biological 
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processes including the theories centring around the developmental origins of adult 

disease (such as the Baker hypothesis, developmental programming and the thrifty 

phenotype) have helped explain coexistence of such conditions especially at individual 

level. Evidence has shown that undernutrition during early fetal life or rapid weight gain 

during the first years of life is associated with increased predisposition to 

overweight/obesity and cardiometabolic disease later in life (Uauy et al., 2011). 

Locally, within the Maltese archipelago recent data from the European Health Interview 

Survey (EHIS) has revealed that obesity concerns more than one in four adults totalling 

to a prevalence rate of around 28.7% (Eurostat 2019).  This signifies that the Maltese 

islands have the highest burden of obesity among the EU member states. Moreover, a 

cross-sectional study done in 2016 by Maltese authors has shown that nearly two-thirds 

of the Maltese population is overweight or obese with males having a significantly higher 

prevalence for both conditions and with a higher predilection in the working age group 

(35 to 44 years) (Cuschieri et al., 2016a). Similarly, a recent study done by the European 

Childhood Obesity Surveillance Initiative (COSI) also revealed that Malta had the highest 

rate of severe childhood obesity (about 1 in 3 children) in Europe with boys being more 

significantly affected then girls (Spinelli et al., 2019).  

In tandem with this worldwide surge in prevalence rates of obesity and overweight, it is 

worth also mentioning here the parallel rise observed in the prevalence rate of type 2 

diabetes (T2DM), making it one of the most common metabolic diseases within the 

European Union (Tamayo et al., 2014). Obesity is closely associated with an increased 

risk of developing T2DM mainly through insulin resistance (IR) and thus it comes as no 

surprise that the exponential increase in obesity prevalence has been mirrored by that 
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of T2DM. In fact, it has been estimated that 80-90% of individuals with T2DM are 

overweight or obese and that increments in BMI above that of 25 kg/m2 leads to 

exponential increases in the risk of developing this metabolic condition (Chan et al., 

1994; Colditz et al., 1995).  Such is the strong association between the two that Astrup 

and Finer proposed the term ‘diabesity’ be adopted to reflect both aetiological and 

clinical presentation (Astrup and Finer, 2000). They argue that obesity and diabetes 

share common aetiological lifestyle factors (such as excess calorie intake, sedentary 

lifestyle, increased dietary intake of saturated fat) and that in genetically susceptible 

individuals may lead to development of one or both of these diseases.  Moreover, a 

number of intervention trials have also shown that weight loss by diet, exercise, 

pharmacological agents or bariatric surgery prevented the onset of T2DM in individuals 

living with obesity and  at high risk of developing this condition (Heymsfield et al., 2000; 

Pan et al., 1995; Sjöström et al., 1999). 

The situation with regards to prevalence rate of T2DM in the Maltese islands is very 

reminiscent to the trends seen in most European Countries (Savona‐Ventura, 2001). 

Malta is a European island strategically situated in the middle of the Mediterranean Sea 

with a total population standing at approximately 520,000 of predominantly Caucasian 

decent and a westernized type of lifestyle and diet (Cuschieri and Mamo, 2014; National 

Statistics Office [NSO], 2022). In the 2016 cross-sectional prevalence study by Cuschieri 

et al., the authors found that one in eight adults aged between 25 and 64 years suffered 

from T2DM and more alarmingly they also note that approximately 10,000 of these 

individuals  were unaware of the diagnosis. Furthermore, they carried out projected 

prevalence rates for T2DM and obesity for the year 2050 using the projected EUROSTAT 
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2050 Maltese population. The authors report that while the overall total Maltese 

population appears to decrease by 2050, the diabetes and obese population, however, 

will increase by around 28 and 15% respectively. They also looked at the cost burden of 

these two diseases and found that the diabetes and obesity economic health burdens 

are expected to increase exponentially the total health care expenditure in Malta by the 

year 2050 reflecting the surge in prevalence rates of both diseases (Cuschieri et al., 

2016a; Cuschieri et al., 2016b).  

Thus, in view of such revelations the term ‘globesity’ was coined in 2016 in order to 

reflect this global increase in prevalence rate of obesity that is affecting both children 

and adults. Moreover, if not addressed properly in terms of establishing effective 

preventive strategies and screening programs and immediate action taken, the 

worldwide prevalence will continue to increase with the consequence that an increased 

number of individuals will be afflicted from an array of serious health comorbidities 

associated with excess weight (Costa-Font and Mas, 2016).  
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1-3 Definition and indices of measurement of Obesity  

Obesity is now recognised as being a chronic, relapsing, multifactorial, neurobehavioral 

disease entity within its own right by several regulatory bodies (including the  American 

Medical Association (AMA), the American Association of Clinical Endocrinologists 

(AACE), the World Obesity Federation (WOF) and WHO) since it is observed to fit the 

criteria common to all definitions that constitute a disease namely that it a) leads to an 

impairment of the normal functioning of some aspect of the body (such as dysregulation 

of appetite and energy balance, endocrine dysfunction (such as insulin resistance, and 

infertility), altered physiological function (including adipose tissue inflammation and 

dysregulated adipokine signalling) as well as  physical impairments resulting from an 

increase in body fat mass (such as osteoarthritis, immobility and lymphedema) b) it has 

characteristic signs and symptoms primarily resulting from the physical accumulation of 

fat mass (such as joint pain. Immobility and sleep apnoea) and c) leads to harm or 

morbidity  as a result of the physical increase in fat mass and/or the physiological and 

metabolic derangements associated with obesity (such as type 2 diabetes, 

cardiovascular disease, cancer and death) (Mechanic et al., 2012; Sbraccia and Dicker 

2023;  World Obesity Federation, 2017; Pollack, 2013).  

Over the past few decades, an accumulation of biomedical knowledge has led to a better 

understanding of the pathophysiology of obesity.  A wealth of data now demonstrates 

that molecular, genetic, and endocrine process in combination with lifestyle, socio-

economic and behavioural practices all contribute to the creation of an obese 

phenotype.  The fundamental defect in obesity is that of an imbalance between energy 

intake (in the form of calories consumed) an energy expenditure (calories expended)  
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Blüher, 2019).  While there are clear behavioural, socio-economic and lifestyle 

determinants of obesity (some which are under voluntary control such as diet 

preferences and physical inactivity / sedentary lifestyle while others are outside of 

individual control such as availability of healthy foods, sociocultural attitudes and 

customs and exposure to environmental endocrine disruptors) it is recognised that there 

are also biological and genetic factors controlling appetite, food craving as well as 

storage and mobilization of energy.  With respect to genetics, early observations from 

twin and adoption studies showed that obesity might be a result of an inherited 

dysregulation of energy  homeostasis and that the heritability of BMI was as high as 40-

70% (Stunkard et al., 1990; Borjeson, 1976). Compounding these findings are the 

discoveries of monogenic forms of obesity following the detections of mutations in 

genes encoding several hypothalamic proteins such as melanocortin 4 receptor, pro-

opiomelanocortin, leptin receptor and gut hormones (leptin) involved in the 

hypothalamic regulation of appetite and satiety. While these mutations are associated 

with early onset and severe obesity, they are rare.  Furthermore, results from genome 

wide association (GWAS) studies observed 97 loci associated with BMI all of which affect 

genes expressed within the central nervous system.  However, these single nucleotide 

polymorphisms could only explain 2% of the BMI variability (Locke et al., 2015).  

Therefore, while genetic alterations clearly cannot account for the current obesity 

pandemic, they underpin the importance of biological factors in the pathogenesis of 

obesity (Farooqi and O’ Rahilly 2005; Bluher 2020).  In fact, an improved understanding 

of the neurohormonal control of energy homeostasis led to the discovery of  key areas 

within the hypothalamus (notably the arcuate nucleus) which are involved in the 
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integration of hormonal, metabolic and mechanical signals from peripheral tissues such 

as adipose tissue and the gastrointestinal tract, and which are ultimately responsible for 

caloric intake and energy expenditure.  While this homeostatic system ensures 

maintenance of adequate caloric intake for survival, it can be overridden by hedonic 

(reward) pathways whereby the emotional sphere and the sight, taste, and smell of 

certain palatable foods lead to increased caloric intake regardless of energy needs.  

While these regulatory mechanisms work well in situations of weight reduction, they 

tend to be more permissive towards weight gain especially in the current obesogenic 

environment where food scarcity is rare (Heymsfield and Wadden, 2017; Murray et al., 

2014; Farooqi, 2014).  Therefore, these data reinforce that obesity is an altered 

pathophysiological state resulting from genetic/epigenetic, biological, hormonal and  

environmental interactions. 

Thus, in view of the above observations several organisations and regulatory bodies felt   

the pressing need of a ‘new diagnostic and more medically meaningful definition of 

obesity’  (Bray et al., 2017; Heymsfield and Wadden, 2017; Jastreboff et al., 2019; 

Schwartz et al., 2017). Thus in 2017 a position statement was issued by the American 

Association of Clinical Endocrinologists (AACE) and American College of Endocrinology 

(ACE) proposing the use of the term ‘adiposity based chronic disease or ABCD’ to better 

characterize the pathophysiological basis and chronicity of the disease as well as to avoid 

the stigma related to the use of the term ‘obesity’  (Mechanick et al., 2017). Traditionally 

overweight and obesity are assessed by measuring the body mass index (BMI) which is 

the person’s weight (in kilograms) divided by the square of their height (in meters). The 

observation that weight varies across individuals as height squared has been first 
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reported by Adolphe Quetelet in 1842 and further studies consolidated this seminal 

observation thus creating a shape index which is independent of height (Gadde et al., 

2018; Mechanick et al., 2017; Upadhyay et al., 2018). Therefore, a BMI of greater than 

or equal to 25 kg/m2 denotes overweight and a BMI of 30 kg/m2 or more denotes obesity 

(WHO, 2016b).  

The use of this parameter by most leading institutions (including WHO and the National 

Institutes of Health) for classifying weight status stems from several epidemiological 

observations which demonstrate a relationship between rising BMI values and 

cardiometabolic risk and mortality (Cornier et al., 2011; Klein et al., 2007).  Direct 

associations between adiposity (as reflected by a high BMI) and diseases such as T2DM, 

hypertension, dyslipidaemia and coronary heart disease have been well documented. 

Moreover, each 5 kg/m2 rise in BMI above the normal value of 25 kg/m2 is associated 

with increased cause-specific mortality including vascular mortality by 40%, and renal, 

diabetic and hepatic mortality by 60% to 120% (Upadhyay et al., 2018).  However, the 

relationship between BMI and all-cause mortality has been somewhat controversial. 

One landmark study which evaluated data from the National Institutes of Health-AARP 

Diet and Health Study, showed that in both males and females (who were never 

smokers), irrespective of age, rising BMI and weight gain in early adulthood was 

positively associated with mortality (Adams et al., 2017; Livingston, 2012; Malnick and 

Knobler, 2006). However, other studies which have also delved into the correlation 

between BMI and mortality rate have shown inconsistent results, with several 

epidemiological studies reporting a positive, J-shaped, U-shaped, non-existent or even 

an inverse relationship (Malnick and Knobler, 2006; McGee, 2005). Specifically, in the 
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overweight category some studies have actually shown little increase in risk or even a 

small protective effect from being overweight (Flegal et al., 2013; McGee, 2005). One 

potential explanation for this is the fact that the BMI does not truly identify excess 

adiposity since it is unable to differentiate fat from lean mass and may therefore 

misclassify individuals who have increased muscle mass (which increases insulin 

sensitivity and may therefore be protective from an increase in fat mass).  Attesting to 

this is a  meta-analysis of 32 studies which included  nearly 32,000 individuals , where it 

was observed that the BMI had a sensitivity and specificity of 50% and 90% at identifying 

excess adiposity, implying that half of individuals with excess adiposity were not 

correctly identified as obese (Okorodudu et al., 2010). Furthermore, the BMI does not 

account for ethnic, sex and age-related difference in adiposity and more importantly 

gives no insight into adipose differentiation (ectopic/visceral fat vs subcutaneous fat) as 

explained in more detail later on in this section    

In fact, it has been thought that obesity itself does not increase the risk of death, but 

rather it acts via intermediate risk factors (Livingston, 2012; Wilson et al., 1998).  This 

has been shown in a sub-analysis of the Framingham study population where 

multivariate analysis showed that certain cardiometabolic parameters such as blood 

pressure and lipid levels proved to be much more powerful at predicting CVD then 

obesity on its own (Hubert et al., 1983).  Such observations have shed light on the fact 

that a mild degree of excess adiposity might actually be beneficial for overall survival.  

In fact studies in individuals living with overweight  or class I obesity i.e., having a BMI 

of 30-34.9 kg/m2 (especially those  involving older people or people with CVD),   have 

been shown to have more favourable prognoses when compared with normal weight 
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individuals (Strandberg et al., 2009).  This has been termed the ‘obesity paradox’ or 

reverse epidemiology, that is the theoretical advantage in terms of morality that 

overweight and mild obesity confers in some pathological states such as heart failure.  

Whilst obesity is well known to cause both  functional and structural changes on the 

heart including increased stroke volume, ventricular hypertrophy, abnormalities in 

systolic and diastolic function and eventual heart failure, obese patients seem to have 

more favourable clinical outcomes in terms of survival rates.  Several possible 

mechanisms have been postulated for such observations including a more preserved 

systolic function, attenuated natriuretic peptide response (leading to earlier expression 

of heart failure symptoms), increased nutritional and metabolic reserve and that 

leanness could be the surrogate marker of other underlying disease states.  Moreover, 

other traditional cardiovascular risk parameters usually associated with obesity such as 

hypertension and hyperlipidaemia have been shown to be protective for heart failure 

development,  hence the term ‘reverse epidemiology’.  In addition to this, it is also worth 

mentioning that obesity has also been shown to protect against a number of other 

disease processes namely patients with end stage renal disease and as well as dialysis 

and cancer patients.  However, more studies are needed to further elucidate whether 

this relationship is causal or merely an association (Clark et al., 2014; Dulloo et al., 2010; 

Horwich et al., 2001; Lavie et al., 2005; Ryan, 2005; Strandberg et al., 2009).  

In a systematic review and meta-analysis, Flegal et al., concluded that individuals with a 

BMI of >30kg/m2 and especially at values higher then 35kg/m2 were associated with a 

significantly increased risk of all-cause mortality after adjustments for age, sex and 

smoking.  Interestingly overweight again was associated with significant lower all-cause 
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mortality implying that use of predefined standard BMI categories would facilitate 

comparisons between different studies (Flegal et al., 2013). 

While keeping in mind these confounding issues, the BMI continues to be universally 

accepted as the ‘gold-standard’ and most practical population-level measure of human 

adiposity due to its simplicity and ease in measurement (Klein et al., 2007).  There are 

several important reasons for the limitations of using BMI alone to assess adiposity in 

the clinical setting. One important reason for this is that obesity is a very heterogeneous 

condition (Cornier et al., 2011). For instance, the BMI does not take into account body 

composition (muscle mass versus fat mass) and furthermore it does not differentiate 

between total body fat mass and regional adiposity such as visceral adipose tissue, 

subcutaneous tissue or ectopic fat deposition (for example in skeletal muscle, liver and 

other organs) (Goossens, 2017; Peiris, 1989). It has been well-documented in several 

studies that body fat distribution, particularly abdominal adiposity, is an independent 

predictor of metabolic aberrations as well as of cardiovascular morbidity and mortality 

(Camhi et al., 2011, p. 20; Lapidus et al., 1984).  Also, the use of universal BMI cut-off 

points to classify individuals as normal weight, overweight and obese does not reflect 

adiposity in different demographic groups. This is particularly seen in South Asian 

individuals, who for the same BMI display a greater amount of body fat than Caucasians 

(Peiris, 1989). Thereafter several studies went on to show that for a given BMI the 

amount of body fat is significantly influenced by age, sex and race (Camhi et al., 2011).   

Moreover, it also overlooks people who by BMI criteria are considered normal weight 

but who may also harbour unhealthy visceral fat, the so-called metabolically unhealthy 

normal weight (MHNW) individuals (Ruderman et al., 1981). At the other extreme the 



15 
 

BMI also does not identify those who are obese but nonetheless show trivial or no 

metabolic complications at all – the metabolically healthy obese (MHO) individuals 

(Sims, 2001; Stefan et al., 2008b).    One study has shown the futility of BMI at accurately 

predicting body composition at values below 30kg/m2.  Here, a significant number of 

individuals who were not obese by BMI criteria were found to have obese levels of body 

fat by bioelectrical impedance and thus would have had their obesity status misclassified 

(Kuk et al., 2006). Thus, measurement of BMI alone may not truly identify all cases of 

obesity mainly because it fails to assess body composition or distribution of body fat 

(Cornier et al., 2011; Frankenfield et al., 2001).  

As stated earlier, variation in body fat distribution (upper body [abdominal region] vs 

lower body [gluteofemoral region] deposition have significant implications on the 

development of obesity-related comorbidities (Peiris, 1989). Population studies have 

shown that abdominal obesity significantly predicts obesity-related comorbidities and 

mortality (independently of BMI), whereas peripherally distributed fat deposits are 

associated with a protective lipid and glucose profile and decreased cardiovascular and 

metabolic disease prevalence (Grundy et al., 2013). However, precise measurement of 

regional fat distribution (by bioelectric impedance, dual energy x-absorptiometry, MRI 

scanning or CT imaging) can be a laborious and expensive task which would not be 

practical for everyday clinical use.  In view of this, other tools have been generated for 

better assessment of distribution of adiposity (Cornier et al., 2011; Neeland et al., 2019). 

One such commonly used and inexpensive yet effective parameter is the waist 

circumference (WC).  It is easily measured with a tape measure placed at the midpoint 

between the iliac crest and the lowest rib (Cornier et al., 2011; Han, 2001). WC is often 
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used as a surrogate marker of centripetal obesity since it has been shown to correlate 

well with abdominal fat mass (especially visceral adiposity) on abdominal imaging and 

thus better at identifying individuals at increased cardiometabolic risk (Cornier et al., 

2011; Janssen et al., 2002; Pouliot et al., 1994). In fact, for a given BMI individuals with 

higher WC values are considered to be at greater relative health risk than those with 

lower WC values implying that WC adds to an individual’s risk of disease to that 

predicted by BMI alone (Janssen et al., 2002; Schneider et al., 2007).  

Furthermore, other anthropometric indices have been put forward to assess abdominal 

adipose accumulation and body fat distribution and thereafter examined for their ability 

to diagnose and predict the metabolic syndrome (Met S) and cardiovascular risk (Bener 

et al., 2013; Schneider et al., 2007). These include circumferential measurements of the 

neck, hip, thigh and arm; subcutaneous skinfold thicknesses; and various indices of 

central adiposity and body fat distribution including:  waist-hip ratio (WHR),  waist to 

height ratio (WHtR), waist to thigh ratio (WTR), waist index (WI),  visceral adiposity index 

(VAI), conicity index (CI), abdominal volume index (AVI),  body adiposity index (BAI), a 

body shape index (ABSI) and body roundness index (BRI) (Amato et al., 2014; Ben-Noun 

and Laor, 2003; Cornier et al., 2011; Goh et al., 2014; Seidell et al., 1990; Valdez, 1991; 

Wang et al., 2017).  

The hip circumference (HC) is measured at the level of the widest circumference over 

the buttock and is mainly used to calculate the waist to hip ratio (WHR) (Han and Lean, 

2001). Thigh circumference is measured at 1cm below the gluteal fold (Cornier et al., 

2011). It has been shown to be inversely associated with mortality in males and larger 

thigh circumferences are associated with lower risk of T2DM in both sexes (Mason et 
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al., 2008; Snijder et al., 2003). Neck circumference (NC) is another anthropometric 

parameter that has been found to be related to CVD risk.  Several studies have found it 

to correlate well with WC, WHR and BMI as well as to components of the Met S in both 

sexes.  It also provides risk assessment for obstructive sleep apnoea (OSA) as well as 

severity of OSA independent of obesity (Kawaguchi et al., 2011; Preis et al., 2010). 

Overall, both circumferential and ratio measurements have all been shown to a certain 

extent to be positively correlated to adverse cardiovascular risk factor parameters (such 

as diastolic blood pressure, serum total cholesterol, low HDL-cholesterol, serum 

triglycerides (TG) and insulin levels) in different ethnic groups; however, circumferential 

measurements particularly of the breast, waist and thigh had the strongest correlation 

with cardiometabolic biochemistry (Barzi et al., 2010; Borruel et al., 2014; Meisinger et 

al., 2006).  Moreover, in the study by Taylor et al, BMI, WHR, WHtR and WC were all 

found to have similar magnitudes for association with CVD risk factors (Taylor et al., 

2010). However, in the study by Lim et al., the authors investigated the relationship of 

general adiposity indices (as expressed by the BMI) and central adiposity indices 

(including WC, WHR and WHtR) in an Asian cohort with dysglycaemia, and concluded 

that for a given BMI, indices of central obesity were associated with increased all-cause 

and CVD-related mortality suggesting that BMI alone does not accurately represent 

mortality risk in this population (Lim et al., 2015). Interestingly, in one analysis of the 

National Health and Nutrition Examinations Survey (NHANES), the WTR ratio was found 

to have the greatest discriminating power and the strongest association with presence 

of T2DM compared with other indices (such as WHR, WHtR and WC) (Li et al., 2010). 

These findings were echoed in the meta-analysis by Lee et al., which confirmed that 
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measures of central obesity, in particular the WHtR are better discriminators for certain 

cardiovascular risk factors (including hypertension, diabetes and dyslipidaemia) and that 

BMI was the poorest discriminator  (Lee et al., 2008). On the other hand, a Spanish study 

assessing such indices within a young adult cohort noted that the BMI and WC have the 

strongest correlations with ultrasonographic measurements of visceral adiposity 

(Borruel et al., 2014). Moreover, in a study by Kvist et al., it was noted that the reported 

correlations of waist-hip ratios to visceral adipose tissue volume (as assessed by CT 

imaging) were imperfect (Kvist et al., 1988). This seems to imply that although these 

anthropometric parameters all have different discriminatory abilities in determining 

cardiovascular morbidity and mortality, the predictive power to which each of them 

exerts their effect seems to depend (at least in part) on ethnicity, age and sex of the 

population studied  (Delvarianzadeh et al., 2017; Kato et al., 2008; Molarius and Seidell, 

1998; Wang et al., 2017). 

Thus, while ratios, especially those involving the use of WC measurement (such as WHR 

and WHtR) reflect distribution of body fat  and despite having been shown to be similar 

(if not superior) to other anthropometric parameters at predicting coronary heart 

disease incidence overall, it still remains debatable whether they should be incorporated 

routinely in the clinical assessment of adiposity.  . More recently the National Institute 

of Health and Care Excellence (NICE) has demonstrated evidence for the use of the WHtR 

(alongside the BMI) as a practical measure for central adiposity particularly in individuals 

with a BMI under 35 kg/m2.  This stems from that fact that  the WHtR offers a truer 

estimate of central (visceral) obesity by virtue of having the waist circumference in its 

calculation and furthermore has the advantage of being accurate in people with high 
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muscle mass or in older individuals.  Accordingly, the committee purports that a WHtR 

of less than 0.5 (i.e., having a waist circumference which is less than half the individual’s 

right) irrespective of sex or ethnicity, to be associated with no increased health risk 

(specifically with regards to T2 DM, hypertension and CVD).  However it also 

recommends that institution of interventions should be individualised taking into 

account other factors such as the person’s individual needs and preferences and other  

factors such as ethnicity, the presence of weight related comorbidities, family history 

and their socioeconomic status regardless of WHtR (NICE, 2023). 
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1-4 Complications of Obesity 

The explosive increase in the number of people with overweight and obesity has also 

been paralleled by the increase in number of several medical conditions.  It is now well 

known that obesity brings with it a host of comorbidities which affect many different 

physiological processes within the body (Upadhyay et al., 2018).  The underlying 

mechanisms for most of these conditions stem from the fact that excess adiposity causes 

harm by two main processes, either via excessive fat-mass mechanisms (as occurs in 

conditions such as obstructive sleep apnoea and osteoarthritis) or due to adipose tissue 

dysfunction – also called adiposopathy or ‘sick fat’ which in turn leads to abnormal 

endocrine and immune responses that may directly promote CVD or indirectly through 

the onset of metabolic disease (for exampleT2DM, hypertension and dyslipidaemia).  

Thus, it can be said that obesity targets nearly all organ systems. It has been also 

implicated in the pathogenesis of certain cancers; it also affects patients psychologically 

(including increased risk of depression and anxiety as well as social stigmatization and 

discrimination) (Bays, 2011; Fruh, 2017; Malnick and Knobler, 2006; Yumuk et al., 2015).  

A summary of the major comorbidities associated with obesity are described in Table 

1.1. While precise underlying mechanisms have not been demonstrated for all of these 

comorbidities, the fact that weight loss causes considerable amelioration in these 

conditions clearly shows that obesity plays a crucial role in their development (Bays, 

2011; Vague, 1996). 

Interestingly, a review of the literature shows that knowledge of the pathological 

potential of adipose tissue and the relationship between fat distribution and metabolic 

ill health has been acknowledged since the 1940s.  Seminal work from Vague and 
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colleagues showed that there are ‘obesities which prevail on the upper half of the body’ 

and which are linked to hypertension and hyperglycemia and associated with adipose 

tissue hypertrophy and ‘obesities which are predominant on the lower half of the body’ 

and are not associated with hypertension or disturbances in glycoregulation. They also 

went on to explain that sexual differences in fat topography also exist, (which could be 

explained by the different influences of sex hormones) with android obesity in males 

exhibiting the former features and gynaecoid obesity in females relating to the latter 

(Bays, 2011; Vague, 1996). 

Subsequently, in the decades that followed there was increased interest in adipose 

tissue embryology, anatomy and functionality and how these three components are 

interrelated and could potentially contribute to the onset of metabolic disease. It was 

noted that embryologically, adipocytes share a common genetic lineage with 

cardiomyocytes such that they both originate from a common pluripotent mesenchymal 

stem cell and that fat cell turnover is a dynamic process which is dependent on the 

balance between adipogenesis and apoptosis. While this might have potential 

therapeutic implications in future, (adipose tissue being a relatively accessible source of 

mesenchymal cells with propensity to differentiate into heart and blood vessel cells) and 

could well represent a possible treatment modality in CVD regenerative medicine, it also 

has other clinical implications (Bays, 2011). While previously adipogenesis was thought 

to be a static process which ceases in early life giving a ‘fixed adipocyte number’ to 

individuals, it is now known that fat-cell turnover is a dynamic process and adipogenesis 

occurs throughout adult life whereby the progenitor mesenchymal stem cell undergoes 
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lineage commitment, pre-adipocyte proliferation and differentiation into fully 

functional mature adipocytes (Roche, 1981). 

Normally, when caloric intake exceeds energy expenditure, the excess energy is initially 

stored through adipocyte hypertrophy. This is then followed with an adipogenic period 

through the process of recruitment, proliferation and differentiation of preadipocytes 

leading to the creation of new and mature fat cells. However, during periods of 

persistent positive calorie balance, the energy supply might exceed the storage capacity 

of adipocytes and this process of adipogenesis may be disrupted propelling existing 

adipocytes to undergo excessive hypertrophy and an overall increase in fat cell size with 

resultant abnormal metabolic and immune responses that ultimately lead to metabolic 

consequences. This has notoriously been observed in studies involving obese patients 

with T2DM whereby decreased expression of adipogenic genes was noted with 

associated decreases in proliferation and differentiation of adipocytes (Bays et al., 2008; 

Dubois et al., 2006; Francisqueti et al., 2017; Yumuk et al., 2015). 

The whole process of adipogenesis and the predilection toward either adipocyte 

hypertrophy or hyperplasia is undoubtedly dependent upon genetic and environmental 

predisposition together with the actions of multiple adipocyte or non-adipocyte 

regulatory factors and hormones which either promote or impair adipogenesis, with 

some of them also exerting different effects within the adipogenic process (for example 

impair proliferation and promote differentiation) (Bays et al., 2008; Smas and Sul, 1995). 

Of these, the most notorious adipogenic inhibitors include several interleukins (IL): IL-1, 

IL-6, IL-8 and IL-11, TNF-α, monocyte chemoattractant protein-1 (MCP-1), macrophage 

inflammatory protein-1α, hormones such as androgens, glucagon-like peptide-1 and  
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glucocorticoids as well as several growth factors (including fibroblast growth factor, 

transforming growth factor-ß, platelet-derived growth factor and tumour growth factor-

ß).  On the other hand, adipose and non-adipose tissue factors which facilitate 

adipogenesis include adiponectin, insulin-like growth factor-I (IGF), angiotensin 

converting enzyme, angiotensinogen, hormone sensitive lipase, autotaxin and free fatty 

acids, as well as hormones such as oestrogens, insulin, prolactin and thyroid hormone 

(Bays et al., 2008). Thus, any disruption at any point within the adipogenic process 

(recruitment, proliferation or differentiation) will lead to unhealthy / dysfunctional 

adipose tissue which is ultimately responsible for the downstream abnormal endocrine 

and immune responses which contribute to the onset of metabolic disease. 

From a clinical point of view, whether fat is stored either by means of adipose tissue 

hyperplasia (healthy, smaller, functional adipose tissue) or hypertrophy (sick, bloated, 

unhealthy adipose tissue) in response to positive caloric balance can be translated (and 

may in part explain) to the paradoxical finding of metabolically healthy but obese 

individuals and conversely the metabolically unhealthy normal weight individuals.  This 

is also implying that ‘how’ the fat is stored (hypertrophied adipocytes with production 

of ‘sick fat’) may be more important in terms of metabolic disease risk than simply the 

amount of fat stored (fat mass disease) (Bays, 2011; Bays et al., 2008; Haller et al., 1979). 

As has already been alluded to previously, another important aspect in the pathogenesis 

of metabolic diseases depends on where the fat is being stored. It has been shown that 

the pathogenic potential of the fat depot depends also on its location. From an 

anatomical standpoint, individuals who store their fat preferentially in the visceral 

adipose tissue (VAT) (specifically intraperitoneal, extraperitoneal or intrapelvic) as 
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opposed to the subcutaneous adipose tissue (SAT) are more prone to develop metabolic 

disease (such as hypertension, dyslipidaemia and T2DM) than their counterparts with 

less visceral adiposity (the so-called the metabolically healthy obese). Similarly, at the 

other end of the spectrum are those patients who although have normal weight are 

metabolically obese (and thus exhibit metabolic disease) due to increased deposition of 

fat in the VAT (the metabolically unhealthy normal weight individuals). The reasons for 

these observations have been postulated by the inherent differences in intrinsic 

activities of VAT and SAT. In fact VAT is genetically predetermined to be metabolically 

more active then SAT and differs in the production of bioactive adipokines/cytokines 

and certain enzymes, hormones and immune molecules, expression and activity of 

various adipocyte receptors, and in enzymatic processes involving fat metabolism all of 

which eventually lead to abnormal downstream endocrine and immune processes which 

contribute to the onset of metabolic disease (Bays, 2014; Bays and Ballantyne, 2006; 

Tchkonia et al., 2013). A comparison of the different characteristics and function 

between VAT and SAT is summarized in table 1.2. 

Furthermore, fat depots in areas other than the VAT or SAT such as in peri-organ or 

intra- organ regions (including pericardial, perimuscular, perivascular, orbital and 

paraosseal fat depots) have also been deemed to have pathogenic potential by virtue of 

abnormalities in metabolic and inflammatory processes and may well have an intrinsic 

activity somewhere in between that of peripheral SAT and VAT (Schäffler et al., 2006; 

Bays et al., 2008; Bays, 2011). Pericardial and perivascular adiposity has been shown to 

exert pathogenic effects on the myocardium in two manners, either via the secretion of 

vasoactive and pro-inflammatory factors or directly via an ‘outside to inside’ approach 
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(Baker et al., 2006; Bays, 2011). Fat deposition within the liver (intrahepatic) and muscle 

has been shown to contribute towards metabolic disease by way of adiposopathic fat 

accumulation which leads to abnormal release of inflammatory factors, increased 

lipolysis and circulating free fatty acids (FFA) causing lipotoxicity which ultimately leads 

to insulin insensitivity and IR. Similarly, fat accumulation within the pancreas also 

contributes to metabolic disease presumably due to beta cell dysfunction leading to 

decreased release of insulin and insulinopenia.  

Thus, it can also be said that how adipose tissue interacts or ‘cross talks’ with other body 

organs also contributes to metabolic disease onset such that if an organ is inflexible 

towards storage of excess TG, then the resultant increase in FFA influx leads to a 

lipotoxic organ which promotes the onset of metabolic abnormalities  (Bays et al., 2008; 

DeFronzo, 2010). 

Another interesting observation is the sex differences on fat distribution.  It is well-

documented that when adjusted for age, males are overall at higher CVD risk than 

females.  This is in accordance with the knowledge that males are more inclined to store 

fat in the visceral region - the so called ‘android’ (or upper body) adipose tissue 

distribution and conversely, females more often store fat in the peripheral 

subcutaneous region – the so called ‘gynoid’ (or lower body) adipose tissue distribution. 

The underlying reason for such differences in fat distribution is probably explained by 

the different effects of sex hormones on adipose tissue distribution.  Androgens are 

thought to have an increased predilection of storing fat in the VAT and oestrogens in the 

peripheral SAT (Bays et al., 2008; Kirschner et al., 1990; Kitabchi and Buffington, 1994). 
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        Table 1.1:  Morbidities associated with Obesity 
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In addition to the type and location of fat storage another determinant of adipose tissue 

pathogenicity is its relationship with the extracellular matrix (ECM) and vascularity.  

During periods of excess cellular hypertrophy, fat accumulation may outgrow its 

vascular supply leading to a lack of blood flow resulting in adipose and peri-adipose 

(ECM) tissue hypoxia.  This also leads to metabolic disease in view of organ dysfunction 

and ECM instability /remodelling dysfunction causing impaired fat storage leading to the 

increased release of free fatty acids and further lipotoxicity (Henegar et al., 2008). 

The common pathway by which adipose tissue hypertrophy and VAT accumulation lead 

to adiposopathy and metabolic disease has been thought to rise from the abnormal 

handling of lipid metabolism.  During periods of positive energy balance impaired 

storage of excess fat in the form of TG leads to increased adipocyte hydrolysis resulting 

in the net release of high levels of circulating FFA. Chronic and sustained increases in 

circulating FFA lead to ‘lipotoxicity’ which is deemed to be the contributing factor in the 

array of metabolic diseases seen in clinical practice.  This ‘lipotoxic’ effect on peripheral 

tissues such as the liver (leading to hepatosteatosis), pancreas and muscle leads to IR 

and abnormal glucose metabolism shifting the concept of T2DM from a ‘glucocentric’ 

view to a ’lipocentric’ view (Jensen, 2006; Bays et al., 2008). FFAs, have also been 

implicated in the pathogenesis of  hypertension, either due to their effect on IR or due 

to abnormalities in endothelial function.  FFAs also lead to the typical dyslipidaemia 

found in the Met S (hypertriglyceridemia, low high-density lipoprotein-cholesterol and 

abnormalities in lipoprotein particle size) (Fagot-Campagna, 1998; Tchkonia et al., 2013; 

Yu and Ginsberg, 2005). 
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Finally, while VAT in conjunction with visceral fat hypertrophy has been implicated as 

the major contributor towards metabolic disease with SAT being ‘protective’, it can be 

noted that even excessive SAT may eventually become pathogenic through two different 

mechanisms.  Firstly, while SAT through the process of adipogenesis is capable of storing 

excess fat in the form of small, functional adipocytes, this process may become 

overwhelmed leading to the formation of enlarged dysfunctional adipocytes which also 

contribute to development of metabolic disease. Secondly, although VAT is the major 

contributor of portal free fatty acids and thus metabolic disease, FFAs also originate 

from the SAT.   

SAT represents approximately 80% of total body fat (in contrast to the 20% from VAT) 

and it accounts for the majority of the postabsorptive systemic free fatty acids. During 

periods of ever-increasing positive calorie balance there may be impaired storage of 

post-absorptive FFAs leading to increased delivery of FFAs to the portal system which 

then contributes to the lipotoxic effects on the liver.  In addition, when SAT fat storage 

is impaired (due to dysfunctional subcutaneous fat) the resultant increase in net FFAs 

into the circulation can also adversely affect via lipotoxicity in other non-hepatic organs 

such as muscle and pancreas Thus it can be said that during periods of chronic positive 

calorie balance both visceral and subcutaneous adipose tissue have the potential to be 

pathogenic (Bays and Ballantyne, 2006; Jensen, 2006). 
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In summary, it is not simply the amount or the actions of adipose tissue that lead to 

adverse metabolic consequences but is rather the degree of dysfunction of body organs 

(liver, pancreas, muscle) as a result of potential pathogenic adipose tissue in the 

genetically and environmentally susceptible individual that will give rise to metabolic 

disease.  
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Table 1.2: Comparison of the characteristics and functions of 
SAT and VAT 
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Excess adiposity is now also known to be a major determinant in the increasing incidence 

and prevalence of certain cancers and is also thought to surpass that of smoking as a 

preventable cause of cancer  (Avgerinos et al., 2019; Ligibel et al., 2014). Overweight 

and obesity have been linked to an increase in cancer risk in at least 13 anatomical sites 

within the body, including cancers of the gastrointestinal tract (colon, rectum, gastric 

cardia, gall bladder, oesophageal, pancreas and liver), uterine, ovarian, and 

postmenopausal breast cancer in females, prostate in males and some haematopoetic 

cancers such as multiple myeloma and certain lymphomas (Avgerinos et al., 2019; 

Marseglia et al., 2014; Upadhyay et al., 2018).  Data from the WHO International Agency 

for Research on Cancer estimated that excess body weight and inactivity accounted for 

at least a quarter of all cancers of the breast, endometrium, colon and oesophagus 

(Bianchini et al., 2002; Malnick and Knobler, 2006). Epidemiological studies have also 

shown that incremental increases in BMI values are associated with a parallel increase 

in cancer risk so much so that a BMI > 40kg/m2 is associated with a 70% increase in 

lifetime risk of malignancy (Upadhyay et al., 2018). The same can be said for cancer 

mortality whereby a study by Calle et al found that mortality rate was increased by 52% 

in males with obesity and even more in females (62%) when compared to normal weight 

individuals (Calle et al., 2003). These data have all been confirmed by a number of 

longitudinal studies as well as meta-analyses and systematic reviews (Ahlgren et al., 

2006; Avgerinos et al., 2019; Calle et al., 2003; Colditz et al., 1995). The meta-analysis by 

Renehan et al., also showed significant sex differences particularly in relation to colon 

cancer which has an increased prevalence in males presumably due to the fact then 

males are more prone to visceral (central) adiposity then females, which is in turn 
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associated with IR and hyperinsulinaemia and that endogenous oestrogens in females 

may have a protective effect (Renehan et al., 2008b). 

Interestingly, some studies found the association between cancer risk and obesity to be 

greater in non-smokers, implying that there might be an interaction between smoking 

and BMI (Renehan et al., 2008b). Furthermore, in a paradoxical manner, emerging 

epidemiological data are showing that obesity may actually be a protective factor for 

the incidence of certain cancer types. This was particularly observed in cancers of the 

lung (non-small cell lung cancer), head and neck cancers and premenopausal breast 

cancer in females.  Again, this phenomenon has been termed the ‘obesity paradox’ 

similar to that encountered in cardiovascular and renal studies. However, there are a lot 

of putative explanations for such findings, the most plausible being inadequate 

adjustment for confounding bias especially for tobacco smoking.  Smoking is known to 

be associated with lung cancer and reduced weight and thus is likely to account for this 

observed inverse relationship.  Also, cancer cachexia and resultant weight loss may 

confound BMI at diagnosis of cancer. Another mechanism may be that of competing 

mortality risks (Avgerinos et al., 2019; Renehan et al., 2008a). 

It is also important to note that while adult obesity is usually associated with cancer risk, 

it is not the sole driver for the increased risk.  Research has shown that excess body 

weight during childhood and adolescence has been associated with increased risk of 

many cancers linked to adult weight such as pancreatic cancer (independent of 

diabetes), colon cancer in females and multiple myeloma (Avgerinos et al., 2019). 

Furthermore, they were associated with a younger age of onset and a lower survival rate 

overall. However, one key exception has been observed with respect to breast cancer 
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risk. It was noted that childhood adiposity was inversely related to the risk of pre- and 

post-menopausal breast cancer even after adjusting for adult weight gain.  The reasons 

for this relationship are still unclear, however these observations should not allow for 

the adverse effects of childhood obesity to be underestimated especially in an era where 

the incidence and prevalence of childhood obesity is on the rise but should rather help 

in identifying pathways linking childhood exposures to breast cancer risk  (Ahlgren et al., 

2006;  Renehan et al., 2008a). 

While the exact role of obesity in cancer aetiopathogenesis, prognosis and survival is not 

fully understood for all different types of cancers, several putative factors have been 

cited as potential underlying pathophysiological mechanisms (Colditz and Peterson, 

2018). These pathways generally involve similar mechanisms with those linked to the 

onset of metabolic and CVD . As described previously, adipose tissue is an active 

endocrine and metabolic organ and during periods of chronic positive energy balance 

releases FFAs and other pro-inflammatory factors and hormones which promote IR and 

also cause alteration in metabolism of sex steroids (oestrogens, androgens and 

progesterone) which seem to be at the forefront for the onset of many of the 

malignancies associated with obesity (Bianchini et al., 2002; Renehan et al., 2008a). Thus 

it can be summarized that the major pathways linking obesity to cancer comprise 1) 

underlying  genetic factors, 2) alteration in adipokines pathophysiology and secretion, 

3) chronic low grade inflammation and oxidative stress leading to increased levels of 

reactive oxygen species and oxidative DNA damage, 4) abnormalities in insulin/IGF-1 

signalling, 5) factors derived from ectopic distribution of fat, 6) abnormalities in sex 

hormone biosynthesis and pathways and possibly also the role of certain dietary 
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nutrients, an alteration in gut microbiota, disrupted circadian rhythms, and the 

mechanical factors associated with excess adiposity (Avgerinos et al., 2019; Ligibel et al., 

2014). 

Genetic factors determine the variation in BMI and ectopic fat deposition (ex. 

intrahepatic and intramyocellular) which may cause alterations in deoxyribonucleic acid 

(DNA) repair and gene function through multiple channels involving metabolic, 

inflammatory or immunologic pathways leading to epigenetic changes which permit 

malignant transformation (Marseglia et al., 2014). 

The three most studied candidate systems with respect to cancer risk are perhaps the 

insulin-cancer hypothesis, the role of sex steroids and alterations in adipocytokine 

pathophysiology and shall be discussed here.  

Over a decade ago two scholars noted that the risk factors for westernized cancers were 

similar to those predisposing IR with the major underlying driving force being 

hyperinsulinaemia.  Chronic elevation of serum levels of insulin (which has a growth-

promoting effect) has been linked to increased levels and activity of insulin-like growth 

factor-1 (IGF-1) (a peptide hormone with a similar structure to insulin and regulates 

cellular proliferation) predominantly in the liver (which is the main source of circulating 

IGF-1) with concomitant reductions in insulin-like growth factor binding proteins (IGFBP-

1, IGFBP-6) (which bind IGF-1 and dampen its action). Such elevations in free IGF-1 and 

insulin levels are known to cause changes in the cellular environment promoting cell 

cycle progression, inhibition of apoptosis and tumorigenesis (Avgerinos et al., 2019; 

Giovannucci, 2003; Renehan et al., 2006). Translating this into clinical practice, T2DM (a 
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metabolic disorder characterized by IR and hyperinsulinaemia in its early stages) has 

been consistently shown to increase the risk of pancreatic, kidney, colon and 

endometrial cancer in females independently of obesity and in individuals  with T2DM 

there was a greater cancer mortality rate when compared to non-diabetic controls 

(Gallagher et al., 1996; Larsson et al., 2005). Furthermore, measurements of surrogate 

markers of IR (for example by HOMA [homeostasis model assessment] and C-peptide 

respectively as a measure of hyperinsulinaemia in lieu of serum insulin (which can be 

more daunting to measure on its own) have also been strongly linked to colorectal 

cancer in several epidemiological studies (Avgerinos et al., 2019; Calle et al., 2003; Kaaks 

et al., 2002).  Moreover, one case-control study by Yang et al in 2004 fuelled a lot of 

controversies with regards to cancer screening in individuals  with T2DM when the 

results showed that insulin therapy was associated with increased incidence of 

colorectal adenoma risk.  However, it is also important to note that these associations 

did not reflect causality (Gallagher and LeRoith, 2013; Yang et al., 2004). Conversely 

patients who are treated with the insulin sensitizing drug metformin have a lower risk 

of cancer incidence and cancer-related mortality.  These observations are further 

consolidated in studies involving caloric restriction and weight loss whereby 

concomitant reductions in circulating insulin and IGF-1 levels have consistently shown 

suppressed cancer incidence rates (Hursting et al., 2010; Vucenik and Stains, 2012). 

 The molecular mechanisms by which insulin and IGF-1 are presumed to promote 

carcinogenesis is due to activation of two major pathways implicated in tumourigensis. 

These are the phosphatidylinositol 3-kinase (PI3K) - AKT-mammalian target of rapamycin 

(mTOR) pathway and the Ras-Raf-MEK-Mitogen activated Protein Kinase (MAPK) 
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pathway which are involved in regulating cell growth, differentiation, and proliferation.  

It is thus thought that insulin or IGF-1 activates the insulin receptor or IGF-1R (both of 

which have tyrosine kinase activity), which in turn off sets the PI3K pathway culminating 

in mTOR activation leading to mitogenic and antiapoptoic effects (Hursting et al., 2010;  

Renehan et al., 2008a; Yang et al., 2004). It is important to note that the MAPK pathway 

is usually largely unaffected by IR and therefore becomes hyperactive in 

hyperinsulinaemic states thereby driving cell growth and proliferation. 

Another pathway by which obesity can cause increased risk of certain malignancies is 

through alterations in the metabolism of sex steroids.  Peripheral adipose tissue is also 

known to influence synthesis and bioavailability of sex hormones (notably oestrogen) 

through at least three mechanisms (Calle et al., 2003). Firstly, adipose tissue is known to 

be responsible for a process called steroid aromatization.  Essentially this involves 

converting androgens and androgenic precursors to oestradiol by means of the 

aromatase enzyme.  In obese states, the excess adipose tissue leads to increased levels 

of aromatase activity which in turn leads to higher conversion rates of androgens to 

oestrogens which could be the driving force for the increased incidence of 

postmenopausal breast cancer and uterine cancer seen in females with obesity 

(Avgerinos et al., 2019; Crosbie et al., 2010; Renehan et al., 2008a). Second, excess 

adiposity is associated with high levels of insulin and IGF-1 which cause a reduction in 

hepatic synthesis of sex hormone binding globulin (SHBG) which is the major carrier 

protein for testosterone and oestrogen in the plasma. This consequently leads to a 

higher amount of unbound (free) sex-steroids available for bioactivity.  In both sexes this 

translates into higher levels of active oestrogen and in females it also leads to increased 
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levels of bioavailable testosterone.  The opposite is seen however in males, whereby 

decreases in SHBG lead to decreased levels of bioavailable testosterone, the reason for 

this is probably  strong oestradiol-mediated reduction in gonadotropic stimulation of 

testosterone production from the testicles (Kokkoris and Pi-Sunyer, 2003; Pugeat et al., 

1991). Lastly, hyperinsulinaemia has been postulated as being one of the underlying 

causes of the polycystic ovary syndrome.  Here, high insulin levels promote the 

formation of ovarian and adrenal androgens (such as dehydroepiandrosterone or its 

sulphate [DHEA/ DHEAs] and androstenedione) which causes clinical features of 

hyperandrogenism, anovulation and progesterone deficiency (Colditz and Peterson, 

2018; Dunaif, 1997). 

There are a number of experimental studies from in vitro and animal models which show 

that oestrogens have a mitogenic effect on mammary tissues (Renehan et al., 2008a; 

Travis and Key, 2003).  Notably in human epidemiological studies there is sufficient 

association to explain the correlation between anthropometric indices of excess weight 

(such as BMI) and breast cancer to the circulation levels of sex steroids (Calle et al., 2003; 

Key et al., 2003). Both oestrogen and the oestrogen receptor have been implicated as 

mutagens in the initiation of breast cancer either directly or indirectly through free-

radical mediated DNA damage and genetic instability as well as cell mutations. 

Oestrogen-related pathways (supporting the ‘unopposed oestrogen hypothesis’) have 

now been established as the most important driving forces for breast cancer in 

postmenopausal females.  The Endogenous Hormones and Breast Cancer Collaborative 

Group (EHBCCG), which is a pooled analysis of nine prospective studies, showed that 

risk of postmenopausal breast cancer increased with increasing circulating levels of sex 
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steroids further consolidating the hypothesis that the association of BMI to breast 

cancer risk is driven by the increased circulating levels of oestrogen with rising BMI 

values (Renehan et al., 2008a;2008b). 

 With respect to androgens, there have been some conflicting data regarding breast 

cancer risk.  Generally, obese females have been associated with raised blood levels of 

circulating testosterone and some studies have shown an association with increased risk 

of breast cancer in females regardless of menopausal status fuelling other potential 

mechanisms by which obesity is associated to breast cancer.  However, in animal studies 

testosterone exerts both inhibitory and stimulatory effects on mammary epithelia 

leading to inconclusive results as to the effect of testosterone on mammary tissue (Liao 

and Dickson, 2002; Renehan et al., 2008a). 

In a similar fashion to breast cancer risk, the underlying factors driving endometrial 

cancer are probably also related to pathways associated with a greater life-time 

exposure to oestrogens thus also supporting the ‘unopposed oestrogen hypothesis’ for 

endometrial cancer (Calle et al., 2003). Similar to postmenopausal breast cancer risk, 

higher oestrogen levels in obese females have been linked to a 2.6-fold increase in risk 

of postmenopausal endometrial cancer (Avgerinos et al., 2019; Shaw et al., 2016). 

During the follicular phase of a normal menstrual cycle, there is increased production of 

unopposed oestrogen from the ovaries leading to endometrial epithelial tissue and 

stromal fibroblasts to proliferate. This process of proliferation continues till ovulation 

where oestrogen levels reach a peak.  Thereafter, in the luteal phase oestrogen levels 

and actions start to decline due to the concomitant increase in levels of progesterone 

which mitigate the proliferative actions of oestrogen.  Thus, increased and unopposed 
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oestrogen levels in obese postmenopausal females have been linked to increased 

cellular proliferation and inhibition of apoptosis of uterine cells. Moreover, the 

proliferative actions of oestrogen are probably also mediated by increased production 

of uterine IGF-1 which then acts on the endometrium in a paracrine fashion, with 

progesterone on the other hand opposing the effects of oestrogen by increasing 

production of IGFBP-1 which leads to reduced IGF-1 levels (Giudice et al., 2013; Kaaks et 

al., 2002; Renehan et al., 2008a).  

 Another postulated mechanism linking obesity to endometrial neoplasia is through 

hyper-secretion of ovarian androgens such as androstenedione and testosterone.  

Clinically this is seen in pre- and post-menopausal females with polycystic ovary 

syndrome (PCOS) and obesity possibly due to a number of overlapping pathways 

involving oestrogen and androgen hyper-secretion, raised IGF-1 levels and chronic 

hyperinsulinemia (Calle and Kaaks, 2004). The polycystic ovary syndrome is 

characterized by a triad of anatomic, clinical, and metabolic manifestations.   The 

anatomic aberrations include the presence of polycystic ovaries usually defined as 

having more than 12 follicles per ovary (even though they need not be present to 

establish a diagnosis of PCOS). Clinically, females may present with oligo- or amenorrhea 

and cutaneous manifestations of hyperandrogenaemia such as hirsutism, acne, and 

male pattern hair-loss.  Biochemical aberrations include raised androgen levels 

(including serum free testosterone, free androgen index and DHEA levels), IR and 

sustained elevations in serum oestrogen levels.  Moreover, a substantial proportion of 

females with PCOS are overweight or obese with increased predilection towards visceral 

adiposity and exhibit acanthosis nigricans (the cutaneous manifestation of IR), have 
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impaired glucose tolerance and may also display features of the Met S thus making them 

at increased risk of CVD (Chittenden et al., 2009; Rosenfield and Ehrmann, 2016). This 

condition has also been associated with increased risk of some gynaecological cancers.  

One of the causes for this increased risk is due to the presence of anovulatory cycles 

which lead to chronic exposure of unopposed oestrogen (the unopposed oestrogen 

hypothesis) which is known to induce endometrial hyperplasia and cancer formation.  

Further to this, females with PCOS also carry other known risk factors for endometrial 

cancer including obesity, T2DM and nulliparity which together with chronic elevations 

in serum oestrogen levels and disturbances in concentrations of other steroid 

hormones, could increase the risk of uterine cancer and also of other hormone sensitive 

tumours especially of the breast and ovary.  One meta-analysis recently reported a 

threefold increased risk for endometrial cancer in females with PCOS than in those 

without the condition, whereas results from a single study showed that females with 

PCOS were twice as likely to develop ovarian cancer but with regards to breast cancer 

there did not seem to be any increase in risk in females with PCOS (Chittenden et al., 

2009). 

White adipose tissue (WAT) which is the major component of adipose tissue is known 

to be a highly active metabolic and endocrine organ with the production of in excess of 

50 different types of adipokines (polypeptide hormones), some of which allow for the 

adipocyte to communicate with satiety centres in the hypothalamus and thus have an 

important role in the feedback regulation of appetite and energy expenditure and in the 

development of IR and atherogenic processes (Fischer-Posovszky et al., 2007; Renehan 

et al., 2008a). Among the most studied are leptin, adiponectin, resistin, retinol-binding 
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protein 4 (RBP4) and visfatin  (MacDougald and Burant, 2007). Of these, leptin and 

adiponectin are the most abundantly produced adipokines and their blood levels reflect 

the amount and distribution of adipose tissue within the body. They are also the most 

studied adipokines with respect to cancer development.   In obesity, hypoxia of the 

adipose tissue results in a chronic inflammatory state which triggers alterations of 

normal leptin and adiponectin levels and together with other changes such as infiltration 

of macrophages and mitochondrial dysfunction may be associated with promotion of 

certain cancers such as colorectal cancer in obese individuals (Avgerinos et al., 2019; 

Spyrou et al., 2018). 

Leptin is a 167 amino acid product of the ob gene. Leptin interacts with both orexigenic 

and anorexigenic pathways in the central nervous system (CNS) to modulate food intake 

and energy expenditure. Systemic leptin concentrations are proportional to the degree 

of body fat stores and its principal role is thought to be that of defending minimum body 

weight such that low leptin levels are associated with increased energy intake and 

storage; however, in obese states when there is a surplus of fat mass further rises in 

serum leptin have a limited ability to suppress food intake suggesting there might be a 

degree of leptin resistance or relative leptin deficiency. Leptin is also a highly pleiotropic 

hormone and has been implicated in the onset of various cancers.  It has mitogenic 

properties on various cell types such as haematopoietic progenitor cells and vascular 

endothelial cells and may also exert anti-apoptoic effects.  It is also a potent pro-

inflammatory agent and has been associated with upregulation of aromatase enzyme 

activity favouring increased production of oestrogen and increased breast cancer risk.  

There are several forms of leptin receptors of which one (the long form [LRb]) activates 
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the PI3 kinase and MAPK signalling pathways which are involved in cellular proliferation 

and differentiation.  In breast cancer there is increased leptin receptor expression 

especially in oestrogen receptor (ER) positive breast cancer cells which probably implies 

that the effect is primarily mediated through ER actions (Rose et al., 2004; Vona-Davis 

and Rose, 2007).  

Adiponectin is a 247 amino acid peptide and is secreted mainly from visceral adipose 

tissue and is the most abundant protein hormone within the adipocyte.  Unlike leptin it 

is produced from mature adipocytes and has anti-proliferative, pro-apoptotic and anti-

angiogenic properties as well as having insulin-sensitizing and antiatherogenic actions 

(Fasshauer and Paschke, 2003; Goldfine and Kahn, 2003). Contrary to leptin, serum 

levels of adiponectin are negatively correlated with BMI and tissue hypoxia; it has been 

shown that serum levels of this hormone correlate strongly with insulin sensitivity such 

that in obese mice and human individuals,  levels of adiponectin are markedly 

decreased.  In fact, in experiments involving adiponectin-deficient mice, it was noted 

that they are both insulin-resistant and prone to development of diabetes but when 

administered a recombinant form of adiponectin there is marked improvement in 

insulin sensitivity with concomitant improvements in plasma FFA and triglyceride 

content and also exhibited modest weight loss thus consolidating its fundamental role 

in glucose homeostasis and IR (Goldfine and Kahn, 2003; Maeda et al., 2002; Vasseur et 

al., 2003). In contrast to leptin, several epidemiological studies show an inverse 

association between circulating levels of this hormone and risk of cancer especially with 

respect to uterine and breast cancer risk in females (Petridou et al., 2003).  While the 

exact mechanism of adiponectin in tumour inhibition is not fully understood, one 
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potential pathway is thought to be through inactivation of MAPK pathways and several 

murine studies confirm its inhibitory effect on primary tumour growth. Thus, in 

summary adiponectin is a key regulator of glucose and lipid metabolism and its levels 

are regulated by the degree of obesity and IR and may have an important component in 

the link between obesity and tumour development (Zhang et al., 2015). 

Other potential mechanisms by which obesity induces tumorigenesis worth mentioning 

include disruption of circadian rhythms such as reduced  quantity and quality of sleep 

results in altered glucose regulation and energy balance increasing the risk for obesity 

and malignancy due to metabolic and obesity-related factors (Nedeltcheva and Scheer, 

2014). Furthermore, obesity itself is also associated with disturbed sleep patterns, which 

in turn has also been linked to increased risk for certain cancers thus showing a 

bidirectional relationship between obesity and sleep disorders (Cao et al., 2019;  Kakizaki 

et al., 2008a; Kakizaki et al., 2008b). 

Recently much interest has been shown in the role the gut microbiome plays in onset of 

obesity and cancer.  The human gut microbiome consists of four phyla: Bacteriodetes 

and Probacteria which are Gram negative and Acenetobacteria and Firmicutes which are 

Gram positive (Avgerinos et al., 2019; Nam et al., 2011). Their prevalence within the gut 

is determined by BMI, diet and other environmental factors.  They also exert an 

important role in the intestinal metabolism and absorption of ingested nutrients and 

thus participate in the pathogenesis of certain metabolic diseases such as T2DM and 

CVD as well as obesity and cancer (Carvalho and Saad, 2013). It has been thought that 

alteration in the gut microbiome can give rise to obese states and this is reflected in diet 
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induced obese mice such that when their gut microflora was transferred to normal 

weight mice these acquired the phenotype of the former mice (Turnbaugh et al., 2006). 

The proposed mechanisms linking gut microbiota to obesity and cancer can be either 

due to promotion of inflammation or production of cancer-promoting substances. A 

process called endotoxinemia (which implies leakage of bacterial derived substances 

into the blood stream) is currently considered one of the pivotal mechanisms for the 

initiation of inflammation (Cani and Jordan, 2018). An example of how gut microbacteria 

induces inflammation and tumourigensis is derived from studies of patients with 

hepatocellular carcinoma (HCC) (White et al., 2012). Altered intestinal micro flora and 

gut barrier dysfunction are the main triggers for onset of non-alcoholic steato-hepatits 

(NASH) which in turn lead to downstream activation of pro-inflammatory pathways 

which up-regulate myogenic factors thought to be central to the onset of liver cancer 

pathophysiology. The second mechanism by which gut microbiota causes cancer 

promotion is from the generation of toxic metabolites.  Obese states with a high fat diet 

are known to have changes in intestinal microbiome leading to altered bile acid 

metabolism and increased production of a toxic substance called deoxycholic acid (DCA).  

DCA causes DNA damage through formation of reactive oxygen species creating a cancer 

promoting environment favouring the onset of HCC as well as colorectal cancer (Ma et 

al., 2022; Payne et al., 2007).  

Thus, accumulating epidemiological data continues to show that excess body weight is 

a key factor in the increased risk and prognosis of several common adult cancers. In an 

era where the global burden of obesity is starting from a young age, the impact of weight 

on cancer risk is undoubtedly underestimated in current literature in view of the fact 
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that data comes from cohorts of adult-onset obesity. However, increasing evidence also 

shows that weight loss through either caloric restriction or increased physical activity 

improves a number of chronic non-communicable disease including CVD and diabetes.  

Similarly, preventive measures based on lifestyle modification (such as incorporating 

hypocaloric or ketogenic diets) have also shown to be important for cancer prevention 

(Avgerinos et al., 2019). 

Lastly bariatric surgery, which is proving to be the most significant modality to cause 

long-term weight loss and resolution of certain comorbidities, has also been shown to 

reduce the incidence of many cancers especially that of the breast and endometrium in 

females (Adams et al., 2017). 

In conclusion, there is now strong evidence linking obesity-driven chronic inflammation, 

IR, disrupted adipokines function and altered gut microbiome with cancer and that 

reversing such processes with lifestyle intervention or bariatric surgery could be of 

public health relevance with respect to cancer risk.  
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1-5 Metabolically Healthy Obesity (MHO) and Metabolically Unhealthy Normal Weight 

(MUHNW)  

As discussed previously, obesity is conducive to the development of several metabolic 

abnormalities including hyperinsulinemia and IR, dysglycaemia, hypertension, and 

dyslipidaemia, which  in turn put an individual at higher risk of T2 DM, CVD and mortality.  

However, it has also become increasingly recognised that obesity is a heterogenous 

disease due to interindividual variability in body composition (fat mass vs fat-free mass), 

adipose tissue distribution (central/visceral vs peripheral/subcutaneous) and adipocyte 

function, metabolic profile and the degree of cardiometabolic risk (Neeland et al., 2018). 

Attesting to this are a subset of individuals with obesity who, despite having excessive 

amounts of body fat, appear to be resilient to the development of these metabolic 

abnormalities and are thus termed metabolically healthy obese (MHO) (Blüher, 2020; 

Karelis, 2008; Phillips, 2013a; Sims, 2001; Stefan et al., 2013). On the other hand, since 

the early 1980s, Ruderman  et al, and others thereafter, described the occurrence of 

individuals who, despite a normal BMI, exhibited increased visceral adiposity, were  

hyperinsulinemic and insulin resistant and displayed an abnormal metabolic profile 

similar to that found in individuals living  with obesity, thereby rendering them at a 

higher risk for all-cause mortality and cardiovascular events (Conus et al., 2007; Ding et 

al., 2016; Dvorak et al., 1999; Klitgaard et al., 2020; Ruderman et al., 1998; St-Onge et 

al., 2004). These individuals are described as metabolically unhealthy normal weight 

(MUHNW) or metabolically obese normal weight (MONW) individuals  and thus support 

the presence of a ‘lipodystrophy-like’ phenotype in the general population (Stefan et al., 

2017).  Therefore, for a given BMI, individuals exhibit a variability in metabolic risk since 
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the pathogenic potential of excess adipose tissue does not rely on increased fat mass 

alone but also on its distribution and function.  This has led  to the concept of different 

body composition phenotypes which take into account both the individuals’ body size 

as well as their metabolic profile such that metabolically healthy normal weight (MHNW) 

individuals are at one end of the spectrum and metabolically unhealthy obese (MUHO) 

individuals at the other end, with MUHNW and MHO lying somewhere in between 

(Blundell et al., 2014). An increased understanding of the aetiopathogenesis of these 

different obesity phenotypes has provided insight into the presence of risk factors which 

are independent of adiposity-induced abnormalities (as occurs in MHO) and also risk 

factors which are essentially independent of overall obesity (as occurs in MUHNW). 

1-5.1 Prevalence and definition of MHO and MUHNW 

Although both MUHNW and MHO have been extensively studied and documented 

worldwide and in different ethnic populations for over four decades,  there is still a 

considerable amount of conflicting and incongruent data surrounding these two 

phenotypes particularly regarding  their prevalence, aetiopathogenesis and long-term 

health implications which led some authors to question the very existence of these 

phenotypes (Lopez-Miranda and Perez-Martinez, 2013; Muñoz-Garach et al., 2016; 

Smith et al., 2019). The major reason for such world-wide discrepancies stems from the 

fact that to date there is yet no universally standardized definition of what constitutes 

metabolic health (Brandão et al., 2020; Tsatsoulis and Paschou, 2020).  In fact, different 

studies use different criteria for assessing obesity and  metabolic health (both in terms 

of choice of risk factor parameters and their respective cut-off values). For example, 

most studies use a BMI of <25 kg/m2 to denote normal weight and a BMI of  ≥25 kg/m2 
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as the threshold to denote overweight/obesity.  However, other studies use WC (with 

sex-specific and ethnic-specific cut-offs) or body fat percentage (BF%) as assessed either 

by Dual Energy Absorptiometry (DXA), bioelectric impedance, skin fold thickness or by 

hydrostatic weighing as well as visceral fat area to assess adiposity levels. This 

consequently leads to marked differences in both obesity and in MHO/MUHNW 

prevalences within and between different populations (Choi et al., 2012; De Lorenzo et 

al., 2007; Hyun et al., 2008; Ortega et al., 2013; Romero-Corral et al., 2010; Shea et al., 

2012, 2011). For example, the study by Ortega et al., found that the overall prevalence 

of obesity within the same population was much lower when using standard BMI criteria 

compared to BF% (using cut-offs of ≥25% for males and ≥30% for females) subsequently 

leading to a marked difference in the prevalence of MHO (30.8% and 46.3% respectively) 

(Ortega et al., 2013).  

With respect to metabolic health, the most frequently used definitions in the literature 

are based either on Met S criteria (mainly as defined by WHO (World Health 

Organization, 1999), the European Group for the study of IR [EGIR] (Balkau et al., 2002),  

the National Cholesterol Education Program, [NCEP] Adult Treatment Panel III [ATPIII] 

(NCEP, 2001), the American Association of Clinical Endocrinologists [AACE] (Einhorn et 

al., 2003), the International Diabetes Federation [IDF] (Alberti et al., 2006) or by the Joint 

Interim Statement [JIS] (Alberti et al., 2009)) (appendix 2), by measuring IR or a 

combination of both (Durward et al., 2012; Karelis et al., 2004a; Kuk and Ardern, 2009; 

Meigs et al., 2006; Wildman et al., 2008). A review of the literature also confirms 

different approaches to measuring IR in published studies including; a) the 

hyperinsulinemic-euglycemic clamp, b) insulin sensitivity index (ISI) following an oral 
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glucose tolerance test, c) the insulin suppression test, and d) the derived indices: the 

Matsuda index and the homeostatic model assessment of IR [HOMA-IR]); with different 

studies also citing different (and sometimes arbitrary) cut-off values for each of these 

methods (Appleton et al., 2013; Brochu et al., 2001; Calori et al., 2011; Klöting et al., 

2010a; Tracey McLaughlin et al., 2007; Messier et al., 2010; Sesti et al., 2011; Stefan et 

al., 2008b; Wang et al., 2021a; Wildman et al., 2008, 2008). Additionally, other authors 

also took into consideration inflammatory, fibrinolytic, and immune function 

abnormalities (such as circulating levels of hs-CRP, white blood cell count, fibrinogen 

and uric acid levels) to differentiate the healthy from the unhealthy phenotype while 

others also included assessment of cardiorespiratory fitness (Hamer and Stamatakis, 

2012; Iacobellis et al., 2005; Karelis and Rabasa-Lhoret, 2008; McAuley et al., 2010; 

Wildman et al., 2008) (Figure 1.1).  

Generally, MHO individuals  exhibit a better metabolic and biochemical profile 

compared to their unhealthy counterparts, including a favourable lipid profile (higher 

HDL-C, lower total cholesterol, low density lipoprotein-cholesterol [LDL-C], TG and 

apolipoprotein B levels as well as a lower TG:HDL-C ratio), lower levels of glucose and 

insulin and lower systolic and diastolic blood pressure values thus allowing several 

authors to use these parameters when classifying MHO individuals  (Iacobini et al., 2019; 

Karelis et al., 2004b; Phillips, 2013a). Additionally, studies also report improved renal 

function, lower levels of hepatic enzymes and a favourable adipokine profile 

(characterised by a high adiponectin and low leptin levels) in MHO individuals compared 

to MUHO (Messier et al., 2010; Sesti et al., 2011).   
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BMI: body mass index, WC: waist circumference, MH: metabolic health, Met S: metabolic syndrome, NCEP ATPIII: 
national cholesterol education program adult treatment panel III; JIS: joint interim statement, IDF: international diabetes 
federation, ISI: insulin sensitivity index, OGTT: oral glucose tolerance test, HOMA-IR: homeostasis model assessment of 
insulin resistance, TG: triglycerides, hs-CRP: high sensitivity - C-reactive protein. WCC: white cell count, CRF: 
cardiorespiratory fitness 

Figure 1.1  Different criteria used to define adiposity and metabolic health in the literature 
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Hormonal differences within the entero-insular axis following a glucose load (reduced 

glucose-dependent insulinotropic polypeptide (GIP) and glucagon plasma levels and 

higher levels of glucagon-like peptide-1 (GLP-1)) have also been reported in MHO 

individuals (Calanna et al., 2013).  Such findings may in part explain the lower propensity 

for T2DM observed in MHO individuals.  Yet, other investigators also observed that 

adherence to a Western dietary pattern is predictive of the MUHO phenotype and IR  

(Mirzababaei et al., 2019). However, these parameters are not used in current 

definitions of metabolic health.    

There are wide variations in the reported prevalence of body size phenotypes. Overall, 

the global prevalence estimates quoted in the literature stand at 35% for MHO among 

individuals living with obesity and approximately 30% for MUHNW among normal 

weight individuals  (Lin et al., 2017; Wang et al., 2015). As explained above, these 

statistics are partly definition-dependent and may merely reflect the a priori criteria 

used to define metabolic health.  For example in the US National Health and Nutrition 

Examination Surveys (NHANES) study (which included 5440 US civilians over the age of 

20), the authors found that 31.7% and 51.3% of obese and overweight individuals 

respectively to be metabolically healthy when metabolic health was defined by the 

presence of ≤1 cardiometabolic abnormalities from the following: elevated BP, elevated 

serum TG levels, high fasting plasma glucose, elevated hs-CRP and presence of IR as 

defined by HOMA-IR.  Furthermore 23.5% of normal weight individuals carried an 

unhealthy metabolic phenotype while utilising the same criteria to classify metabolic 

health (Wildman et al., 2008).  As expected, when the same authors used more stringent 

criteria (i.e. the presence of no cardiometabolic abnormalities) to define metabolic 
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health, only 16.6% of obese individuals could be classified as metabolically healthy.  

Moreover, when using sex-specific WC cut-offs to denote obesity, a higher percentage 

of non-abdominally obese individuals were metabolically unhealthy (28.3%), while a 

lower percentage of individuals with abdominal obesity could be defined as 

metabolically healthy (36.4%).   

Such discrepancies were also corroborated in a study coming out of China, which 

reported a 3-fold range in the prevalence of MHO when different definitions for 

metabolic health were applied to the same population (Liu et al., 2019). Furthermore, 

the systematic review by Rey-Lopez et al., which evaluated 27 prospective studies 

worldwide (including studies form Europe, Oceania, North America and Asia) found that 

the prevalence rate of MHO ranged from 6% to 75% and identified 30 different 

definitions of metabolic health (Rey-López et al., 2014). These findings thus keep 

highlighting that prevalence estimates for each body composition phenotype are 

definition dependent. Typically, the MHO phenotype is more prevalent in females, 

younger aged individuals and in non-Hispanic whites while the prevalence of MUHNW 

is higher in males and increases with age (Lin et al., 2017; Rey-López et al., 2014; Wang 

et al., 2015; Wildman et al., 2008).    

These studies also underscore that biological, genetic, ethnic, and secular lifestyle 

changes could all also be accountable for differences in the prevalence of body 

composition phenotypes reported in the literature.  Accordingly, many studies concur 

that MHO status is inversely related to age.  Increasing age is associated with decreased 

muscle mass, increased percentage body fat and a predilection to visceral fat deposition 

(Gallagher et al., 1996; Kuk et al., 2009). Females are also consistently found to have a 
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higher MHO prevalence.  This is in agreement with previous studies (as explained earlier 

in this chapter) which observed females to have favourable body fat distribution 

patterns (lower visceral adipose tissue and higher subcutaneous gluteofemoral fat 

deposition) compared to males by virtue of the different predilection of the sex 

hormones on adipose tissue deposition, which renders them at lower cardiometabolic 

risk (Bays et al., 2008; Vague, 1996). However, the finding of a higher prevalence of MHO 

in Asian individuals  as per the systematic review by  Rey-Lopez et al. is surprising since 

Asians have an increased tendency to accumulate fat in visceral and ectopic areas which 

is conducive to higher metabolic risk compared to other ethnicities (Lee, 2009).  

Furthermore, factors such as psychosocial stress, population differences in dietary 

habits, other behavioural variables (including smoking, alcohol consumption and 

physical activity), and genetic differences affecting body fat distribution undoubtedly 

also contribute to the variability in prevalence rates of the MHO phenotypes.  In 2018, 

Carl Lavie et al. attempted to standardize the concept and definition of MHO by 

proposing a ‘harmonized definition’.  They suggested that individuals be classified as 

MHO if they are obese by BMI criteria and meet zero out of four Met-S criteria (elevated 

TG, reduced HDL-C, elevated BP and elevated fasting glucose but excluding WC).  There 

was an emphasis on the fact that an individual must exhibit none of the latter 

parameters as they argued that ‘a person with high blood pressure or  T2 diabetes 

cannot be considered ‘healthy’ (Lavie et al., 2018). More recently, Zembic et al. derived 

an empirical definition for metabolic health based on anthropometric and metabolic 

factors known to be associated with increased cardiovascular and total mortality risk 

utilizing the NHANES III and UK Biobank dataset.  Using this definition, MHO individuals 
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were not at increased risk of cardiovascular or all-cause mortality when compared to 

healthy normal weight individuals , while those  classified as metabolically unhealthy, 

irrespective of their BMI, displayed increased risks (Zembic et al., 2021). 

Likewise, an extensive variation (5-45%) in the global prevalence of MUNW has been 

reported, and  this, too, is also dependent on the population and criteria used (Ding et 

al., 2016; Dvorak et al., 1999; Lee, 2009; Wildman et al., 2008; Zheng et al., 2020). For 

example, in the Spanish study by Goday et al., a prevalence of 2% was reported among 

normal weight persons when a modified NCEP-ATPIII definition for metabolic health was 

applied.  This however rose to 46.4% when more stringent criteria were used (Goday et 

al., 2016).  Moreover, the study by Gujral et al. noted that the prevalence of MUHNW 

was significantly higher in all racial/ethnic minority groups compared with whites (Gujral 

et al., 2017).  However, the meta-analysis of Wang et al. observed a higher prevalence 

of MUHNW among European people (Wang et al., 2015). Again, this is in contradiction 

to what has been previously reported in the literature, namely that this phenotype is 

more prevalent in Asians especially those of Indian, Korean and Chinese descent, due to 

their tendency to accrue more fat intra-abdominally even though they exhibit a normal 

BMI as well as having a reduced muscle mass thus placing them at higher 

cardiometabolic risk (Ding et al., 2016; G and AS, 2021; Mathew et al., 2016). The 

authors however do acknowledge that most of the Asian studies included in the meta-

analysis were conducted in Korea and may thus not be a true reflection of the entire 

Asian population. Overall, most studies report the presence of MUNHW to be higher in 

males, older age individuals, and in those with lower physical activity levels and larger 

WC. In the study by Conus et al., the authors observed that in participants with a BMI 
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ranging between 25 to 27 kg/m2 and a family history of T2 DM and/or hypertension, the 

presence of abdominal obesity, high serum cholesterol and triglyceride levels and 

hypertension would point towards the presence of the MUHNW phenotype (Conus et 

al., 2007).  

More recently, Lee et al. proposed a novel and simple diagnostic criterion to identify 

individuals with the MUHNW phenotype.  They suggested the use of the triglyceride 

glucose index (TyG) which is the product of fasting triglyceride and glucose levels to help 

in discriminating   normal weight individuals are higher risk of metabolic diseases (Lee 

et al., 2015). They observed that it correlates well with levels of IR and  thus argue  that 

since individuals with the MUHNW phenotype have higher degrees of IR, then, using this 

simple parameter might be an easier way to identify such individuals. Other researchers 

suggested the use of serum ferritin concentration levels to identify MUHNW individuals 

. This was based on the fact that ferritin is an acute phase protein (similar to CRP) and 

thus levels increase with an inflammatory environment as occurs in MUHNW and which 

in turn leads to increased IR and cardiometabolic risk (Ren et al., 2022). Others also 

suggested the assessment of hepatic fat content as it was observed to be strongly 

correlated with incident T2DM than was being overweight or obese (Sung et al., 2012a; 

Urata et al., 2020). However, these studies made use of ultrasonography to quantify 

hepatic fat which may be impractical and expensive as a screening tool in clinical 

practice,  readily available calculated indices such as the Fibrosis-4 Index (FIB4) and the 

NAFLD fibrosis score (NFS) which predict metabolic abnormalities, cancer and overall 

mortality are more practical can thus be used as biomarkers for hepatic fat (Önnerhag 

et al., 2019; Taylor et al., 2022) 



56 
 

Of note, de Lorenzo and colleagues also described the occurrence of another obese 

phenotype: the normal weight obese individual (NWO) (De Lorenzo et al., 2006). People 

belonging to this class are also typically lean with a normal BMI, however thy have a 

higher total body fat content (>30%) and a lower amount of lean muscle mass.  

Furthermore, these individuals are characterised by higher fasting glucose and lipid 

levels, IR, higher oxidative stress and a proinflammatory state (such as increased serum 

levels of TNF-α, IL-8 and IL-6) when compared to healthy normal weight individuals, 

which also renders them at higher cardiometabolic risk even after adjusting for central 

obesity (De Lorenzo et al., 2007; Kapoor et al., 2020; Mohammadian Khonsari et al., 

2022).  

As alluded to above, most studies used either Met S components and/or IR to define 

metabolic health. While IR is a core feature of the Met S and considered to be the 

unifying pathogenic mechanism responsible for its occurrence (including its individual 

components), one would expect that individuals stratified as metabolically healthy by 

Met S criteria to also be insulin sensitive. Interestingly, several studies found minimal 

overlap in prevalence rates when using Met S criteria or HOMA-IR to define metabolic 

health in the same population. For example, Kuk et al. found a higher prevalence of MHO 

when the NCEP-ATPIII criteria for Met S was adopted than when using HOMA-IR (38.4% 

vs 30.2% respectively).  Furthermore, only 6.0% of obese individuals  did not exhibit Met 

S parameters or IR simultaneously (Kuk  and Arden, 2009).  , Such discrepancies cast a 

doubt on the strength of the association between IR and presence of Met S or its 

components and may imply that other factors might be contributing to the development 

of this syndrome (Cheal et al., 2004; Tracey McLaughlin et al., 2007). In a similar fashion, 
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Eckel et al. observed that only 30.5% of normal weight individuals who developed 

diabetes had the presence of the Met S as defined by NCEP-ATPIII at baseline (Eckel et 

al., 2015). This observation seems to suggest that the traditional definition of the Met S 

may be insensitive to correctly identify those normal weight but at-risk individuals and 

thus it might be more pertinent to look at individual components of the Met S to better 

characterise such individuals.  Moreover, within this study those participants with 

incident diabetes had mean levels of WC, TG and HDL-C which were much lower than 

the cut-offs used for the Met S, again implying that the traditional Met S definition might 

be insufficient to identify individuals  with ‘true’ MUHNW and that the cut-offs for these 

parameters might need to be revised downwards.   

1-5.2 Characteristics and determinants of metabolic health  

Biological mechanisms  

Several factors are implicated in the metabolic heterogeneity observed across different 

BMI categories.  One of the most recognized contributing factors is dysfunction of 

adipose tissue (adiposopathy), however other factors including environmental, 

behavioural and genetic factors all have been implicated through the modulation of fat 

mass and fat cell biology/function (Bays, 2014; Goossens, 2017; Stefan, 2020a). It is 

increasingly recognised that preservation of metabolic health and insulin sensitivity is 

associated with a favourable adipocyte morphology and functionality pattern as 

opposed to adiposopathy in metabolically unhealthy individuals. The main adipocyte 

features which contribute towards a healthy metabolic state during periods of caloric 

overload include preferential expansion of insulin-sensitive subcutaneous adipose tissue 
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(particularly of gluteofemoral areas) through hyperplasia, lower visceral and ectopic fat 

deposition in tissues such as the liver and skeletal muscle, preserved adipocyte 

remodelling (including efficient extracellular matrix remodelling, increased angiogenesis 

and adipogenesis) and a favourable inflammatory status (including lower levels of 

proinflammatory adipocytokine secretion  (CRP, TNF-α, IL-6, PAI-1, leptin, chemerin, 

visfatin and resistin) and immune cell infiltration (M1 macrophages and TH cells, and a 

higher level of adiponectin (Cho et al., 2022; Iacobini et al., 2019; Tsatsoulis and 

Paschou, 2020).  On the other hand, individuals with adiposopathy are characterised by  

a reduced capacity of subcutaneous adipose tissue expansion, increased visceral 

adiposity through hypertrophy, impaired adipose tissue remodelling, altered lipid 

metabolism and  lipotoxicity, fat overspill into ectopic sites such as liver and skeletal 

muscle,  as well as elevated adipose tissue and systemic inflammation (meta-

inflammation) together with a proinflammatory adipocytokine profile and a high 

immune cell infiltration (Ahmed et al., 2021; Badoud et al., 2015; Phillips, 2017; Teixeira 

et al., 2015) (Figure 1.2). Thus, these observations may be summed up via three 

hypotheses: 1) the adipose tissue expandability hypothesis 2) the lipotoxicity hypothesis 

and 3) the inflammation and adipokine hypothesis. 

Over the last few decades research has shown that different body fat depots exert 

different effects on health outcomes (Stefan, 2020a). While the subcutaneous adipose 

tissue (SAT) compartment is the main fat storage depot, adipose tissue at other 

anatomic regions has critical roles in the development of cardiometabolic disorders 

(Mongraw-Chaffin et al., 2017; Neeland et al., 2019; Piché et al., 2018; Smith et al., 

2001).  These regions include visceral adipose tissue (VAT) and adipose tissue in ectopic 
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sites such as the liver, heart, pancreas, and skeletal muscle (Shulman, 2014). Advanced 

imaging techniques have enabled improved characterisation of these depots, which 

were previously considered as part of total body fat (Neeland et al., 2019; Thomas et al., 

2012).  These depots differ in endocrine function and immune function and may in part 

be responsible for the varying metabolic abnormalities observed in different obesity 

phenotypes (Bays et al., 2008; Teixeira et al., 2015; Thomas et al., 2012). As the primary 

TG reservoir, subcutaneous adipocytes expand through hyperplasia in response to 

caloric excess, leading to an increase in the proportion of small adipocytes with normal 

functionality and preserved insulin sensitivity (hyperplastic obesity). Such findings are 

characteristic of individuals  with MHO (Blüher, 2010; Klöting et al., 2010a; O’Connell et 

al., 2010). However, SAT has a ginite expansion capacity resulting in an overspill into 

visceral/ectopic areas leading to the onset of systemic inflammation, IR and 

hyperglycaemia.  (Mathieu et al., 2009; Tan and Vidal-Puig, 2008; Tchernof and Després, 

2013).   

Thus, the adipose tissue expandability hypothesis implies that during periods of 

sustained excess calorie intake, a limited degree of SAT plasticity predisposes towards 

the accumulation of fat in visceral and ectopic sites thereby leading to lipotoxicity and 

the subsequent development of metabolic disturbances typically observed in obese 

states. (Blüher, 2013; Carobbio et al., 2017). Several lines of evidence support this 

hypothesis. In lean individuals, a lower proportion of subcutaneous gluteofemoral fat 

mass is the strongest predictor of the MUHNW. Furthermore, increased leg fat mass 

correlates with higher insulin sensitivity and a favourable metabolic profile (Stefan et 

al., 2017). The Women’s Health Initiative Study demonstrated that in females with a 
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normal BMI, a reduced gluteofemoral fat mass is associated with a higher incidence of 

cardiometabolic diseases independent of truncal fat mass, further supporting the notion 

that adipose tissue expansion within peripheral gluteofemoral areas allows for the 

thelahty storage of excess fat.   (Chen et al., 2019; Klitgaard et al., 2020). Similarly, 

despite an identical BMI and high amounts of body fat, MHO individuals have a lower 

WC than MUHO individuals  due to reduced VAT and hepatic fat. In response to weight 

gain, MHO individuals  preferentially expand the SAT compartment whereas MUHO 

individuals are more likely to gain fat in the visceral regions. Such differences in location 

of fat accumulation are thought to be responsible for the preserved metabolic function 

observed in MHO  (Brochu et al., 2001;  Karelis et al., 2004b; Klöting et al., 2010). Thus, 

although the exact mechanisms by which visceral fat contributes to the dysmetabolic 

state are not fully elucidated,  the overall evidence points towards VAT as being a 

dysfunctional depot characterised by abnormal adipogenesis (hypertrophied adipocytes 

rather than hyperplasia), increased lipolytic activity and fatty acid accumulation into 

ectopic sites as well as a dysregulated inflammatory /immune milieu which ultimately 

leads to IR and end organ damage (such as T2DM and ASCVD) (Blüher, 2013; Crewe et 

al., 2017; Pluta et al., 2022). 

 The predilection towards storage of fat in subcutaneous vs visceral regions depends on 

multiple factors.  Increasing age, male sex, senescence, smoking, physical inactivity and 

high fat or fructose diets favour an increase in VAT (Brandão et al., 2020; Iacobini et al., 

2019; Ortega et al., 2013; Teixeira et al., 2015). Studies which looked at ectopic fat 

accumulation in different body composition phenotypes found differences in levels of 

fat accumulation particularly in liver and skeletal muscle of MHO individuals compared 
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to MUHO counterparts which may partly explain the varying cardiometabolic risk found 

among these two groups (Pimentel et al., 2015; Stefan et al., 2008b).  Other studies went 

on to show that levels of hepatic fat were strong predictors of both the MUHO 

phenotype  and of IR (Ogorodnikova et al., 2013; Stefan et al., 2008b). 
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Figure 1.2: Schematic diagram illustrating the potential mechanisms by which adipose tissue 
mediates the development of the metabolically healthy and unhealthy phenotypes 
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The relationship  between expansion of VAT/ectopic fat  depots and  IR  can be partially 

explained by the lipotoxicity hypothesis. Increased VAT is prone to lipolysis leading to 

the excess release of non-esterified fatty acids (NEFA) into the circulation which 

subsequently accumulate in ectopic sites (Boden, 1997; Manu et al., 2012; Nielsen et al., 

2004). Within skeletal muscle, an accumulation of biologically active lipids (such as 

ceremides, diacylglycerols and fatty acyl CoA) negatively affects insulin signalling 

pathways (via an impairment in GLUT 4 translocation) which induces muscle IR resulting 

in a decrease in glucose uptake and glycogen synthesis (Stefan et al., 2017; Zaid et al., 

2008). On the other hand, increased NEFA delivery to pancreatic β-cells leads to 

impaired insulin secretion which further exacerbates lipolysis and therefore propagates 

the influx of NEFA within the circulation (Ahmed et al., 2021; Succurro et al., 2008; 

Teixeira et al., 2015).   Delivery of NEFA to the liver increases with increasing amounts 

of VAT and contributes to the development of hepatic IR which manifests by an increase 

in VLDL synthesis, increased triglyceride concentration in the blood, increased 

glycogenolysis and gluconeogenesis and the development of non-alcoholic fatty liver 

disease (Karpe et al., 2011; Klein, 2004; Klöting et al., 2010; Stefan et al., 2008a; Teixeira 

et al., 2015).  Furthermore, fat accumulation in the liver is associated with an increased 

production of the hepatokine fetuin-A, a proinflammatory cytokine which impairs 

insulin signalling through the activation of Toll-like receptors resulting in IR and onset of 

T2DM (Stefan and Häring, 2013a). A lower level of fetuin A level was observed in 

individuals with MHO compared with MUHO and this was found to be associated with 

improved insulin sensitivity and glucose homeostasis thereby making it a potential 

player in the link between liver fat and IR (Stefan et al., 2008a; Stefan and Häring, 
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2013b). Thus these factors may all potentially explain the complex relationship observed 

between abdominal adiposity, IR and metabolic dysfunction. Moreover, NEFA are pro-

inflammatory, leading to reactive oxygen species (ROS) generation, endothelial 

cell  damage and the formation of a proatherogenic vascular milieu that exacerbates 

cardiovascular risk (Wang et al., 2009).  

The inflammation and adipokine hypothesis centres around the pro-inflammatory and 

immune responses induced by dysmorphic adipose tissue including the recruitment of 

M1 macrophages and the secretion of multiple inflammatory adipocytokines (such as 

TNF-α, IL-6, plasminogen activator inhibitor-1 (PAI-1), resistin, CRP RBP4, leptin and 

angiotensin II) leading to chronic low grade systemic inflammation (meta-inflammation), 

endothelial dysfunction and the onset of IR and the metabolic abnormalities associated 

with obesity (Ahmed et al., 2021; Blüher, 2013; Esser et al., 2014; Fontana et al., 2007).. 

Several studies have demonstrated  that the adipose tissue of individuals with obesity is 

associated with a switch from anti-inflammatory alternatively activated M2 

macrophages to proinflammatory classically activated M1 macrophages which 

accumulate in crown-like structures (CLS) around necrotic adipocytes leading to  

systemic IR and higher levels of TG,  LDL-C and lower levels of HDL-C (Apovian et al., 

2008; Cancello et al., 2006; Farb et al., 2011; Heilbronn and Campbell, 2008; Lumeng et 

al., 2007). Studies which looked at levels in the MHO phenotype observed this group to 

have lower macrophage infiltration in both VAT and SAT compared to individuals  with 

MUHO or T2DM which may be responsible for the improved cardiometabolic profile in 

MHO (Blüher, 2010; van Beek et al., 2014).  Additionally, data from animal and human 

studies also demonstrated the presence of several types of T cells (including T helper 
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[TH]cells, cytotoxic T [Tc] cells and regulatory T [Treg] Cells) in adipose tissue which could 

also be contributing to the immune and  inflammatory processes observed in obese 

states thereby providing additional evidence which consolidates the link between 

dysfunctional adipose tissue, insulin-resistant states and a dysregulated metabolic 

milieu (Duffaut et al., 2009; Feuerer et al., 2009; Kintscher et al., 2008; Winer et al., 

2009).  

Likewise MUHNW individuals , also present with an abnormal body composition and fat 

distribution patterns including a higher VAT, liver and muscle fat content and a lower 

skeletal muscle mass, increased oxidative stress together with a proinflammatory and 

thrombotic state as well as IR, hyperinsulinemia and an adverse metabolic milieu (Conus 

et al., 2007; Dvorak et al., 1999; Karelis et al., 2004b; Katsuki et al., 2003; Klitgaard et al., 

2020; Pluta et al., 2022; Ruderman et al., 1998). Specifically, in MUHNW, a greater 

proportion of body fat has been documented, with the risk of metabolic abnormality 

correlating with body fat percentage in both males and females and furthermore, in 

young lean individuals , the percentage body fat was observed to be the single strongest 

predictor for low insulin sensitivity (Karelis et al., 2004b; Shea et al., 2012). Conflicting 

findings have also been reported, with some investigators failing to identify differences 

in percent body fat between healthy and unhealthy normal weight individuals  implying 

that metabolic dysfunction in MUHNW may occur independent of total body adiposity 

(Ding et al., 2018; Hyun et al., 2008).  Building up on these findings was the elegant study 

by Stefan and coworkers. (Stefan et al., 2017). Interestingly the authors  reported 

different risk phenotypes among the metabolically unhealthy lean and 

overweight/obese individuals . Specifically, within lean individuals, insulin secretion 
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failure and low percentage subcutaneous leg fat mass were the major drivers for 

metabolic ill-health whereas visceral adiposity and steatohepatitis to be the underlying 

drivers for the metabolically unhealthy phenotype in overweight and obese groups. 

Notwithstanding this, several studies also report greater ectopic fat deposition including 

higher levels of VAT depots and a greater intrahepatic triglyceride content among 

MUHNW individuals  than among controls which were matched for age and BMI (Ding 

et al., 2018; Dvorak et al., 1999; Furukawa et al., 2017; Katsuki et al., 2003; Takeno et 

al., 2016). Remarkably though, no differences in intramuscular fat content were 

observed (Ding et al., 2018).  An important caveat which may in part explain these 

discrepancies lies in the fact that in most studies MUHNW individuals had a significantly 

greater BMI than ‘matched’ healthy controls despite both categories falling within a 

‘normal’ BMI range.  This bias is significant, since the incidence of Met S and T2DM 

increases even within the normal weight BMI range making comparisons between these 

two phenotypes difficult to interpret making it a challenging exercise to ascertain 

whether the observed differences in metabolic profiles are driven primarily by the 

MUHNW phenotype or due to differences in body weight.  Nevertheless, in the NHANES 

III cohort, normal weight individuals  with central obesity (as determined by a raised 

WHR) had  the worst long-term survival outcome compared to all other body 

composition phenotypes (Sahakyan et al., 2015). Moreover, a similar degree of 

subclinical inflammation is observed between MUHNW and MUHO individuals. (Di 

Renzo et al., 2010; Piya et al., 2013). Such findings thus reinforce that within the general 

population, some lean individuals exhibit features akin to the lipodystrophy syndromes 

(paucity of subcutaneous fat, hepatic steatosis, and severe IR) which drive 
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cardiometabolic risk. Furthermore, the combination of  lower expansion of peripheral 

subcutaneous fat with an increased accumulation of fat in central (abdominal) areas 

may be  the landmark trait which characterises metabolic dysfunction in normal weight 

individuals.  

Genetic and early life factors 

There is on-going and extensive research to identify the underlying genetic mechanisms 

which could contribute towards the development of different obesity phenotypes. 

Obesity is a primarily polygenic disease regulated by complex gene-environment 

interactions and transgenerational epigenetic mechanisms. Although multiple pathways 

have been implicated in the development of obesity,  the different fat distribution 

patterns and in the development of comorbidities, the exact underlying genetic 

mechanisms are still largely undetermined  (T. McLaughlin et al., 2007; Pérez-Echarri et 

al., 2007; Schleinitz et al., 2014; Speakman et al., 2011; Yasuda et al., 2008).  

Both genome-wide association studies (GWAS) and gene-expression studies have 

demonstrated that body fat distribution is influenced by a number of genetic loci 

independent of the BMI.  Specifically, GWAS recently identified 14 genetic variants 

which are associated with the regulation of body fat distribution and a lower risk of 

developing metabolic abnormalities and cardiometabolic diseases despite a BMI in the 

obese range (Iacobini et al., 2019). GWAS has also enabled the construction of polygenic 

risk scores characterizing different obesity phenotypes (Scott et al., 2014; Yaghootkar et 

al., 2016). Typically, GWAS-identified variants exert small effect sizes on BMI when 

considered in isolation and which explains a minimal proportion of the phenotypic 
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variance in BMI (Yengo et al., 2018).  However, when considering polygenic risk scores 

which aggregate the effect of multiple variants as a single polygenic predictor, a more 

robust stratification of the risk of severe obesity and cardiometabolic disease in adults 

is observed (Khera et al., 2019). For example, the WHR has been associated with a 

significant heritability of up to 60%, and a locus near IRS1 is  associated with lower 

subcutaneous fat compared to visceral fat and an adverse metabolic profile in males 

(Iacobini et al., 2019; Kilpeläinen et al., 2011).  Additionally, recent GWAS also identified 

polymorphisms in developmental genes which are strongly related to body fat 

distribution (including TBX15, RSP03, HOXC13) implying that fat distribution may be 

determined from a very early stage in life (Gesta et al., 2006; Rask-Andersen et al., 2019). 

Principally, the MHO phenotype is associated with genetic variants relating to lower risk 

of development of metabolic abnormalities such as dyslipidaemia and hypertension 

despite having a higher BMI.  This reinforces the notion of a distinct genetic component 

driving different adipose distribution patterns (Scott et al., 2014; Yaghootkar et al., 

2016) (151,152). A recent meta-analysis of GWAS found that heritability of fat 

distribution was generally stronger in females than in males, and that approximately 

one-third of all signals were sexually dimorphic (Pulit et al., 2019). Functionally, 

adiposity-related signals identified by GWAS are enriched for genes involved in 

adipocyte differentiation, adipogenesis, and transcriptional regulation of insulin 

signalling and lipolysis (Iacobini et al., 2019). Furthermore, distinct adipocyte gene 

expression patterns were observed which distinguish the MHO from MUHO phenotype. 

Importantly, differentially-expressed transcripts are linked to CVD, inflammatory 
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pathways and branched chain amino acid catabolism (Das et al., 2015; Yaghootkar et al., 

2016). 

Genetic factors also impact on the various ways by which adipose fat depots store 

energy. The adipose tissue expandability hypothesis outlined earlier relates to the 

transition of normal adipose tissue to one which leads to metabolic derangement 

characterised by adipocyte hypertrophy. Strong support for this hypothesis comes from 

pharmacological studies of peroxisome proliferator-activated receptor- γ (PPARγ) 

activation in both murine and human studies (Mathew et al., 2016; Stefan et al., 2013).  

Knock-out studies with PPARγ lipodystrophy murine models identified altered adipokine 

secretion patterns following saturation of adipose tissue. Treatment with 

thiazolidinediones (PPARγ agonists) results in an increase in adiponectin concentrations, 

expansion of subcutaneous adipose tissue, a decrease in liver fat content, and an 

increase in insulin sensitivity. Thus, thiazolidinediones might be a promising treatment 

approach in insulin-resistant individuals with non-alcoholic fatty liver disease or an 

increased risk of CVD (Lincoff et al., 2007; Tan and Vidal-Puig, 2008). Moreover, the 

genetics of obesity extends beyond adipocyte biology to loci involved in satiety and 

appetite regulation. Recently, 27 variants previously associated with obesity have also 

been implicated in the regulation of food intake, energy expenditure as well as food 

reward pathways (Phillips, 2017).    

Additional molecular mechanisms are implicated in MHO. The systemic 

proinflammatory state and oxidative stress accompanying obesity and the Met S have 

been associated with telomere attrition. Moreover, dynamic changes in adiposity lead 

to changes in telomere length (TL) such that weight loss leads to an increase in telomere 
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length whereas weight gain accelerates telomere attrition (García-Calzón et al., 2014). 

Limited data exists on telomere length in MHO vs MUHO, although MHO has been 

associated with higher TL (Lejawa et al., 2021). 

Mitochondrial bioenergetics and body composition are also interrelated. A reduction in 

mtDNA  copy number is  generally  associated  with  poor health 

through  detrimental  effects  on ATP  production, changes in mitochondrial  gene-

expression or via an altered  oxidative  stress response. A reduced skeletal muscle 

mtDNA content in T2DM patients has been described  (Antonetti et al., 1995a; Lee et 

al., 1998; Silva et al., 2000; Xu et al., 2012).  Additionally, a reduction in leukocyte mtDNA 

copy number is associated with obesity, IR and the Met S  (Meng et al., 2016; 

Skuratovskaia et al., 2018; Zheng et al., 2015a). Other studies further support  mtDNA 

as a potential biomarker of metabolic disease and obesity, with mtDNA copy number 

independently associated with visceral fat accumulation in healthy young adults  (Lee et 

al., 2014a; Skuratovskaia et al., 2019b). Bordoni et al. report the association between 

lower buccal mtDNA copy number and unfavourable body composition profile (Bordoni 

et al., 2019). Further investigations are warranted to evaluate further the role of mtDNA 

as a Met S risk biomarker in obesity.  

Much of the molecular evidence supporting MUHNW comes from studies which address 

a lipodystrophy-like phenotype in the general population. Seminal work by Yaghootkar 

et al. identified common alleles at loci (such as IRS1, GRB14 and PPARG, ARL15) which 

demonstrate a genetic basis for the metabolically abnormal normal weight individual. A 

‘polygenic lipodystrophy’ score composed of 11 common genetic variants shows 

associations with adverse metabolic traits, including an increased risk of hypertension, 
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T2DM, and CAD despite a lower BMI (Yaghootkar et al., 2016, 2014). Recently Lotta et 

al. also reported several loci which are associated with metabolic risk and coronary heart 

disease in individuals with lower percentage body fat, BMI, and lower gynoid and leg fat 

mass thus providing additional evidence of the genetic contribution towards a 

‘lipodystrophy-like’ phenotype in the general population (Lotta et al., 2017).   

Accumulating evidence also reinforces the shared contribution of early-life 

environmental and genetic factors.  An adverse intrauterine milieu of either under- and 

over-nutrition has been linked to the ‘thrifty phenotype’ that predisposes to adult 

obesity and Met-S.  In the early 90s, Hales and Barker postulated that poor foetal and 

early post-natal nutrition ‘imposes mechanisms of nutritional thrift on the growing 

individual’ leading to impaired development of the endocrine pancreas and increased 

susceptibility to T2DM.  Furthermore, Barker also suggested that infants whose ‘birth 

weights were at the lower end of the normal range, who were thin or short at birth, or 

who were small in relation to placental size have increased rates of coronary heart 

disease’ (Barker, 1990; Hales, 1997). These factors act through complex epigenetic 

modifications (Heijmans et al., 2008) .  More recent work suggests that there may be a 

U-shaped relationship between birth weight and risk of cardiometabolic abnormalities, 

such that extremes of birth weight are both associated with obesity and Met-S in 

adolescence and adulthood  (Agius et al., 2013; Tam et al., 2015).  However, conflicting 

findings have been reported. Some studies showed that higher birth weight and early 

postnatal weight gain was associated with higher insulin sensitivity and lower hepatic IR 

reminiscent of the MHO phenotype, although the mechanisms around this relationship 

are unascertained (Bouhours-Nouet et al., 2008). More studies are required in this area 
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to further identify modifiable risk factors for the MUHO phenotype.  Another hypothesis 

is the “thrifty genotype” hypothesis. Here, evolutionary selection of genes originally 

thought to be beneficial for energy storage during times of starvation could partly 

explain the current obesity and T2DM epidemics in the Westernised world, where 

caloric excess and sedentary behaviour predominate (Neel, 1962). 

 Lifestyle and behavioural determinants 

A growing body of research also indicates that certain environmental/lifestyle factors 

also contribute towards metabolic health and obesity.   Most commonly studies 

focussed on the role of diet, fitness, age, tobacco smoking and alcohol intake as being a 

few of the potential modifiable risk factors which may in part explain the heterogeneity 

of metabolic abnormalities among individuals  with obesity (Camhi et al., 2015b, 2013; 

Iacobini et al., 2019; Lopez-Garcia et al., 2013; Matheson et al., 2012; Phillips et al., 

2013). Changes in dietary intake and physical activity have both contributed towards the 

obesity epidemic and may partly explain the metabolic heterogeneity in lean and obese 

individuals. The overconsumption of  calorie dense food, in tandem with global increase 

in urbanisation and sedentary behaviours results in a state of positive energy imbalance 

leading to increased accumulation of adipose tissue and progression to overt obesity 

(Camhi et al., 2015b, 2013; Cuschieri and Mamo, 2016).  

Matheson et al., show that adoption of four healthy lifestyle habits (modest alcohol 

intake, non-smoking, 30 minutes of exercise daily and eating five portions of fruit 

/vegetables daily) results in identical mortality risk in obese and lean individuals 

(Matheson et al., 2012). However, the precise contribution of  each of these lifestyle 
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factors on MHO is still unclear.  Most studies did not report any differences in total 

energy intake, dietary macronutrient composition and quality between MHO and MUHO 

individuals . However, better compliance with the food pyramid recommendations 

increased the likelihood of the MHO phenotype (Phillips, 2017). Moreover, in a recent 

analysis of the data from the NHANES survey, Manu et al., noted that dietary energy 

intake and composition as well as alcohol consumption was similar between MHO and 

MHNW in males, however, MHO females consumed less fibre (Manu et al., 2012). 

Additionally, another study which investigated Mediterranean Diet Scores (MDS) found 

lower consumption of red meat and dairy products among MHO individuals  (Park et al., 

2016).  The beneficial effects of physical activity on incidence of T2DM, CVD, obesity, 

cancer and all-cause mortality as well as the adverse effects of a sedentary lifestyle on 

metabolic outcomes are well documented (Lee et al., 2012; Phillips, 2013a; Sattelmair 

et al., 2011). Physical activity and cardiorespiratory fitness characterises and maintains 

MH in obese individuals, as supported by evidence from meta-analysis (Ortega et al., 

2013; Prince et al., 2014). Furthermore, physical activity is associated with increased 

fatty acid oxidation and higher fat utilization, leading to lower fat accumulation in the 

liver and visceral compartments (Pujia et al., 2016). Smoking and alcohol consumption 

are widely studied modifiable lifestyle factors that impact on MH. Wildman et al. and 

others show that modest alcohol intake was associated with the MHO.  This association 

is however disputed as conflicting findings showing no differences in alcohol and 

smoking habits between MHO and MUHO individuals have been published (Martínez-

Larrad et al., 2014).  The effects of modest alcohol intake on both glucose and HDL-C 

levels are also well documented, however the adverse effects of excessive alcohol 
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consumption include raised TG levels and increased abdominal obesity. The link 

between alcohol consumption and MH may thus be bimodal (Kroenke et al., 2003). 

Certain sleep habits such as sleep quality and quantity have also been implicated in the 

onset of obesity, IR and the Met-S with most studies reporting short sleep duration to 

be associated with a number of metabolic abnormalities (Choi et al., 2008; Gangwisch 

et al., 2005; Koren and Taveras, 2018; Spaeth et al., 2013). Interestingly, even a single 

night of sleep deprivation was observed to decrease insulin sensitivity by 19-25% in 

hepatic and peripheral tissues as well as increase NEFA levels in healthy normal weight 

adults  (Donga et al., 2010). The pathophysiological mechanisms linking sleep 

deprivation with obesity and metabolic dysfunction include changes in appetite 

regulatory hormones; lower levels of leptin [an anorexigenic hormone] and higher levels 

of ghrelin [an orexigenic hormone], loss of diurnal variation in cortisol secretion as well 

as increased catecholamine production (Spiegel et al., 1999; Taheri et al., 

2004).   Furthermore, sleep restriction also results in loss of the beneficial effects of 

growth hormone on muscle mass and fat distribution (Stich et al., 2022). Sleep debt is 

also associated with an increased predilection towards the consumption of high-fat or 

carbohydrate rich foods as well as reduced physical activity (Spiegel et al., 2005; St-Onge 

et al., 2014).   With respect to the relationship between sleep habits and the different 

body composition phenotypes, one study which analysed data from the Korean National 

Health and Nutrition Examination Survey V (KNHANES V) observed that individuals living 

with obesity  had significantly shorter sleep durations compared to normal weight 

individuals (irrespective of metabolic health), yet the MUHO phenotype had the shortest 

sleep duration compared to the others (Ryu et al., 2015). On the other hand,  data 
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derived from the U.S.  NHANES cohort, did not reveal any relationship between overall 

sleep quality and quantity in the MHO phenotype, however the authors did report 

that  certain sleep characteristics such as trouble falling asleep, waking up during the 

night, feeling unrested during the day and feeling overly sleepy during the day to be 

associated with lower odds of having the MHO phenotype (Kanagasabai et al., 2017).   

While it is acknowledged that limited data regarding the characteristics and 

determinants of MHO are currently available, the behavioural and lifestyle 

characteristics of the MUHNW phenotype have been even less well studied.  Eckel et al. 

observed that  the traditional risk factors for T2DM commonly observed in individuals  

with obesity (including male sex, smoking, increasing age, physical inactivity, an 

unfavourable fat distribution and an adverse cardiometabolic profile)  are also 

contributors to T2DM in lean individuals  (Eckel et al., 2015). Furthermore, while most 

studies also did not observe a significant difference  with respect to total energy and 

macronutrient intake between healthy and unhealthy normal weight participants , 

others observed  that MUHNW females were more likely to have a higher intake of 

saturated fats and a lower polyunsaturated /saturated fatty acids ratio accompanied by 

lower dietary fibre intake than healthy normal weight females (Dvorak et al., 1999; Hyun 

et al., 2008; Klitgaard et al., 2020).  With respect to physical activity, studies show that 

MUHNW individuals  have significantly lower cardiorespiratory fitness (as assessed by 

VO2max) compared to their healthy peers and, moreover, individuals within the lowest 

tertile of handgrip strength were reported to have a worse cardiometabolic risk profile 

than those in the upper tertile, suggesting that inadequate engagement in physical 

activity to be an important component of the  MUHNW phenotype (Dvorak et al., 1999; 
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Kim et al., 2013a; Takeno et al., 2016). Most studies  conducted in different ethnic 

populations also  found smoking status, alcohol consumption and lower education levels 

to be potential contributors to the unhealthy phenotype (Hajian-Tilaki and Heidari, 

2018; Lee, 2009). These findings were also supported in the meta-analysis by Wang et 

al. (Wang et al., 2015).  

Role of gut & skin microbiota 

Over the past two decades findings from observational epidemiological studies as well 

as cellular and high throughput human omics-based studies (including metagenomics 

and metabolomics data) show that  gastrointestinal tract (GIT) by way of its bacterial 

flora may contribute to the metabolic health of humans especially with regards to 

energy homeostasis, body adiposity, inflammation, glucose regulation, insulin 

sensitivity and hormone secretion.  Specifically, analyses from cause-and-effect 

studies demonstrate that gut microbiota and their associated microbial compounds 

to be causative to the pathogenesis of common metabolic diseases and that 

interventions aimed at targeting the gut microbiome lead to improvements in 

metabolic health (Dabke et al., 2019; Fan et al., 2021).  

The GIT is home to a diverse number of microorganisms which form the gut microbiome, 

some of which include the Gram negative Bacteroidetes and Probacteria and the Gram 

positive Acenetobactieria and Firmicutes (Nam et al., 2011).  Typically, these microbes 

act in a symbiotic fashion with the human host by maintaining a healthy gut immune 

system, aiding breakdown of complex non-absorbable plant-derived polysaccharides 

and also for maintaining energy homeostasis.  It has been shown that alteration in the 
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gut microbiome (as occurs by way of diet such as a high-fat intake, genetics or 

environmental factors such as exposure to antibiotics in early life) is associated with 

increased risk of obese states. In fact, human and animal studies confirm a 50% 

reduction of Bacteroidetes species and consequently a higher proportion of Firmicutes 

in obese vs lean states. Conversely, weight loss with a low-calorie diet leads to an 

abundance of Bacteriodetes (Bäckhed et al., 2004; Ley et al., 2006). Furthermore, the 

obese microbiome is transmissible such that when caecal  bacteria is harvested  from 

genetically obese mice to germ-free  (GF) lean mice, they  exhibited a greater increase 

in adiposity than when colonised with a ‘lean’ microbiome (Turnbaugh et al., 2006).  The 

proposed mechanisms linking gut microbiota to obesity is through a  process 

of  metabolic endotoxinemia.  Studies show the obese microbiome is associated with an 

increased absorption of calories from the gut even in the absence  of excess food intake 

(Ley et al., 2005). It has been postulated that high-fat diets lead to the observed 

microbial imbalances which  consequently cause an  increase in  the  intestinal 

permeability and translocation of certain bacterial products (endotoxin 

lipopolysaccharide [LPS]) to the circulation. This incites hypertrophy of the mesenteric 

adipocytes causing increased gene expression of proinflammatory  and oxidative 

cascades and the  generation of pro-inflammatory cytokines which indirectly are 

thought to contribute to the downstream development of metabolic abnormalities 

(Brandão et al., 2020; Erridge et al., 2007). This relationship has been replicated in both 

human and animal studies with positive correlations between intestinal permeability 

markers and certain anthropometric indices as well as degree of liver and visceral fat 

and levels of insulin and HOMA indices (Cani et al., 2007; Lam et al., 2012).  Interestingly 
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the presence of  Akkermansia Muciniphilia has been reported as being a beneficial 

bacterium. It reduces gut barrier disruption and thus has an inverse relationship with 

obesity and cardiometabolic diseases and growing evidence shows that it might protect 

against low-grade inflammation (Derrien et al., 2011). 

Recently, differences in the microbial diversity and gut microbiota composition were 

also reported between MHO and MUHO phenotypes (Kim et al., 2020). Furthermore, 

metagenomics analysis in a large European population with severe obesity found altered 

bacterial biotin status to be associated with an inflammatory phenotype and an altered 

metabolic profile (Fan et al., 2021).  Depletion of gut microbiota by antibiotics in mice 

confirms the microbial contribution to host biotin levels.  Additionally, oral biotin 

improved glycaemia in high-fat diet-fed mice (Belda et al., 2022).  Dietary fibre-induced 

changes in the gut microbiota can also significantly increase short-chain fatty acids 

production and decrease metabolically detrimental compounds including indole and 

hydrogen sulphide thereby  improving the metabolic profile (Zhao et al., 2018; Ojo et 

al., 2020).  However, it is acknowledged that more work in this field is required both in 

terms of basic as well as  translational research with the ultimate aim being that of 

preventing and /or treating common human metabolic disorders.   

Emerging endocrine disruptors and additional factors 

Recent studies have also shown that  individuals  with obesity, particularly those with 

increased visceral adiposity, tend to have  lower serum IGF-1 levels and a blunted 

growth hormone response on dynamic testing.  Furthermore, a diminished IGF-1 level 

in the serum was observed to be associated with a worse metabolic profile (Miller et al., 



79 
 

2005).  IGF-1 is a peptide hormone produced primarily by the liver and has a molecular 

structure similar  to that of  insulin. It primarily mediates the effects of growth hormone 

(GH) through its mitogenic and anabolic actions and is currently being investigated for 

its potential role as a predictor of metabolic health.  Interestingly, a recent study found 

that MHO individuals  have significantly higher values for IGF-1 compared to MUHO 

subject.  Furthermore, incorporating a surrogate marker of IGF-1, the IGF-1 z Standard 

of Deviation Score (zSDS), as a variable into a machine learning model increased 

accuracy  for predicting the MHO and MUHO phenotypes, suggesting that it could be a 

novel biomarker for identifying those clinical phenotypes at highest risk of adverse 

cardiometabolic outcomes (Masi et al., 2022). Of late, several pre-clinical studies have 

also implicated the heavy metal Nickel (Ni) in its role as an endocrine disruptor, to be 

associated with dysregulation of both energy and glucose metabolism as well 

as  disruption of the GH-IGF-1 axis in human individuals . In agreement with this, a recent 

study found the presence of Nickel allergy to be a more frequent occurrence among 

Italian individuals  living with obesity.  Furthermore, individuals  with morbid obesity and 

nickel allergy exhibited a worse overall metabolic and body composition  profile  and an 

impaired growth hormone response on dynamic testing (Watanabe et al., 2018). Such 

findings prompted the authors to speculate the possible role of  Ni exposure in the 

pathogenesis of obesity and hormonal dysregulation.  Future research in this field is 

anticipated with the aim being that of elucidating the precise mechanisms underlying 

such a relationship in order  to better clarify the role of Ni in metabolic health (Figure 

1.3). 
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Figure 1.3: Characteristics and determinants of MHO and MUHNW phenotypes  

MHO: metabolically healthy obesity, MUHNW: metabolically unhealthy normal weight. CRF: cardiorespiratory fitness, CM: cardiometabolic, GWAS: genome wide association 
studies, SAT: subcutaneous adipose tissue, VAT: visceral adipose tissue, IGF-1: insulin like growth factor-1, 
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1.5.3  Natural course and long-term outcomes of MHO and MUHNW 

Another area which has been intensively investigated and widely critiqued in the 

literature relates to the long-term trajectories of MHO and MUHNW, particularly their 

natural course and clinical implications on cardiometabolic diseases and mortality. A 

number of  prospective studies have shown that the MHO phenotype is not a permanent 

state and, given enough  time, tends to degenerate to an unhealthy metabolic status 

(Soriguer et al., 2013). In fact, up to 50% of  individuals with MHO were observed to 

convert to the MUHO phenotype within 10 years of follow up whereas only 6% of 

females remained metabolically healthy after 30 years of follow-up. Whilst such studies 

were conducted mostly on Caucasians, similar relationships were found in other ethnic 

communities including Asian cohorts (Eckel et al., 2018; Hamer et al., 2015; Hwang et 

al., 2015; Kouvari et al., 2019) (Figure 1.4).   

 

Figure 1.4: Transition to a metabolically unhealthy state in MHO and MUHNW 
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Interestingly, preservation of MH is also transient among normal weight individuals. 

While some studies report that a good proportion (up to ~80%) of MHNW individuals 

remain metabolically healthy after 8 years, the Nurses’ Health Study  observed that only 

approximately 30% of MHNW individuals remained metabolically healthy after 20 years 

of follow up and even less (around 15%) remained healthy after 30 years of follow up 

(Eckel et al., 2018) (Figure 1.4).   

Whilst most studies focused on a single transition, namely that of metabolic 

deterioration, it is possible for some individuals to experience other transitions in both 

metabolic and weight statuses throughout their life course as well as maintenance of 

one’s initial status. Recently, Zhang et al., used a multistate Markov model to explore all 

possible transitions among six different metabolism-weight phenotypes.  They found 

that over a follow-up period of nearly 1 year, less than half of participants  maintained 

their MHO status while MUHO and MHNW were relatively stable states. Interestingly, 

the MHO phenotype had the shortest mean sojourn time (1.16 years) and a 50% chance 

of deteriorating to a metabolically unhealthy state after 6 years pointing towards MHO 

being an unstable and dynamic trait across the life span (Zhang et al., 2022).The major 

determinants of metabolic deterioration across studies are increasing anthropometric 

measures (such as BMI, WHR,  and WC), baseline lipid concentrations (TG and HDL-C), 

and IR as defined by HOMA-IR, however others also found the presence of non-alcoholic 

fatty liver disease (NAFLD), visceral adiposity and the presence of a proinflammatory 

profile to be significant factors in the conversion of MHO to MUHO (Eshtiaghi et al., 

2015; Hwang et al., 2015; Kouvari et al., 2022; Schröder et al., 2014). Furthermore, the 

Multi-Ethnic Study of Atherosclerosis (MESA) showed that both obesity duration 
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(assessed as the cumulative number of visits with obesity) and severity (using BMI cut-

points) were strongly and consistently associated with progression of MHO to incident 

Met S (Mongraw-Chaffin et al., 2016). Interestingly, the Bogalusa Heart Study (which 

followed-up children aged between 5-7 years for approximately 24 years) showed that 

while only 13% of  MHO children maintained a healthy obese phenotype in adulthood, 

they were  2.7-9.3 times more likely to be metabolically healthy obese adults than 

children in any other BMI/metabolic categories, suggesting that the MHO phenotype 

begins in childhood and persists into adulthood (Li et al., 2012). 

 On the other hand,  younger age, the female sex, lower baseline BMI and body weight 

and incorporation of a healthy lifestyle (a composite of diet, leisure time physical activity 

and smoking) were associated with sustained  MH in individuals  living with obesity 

(Moussa et al., 2019). Lately, Elias-Lopez et al., reported several novel factors which 

could be responsible for the risk of progressing to a unhealthy metabolic phenotype 

particularly in individuals with a BMI ≥25kg/m2. These mainly consisted of  

sociodemographic and lifestyle  variables including history of childhood obesity, number 

of pregnancies, socioeconomic status, a high carbohydrate diet, physical inactivity, low 

intake of vegetables and consumption of sweetened beverages. Contrariwise, higher 

HOMA-S (sensitivity) and HDL-C levels and weight loss ≥5% were associated with 

increased probability of reverting back to a healthy metabolic state (Elías-López et al., 

2021).  Moreover, evidence also shows that fluctuations in body weight including both 

weight gain and weight loss are risk factors for mortality, cardiovascular events and 

T2DM which may be partly explained by the adiposopathy that follows from weight 

cycling (Lei et al., 2022). 
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Thus, since the MHO phenotype tends to convert to the unhealthy metabolic state over 

time, one would expect it to result in  increased cardiometabolic disease risk. In fact, 

meta-analyses of longitudinal studies across different ethnicities have shown that the 

MHO phenotype has an intermediate cardiometabolic disease risk between that of 

MHNW and MUHO (Bell et al., 2014; Eckel et al., 2016; Jung et al., 2015; Kramer et al., 

2013) (Figure 1.5). However, there are other studies which report no excess risk when 

compared to MHNW, while others suggest that the accumulation of cardiometabolic risk 

factors rather than BMI, confers the greatest risk (Appleton et al., 2013; Dhana et al., 

2016; Guo and Garvey, 2016; Hamer and Stamatakis, 2012; Kip et al., 2004; Song et al., 

2007; Wildman et al., 2011b). For example Al-khalidi et al., reported that MHO was not 

associated with an increased risk of all-cause or cardiometabolic mortality when a 

harmonised definition of MH was used (Al-khalidi et al., 2018).  More recently Zembic 

et al., also report no increased risk in total and CV disease mortality risk among 

individuals with MHO within two large data sets (NHANES III and UK  Biobank) (Zembic 

et al., 2021).  

Several  factors have been implicated which might explain these observed differences.   

For example,  the Zembic et al. definition used the WHR rather than the WC which 

incorporates the hip circumference i.e. lower-body fat and therefore has a stronger 

predictive power in terms of mortality risk; furthermore, other studies allowed up to 2 

metabolic risk factors to be present while the Zembic et al. definition entailed that MHO 

individuals fulfil all 3 criteria in order to be considered healthy. Allowing the presence of 

1 or 2 metabolic risk factors in the definition of metabolic health arbitrarily implies that 

the risk factors are metabolically equivalent with respect to cardioembolic disease risk; 
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however one study which investigated 1.8 million participants from 97 prospective 

cohort studies found that for each 5kg/m2 increase in BMI, the excess risk for coronary 

heart disease and stroke was mostly mediated by blood pressure (accounting for 31% 

and 65% respectively) whilst serum cholesterol and glucose only accounted  for 10%, 

and 15%, of excess risk respectively (Global Burden of Metabolic Risk Factors for Chronic 

Diseases Collaboration [BMI Mediated Effects], 2013).  On the other hand, in The Health 

Improvement Network (THIN) study which consisted of 3.5 million participants, the 

authors observed that irrespective of BMI status, increasing number of metabolic 

abnormalities (from 0 to 3) led to a dose dependent increase in risk for CVD. Notably 

even when MHO was defined as having no metabolic abnormalities, the risk for several 

cardiovascular events (including stroke, heart failure and coronary heart disease) was 

still elevated compared to healthy normal weight individuals  (Caleyachetty et al., 2017). 

Furthermore, while  MHO individuals  are observed  to have a favourable metabolic 

profile, some studies noted subtle differences in cardiometabolic risk factors 

parameters (including larger WC, higher blood pressure, TG and insulin levels and lower 

HDL-C ) relative to MHNW (Bell and Hamer, 2016; Marini et al., 2007; Mongraw-Chaffin 

et al., 2016).  These differences also extend to subclinical CVD risk. A handful of cross-

sectional studies show that MHO (even when defined as having no metabolic 

abnormalities including preserved insulin sensitivity) was  associated with increased 

severity of carotid atherosclerosis and angiographic coronary artery disease (as assessed 

by increased carotid intima media thickness [cIMT]) and coronary artery calcification), 

compared to MHNW individuals , both of which are surrogate markers of increased 

subclinical CVD burden, (Chang et al., 2014; Kwon et al., 2013; Sinn et al., 2020). 

https://pubmed.ncbi.nlm.nih.gov/?term=Global+Burden+of+Metabolic+Risk+Factors+for+Chronic+Diseases+Collaboration+%28BMI+Mediated+Effects%29%5BCorporate+Author%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Global+Burden+of+Metabolic+Risk+Factors+for+Chronic+Diseases+Collaboration+%28BMI+Mediated+Effects%29%5BCorporate+Author%5D
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However, in the study by Lin et al., increased risk of subclinical atherosclerosis only 

occurred in MHO individuals who transitioned to the unhealthy obese phenotype during 

a follow-up period of 4.4 years suggesting that preservation of metabolic health may be 

a therapeutic target for the prevention of CVD even in the absence of overt weight loss 

(Lin et al., 2020). Moreover, several studies found that number of metabolic 

abnormalities permissible at baseline and hence the criteria used to categorise the 

healthy obese individuals to also influence the relationship with cardiovascular 

outcomes (Caleyachetty et al., 2017; Guo and Garvey, 2016; Mongraw-Chaffin et al., 

2016).   
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Figure 1.5: Long term outcomes of A) MHO and B) MUHNW phenotypes 
A) The MHO phenotype has an intermediate cardiometabolic risk between that of healthy normal weight and metabolically unhealthy obese 

phenotypes 
B) The MUHNW phenotype has a risk profile which is intermediate to that of metabolically healthy obesity and metabolically unhealthy 

obesity  

 

 

A B 

ARR: adjusted relative risk, MA: metanalyses, CM: cardiometabolic, MHO: metabolically healthy obese, MUHNW: metabolically unhealthy normal weight, T2DM: type 2 
diabetes, CVD: cardiovascular disease, HF: heart failure 
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Duration of follow-up has also been implicated as an important determinant in the 

relationship of MHO with long term cardiometabolic outcomes. Studies which followed-

up MHO for more than 10 years found a higher risk compared to MHNW individuals , 

whilst those with a shorter duration (<10 years) found a similar risk, implying that a 

certain time lag may be necessary before the full effect of metabolic status is manifest 

(Appleton et al., 2013; Eckel et al., 2018; Hinnouho et al., 2015; Kip et al., 2004). These 

observations were emphasized in the meta-analysis by Fan et al., whereby the risk for 

cardiovascular events was reported to be approximately 1.2 and 1.5 times higher in 

participants living  with healthy overweight or obesity respectively, compared to healthy 

normal weight individuals. Moreover this risk was higher in those studies which had a 

follow-up period of >15 years (pooled relative risk of 1.47 and 2.00 respectively) (Fan et 

al., 2013). Subsequent meta-analyses also came to a similar conclusion however, the 

one by Zheng et al., also observed that when the MHO phenotype was described as 

having zero cardiometabolic risk factors, it did not present excess CV risk. Additionally,  

MHO individuals were also not associated with increased risk of all-cause mortality (HR 

1.07, 95% CI 0.92 to 1.25). The authors postulated that MHO individuals are associated 

with higher levels of cardiorespiratory fitness and the potential ‘protective’ effect of 

overweight and class I obesity (BMI 30-35 kg/m2) on all-cause mortality which could in 

part explain these findings (Eckel et al., 2016; Kramer et al., 2013; Zheng et al., 2016). 

Interestingly, maintenance of metabolic health  or transition to an unhealthy phenotype 

was also associated with different effects on long-term risk (Appleton et al., 2013; Eckel 

et al., 2018; Lee et al., 2022; Mongraw-Chaffin et al., 2018). The Nurses’ Health Study 

showed that females with obesity who progressed  from a healthy to unhealthy 
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metabolic state over 20 years where at higher CVD risk than those who maintained the 

MHO phenotype, yet those who maintained their MHO status over the same time period 

were still at higher risk for CVD when compared to stable healthy normal weight females 

(Eckel et al., 2018).  Conversely data from the ATTICA study observed that while 

approximately half of  their MHO participants maintained a healthy metabolic status 

(defined as absence of all NCEP ATPIII criteria), excess CVD risk was only observed in the 

subset of participants who converted to an unhealthy metabolic status (Kouvari et al., 

2022). Furthermore, several studies agree that the MHO phenotype is not protective 

from heart failure risk.  In the HUNT study (Nord-Trondelag Health Study) the authors 

observed that while individuals with severe or long-lasting MHO were not at increased 

risk for acute myocardial infarction compared to healthy normal weight individuals, 

those with unhealthy or healthy subtypes of obesity had similar increased risk for 

incident heart failure (Mørkedal et al., 2014).  Other reasons for the observed 

incongruencies in results could also in part be explained by the different populations 

being studied including differences in ethnicity, background prevalence of obesity and 

other sociodemographic factors known to impact on cardiometabolic disease risk (such 

as education level, dietary quality and economic status). 

There is some evidence that protection from the onset of CVD in MHO individuals might 

be due to the presence of preserved cardiorespiratory fitness (CRF).  Accordingly, Ortega 

et al. observed that individuals who were metabolically healthy but had a high body fat 

per cent had a better level of CRF (as assessed by a maximal treadmill exercise test) 

which led to a 30-50% lower risk for cardiovascular outcomes compared to metabolically 

unhealthy but obese individuals.  Furthermore no difference in risk was observed 
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between MHO individuals and metabolically healthy normal-fat participants (Ortega et 

al., 2013). Additionally, a recent meta-analysis by the same authors confirmed that MHO 

individuals engaged in more physical activity, had higher levels of CRF and spent less 

time in sedentary behaviour compared to unhealthy individuals  with obesity. Notably, 

risk for all-cause and cardiovascular mortality and morbidity became insignificant after 

adjusting for physical activity (Ortega et al., 2018). 

Studies which evaluated the risk of T2DM in MHO individuals found an approximate 4-

fold increase in risk compared to MHNW participants .  Furthermore, this risk was 

observed to be higher in Asian populations and was independent of the presence of 

metabolic abnormalities, such that a BMI ≥25 kg/m2 conferred a significantly higher risk 

for T2DM even when no  metabolic risk factors were present (Bell et al., 2014; Jung et 

al., 2015; Twig et al., 2014). Moreover, individuals  who progressed to MUHO were at 

higher risk for developing T2DM compared to those who  retained the MHO status, yet 

this risk was lower when compared to those with stable MUHO (Song et al., 2022). 

Contradicting this is a study by Wang et al. which reported that individuals with stable 

and persistent MHO were not at increased risk for incident T2DM compared to stable 

MHNW individuals  after 6 years of follow-up, albeit with very wide 95% confidence 

intervals in the odds ratio (0.20-1.40)  (Wang et al., 2018). Others also noted that the 

risk for T2DM in MHO varied according to the degree of  subclinical systemic 

inflammation (meta-inflammation), insulin  resistance and beta-cell function as well as 

the presence of liver and visceral abdominal fat, further demonstrating  that MHO itself 

is a very metabolically heterogeneous condition (Ampuero et al., 2020; Hjelmgren et al., 
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2020; Hwang et al., 2015; Jung et al., 2016; Rydén et al., 2019; Sung et al., 2012b; Wu et 

al., 2022). 

Few studies are available which assess long-term cardiometabolic trajectories in 

MUHNW. By definition, these individuals exhibit an unfavourable anthropometric, 

cardiometabolic and inflammatory parameters as well as adverse adiposity profiles 

(including BMI and parameters of body fat distribution) and are thus described as being 

‘fatter’ than metabolically healthy normal weight individuals (Dvorak et al., 1999; Eckel 

et al., 2015; Wildman et al., 2011a; Xia et al., 2017). As has been alluded to earlier, 

studies have shown that the presence of metabolic abnormalities lead to a dose-

dependent increase in cardiometabolic and mortality risk compared to MHNW 

(Caleyachetty et al., 2017; Guo and Garvey, 2016; Wang et al., 2018; Wang et al., 2021b). 

One meta-analysis showed that metabolically unhealthy individuals  carried a 

significantly higher risk of incident T2DM compared with metabolically healthy 

participants across all BMI categories particularly in East Asian ethnic groups (Lotta et 

al., 2015).  

Additionally it was observed that the MUHNW phenotype carries the same, if not 

greater, risk for adverse long-term outcomes as that of MUHO, yet others observed it to 

present a worse cardiometabolic prognosis when compared to MHO (Choi et al., 2013; 

Guo and Garvey, 2016; Kramer et al., 2013) (Figure 1.5). Furthermore, Wang et al. 

observed that within a cohort of rural Chinese adults, compared to stable MHNW 

individuals , stable MUHNW conferred a higher risk for diabetes after 6 years of follow-

up than did transition from MHO to MUHO (HR 5.78, 95% CI 3.15-10.62 vs 4.52, 95% CI 

2.42-8.47 both p<0.001, respectively) (Wang et al., 2021b).  
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With respect to incident CVD risk, Fauchier et al. showed that in normal weight 

participants , even the presence of just one metabolic abnormality elevated the risk for 

a number of CV events (including MACE-HR [a composite of myocardial infarction, heart 

failure, ischaemic stroke or cardiovascular death], cardiovascular death, myocardial 

infarction, ischemic stroke, new-onset heart failure and new onset atrial fibrillation) 

compared to normal weight individuals with no metabolic abnormalities. Furthermore, 

this risk was higher than that observed in  participants with obesity but with no 

metabolic abnormalities (Fauchier et al., 2021). Similar findings were also observed in a 

Chinese study whereby after adjusting for a number of potential confounding factors, 

non-obese individuals with more than 2 metabolic risk factors were at a higher risk for 

incident CVD compared to MHO when using metabolically healthy normal weight 

participants  as the referent group (HR= 2.31, 95% CI 1.70-3.14 vs 1.76, 95% CI 1.23-2.51 

respectively) (Wang et al., 2021a).   

The worse cardiovascular outcomes observed in both MUHNW and MUHO individuals is 

partly attributable to a higher burden of  liver fat and increased subclinical cardiac 

systolic and diastolic dysfunction.  This suggests that BMI may not be the sole driver for 

myocardial dysfunction but rather the overall metabolic profile (Dobson et al., 2016).  

Additionally,  the metabolically unhealthy normal weight phenotype was  associated 

with higher prevalence and severity of angiographic coronary artery disease even after 

controlling for potential confounding factors (Kwon et al., 2013).  Studies have also 

shown the MUHNW phenotype to be associated with increased risk of heart failure. In 

fact, Voulgari et al. observed that lean participants with Met S were at approximately  

2.5 fold increased risk  for incident heart failure while individuals with  overweight and 
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obesity and  without Met S had the lowest risk compared to normal weight individuals 

without Met S (HR: 2.33, CI: 1.25-4.36;  1.12, CI: 0.35 to 0.33 and 0.41, CI: 0.10-

1.31respectively) (Voulgari et al., 2011). All things considered, these associations 

reinforce that both MHO and MUHNW are not benign conditions, rather they are 

dynamic states that represent a spectrum of adverse cardiometabolic disease risk with 

the risk of MHO being intermediate to that of MHNW and MUHNW.  

1-5.4 Management of MHO and MUHNW  

At present most scientific organisations advocate a weight loss of around 5%–10% from 

baseline body weight (using a combination of lifestyle interventions, pharmacotherapy 

or bariatric procedures) for all individuals living with obesity since it is associated with 

improvements in several cardiometabolic risk factors (Garvey et al., 2016; Jensen et al., 

2014). With respect to lifestyle modifications, one meta‐analysis found that in 

individuals with MHO, caloric restriction led to reductions in BMI, systolic and diastolic 

blood pressure, and triglycerides, but not in glucose, insulin resistance, or CRP 

(Stelmach-Mardas et al., 2016).  Specifically, adherence to a Mediterranean‐Style diet 

(characterised by an abundant consumption of monounsaturated fat in the form of olive 

oil and nuts), has been consistently associated with a lower incidence of CVD, T2DM, all‐

cause mortality and cancer mortality, even in the absence of significant weight loss (Di 

Daniele et al., 2017). Moreover, in the study by Park et al., MHO individuals who 

complied with the Mediterranean diet had a lower all‐cause mortality risk over a median 

follow‐up of 18.5 years. Interestingly however, such findings were not observed among 

MUHO individuals, suggesting that this phenotype may require alternative therapeutic 

strategies to reduce mortality risk (Park et al., 2016).  Recently, a randomised controlled 
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study by Lean et al. showed that the use of a low-calorie diet (by way of a low energy 

formula replacement diet) within a primary care setting was associated with remission 

of T2DM in participants with overweight or obesity (Lean et al., 2018).  However, it is 

acknowledged that achieving and maintaining weight loss can be challenging for many 

patients and therefore another plausible treatment strategy would be one which shifts 

the attention towards the improvement or maintenance of cardiometabolic health 

rather than solely focussing on weight loss (Hall and Kahan 2018). Given the 

aforementioned findings, incorporating a Mediterranean style diet (which consists of 

qualitative rather than quantitative changes to the macronutrient component) can be a 

more acceptable treatment option for patients and may also encourage adherence to 

lifestyle changes (Gaesser et al., 2011).   

Over the past decade the US Food and Drug administration (FDA) has approved a 

handful of pharmaceutical agents as part of the treatment armamentarium for the 

chronic management of obesity in conjunction with lifestyle modification. Recently, 

semaglutide (a glucagon like peptide ‐1 receptor agonist [GLP‐1 RA]) was observed to 

induce a mean weight loss of approximately 15% as well as improvements in a number 

of cardiometabolic endpoints in the phase 3 Semaglutide Treatment Effect in People 

with Obesity (STEP) clinical programme (Wilding et al., 2021). Furthermore, studies have 

shown that this agent also exerts positive effects on the cardiovascular system through 

weight‐independent mechanisms, including improved vascular endothelial function, 

ischaemic conditioning and reduction in systemic inflammation (Dai et a., 2013; Zhao et 

al., 2006; Zhao et al., 2021).  Furthermore, it was also observed to have a positive impact 

on body composition through significant improvements in VAT, fat mass index (FMI), 
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epicardial fat and hepatic steatosis, thus making it  an appealing drug in the 

management of different obesity phenotypes (Volpe et al., 2022; Volpe et al., 2022a; 

Wilding et al., 2021a).  

 Up till now, bariatric surgery is still deemed to be the most effective strategy for weight 

loss and weight loss maintenance (Buchwald et al., 2004). It has also been associated 

with improvements in cardiometabolic risk factors, improvement or remission of T2 DM, 

reduction in CVD events, total mortality, and cancer incidence (Sjostrom, 2014; Sjostrom 

2008). Both sleeve gastrectomy and gastric bypass are associated with significant 

reductions in visceral fat depot sizes and in adipose tissue inflammation which may 

account for the favourable effects observed on  glucose metabolism in insulin sensitive 

tissues (Cancello et al., 2005). Genua et al., noted that the MHO phenotype was 

associated with a higher percentage of total weight loss when compared with MUHO 

and this was independent of the baseline BMI and type of surgery performed (Genua et 

al., 2021).  On the other hand, Goday et al. assessed the metabolic benefits of bariatric 

surgery in participants who were metabolically healthy but morbidly obese (Goday et 

al., 2014). They observed significant improvements in blood pressure, lipid profiles, 

plasma glucose and HOMA‐IR values 1 year after bariatric surgery, despite them having 

lost a comparable amount of weight to their unhealthy counterparts.  Overall, these 

studies show that there is a role for bariatric surgery even in people living with obesity 

but who are metabolically healthy since they still tend to gain from a metabolic 

standpoint.  
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The management of MUHNW may prove to be more challenging in clinical practice 

(Rubin, 2018). Such individuals have a higher amount of visceral and liver fat compared 

to healthy normal weight individuals and an abnormal cardiometabolic and 

inflammatory profile (rendering them at heightened cardiometabolic disease risk) 

despite exhibiting normal body weight and/or BMI and thus may present to clinical 

practice at more advance stages of disease. Management of this obesity phenotype 

would involve early identification and treatment of the different metabolic 

abnormalities by way of diet, exercise and pharmacotherapy for hypertension, 

dyslipidaemia and dysglycaemia in order to off-set both the onset of obesity and the 

progression to overt cardiometabolic diseases. Whilst some studies have shown that 

weight loss through caloric restriction to be associated with improvements in metabolic 

dysfunction and body composition in people with MUHNW, others have demonstrated 

that it is the quality rather than the quantity of calories consumed to be the key factor 

in reducing cardiovascular disease risk and mortality in this cohort of patients (Park et 

al., 2016a).   Analogous to individuals with acquired or inherited lipodystrophies, 

management of patients with MUHNW would involve some form of treatment which 

would promote adipocyte differentiation and insulin sensitivity to restore MH. Such 

individuals also have low percentage leg fat mass, implying impaired subcutaneous 

adipose tissue expansion.  Accordingly, Stefan et al. suggested the use of PPAR‐ƴ 

agonists such as pioglitazone since these drugs have insulin‐sensitising effects as well as 

improved adipocyte differentiation (Stefan et al., 2017; Stefan et al., 2020a).  

To date current obesity management guidelines do not distinguish between 

management of different subclasses of obesity, in particular there is no mention of the 
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assessment of body fat distribution or visceral adiposity in the work‐up towards risk 

stratification and targeted treatment strategies for individuals with excess adiposity.  

Furthermore, sole use of BMI as the definition of obesity would miss identification and 

management of those normal weight individuals with abnormal metabolic profiles who 

are also at increased risk of morbidity and mortality.  Therefore, this underscores the 

pressing need to characterize body composition (using either imaging-based modalities 

such as bioimpedance analyses or non-imaging based anthropometric markers of 

central adiposity such as the WC, WHR or WHR) in addition to measurement of BMI in 

order to allow for better risk stratification of individuals as well as the tailoring of 

personalised and cost-effect therapeutic options rather than the traditional ‘one size fits 

all’ approach.  
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1.6 Potential role of mitochondrial DNA in obesity and metabolic health 

1-6.1 Introduction: Overview of the role of mitochondria in health and disease 

Mitochondria are ubiquitous subcellular organelles with their own circular genome and 

are the primary metabolic platform within eukaryotic systems.  They  play a key role in 

cellular energy production and in maintaining metabolic homeostasis in a number of 

mammalian tissues such as skeletal and cardiac muscle, liver and adipose tissue by 

generating adenosine triphosphate (ATP) through the process of oxidative 

phosphorylation (Johannsen and Ravussin, 2009). In essence, mitochondria modulate 

energy metabolism by utilizing substrates generated from the catabolism of nutrients 

(including lipids, proteins and carbohydrates) in order to produce ATP (and other by-

products such as heat and water) via a process involving the transfer of electrons 

through complexes of the electron transport chain (ETC).  Beyond nutrient metabolism, 

they also play an important role in other cellular processes including signal transduction 

and insulin metabolic signalling, cell proliferation, differentiation and apoptosis and are 

also thought to be associated with several biosynthetic pathways (including the 

synthesis of macromolecules such as nucleotides, heme and steroid hormones) thus 

making them indispensable for maintaining the overall health of an organism (Guha and 

Avadhani, 2013; Vakifahmetoglu-Norberg et al., 2017; Wallace, 2018).  Furthermore, 

mitochondria within eukaryotic cells are able to undergo adaptive responses under 

conditions of environmental stress such as cell growth and death by regulating their 

number or morphology or by remodelling their organisation and distribution (Lee et al., 

2019; McBride et al., 2006; Wang and Youle, 2009). Whilst it is known that the dynamics 

of mammalian nuclear and mitochondrial genome differ from each other, there are still 
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gaps in the knowledge of mitochondrial genome regulation. The nuclear genome 

contains only two copies of DNA per cell, while the mitochondrial genetic system  (which 

is exclusively maternally inherited) is polyploid with up to several thousand copies of 

DNA strands per cell depending on the type of cell and its energy demands such that 

those having high ATP requirements (as occurs in cardiac and skeletal myocytes) would 

contain higher mtDNA copies than would low energy requirement cells such as the 

spleen and liver (Castellani et al., 2020; Chabi et al., 2003).  

Primary (inherent) disorders of the mitochondria involving qualitative changes to its 

genome such as mutations, insertions and deletions result in rare metabolic and 

neurodegenerative diseases some of which have diabetes as an accompanying feature, 

and which are associated with severe morbidity or early death. For example, a point 

mutation in the gene coding for tRNALeu(A to G) at position 3243 is commonly associated 

with maternally inherited diabetes and deafness.  Such individuals are more likely to 

have a mother affected with diabetes, generally present with diabetes at a younger age 

and typically require insulin treatment. However these  clearly cannot account for the 

majority of metabolic diseases and therefore can only explain a small proportion of 

people with T2DM (Ballinger et al., 1992; Johannsen and Ravussin, 2009; Reardon et al., 

1992; Suzuki et al., 1994). It has thus become increasingly apparent that qualitative and 

quantitative changes of a milder nature within the mitochondrial genome contribute 

towards the patho-aetiology of more common chronic diseases. Mitochondria are highly 

susceptible to oxidative stress leading to inefficient cellular energy production and  

increased formation of  reactive oxygen species (ROS), resulting in both qualitative and 

quantitative changes which ultimately lead to mitochondrial damage and dysfunction 
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(Larsson and Clayton, 1995; Rösen et al., 2001). Under normal circumstances the process 

of oxidative phosphorylation can generate between 0.2 to 2% of ROS, however 

conditions which may cause defects in the transfer of electrons through the ETC can lead 

to the accumulation of electrons within these complexes and enhanced ROS production 

which may exceed the antioxidant capacity of the mitochondria leading to cell damage 

or death (Harper et al., 2004; Wallace, 1999). In fact, there is considerable data which 

shows that conditions associated with increased oxidative stress (as occurs with a 

variety of chronic disorders such as cardiovascular and neurological diseases, cognitive 

decline, chronological age and cancer) to be associated with alterations of mitochondrial 

biogenesis and function  (Johannsen and Ravussin, 2009; Nicolson, 2014; Ren et al., 

2010; Runge et al., 2007; Short et al., 2005). Specifically, a growing body of evidence has 

implicated the important role of mitochondrial bioenergetics in metabolic disorders 

typically associated with insulin resistant states such as the Met S, obesity, T2DM and 

metabolic cardiomyopathy (a condition characterized predominantly by diastolic 

dysfunction) citing an array of abnormalities in mitochondrial metabolism ranging from 

reduced expression of genes associated with mitochondrial biogenesis, lower protein 

subunits of respiratory chain complexes, reduced oxidative enzyme activity,  as well as 

decreased mitochondrial size/number and density (Cheng and Ristow, 2013; Kim et al., 

2008; Ørtenblad et al., 2005; Petersen et al., 2005; Ren et al., 2010). This thus essentially 

underscores the pivotal role of mitochondria across different cellular pathways and 

throughout major organ systems such that any perturbation of their function will incite 

downstream deficits in vital functions such as  skeletal muscle contraction, hepatocyte 

metabolism, insulin production and metabolic signalling, neuronal health and cardiac 
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function (Pinti et al., 2019). This literature review will specifically focus on mitochondrial 

(dys)function and how it relates to IR, metabolic diseases, and obesity. 

Under normal physiological conditions, insulin acts to maintain glucose homeostasis 

during both the fed (pre-absorptive) and fasted (post-absorptive) states either through 

glucose uptake or via hepatic glucose production via glycogenolysis or from 

gluconeogenic precursors (such as glycerol and amino acids) respectively. Circumstances 

which are notably associated with increased lipid supply (for example increased lipid 

availability due to a high-energy diet or increased lipolysis) cause defects in  insulin 

metabolic signalling compromising both glucose-mediated insulin secretion from the 

pancreas and in insulin-stimulated glucose disposal within various insulin-responsive 

tissues (such as skeletal muscle, liver and adipose tissue) as well as abnormalities in 

hepatic glucose production  (Kim et al., 2008; Lowell et al., 2012; Ren et al., 2010; Saltiel 

and Kahn, 2001). Furthermore, findings from clinical and experimental human and 

rodent studies were able to demonstrate that elevated circulating level of FFAs as occurs 

when there is an imbalance between energy intake and expenditure such as during high-

fat feeding, leads to the intracellular accumulation of toxic metabolites including long 

chain acyl-CoA, diacylglycerol and acylcarnitine and overspill of fat in non-adipose 

tissues such as the  liver and muscle as ectopic fat (Boden et al., 1991; Han et al., 1997; 

Kelley et al., 2022; Szendroedi and Roden, 2008). These perturbations in lipid 

metabolism generate a cascade of maladaptive processes within the mitochondria 

leading to inefficient oxidative phosphorylation resulting in an imbalance between 

ATP/ADP generation and an increase in ROS production shifting the cellular environment 

towards a more oxidized state as well as causing defects at the protein and 
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transcriptional levels including those associated with mitochondrial biogenesis 

(Anderson et al., 2009; Boden, 2006; Kelley et al., 2002b). Collectively, these processes 

contribute towards global mitochondrial dysfunction by way of a reduced mitochondrial 

density, size/number and a decrease in mitochondrial metabolic efficiency. This, in turn, 

stimulates inflammatory pathways which interfere with downstream insulin metabolic 

signalling giving rise to IR and the onset of several metabolic diseases such as T2DM and 

fatty liver disease  (Kim et al., 2008; Runge et al., 2007). In fact, initial studies from the 

1990s had already demonstrated oxidant-mediated repression of mitochondrial 

transcription and a lower mitochondrial DNA content  in mice models with acquired 

diabetes (Kristal et al., 1997). Following these studies were a series of others carried out 

on isolated mitochondria from muscle biopsies of human individuals with a personal 

history of obesity and T2DM as well as in first-degree relatives of individuals with T2DM 

which also implicated abnormalities of mitochondrial metabolism in the pathogenesis 

of T2DM (Befroy et al., 2007; Morino et al., 2005; Petersen et al., 2005; Ritov et al., 

2005). Taken together, the theory that seemed to be evolving from these observations 

was that mitochondrial oxidative capacity is reduced in individuals  with T2DM and 

furthermore, the accumulation of intracellular toxic lipid metabolites subsequently 

leads to perturbations of insulin signalling in insulin-sensitive tissues. Interestingly 

however, some studies challenged this theory.  For example, Phelix and co-workers 

observed a reduction in insulin sensitivity in participants  with obesity and T2DM 

however sensitivity was not related to mitochondrial dysfunction in skeletal muscle or 

to the intramyocellular lipid content and furthermore intracellular lipid levels did not 

differ between individuals with diabetes, their first degree relatives or normoglycemic 
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healthy volunteers (Phielix et al., 2008). Additionally, another study reported a similar 

level of mitochondrial activity (as assessed by several methods including citrate synthase 

activity and maximal mitochondrial ATP production rate) within Indian participants  

irrespective of their diabetes status but this was higher when compared with non-

diabetic Northern European Americans suggesting a dissociation between 

mitochondrial dysfunction and IR.  Still, these observations highlight the importance of 

considering race/ethnicity when investigating mitochondrial dysfunction within the 

context of IR and also shed light on the fact that at least within certain ethnic groups,  IR 

may develop independently of mitochondrial function and that other pathways may be 

responsible for the development of IR (Nair et al., 2008). 

Alterations in the oxidative capacity of the mitochondria have also been linked with 

body weight regulation. As alluded to previously, energy homeostasis is highly preserved 

within the mitochondrial milieu by maintaining a balance between nutrient metabolism 

and ATP generation.   Under normal circumstances and depending on the energy 

requirements of the body, the process of oxidative phosphorylation allows for inefficient 

coupling of nutrient substrate oxidation with ATP formation.  This incomplete coupling 

gives rise to a ‘proton leak’ which causes energy in substrates to be lost as heat.  This 

process occurs through the action of three uncoupling proteins (UCP) and is collectively 

responsible for up to 20-25% of  the body’s basal metabolic rate as well as body weight 

regulation,  adaptive thermogenesis, and also safeguards against ROS generation and 

oxidative damage (Harper et al., 2004; Vidal-Puig et al., 2000). Thus, mitochondrial 

coupling efficiency determines the proportion of calories from substrate metabolism 

that are eventually used to generate energy as ATP or heat (and may in part explain the 
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variation in body weight observed in individuals with similar nutrient intake) such that 

individuals with high coupling efficiency will predominantly generate energy as ATP with 

little being lost as heat thereby causing excess energy to be stored as fat, while those 

with low coupling efficiency will have a greater proportion of energy being dissipated as 

heat and ATP required for normal cellular function must either come from additional 

substrate metabolism or from adipose stores leading to weight loss (Harper et al., 2004; 

Johannsen and Ravussin, 2009). 

Furthermore, in addition to aberrations of nutrient metabolic signalling and oxidative 

stress it is worth mentioning genetic and environmental factors (including diet, lack of 

exercise, aging and stress), inappropriate activation of the renin-angiotensin-

aldosterone system (RAAS), as well as infective processes and use of certain medications 

to be other putative factors which may predispose at least in part to mitochondrial 

dysfunction and to the onset of IR and its associated complications and which may thus 

contribute towards a common pathophysiologic aetiology  for many chronic diseases 

(Castellani et al., 2020; Kim et al., 2008; Ritz and Berrut, 2005). Additionally, 

pharmacological interventions targeted at improving IR and glucose metabolism such as 

the use of thiazolidinediones and metformin have been also associated with enhanced 

mitochondrial function and mitochondrial biogenesis corroborating further the notion 

that alterations in mitochondrial integrity plays a central role in insulin metabolic 

signalling as well as in the downstream onset of an array of metabolic and cardiovascular 

diseases (Airaksinen et al., 2005; Cleasby et al., 2004; Kim et al., 2008) (Appendix 3). 

Nevertheless, reliable measures of mitochondrial dysfunction in clinical practice remain 

a limiting factor. Recently, quantification of mtDNA copy number (mtDNA CN) which is 
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a surrogate index of cellular mitochondrial DNA content, has been increasingly 

employed in clinical and population studies as a biomarker of mitochondrial function 

and which may thus reflect  the degree of mtDNA damage (Afshan N Malik and Czajka, 

2013).  This stems from findings which demonstrated a direct correlation between levels 

of mtDNA CN and mitochondrial oxidative stress and energy reserve (Guha and 

Avadhani, 2013).   Thereafter, a series of studies followed which were designed to 

explore the relationship between quantitative mtDNA status and  the presence of 

common chronic diseases.  Some of the earliest research was conducted with the aim 

of finding a relationship between mtDNA CN, insulin sensitivity andT2DM; however this 

was accompanied with conflicting results (Lee et al., 1998; Singh et al., 2007).  Later 

came a number of  other studies which showed that reduced levels of mtDNA CN in 

several tissues (including skeletal myocytes, leukocytes, hepatocytes and adipocytes) to 

be associated with BMI, visceral adiposity and hyperlipidaemia, while others were able 

to demonstrate that changes in mtDNA CN precede the onset of a number of age-related 

conditions such as atherosclerotic CVD, chronic kidney disease, neurodegenerative 

disorders, cognitive decline, and cancer (Dai et al., 2012; Koller et al., 2020; Lee et al., 

2010;  Lee et al., 2014a; Mengel-From et al., 2014). This lends support to the notion that 

mtDNA regulation is causative to the development of a variety of chronic diseases 

(Castellani et al., 2020). However, while the precise mechanisms linking mitochondrial 

dysfunction to chronic diseases remain yet to be elucidated, the purported theories 

revolve around alterations in cell signalling pathways and changes in inflammatory 

dynamics and immune function (Castellani et al., 2020).  Abnormalities in mitochondrial 

oxidative function as occurs in the context of a reduction in mtDNA CN has been linked 
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to chronic inflammation by way of recruitment of pro-inflammatory M1 macrophages 

rather than anti-inflammatory M2 macrophages.  Complementing the macrophage 

hypothesis is the immune hypothesis since many of the diseases associated altered 

mtDNA CN (such as atherosclerotic CVD) are also associated with immune dysfunction 

on top of a chronic pro-inflammatory state.  Furthermore, dysfunctional mitochondria 

(as occurs in conditions associated with a reduction in mtDNA CN) are associated with a 

disruption of the mitochondrial membrane potential leading to changes in nuclear gene 

expression through retrograde signalling.  This allows the  nucleus to undergo adaptive 

responses by way of an altered nuclear gene expression profile leading to changes in cell 

physiology and morphology thereby increasing the risk for chronic diseases (Castellani 

et al., 2020; Guha and Avadhani, 2013).  

Overall, while considerable evidence is available indicating the central role of 

mitochondrial metabolism in the onset of a number of chronic diseases there are still 

inconsistencies in findings thus making it challenging to draw any definite conclusions at 

this point. Furthermore, most of the data comes from cross-sectional studies thus 

limiting the inference of direction of the relationship.  Thus, more prospective clinical 

trials are required in order to fully determine whether mitochondrial dysfunction is 

indeed the perpetrator rather than the consequence of metabolic disorders. 
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1-6.2 Mitochondrial DNA copy number (mtDNA CN) and its association with insulin 

resistance, metabolic disorders and obesity 

The recent observations that mitochondrial dysfunction may be at the centre for the 

development of several chronic metabolic disorders and that mtDNA CN is a surrogate 

of mitochondrial function prompted investigators to explore further the nature of the 

relationship of this parameter with IR, T2DM, and obesity as well as to try and shed light 

into the causal mechanisms linking the conditions together.  Some of the earliest studies 

revolved around quantification of mtDNA CN in both healthy and diabetic individuals 

and how this related with insulin metabolic signalling as well as metabolic variables 

associated with IR, fuel metabolism and T2DM (Antonetti et al., 1995b; Lee et al., 1998; 

Lim et al., 2001; Morino et al., 2006; Soo et al., 2001, 1999). One such study was that by 

Antonetti and colleagues which showed a 50% reduction in mtDNA CN within skeletal 

muscle of individuals with T2DM (Antonetti et al., 1995b). This was subsequently 

confirmed in a study by Lee and co-workers which observed a quantitative decrease of 

up to 35% in mtDNA content within the peripheral blood of individuals  with noninsulin 

dependent diabetes mellitus compared to normal individuals.  More importantly this 

reduction preceded the development of diabetes and significant inverse associations 

were observed between mtDNA content and parameters linked with IR including WHR, 

fasting glucose level and blood pressure (p<0.05). Interestingly, however, while the 

same authors found a correlation between parameters of fuel metabolism (positively 

with changes in fat oxidation rate and negatively with changes in carbohydrate oxidation 

rate) and mtDNA content under euglycemic clamp conditions, they did not find any  
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association between mtDNA content and indices of IR within healthy lean individuals 

(Soo et al., 1999). These findings however, were not supported in two subsequent 

studies by the same authors on healthy young volunteers which confirmed a negative 

correlation between several surrogate indices of IR and insulin secretion  such as WHR, 

HOMA-IR score, ratio of fasting glucose to insulin concentration and fasting insulin levels 

(Lim et al., 2001). This led the researchers to suggest that mtDNA content may be related 

with both clinical and metabolic parameters of IR.  Moreover, since lower mtDNA levels 

(and hence an increased oxidative state)  precede the onset of diabetes, then, 

quantitative reductions in mtDNA content is casual to rather than a consequence of, 

diabetes, and other mechanisms may be responsible for the increase in oxidative stress 

found in diabetes (Lee et al., 1998).   To assess this relationship further, the same authors 

went on to investigate whether the amount of mtDNA content in metabolically more 

important tissues other than  peripheral blood could have an impact on glucose and 

insulin metabolism. They and others were able to confirm that mtDNA depletion in 

human hepatic cells leads to an attenuation in glucose uptake and utilization via a 

reduction in the expression of all nuclear-encoded glucose transporters and in enzymes 

associated with glucose metabolism (including hexokinase, GAPDH and G6PDH) while 

mtDNA depletion in rodent pancreatic beta cells  is associated with insulin secretory 

defects leading to glucose intolerance and the development of diabetes (Park et al., 

2001; Soejima et al., 1996).  

Subsequently, several other researchers went on to explore the direct relationship 

between mtDNA CN and T2DM and how this varies within different peripheral tissues,  
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yielding conflicting associations. A number of studies corroborated the findings of a 

reduced mtDNA CN within skeletal muscle, peripheral blood and adipose tissue from 

participants  with T2DM (DeBarmore et al., 2020; Memon et al., 2021; Morino et al., 

2005; Song et al., 2001; Xu et al., 2012).  Furthermore  a lower mtDNA content was also 

observed in the offspring of individuals  with T2DM who exhibited normal or impaired 

glucose tolerance  and was the main predictor of insulin sensitivity in this cohort, 

suggesting a heritable trait controlling mtDNA content (Song et al., 2001).  Additionally 

the authors also found that a decrease in mtDNA CN in peripheral blood predates the 

onset of T2DM, thus lending further support for a potential transgenerational role of 

mitochondrial dysfunction in the pathogenesis of IR and T2DM (Song et al., 2001). 

By the turn of the century, many studies had consistently shown that measures of 

intramuscular triglyceride stores (also known as intramyocellular lipid) to be strongly 

associated with IR in skeletal muscle of healthy individuals   as well as in insulin-resistant 

offspring of parents with T2DM. Furthermore, studies on individuals with defects in 

adipocyte metabolism as occurs in individuals with lipodystrophy showed a preferential 

accumulation of fatty acids within the liver and these patients typically present with 

severe IR.  However, the mechanisms responsible were still poorly understood (Kelley 

et al., 2002a; Lowell et al., 2012; Petersen et al., 2002). Building up on these findings as 

well as trying to elucidate the underlying mechanisms responsible for the onset of IR in 

young lean individuals of relatives with T2DM was the elegant study by Petersen and 

colleagues.    Here, the    authors   measured   intramyocellular  lipid   and   intrahepatic  
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triglyceride content by using proton magnetic resonance spectroscopy and thereafter 

subjected the participants to either euglycemic clamp studies to assess tissue 

responsiveness to insulin as well as indirect calorimetric testing to assess basal and 

stimulated rates of whole body energy expenditure, fat and glucose oxidation or a 31P 

magnetic resonance spectroscopy study to assess rates of muscle mitochondrial 

phosphorylation (Petersen et al., 2004). A significantly lower rate of insulin-stimulated 

glucose uptake was observed in the insulin-resistant individuals vs insulin-sensitive 

controls, and this was accompanied by an approximately 30% reduction in mitochondrial 

oxidative function and an associated 2-fold increase in intramyocellular lipid (IMCL) 

content.  Taken together the authors speculated that dysregulation of fatty acid 

metabolism in these individuals may be the mediator linking mitochondrial dysfunction 

with severe muscle IR. Following this hypothesis were several other studies supporting 

the concept that abnormalities of mitochondrial metabolism cause an accumulation of 

fatty acids in important tissues such as muscle and liver and which in turn are 

responsible for the onset of IR and T2DM (Petersen et al., 2005). This theory lends 

further support in establishing the importance of normal mitochondrial function for the 

maintenance of blood glucose homeostasis.  

Central to their role in glucose sensing in the liver and skeletal muscle, the mitochondria 

also play a role in pancreatic beta cell function mainly by maintaining normal 

responsiveness of beta cells to glucose and ensuring the release of appropriate amounts 

of insulin. Mitochondrial oxidative function is central to glucose-stimulated insulin 

secretion. Under normal circumstances ATP generated from glucose oxidative 

metabolism leads to a chain of events within the pancreatic beta cells which are involved 
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in the secretion of insulin (namely closure of cellular ATP/ADP-regulated potassium 

channel, plasma membrane depolarisation and the opening of voltage-gated calcium 

channels leading to an influx of calcium and the secretion of insulin) (Maechler and 

Wollheim, 2001).  Thus, any abnormalities in mitochondrial function which impacts on 

the ATP/ADP ratio or in conditions associated with mitochondrial DNA depletion will 

lead to reduced beta cell mass resulting in impaired insulin secretion and development 

of frank diabetes (Soejima et al., 1996).  

On the other hand, some studies found no relationship between mtDNA content and 

prevalent or incident T2DM, while others observed positive associations between 

mtDNA content and glucose metabolism (Lindinger et al., 2010; Malik and Czajka, 2013; 

Reiling et al., 2010; Weng et al., 2009). For example the study by Weng and colleagues 

demonstrated an increase leucocyte mtDNA CN as well as markers of oxidative stress 

with a progressive deterioration in glucose metabolism (from normal glucose tolerance 

vs impaired fasting glucose vs fank diabetes) even after adjusting for typical confounding 

factors such as age, sex and BMI (Weng et al., 2009). Furthermore, a positive correlation 

was observed between mtDNA content and glucose dysregulation even after correcting 

for potential confounding variables with hyperglycaemia emerging as the only predictor 

of mtDNA copy number in cases of glucose dysregulation. Hsieh and colleagues 

however, reported tissue specific differences in mtDNA content in patients with T2DM 

with a higher leukocyte and lower muscle mtDNA content (Hsieh et al., 2011).  

One plausible explanation for the directionally inconsistent associations observed could 

be attributed to the different tissue-specific effects of oxidative stress on  rates of 
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mitochondrial turnover and copy number such that cells with a longer lifespan are 

associated with higher mtDNA levels (Liu et al., 2003).  

Interestingly another study reported a 35% reduction in in-vivo ADP-stimulated 

mitochondrial respiration in patients with T2DM after normalising for mitochondrial 

content, implying that mitochondrial dysfunction is mediated by inherent mitochondrial 

defects at the level of oxidative phosphorylation and electron transport chain rather 

than due to variations in mtDNA CN. Furthermore, a recent study comprising of 

approximately 11 thousand participants from the Atherosclerosis Risk in Communities 

(ARIC) study found that lower mtDNA CN measured from buffy coat to be associated 

with prevalent diabetes but not with incident diabetes. This sheds some light on the 

direction of causality by suggesting that mitochondrial dysfunction (at least in peripheral 

blood leukocytes) may not be the primary cause of T2DM, but rather, the presence of 

diabetes is likely to result in lower levels of mtDNA CN (DeBarmore et al., 2020).  

Several studies have also investigated the relationship between mtDNA CN and the Met 

S.  These  report an overall lower mtDNA CN in individuals with the Met S  and a higher 

number of Met S components correlates with a lower mtDNA CN within the general 

population (Huang et al., 2011; Kim et al., 2012). Furthermore, as already alluded to 

above, mitochondrial dysfunction including abnormalities in biogenesis and energetics 

also plays an important role in the pathophysiology of cardiometabolic diseases and 

obesity (Bournat and Brown, 2010; Nisoli et al., 2007). Metabolic perturbations within 

adipocytes as occurs with excessive caloric intake causes the mitochondria to respond 

by an alteration in number and morphology of the mitochondrion as well as by 



116 
 

modifying its metabolic and enzymatic capacity and/or its mitochondrial DNA content 

(Ritov et al., 2005).  

Over the last decade a handful of epidemiological studies investigated the relationship 

between mtDNA CN within various tissues and how it relates with anthropometric 

measures of adiposity assessment and weight change. However, in a similar fashion to 

that of T2DM, there are inconsistencies in the literature regarding the relationship 

between mtDNA CN and obesity.  Most researchers found a negative correlation 

between  mtDNA CN and BMI while others did not find any relationship and with others 

even finding a positive association between mtDNA copies and BMI in participants living 

with obesity and  T2DM depending on the tissue studied (Kaaman et al., 2007;  Lee et 

al., 2014a; Lindinger et al., 2010; Xu et al., 2012). One particular study by Skuratovskaia 

and colleagues found that mean mtDNA CN was significantly lower in peripheral blood 

mononuclear cells (irrespective of BMI status) compared to other tissues (including liver, 

greater omentum, mesenterium and SAT); furthermore BMI correlated positively with 

mtDNA abundance in SAT but negatively with peripheral blood leukocytes and 

hepatocytes (Skuratovskaia et al., 2018). The authors attributed the findings within SAT 

to be associated with increased mitochondrial biogenesis as a compensatory feedback 

mechanism to counterbalance oxidative defects resulting from dysfunctional 

mitochondria in the face of weight gain.  In a follow-up study on a cohort of participants 

living with obesity and  T2DM, the same group of authors were able to demonstrate a 

dynamic relationship between mtDNA levels and BMI.  Essentially, levels of mtDNA 

levels in peripheral blood increased to a statistically similar level to  that of healthy 

normal weight patients one year after bariatric surgery (Skuratovskaia et al., 2019a). The 
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study by Lindinger and co-workers revealed a positive association between mtDNA 

content and BMI such that a higher BMI was associated with a 56% increase in mtDNA 

count in omental tissue of individuals with  obesity (BMI>30 kg/m2) vs  those without 

obesity (BMI <30 kg/m2)  (Lindinger et al., 2010). Furthermore, there was no association 

of mtDNA count with age, sex, seasonal change or with markers of energy metabolism 

such as basal metabolic and fat oxidation rates. The reasons implicated for the observed 

variations in mtDNA content between different tissues could be due to the specialised 

function and cell turnover of the tissue under examination.  For example, skeletal muscle 

cells are associated with high mitochondrial activity and turn over in order to generate 

enough energy required for contraction whilst the adipocyte’s main function is that of 

energy storage and is thus associated with a lower overall cell turnover.  In another 

study, Meng and co-workers were able to demonstrate significant inverse relationships 

between a number of anthropometric variables and leucocyte mtDNA CN (including 

weight, WC, BMI and WHR) and a  bidirectional and inverse relationship between 

peripheral blood leukocyte mtDNA CN and weight gain (Meng et al., 2016).  

Interestingly however, while the relationship between mtDNA CN and various cardio-

metabolic risk factors and outcomes has been intensively investigated, few studies 

explored its relationship between healthy and unhealthy subtypes of obesity. Healthy 

obesity is typically described in individuals with a BMI >30 kg/m2 and the presence of 

few or no Met S parameters or with preserved insulin sensitivity, whilst people with 

unhealthy obesity  are those individuals who harbour the cardiometabolic risk factors 

associated with the Met S or who present with IR. Likewise a subset of normal weight 

individuals may also present with an unhealthy metabolic profile and are termed as 
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being metabolically unhealthy normal weight  (Karelis et al., 2004b; Stefan et al., 2017, 

2008b).  

A study by Kim and colleagues showed that participants with healthy 

overweight/obesity as expected, exhibited a better metabolic profile than normal 

weight individuals with the Met S, and that the latter where at higher odds of having 

increased oxidative stress (Kim et al., 2013b). This finding is in agreement with previous 

studies which show an association between oxidative stress and presence of the Met S 

(Ren et al., 2010; Runge et al., 2007). On the other hand, a recent study which involved 

the recruitment of two large cohorts of European females found no consistent evidence 

for associations between mtDNA CN and a wide range of cardiometabolic parameters 

even after controlling for a range of confounding variables (including laboratory 

covariates and sociodemographic confounders) as well as cellular heterogeneity.  

Furthermore on using a random-effects model and meta-analysing all participants from 

both cohorts a weak  association between higher  mtDNA CN and lower blood pressure 

was observed, which however disappeared after multiple testing correction (Guyatt et 

al., 2018). These findings overall are not in support of previously published literature 

which lead authors to speculate that mtDNA CN is not an important predictor of cardio-

metabolic risk at least in females of European descent. 

Thus, in view of the inconsistencies in the literature which currently surround the 

association between mtDNA CN, obesity and T2DM, no definitive conclusions can be 

inferred at this point in time.  Future larger and population-based prospective studies in 

individuals  of different ethnicities are required to fully clarify the role of mitochondrial 
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bioenergetics in the pathogenesis of obesity and metabolic disease in particular whether 

variation in mtDNA CN is a cause or consequence of disease development. 

 

1-6.3 Putative cellular and molecular mechanisms linking mitochondrial dysfunction 

to insulin resistance and obesity 

The last two decades has led to an increased understanding of the cellular mechanisms 

responsible for the relationship between adipose tissue, its microenvironment and the 

onset of IR and metabolic disease.  

It is now well established that mitochondria play a central role in the regulation of whole 

body energy homeostasis (Johannsen and Ravussin, 2009). Analogous to that of other 

organs, adipose tissue mitochondria provide cellular energy by generating ATP via the 

process of oxidative phosphorylation to support a variety of metabolic pathways such 

as triglyceride synthesis, gluconeogenesis and fatty acid re-esterification, thus the 

presence of an intact number/size as well as normally functional mitochondria is crucial 

(Kim et al., 2015; Lee et al., 2019).  Specifically, studies have also shown that adipose 

tissue mitochondria are intimately associated with several other adipocyte-specific 

functions including adipogenesis and adipocyte differentiation, apoptosis and 

autophagy, substrate catabolism, insulin sensitivity, and adaptive thermogenesis 

(Boudina and Graham, 2014; Lee et al., 2019).  Furthermore, they are the locus of 

convergence for multiple signalling pathways particularly those relating to insulin 

metabolic signalling and maintenance of glucose homeostasis and also enable crosstalk 

between various insulin-sensitive tissues and adipocytes (Boudina and Graham, 2014; 
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Keuper et al., 2014). However, mitochondria are highly vulnerable organelles and under 

various pathological conditions, changes in their oxidative capacity, biogenesis, density 

and dynamics within adipocytes is associated with the development of obesity, IR and 

other metabolic diseases (Chen et al., 2010; Rong et al., 2007; Vamecq et al., 2012; 

Wilson-Fritch et al., 2004).  

In obese states,  excessive lipogenesis occurs in the face of an increased  lipid supply 

coming from a high energy diet which consequently increases the total lipid pool (Choo 

et al., 2006; Sun et al., 2011). This generates oxidative stress which triggers adipocyte 

mitochondria  to undergo maladaptive processes inciting a cascade of events which lead 

to a reduction in mitochondrial oxidative capacity, reduced fatty acid beta-oxidation and 

lipid clearance and a decrease in overall energy expenditure (Lee et al., 2019; Sergi et 

al., 2019). Thus mitochondrial dysfunction consequently leads to the intracellular 

accumulation of toxic fatty acid metabolites such as diacylglycerol and ceramides and 

ectopic lipid overspill causing defects of insulin metabolic signalling and increased 

susceptibility to the development of  IR in non-adipose tissues such as skeletal and 

cardiac myocytes, liver and pancreatic beta cells (Bournat and Brown, 2010; Kim et al., 

2008; Saltiel and Kahn, 2001; Vamecq et al., 2012; Wang et al., 2010).  

Furthermore, other mitochondrial aberrations including ultrastructural abnormalities as 

well as reductions in mitochondrial mass/size caused by abnormalities relating to 

mitochondrial biogenesis within insulin-resistant tissues are  also associated with 

mitochondrial dysfunction by way of an impairment in  mitochondrial oxidative capacity 

(Boudina and Graham, 2014; Kim et al., 2008; Nisoli et al., 2007; Ritov et al., 2005).. 

These observations were deduced from in vivo studies on genetic mice models of obesity 
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where approximately half of  the gene transcripts encoding mitochondrial proteins were 

downregulated in adipocytes with the onset of obesity (Wilson-Fritch et al., 2004). 

Following this study were several others who also evaluated mitochondrial mass, 

structure, function, and biogenesis in adipose tissue of genetic mice models of obesity 

and diabetes as well as in  high-fat diet fed mice. Accordingly,these studies observed 

abnormalities in mitochondrial morphology, function, and abundance and by using 

microarray technology, a comprehensive transcriptional profiling showed a lower 

expression of genes regulating several mitochondrial metabolic functional pathways 

including ATP production and energy uncoupling, as well as downregulation of genes 

associated with mitochondrial structural proteins,  mitochondrial biogenesis and 

replication as well as lower mitochondrial DNA levels  in both mice models of 

diabetes/obesity compared to wild-type mice  (Choo et al., 2006; Rong et al., 2007). 

Mitochondrial biogenesis involves the integration of multiple transcriptional pathways 

which regulate both nuclear and mitochondrial gene expression. The molecular 

mechanisms underlying defects of mitochondrial biogenesis have been in part 

attributed to reduced gene expression of mitochondrial regulatory protein peroxisome 

proliferator-activated receptor (PPAR)-ƴ co-activator 1α (PGC 1α), dubbed the master 

regulator of mitochondrial metabolism and biogenesis (Bogacka et al., 2005; Lee et al., 

2019; Uldry et al., 2006). PGC-1α is a transcription coactivator and interacts with other 

transcription factors to regulate the expression of genes involved in mitochondrial 

biogenesis, metabolic substrate metabolism and adaptive thermogenesis.  For example, 

PGC-1α is associated with activation of downstream transcriptional regulatory circuits 

such as nuclear respiratory factor -1 and -2 (NRF-1 & NRF-2) which in turn regulate 
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several mitochondrial genes involved in oxidative phosphorylation as well as 

mitochondrial transcription factor A (TFAM) which plays a key role in mitochondrial 

replication and transcription (Wu et al., 1999). Additionally, it also regulates genes 

involved in the cellular uptake of fatty acids and subsequent fatty acid beta oxidation by 

acting as a coactivator of PPAR α and δ (Sergi et al., 2019). In fact, studies show that 

individuals with IR and obesity display fewer and smaller skeletal muscle mitochondria 

possibly due to decreased PGC-1α expression.  Indeed, DNA microarray studies show 

that expression of PGC-1α responsive genes  are downregulated in skeletal muscle of 

individuals with obesity and a family or personal history of T2DM compared to healthy 

controls (Kim et al., 2008; Mootha et al., 2003; Patti et al., 2003; Ren et al., 2010).  

Conversely, overexpression of PGC- 1α in human myocytes enhances insulin sensitivity, 

increases mitochondrial density, and protects against lipotoxicity.  These studies thus 

support the concept that PGC-1α may be at the interphase between the development 

of mitochondrial dysfunction, ectopic lipotoxic lipid accumulation and the onset of IR.  

However, one study did observe similar mRNA expressions of PGC-1α and other 

transcription factors including nuclear respiratory factor-1 (NRF-1) and mitochondrial 

transcription factor A (TFAM) despite significant reductions of mitochondrial function in 

insulin-resistant offspring of parents with T2DM compared with control groups.  This  

may suggest that reduced mitochondrial biogenesis cannot be fully explained by 

abnormalities of mitochondrial function underscoring the importance that both 

abnormalities of mitochondrial function and biogenesis are intricately linked with 

energy metabolism and insulin metabolic signalling (Morino et al., 2005). Nevertheless, 

animal and human therapeutic intervention trials found that use of PPAR-ƴ agonists 
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(glitazones) was associated with increased mitochondrial biogenesis and the resetting 

of mitochondrial mass, which led to improvements in many metabolic processes 

including regulation of lipid mobilisation, gluconeogenesis in the liver, glycerol 

production and  glucose uptake in pancreatic, hepatic, skeletal and adipose tissues thus 

establishing themselves as potent insulin-sensitizers (Bogacka et al., 2005; Kim et al., 

2008; Matsui et al., 2004; Rong et al., 2007; Wilson-Fritch et al., 2004). Glitazones  

modulate adipocyte dynamics by activating PGC-1α in subcutaneous adipose tissue 

leading to adipocyte differentiation and remodelling.  While they are associated with an 

increase in overall fat mass they  are associated with a favourable redistribution of body 

fat, increased fatty acid oxidation and maintenance of systemic lipid homeostasis as well 

as enhanced UCP-1 expression and WAT browning (Carey et al., 2002; Hock and Kralli, 

2009; Tonelli et al., 2004). Taken together, these drugs would be an attractive option in 

the pharmacological armamentarium for both the prevention and treatment of 

metabolic diseases by way of their favourable effects on adipose mitochondria, but this 

has to be balanced against their known side-effects. 

Obesity, in particular visceral fat accumulation, is also characterized by a low-grade 

inflammatory state with increased levels of various pro-inflammatory cytokines such as 

TNF-α, the presence of which has been associated with smaller and condensed 

mitochondria, aberrant ATP synthesis and mitochondrial dysfunction (Chen et al., 2010). 

Furthermore, the presence of TNF-α is associated with decreased expression of genes 

of protein complexes involved in oxidative phosphorylation and fatty acid oxidation 

(Dahlman et al., 2006). Other studies have also implicated dysregulation of 

mitochondrial dynamics through an imbalance in fusion and fission processes as well as 
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altered mitophagy and mitochondrial turnover in adipocytes in the presence of 

metabolic diseases (Kovsan et al., 2011; Lee et al., 2019; Liesa and Shirihai, 2013). 

However, further studies in these areas are needed to fully understand both the 

physiological and pathophysiological roles of mitochondrial dynamics in the context of 

adipocyte metabolism. In summary, disruptions in the oxidative capacity, density, 

biogenesis, and dynamics of adipose tissue mitochondria increases the susceptibility to 

the development of obesity, IR and metabolic diseases.  

From a cellular point of view,  abnormalities of mitochondrial function, quantity or 

biogenesis within adipocytes is associated with defects of insulin metabolic signalling, 

reduced insulin-mediated glucose uptake and hyperglycaemia (Sutherland et al., 2008; 

Wang et al., 2013). Insulin is a major anabolic hormone, and its primary function is that 

of glucose uptake in metabolically active tissues such as myocytes and adipocytes i to 

maintain whole body metabolic homeostasis.  Insulin resistance on the other hand is the 

blunted response of classical insulin target tissues to insulin leading to a dysregulation 

of nutrient metabolism and homeostasis.  Briefly, canonical insulin signalling is initiated 

by the binding of insulin to its cognate receptor. The insulin receptor is a cell surface 

receptor having tyrosine kinase activity and is characterised by the presence of two 

extracellular ligand-binding domains (α subunits) and two intracellular tyrosine kinase β 

domains (Lee et al., 2014b). Thus, upon binding to the extracellular α subunits, insulin 

induces a conformational change in the β-subunit and the activation of a signal 

transduction cascade involving PDK1 and mTORC2 which results in tyrosine 

phosphorylation (pY) of insulin receptor substrate-1 protein (IRS). This in turn activates 

proteins containing SRC homology 2 (SH2) domains such as phosphatidylinositol 3-
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kinase (PI3K) whose main action is to convert phosphatidylinositol 4,5-bisohosphte 

(PIP2) to phosphatidylinositol 3,4,5-tripohsophate (PIP3).  PIP3 subsequently leads to the 

downstream activation of other kinases (such as phosphoinositide-dependent protein 

kinase 1 [PDK1] and protein kinase B [Akt]) which ultimately culminates in the 

pleiotropic metabolic actions of insulin  (Sergi et al., 2019; Zick, 2005).   

In circumstances of high levels of glucose or free fatty acid availability, as occurs during 

periods of hyper-nutrition , adipose tissue mitochondrial dysfunction leads to  ectopic 

fat storage in insulin-sensitive tissues  (lipotoxicity) and an attenuation of insulin-

mediated glucose uptake. Thus, the presence of lipotoxicity is thought to be the 

underlying mechanism bridging the gap between increased nutrient availability, 

impaired metabolic substrate oxidation and the development of IR.  Furthermore, 

reduced mitochondrial oxidative capacity and the subsequent impairment of fuel 

oxidation (particularly fatty acid oxidization) appears to be the primary defect which 

triggers a cascade of events culminating with an increase in levels of lipotoxic 

metabolites such as fatty acyl CoA, ceramides and diacylglycerol in classical insulin target 

tissues  and the subsequent  impairment of insulin metabolic signalling,  (Samuel et al., 

2010). In effect, intramyocellular accumulation of lipids has been found to be a better 

predictor of muscle IR than the degree of adiposity (Krssak et al., 1999).   

At the molecular level,  the build-up of these lipotoxic molecules within skeletal muscle 

subsequently leads to abnormal insulin signalling either directly through the activation 

of protein kinase C (PKC) and serine phosphorylation of IRS-1  or through the activation 

of various proinflammatory stress pathways (Morino et al., 2005; Zick, 2005).  Increased 

phosphorylation of IRS-1 on serine residues (pS) hampers insulin-mediated IRS-1 
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tyrosine phosphorylation which in turn inhibits PI3K activity leading to suppression of 

insulin mediated glucose transport, lending  further support to the notion that 

intracellular accumulation of lipotoxic species such as diacylglycerol is more 

pathophysiologically relevant than accumulation of TG per se in the onset of IR (Dresner 

et al., 1999; Sergi et al., 2019).  Furthermore, mitochondrial dysfunction in the face of 

free fatty acid accumulation also stimulates several pro-inflammatory stress pathways 

such as nuclear factor kappa light chain enhancer of activated B cells (NF-ĸβ), c-Jun N-

terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK) which in turn 

incite an immune and inflammatory response via an increase in pro-inflammatory 

cytokines (such as IL-1B, IL-6, TNF-1a and monocyte chemoattractant protein-1 (MCP-

1)) (Lee et al., 2019; Liebert, 2005; Lowell et al., 2012).  

Another putative mechanism linking mitochondrial dysfunction to IR is mediated by the 

presence of reactive oxygen species (ROS).  ROS generation within adipocytes is thought 

to be a mandatory by-product of mitochondrial oxidative metabolism with their 

production being kept in check by the intracellular antioxidant system. However, the 

presence of an excess nutrient supply and catabolism overwhelms the electron 

transport chain leading to a high proton gradient and if not matched to an increase in 

ATP synthesis culminates with greater ROS production. Thus, mitochondrial ROS 

generation induces oxidative damage to mitochondrial cellular structures such as DNA, 

lipids and proteins, leading to mitochondrial dysfunction (Anderson et al., 2009; 

Schieber and Chandel, 2014).  Furthermore, ROS generation per se can also directly 

induce IR via alterations in insulin signal transduction pathways through the stimulation 

of various serine kinases.  In keeping with these observations are studies which showed 
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improved mitochondrial function and insulin signalling following a decrease in ROS 

generation by the use of antioxidants or increased expression of UCP2/3 (Morino et al., 

2005; Nishikawa and Araki, 2007).  Thus, mitochondrial dysfunction induced by excess 

lipid accumulation impairs insulin signalling both directly and indirectly through the 

generation of excess ROS.  (Appendix 4).  

However, despite the mounting and well-documented evidence described so far 

demonstrating the relationship between mitochondrial dysfunction and IR, some 

authors failed to validate this association and thus the question of whether 

mitochondrial dysfunction is causal to or a consequence of IR still remains a matter of 

debate.  For example, Trenell and co-workers failed to show abnormalities of 

mitochondrial function including resting and maximal ATP turnover in human individuals  

with obesity and T2DM compared to individuals without diabetes; however increased 

physical activity led to an improvement in lipid oxidation in individuals with T2DM 

independent of mitochondrial activity (Trenell et al., 2008).  Another study found that 

while high-fat feeding induced IR and increased oxidative stress in healthy individuals 

without obesity , no change was observed in any of the markers of mitochondrial 

content including protein levels of PGC-1α, and subunits of complex I, II and V of the 

electron transport chain within skeletal myocytes.  This supports the possibility that 

while IR may be explained at least in part by the increase in oxidative stress, IR may arise 

independently of mitochondrial dysfunction  (Samocha-Bonet et al., 2012a).  Similarly, 

there are  animal studies which also failed to confirm a direct cause-effect relationship 

between defective mitochondrial oxidative function and IR.  One particular study 

showed that a high fat diet was  associated with a gradual increase in skeletal muscle 
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mitochondria via upregulation of PGC-1α while others observed an increase in fatty acid 

oxidative capacity and an increase in mitochondrial proteins involved in oxidative 

metabolism (Garcia-Roves et al., 2007; Turner et al., 2007; Williams et al., 2014). These 

findings might be explained by the fact that increased mitochondrial function may be a  

compensatory mechanism in response to nutrient oversupply and acts as a protective 

mechanism against the development of IR. Collectively these observations seem to 

allude to the fact that mitochondrial dysfunction may not be a prerequisite for the onset 

of IR.  

The downstream molecular consequences of a variation in mtDNA content which are 

thought to explain the mechanisms linking mitochondrial dysfunction to the onset of 

chronic diseases involves several theories centring round immune (macrophage) 

dysfunction, inflammation and altered cell signalling (Castellani et al., 2020).  There is 

robust evidence causally linking changes in mtDNA CN to adipose tissue inflammation 

and oxidative stress.  Mitochondrial-mediated changes in respiratory capacity can 

impact on macrophage polarization and results in chronic subclinical inflammation 

which is associated with both the onset of the Met S and  atherosclerotic disease. Pro-

inflammatory M1 macrophages generate ATP primarily through glycolysis, while anti-

inflammatory M2 macrophages rely on oxidative phosphorylation via the mitochondrial 

electron transport chain (Viola et al., 2019). Reduced mtDNA CN results in insufficient 

OX-PHOS proteins and a block in the reprogramming of M1 macrophages to the M2 

subtype (Castellani et al., 2020). Consequently, in obese states, an increased number of  

M1-activated adipose tissue macrophages (ATMs) infiltrate adipocytes secreting an 

array of proinflammatory cytokines that drive IR, and the concomitant decrease in M2-
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subtypes leads to a reduction in the production of anti-inflammatory mediators (such as 

TGF-β and IL-10 signals) that would assist with the resolution of inflammation and 

restore insulin sensitivity (Chawla et al., 2011; Lumeng et al., 2007).  

Overall, despite the presence of incongruent results from different studies which 

assessed the relationship between mtDNA bioenergetics, insulin metabolic signalling 

and obesity, there is no doubt that a degree of functional dysfunction of the 

mitochondrion plays a pivotal role in obesity pathophysiology as well as in obesity-

associated metabolic diseases. This ensures that quantification of mtDNA CN still holds 

a considerable interest as a minimally invasive biomarker in clinical and population 

studies. Furthermore, this investigation expands on the spectrum of established 

association between mtDNA and metabolic phenotypes in different populations.  Thus, 

irrespective of whether mitochondrial dysfunction represents a primary defect in 

metabolic disease, preserving mitochondrial function remains an important strategy in 

the protection against IR and associated cardio-metabolic diseases. In conclusion, future 

longitudinal studies should be undertaken with the aim of characterising cell-type and 

cross-tissue profiles of mtDNA CN across various ethnic populations to better 

understand the direction of causality as well as to elucidate further the clinical and 

therapeutic relevance of this easily measured biomarker.   
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1-7 Aims and Objectives of research project 

It is now universally acknowledged that an individual’s risk of CVD does not solely 

depend on body size but also on their metabolic profile. Thus, individuals with similar 

body mass index may exhibit different cardiometabolic risk parameters leading to 

variations in CVD risk.  This has resulted in the emergence of different body composition 

phenotypes, whereby body size (as expressed by the BMI) and presence or absence of 

certain metabolic parameters are incorporated together to create a spectrum of 

different body composition phenotypes.   

At one end is the metabolically healthy normal weight individual (MHNW).  This subset 

of individuals is characterised by a normal BMI (18.5 to 25 kg/m2) and absence of an 

adverse cardiometabolic risk profile (including hypertension, dyslipidaemia and 

dysglycaemia). A second body composition  phenotype is the individual with normal 

weight but who is also metabolically abnormal.  This phenotype is termed as  

metabolically unhealthy normal weight  (MUHNW).  Similarly, individuals who are 

overweight or obese by BMI criteria may or may not harbour these adiposity-associated 

cardiometabolic abnormalities and thus lead to the occurrence of another four body 

composition phenotypes: metabolically healthy overweight, metabolically unhealthy 

overweight, metabolically healthy obese (MHO) and metabolically unhealthy obese 

phenotypes (MUHO) as shown in figure 1.6. 
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Up till now the epidemiological aspect in terms of prevalence rates and sex differences 

of the six different body composition phenotypes has not been fully explored within the 

Maltese Islands.  Moreover, the data on lifestyle factors, biochemical and 

anthropometric parameters and how they relate with MH is either conflicting or scarce 

and not available for the Maltese general population (Calori et al., 2011; Goday et al., 

2016; Hajian-Tilaki and Heidari, 2018; Hankinson et al., 2013; Lee, 2009; Phillips, 2013a; 

Wildman et al., 2008) Secondly, little is known about the molecular processes involved 

the development of these body composition phenotypes. Over the last two decades a 

growing body of evidence has implicated the important role of mitochondrial 

bioenergetics in metabolic disturbances including IR and the Met S, obesity, and T2DM 

(Johannsen and Ravussin, 2009; Ren et al., 2010). Quantification of mitochondrial DNA 

copy number (mtDNA CN) is being increasingly employed as a surrogate biomarker of 

Classification according to body size (as defined by the BMI) and metabolic health. Absence 
and presence of major cardiometabolic risk factors allows stratification of normal weight, 
overweight and obese individuals into metabolically healthy and metabolically unhealthy 
(Source: Stefan et al., 2013). 
BMI-body mass index 

 
Figure 1.6: The six different body composition phenotypes 
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mitochondrial function and which reflects the degree of mitochondrial DNA damage 

with recent observations demonstrating that a decreased mtDNA CN in several tissues 

to be associated with visceral adiposity, BMI, Met S, CVD, and mortality (Huang et al., 

2011; Koller et al., 2020; Lee et al., 2014a; Skuratovskaia et al., 2018). However, no study 

has been specifically conducted to assess how this relates with the six different body 

composition phenotypes described above and within the Maltese population. It is 

hypothesized that individuals with the unhealthy metabolic phenotype have a lower 

peripheral blood leukocyte mtDNA CN. 

Therefore, the overall objectives of this research were two-fold: the first centred round 

epidemiological analyses primarily aimed at determining the prevalence and 

characteristics of the different body composition phenotypes; and the second focussed 

on molecular analyses and sought to investigate the associations between peripheral 

blood leucocyte mitochondrial DNA copy number, the Met S and the different body 

composition phenotypes in a high prevalence population for both obesity and Met S.  

The specific endpoints for each of the two main objectives are as follows: 

Epidemiological studies 

(1) To determine the prevalence, characteristics (in terms of the lifestyle, 

anthropometric and biochemical parameters) and the associations of each of the 

six different body composition phenotypes described above (MHNW, MUHNW, 

MHOW, MUHOW, MHO and MUHO) using either the NCEP ATP III definition of 

the Met S in the first instance or HOMA-IR to define MH, and to assess how these 

two definitions vary between each other. 
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(2) To further assess the characteristics associated with the metabolically healthy 

phenotype among individuals with overweight and obesity   and how they vary 

between each other when using the NCEP ATP III definition of the Met S to define 

the metabolically healthy status. 

(3) Since there are sex differences in the distribution of fat and in the prevalence of 

overweight and obesity this study also explored the sex differences in the 

prevalence of the different body composition phenotypes as well as in 

anthropometric measures and cardiometabolic parameters and in the 

relationship between BMI categories and MH when using the NCEP ATP III 

criteria to define MH. 

(4) To compare the prevalence of the different body composition phenotypes this 

time defining MH according to eight different and frequently used criteria as 

proposed by Wildman et al., Doumatey et al., Hamer et al., Meigs et al.,  Lynch 

et al., Augilar-Salinas et al., Karelis et al., the harmonization criteria proposed by 

Lavie et al., in addition to the NCEP ATP III definition for Met S. Furthermore, this 

objective also aimed to evaluate which definition mentioned above was the 

strongest predictor of IR (as defined by HOMA-IR) and how this varied between 

the two sexes.  

(5) To compare the discriminatory power of the various anthropometric and 

biochemical parameters in predicting IR and to determine their optimal cut-offs. 
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Molecular studies: 

(6) To investigate the associations between peripheral blood leukocyte mtDNA CN 

and the different body composition phenotypes. 

(7) To evaluate which of the different definitions of MH and their constituent 

components are associated with reduced leukocyte mitochondrial DNA copy 

number. 

 

Each of these endpoints will be described in the following chapters.   
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Chapter 2 – Research design and 
methods of epidemiological studies 
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2-1 Study design, study population and recruitment 

This was an observational cross-sectional single-centre study carried out between 

January 2018 and June 2019, involving the recruitment of a middle-aged  sample of 

Maltese Caucasian noninstitutionalized, civilian adults. A convenience type of sampling 

similar to that used in the ABCD study by Buscemi et al. was adopted (Buscemi et al., 

2017).  

2-2 Eligibility criteria 

2-2.1 Inclusion criteria 

1. Maltese Caucasian ethnicity 

2. Aged 41 (±5) years 

3. BMI ≥18.5 kg/m2 

2-2.2 Exclusion criteria  

1. Presence of Type 1 Diabetes 

2. Known underlying genetic or endocrine cause of overweight and obesity (apart 

from controlled thyroid disorders) 

3. Terminal illness 

4. Active malignancy 

5. Individuals unable to give own voluntary informed consent 

6. Pregnant females 
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2-3 Assessment of demographic, anthropometric and cardiometabolic (biochemical) 

parameters 

Following acceptance to participate in the study, eligible participants were invited to 

attend for a one time visit at Mater Dei Teaching Hospital to undergo a 3-part detailed 

face-to-face evaluation involving:  i) assessment of  demographic, health behaviour and 

lifestyle  factors via the use of a structured questionnaire especially designed for the 

survey; ii) a physical examination to measure specific anthropometric parameters; and 

iii) blood sampling for measurement of pertinent cardiometabolic (biochemical) 

components. All parts of the assessments were carried out by the same assessor, (the 

candidate R. A.), to minimize any form of observer bias. 

A total of 521 participants accepted to participate in the study and fit the eligibility 

criteria for recruitment. 

 

2-3.1 Assessments of demographic, health behaviour and physical factors 

A dedicated questionnaire (composed in both English and Maltese languages and using 

a composite of a number of validated tools) was used to capture baseline demographic 

data relating to age, sex, area of residence, education level, specific occupation, 

consumption of tobacco and alcohol, physical activity as well as past medical and 

surgical history and a detailed drug history (Appendix 1C). Level of education was 

stratified as either completing primary, secondary, or tertiary education. Occupation 

was coded into nine major categories as per the 1994 Spanish National classification of 

Occupations and thereafter re-classified into either white collar (nonmanual) workers 



138 
 

or blue collar (manual) workers as previously described in the study by Sanchez-

Chaparro et al. Workers in the first four categories were deemed white collar workers 

whereas those falling in the last five categories were grouped as blue-collar workers 

(Sánchez-Chaparro et al., 2008). Participants’ smoking status was categorised as never 

smokers if they had smoked less than 100 cigarettes in their lifetime; current smokers if 

they had smoked more than 100 cigarettes in their lifetime and answered ‘yes’ to the 

question “Do you smoke now?; former smokers if they smoked more than 100 cigarettes 

in their lifetime but were not presently smoking (as used in the NHANES study by 

Wildman et al., 2008 (Wildman et al., 2008)). Alcohol intake was assessed by asking the 

participants about the number of units of alcohol consumed per week. One standard 

unit was defined as a glass of wine, a bottle of beer or a shot of spirits.  Non-drinkers 

were classified as those who reported consuming less than 12 alcoholic beverages in 

their lifetime (Wildman et al., 2008). Physical activity was assessed by asking the 

participants if they engaged in any type of exercise.  Participants were considered as 

taking regular exercise if they reported exercising more than once per week.  If they did, 

then they were asked what type of sport / activity they engaged in, the duration (in 

minutes) of each activity and the number of times the activity was performed per week 

(Wildman et al., 2008).  A detailed medical and pharmacological history was also 

captured particularly in reference to prior diagnoses of T2DM, hypertension, 

hypercholesterolemia and CVD as well as use of any other prescribed and self-prescribed 

medications.   
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2-3.2 Anthropometric measurements 

The physical examination was carried out with the participants dressed in light clothing 

and without shoes. Anthropometric measurements were recorded using validated 

measurement equipment at Mater Dei Teaching Hospital and which were calibrated in 

accordance with WHO regulations.  Body weight was measured in kilograms to the 

nearest 0.1kg and height was measured in centimetres to 1 decimal place using a 

calibrated stadiometer with a vertical backboard and a movable headboard. Body mass 

index (BMI) was thereafter calculated as a ratio of the weight (in kg) divided by the 

square of the height (in meters). Participants were defined as having normal weight if 

the BMI value was < 25 kg/m2; overweight if the BMI fell between the values 25.0-29.9 

kg/m2; and obese if the BMI was ≥30 kg/m2.  Waist and hip circumferences (WC and HC 

respectively) were measured to the nearest 0.1 cm with a non-stretchable measuring 

tape over the abdomen halfway between the bottom of the rib cage and superior iliac 

crest for WC and over the widest diameter around the buttocks for the HC with the 

participants standing with their feet together such that weight was evenly distributed 

over both feet and after full expiration.  Other anthropometric parameters measured 

were neck circumference (NC), mid upper arm circumference (MUAC) and thigh 

circumference (TC).  For the NC the measuring tape was placed around the mid-cervical 

spine to mid-anterior neck in order to obtain the mid-neck height to the nearest 1mm 

(Ben-Noun and Laor, 2003).  The MUAC was identified by asking the participant to bend 

the elbow at a 90-degree angle, with the arm held parallel to the side of the body. 

Thereafter the midpoint of the distance between the acromion and olecranon process 

was identified and marked and the measuring tape was placed around this identified 
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point. This was done for both right and left arms.  Upper TC was measured by placing 

the tape over the largest portion of the thigh (at the level of the gluteal fold) with the 

thigh muscles fully relaxed and placed either directly over the skin or over very light 

clothing. All circumferences were taken with the participants standing upright, with 

shoulders and thighs relaxed, facing the investigator (Ge et al., 2014). Blood pressure 

was measured according to the European Society of Hypertension Guidelines using a 

clinically validated digital sphygmomanometer with an appropriately sized cuff for each 

participant after a 5-minute rest and in the seated position.   The average of the second 

and third readings was used for analyses (Han and Lean, 2001; Parati et al., 2014; Phillips 

et al., 2013)(Han and Lean, 2003; Phillips, Dillon, et al., 2013a; Parati et al., 2014). 

 

  2-3.3 Cardiometabolic (biochemical) parameters 

All participants were asked to undergo blood sampling after a 10 hour overnight fast.  

Plasma and serum samples were prepared from whole blood for the measurement of 

several laboratory parameters including: 

- Fasting Plasma Glucose (FPG) 

- Serum Total Cholesterol (TChol) 

- Serum High Density Lipoprotein Cholesterol (HDL-C) 

- Serum Low density Lipoprotein Cholesterol (LDL-C) 

- Serum Triglycerides (TG) 

- Full Blood Count (FBC) 

- Uric Acid (UA) 
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- HBA1c 

- Serum Creatinine, Estimated Glomerular Filtration Rate (eGFR), Potassium, 

Sodium 

- Serum Free tri-iodothyronine (T3), free tetra-iodothyronine (T4) and thyroid 

stimulating  hormone (TSH) 

- Serum Vitamin D  

- Serum Liver Profile including: Alanine aminotransferase (ALT), Alkaline 

phosphatase (ALP), Gamma glutamate transferase (GGT) and Bilirubin levels              

These were sent to the main biochemistry laboratory at Mater Dei Teaching Hospital for 

analysis using automated and quality-controlled analysers which utilized standard 

clinical chemistry methods as already described in previous studies (Cuschieri et al., 

2016c; Magri et al., 2018). 

The assessments of FPG levels and lipid profiles were performed using COBAS INTEGRA® 

Analysers machines.  The blood samples used to measure FPG levels were collected in 

fluoride-containing tubes in order to inhibit glycolysis. The FPG levels were measured 

using hexokinase and glucose oxidase enzyme reactions. A serum clot activator tube was 

used to collect blood samples for the lipid profile assessment. This involved assessing 

each participant’s total serum cholesterol, high-density lipoprotein (HDL), low-density 

lipoprotein (LDL) and TG.  

Haemoglobin A1c was measured using high performance liquid chromatography (Variant 

II by BioRad). Creatinine was measured by a kinetic colorimetric test using the Jaffe 

reaction (Roche Diagnostics). 
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Serum insulin samples were collected after an overnight fast and transferred to the 

laboratory where they were centrifuged within two hours.  The serum was isolated by 

centrifugation at 2000rcf x 10 minutes, and the serum supernatant pipetted into a 

separate storage tube, which was then frozen and stored at -800C.   

Insulin was measured using a solid-phase sandwich enzyme linked immunosorbent 

assay (ELISA) (Kit: Diagnostic Automation, USA) according to the manufacturer’s 

instructions and using a Mithras® microplate reader for absorbance determination. 

Samples were assayed in duplicate using 50μL of serum. The homeostatic model 

assessment (HOMA) was used as an indirect measure to evaluate IR using the formula: 

Fasting Serum Insulin (microunits per mililiter) x Fasting Plasma Glucose (milimoles per 

Liter) /22.5 (Matthews et al., 1985; Wildman et al., 2008). In this project, fasting serum 

insulin was successfully determined in 509 out of 521 samples, as 12 samples could not 

be analysed due to severe haemolysis affecting assay readability. Overall, serum insulin 

ELISA assays met standard QC parameters, with an intra-assay coefficient of variation 

(CV) of 6.4% and inter-assay CV of 9.3%.  

Serum hsCRP was also measured using a sold phase sandwich ELISA (Kit: Diagnostic 

Automation, Inc, California) as per the manufacturer’s instructions and using a Mithras®  

microplate reader for absorbance determination.  Samples were assayed in duplicate. 

Inter-assay and intra-assay CV were 8.6% and 6.3% respectively. 

An EDTA (ethylenediaminetetraacetic acid) bottle was frozen and stored at -200C at the 

Laboratory of Molecular Genetics, University of Malta for future genetic testing.  
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2-3.4 Calculation of derived indices 

From the above anthropometric and biochemical parameters, the investigator was able 

to derive other indices of obesity as described earlier in chapter 1. These indices were 

selected because they can be rapidly ascertained in the clinical setting based on simple 

data such as weight, height, WC and HC. They have already been applied and validated 

in many other epidemiological studies.  The following indices were derived: 

Waist to height ratio (WHtR) = WC (cm) / height (cm): This ratio which is based on WC 

and height of an individual has been reported as being  strongly associated with 

cardiovascular risk in certain ethnic populations and has also been shown to be the best 

indicator for hypertension in Chinese adults. Moreover, in the meta-analysis by Lee et 

al, it was shown to be a superior discriminator for detecting cardiovascular risk factors 

in both sexes (Lee et al., 2008).  It is calculated by the following formula: WC (cm) / 

height (cm) (Ho et al., 2003). 

Waist to hip ratio (WHR) = WC (cm) / HC (cm):  This index gives an indication of fat 

distribution particularly abdominal adiposity and has been shown to be a robust 

independent predictor of cardiovascular morbidity and mortality, to have good 

discriminatory capability for T2DM and also to have the strongest correlation with cIMT 

(carotid intima media thickness) which is a validated marker of sub clinical 

atherosclerosis (Goh et al., 2014; Yan et al., 2009). 

Waist to thigh ratio (WTR) = WC  (cm) / TC (cm): This ratio is used as an index for fat 

distribution and is influenced by abdominal fat, muscle and bone mass of the thigh which 
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can give an indication of abdominal fat accumulation as well as information about 

skeletal muscle (such as muscle wasting) (Han and Lean, 2001). 

Waist Index (WI) = This is sex specific and is calculated as WC (cm) / 94 for men; and WC 

(cm) / 80 for females for Caucasians as per the study by Magri et al (Magri et al., 2016). 

Conicity index (CI) = This was formulated by Valdez in 1991 to estimate abdominal fat 

and is derived from the following equation:  waist / (0.109x √weight (kg)/height (m) 

(Valdez, 1991).  

Body Adiposity index (BAI) = [HC /Height2/3 ] − 18; The BAI has been shown to  directly 

reflect percentage body fat in adult males and females of differing ethnicities without 

numerical correction. It is calculated from hip circumference and height only and thus 

can be used in the clinical setting (Bergman et al., 2011). 

Abdominal volume index (AVI) = The AVI is another anthropometric-based tool used for 

estimation of overall abdominal volume (between the symphysis pubis and the xiphoid 

appendix) which theoretically includes intrabdominal (visceral) fat and adipose tissue 

volumes.  It has been shown to be a reliable index for estimation of obesity and also 

exhibits a higher relationship with impaired fasting glucose and diabetes than other 

anthropometric indices. The AVI formula is based on the volume formulas for cylinder 

(V = πr2h) and vertical cone (V = (1/3)πr2h).  The resultant formula is as follows: 

 AVI = [2 cm (waist)2 + 0.7 cm (waist-hip)2]/1000, where both waist and hip 

measurements are in centimetres.  A cut-off value of 24.5L has been shown to be the 

best value to estimate obesity (Guerrero-Romero and Rodríguez-Morán, 2003). 
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A Body shape index (ABSI) = This parameter was developed by Krakauer et al. in 2012 

and is based on WC (m) adjusted for height (m) and weight (kg) and is measured using 

the following formula: WC / BMI 2/3 x height ½. According to the authors, a high ABSI 

corresponds with a greater fraction of abdominal (visceral) adipose tissue and predicts 

premature mortality risk independent of age, sex and weight. Other studies have also 

suggested that ABSI is able to predict  onset of T2DM (He and Chen, 2013; Krakauer and 

Krakauer, 2012).  

Body roundness Index (BRI) = This index was developed in 2013 by Thomas et al.  It is a 

geometrical index based on height (m) and WC (m) and which aims to quantify body 

girth in relation to height (body roundness).  It allows for estimation of the shape of the 

human body figure as an ellipse or oval. It was thus developed initially to predict the 

percentage of total and visceral body fat and to evaluate health status. It is measured 

using the following formula: BRI = 364.2-(365.5 x Ɛ) where Ɛ stands for eccentricity and 

is calculated using this formula: 

  

Values closer to 1 are related to leaner individuals, whereas larger values are associated 

with rounder individuals.  The authors found that this new shape measure was able to 

predict % body fat and % VAT better than other traditional metrics such as BMI, WC or 

HC  (Maessen et al., 2014; Thomas et al., 2013). In other studies, the BSI also had the 

potential to improve the detection, evaluation, and progression of CVD and CVD risk 

factors implying that the BRI is capable of mathematically modelling the human body 
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shape to give an adequate impression of the cardiovascular health status (Maessen et 

al., 2014). 

Visceral adiposity index (VAI) = a sex-specific index based on WC, BMI, TG and HDL-C.  

VAI estimates visceral adipose dysfunction associated with cardiometabolic risk, and VAI 

values are calculated as described in the literature using the following equations (Amato 

et al., 2014): 

VAI female = [WC /36.58 − 1.89BMI] x [TG /0.81][1.52/HDL-C] 

VAI male = [WC /39.68 − 1.88BMI] x [TG /1.03][1.31/HDL-C];  

(WC in cm; TG and HDL in mmol/l) 

Lipid accumulation product (LAP) = this is a sex specific parameter, and it is based on 

the combination  of WC and triglyceride levels: [WC -65]x [TG] in males, and [WC -

58]×[TG] in females. (WC in cm and TG in mmol/l). This has been recently described as 

an index of central lipid accumulation and visceral obesity and has been used to predict 

the risk of Met S and subclinical atherosclerosis and cardiovascular risk (Li et al., 2017; 

Namazi Shabestari et al., 2016). (Kahn, 2005; Li et al., 2017). 

Atherogenic index of plasma (AIP) =  This is calculated by the logarithmic transformation 

of the ratio of plasma TG concentration to HDL-C concentration [log(TG/HDL-C)]  

(Hermans et al., 2012).  

Neutrophil lymphocyte ratios (NLR) and platelet-lymphocyte ratios (PLR). These two 

indices which are derived from blood counts have been described as surrogate markers 

of chronic subclinical inflammation in the context of cardiometabolic disease (Lou et al., 

2015). 
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2-4 Body composition phenotype definitions 

Body composition phenotypes were generated based on the combined consideration of 

each participants’ BMI category (normal weight [BMI ≥18.5 and <25kg/m2]; overweight 

[BMI between ≥25 and <29.99 kg/m2]; and obesity [BMI ≥30 kg/m2}]) and MH.  Metabolic 

health was defined using several of the current different definitions available and cited 

in the literature: 

a) In the first instance MH was defined according to the  Met S definition according to 

the  National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATPIII) 

framework as already done in previous studies  (Arnlöv et al., 2011; Durward et al., 2012; 

Meigs et al., 2006; NCEP, 2001; Song et al., 2007; Twig et al., 2014; Voulgari et al., 2011). 

This consisted of the following cardiometabolic (CM) parameters: WC >102cm in males 

and >88 cm in females; systolic/diastolic blood pressure ≥130/85 mmHg or on 

antihypertensive medication; serum triglyceride level ≥1.69mmol/L or on lipid-lowering 

medication; HDL-C <1.03 mmol/L in males and < 1.29 mmol/L in females or on treatment 

aimed to increase HDL-C;  fasting glucose ≥5.6mmol/L or on antihyperglycemic agents. 

Individuals were classified as being metabolically healthy if they exhibited 1 or less CM 

abnormalities from the above parameters in accordance with previous studies (Elías-

López et al., 2021; Hinnouho et al., 2015; L. Li et al., 2018; Zhou et al., 2021).  

In initial analyses, participants with overweight and obesity  were analysed together as 

one entity thus generating four body composition phenotypes: metabolically healthy 

normal weight (MHNW); metabolically unhealthy normal weight (MUHNW); 

metabolically healthy overweight or obese (MHOW/O); metabolically unhealthy 

overweight or obese (MUHOW/O) (Table 2.1). For prevalence purposes, participants 
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with overweight and obesity were analysed as separate entities thus generating two 

other body composition phenotypes in addition to the previous ones described above: 

metabolically healthy overweight (MHOW) and metabolically unhealthy overweight 

(MUHOW) thus creating a total of six different body composition phenotypes.  

b) Additionally, as part of an exploratory analysis, further sensitivity studies for the 

prevalence of the different body composition phenotypes were performed using 

definitions with less stringent or more stringent criteria of the NCEP ATPIII classification 

to define the metabolically healthy phenotype: i.e., having either ≤2 CM abnormalities 

or having 0 cardiometabolic abnormalities, that is individuals who did not meet any 

criteria of the NCEP-ATPIII guideline, respectively. 

c) IR as measured by HOMA-IR is another criterion used to define the metabolically 

healthy status and to assess the prevalence of the different body composition 

phenotypes in this study as per previous studies (Calori et al., 2011; Kuk and Ardern, 

2009). A cut-off value of <2.5 was used to identify the metabolically healthy phenotype.  

This cut-off value was chosen as it has already been validated in previous longitudinal 

studies which looked at both cardiovascular and all-cause mortality (Bo et al., 2012; 

Calori et al., 2011; Durward et al., 2012; Kuk et al., 2006)  (Table 2.1). 

d) Since there is yet no unified definition for the metabolically healthy phenotype, a 

number of authors have proposed several different criteria and cut-offs to identify the 

metabolically healthy state. In fact, one systematic review identified 30 different 

definitions of MH. A few of them stand out for their popularity and thus have been used 

extensively in contemporary studies which looked at prevalence rates and 
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characteristics of the different body composition phenotypes in various populations 

(Rey-López et al., 2014). Therefore, this study also aimed to compare the prevalence of 

the six body composition phenotypes using the classifications as proposed by Wildman 

et al., Doumatey et al., Hamer et al., Lynch et al., Augilar-Salinas et al., Karelis et al., 

Meigs et al., the harmonization criteria proposed by Lavie et al., in addition to the NCEP 

ATPIII definition of the Met S (incorporating the presence of either 0, 1, or 2 abnormal 

parameters) to define the metabolically healthy status (Aguilar-Salinas et al., 2008; 

Doumatey et al., 2012; Hamer and Stamatakis, 2012; Karelis et al., 2004a; Lavie et al., 

2018; Lynch et al., 2009; Meigs et al., 2006; NCEP, 2001; Wildman et al., 2008) (Table 

2.2).   

e) In 2021, Zembic et al. proposed an empirical definition for MH based on the risk of 

cardiovascular and total mortality from the NHANES III and UK Biobank dataset.  They 

proposed that a metabolically healthy status can be identified in individuals if they meet 

the following three criteria: systolic blood pressure <130 mmHg and not on 

antihypertensive medications; waist -to-hip ratio <0.95 in females and <1.03 in males; 

and absence of diabetes (Zembic et al., 2021). This definition was used as one of the 

criteria needed to ascertain the metabolically healthy phenotype in the study population 

when investigating the associations between peripheral blood mitochondrial DNA copy 

number and the different body composition phenotypes. 
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Table 2.1: Definitions of the different body composition 
phenotypes according to BMI and metabolic status 
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 Table 2.2: The different classifications used to define a metabolically healthy phenotype 

BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; F, females; hsCRP, high sensitivity C-reactive protein; HLD-C, high 
density lipoprotein cholesterol; HOMA-IR, homeostatic Model Assessment of Insulin Resistance; LDL-C, low density lipoprotein cholesterol; M, Males; NCEP-ATPIII, National 
Cholesterol Education Program-Adult Treatment Panel criteria; Rx, treatment; T. Chol. Total Cholesterol; TG, triglycerides; WC, waist circumference 

*The criteria by Meigs et al. are similar toNCEP  
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2.5 Statistical analysis 

 A minimum sample size was calculated using the one proportion formula for cross-

sectional studies.  The WHO age-standardised prevalence of obesity (BMI>30 kg/m2 

=28.9%) was used since at the population level, obesity is a robust predictor of 

cardiometabolic risk.  Considering a power of 90%, precision of 0.05, significance of 0.05, 

and an expected response rate of 90%, a minimum sample size of n=352 was obtained 

(Dhand and Khatkar 2014). 

Normality of distribution of continuous data was assessed using the Shapiro-Wilk and 

Kolmogorov-Smirnov tests. All continuous variables showed a skewed non-normal 

distribution and hence the data is presented as medians and interquartile range and 

non-parametric tests were used for comparisons. To evaluate differences in quantitative 

variables between groups, Kruskal-Wallis ANOVA was used for comparison between 

three or more categories, followed by Dunn’s post-hoc test for pairwise comparison 

between subgroups. The independent samples Mann-Whitney U test was used for 

comparison between two categories. Bonferroni adjustment of p-values for multiple 

comparisons was applied.  The χ2 test was used to compare categorical variables.  

To evaluate factors associated with MH, binary logistic regression was performed and 

the metabolically healthy or unhealthy phenotype was inputted as the dependent 

variable in separate analyses. Several demographic and lifestyle characteristics (which 

could be readily ascertained in a routine clinical setting, are not included in the definition 

of MH, and which do not exhibit multicollinearity) were incorporated into the regression 

model as the independent (explanatory) variables.  Unadjusted ratios were calculated 
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initially followed by multivariate-adjusted models for all the demographic and 

behavioural factors simultaneously. 

To identify the determinants of HOMA-IR in males and females, generalized linear 

modelling was applied with HOMA-IR entered as the continuous response variable.  

Simple parameters that can be easily ascertained at the bedside were included as scale-

independent variables (such as age, WHR, BMI, and neck circumference).  Lifestyle 

factors (including smoking, physical activity and alcohol consumption) were also 

combined into the regression model as categorical independent determinants .  

Generalized linear modelling specifying gamma as the distribution and Log as the link 

function was applied, in view of the positively skewed distribution of parameters being 

investigated.  Multicollinearity diagnostics revealed no dependency between 

independent variables, with variance inflation factors <2.5 and tolerance statistic values 

>0.7, thus indicating they could be reliably used as determinants in the model.  

Furthermore, to investigate the discriminatory value of the various definitions of MH 

outlined in point ‘e’ of section 2.4 of this chapter, in predicting IR, a logistic regression 

analysis was performed with HOMA-IR ≥2.5 as the dependent variable and a metabolic 

unhealthy phenotype as the independent variable for each of the definitions of MH, 

except for those by Wildman et al. and Karelis et al. These two were not entered in the 

logistic regression analysis since HOMA-IR is a criterion used to define MH in these 

definitions. Further, logistic regression was repeated this time using each of the above-

mentioned definitions as the independent (predictor) variables adjusted for BMI.  
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For the final analyses receiver operator characteristics (ROC) curves were constructed 

to compute the area under curve (AUC) to determine the discriminatory power of 

several anthropometric and biochemical parameters (and indices derived therefore), to 

detect IR (as defined by HOMA-IR using a cut-off value of ≥2.5 to denote insulin 

resistance). Furthermore, the highest Youden index (sensitivity + specificity -1) was used 

to determine the respective cut-off points for each of the variables of interest.  

All analyses were performed using IBM SPSS version 26.  ROC analysis was performed 

using the easyROC R application, and cut-off values were determined using the 

OptimalCutpoints R package (R v.3.4.2). A p value of <0.05 was considered significant. 
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Chapter 3A – Results of 
epidemiological studies 
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3-1 Prevalence and characteristics of the different body composition phenotypes 

3-1.1 Characterization of the different body composition phenotypes using the NCEP 

ATPIII criteria of the Met S to define MH 

A total of 521 individuals of Maltese ethnicity were assessed and provided the data for 

all the parameters required to define MH status in this study. 330 participants (63.3%) 

were female, and the median age was 41 years (range 30 -51 years). The prevalence of 

the different BMI categories in the studied population was as follows: normal weight – 

29.9%, overweight – 36.7%, obese – 33.3%. Overall, 70% of the study participants were 

either overweight or obese.  The median weight was 78kg, median BMI 27.5 kg/m2, and 

the median WC was 89cm.  With respect to lifestyle characteristics, 22.5% were active 

smokers (median 10 cigarettes per day) and 47.8% regularly consumed alcohol (median 

2 units per day). Just under a half of the participants (42.8%) were physically active and 

50% achieved a tertiary level of education.  Upon recruitment, 22% (n = 115) had a 

known medical comorbidity. These included T2DM (4.78%), hypertension (7.84%), 

hypothyroidism (4.2%) and dyslipidaemia (6.11%).  

Tables 3.1a-d show the demographic, biochemical and anthropometric characteristics 

of the study population according to the four different body composition phenotypes: 

MHNW, MUHNW, MHOW/O and MUHOW/O (incorporating the presence of ≤1 CM 

abnormalities of the NCEP ATPIII criteria to define the metabolically healthy phenotype).  

In this cohort of middle-aged Maltese participants the prevalence of the unhealthy 

phenotype was 32.8% (n=171) being composed of 30.7% (n=160) MUHOW/O and 2.1% 

(n=11) MUHNW individuals. Overall, the population prevalence of MHOW/O was 39.3% 
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(n=205). Among the total overweight/obese participants 56.1% were MHOW/O while 

7.0% of the total normal weight individuals exhibited the MUHNW phenotype. Although 

a significant difference in age was not found between the healthy and unhealthy normal 

weight cohorts, a difference in age between the healthy and unhealthy 

overweight/obese participants  was noted with the MHOW/O phenotype being slightly 

younger (p=0.02).   

Significant differences in baseline characteristics between participants with 

overweight/obesity were found according to the presence or absence of Met S.  With 

respect to lifestyle factors, individuals with the MHOW/O phenotype were more likely 

to drink alcohol, engage in regular physical activity and have a higher level of education 

when compared to the metabolically unhealthy overweight/obese counterparts.  On the 

other hand, the MHOW/O phenotype had lower values for indices of obesity 

measurement including BMI (p<0.01), WHR (p=0.01), WI (p<0.01), WHtR (p<0.001), WTR 

(p<0.001), VAI (p<0.001), BAI (p<0.001), CI (p<0.001), AVI (p<0.001), BRI (p<0.001) ABSI 

(p<0.001) and lower values for certain cardiometabolic risk factors (including FBG, LDL-

C, TG, HBA1c and HOMA-IR and ferritin) but a higher HDL-C value as expected (Tables 

3.1c-d).  

With respect to normal weight participants those with the MUHNW phenotype were 

more likely to have a non-manual (white collar) occupation and exhibit a current medical 

comorbidity. However, there were no other significant differences in terms of lifestyle 

characteristics when compared to their healthy counterparts.  With respect to 

anthropometric parameters, MUHNW participants were heavier (BMI 24 vs 22.4 kg/m2 

p=0.016), had higher values for WC (p=0.002) and HC (p=0.021) as well as for indices of 
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central obesity measurement compared to their healthy normal weight counterparts 

(including VAI [ p<0.1], WI [p=0.01], WHR [p=0.019], WHtR [p<0.01], WThR [p=0.005],  

CI [p=0.01], AVI [p=0.002], BRI [p=<0.001] and ABSI [p=0.013]),  but not for BAI 

(p=0.112).  Moreover, while the MUHNW participants had significantly higher values for 

all lipid parameters and markers of inflammation  (ferritin) there were no differences 

between values for glucose homeostasis (FPG [p=0.234], HbA1c [p=0.054] and HOMA-IR 

[p=0.56]) when compared with the MHNW participants (Tables 3.1a-d). 

The MHOW/O participants were comparable to their healthy non-obese counterparts 

(MHNW) for several lifestyle variables including age, smoking and alcohol consumption, 

physical activity, presence of an underlying comorbidity as well as level of education and 

occupation.  Moreover, both had similar proportions of individuals exhibiting any of the 

parameters of the Met S except for TG and WC (p=<0.01, p=0.001 respectively). 

However, the MHO phenotype displayed higher values for all indices of obesity 

measurement, had higher values for parameters of glucose and lipid metabolism and 

inflammation (ferritin) and were more insulin resistant than the healthy nonobese 

individuals.  

On the other hand, when the MHOW/O phenotype was compared with the unhealthy 

normal weight phenotype, individuals within the MUHNW phenotype were less likely to 

drink alcohol but more likely to have a concomitant medical problem than MHOW/O 

participants Notably, such individuals had higher values for total cholesterol and TG but 

comparable values for markers of glucose metabolism and insulin resistance as well as 

inflammation (including FPG, HOMA-IR, HBA1c and ferritin). (Tables 3.1a-d). 
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Data are expressed as percentages, number or median +IQR 
*MHOW/O & MHNW: individuals having ≤1 NCEP ATPIII criteria from the following: waist circumference >102cm in men and >88 cm in women; systolic or diastolic blood pressure 
≥130/85 mmHg or on antihypertensive medication; serum triglycerides ≥1.69mmol/L or on lipid-lowering medication; HDL-C <1.03 mmol/L in men and < 1.29 mmol/L in women or on 
treatment aimed to increase HDL-C; fasting glucose ≥5.6mmol/L or on antihyperglycemic agents) 
ϮMUHOW/O & MHOW/O: individuals having ≥2 NCEP ATPIII criteria 
NCEP ATPIII-  national cholesterol education program adult treatment panel III;   
MHOW/O- metabolically healthy overweight/obese; MUHOW/O – metabolically unhealthy overweight/obese; MHNW- metabolically healthy normal weight; MUHNW-metabolically 
unhealthy normal weight 
ap-value: MHOW/O vs MUHOW/O, bp-value: NHNW vs MUHNW, cp-value: MHNW vs MHOW/O, dp-value: MUHNW vs MHOW/O 

 

 

 
Demographic parameters 
 
 

MHOW/O* 
n=205 

(39.3%) 

MUHOW/OϮ 
n = 160 
(30.7%) 

MHNW* 
n= 145 
(27.8%) 

MUHNWϮ 
n= 11 

(2.11%) 

 
 

p value a 

 
 

p value b 

 
 

p value c 

 
 

p valued 

Age (median + IQR) 40.00 5.00 42.00 7.00 41.00 6.00 42.00 9.0
0 

0.02 0.453 0.74 0.50 

% Alcohol drinkers 53.2  37.5  53.8  18.2  0.007 0.06 0.484 0.03 

% Smokers 17.6  26.9  24.1  27.3  0.025 0.554 0.235 0.258 

% Regular physical activity 45.4  33.1  50.3  36.4  0.012 2.92 0.209 0.758 

% White collar occupation 67.3  60  71.7  54.5  0.286 0.003 0.144 0.212 

% PMH 11.7  40  13.1  54.5  0.01 0.003 0.408 0.001 

% Tertiary education 53.7  42.5  57.2  36.4  0.037 0.152 0.290 0.356 

Table 3.1a: Demographic characteristics of study participants  as stratified into the four 
body composition phenotypes 
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Metabolic syndrome components 

MHOW/O* 
n=205 

(39.3%) 

MUHOW/OϮ 
n = 160 
(30.7%) 

MHNW* 
n= 145 
(27.8%) 

MUHNWϮ 
n= 11 

(2.11%) 

 
 

p value a 

 
 

p value b 

 
 

p value c 

 
 

p valued 

%WC >102cm (M) or >88cm (F) 27.8 78.8 2.1 72.7 0.001 0.005 0.01 0.543 

% FPG ≥ 5.6mmol/l or on Rx 7.3 54.4 4.8 54.5 0.001 0.001 0.237 < 0.01 

% SBP ≥ 130mmHg or DBP 
 ≥ 85mmHg or on Rx 

36.1 57.5 30.3 54.5 0.001 0.096 0.157 0.336 

% TG ≥ 1.7 mmol/l or on Rx 7.8 51.2 0.7 63.6 <0.001 0.001 0.001 0.01 

% HDL-C ≤1.29mmol/l (F) or 
≤1.02mmol/l (M) or on Rx 

8.3 63.1 9.7 63.6 <0.001 0.001 0.398 < 0.01 

Table 3.1b: Percentage of Met S components among study participants  as stratified into the four  
body composition phenotypes 

Data are expressed as percentages. 
*MHOW/O & MHNW: individuals having ≤1 NCEP ATPIII criteria from the following: waist circumference >102cm in men and >88 cm in women; systolic or diastolic blood 
pressure ≥130/85 mmHg or on antihypertensive medication; serum triglycerides ≥1.69mmol/L or on lipid-lowering medication; HDL-C <1.03 mmol/L in men and < 1.29 
mmol/L in women or on treatment aimed to increase HDL-C; fasting glucose ≥5.6mmol/L or on antihyperglycemic agents) 
Ϯ MUHOW/O & MHOW/O: individuals having ≥2 NCEP ATPIII criteria 
MHOW/O-metabolically healthy overweight/obese; MUHOW/O-metabolically unhealthy overweight/obese; MHNW-metabolically healthy normal weight; MUHNW-
metabolically unhealthy normal weight; NCEP ATPIII-  national cholesterol education program adult treatment panel III; M-male; F-female; WC-waist circumference; FPG, 
fasting plasma glucose; SBP-systolic blood pressure; DBP-diastolic blood pressure; TG- triglycerides; HDL-C – high density lipoprotein cholesterol; Rx - treatment 
ap-value: MHOW/O vs MUHOW/O, bp-value: NHNW vs MUHNW, cp-value c: MHNW vs MHOW/O, dp-value: MUHNW vs MHOW/O 
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  Table 3.1c: Anthropometric parameters and indices of obesity measurement of study participants  as stratified into the four 
body composition phenotypes 
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 Table 3.1d: Biochemical parameters of study subject as stratified into the four body composition phenotypes 
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Tables 3.2a-e shows the prevalence, demographic and metabolic characteristics of the study 

population stratified by the three different BMI categories (normal weight [BMI <25 kg/m2], 

overweight [BMI 25-29.9 kg/m2] and obese [BMI ≥30 kg/m2]) and MH (adopting the presence 

of ≤1 NCEP ATP III criteria to characterise the metabolically healthy phenotype), thus 

generating the six different body composition phenotypes: MHNW, MHOW, MHO, MUHNW, 

MUHOW, MUHO.  The population prevalence of each combination of BMI and metabolic 

phenotype are as follows:  MHNW-27.8%, MHOW-28.6%, MHO-10.7%, MUHNW-2.1%, 

MUHOW-8.1%, MUHO-22.6% (Table 3.2a).  

 

 72.6% (n=149) of the total healthy overweight/obese cohort were characterized as MHOW, 

whereas the majority (73%, n= 118) of the total unhealthy overweight and obese cohort 

consisted of individuals with obesity  and only 26% (n=42) fell within the overweight BMI 

category.  Thus, more than three quarters of the total overweight population was metabolically 

healthy (77.6%), whereas 67.8% of the total population with obesity   consisted of the 

metabolically unhealthy subtype.  
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Overall, the metabolically healthy phenotype was more prevalent in females, in those with a 

tertiary level of education and in those holding a white-collar (non-manual) occupation. There 

was a lower proportion of individuals within the overweight and obese BMI categories who 

engaged in some regular form of physical activity (Table 3.2b).  As expected, there was a trend 

towards increasing values for most anthropometric parameters and indices of obesity 

measurement (WC, BMI, NC, HC, WI, WTR, WHtR, BAI, CI, AVI, BRI and ABSI) as well as certain 

biochemical parameters (TC, LDL-C, HDL-C) from healthy normal weight to obesity state 

(Tables 3.2d-e).  

Within the unhealthy group, obesity was also associated with the female sex and lower 

likelihood of engaging in physical activity.  Similarly, there was also a significant trend towards 

an increase in values of a number of  anthropometric parameters and indices of obesity 

measurement from normal weight to obese BMI categories (including WC, HC, NC, AC, TC, WI, 

WHR, WHtR, AVI and BRI), however, this trend was not observed within certain biochemical 

parameters including lipid profile and fasting glucose levels (Tables 3.2b,d-e).  

Of note 7.7% and 3.7% of metabolically healthy participants with overweight and obesity  

respectively could be defined as being insulin resistant  as evident by the proportion of 

individuals having a HOMA-IR value of ≥2.5.   On the other hand, 22% of normal weight 

participants with Met S were insulin resistant and approximately half of the participants with 

obesity and Met S were insulin resistant (Table 3.2e). Moreover, while the overall prevalence 

of most Met S components increased with increasing BMI categories in both metabolically 

healthy and unhealthy participants (except for FPG and TG), the prevalence for increasing risk 

factors was higher across BMI categories in the metabolically unhealthy group (Table 3.2c).  
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  Table 3.2d: Anthropometric parameters and indices of obesity measurement of study participants  as stratified 
into the six body composition phenotypes  

 body composition phenotypes. 
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      Table 3.2e: Biochemical parameters of study participants  as stratified into  the six body composition phenotypes 
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Table 3.2d: (Continued) 
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3-1.2 Sensitivity analysis assessing the prevalence of the six different body 

composition phenotypes using more stringent and less stringent criteria of the NCEP 

ATPIII definition and HOMA-IR to define metabolic health 

Figure 3.1 compares the population prevalences of the six different body composition 

phenotypes -  MHO, MUHO, MHOW, MUHOW, MHNW and MUHNW using less stringent 

i.e. the presence of ≤2 cardiometabolic parameters of the NCEP ATPIII definition [NCEP- 

ATPIII 2 criteria] and more stringent criteria i.e. the presence of 0 cardiometabolic 

parameters of the NCEP ATPIII definition [NCEP-ATPIII Zero criteria] in addition to the 

standard criteria used previously (i.e. the presence of ≤1 cardiometabolic parameters of 

the NCEP ATPIII) as well the presence of IR as defined by HOMA-IR using a cut-off of <2.5 

to denote the metabolically healthy status. 

The population prevalence of MHO varied from 3.1% to 22.8% with the highest 

prevalence observed when categorising MH utilising HOMA-IR <2.5 classification (which 

is equivalent to the 81st percentile in this cohort of participants ); the prevalence of 

MHOW ranged from 18% to 34% with the highest prevalence attained when adopting 

the presence of ≤2  NCEP- ATPIII criteria.  The MUHNW phenotype ranged from 0.4% to 

6.9% with the highest prevalence detected when utilizing the presence of NCEP-ATPIII 

zero criteria.  
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Figure 3.1:  Prevalence of the six body composition phenotypes according less stringent and more stringent criteria of the NCEP ATPIII* 
and HOMA-IR** 

*Less stringent criteria implies the presence of ≤2 features of the NCEP ATPIII criteria (NCEP-ATPIII two criteria); more stringent criteria implies the presence of zero features of 
the NCEP ATPIII criteria (NCEP-ATPIII Zero criteria) to categorise the metabolically healthy phenotype ** A cut-off value of <2.5 denotes the metabolically healthy phenotype 
NCEP ATPIII-  National Cholesterol Education Program Adult Treatment Panel III; HOMA-IR, homeostatic model assessment of insulin resistance   
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3-1.3 Characteristics associated with the metabolically healthy phenotype among 

individuals with overweight and obesity  

When the overweight and obese BMI categories were considered, participants with  

metabolically healthy overweight or obesity  were less likely to have a past medical 

history (12.1% vs 35.7% for overweight and 10.7% vs 41.5% for obese categories; p = 

0.001) than their unhealthy overweight or obese counterparts (Table 3.3a).  However, 

there were no other significant differences in lifestyle characteristics between the 

healthy and unhealthy overweight and obese BMI categories. There was a significant 

difference in prevalence of Met S components between the healthy and unhealthy 

overweight and obese cohorts with higher proportions in the obese phenotypes (Table 

3.3b).  Compared to their unhealthy counterparts, participants  exhibiting either the 

healthy overweight or obese phenotype had lower values for indices of obesity 

measurement (implying lower amounts of visceral fat) while higher value for thigh 

circumference (reiterating the fact that these individuals preferentially accumulated 

fat in lower gluteofemoral subcutaneous areas) compared to individuals with MUHO 

or MUHOW (Table 3.3c). Furthermore, MHO and MHOW individuals presented with 

an overall better cardiometabolic profile: they had lower values for makers of glucose 

metabolism, IR, inflammation (ferritin) and TG, higher values for HDL-C but similar LDL 

and TC values when compared to their unhealthy counterparts.  (Table 3.3d).  On 

comparing participants with healthy overweight to those with  healthy obesity, no 

significant differences in lifestyle characteristics were noted.  However, the MHOW 

phenotype had lower values for most anthropometric parameters except for NC, WHR 

and VAI (p=0.283; p=0.827 and p=0.704 respectively). On the other hand, there were 
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no differences in lipid and glucose profiles between the two categories. Moreover, 

there was no difference in prevalence of Met S components between the two 

categories except for WC (p=0.001). There was a higher but nonsignificant proportion 

of MHOW individuals having a HOMA-IR value ≥2.5 when compared to MHO (7.7% vs 

3.7% p=0.256). Similarly, when comparing the unhealthy overweight and obese BMI 

cohorts together no significant differences were noted for lifestyle factors but 

significant differences for most anthropometric measurements of obesity were 

observed with the unhealthy overweight cohort having lower values except for the 

WHR. There was no difference in prevalence of Met S components between the two 

categories (except for WC). Finally, no differences were noted in the glucose and lipid 

profiles of both categories (Tables 3.3a-d).    
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Table 3.3a: Demographics of participants with  overweight and obesity stratified by metabolic health status 
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Table 3.3b: Percentage of Met S components among  participants with overweight and obesity  stratified by 
metabolic health status 
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Table 3.3c: Anthropometric parameters and indices of obesity measurement among participants with  overweight 
and obesity  stratified by metabolic health status 
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Table 3.3c: (Continued) 
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Table 3.3d: Biochemical parameters among participants with  overweight and obesity  stratified by 

metabolic health status 
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3-1.4 Comparison of the Met S and IR definition for metabolic health on the prevalence 

and characteristics of the different body composition phenotypes 

When taking into consideration both the Met S and IR criteria to define MH, only 

physical activity was significantly different between the healthy and unhealthy 

overweight/obese groups with respect to lifestyle characteristics.  On the other hand, 

significant differences in anthropometric and biochemical parameters were noted 

between the MHOW/O and MUHOW/O cohorts when considering both criteria. 

MHOW/O individuals differed from MUHOW/O individuals for the following 

cardiometabolic variables: Weight, BMI, WC, HC, NC, indices of central obesity 

measurement, prevalence of Met S components, FBG, HBA1c, HDL-C, TG, and HOMA-IR 

values (Tables 3.4a-d).  Therefore, overall, the MHOW/O participants  presented a 

better metabolic profile when compared to MUOW/O individuals using both the Met S 

and IR definition criteria for MH. Interestingly there were higher proportions of 

MHOW/O individuals defined by IR criteria who exhibited components of the Met S and 

higher overall values for indices of obesity measurement and anthropometric 

parameters when compared to MHOW/O individuals defined by the Met S criteria. Thus, 

overall, the IR definition for MHOW/O presented a worse cardiometabolic picture when 

compared to the NCEP ATPIII definition (Tables 3.4a-d).   

With respect to the normal weight individuals, the MHNW cohort had significant 

differences for several anthropometric and biochemical variables as well as for indices 

of obesity measurement (including BMI, WC, WHR, WI, VAI, WHtR, WTR,  CI, AVI, BRI, 

ABSI, LDL-C, TG, HDL-C) compared to MUHNW participants  when using the NCEP ATPIII 
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criteria to categorise MH, but no such differences were observed when utilising the IR 

criteria. Interestingly, while the MUHNW cohort as defined by the IR definition had a 

higher proportion of individuals exhibiting components of the Met S when compared 

with MHNW participants , these did not reach statistical significance (except for HDL-C). 

However, significant differences in proportions were observed when MHNW and 

MUHNW were defined by the NCEP ATPIII criteria (Tables 3.5a-d). Therefore, overall, 

individuals with MUHNW presented a worse cardiometabolic profile to MHNW when 

using the NCEP ATPIII definition of the Met S (Tables 3.5a-d).  
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Table 3.4a: Demographic characteristics of the MHOW/O and MUHOW/O phenotypes considering the ATPIII  and 
HOMA-IR definitions of metabolic health 
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Table 3.4b: Percentage of Met S components among MHOW/O and MUHOW/O phenotypes considering  the  
ATPIII  and HOMA-IR definitions of metabolic health 
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  Table 3.4c: Anthropometric parameters and indices of obesity measurement among MHOW/O and MUHOW/O 
phenotypes considering the ATPIII and HOMA-IR definitions of metabolic health 
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 Table 3.4d: Biochemical parameters among MHOW/O and MUHOW/O phenotypes considering 
the ATPIII and HOMA-IR definitions for metabolic health 
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Table 3.4d: Biochemical parameters among MHOW/O and MUHOW/O phenotypes considering the ATPIII 
and HOMA-IR definitions of metabolic health. 

Table 3.5a: Demographic characteristics of the MHNW and MUHNW phenotypes considering the ATPIII and HOMA-IR 
definitions of metabolic health 
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Table 3.5b: Percentage of Met S components among MHNW and MUHNW phenotypes considering the ATPIII  
 and HOMA-IR definitions of metabolic health 
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 Table 3.5c: Anthropometric parameters and indices of obesity measurement among MHNW and MUHNW phenotypes 
considering the ATPIII  and HOMA-IR definitions of metabolic health 
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Table 3.5d: Biochemical parameters among MHNW and MUHNW phenotypes considering the  
ATPIII and HOMA-IR definitions of metabolic health 
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3-1.5 Lifestyle determinants of the MHOW/O and MUHNW phenotypes   

To determine the factors which are independently associated with the prevalence of 

different body composition phenotypes, multivariate logistic regression techniques 

were applied to estimate the unadjusted and adjusted odds ratio (OR) and its 95% 

confidence interval for different demographic and lifestyle characteristics on MH in 

participants with normal weight and overweight/obesity . Body composition phenotype 

was inputted as the dependent variable whilst the demographic and lifestyle factors of 

interest  were incorporated into the regression model as the independent (predictor) 

variables.  The two body composition phenotypes of interest were the metabolically 

healthy overweight/obese phenotype (MHOW/O) and the metabolically unhealthy 

normal weight phenotype (MUHNW) as defined by either the NCEP ATPIII criteria of the 

Met S or by HOMA-IR.  

A) Lifestyle determinants  of the MHOW/O phenotype 

A multinomial regression analysis was carried out to estimate the odds ratio (and its 95% 

CI) of expressing ≤1 CM abnormalities associated with demographic and behavioural 

characteristics among individuals with overweight/obesity . Lifestyle characteristics 

which could be rapidly ascertained in the clinical setting, and which bear no relation to 

the definition of MH were incorporated into the regression model. Unadjusted 

prevalence ratios    were calculated    initially followed   by multivariate-adjusted models 

for all demographic and behavioural factors simultaneously.  
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Among individuals with  overweight and obesity , physical activity, alcohol consumption, 

non-smoking status, and age <40 years were associated with higher odds of the 

metabolically healthy phenotype (Table 3.6). 

In comparison, when the metabolically healthy phenotype was defined using the HOMA-

IR criteria (using a cut-off of <2.5 to define MH) only physical activity and non-smoking 

status were independently associated with the MHO state. No association with age, sex 

or alcohol consumption was observed (Table 3.7). 

 

 

Table 3.6: Lifestyle determinants of the MHOW/O phenotype as defined 
by the  ATPIII criteria* 

*Defined as the presence of ≤1 ATPIII criteria from the following: waist circumference >102cm in men and 
>88 cm in women; systolic or diastolic blood pressure ≥130/85 mmHg or on antihypertensive medication; 
serum triglycerides ≥1.69mmol/L or on lipid-lowering medication; HDL-C <1.03 mmol/L in men and < 1.29 
mmol/L in women or on treatment aimed to increase HDL-C; fasting glucose ≥5.6mmol/L or on 
antihyperglycemic agents;   
MHOW/O, metabolically healthy overweight/obese; ATPIII, Adult Treatment Panel III  
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Table 3.8 Lifestyle determinants  MUHNW as defined by 
the ATPIII criteria* 

 

*Defined as the presence of ≥2 ATPIII criteria from the following: waist circumference >102cm in men and >88 
cm in women; systolic or diastolic blood pressure ≥130/85 mmHg or on antihypertensive medication; serum 
triglycerides ≥1.69mmol/L or on lipid-lowering medication; HDL-C <1.03 mmol/L in men and < 1.29 mmol/L in 
women or on treatment aimed to increase HDL-C; fasting glucose ≥5.6mmol/L or on antihyperglycemic agents;   
MUHNW- metabolically unhealthy normal weight;  ATPIII, Adult Treatment Panel III  
 

Table 3.7  Lifestyle determinants of the MHOW/O 
 as defined by HOMA-IR* 
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B) Lifestyle determinants  of the MUHNW phenotype 

When a multinomial regression analysis was carried out to assess the independent 

determinants of the metabolically  unhealthy normal  weight phenotype (as  defined by 

the  presence of ≥2 cardiometabolic abnormalities of the NCEP ATPIII criteria) no 

significant associations were observed between behavioural characteristics (including 

physical activity, sex, smoking and age) and the metabolically unhealthy lean state 

(Table 3.8).  Furthermore, when the analysis was repeated using HOMA-IR as the 

definition of MH, no significant association between any of the lifestyle parameters to 

MH was similarly observed (data not shown).  
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3-2 Sex differences in the prevalence of the different body composition phenotypes  

Within the context of MH, the presence of visceral adiposity (as opposed to peripheral 

subcutaneous adiposity) is associated with an unhealthy metabolic phenotype, 

predisposing individuals within this metabolic category at higher risk for CVD  (Lapidus 

et al., 1984; Neeland et al., 2019).  WC is widely regarded as being a surrogate marker 

of visceral adiposity and is also directly linked with increased CVD (Pouliot et al., 1994; 

Stefan, 2020a; Yusuf et al., 2004). Furthermore it is also acknowledged that there are 

significant sex differences in the prevalence of overweight and obesity and in the 

distribution of fat (Chang et al., 2018).  Thus, another objective of this study was to 

explore the sex differences in the prevalence of each of the different body composition 

phenotypes as well as to investigate sex differences in anthropometric measurements 

and in CM parameters and in the relationship between the different BMI categories and 

MH.  For this analysis participants  were identified as having the metabolically healthy 

phenotype if they exhibited ≤1 of the cardiometabolic abnormalities of the NCEP ATPIII 

criteria for the Met S as described in chapter 2. Furthermore,  participants with  

overweight and obesity  were analysed separately in initial analysis thus generating the 

6 different body composition phenotypes. Thereafter they were analysed together as 

one entity and thus generating four body composition phenotypes (MHNW; MUHNW; 

MHOW/O; MUHOW/O). 

When stratifying the population by sex, BMI and MH, an increase in BMI was associated 

with an increase in the prevalence of metabolic abnormalities in both males and females 

(Figure 3.2a). Overall males were more likely to exhibit the metabolically unhealthy 

phenotype (41.3% vs 27.8%; p<0.001) (Figure 3.2b).  While the majority of normal 
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weight participants  were categorised as healthy, a higher percentage of males (10.3%) 

exhibited the MUHNW phenotype and only 6.3% of normal weight females were 

categorised as unhealthy. On the other hand, 73.9% and 82% of male and female 

overweight participants  respectively exhibited the MHOW phenotype but only 25.7% 

of males and 36.5% of females had the MHO phenotype (Figure 3.2a). 

A summary of the phenotypic differences observed between the two sexes in the entire 

study population is provided in Table 3.9 and Figure 3.3. Overall, males had a less 

favourable metabolic profile: they had higher FPG, HBA1c, HOMA-IR, TC, LDL-C, and TG 

but lower HDL-C when compared to their female counterparts. Males also exhibited 

higher median hip, neck, and arm circumferences.  On the other hand, females had  

larger median thigh circumference and overall lower values for most indices of obesity 

measurements (such as WHR, WHtR and WThR AVI, CI, VAI and BRI). Furthermore, 

despite males having a significantly higher median BMI than females (28.1 vs 26.8 kg/m2 

respectively), a lower  proportion of males exhibited an abnormally high WC (i.e. >102 

cm) (31.4% vs 39.1% p=0.048).  When considering the total population, a higher 

percentage of males exhibited the MUHOW phenotype (4.6% vs 3.5%), however a higher 

percentage of females had the MHO phenotype (12.7% vs 10.0%).  

Finally, when sex stratification was analysed for each of the six categories of MH, a 

significant difference in sex distribution was noted for each of the body composition 

phenotypes (Figure 3.4). 

  



195 
 

 

 

93.7%

6.3%

82.0%

18.0%
36.5%

63.5%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Metabolically
healthy

Metabolically
unhealthy

Metabolically
healthy

Metabolically
unhealthy

Metabolically
healthy

Metabolically
unhealthy

Normal weight Overweight Obese

P
e

rc
e

n
ta

ge

Females

Figure 3.2a: Percentages of metabolically unhealthy and healthy phenotype within each 
BMI category stratified by sex  
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Table 3.9: (Continued) 
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Centre lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the 
interquartile range from the 25th and 75th percentiles; individual data points are plotted as blue circles. A 
statistically significant difference in these four parameters across sexes was observed (Mann-Whitney U-test).  

 
Figure 3.3: Box and whiskers plot showing distribution of (A) BMI, (B) LDL-C, (C) HOMA-IR, 
and (D) VAI stratified by sex 
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Within the MHNW group, males had a higher BMI, neck, hip, and arm circumference, as 

well as WHR, WThR, WHtR, AVI, CI, BRI, and ABSI but similar WI and thigh circumference 

to female participants .  Furthermore, although being categorised as metabolically 

healthy, male participants had a less favourable cardiometabolic profile compared to 

their female counterparts. They, in fact had higher values for FPG, LDL-C, TG, HOMA-IR, 

LAP, and a lower HDL-C (Table 3.10). Due to the small number of participants  within the 

MUHNW category it wasn’t possible to derive any meaningful statistical comparisons in 

sex differences within this category (data not shown). 

When considering the MHOW/O group, males exhibited higher neck and arm 

circumferences as well as higher WHR, WThR, AVI, CI, and ABSI; however, they had a 

lower thigh circumference and waist index compared to their female counterparts.  Like 

the MHNW group, males had an overall worse cardiometabolic profile than females, 

even though they were categorised as being metabolically healthy.  In fact, they had 

higher values for FPG, HBA1c, LDL-C, TG, HOMA-IR, LAP, and a lower HDL-C.  Tables 3.11 

and 3.12 compare the clinical and biochemical characteristics in males and females in 

the MHOW/O and MUHOW/O categories respectively.  

Subsequently, a generalised linear model was constructed to evaluate the clinical 

determinants of HOMA-IR. Within the male cohort, BMI was the only significant 

predictor of HOMA-IR (β=0.092, 95% CI 0.046-0.119, p<0.01).  In females both the BMI 

(β=0.047, 95% CI 0.362-0.062, p=0.016) and WHR (β=1.91, 95% CI 0.362-3.45, p=0.016) 

were identified as significant determinants  of HOMA-IR.  Effect size estimates of BMI 

and WHR under different models are presented in Table 3.13. 
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Figure 3.4: Percentage of males and females within each of the six body composition 
phenotypes  
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Table  3.10: Sex differences in demographic, anthropometric, and biochemical 
parameters and indices of obesity measurement in the MHNW* phenotype 
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Table 3.10: (Continued) 
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Table 3.11: Sex difference in demographic, anthropometric, and 
biochemical parameters and indices of obesity measurement in the 

MHOW/O* phenotype 
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Table 3.11: (Continued) 
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Table 3.12: Sex difference in demographic, anthropometric, and 
biochemical parameters, and indices of obesity measurement in the 

MUHOW/O* phenotype 
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Table 3.13 Clinical determinants of HOMA-IR stratified by sex 
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3-3 Prevalence of the body composition phenotypes according to several different and 

commonly used definitions of MH and their association with insulin resistance  

To date there is no universally accepted definition for MH, and thus different authors 

have proposed several definitions each varying in terms of choice of parameters, their 

respective cut-offs as well as in the number of abnormal parameters needed to 

characterize a subject as being metabolically unhealthy.  Therefore, the aim of this study 

was to compare the prevalence of the different body composition phenotypes in the 

studied population according to several commonly used definitions of MH.  The 

definitions included were those proposed by Wildman et al., Doumatey et al., Meigs et 

al., Hamer et al., Aguilar-Salinas et al., Lynch et al., Karelis et al., and the harmonisation 

criteria by Lavie et al. Additionally the NCEP ATPIII criteria for the Met S was also 

included.   With respect to NCEP ATPIII, participants were classified as metabolically 

healthy when they met none of the criteria (NCEP0), if they exhibited a maximum of one 

abnormal parameter (NCEP1), or if they had a maximum of two abnormal criteria 

(NCEP2). Thereafter, sex differences in the relationship of the different body 

composition phenotypes to  MH and IR was also investigated and as a final analysis, 

logistic regression analysis was used to assess which of the above definition of  MH was 

the strongest predictor of IR and how this varied between the sexes. A description  of 

the   criteria  for  each of the  above-mentioned definitions is  found  in   chapter 2,   

Table 2-2.  

Complete data was available for 520 individuals of the sample population and thus 520 

participants  were included in this analysis of whom 36% were males. The prevalence of 

the various body composition phenotypes according to the different definitions is shown 
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in  Figure 3.5.  The prevalence of the metabolically healthy normal weight (MHNW) 

ranged from 16.3 to 29.4%; metabolically healthy overweight (MHOW) from 11.9 to 

32.7%; metabolically healthy obese (MHO) from 2.1 to 19.0%; metabolically unhealthy 

normal weight (MUHNW) from 0.6 to 13.5%; metabolically unhealthy overweight 

(MUHOW) from 4.0 to 25.0% and metabolically unhealthy obese (MUHO) from 14.4 to 

31.2%.  

Thereafter each of the definitions used to categorise the metabolically healthy and 

unhealthy individuals was compared to HOMA-IR.  In males, the metabolically unhealthy 

phenotype was associated with higher median HOMA-IR values for all definitions used 

(P<0.001 for all definitions) as shown in Table 3.14.  Within the female sex, a 

metabolically unhealthy phenotype was also associated with a higher median HOMA-IR 

value for all definitions, except for the Doumatey et al. criteria (Table 3.14).  On applying 

logistic regression, the metabolically unhealthy phenotype was consistently associated 

with the presence of IR (defined as a HOMA-IR ≥2.5) across all definitions and in both 

sexes.  However, there were notable sex differences in the performance of the various 

definitions of the metabolically unhealthy phenotype in the ability to predict IR, as 

evidenced by the odds ratios shown in Table 3.15 and Figure 3.6. In females the 

strongest observed association was for the NCEP-2 definition (i.e., having ≤2 abnormal  

NCEP-ATPIII parameters to characterize the metabolically healthy phenotype), as 

evidenced by an odds ratio (OR) of 19.7.  On the other hand, the Doumatey et al. criteria 

had lowest predictive ability in the female cohort (OR of 2.6).  Within the male sex, the 

strongest association was for the Aguilar-Salinas et al. definition for the metabolically 

healthy phenotype as evidenced by an OR of 18.7, followed by the Lynch et al. definition 
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(OR of 16.6) and the NCEP-2 (OR 13.1) definitions (Table 3.15 and Figure 3.6).  

Furthermore, the Doumatey et al. definition performed better in males than in females 

(OR of 12.2 vs 2.6 in males and females respectively).  When considering BMI category 

as the sole independent predictor of HOMA-IR ≥2.5, a lower predictive performance 

relative to a metabolically unhealthy phenotype (using any definition) was observed, 

with an OR of 1.90 in females and 2.07 in males (p<0.001). Additionally, even after 

adjusting for BMI category, the metabolically unhealthy phenotype was associated with 

a higher prevalence of having a HOMA-IR ≥2.5 for all definitions used and in both sexes 

(Table 3.15 and Figure 3.6). After adjusting for BMI category, the metabolically 

unhealthy phenotype as defined by the NCEP2 criteria retained the strongest association 

with IR in females (adjusted OR of 16.1), whilst in males, a metabolically unhealthy 

phenotype as defined by the Aguilar-Salinas et al. criteria was again observed to have 

the strongest association with IR (adjusted OR 15.3).  
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Figure 3.5: Prevalence (%) of the six body compositon phenotypes according 
to the different definitions of MH 

 

 

 



212 
 

 

 

 

Table 3.14: Comparison of HOMA-IR values for the metabolically healthy and 
unhealthy subgroups as classified by the different definitions and stratified by sex 
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  Table 3.15: Performance of the different definitions of MH in predicting 

insulin resistance defined as HOMA-IR ≥2.5 
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Figure 3.6: Odds ratios of the different definitions of MH in determining HOMA-IR ≥2.5 
 

Error bars indicate the standard error 
HOMA-IR, Homeostatic Model Assessment for Insulin Resistance  
NCEP, National Cholesterol Education Program/Adult Treatment Panel 
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3-4 Anthropometric and biochemical determinants of IR  

Insulin resistance and hyperinsulinemia are both associated with the presence of the 

unhealthy metabolic phenotype and are both independent predictors of CVD as well as 

all-cause, cardiovascular and cancer morality (Després et al., 1996; Facchini et al., 2001; 

Pan et al., 2020; Perseghin et al., 2012; Pyörälä et al., 2000). However, measures of IR 

may not be readily available in clinical practice. On the other hand, relatively simple and 

easily available anthropometric and biochemical parameters known to be associated 

with increased cardiovascular risk may be used as surrogate markers of IR (Gaziano et 

al., 1997; Jeppesen et al., 2001; Laws and Reaven, 1992; McLaughlin et al., 2003). 

However, data comparing the discriminatory power of these cardiometabolic 

parameters is lacking.  Besides, the cut-off for each parameter is uncertain, with 

different bodies citing different cut-off values. Additionally, these cut-offs were 

developed more than two decades ago; thus secular changes might have contributed to 

a change in the optimal cut-offs of the various parameters used to predict IR in clinical 

practice. Given the current epidemic of obesity and the concomitant increase in burden 

of cardiometabolic disease as well as the limited therapeutic resources available, 

identifying those individuals who are insulin resistant and therefore at greatest risk for 

CVD is paramount.  Furthermore, as discussed in the previous sections, not all individuals 

with overweight/obesity  tend to be insulin resistant while some normal weight 

individuals may be hyperinsulinemic as well as insulin resistant and thus at increased 

cardiometabolic risk. Therefore, early identification of these high-risk individuals with 

the use of simple and readily available markers of IR would allow for the channelling of 

timely and successful therapeutic interventions towards those who are most likely to 
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benefit from them.  Thus, the final objective of this section aimed to compare the 

discriminatory power of the various easily accessible anthropometric and biochemical 

parameters and indices derived thereof in predicting IR (defined as a HOMA-IR ≥2.5) and 

to determine their optimal cut-offs using receiver operator characteristics analysis 

(ROC). ROC analyses were used to compute the area under curve (AUC) to assess the 

performance of the several cardiometabolic variables in discriminating individuals  with 

IR.  Thereafter the highest Youden index (sensitivity + specificity -1) was used to 

determine the optimal cut-off points. (All analyses were performed using IBM SPSS 

version 26 and ROC analysis was performed using the easyROC R application, and cut-

off values were determined using the OptimalCutpoints R package R v.3.4.2) (Goksuluk 

et al., 2016; López-Ratón et al., 2014). 

521 individuals were included in this analysis. IR was defined as the homeostatic model 

assessment-insulin resistance (HOMA-IR) ≥2.5. This cut-off was chosen since it has been 

linked to increased mortality in large population-based studies as stated in previous 

chapters (Calori et al., 2011; Kuk and Ardern, 2009). In view of the sex differences in the 

relationship of anthropometric and biochemical parameters with IR observed in section 

3-2 of this chapter, males and females were studied separately.  

The relationship between HOMA-IR and several anthropometric, clinical, and 

biochemical indices of adiposity measures were investigated by Spearman’s correlation. 

A correlation matrix of HOMA-IR with quantitative anthropometric and biochemical 

indices respectively is provided in figures 3.7A-B. As expected, significant positive 

correlations were observed between HOMA-IR and anthropometric or biochemical 

indices of adiposity measures.  
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Table 3.16  shows the AUC of the receiver operator characteristics curve. In males the 

lipid accumulation product was observed to have the best discriminatory power to 

predict IR as evidenced by an AUC of 0.79.  Furthermore, the highest Youden index for 

LAP corresponded to a value of 42.5 with a sensitivity of 86% and a specificity of 63% 

(Figure 3.8(A)).  The visceral adiposity index (VAI), TG/HDL ratio and serum TG also had 

good discriminatory power (AUC of 78.4%, 78.6% and 75% respectively) (Table 3.16).  A 

value of VAI of 1.44 was associated with a sensitivity of 86% and a specificity of 65.8% 

(Figure 3.8(B)), whilst a triglyceride level of 1.35 mmol/L had a sensitivity of 76.2% and 

a specificity of 63.7%.  

On the other hand, in females, the VAI, lipid accumulation product and the TG/HDL ratio 

had equivalent discriminatory power to detect IR as evidence by an AUC of 82% for VAI 

and TG/HDL ratio and 81% for LAP (Table 3.16). A value of the lipid accumulation 

product of 36.2 had a sensitivity of 75.5% and a specificity of 80.4% to detect IR, while a 

value of VAI of 1.41 had 79.6% sensitivity and 77.8% specificity and a TG/HDL ratio of 

0.78 was associated with a sensitivity of 77.6% and a specificity of 76.9% (Figure 3.9 

(A&B)). Of note, serum TG level was also observed to have good discriminatory power 

(AUC of 78.1%), and a value of 1.33 had a sensitivity of 65.3% and a specificity of 85.9%.  

When looking at the discriminatory power of the anthropometric variables, within the 

female sex the WC emerged as being the best discriminator with an AUC of 76%, 

followed closely by the body mass index (AUC 74%) (Table 3.16).  The optimal cut-off for 

WC to predict IR was 82 cm with a sensitivity of 85.7% and a specificity of 53.3% (Figure 

3.9(C)).  The optimal BMI cut-off for females corresponded to a value of 31.9 kg/m2 with 

a sensitivity of 59% and a specificity of 80%. 
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Within the male sex, both BMI and WC were strongly associated with  IR (AUC of 73% 

and 70% respectively) (Table 3.16). The optimal cut-off for WC in predicting IR was 

96.5cm with a sensitivity of 72.1% and a specificity of 60.3% (Figure 3.8(C)), while the 

optimal cut-off for BMI corresponded to a value of 29.1 kg/m2 with a sensitivity of 74.4% 

and a specificity of 64.4%. Of note, the WHR, BAI, AVI, FI, HDL-C, serum uric acid, liver 

transaminase and weight adjusted thigh circumference all had poor discriminatory 

power, whereas ferritin level, systolic and diastolic blood pressure and ‘A’ body shape 

index did not even exceed significant thresholds in ROC analysis.   
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Figure 3.7: Correlation matrix between HOMA-IR and anthropometric/clinical indices of adiposity (A) and 
biochemical parameters (B) 

 

Colour depicts Spearman’s rank order correlation coefficient; circle size and colour intensity indicate the magnitude of the correlation 
coefficient. Significant corelation coefficients are labelled, empty cells represent insignificant correlation between indices 
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  Figure 3.9: ROC Curves for LAP, VAI and WC in predicating a HOMA-IR ≥2.5 in females 
 

 

   

Table 3.16:  Comparison of the Area under the ROC Curves for all anthropometric 
and biochemical determinants of IR,* stratified by sex 
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LAP, Lipid accumulation product; VAI, visceral adiposity index; WC, waist circumference; HOMA-IR, homeostatic 
model for insulin resistance 

Figure 3.9: ROC Curves for LAP, VAI and WC in determining a HOMA-IR ≥2.5 in females 

Figure 3.8: ROC Curves for LAP, VAI and WC in determining a HOMA-IR 2.5 in males  
 

LAP, Lipid accumulation product; VAI, visceral adiposity index; WC, waist circumference; HOMA-IR, homeostatic 
model for insulin resistance 
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3-5 Prevalence, characteristics, and determinants of the different body composition 

phenotypes 

Overall, this study shows that within a middle-aged Maltese population there was a high 

proportion of participants with overweight and obesity, furthermore whilst the 

prevalence of all six body composition phenotypes was common, this varied based on 

definition and gender. Interestingly, when adopting the presence of zero 

cardiometabolic parameters of the NCEP ATP III definition the prevalence of MHO was 

observed to be lower (3.1%) than that of the MUHNW (6.9%). This could be due to the 

presence of a normal waist circumference in the MHO cohort.  This study also found that 

younger age, alcohol consumption, physical activity and being a non-smoker to be 

associated with the metabolically healthy phenotype in participants living with 

overweight and obesity .  

 

3-5.1 Different prevalence rates when using the NCEP ATPIII or the HOMA-IR 

definitions of MH 

In this cross-sectional analysis more than two-thirds of the participants were found to 

be within the overweight or obese BMI category and  approximately one third were 

metabolically unhealthy when adopting the presence of at least 1 NCEP ATP III criteria 

as the cut-off.  The high prevalence of the metabolically unhealthy phenotype in a 

working-age population would be expected to result in an increased future 

cardiovascular disease burden in the Maltese population. . The prevalence of obesity is 

in accordance with that reported in the Maltese general population (Cuschieri et al., 
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2016a). Here the authors  observed that 69.75% (95% CI: 68.32–71.18) of the adult 

Maltese population suffered from excessive body weight and that the majority of 

patients living with T2 DM  were overweight or obese.   

The population prevalence rates for MHO , MHOW , and MUHNW  observed in this study 

are in keeping with two previous Spanish studies which also analysed a well 

characterized Mediterranean cohort as the study population but used different criteria 

to define MH: either the presence of Met S as per   NCEP ATP III (as per the study of 

Goday et al.) or having 0-1 cardiometabolic abnormalities including elevated SBP (≥130 

mm Hg)  and/or elevated DBP  ≥85 mm Hg and/or antihypertensive medication use; 

elevated triglycerides (≥150 mg/dL); low HDL-C (<40 mg/dL in men and <50mg/dL in 

women and/or lipid lowering medication use); elevated glucose (100mg/dL and/or 

antidiabetic medication use); insulin resistance (HOMA-IR >4.05, the 90th percentile); 

and elevated hsCRP (>0.74 mg/dL, the 90th percentile) as per the study of Lopez-Garcia 

et al., (Goday et al., 2016; Lopez-Garcia et al., 2017). 

 However, other Mediterranean studies report much lower prevalence rates for MHO:   

for example the Cremona study by Calori et al., observed a  population prevalence of 

healthy obesity among 2,074 individuals from the Lombardia region in Italy to be only 

2.1% when using the presence of insulin resistance as defined by HOMA-IR and a cut-off 

of <2.5 to denote MH  (Calori et al., 2011).  Conversely, using this  definition of MH in 

the current study resulted in the highest prevalence for MHO (22.8%) .  Another cross-

sectional study from Spain found a population prevalence of metabolically healthy 

overweight and obesity to be 16.4% (less than half the 39.3% observed in this study) 

when MH was defined as the presence of ≤1 cardiometabolic abnormalities of the Met 
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S according to the harmonized criteria proposed by the IDF and the American Heart 

Association  (Gomez-Huelgas et al., 2013).  On the other hand, while the Sicilian study 

by Buscemi et al., found an overall prevalence of overweight and obesity to be similar 

to that found in this study (71.1%), only 19% out of the total cohort where metabolically 

healthy overweight or obese when MH was defined as  0-1 conditions from the 

following: prediabetes/T2D, hypertension, hypertriglyceridemia or low HDL-C, and 

hypercholesterolemia.  Furthermore, they noted an MUHNW prevalence of 9.5% among 

the normal weight population which is reminiscent to the 7% noted in this study 

(Buscemi et al., 2017). Such discrepancies in prevalence rates for the healthy 

overweight/obese phenotypes could be attributed to the differences in the size and age 

range of the studied populations, the criteria used to define MH, differences in lifestyle 

and behavioural factors such as variations of adherence to the Mediterranean diet as 

well as variation in population genetics (da Silva et al., 2009; Moorjani et al., 2011; 

Vilarnau et al., 2019).  

Notably the prevalence of MHO among subjects living with obesity observed in this 

study (32%) is in keeping with that reported in the literature  (which ranged  between 9 

to 34% in older studies but even up to 75% in a recent systematic review) (Blüher, 2012; 

Phillips, 2013a; Rey-López et al., 2014). Over the past 10 years or so the prevalence of 

this unique obesity phenotype has been well studied and documented in different ethnic 

groups including Caucasian, Asian and African-American populations (Bonora et al., 

1998; Cherqaoui et al., 2012; Geetha et al., 2011; Hwang et al., 2012; Pajunen et al., 

2011; Shea et al., 2011; Wildman et al., 2008). For example, the study by Wildeman et 

al., (which looked at 5440 American civilians of different ethnicities including non-
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Hispanic blacks, non-Hispanic whites and Mexican Americans) observed a higher 

prevalence of MHO within non-Hispanic black participants and that after adjusting for 

several other confounding factors (including age, sex, smoking status and physical 

activity) people of this ethnicity were more likely to express the healthy phenotype 

(Wildman et al., 2008). In the Canadian study by Brochu et al., which looked at 43  

postmenopausal females with obesity (determined by the percentage of body fat rather 

than BMI), the authors identified 17 (39.5%) individuals  who had  high levels of insulin 

sensitivity (as assessed by the hyperinsulinemic- euglycemic clamp technique) despite 

having nearly half of their weight as body fat (Brochu et al., 2001).  An African American 

cohort study of 126 predominantly female individuals living with obesity  found  a total 

of 38.5% participants to have the MHO phenotype and in the Chinese study by Zheng et 

al. (who investigated adults aged over 20 years from seven geographically 

representative areas in China) the reported prevalence of MHO was of 27.9%  

(Cherqaoui et al., 2012; Zheng et al., 2015b).  The main reason that has been attributed 

to this wide range in prevalence of MHO is due to heterogeneity between the studies 

notably in the criteria used to define MH both in terms of adiposity assessment and 

choice of risk factor parameters and their respective cut-off values (Phillips et al., 2013; 

Velho et al., 2010). 

Moreover, in the comprehensive systematic review by Rey-Lopez et al. the prevalence 

of MHO was noted to range from 6% to 75%. Notably, they identified 30 different 

definitions of MH predominantly based on different combinations of blood pressure, 

HDL-C, TG and glucose levels.  They also noted that MHO was inversely related to age 

and a higher proportion of MHO prevalence was found in Asian populations then in 
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Caucasian or individuals  of multi-ethnic origins.  They ascribed these differences to 

marked variations in definition of MHO (less strict vs more strict criteria as in the studies 

of Meigs et al. and Karelis et al. respectively), differences in sociodemographic variables 

between the populations, selection bias from poorly described target populations and  

differences in   response rates   (Rey-López et al., 2014).   In a recent   metanalysis   by 

Wang et al. the authors aimed to summarise the prevalence of MHO and MUHNW 

worldwide.  They observed that American populations had the highest MHO prevalence 

and in contrast European populations had the highest MONW prevalence. They also 

noted that prevalence of MHO and MUHNW were also influenced by sex, age, smoking 

and alcohol consumption and criteria used to define MH (Wang et al., 2015). 

The highest prevalence for MHO in this study was seen when MH was categorised using 

HOMA-IR with a cut-off of <2.5 to denote the healthy phenotype (22.8%). This translated 

to around 67% of all individuals living with  obesity . However, understandably, only 9.2% 

of  individuals with obesity exhibited zero cardiometabolic parameters of the NCEP 

ATPIII criteria. When less stringent criteria were applied (that is the presence of ≤2 

features of the NCEP ATPIII criteria) the prevalence of MHO among  individuals with 

obesity was 64.9%.   Kuk and Arden also utilised the presence of one or zero Met S 

criteria according to NCEP ATPIII or IR (as defined by HOMA) to characterize the MHO 

phenotype within their sample population (selected from the NHANES III cohort). 

However, in their study they found the prevalence of MHO among individuals living with 

obesity to be higher when using the Met S criteria than when using HOMA-IR on its own 

(38.4% vs 30.2% respectively) while only 6.0% of individuals living with obesity  were 

free from any Met S parameters and IR implying there is minimal overlap between the 
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two definitions (Kuk and Ardern, 2009). Although the authors used the same cut-off 

value of HOMA-IR to classify MH (HOMA-IR ≥2.5) and defined Met S according to NECEP-

ATPIII criteria, they did not include WC as part of the definition of Met S.  This could, in 

part, explain the discrepancy in results with respect to the present study. 

In this study, a percentage of participants with metabolically healthy obesity/overweight 

and normal weight, were found to be insulin resistant (as defined by HOMA-IR) while 

only 22% of MUHNW individuals were insulin resistant implying that sole use of the 

ATPIII or HOMA-IR definitions to categorise MH may be insufficient to truly identify 

metabolically healthy individuals and therefore a combined definition may be more 

sensitive.  Similar findings were also observed in the study by Meigs et al., which also 

reported the prevalences of  MHO and MUHNW when using  either IR or the Met S to 

define MH in the same cohort.  Accordingly, they found that 32% of individuals with 

normal weight and Met S (as defined by the NCEP ATPIII criteria) to be insulin resistant, 

34% of participants with obesity  but without Met S to be insulin resistant, 14.9% of their 

metabolically healthy overweight participants  to be also insulin resistant, whereas only 

68% of participants living with obesity  and with Met S were insulin resistant (Meigs et 

al., 2006). These proportions are considerably higher  when compared to those observed 

in this study and could well be due to different cut -off values used to define HOMA-IR.  

In this study a cut-off of <2.5 was taken to imply insulin sensitivity whereas in the study 

by Meigs et al., the authors defined insulin sensitivity as the three lower quartiles of 

HOMA-IR (<75th percentile). This cut-off has the disadvantage that the proportion of a 

population with IR is fixed even if it is changing with time. It also means that different 
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populations would have the same overall prevalence of IR, even though the mean 

measure of IR is different (Meigs et al., 2006).  

In addition to this, they also observed that the presence of either Met S or IR (regardless 

of level of BMI), conferred similar risk in terms of magnitude for incident CVD (about a 

2-fold increased risk) or diabetes (4- to 11- fold increased multivariable risk) after 

approximately 11 years of follow-up. They also observed that individuals who were  

obese and insulin-sensitive  were associated with a 3-fold increased risk of developing 

T2DM when compared with insulin-sensitive normal weight individuals but on the other 

hand were at lesser risk when compared to their obese insulin-resistant counterparts.  

Furthermore, the presence of the metabolically unhealthy normal weight phenotype 

conferred a higher risk for developing T2DM when compared to individuals who were 

obese but  insulin sensitive.  Thus, this lends support to the notion that the presence of 

the MHO phenotype is not totally benign (as was previously thought) and its risk is 

intermediate between that of the MHNW and MUHNW phenotypes (Meigs et al., 2006). 

On the same thought was the meta-analysis by Kramer et al., which found that both the 

presence of the healthy obese state and the metabolically unhealthy phenotype 

(irrespective of the BMI) to be at increased risk of all-cause and cardiovascular mortality 

when compared to healthy normal weight individuals.  Moreover, the MUHNW 

phenotype conferred the same risk for these events as the metabolically unhealthy 

obese phenotype (Kramer et al., 2013). All things conserved, this reiterates that both 

the MUHNW and MHO phenotypes are not without risk and the risks conferred by the 

MUHNW phenotype equate to those of the highest risk group (i.e., the MUHO 
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phenotype), implying that attention should also be given to this subgroup in terms of 

risk factor control.   

Thus, the definition of what constitutes ‘metabolically healthy’ clearly makes an impact 

on the prevalence of the different BMI–metabolic risk phenotypes. However caution 

must be exercised when categorising individuals as being ‘metabolically healthy’ since 

individuals with excess adiposity (irrespective of metabolic status) are also at increased 

risk of several other debilitating health conditions such as metabolic dysfunction-

associated steatotic liver disease (MASLD), obstructive sleep apnoea, osteoarthritis, 

urinary incontinence and some forms of cancer which are also associated with  higher 

morbidity and mortality and therefore necessitating the treating clinician to make a  

timely diagnosis and institute  treatment for these conditions even in people who are 

otherwise ‘healthy’ from a metabolic stand point.  

 

3-5.2 Characteristics and associations  of the MHO and MUHNW phenotype 

In this study substantial differences in demographic and behavioural/ lifestyle 

characteristics were observed between the different body composition phenotypes.   

With respect to sex, significant sex differences were seen across all six body composition 

phenotypes. Overall females were more likely to exhibit the healthy metabolic 

phenotypes and whilst out of the total population there was a higher percentage of 

females with MUHNW, a greater proportion of normal weight males had the MUHNW 

phenotype.  
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With respect to lifestyle and behavioural factors, metabolically healthy individuals were 

more likely to consume alcohol, engage in some form of physical activity, occupy a 

white-collar occupation and have a higher education level when compared to unhealthy 

individuals irrespective of BMI.  Moreover, MHO and MHNW individuals had comparable 

lifestyle and behavioural characteristics.   

As expected, metabolically healthy participants  presented better profiles for most 

anthropometric and biochemical parameters, compared to their metabolically 

unhealthy counterparts irrespective of whether they were of normal weight or 

overweight/obese. For example, they had higher HDL-C and lower TG and LAP. The latter 

is an index of central lipid accumulation and of visceral obesity and has been used to 

predict the risk of Met S, subclinical atherosclerosis, and cardiovascular risk (Kahn, 2005; 

Li et al., 2017). On the other hand, while total cholesterol was lower within the 

metabolically healthy overweight/obese group, the opposite was true in the normal 

weight group.  This may be partly because total cholesterol reflects both subcutaneous 

fat and muscle mass (Park et al., 2012b). Metabolically healthy subjects (irrespective of 

BMI) were also observed to have lower serum ferritin levels.  Ferritin is an acute phase 

protein and is regarded to be a marker of subclinical inflammation which in turn is 

thought to be responsible for the cardiometabolic complications observed in obese 

states (Cho et al., 2022).  Interestingly,  some studies demonstrate  a lower inflammatory 

profile (including lower circulating levels of C-reactive protein, plasminogen activator 

inhitor-1 [PAI-1], TNF-α and IL-6) as being one of the mechanisms to explain the 

apparently healthy metabolic profile among individuals with MHO (Kloting et al., 2010; 
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Karelis et al., 2005; Jung et al., 2015). Furthermore, even though BMI was used to 

categorise individuals into being either of normal weight or overweight/obese, 

metabolically healthy individuals still had a lower BMI within their respective categories.  

Metabolically healthy individuals  also had lower values for most obesity indices 

compared to the unhealthy cohort across all BMI categories.  These included the BAI, 

VAI, CI, AV, BRI, and ABSI.  The body adiposity index is a marker of total body fat 

(Bergman et al., 2011), whist the other indices are markers of visceral fat (Guerrero-

Romero and Rodríguez-Morán, 2003; Maessen et al., 2014; Thomas et al., 2013). These 

anthropometric markers have been shown to predict CVD (Park et al., 2012b; Snijder et 

al., 2003). 

When individuals with  MHOW/O are compared to those with  MHNW, the former were 

observed to have a worse cardiometabolic profile (including higher values for markers 

of subclinical inflammation, IR and lipid metabolism)  and this was despite them  being 

classified as metabolically healthy.  This finding is in agreement with other studies which 

observed the MHO status to be associated with a worse micro metabolic milieu 

(including higher levels of visceral fat, oxidative stress and chronic inflammation) 

compared to healthy controls  and which is not being picked up by current screening 

criteria (Su et al., 2022). Furthermore, there are also studies which observed no 

significant differences in markers of inflammation between MHO individuals and those 

with metabolic obesity leading authors to speculate  that subtle abnormalities in these 

micro indicators could well explain the increased cardiometabolic disease risk observed 

in MHO individuals (Du et al., 2015; van Wijk et al., 2016; Dong et al., 2019). Therefore, 

this implies that current screening criteria cannot truly identify a cohort of individuals 
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with obesity who are healthy.  This consolidates the notion that MHO is an intermediate-

risk state between that of MHNW and MUHO and due to the dynamic nature of disease 

risk, the MHO phenotype may be regarded as a transient state such that given enough 

time it will degenerate into a metabolically unhealthy state with the consequent 

increase in cardiometabolic disease risk. 

 When comparing the MHOW/O to the MUHNW phenotypes using the Met S definition, 

a lower proportion of individuals with  MHOW/O  exhibited one or more metabolic 

syndrome components  , despite having a higher BMI. These findings are not unexpected 

since these parameters are used to categorise such individuals. However, they also had 

a lower visceral adiposity index and higher thigh circumference, both of which are 

known to be associated with decreased cardiovascular risk. On the other hand, they had 

similar waist, hip and neck circumferences, waist-hip ratio,  IR (as measured by HOMA-

IR) and serum ferritin levels. These findings again underscore that the MHO phenotype 

also carries its own risks which probably lies somewhere between that of metabolically 

healthy normal weight and that of metabolically unhealthy normal weight categories.  

When looking at the determinants for MHO phenotypes within the studied population, 

regression analysis revealed several demographic and behavioural characteristics to be 

associated with being overweight/obese but metabolically healthy. It was observed that 

physical activity, alcohol consumption, non-smoking status and younger age to be 

independently associated with  the metabolically healthy overweight/obese phenotype 

according to either the Met S  or IR definitions.  On the other hand, within the normal 

weight cohort no significant associations were observed between lifestyle 

characteristics and the unhealthy state when  MH was defined by either Met S or IR 
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criteria.  However, there was a trend for participants  with an unhealthy metabolic 

phenotype to have increasing age (over 40 years) and not to participate in any physical 

activity or consume alcohol. 

Some of the findings in this study were echoed in several other American, Asian and 

European studies. For example, the Sicilian study by Buscemi et al., found that older age, 

male sex, and an inactive lifestyle to be characteristic of the unhealthy phenotypes 

whereas the female sex, younger age and participation in physical activity to be more 

closely associated with the healthy obese phenotype (Buscemi et al., 2017). In the US 

NHANES 1994-2004 study by Wildman et al., the authors noted that younger age, 

modest alcohol intake, non-Hispanic black ethnicity, and greater physical fitness to be 

associated with the MHO phenotype while older age, lower physical activity and a larger 

WC to be associated with  the MUHNW phenotype (Wildman et al., 2008). Similar results 

were also observed in an Iranian study where the authors also observed increasing age 

and abdominal obesity to be inversely associated with the healthy obese state whereas  

increasing age and smoking to be associated with an  unhealthy metabolic state in 

normal weight individuals (Hajian-Tilaki and Heidari, 2018). The Spanish study by Goday 

et al. found that out of a number of lifestyle factors (including age, sex, occupation, 

smoking and alcohol intake, BMI and physical exercise), the parameters most strongly 

associated with the unhealthy metabolic phenotype were BMI and age  (Goday et al., 

2016).  Furthermore, another Spanish study which assessed the MHO phenotype using 

different definitions noted that low physical activity was associated with the unhealthy 

obese state irrespective of the criteria used to define MH, but smoking and alcohol 

intake habits were not different when comparing MHO with MUHO under any of the 
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criteria used (Martínez-Larrad et al., 2014).  This contrasts with the study by Phillips et 

al., which found that physical activity was similar between the healthy and unhealthy 

states regardless of BMI value in a cohort of Irish individuals  (Phillips et al., 2013). 

While studies have consistently shown that several biological and genetic factors to be 

implicated in the pathogenesis of the MHO phenotype, when it comes to 

sociodemographic and other modifiable behavioural and lifestyle characteristics, only a 

handful of studies are available and these showed conflicting results (Iacobini et al., 

2019; Phillips, 2013a; Stefan et al., 2013). Moreover, the determinants of the MUHNW 

phenotype have been even less well-studied. Most studies carried out in different 

populations and across different ethnicities concur that in terms of demographic 

characteristics the MHO state occurs more frequently  in the female sex and younger 

individuals and that increasing age and being male to be associated with the unhealthy 

metabolic phenotype (Wildman et al., 2008; Goday et al.,2016;  Buscemi et al., 2017; 

Iacobini et al., 2019). With respect to lifestyle and behavioural factors, most studies 

focussed on the role of diet, fitness, tobacco smoking and alcohol intake as being a few 

of the potential contributors towards MH. 

Clearly, certain behavioural characteristics (which are modifiable) have contributed 

significantly towards the obesity epidemic and may also partly explain the heterogeneity 

of metabolic abnormalities observed among individuals with obesity.  Notably, the 

dietary environment has changed drastically in the last century to one which is energy 

dense and high in fat content, and in tandem with the global rise in urbanisation and 

sedentary behaviours, an increased state of positive energy imbalance follows which 

leads to increased accumulation of adipose tissue and the onset of overt obesity (Camhi 
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et al., 2015b, 2013). The study by Camhi et al., assessed whether physical activity, 

sedentary behaviour and diet preferences differ between healthy and unhealthy young 

females with obesity by using a combination of questionnaires and an accelerometer to 

calculate level of physical activity. They noted that MHO females had healthier overall 

lifestyle habits: they spent less time doing sedentary activities, more time doing light 

physical activity and preferred healthier dietary fats and fibre then MUHO females 

(Camhi et al., 2015a). With regards to dietary composition, some studies show no 

differences between dietary macronutrient intake and overall total calorie intake 

between MHO and MUO individuals (Phillips, 2017; Phillips et al., 2013). On the other 

hand, one study which used data from the NHANES cohort noted superior dietary quality 

scores as assessed by the Healthy Eating Index 2005 scores among healthy female  

adolescents and adults living with obesity but not in the male counterparts. These 

findings might prove pivotal when instituting dietary intervention targets especially 

starting from an earlier time in life.  The Mediterranean style diet (MSD) has long been 

known to have beneficial effects on cardiovascular risk factors (Camhi et al., 2015b; 

Estruch et al., 2018; Phillips, 2017). In a study by Park et al. which also looked at 

participants from the NHANES III cohort noted that individuals with MHO and who 

adhered to the MSD had lower risk of all-cause mortality but such observation was not 

seen among individuals with MUHO  (Park et al., 2016). A recent comprehensive cross 

sectional study by Philips et al. which investigated  the  role of dietary composition and 

quality, food pyramid compliance, physical activity, alcohol and smoking behaviour in a 

cohort of 2047 individuals found no differences between in macronutrient composition, 

dietary quality and total calorie intake between MHO and MUO but moderate and high 
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levels of physical activity and compliance with food pyramid recommendations increase 

the likelihood of MHO (Phillips et al., 2013).  

This present study found higher alcohol consumption in the metabolically healthy group 

compared with the metabolically unhealthy group among  participants with both 

overweight/obesity and normal weight. Furthermore, on regression analysis, alcohol 

intake was found to be associated with the healthy overweight/obese phenotype in this 

study.  This was also noted in the survey by Wildman et al. (Wildman, 2008; ).  Several  

studies have also reported the beneficial effects of modest alcohol intake on both 

glucose and lipid metabolism with various authors reporting alcohol consumption to be 

associated with increased HDL-C levels as well as decreased prevalence of the Met S. 

Others also observed an association between alcohol intake and lower LDL-C levels.  

Such effects on lipid parameters would be expected to improve on cardiovascular risk 

although this is not captured by current definitions of MH (Muga et al., 2019; Rosoff et 

al., 2019). Furthermore, the finding of an association between alcohol consumption and 

improved metabolic health in participants with overweight and obesity in this study can 

also be in part explained by the French Paradox  - a term coined in 1992 to describe the 

epidemiological observation of a low incidence of cardiovascular disease in the French 

population, despite a diet relatively rich in saturated fats, a phenomenon potentially 

attributed  to the moderate consumption of red wine (Renaud et al., 1992; Haseeb et 

al., 2017) .  Red wine is rich in flavonoid phenolics such as resveratrol, the presence of 

which have been linked to vascular protection possibly mediated by an increased in 

plasma antioxidant activity and consequent inhibition of LDL-C oxidation which is an 

important event in the formation of the atherosclerotic plaque (Goldfinger, 2003).   
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Furthermore, Justice et al., demonstrated that exposure of Wistar rats to alcohol for 2 

months not only led to higher HDL-C and lower total cholesterol and oxidised LDL levels 

but also to a significant reduction in expression of hydroxymethylglutaryl-coenzyme A 

reductase (the rate-determining step in cholesterol synthesis) and in sterol regulatory 

element-binding protein-2 (a transcription factor in cholesterol synthesis) together with 

up-regulation of paraoxonase-1 (known to inhibit LDL oxidation).  These observations 

collectively suggest that alcohol may improve lipid profile via down-regulation of genes 

involved in cholesterol synthesis and up-regulation of genes that protect against LDL 

oxidation and thus the onset of atherogenesis (Justice et al., 2019). Adding to these 

findings is the observation that the Mediterranean diet (which also includes moderate 

consumption of red wine) has been consistently found to be associated with improved 

cardiometabolic outcomes and all-cause mortality in different populations (Estruch et 

al., 2018; Di Daniele et al., 2017).   

 On the other hand  the detrimental effects include raised TG levels and increased 

abdominal obesity which may partly reflect the lack of consistent relationship between 

MHO and alcohol intake found in other studies (Kroenke et al., 2003; Martínez-Larrad et 

al., 2014; Velho et al., 2010). The relationship between alcohol intake and MH may 

therefore be bimodal.   

Smoking was observed to be more prevalent in individuals with  metabolically unhealthy 

overweight/obesity  than in their metabolically healthy counterparts in the current 

study. However, no relationship between smoking and an adverse metabolic profile was 

found.  In the US NHANES study, smoking also was not associated with the unhealthy 

metabolic phenotype both in normal weight and in individuals living with obesity  
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(Wildman, 2008); this is in contrast to a Russian study which found that smoking was 

associated with the unhealthy phenotype in lean individuals  (Rotar et al., 2017). While 

no associations were also  observed in this study between smoking status and the 

MUHNW phenotype, most studies found smoking status to be a potential contributor 

towards the unhealthy normal weight phenotype.  In fact, in the metanalysis by Wang 

et al., the prevalence of the MUHNW phenotype was higher in participants  who smoked 

and consumed alcohol (Wang et al., 2015). This could potentially be due to a decrease 

in insulin sensitivity through both a direct acute effect of smoking as well as smoking-

associated decrease in muscle mass and central fat distribution (Attvall et al., 1993; 

Canoy et al., 2005; Lee and Choi, 2019). Smoking is also associated with metabolic 

derangement such as an adverse effect on lipid profile (Marano et al., 2015). Further 

research into the effects of smoking and alcohol intake are required for better 

understanding of their role in MH.  

The beneficial effects of physical activity on overall weight status is indisputable and  

recent reports also confirmed that in individuals living with overweight and obesity  , 20 

minutes of physical activity among other lifestyle factors can lead to the same mortality 

risk as in normal weight people (Iacobini et al., 2019; Matheson et al., 2012). Physical 

activity is known to improve insulin sensitivity, lower blood pressure and improve lipid 

profile (Che and Li, 2017; Conn et al., 2014). However, the favourable effects of exercise 

on MHO and MUHNW have not always been consistent.  In this study  metabolically 

healthy individuals  were more likely to be physically active than their metabolically 

unhealthy counterparts in indiviuals with both overweight/obesity and normal weight . 

Furthermore, physical activity remained an independent determinant for the MHO state 
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after adjustment for other lifestyle characteristics.  This could relate to the underlying 

fact that concurrent physical activity in MHO individuals leads to increased fatty acid 

oxidation and higher fat utilization than in MUHO individuals (Iacobini et al., 2019; Pujia 

et al., 2016). However, this finding has not been reproduced in other studies (Pajunen 

et al., 2011; Phillips et al., 2013). Within the MUHNW cohort one study noted that 

physical activity and energy expenditure were lower when compared to a control group 

(Dvorak et al., 1999). Conus et al. attempted to identify the metabolic, behavioural and 

lifestyle phenotypes that could distinguish MUHNW females from the MHNW.  They 

found that despite similar BMI values between these two groups the MUHNW females 

exhibited lower physical activity energy expenditure and lower peak oxygen uptake vs 

MHNW females. Furthermore, while both MHNW and MUHNW females had similar 

eating behaviours in terms of energy intake and measures of disinhibition and hunger, 

the MUHNW individuals showed less dietary restraint than MHNW females which  also 

happened to be an independent predictor of insulin sensitivity (Conus et al., 2004).  

Whether the healthy phenotype transitions into an unhealthy state over time has been 

debated over the past decade.  The importance of identifying potential underlying 

behavioural and other modifiable lifestyle characteristics stems from the fact that they 

could be key factors in preventing degeneration of the metabolically healthy state to the 

unhealthy state.  Dietary, and other lifestyle factors such as physical activity have all 

been shown to play an important role in the development of IR, T2DM and CVD  (Manson 

et al., 2002; Phillips, 2013b; Tuomilehto et al., 2001). The study by Schroder et al. 

showed that increases in certain anthropometric surrogate markers of abdominal 

obesity (including BMI, WC and WHR) predicted the degeneration into the unhealthy 
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obese state whereas a healthy lifestyle (including participation in physical activity, non-

smoking and eating a healthy diet) decreased the risk for this transition (Schröder et al., 

2014). The current obesity epidemic entails that better improvements in obesity 

diagnosis and management particularly in those at higher cardiometabolic risk is 

paramount.  Other factors apart from modifiable lifestyle characteristics such as 

assessing adiposity by body fat percentage together with BMI and assessing of 

inflammatory status has been shown to help identify both obese and lean individuals at 

greater cardiometabolic risk. Thus, taking into account metabolic risk in people living 

with obesity or normal weight might help not only in identification of individuals at 

greatest risk but also in ascertaining appropriate interventional strategies (Phillips and 

Perry, 2013).  
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3-6 Sex differences in prevalence and in cardiometabolic abnormalities among the 

different body composition phenotypes 

This objective sought to provide an overview of the sex differences in the prevalence of 

the various phenotypes of interest when stratifying MH by the presence of ≤1 

cardiometabolic abnormalities of the NCEP ATPIII criteria. This criterion was chosen 

since it has been linked with cardiovascular events and all-cause mortality in various 

studies as well as meta-analyses (Eckel et al., 2015; Hinnouho et al., 2015; Kuk and 

Ardern, 2009; Jung et al., 2014; Dalzill et al., 2014; Kim et al., 2016; Eckel et al., 2015; 

Park et al., 2016).    Within the female population living with obesity, 36.5% were 

observed to be MHO whereas within the male population living with obesity, 25.7% 

were observed to be MHO; however when looking at the population prevalence there 

was no significant difference in MHO prevalence between male and females 3.5% vs 

7.3% respectively. The potential explanation for this could be due to the differences in 

fat distribution patterns in both sexes by virtue of the different effects of sex hormones 

on fat deposition (such that males are more prone to android obesity [central /visceral 

fat deposition ] and females are linked to gynaecoid obesity [lower body / 

gluteofemoral fat]).  The latter is considered protective with respect to metabolic 

disturbances whilst the former is associated with increased cardiometabolic disease 

risk.  Furthermore, males have a higher degree of visceral and ectopic adiposity for a 

given BMI (and WC) compared to females which may also in part explain the lower 

prevalence of MHO in males. 

Males were more likely to be unhealthy despite higher levels of alcohol consumption 

and higher reported physical activity. The beneficial effect of physical activity on several 
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CM diseases is  well-known and documented in the literature. While there is still limited 

and somewhat conflicting data with respect to the effect of physical exercise in MHO, it 

is generally observed that physical (cardiorespiratory) fitness is associated with 

improvement and maintenance of MH in individuals living with obesity  (Al-Rashed et 

al., 2020; Sattelmair et al., 2011; Shabkhiz et al., 2021).  

Although alcohol consumption is associated with a rise in serum TG, it has also been 

linked to improvements in MH by some authors (Enríquez Martínez et al., 2019; Muga 

et al., 2019) but not by others (Würtz et al., 2016). Additionally, there was a higher 

proportion of males who were classified as insulin resistant (as evidenced by a ≥HOMA-

IR 2.5) when compared to females. 

Thus, these data suggest that contemporary middle-aged Maltese males to be 

inherently more metabolically unhealthy than their middle-aged female counterparts. 

One of the reasons may be due to a secular decline in serum testosterone in males over 

the last few decades as has been reported by various authors (Mazur et al., 2013; 

Perheentupa et al., 2013). Testosterone is associated with the improvement of several 

metabolic parameters, such as serum lipids and insulin sensitivity (Kelly and Jones, 

2013). The reasons for this secular decline in serum testosterone is largely unknown, 

however, it cannot be solely explained by increasing male obesity (Mazur et al., 2013). 

Other putative contributing mechanism have included dietary factors (Fantus et al., 

2020) and the presence of environmental pollutants (Scinicariello and Buser, 2016).  

Interestingly, since even normal weight males were more often observed to be 

metabolically unhealthy than normal weight females in this population, then this might 
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suggest the need to introduce sex-specific BMI cut-offs to better characterise MH.  

Furthermore, there was a lower proportion of males exhibiting an abnormally high WC 

when compared to females, and this was despite the fact that they had a less favourable 

metabolic profile (in terms of glycaemic, lipid and liver enzyme parameters) and despite 

being metabolically unhealthy more frequently.   

Thus, these data also suggest that the currently used cut-off for WC as per the NCEP 

ATPIII criteria (which were developed in 2001) and subsequently adopted by the 

American Heart Association and the National Heart, Lung and Blood Institute 

(AHA/NHLBI) in 2004 may be too high in males at least in some populations (Grundy et 

al., 2004; NCEP, 2001). The decline in serum testosterone over the last decades could 

have also altered the relation between WC and visceral fat.  The WC is a maker of intra-

abdominal adiposity which in itself takes into consideration both subcutaneous as well 

as visceral fat depots, however it should be noted that males have a higher degree of 

visceral adiposity for a given WC (Camhi et al., 2011; Kuk et al., 2006).  In animal studies, 

testosterone was associated with preferential reduction in visceral rather than 

subcutaneous adipocyte size (Abdelhamed et al., 2015). Furthermore, androgen 

deprivation in humans has been reported to cause a greater increase in visceral fat area 

than in subcutaneous fat area (Hamilton et al., 2011). In these patients, a significant and 

negative association between total testosterone and visceral but not subcutaneous fat 

area was observed (Hamilton et al., 2011).  It may therefore be possible for the secular 

decline in serum testosterone in males over the last decades to result in a lower WC 

being predictive of IR.  In this study there was no difference in the waist index between 

males and females, however this is a derived index based on current cut-offs. Thus, if a 
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lower cut-off for WC were to be used, the median waist index would be higher in males, 

which would be consistent with their worse metabolic parameters, again suggesting that 

the current cut-offs may be too high for males in this population. In keeping with the 

notion that males have more visceral fat for a given WC , this study also observed them 

to have higher values for indices of central obesity measurements such as WHR, WHtR 

and WTR. 

Females, on the other had exhibited higher neutrophil-lymphocyte (NLR) and platelet-

lymphocyte ratios (PLR), both of which have been associated with increased CVD risk 

(Dentali et al., 2018; Horne et al., 2005). The divergence of metabolic and 

haematological risk factors observed between the two sexes may be related to sex 

differences in the pathogenesis of CVD.  Both the NLR and PLR are associated with 

microvascular disease (Fawwad et al., 2018; Okyay et al., 2015), which is thought to be 

a more importance pathogenic mechanism in females (Seidelmann et al., 2016; Wong 

et al., 2002).  

These data also suggest that the anthropometric determinants  for IR may be differ 

according to sex. In this analysis, BMI was found to be the only significant and 

independent determinant  of HOMA-IR in males, while both BMI  and WHR were 

significant independent determinants  in females.   This is in keeping with the fact that 

for a given BMI, males tend to accrue a higher proportion of fat in visceral and ectopic 

areas than females.  Conversely, females tend to have more subcutaneous fat (Camhi et 

al., 2011) which has been reported to be associated with increased leptin expression 

(Montague et al., 1997). Leptin has been shown to improve insulin sensitivity (D’souza 

et al., 2017; Levi et al., 2011). Since WC in females is a stronger marker for abdominal 
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subcutaneous fat rather than for visceral fat, and since subcutaneous fat in the 

gluteofemoral regions contribute to the hip circumference, the WHR may be a better 

overall marker of visceral adiposity than the uncorrected WC in females. 

In conclusion males were generally observed to be more metabolically unhealthy and 

more insulin resistant than females in this contemporary sample of middle-aged 

individuals. Furthermore, a divergence in metabolic and haematological risk factors 

between the two sexes was observed. Namely, males were observed to have an 

abnormal WC less frequently than females despite having a higher median BMI 

suggesting that currently used cut-offs for WC should be revised downwards in males.  

Similarly, normal weight males were more like to be metabolically unhealthy than 

normal weight females, implying that BMI cut-offs may also need to be lowered in 

males. Conversely, females were more likely to exhibit higher neutrophil-lymphocyte 

and platelet-lymphocyte ratios which is consistent with established sex differences in 

the pathogenesis of CVD. Thus, these results merit further investigation. Furthermore, 

since the relationships between anthropometric parameters and MH are likely to vary 

across different age and ethnic groups, future studies should be conducted aimed at 

replicating and validating this study using revised cut-offs within other contemporary 

populations.  Furthermore, longitudinal prospective studies should be carried out in 

order to further assess the role of these cardiometabolic alterations in the causal 

trajectory to CVD.  
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3-7 Variation in prevalence rates and in prediction of insulin resistance when using 

different criteria to define metabolic health 

Since  currently there are no standardised criteria for the diagnosis of the metabolically 

healthy phenotype, several definitions have been proposed and replicated in studies by 

other authors (Velho et al., 2010).  The most widely cited criteria are those proposed by 

Karelis et al. (2004), Meigs et al. (2006), Aguilar-Salinas et al. (2008), Wildman et al. 

(2008) and Lynch et al. (2009).  Essentially these criteria incorporate different 

combinations of Met S parameters and/or measures of IR and/or the use of 

inflammatory markers (CRP) to define the healthy metabolic status (Aguilar-Salinas et 

al., 2008; Karelis et al., 2004a; Lynch et al., 2009; Meigs et al., 2006; Wildman et al., 

2008). Thus, the objective of this study aimed to assess the prevalence of the different 

body composition phenotypes when using the above definitions (and others) to define 

MH.   

The findings demonstrate that within a contemporary middle-aged Maltese population, 

there are considerable differences in the prevalence of each of the body composition 

phenotypes when using different diagnostic criteria.  Overall, these results are 

reminiscent to those observed in previous studies (Liu et al., 2019; Phillips et al., 2013; 

Velho et al., 2010). Furthermore, the present study reinforces the need to adopt a 

population-specific approach in the definition of MH, since the criteria applied to this 

Mediterranean population were developed for Northern European / American 

Caucasians and may not be generalisable. While most definitions incorporate the 

presence of certain cardiometabolic abnormalities (such as dysglycaemia, 

hyperlipidaemia or hypertension), inflammatory and immune biomarkers (such as hs-
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CRP) and / or the presence of IR to categorise MH,  these diagnostic criteria need to be 

reproduced and validated in specific populations to account for the regional differences 

in genetic admixture, demographics, background prevalence of obesity as well as 

variation in anthropometric characteristics.  In fact, the prevalences of the different 

body size phenotypes reported in this study are markedly different to those quoted 

when the same definitions were used in other populations.  For example, when using 

the Aguilar-Salinas et al. criteria to define the metabolically healthy status in an Irish 

population, Phillips and Perry et al. observed a much lower prevalence of the MHOW/O 

phenotype (2.2% compared to 45.2% in this study when applying the same definition) 

and of MHNW phenotype (8.8% vs 25.0% in this cohort) (Phillips and Perry et al., 2013). 

However, one should note that direct comparison between studies is limited by 

population-specific differences in life-style factors, variable patient ascertainment 

criteria, the impact of genetic factors on adiposity and fat distribution patterns as well 

as temporal changes in the prevalence of the body size phenotypes.   

Additionally, all definitions of MH were found to have a higher predictive value with 

respect to IR than BMI alone in both males and females. This is in-keeping with the 

importance of incorporating MH as opposed to the use of simple BMI-based classifier 

when assessing CM risk. Notably, the metabolically unhealthy phenotype remained a 

strong predictor of IR for all the definitions used even after adjusting for BMI category 

within both sexes.   

Although over the last two decades many studies have been conducted which aimed to 

assess the prevalence and characteristics of the different body composition phenotypes, 

few have compared the strength of the association of MH with IR when using the 
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different definitions applied in this study.  Therefore, this data is important and novel as 

it shows which definition has the strongest association with IR.   

This objective also brings out important sex-specific effects in the ability of the various 

definitions of MH to predict IR.  As already explained before, a cut-off value of HOMA-

IR of ≥2.5 was chosen since this threshold was associated with increased mortality in 

previous studies (Kuk and Arden, 2009; Calori et al., 2011; Durward et al., 2012). Within 

the female sex, the NCEP2 definition was the single strongest predictor of  IR compared 

to the other definitions even after adjusting for BMI category (OR 19.7)  On the other 

hand, the definition by Aguilar-Salinas et al. proved to be the strongest predictor of IR 

in males (OR of 18.7), followed by that of Lynch et al. and NCEP-2 even after adjusting 

for BMI.  Interestingly, the Doumatey et al., definition also performed much better in 

males than in females (an OR of 12.2 vs 2.6 respectively).  There are possible 

physiological mechanisms that underlie the observed sex-specific differences in 

associations.  Females are known to exhibit greater blood pressure variability than males 

(Boubouchairopoulou et al., 2021). This may be mediated by greater baroreceptor 

sensitivity and by greater sensitivity to changes in dietary sodium in females (Sacks et 

al., 2001; Veiz et al., 2021). Thus, the increased blood pressure variability would be 

expected to create greater inaccuracies when characterising the different body 

composition phenotypes especially for those definitions requiring only one abnormal 

criterion to classify an individual as metabolically unhealthy (as are those by Aguilar-

Salinas et al., Lynch et al., Doumatey et al., NCEP0 and Lavie et al). On the other hand, 

the NCEP-ATPIII criteria use a higher cut-off for WC in males than in females and as 

demonstrated earlier this cut-off may be too high in males. This may thus explain the 
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stronger association of the NCEP2 definition of MH with IR in females compared to 

males.  The Aguilar-Salinas et al. definition uses identical cut-offs for HDL-C in males and 

females as opposed to the other definitions, thus it is significantly lower in females than 

the one used by NCEP ATPIII (1.0 vs 1.3mmol/L respectively).  The former may thus be 

too low, and which may in part explain why the NCEP-2 definition performed better than 

that proposed by Aguilar-Salinas et al. In females.  Females are known to have inherently 

higher HDL-C (Cho and Kim, 2021; Palmer and Toth, 2019). In fact data from the US 

National Health and Nutrition Examination Survey indicates that the optimal HDL-C cut-

off to predict CVD to be 1.45 mmol/L in females and 1.06 mmol/L in males (Moon et al., 

2015).  However, these cut-offs are likely to differ among populations such that in 

Koreans the optimal HDL-C cut-offs were observed to be 1.24 mmol/L in females and 

1.11 mmol/L in males (Moon et al., 2015). 

Thus, the various currently used definitions of MH carry important caveats whose 

interpretation may have different impacts within a clinical context.  The present MH 

definitions are based on findings from investigations carried out in different ethnicities.  

Furthermore, there is extensive between-study heterogeneity, with the use of different 

sample sizes and different sex proportions.   

These factors might have contributed to the observed variation between males and 

females reported in this study.  Additionally, while most definitions categorise 

individuals  as metabolically  healthy or unhealthy according to the presence or absence 

of specific cardiometabolic abnormalities, most were not derived from studies which 

assessed the association of MH with IR or CVD (Karelis et al., 2004a; Aguilar-Salinas et 

al., 2008; Wildman et al., 2008; Lynch et al., 2009; Doumatey et al., 2012). Of note an 
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additional definition of the metabolically healthy phenotype proposed by Meigs et al. is 

based solely on HOMA-IR values below the 75th centile (Meigs et al., 2006).  In the 

present study, this definition was not explored since one of the objectives was to 

investigate which classification is most predictive of IR hence obviating the need to 

determine HOMA-IR values (which may be cumbersome and not readily available for 

use in clinical practice). Furthermore, using this definition will result in a fixed prevalence 

of the metabolically unhealthy phenotype (i.e. 25%) in all populations and at all times 

and hence does not account for the dynamic nature of IR based on population-specific 

differences in cardiometabolic risk. On the other hand, while the definitions proposed 

by Wildman et al., and Karelis et al., also incorporate similar cut-offs for HOMA-IR, they 

also incorporate additional biochemical and anthropometric criteria.  Hence although 

these definitions were used to calculate the prevalence rates of the various body size 

phenotypes in this study, they were not entered in the logistic regression analyses to 

predict IR using HOMA-IR.  

Thus, these results demonstrate that the prevalence of the various body size 

phenotypes is highly dependent on the definition criteria used to categorise MH, 

thereby highlighting the need for standardization of definitions. Nonetheless, 

irrespective of which definition was used, the metabolically unhealthy phenotype was 

more strongly associated with IR than when using BMI as the sole classifier to define at-

risk groups. Furthermore, the metabolically unhealthy phenotype using any of the 

definitions available, was associated with IR even after adjusting for BMI category.  Thus, 

this study informs on the importance of incorporating MH in patient stratification since 

this offers additional information on cardioembolic risk compared to BMI alone.  The 
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sex-differences observed in the predictive value of the various definitions used to 

predict IR (as measured by HOMA-IR) also suggests the need for sex-specific definitions 

of MH.  Thus, future studies should strive to replicate these findings in other age groups 

and across different populations as well as to evaluate the longitudinal relationship of 

these different definitions with long term cardiometabolic outcomes.  
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3-8 Differences in discriminatory power of several cardiometabolic parameters in 

determining  insulin resistance  

The final objective of the epidemiological studies aimed to compare the discriminatory 

power of the various anthropometric and metabolic parameters known to be associated 

with IR and increased cardiovascular risk in predicting IR as well as to determine their 

optimal cut points. The results demonstrate that several routinely available parameters 

can be used to predict IR in clinical practice.    With respect to biochemical markers,  the 

lipid accumulation product (LAP) and/or visceral adiposity index (VAI) in both males and 

females was observed to be of clinical utility in the prediction of IR.  On the other hand  

the BMI and the WC were both observed to be the anthropometric parameters with the 

highest discriminatory power to predict IR in males and females.   

At the forefront of the CM parameters was the LAP, which was observed to have the 

highest discriminatory power in males and a similar discriminatory power to both VAI 

and TG/HDL ratio in females.  This parameter incorporates both the WC and serum TG 

in its calculation, both of which are independently associated with increased CVD risk 

(Hokanson and Austin, 1996; Huxley et al., 2010). Furthermore, in-keeping with this 

observation, both the WC and serum TG (which are components of the LAP) were found 

to have good discriminatory power in both sexes.  The WC is a well-established marker 

of visceral adiposity, which in turn is strongly associated with IR. In fact, studies which 

looked at individuals with both normal weight or obesity observed that those   with 

metabolic abnormalities have higher intrabdominal visceral fat deposition and were at 

highest CM risk irrespective of BMI (Kramer et al., 2013; Meigs et al., 2006; Ruderman 

et al., 1998; Sahakyan et al., 2015). Moreover, Eckel and colleagues found that normal 
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weight individuals  who developed T2DM had higher WC values compared to normal 

weight counterparts without incident diabetes despite both falling within a range 

considered to be ‘normal’, and despite falling below the recommended thresholds for 

the Met S criteria (Eckel et al., 2015). Although it also incorporates abdominal 

subcutaneous fat, which is thought to be less detrimental than visceral fat, the WC was 

a strong predictor of IR in both sexes in this analysis and performed better than the BMI, 

which is consistent with previous data (Grundy et al., 2013; Magri et al., 2016). 

Additionally, WC has also been shown to predict incident T2DM (Wei et al., 1997) and 

CVD independent of BMI (Dagenais et al., 2005; Zhang et al., 2008). VAI also emerged to 

be closely related to IR in both males and females.  The VAI is a sex-specific index and it, 

too, incorporates measures of the WC, serum TG and HDL-C values as well as the BMI. 

VAI is an indicator of visceral adipose dysfunction and has been shown to be 

independently associated with both cardiovascular and cerebrovascular events as well 

as to have a negative correlation with insulin sensitivity under clamp studies (Amato et 

al., 2014). 

Interestingly, the TG/HDL ratio was not significantly better than TG levels on their own 

in predicting IR in both sexes, whereas HDL-C had poor discriminatory power in both 

males and females. HDL-C exhibits higher heritability than other lipids (Robertson et al., 

1980). It also has much higher hereditability when compared to IR (Montali et al., 2015), 

implying that environmental factors that affect IR have much less impact on overall HDL-

C values.  Furthermore, many genetic polymorphisms that have been shown to affect 

HDL-C concentrations would not be expected to affect IR (Liu et al., 2021a; Rozhkova et 

al., 2021; Vitali et al., 2017). While epidemiological data show that low HDL-C values are 
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negatively associated with CVD, most known genetic variants that affect HDL-C levels 

are not associated with the risk of CVD (Kawashiri et al., 2018; Rosenson et al., 2018; 

Vitali et al., 2017). Thus, dysfunctional HDL-C may be more important in identifying IR 

and is not captured by simply measuring serum HDL-C levels (Kappelle et al., 2011; 

Riwanto et al., 2015). In keeping with these results is the study by McLaughlin et al. 

which also found fasting plasma TG concentration and plasma TG/HDL-C ratio to have 

similar and an equally good discriminatory power to fasting serum insulin concentration 

in identifying IR (defined by insulin-mediated glucose disposal during an insulin 

suppression test) in participants with  overweight (McLaughlin et al., 2003). 

Furthermore, they also observed HDL-C to have less diagnostic utility in identifying 

insulin resistant individuals.  However, they did not find any interaction between the 

sexes and the predicative ability of these markers for IR.  They observed cut-off values 

of 1.8 or greater for the TG/HDL-C ratio and a triglyceride concentration of 1.47mmol or 

greater to identify insulin resistant individuals with reasonably similar sensitivity and 

specificity to the ATPIII criteria. Thus, they argue that since low HDL-C is associated with 

increased CVD risk, the TG/HDL-C ratio makes for an appealing clinical marker to identify 

insulin resistant individuals at high cardiovascular risk.   

In this current study, the optimal cut-off for serum TG to predict IR was 1.35 and 1.33 

mmol/L for males and females respectively.  These are much lower than the 1.7 mmol/L 

recommended by the NCEP ATPIII criteria and many others (including the IDF).  There is 

surprisingly little data to support the use of the 1.7 mmol/L cut-off. Serum TG are 

strongly and independently associated with IR,  

T2DM and CVD (Hokanson and Austin, 1996; Laws and Reaven, 1992). However, the risk 
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for CVD starts to increase at much lower levels, for example a TG level of >0.68 mmol/L 

was associated with increased risk for CVD in Korean individuals  (Kim et al., 2022). 

Recently, Imano and co-workers reported that the best cut-off for non-fasting TG to 

predict ischemic heart disease in Japanese individuals  to be 1.24 mmol/L (Imano et al., 

2023). Lipoprotein lipase activity is known to be impaired in insulin resistant states 

resulting in elevated TG levels (Maheux et al., 1997; Panarotto et al., 2002). Since 

circulating FFAs are the major determinant of hepatic TG production and packaging into 

very low-density-lipoprotein, serum TG levels may be a marker of FFA levels (also known 

as non-esterified fatty acids [NEFAs]) (Adiels et al., 2006; Vatner et al., 2015). The latter 

are thought to be causally related to IR and are also known to inhibit lipoprotein lipase 

activity thereby resulting in a further increase in circulating TG levels (Liang et al., 2013; 

Randle et al., 1963; Saxena et al., 1989). Prospective contemporary and longer-term 

studies assessing serum triglyceride levels on hard outcomes such as CVD and T2DM are 

required to re-evaluate optimal cut-points for serum TG levels in different populations.  

With respect to anthropometric parameters, the WC emerged as being the best 

predictor for IR in females and of similar discriminatory power to the BMI in predicting 

IR in males.  For both parameters the optimal cut-points were observed to be lower 

(96.5 cm and 88 cm in males and females respectively) than the currently recommended 

cut-offs by the NCEP ATPIII criteria (102cm in males and 88cm in females). Importantly, 

the ATPIII definition was designed in 2002 to facilitate the diagnosis of the Met S in 

clinical practice in comparison to the previously existing definitions (those proposed by 

WHO and the European Group for the study of Insulin Resistance [EGIR]), notably by 

excluding the presence of insulin resistance as an obligatory component for the 



257 
 

diagnosis to be made (Balkau et al., 2002; NCEP, 2001; World Health Organization, 

1999). Furthermore, it had lower diagnostic thresholds for certain characteristics (such 

as HDL-C and hypertension) and higher thresholds for others (WC).  In fact, both the 

EGIR (developed in 2002) and, subsequently, the International Diabetes Federation (IDF) 

definitions (developed in 2005) of the Met S use lower cut-offs for WC for both males 

and females.  The EGIR definition, which introduced the WC as a measure of central 

obesity (in contrast to the waist-hip ratio purported by the WHO criteria) was a major 

conceptual advance since although still a crude measure of abdominal fat, the WC was 

found to correlate better with visceral adipose depots (as measured by computed 

tomography) and with IR (Balkau et al., 2002; Pouliot et al., 1994). The cut-points 

proposed were ≥94 cm in males and ≥80 cm in females, albeit without introducing 

ethnic-specific cut-points.  The more recent IDF classification aimed to introduce a 

unifying world-wide definition as well as to update levels and cut points in the diagnosis 

of the syndrome to reflect the growing obesity epidemic as well as to better predict CVD 

risk.  Indeed, the IDF definition considers obesity to be one of the main drivers for the 

development of the Met S and its constituent components as well as increasing CVD risk. 

Thus, for persons to be identified as having the Met S they must have evidence of central 

obesity as defined by country/ethnic-specific values for WC (Appendix 2 gives a 

summary of the different definitions of the Met S as proposed by the different 

organizations).  The cut points proposed for Europids (which is the ethnic group 

pertaining to the population in this study) were ≥94 cm for males and ≥80 cm for 

females, which are by far lower than the ATPIII cut points used in this study.  These 

values were based on cross-sectional data which showed them to be associated with an 
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adverse cardiovascular risk profile (Alberti et al., 2006). In fact, these cut-offs have been 

subsequently adopted by both WHO and EGIR.  Thus, the finding of a lower optimal cut-

off for WC in males and females in this population is both in accordance with the newer 

IDF criteria cut points and with the previous finding in this study that males were more 

likely to be metabolically unhealthy and more insulin resistant than females despite 

exhibiting an abnormal WC less frequently. This may also suggest that changes in fat 

distribution patterns, a decrease in muscle mass and the secular decline in serum 

testone levels in males may have resulted in a lower cut-points for WC to be predictive 

of IR (Guimarey et al., 2014; Sedlak et al., 2020; Żegleń et al., 2022). Furthermore, cut-

offs for WC to define high-risk groups are likely to be population specific especially since 

there is data which shows clear differences across ethnic populations in the relationship 

between overall adiposity, abdominal obesity and visceral fat accumulation reinforcing 

the notion that cut-offs may need to be revised downwards at least for this population.  

In conclusion this data shows that within a Maltese Caucasian middle-aged population 

both the LAP and the VAI constitute relatively simple metabolic markers which can help 

identify those individuals who are sufficiently insulin resistant and therefore at higher 

risk for adverse cardiovascular outcomes. While serum TG and WC were also observed 

to have relatively good discriminatory power in predicting IR in both males and females, 

the optimal cut-offs for both TG and WC were lower than those currently recommended 

by the NCEP ATPIII criteria in both sexes.  This thus calls for replication of the study in 

other populations of European descent as well as in other racial groups and in different 

age ranges in order to be able to update cut-offs to ones which reflect the contemporary 
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population as well as to evaluate their longitudinal relationship with longer-term 

outcomes. 
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3-9 Study strengths and limitations  

This study has several strengths.  Primarily it involved the recruitment of a well-

characterised, homogenous, and adequately sized representative sample of middle-

aged adult participants  across the Maltese Islands. The preferential selection of a 

middle-age population was such so that the participants would have lived long enough 

for phenotypic expression while eliminating the potential of survival bias which could 

have led to an underestimation of effect size. Additionally, sarcopenic obesity, which is 

defined as the age-related decline in muscle mass coupled with higher adiposity and IR 

is uncommon in this age group. Loss of muscle bulk results in a lower BMI for the degree 

of adiposity supporting the notion that prevalence of MHO decreases with increasing 

age (Velho et al., 2010). Thus, other age groups should be studied separately since 

relationships between anthropometric parameters and MH are likely to vary across 

different age groups because of the age-related changes in muscle mass and function as 

well as in fat distribution. 

Standard methods for data collection and for definition of MH were used, as already 

validated in previous studies. Furthermore, data collection, measurements of the body 

composition parameters and blood makers were carried out prospectively using robust 

measurement techniques in a controlled setting and by the same investigator (R. A.) 

rather than relying on retrospectively collected data or yet still, self-reported data, thus 

ensuring accuracy of all the information collected and the avoidance of potential sources 

of bias or interobserver variability. Biochemical parameters were centrally analysed 

under appropriate quality control.  
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This study carries some limitations.   While standard definitions of Met S and IR were 

used to characterize the metabolically healthy from unhealthy phenotypes in the initial 

analyses, this study lacks information pertaining to adipokines, cardiorespiratory fitness, 

or dietary intake. Several studies have found the MHO phenotype to be associated with 

a better adipocytokine profile (including high adiponectin and low leptin levels) 

compared to the unhealthy obese state (Aguilar-Salinas et al., 2008; Mauriége et al., 

2020).  Additionally, one large study found that MH (when defined as the presence of 

≤1 cardiometabolic abnormalities) to be associated with increased cardiorespiratory 

fitness (Ortega et al., 2013).  Therefore, inclusion of these criteria to differentiate the 

healthy from unhealthy phenotypes could have resulted in different prevalence rates.  

Furthermore, metabolic health was defined as the presence of ≤1 components of the 

NCEP ATPIII criteria. This definition was chosen since it has already been validated in 

several prospective studies which  investigated cardiovascular disease and mortality risk 

in different populations and thereafter cited in the literature by several other 

researchers (Hinnouho et al., 2015; Kuk and Ardern, 2009; Jung et al., 2014; Dalzill et al., 

2014; Kim et al., 2016). Whilst acknowledging that this definition allows for the presence 

of one metabolic abnormality and hence does not truly reflect a ‘healthy’ obese state as 

observed by Lavie and co-workers (Lavie et al., 2018), this study also looked at how 

prevalence varied when metabolic health was defined as meeting zero of the five criteria 

of the Met S. 

BMI was used as an index of obesity measurement and thus it could have misclassified 

individuals with short stature or muscular build. It is acknowledged that the use of 

convenience sampling as opposed to stratified random sampling may have led to a 
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higher proportion of females than males being recruited (due to the voluntary nature of 

recruitment), and which may thus explain the skewed sex ratios observed in this study. 

While this study investigated a cohort of participants whose characteristics were 

reminiscent to that of the local population, this modality of cohort recruitment does not 

affirm that the cohort is fully representative of the general population and therefore 

limits extrapolation of the results within the general Maltese population and globally. 

However, the results obtained were consistent with a previous population study 

reported by another group of   Maltese authors (Cuschieri et al., 2016a). 

Furthermore, in this study, participants were categorized according to currently used 

definitions of adiposity and metabolic health, however it is acknowledged that cut-offs 

for each cardiometabolic parameter used in the definition of metabolic health is 

arbitrary and risk is likely to increase progressively with each unit change in risk factor 

parameter and BMI.  Therefore, it will be useful for future studies to investigate such 

risk using each cardiometabolic parameters as a continuous variable. 

The  cross-sectional design of this study precludes the direct evaluation of the 

interaction between the different body composition phenotypes and sex and in the 

consequent development of cardiometabolic disease. This study was specifically 

conducted in Maltese individuals of Caucasian ethnicity, thus these findings are limited 

to this population may not be extrapolated to other ethnic groups, especially since there 

are racial differences in the relationship of IR to anthropometric and biochemical 

parameters.  Therefore, it is important that other authors replicate these findings in 

other age-matched ethnic/racial groups.  
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Up until now this is the first study in Malta to evaluate the prevalence and characteristics 

of the different body composition phenotypes in such a well-characterized population.  

So far little is known about the characteristics and determinants of the different 

phenotypic traits in the Maltese Islands.  Familiarity with potential predictors of adverse 

MH will help identify those patients with higher metabolic and cardiovascular risk and 

who may benefit most from preventive measures or interventional treatment.  
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In conclusion the findings from this study show that although the prevalence of 

overweight and obesity is high, the prevalence of the MHO and MUHNW phenotypes 

are comparable to other European studies. However, the wide range in prevalence rates 

observed when using different criteria to define MH emphasises the pressing need for a 

unified and standardised definition.  Furthermore, currently used cut-offs for certain 

anthropometric parameters may need to be revised downwards to reflect a more 

contemporary population at least in middle-aged individuals. Based on the results 

obtained using the Youden index, the optimal cutoff levels in this population for waist 

circumference and BMI were observed to be  82cm and  31.9 kg/m2 respectively in women and 

96.5cm and 29.1 kg/m2 respectively in men.  Further prospective analyses are anticipated 

aiming to assess the influence of genetic predisposition factors and early life / maternal 

characteristics on the different body composition phenotypes in the Maltese Islands. 

This would in turn, allow for better risk stratification and the tailoring of customised 

preventive and cost-effective treatment paradigms when managing the different types 

of ‘obesities’ rather than adopting the traditional ‘one size fits all’ approach.  
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Chapter 4 – Mitochondrial DNA copy 
number and metabolic health 
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4-1. Mitochondrial DNA copy number and metabolic health 

Mitochondria are subcellular organelles located within the cytoplasm of eukaryotic cells 

and contain their own double-stranded circular DNA genome that primarily encodes for 

proteins involved in oxidative phosphorylation and ATP generation. They are thus 

primarily responsible for cellular energy generation and for maintaining metabolic 

homeostasis but also have essential roles associated with cellular proliferation, 

differentiation, and apoptosis,  free radical production, and calcium homeostasis (Kiefel 

et al., 2006; Kim et al., 2013c). Effectively, mitochondria convert ingested nutrients into 

useable energy via a highly regulated electron transport chain whereby a proton 

gradient leads to the synthesis of ATP from ADP and phosphate via the process of 

oxidative phosphorylation. Despite their key role in cellular energy production and in 

the dissipation of reactive oxygen species (ROS), mitochondria are sensitive to oxidative 

stress and the resultant oxidative damage and dysfunction particularly in tissues 

involved in nutrient metabolism such as adipose, liver and skeletal muscle has been 

postulated to contribute towards the development of several chronic metabolic 

disorders such as T2DM and CVD (Rani et al., 2016).  During conditions of nutrient 

excess, the mitochondrial substrate load increases resulting in a surge in ROS production 

within the mitochondrial milieu promoting oxidative stress – a state where there is loss 

of balance between oxidative and anti-oxidative processes within cells. These changes 

lead to damage of cellular proteins, lipids and nucleic acids causing cell damage and 

dysfunction of key cellular pathways within the mitochondria including abnormalities in 

fatty acid beta oxidation and glucose oxidation which in turn have been associated with 
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abnormal lipid accumulation as NEFA and the downstream onset of IR and other 

metabolic disorders  (Bournat and Brown, 2010; Hirabara et al., 2009; Lin et al., 2005).  

Studies have demonstrated that abnormalities of mitochondrial bioenergetics 

specifically a reduction in the abundance of cellular mitochondria are linked to disorders 

associated with cardiometabolic risk, such as IR, T2DM, obesity, hypertension, and 

atherosclerotic CVD (Johannsen and Ravussin, 2009). Over the past few years, 

quantification of mitochondrial DNA copy number (mtDNA CN), a surrogate index of  

mitochondrial content, has emerged to be a potential biomarker of mitochondrial 

dysfunction in clinical practice (Castellani et al., 2020; Malik and Czajka, 2013). 

Mitochondrial dysfunction is associated with lower mtDNA CN and numerous clinical 

and population studies have confirmed an association between lower mtDNA CN in 

different tissues (including leukocytes, skeletal myocytes, hepatocytes and white 

adipose tissue) and several chronic health conditions (including the Met S, hypertension, 

hyperlipidaemia, T2DM, CVD and mortality) (Koller et al., 2020; Huang et al., 2011; 

Fazzini et al., 2021; Liu et al., 2021b). However only a limited number of epidemiological 

studies have assessed the relationship between mtDNA CN and obesity.  A few cross-

sectional studies found a relationship between mtDNA CN and BMI.  While the direction 

of the association varied depending on the tissue studied, the majority showed a lower 

mtDNA content in peripheral blood leukocytes or subcutaneous adipose tissue in 

individuals with obesity. However,  Lindinger and co-workers found that mtDNA CN in 

human omental tissue was significantly higher in patients with a BMI of ≥30 kg/m2, 

which led the authors to speculate that the higher mitochondrial count could be a 

compensatory mechanism resulting from mitochondrial dysfunction which occurs in the 
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setting of excess adiposity (Kaaman et al., 2007; Lindinger et al., 2010; Meng et al., 2016; 

Skuratovskaia et al., 2018). 

Obesity is often considered as a single trait, however it is increasingly recognised that 

there exist a subset of individuals with obesity  who are protected from the risk of 

metabolic and CVD.  These individuals are termed as being metabolically healthy obese 

and typically demonstrate a healthy metabolic profile in terms of preserved insulin 

sensitivity and absence of cardiometabolic risk factors. So far there is no universally 

accepted definition for this trait (Blüher, 2010; Karelis, 2008). On the other hand, a 

subset of normal weight individuals may harbour metabolic disturbances which are 

characteristic of obesity and are thus termed metabolically unhealthy normal weight 

(Schulze, 2019; Stefan et al., 2017).  Thus, the presence or absence of MH generates 

different adiposity-related body composition phenotypes with metabolically healthy 

normal weight at one end of the spectrum and metabolically unhealthy obesity at the 

opposite end with MUHNW and MHO lying somewhere in between. Interestingly, 

despite a growing interest on this topic even less studies have been conducted to assess 

the relationship between mtDNA CN and MH and in relation to the different body 

composition phenotypes described above. It is hypothesized that individuals with the 

metabolically unhealthy body composition phenotype have a lower leukocyte mtDNA 

CN.  
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4-1.2 Aim and objectives 

This research seeks to explore peripheral blood leukocyte mtDNA CN across the 

different adiposity-associated body composition phenotypes using several definitions of 

MH within a middle-aged cohort from a Mediterranean island population having a high 

prevalence of obesity and cardiometabolic disease.  Furthermore, this study also 

evaluated which of the different definitions of MH and their constituent components 

are associated with reduced leukocyte mtDNA CN. Peripheral blood leukocytes were 

selected for mtDNA CN determination in view of their ease of accessibility as a minimally 

invasive disease biomarker. In this context, several studies have demonstrated that 

mtDNA CN is a potential biomarker of mitochondrial dysfunction (Castellani et al., 2020). 

 

 

 

 

 

 

 



270 
 

4.2 Research design and methods  

4-2.1 Study population and study design  

A sample consisting of 521 individuals  aged 41±5 years of Maltese-Caucasian ethnicity 

were enrolled in this study through a method of convenience sampling as detailed in 

chapter 2.  These were the same participants  who participated in the observational 

cross-sectional study carried out between January 2018 and June 2019 which was aimed 

at characterising the different body composition phenotypes within a Mediterranean 

island population as part of the epidemiology studies described in Chapter 2. Similar 

inclusion and exclusion criteria applied, such that enrolled individuals had to be of 

Maltese Caucasian descent, aged 41±5 years and a BMI ≥18.5 kg/m2.  The exclusion 

criteria were a history of type 1 diabetes, individuals with known underlying genetic or 

endocrine conditions causing overweight or underweight (apart from treated or 

controlled thyroid disorders), individuals with a terminal illness or active malignancy, 

those who were unable to give their own voluntary informed consent as well as 

pregnant females. Participants  were invited for a one-time visit whereby baseline 

anthropometric, demographic, and clinical parameters (including lifestyle and medical 

comorbidities) were captured by the use of a structured questionnaire especially 

designed for this survey, with blood sampling also being carried out on the same day of 

the visit.  
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4-2.2 Anthropometry, body composition assessment and biochemical analysis 

Anthropometric measurements were recorded with the participants dressed in light 

clothing and without shoes, using validated equipment which was calibrated in 

accordance with WHO recommendations (detailed in Chapter 2). 

Body composition phenotypes were generated based on the combined consideration of 

each participants’ BMI category and MH status. Participants were defined as having 

normal weight if the BMI was <25kg/m2 and overweight/obese if the BMI was ≥30kgm2. 

 

Three definitions of MH were used to cross-classify the study participants: 

i) The Met S components based on the National Cholesterol Education Program (NCEP) 

Adult treatment Panel III (ATPIII) criteria but excluding WC (due to its collinearity with 

BMI): serum TG ≥1.69 mmol/l or on lipid lowering agents; HDL-cholesterol <1.03mmol/l 

in males and <1.29in females or on treatment aimed to increase HDL-C; systolic or 

diastolic blood pressure ≥130/85mmHg or use of antihypertensive medication; and 

fasting plasma glucose ≥5.6mmol/l or on antihyperglycemic treatment (NCEP, 2001).  

Participants having ≤1 of the above criteria were considered to be metabolically healthy.   

ii) Normal insulin sensitivity as defined by a HOMA-IR <2.5 (this cut-off value has been 

validated in other studies) (Bo et al., 2012; Durward et al., 2012) 

iii) An empirical definition of MH based on the risk of cardiovascular and total mortality 

recently described by Zembic and colleagues (Zembic et al., 2021). The criteria included 

the following parameters: systolic blood pressure <130mmHg and on no 

antihypertensive agents, a WHR of <0.95 in females and <1.03 in males, and absence of 
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diabetes.  All the above criteria had to be present to be classified as metabolically 

healthy. 

This thus led to the generation of four body composition phenotypes: metabolically 

healthy normal weight (MHNW), metabolically unhealthy normal weight (MUHNW), 

metabolically healthy overweight/obese (MHOW/O) and metabolically unhealthy 

overweight /obese (MUHOW/O).  Additionally, in secondary analysis, MH was further 

characterised by the presence or absence of the Met S(defined as the presence of three 

or more components as established by the NCEP ATPIII: WC >102cm in males and >88 

cm in females; Systolic/diastolic blood pressure ≥130/85 mmHg or use of 

antihypertensive agents, serum triglyceride level ≥1.69 mmol/l or on lipid lowering 

agents, HDL-C <1.20 mmol/l in females or <1.03 in males or on treatment aimed to raise 

HDL-C, fasting plasma glucose ≥ 5.6mmol/l or on antihyperglycemic agents. 

Blood samples were drawn from the participants after an overnight fast. Haematologic 

and biochemical parameters (including HbA1c, fasting plasma glucose, liver and lipid 

profiles) were determined using standard automatic biochemical analysers as described 

in Chapter 2. 

Fasting insulin and high sensitivity CRP were measured at baseline by sandwich ELISA 

(Diagnostic Automation, USA).  Thereafter fasting insulin and fasting plasma glucose 

were used to calculate the homeostasis model assessment of IR (HOMA-IR) according to 

the formula developed by Matthews and colleagues (Matthews et al., 1985):  

HOMA-IR = Fasting Insulin (μIU/mL) x Fasting Glucose (mmol/l)/22.5.  
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4.3 Determination of mtDNA copy number 

4-3.1 DNA extraction and quality control 

Genomic DNA was extracted from peripheral blood leukocytes collected in  K2-EDTA 

tubes as described next. 1 ml of anti-coagulated blood was used  for extraction using a 

QIAamp DNA extraction kit according to the manufacturer’s protocol (Qiagen, Hilden, 

Germany).  An overview of the extraction process is provided in Appendix 3. The 

integrity of genomic DNA was assessed via agarose gel electrophoresis, using 1% agarose 

gels stained with 1.0μg/mL ethidium bromide against a 100bp DNA ladder (Solis 

BioDyne, Estonia). Electrophoretic separation in 1x TAE buffer was performed to 

visualise intact high-molecular weight DNA using a UV transilluminator.  DNA 

concentration and purity was evaluated by NanodropTM 2000C spectrophotometry 

(ThermoFisher Scientfic USA).  The purity of DNA was assessed as the ratio of absorbance 

at 260nm to the absorbance at 280nm (A260/A280). DNA samples with concentrations 

in excess of 20 ng/μL and A260/A280 ratios between 1.7 - 2.0 were considered of good 

quality for downstream analysis. Any extracted sample not meeting these parameters 

was re-extracted and re-analysed using the same process. Following extraction, the 

eluted DNA was stored in coded 0.5 mL screw-capped tubes in 96-well storage format 

(Micronic®). These were kept in a refrigerator till further processing. The extracted DNA 

samples were than frozen at -20oC until future use without repeated freeze-thawing 

cycles. 
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 4-3.2 mtDNA quantification by qPCR 

Relative leukocyte mtDNA CN was determined by estimating the relative ratio of mtDNA 

to nuclear DNA (nDNA) using a fluorescence-based quantitative polymerase chain 

reaction (qPCR). The mitochondrial gene MT-CYB encoding cytochrome b, and the 

nuclear gene encoding hemoglobin subunit β (HBB) as the single copy reference were 

used for relative quantification as described by  Xu et al  (Xu et al., 2012). 

PCR primers (artificially synthesized oligonucleotide sequences) complementary to the 

two genes of interest were used to enable the selective amplification of the target region 

during a polymerase chain reaction.  

Oligonucleotide primer sequences specific to MT-CYB (target gene) were as follows: 

forward: 5’-CCA ACA TCT CCG CAT GAT GAA AC-3’and 

reverse: 5’-TGA GTA GCC TCC TCA GAT TC-3’ and these amplified a 434bp amplicon.   

The primers specific to the sequences of the HBB gene were as follows: 

forward: 5’ -GAA GAG CCA AGG AGA GGTAC- 3’ and  

reverse: 5’ – CAA CTT CAT CCA CGT TCA CC-3’ and these were used to amplify a 268-bp 

product as the nuclear single copy reference.  

The oligonucleotide sequences were ordered from Macrogen Inc, Seoul, Republic of 

Korea. The primers were received in lyophilized form. Thus, they were reconstituted 

using the indicated volume of molecular biology grade water and made into a stock 

solution with a concentration of 100 pM/μL. The primer solutions were then diluted to 
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a working concentration of 10 μM in a separate labelled tube. The prepared primer 

solutions were stored in a freezer at a temperature of -20 ˚C. 

The polymerase chain reaction (PCR) technique enables efficient and rapid amplification 

of target genomic regions using sequence specific oligonucleotides, heat stable DNA 

polymerase and thermal cycling. Quantification of mtDNA CN was performed using 

quantitative PCR, which incorporates a fluorescence-based reporter dye into the 

reaction chemistry. In qPCR, fluorescence signal intensity is an indirect measure of the 

quantity of nucleic acid present in each step of the amplification cycle. A double-

stranded DNA binding flurophore, EvaGreen® was used for quantification as outlined 

below. 

Reactions were carried out in optical 96-well plates, using 4µL of 5x HOT FIREpol® 

EvaGreen® qPCR Mix (12.5mM MgCl2, dNTPs, EvaGreen® dye and ROX dye – Solis 

BioDyne, Estonia), 20ng of genomic DNA, and 0.5µL of each of the forward and reverse 

oligonucleotides at 10µM concentration, and molecular biology grade water to make up 

a reaction volume of 20µL. qPCR amplification was performed under the following 

conditions: initial denaturation at 95°C for 300 seconds, followed by 30 cycles of 

denaturation at 95°C for 60 seconds, annealing at 56°C for 90 seconds and extension at 

72°C for 120 minutes. Fluorescence signal acquisition was carried out in the extension 

phase. All assays were carried out in triplicate, and a no-template control was included 

in each run. Analysis was carried out in a blinded manner with regards to case-control 

and disease status. Post-amplification melt curve analysis was performed to check for 

primer-dimer artifacts and to ensure reaction specificity. For melt curve analysis, the 
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temperature was increased from 65 °C to 95 °C at 0.5 degree increments every 5 

seconds. 

Data collection was carried out using the CFX Maestro® software. Baseline subtracted 

curve fitting with fluorescent drift correction was applied to generate a horizontal 

baseline.  For each amplicon, melt curves (relative fluorescence units [RFU] per 

temperature for each well) and melt peaks (negative derivative of the RFU data per 

temperature for each sample) were displayed to confirm reaction specificity.  

The ratio of mtDNA/nDNA was calculated using the Pfaffl method, which is the method 

best suited for the interpretation of qPCR data where primer efficiency is not identical  

(Pfaffl, 2001) : 

                         

mtDNA/nDNA ratio =  
𝐸ΔCtCytB

𝐸ΔCtHBB 
 

Where ΔCt is CtHBB-CtMT-CYB and E stands for primer efficiency. 
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4-3.3 PCR efficiency and amplification specificity 

To assess qPCR efficiency, standard curves were constructed by 10-fold serial dilutions 

of PCR products of target gene MT-CYB and the nuclear reference gene HBB (range: 5.05 

x1010 – 5.05 x105 copies/μl). The Ct values (cycles to threshold) for each reaction 

represents the number of PCR cycles required in order to detect a signal over 

background fluorescence and is inversely proportional to the amount of DNA. The log10 

of template copy number (x-axis) was plotted against the corresponding Ct value (y-axis) 

value which represents the number of PCR cycles required to detect a signal over 

background fluorescence) and linear regression analysis was applied (Figure 4.1). The 

PCR efficiency of each reaction, E, was calculated using the standard curve points in the 

exponential phase using the equation E = 10-1/slope.  The calibrator was a mixed DNA 

sample pooled from six randomly selected normal weight metabolically healthy 

controls. 

The specificity of the amplification reaction was confirmed by melt curve analysis 

(dissociation curve) during temperature ramping, and by resolution of amplicons during 

agarose gel electrophoresis.   Figure 4.2 depicts melting curve (A) and melt peak (B) 

analysis of amplicons generated during qPCR.  Both MT-CYB and HBB amplicons 

demonstrated single melting peaks at 86.5oC and 88oC respectively.  Furthermore, 

specificity was also ascertained with electrophoretic separation of PCR products using 

2% agarose gels which demonstrated prominent bands with the expected sizes (Figure 

4.2C). The standard curves for both HBB and MT-CYB were linear over the serial dilution 

range (R2=0.99), and all Ct values of unknown samples fell within the linear range.  The 
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gradients (slopes) of the standard curves for HBB and MT-CYB were -3.62 and -3.42 

respectively, with the amplification efficiencies being 88.9% and 95% respectively.   

4-3.4 Coefficient of variation values 

The inter-assay and intra-assay coefficient of variation for replicates in different batches 

were 2.1% and 6.5%  for HBB and 1.8% and 3.5% for MT-CYB respectively.  The 

acceptable standard deviation for the triplicate threshold cycle (ΔCt) was set at 0.5, 

indicating that the reactions have an acceptable degree of repeatability and 

reproducibility.  

4-3.5 Corrected mtDNA copy number  

A corrected leukocyte mtDNA CN was calculated in order to adjust for possible 

contamination of leukocyte genomic DNA by mitochondrial DNA in platelet fractions 

from whole blood.  This was calculated as outlined by Hurtado-Roca and colleagues 

(Hurtado-roca et al., 2016).  Since platelets contain only mtDNA and no nuclear DNA the 

variation in platelet levels could confound relative mtDNA CN estimates from whole 

blood.  A correct count was calculated using the following formula:  

𝑚𝑡𝐷𝑁𝐴 𝐶𝑁 𝑙𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒𝑠 =  𝑚𝑡𝐷𝑁𝐴 𝐶𝑁 𝑤ℎ𝑜𝑙𝑒 𝑏𝑙𝑜𝑜𝑑 − 𝐾
𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝑐𝑜𝑢𝑛𝑡

𝐿𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒 𝑐𝑜𝑢𝑛𝑡
  (K = 1.1) 

  .  
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A and B – amplification plots for MT-CYTB and HBB respectively. Plots C and D show standard curves for MT-CYTB and HBB respectively, represented as a semi-log plot of 
Ct against starting concentration. The Ct values of unknown samples fell within the linear range. Standard curves were constructed using six 10-fold serial dilutions of PCR 
products, and each standard dilution was amplified by real-time quantitative PCR using the HBB and MT-CYTB primer sets. A no-template control is included. 
MT-CYTB, mitochondrial gene encoding cytochrome b; HBB- nuclear gene coding haemoglobin subunit ß (single copy reference) 

Figure 4.1: Amplification plots and standard curves for MT-CYTB and HBB 
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Melt curve (A) and melt peak (B) analysis of MT-CYTB (green) and HBB (red) triplicate amplicons. The dissociation 
curve charts the reduction in fluorescence observed during temperature ramping. The melt peak analysis is a plot 
of the negative first derivative of the dissociation curve and shows a characteristic peak for each product (the 
derivative is the negative of the rate of change in fluorescence as a fraction of temperature). C shows 2% agarose 
gel electrophoresis of PCR amplicons. Lanes 1 and 2 show the 268 bp HBB amplicon, and lanes 3 and 4 the 434 bp 
MT-CYTB amplicon. Lane L shows a 100bp DNA ladder (Solis Biodyne, Estonia). 
MT-CYTB, mitochondrial gene encoding cytochrome b; HBB- nuclear gene coding haemoglobin subunit ß (single 
copy reference) 

 

Figure 4.2:  Melt curves  and melt peaks  of MT-CYTB (green) and HBB (red) 
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4.4 Statistical Analyses  

Normality of distribution of continuous variables was assessed using the Shapiro-Wilk 

and Kolmogrov-Smirnov tests. Since all continuous parameters exhibited a skewed non-

normal distribution, non-parametric statistics using medians and interquartile ranges 

(IQR) and the chi-squared test was applied to compare dichotomous outcomes. 

Categorical variables are presented as percentages.  To evaluate differences in 

qualitative variables between groups the Kruskal-Wallis ANOVA was used for 

comparison between three or more categories, followed by Dunn’s post hoc test for 

pairwise comparison between subgroups.  The independent samples Mann-Whitney U 

test was used for comparison between two categories.  Spearman’s rank-order 

coefficient was used to explore the strength and direction of association between 

quantitative variables. To assess the effect of mtDNA CN on Met S, binary logistic 

regression models were constructed and adjusted for age, with mtDNA CN as the 

independent predictor and Met S as the dependent response variable. Binary logistic 

regression modelling adjusted for age, was also used to assess the association between 

mtDNA CN and single components of the Met S.   Since some definitions of Met S 

components included the use of drugs for the management of hypertension, 

dyslipidaemia and hyperglycaemia each component was considered as a binary 

response variable.  Furthermore, to account for the unequal representation of the sexes 

in the study population, regression analysis was additionally stratified by sex.  

To further refine the association between adiposity, Met S components and mtDNA CN 

principal components analysis (PCA) was applied to reduce the dimensionality of the 

dataset.  PCA was performed on nine standardized inter-correlated quantitative 
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variables (including WC, fasting plasma glucose, HDL-C, TG, BMI, systolic BP, diastolic BP, 

HOMA-IR and hs-CRP) using the FactoMineR package (Lê, Josse and Husson, 2008).  This 

enabled the construction of a scree plot of eigenvalues such that eigenvalues>1 were 

used to determine the number of selected factors.  Orthogonal rotation (varimax) was 

taken to force variables strongly with a single component.  Subsequently, the derived 

principal components were used as the dependent response variable in regression 

modelling, with mtDNA CN as the independent predictor adjusted for age and sex. 

Odds ratios and 95% confidence intervals (CI) are reported for a decrease in 10mtDNA 

copies. Statistical analysis was performed using SPSS v26 and R v.3.4.2. A p value of <0.05 

was considered statistically significant.   
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Chapter 5A – Results of molecular 
studies 
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5-1 Clinical and biochemical characteristics of the study participants 

Table 5.1 depicts the anthropometric, biochemical, and clinical characteristics of the 

study cohort stratified according to the four different body composition phenotypes and 

according to the three different classifications of MH described above: MHNW; MUHN; 

MHOW/O; MUHOW/O. No significant difference in leukocyte count, platelet counts and 

in the proportion of leukocyte subpopulations was detected across all body composition 

phenotypes or across Met S categories (data not shown). As expected, the metabolically 

unhealthy participants  displayed a less favourable anthropometric and metabolic 

indices compared to their healthy counterparts including higher WHR, total cholesterol 

and LDL-C, uric acid and hs CRP values.  

5-2 Relationship between peripheral blood leukocyte mtDNA copy number and 

metabolic indices 

The relationship between relative mtDNA CN and metabolic parameters was 

investigated using Spearman’s correlation. A correlation matrix of mtDNA CN with 

quantitative anthropometric and metabolic parameters is provided in figure 5.1(A).  

Significant negative correlations between mtDNA CN and BMI, WC, WHR, triglyceride 

levels, fasting plasma glucose, HbA1c, HOMA-IR and hs-CRP were observed, along with 

a positive correlation with HDL-C levels.  However, no significant correlation was 

observed with age (rs= 0.03, p= 0.497). Furthermore, no difference in mtDNA CN 

between sexes was detected (Mann-Whitney U test, p= 0.065).  
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5-3 Relationship between peripheral blood leukocyte mtDNA copy number and the 

different body composition phenotypes using different definitions of metabolic 

health, the Met S and obesity 

Subsequently, relationship between leukocyte mtDNA CN and the different body 

composition phenotypes was evaluated. When the study population was categorized 

according to the different MH definitions (metabolic health as defined either by the 

presence of ≤1 NCEP-ATPIII criteria or when defined by HOMA-IR <2.5 or as defined 

according to the empirical definition proposed by Zemibc and colleagues), a significantly 

lower median mtDNA CN was present in both the MHOW/O and MUHOW/O categories, 

compared to MHNW participants (Kruskal-Wallis test, p <0.001) (Figure 5.1 (B-D)) 

Interestingly no significant difference in relative mtDNA CN between the MHOW/O and 

MUHOW/O phenotypes was observed by any of the definitions used to denote MH. 

Likewise, no significant differences in mtDNA CN were detected between the MHNW 

and MUHNW phenotypes across all definitions of MH, although the small number of 

participants  within the MUHNW category restricts this comparison. Additionally, the 

mtDNA CN in participants  with the Met S was similarly observed to be lower than in 

those without the syndrome (Mann-Whitney U test, p<0.001) (Figure 5.1(E)).    As 

expected, a significant decrease in median mtDNA CN with an increase in Met S 

components was observed (Kruskal-Wallis test, p <0.001) (figure 5.2).   Table 5.2 

summarises mtDNA CN values across definitions of MH based on different cross-

classifications, with pairwise comparisons between the categories.   
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Binary logistic regression analysis was applied to evaluate the association between 

mtDNA CN and 1) Met S 2) each of the NCEP-ATPIII components as outcome variables 

3) the metabolically unhealthy state as per the empirical definition by Zembic and 

colleagues and 4) HOMA-IR ≥2.5.  In the age-adjusted models, a 10-fold reduction in 

mtDNA CN was associated with a marginally higher odds of the Met S in both sexes, 

increased TG in males and increased WC in females. A reduction in mtDNA CN was also 

associated with a minor (but significantly higher) increased risk of having both the 

metabolically unhealthy phenotype (in both sexes) and of having a HOMA-IR ≥2.5 in 

females. The results of the regression analyses in the overall cohort and when stratified 

by sex are presented in table 5.3. 
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5-4 Principal components analysis 

Since several adiposity/cardiometabolic risk parameters are known to be interrelated 

and to converge physiologically to determine the causal trajectory to cardiometabolic 

disease, the method of principal component analysis (PCA) was used in order to reduce 

the dimensionality of the dataset and explore its relationship with mtDNA. PCA with 

orthogonal (varimax) rotation was conducted on 9 inter-correlated variables as outlined 

earlier.  Bartlett’s test of sphericity indicated that the correlations were sufficiently large 

to undertake PCA (χ2 = 1299, p <0.01). The initial analysis centred around obtaining 

eigenvalues for each data components.  Three principal components (PC) had 

eigenvalues >1 and in combination could explain 62.5% of the data, and a scree plot 

justified retaining 3 factors in the final analysis (figure 5.3). The rotated component 

matrix showed that PC-1 had a high loading for WC and BMI; PC-2 for systolic and 

diastolic blood pressure and PC-3 for fasting plasma glucose, HOMA-IR and TG (Table 

5.4).  Subsequently, the three PC were incorporated as response variables within 

regression models to test their association with mtDNA CN as the predictor.  Allowing 

for age and sex, an inverse association between PC-1 (adiposity parameters), PC-3 

(insulin resistance parameters) and mtDNA CN was detected.  The other PC defined by 

systolic and diastolic blood pressure, showed no significant association with mtDNA CN 

(Table 5.5). These analyses inform further on the association between excess adiposity 

and IR with reduced mtDNA CN obtained from univariate analysis. 
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Table 5.1:  Anthropometric, clinical, and biochemical characteristics of the study cohort, stratified according to the different 
metabolic health definitions 
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Figure 5.1: Correlation matrix and Violin plots 

A: Correlation matrix between relative mtDNA copy number and several key metabolic parameters. Colour scale depicts Spearman’s rank-order correlation coefficient. ** Correlation is significant at 

the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).  B-E: Violin plots depicting mtDNA copy number differences between body composition phenotypes and across different 

definitions of metabolic health and the metabolic syndrome. A significantly lower mtDNA copy number was observed in individuals with metabolic syndrome (Mann-Whitney U test, p < 0.05). A 

significantly lower mtDNA copy number was present in both the MHOW/O and MUHOW/O categories, compared to MHNW participants (Kruskal-Wallis test, p <0.001), across different metabolic health 

definitions. The violin plots reflect data distribution. The centre line in the box plot illustrates the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile 

range from the 25th and 75th percentiles. ** significant difference at p < 0.01. NS, not significant;  MH, metabolic health; MHNW; metabolically healthy normal weight; MUHNW, metabolically unhealthy 

normal weight; MHOW/O, metabolically healthy overweight/obese; MUHOW/O, metabolically unhealthy overweight/obese; NCEP ATPIII, national cholesterol education program adult treatment panel 

III; HOMA-IR, homeostatic model assessment of insulin resistance  
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A significant reduction in mtDNA copy number with increasing metabolic syndrome components was 
observed (independent samples Kruskal-Wallis ANOVA, p < 0.001). Pairwise comparison using Dunn’s post-
hoc tests revealed significant differences between individual categories, indicated by * symbol.  
 

Figure 5.2: Box plot showing relative mtDNA copy number against number of diagnostic 
components of Met S as per NCEP-ATP III 
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Table 5.2: Relative mtDNA copy number across definitions of metabolic health 
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This table shows the results of binary logistic regression analysis adjusted for age.  mtDNA CN was 
inputted as the independent  predictor variable and Met S / its individual components and the 
metabolically unhealthy phenotype were the outcome (response) measures assessed. 

Table 5.3: Binary logistic regression analysis between mtDNA copy number and Met S, 

its individual components, the metabolically unhealthy phenotype* and HOMA-IR 
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Figure 5.3: Scree plot and PCA biplot 

 
A: Scree plot chart showing eigenvalue against all factors. Three factors have eigenvalues >1, and collectively explain 62.5% of the cumulative variance in the dataset. B: PCA 
biplot shows individual observations as datapoints, coloured according to presence or absence of metabolic syndrome. Points are plotted on a plane formed by the first two 
principal components. The original variables are shown as green vectors from the origin. The orientation of the vector with respect to the principal component space represents 
its contribution to the PC. 
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  Table 5.4: Factor loading matrix for adiposity/metabolic parameters 
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Table 5.5: Regression estimates for each of the three Principal Components 
derived from PCA 
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Chapter 5B – Discussion of molecular 
studies 
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5-5 Reduced peripheral blood leukocyte mitochondrial DNA copy number in Met S and 

MHO 

This cross-sectional study explores the relationship between mtDNA CN, obesity, the 

Met S as well as its constituent components within an island population that bears a 

high burden for obesity, T2DM and cardiometabolic disease (Cuschieri et al., 2016a; 

Cuschieri et al., 2016b).  Effectively, the findings of this research show that after 

adjustments for traditional clinical covariates and blood cell composition as potential 

confounders a significant inverse association between peripheral blood mtDNA 

abundance and Met S was observed.  More importantly, the obese state was associated 

with a reduced mtDNA CN compared to the healthy normal weight participants , and 

this reduction was present in both metabolically healthy and unhealthy subtypes of 

obesity thus implying that mtDNA CN may have limited utility as a biomarker in 

stratifying these two subtypes of obesity.  These findings are relevant and new to a 

regional Southern European Island population and to date is the first study that directly 

aimed to evaluate the association between mtDNA CN and metabolically healthy and 

unhealthy subtypes of obesity as outcomes.  

5-5.1 Association between mtDNA CN, Met S, and its constituent components 

In this study, peripheral blood mtDNA CN was found to be inversely correlated with 

cardiometabolic risk parameters including adiposity (BMI, WHR, WC), glycaemic (HBA1c, 

FPG), and lipid (TG) indices as well as HOMA-IR (a marker of insulin resistance). 

Furthermore, the leukocyte mtDNA CN decreased as the number of diagnostic 
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components of the Met S increased, and a reduced mtDNA CN was an independent 

predictor of prevalent Met S and the metabolically unhealthy phenotype.  

Broadly, the outcomes of this study are consistent in direction and magnitude with other 

investigations which report a similar association between reduced mtDNA CN and the 

presence of several cardiometabolic risk factors and CVD supporting the concept of 

mtDNA CN as a promising biomarker both in the prevention as well as in monitoring of 

metabolic and cardiovascular health status in humans (Ashar et al., 2017; Bordoni et al., 

2021; Castellani et al., 2020). Moreover, other smaller-scale studies similarly reported a 

depleted leukocyte mtDNA CN in individuals with the Met S (Huang et al., 2011; Kim et 

al., 2012). A recent study which included just over four hundred thousand participants 

of multiple ancestries from the TOPMed Consortium and UK Biobank, found that 

reduced mtDNA CN levels to be an independent predictor for obesity (p =5.6x10-238), 

hypertension (p = 2.8 x10-50), T2DM (p = 3.6 x 10-7) and dyslipidaemia (p=6.3 x 10-5) (Liu 

et al., 2021b).  The authors thus postulate that since these cardiometabolic diseases are 

associated with the presence of the Met S and the development of atherosclerotic CVD 

disease, for which IR is a fundamental pathophysiological abnormality, then, a decrease 

in mtDNA quantity may be the core contributing mechanism leading towards the onset 

of IR in these individuals. In accordance with this reasoning, the authors also observed 

a lower mtDNA CN to be predictive of a HOMA-IR value >2.5.  On the other hand, and 

contradicting these findings is the study by Guyatt et al.,  which included approximately 

five thousand participants recruited from two large cohorts of European females. Whilst 

they were able to adjust for the presence of a wide range of confounding variables 

(including age at sampling, sociodemographic factors, laboratory covariates and 
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haematological parameters) the authors acknowledged they could not find any 

consistent evidence to support a relationship between mtDNA CN and the presence of 

several cardiometabolic traits save for an inverse association with insulin in older 

participants  (p = 0.002). This prompted the investigators to speculate that mtDNA CN 

may not be as important a predictor for cardiometabolic risk as previously thought 

(Guyatt et al., 2018).  

Insulin resistance is the hallmark for diseases such as T2DM and the Met S  (Khan et al., 

2006; Meigs et al., 2007;  Fahed et al., 2021).  However some authors have suggested 

that hyperinsulinemia may be the primary abnormality. For example, when studying a 

human liposarcoma cell line, Fernandez –Velodo et al., found that hyperinsulinemia 

deregulates adipocyte secretion pattern, producing insulin resistance in adipocytes and 

myocyte (Fernandez-Veledo et al., 2008).  Furthermore, van Vliet et al. reported that 

basal and postprandial insulin secretion rates were greater in people with obesity than 

lean people even though insulin sensitivity was not different between groups and that 

weight loss decreased insulin secretion in the absence of changes insulin sensitivity (van 

Vliet et al., 2020). On the other hand, data from a study in high fat diet-fed Sprague-

Dawley rats suggests that although obesity induces compensatory hyperinsulinemia, it 

is the hyperinsulinemia rather than insulin resistance that causes blood pressure 

elevation (Wang et al., 2020).  The relationship between mitochondrial dysfunction and 

IR has been extensively investigated over the last two decades with several studies 

showing a directionally consistent relationship between lower peripheral blood mtDNA 

CN and markers of IR and glycaemic control (Fazzini et al., 2021; Huang et al., 2011; Kim 

et al., 2012; Xu et al., 2012). Chronic hyperglycaemic states induce excessive production 
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of ROS which cause damage to mtDNA, proteins and lipids leading to decreased activity 

of respiratory chain complexes and increased susceptibility to oxidative damage, further 

ROS production and impaired fuel oxidation.  Defective fatty acid beta oxidation leads 

to the  accumulation of intracellular lipotoxic lipid metabolites (including ceramides and 

diacylglycerol) in non-adipose cells and several researchers agree that this may be the 

mechanistic link between mitochondrial dysfunction and abnormalities of insulin 

signalling in classical insulin target tissues (Gao et al., 2010; Schrauwen et al., 2010; Sergi 

et al., 2019). 

Another important observation to consider is that while the Met S (as defined by NCEP-

ATPIII) consists of five interrelated metabolic parameters which essentially exhibit 

collinearity due to overlap in their aetiopathological mechanisms, yet they should not 

be considered as mutually exclusive traits.  Insulin resistance is a core component of the 

Met S and considered to be one of the main drivers for this syndrome as well as for its 

individual components, the presence of which has been associated with increased 

cardiovascular risk (Mottillo et al., 2010). However, the strength of the link between IR 

and the Met S has been questioned in the face of studies showing that the Met S itself 

does not predict cardiovascular risk better than the sum of its individual components 

(Cheal et al., 2004; Kahn, R., Buse, J., Ferrannini, E., & Stern, 2005). Furthermore, 

stratifying obesity phenotypes based on the number of NCEP-ATPIII components 

assumes arbitrarily that the risk factors are metabolically equivalent.  This generalisation 

may be inaccurate since even mild elevations in plasma glucose lead to secondary 

effects via alterations in lipid metabolism and in the generation or ROS and 

proinflammatory cytokines which may explain the increased risk of CVD observed in 
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these individuals (Ganda et al., 1985; Stentz and Kitabchi, 2005).  Thus, the presence of 

abnormal values for any one of the five components should be an impetus to institute 

the relevant therapeutic intervention regardless of whether the NCEP ATPIII diagnostic 

criteria have been met or not.  In fact, some studies detected subtle but significant 

differences in cardiometabolic risk factor parameter values (such as larger WC and 

higher blood pressure, insulin, and triglyceride levels) between metabolically healthy 

obese and metabolically healthy normal weight participants  despite both being 

categorised as healthy using the same criteria and cut-off points (Calori et al., 2011; 

Karelis, 2008; Marini et al., 2007). Furthermore, the Met S was only able to predict 

incident CVD in 20% of normal weight individuals, clearly showing that it may be 

inadequate to accurately stratify disease risk within this cohort of patients and that its 

absence does not automatically imply cardiovascular protection (Lassale et al., 2018). In 

the present study, out of all the metabolic components, a reduced mtDNA CN was only 

predictive of increased TG in males and increased WC in females, lending further support 

to the notion that each individual Met S component varies both in terms of utility in 

establishing a diagnosis of the Met S, in their relationship with IR and there are sex 

differences in these associations.  Additionally, the notion of MH as being a static 

concept may also underestimate the long-term adverse effects of weight gain from 

baseline and does not provide any insight into obesity-related comorbidities nor their 

prognosis (Alley and Chang, 2010; Neeland et al., 2018).   

Moreover, some researchers observed associations of mtDNA CN levels with age.  For 

example, Xu et al. found that age of onset of diabetes to be a predictor of mtDNA 

content; furthermore, the recent study by Liu and colleagues observed a threshold 
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effect of age on mtDNA CN. They found that in individuals  who were 65 years or older, 

increasing age was associated with larger declines in mtDNA CN, whereas those who 

were 65 or younger, increasing age was associated with higher levels of mtDNA CN (Liu 

et al., 2021b; Xu et al., 2012). Ageing is known to be associated with a decline in mtDNA 

content and function in several tissues which may contribute to the development of 

common chronic diseases typically associated with ageing (Castellani et al., 2020). In this 

study no significant correlation with age was observed. Thus, the findings from this 

research merit critical interpretation in the context of the study cohort characteristics.  

The population within this study comprised a carefully phenotyped and homogeneous 

cohort of middle-aged adult individuals.  This thus contrasts with the older and broader 

age range reported in the literature on mtDNA CN and Met S.  The choice for middle-

aged individuals  as a selection criterion for this research was such so that the population 

would have lived long enough for phenotypic expression while minimizing the risk of 

survival bias and therefore underestimation of effect size. Furthermore, sarcopenic 

obesity, defined as  the age-related decline in muscle mass coupled with increased 

adiposity and IR is less common in this age group (Roh and Choi, 2020).  These factors  

underscore the clinical relevance of utilising a carefully selected age group when 

evaluating associations between mtDNA CN and metabolic outcomes.   

5-5.2 Relationship between mtDNA CN and the different body composition 

phenotypes 

A novel finding from this investigation is that the difference in relative mtDNA CN 

between the MHOW/O and MUHOW/O phenotypes did not exceed the statistical 

significance threshold, therefore this data suggests that mtDNA CN is related to overall 
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adiposity.  While no difference in mtDNA CN was observed between the 2 subtypes of obesity, 

the difference in mtDNA CN  observed between individuals with the metabolic syndrome vs 

those without could  be in part explained by how the metabolic syndrome is defined:  According 

to the NCEP ATPIII criteria an individual requires the presence of 3 or more metabolic risk factors 

to be present in order to be categorised as having Met S.  This research thus provides 

additional perspective into obesity-associated mitochondrial dysfunction and reinforces 

the challenges of risk stratification of this complex trait.  

As detailed previously, individuals with metabolically healthy obesity characteristically 

demonstrate preserved insulin sensitivity as well as a favourable cardiometabolic profile, 

reduced incidence of T2DM compared to individuals with unhealthy obesity and similar 

risks for CVD compared to MHNW individuals (Karelis, 2008; Meigs et al., 2006; Stefan et 

al., 2013).      In accordance with this, some large prospective studies which used a strict 

definition of MH (absence of all components of the Met S) and more recently the study 

by Zembic et al., (which characterised individuals with MHO based on an a priori definition 

composed of cardiometabolic parameters known to be associated with total and CVD 

mortality) observed no increased risk in CVD and total morality (Al-khalidi et al., 2018; 

Eckel et al., 2016; Zembic et al., 2021 ).  However, contradicting these findings is the 

landmark study by Caleyachetty et al., which investigated the relationship between MHO 

and incident cardiovascular disease in over 3.5 million individuals.  They observed that 

the presence of obesity (even in the absence of metabolic abnormalities) was associated 

with higher risk of cardiovascular disease (including coronary heart disease, 

cerebrovascular disease and heart failure) when compared to healthy normal weight 

individuals (Caleyachetty et al., 2017).  
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Therefore , this model is not without its controversies, and a strong unresolved debate 

centres round whether ‘obese but healthy’ individuals  are truly free of adverse 

cardiovascular outcomes (Loprinzi and Frith, 2017). This study shows that obesity, 

regardless of whether it is accompanied by metabolic abnormalities or not, is associated 

with reduced mtDNA CN thus lending further support to the notion that a degree of 

mitochondrial dysfunction is present even when obesity is separated from its usual 

metabolic consequences. This finding is broadly congruent with evidence from meta-

analysis showing that even in the absence of metabolic abnormalities, individuals living 

with obesity are still at increased risk of adverse long term clinical outcomes 

(Caleyachetty et al., 2017; Eckel et al., 2018; Kramer et al., 2013). Clinically, the 

observations from this study keep underscoring the importance of regulating body 

weight even in the absence of the Met S. Furthermore,  the binary characterization of 

obesity into metabolically healthy vs unhealthy subtypes bypasses important but 

confounding factors including cardiorespiratory fitness, which has shown to explain 

both all-cause and cardiovascular mortality in obesity (Barry et al., 2014; Ortega et al., 

2013).  

More importantly, one must also consider that body composition phenotypes based on 

anthropometric indices do not identify the location of fat depots which requires 

imaging-based assessment (Neeland et al., 2013, 2012). Differences in fat distribution 

patterns (for example subcutaneous vs visceral fat depots) are associated with different 

cardiometabolic disease risk across the BMI continuum. Visceral or central fat deposition 

is known to be more detrimental to MH compared to peripheral fat depots (Stefan, 

2020a). In fact, increased adipose tissue distribution within peripheral subcutaneous 
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(gluteo-femoral) regions is associated with lower cardiometabolic risk independent of 

precisely measured markers of visceral fat mass particularly in lean individuals (Schulze, 

2019; Stefan, 2020b; Stefan et al., 2017). One meta-regression analysis found both WC 

and the WHR (which are indices reflecting central adiposity) to be associated with 

increased incidence of CVD in both sexes (De Koning et al., 2007). The Brazilian 

Longitudinal Study of Adult Health found an association between a higher lower limb to 

trunk ratio and a reduced 10-year cardiovascular risk.  This association was found to be 

mediated by lower systolic blood pressure and total cholesterol, and increased HDL-C 

levels (Christiansen et al., 2021; Oliveira et al., 2011). Central abdominal (visceral) fat 

depots are composed of dysfunctional hyperplastic adipocytes characterised by a pro-

inflammatory adipokine secretion pattern, and a higher turnover of bioactive lipids.  On 

the other hand, lower subcutaneous (gluteo-femoral) fat depots expand through 

hyperplasia (rather than hypertrophy) during periods of positive energy balance to 

accommodate fat undergoing redistribution and thereby offer protection against 

overspill of fat into ectopic sites (Badoud et al., 2015; Teixeira et al., 2015).  Gluteo-

femoral fat depots are also associated with a lower rate of lipid turnover and are less 

inflammatory, and thus are deemed to have a lower detrimental effect on MH (Karpe 

and Pinnick, 2015; Schulze, 2019). Therefore, the clearcut categorisation of body 

phenotypes as being either metabolically healthy or unhealthy obese based on BMI cut-

offs and presence/absence of Met S can create a false dichotomy, since both 

cardiometabolic disease and obesity are dynamic states along the pathophysiological 

continuum. For example the risk for CVD increases in a stepwise manner with increasing 

fasting glucose values within the prediabetes range or with increasing blood pressure 
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measurements within a range considered to be normal (Emerging Risk Factors 

Collaboration et al., 2010; Vasan et al., 2001). 

In keeping with this research’s findings are a handful of other studies which also found 

levels of mtDNA CN to be similarly reduced in peripheral blood and adipocytes from 

individuals living  with obesity. Furthermore, mtDNA CN was found to be inversely 

associated with several adiposity-related anthropometric and body composition 

variables (such as BMI, WC, WHR, WHtR, visceral fat area, body cellular mass [BCM] and 

phase angle [PhA]) (Bordoni et al., 2022, 2019; Kaaman et al., 2007; Lee et al., 2014a; 

Meng et al., 2016; Mengel-From et al., 2014; Zheng et al., 2015a). For example, Zheng 

and co-workers found that levels of mtDNA CN in peripheral blood to be 6.9-fold lower 

compared to normal weight individuals  while Meng and colleagues also observed a bi-

directional and inverse association between mtDNA CN and weight gain suggesting a bi-

directional relationship between oxidative stress and weight change (Meng et al., 2016; 

Zheng et al., 2015a). Building on the dynamic nature of mtDNA is one study which found 

a sex-specific variation in peripheral blood mtDNA CN in individuals before and after 

bariatric surgery  (Skuratovskaia et al., 2019a). However, directionally inconsistent 

associations between obesity and mtDNA CN within various adipose tissue depots have 

also been observed.  Lindinger and colleagues demonstrated a significantly higher 

mtDNA content in the omental tissue of individuals with a BMI >30 kg/m2 compared to 

normal weight individuals, and it was not associated with either basal metabolic rate or 

fat oxidation rate. On the other hand, the study of Skuratovskaia and co-workers did not 

find any significant differences in mtDNA CN in omental or mesenteric adipose tissue in 

people with obesity versus healthy controls, but BMI was positively correlated with 
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mtDNA abundance in SAT and negatively with mtDNA copies in peripheral blood 

(Lindinger et al., 2010; Skuratovskaia et al., 2018). Thus, the high variability in mtDNA 

CN observed in several tissues and the dependence of the BMI on specific fat depots 

imply that the multidirectional dynamics of mtDNA content may be a reflection of the 

unique inherent pathological processes in each type of tissue studied.  Another study 

showed that  participants  with abdominal obesity and T2DM, mtDNA CN was higher in 

various fat depots compared to normal weight controls or to individuals with obesity 

but  without T2DM, but obesity (irrespective  of whether accompanied by T2DM or not) 

was positively associated with levels of leptin and proinflammatory cytokines (IL-6, IL-8, 

and TNF-α) (Litvinova et al., 2019). Recently, Bordoni and colleagues found that after 

adjusting for age, sex, and diagnosis of diabetes an inverse association between BMI and 

mtDNA CN in omental adipose cells was observed (Bordoni et al., 2022; Lindinger et al., 

2010; Skuratovskaia et al., 2018). 

Apart from changes in mtDNA count, increasing evidence suggests that accumulation of 

body fat is also associated with abnormalities of mitochondrial oxidative function in 

subcutaneous adipose tissue.  Furthermore, other studies were able to demonstrate 

that in-vitro depletion of mtDNA reduces expression of several mitochondrial proteins 

involved in oxidative pathways including fatty acid oxidation, TCA cycle, ketolysis and 

ketogenesis as well as branched chain amino acid degradation (Jeng et al., 2008; Lee et 

al., 2019). Interestingly, one study found abnormalities of mitochondrial enzyme activity 

such as reduced citrate synthase activity (a citric acid cycle enzyme) but a higher 

cytochrome c oxidase (COX) activity (a respiratory chain enzyme) in lymphocytes of 

individuals  with obesity compared to healthy controls. This may be due to obesity-
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associated changes in proportions of respiratory chain and Krebs cycle enzymes 

supporting the view that mitochondrial oxidative capacity may be increased in obese 

states favouring energy conservation via the generation of ATP rather than energy 

dissipation in the form of heat.  Such metabolic efficiency may further propagate weight 

gain in response to positive energy balance and may negatively affect weight loss in 

response to energy deficit (Čapková et al., 2002). On the other hand, studies which 

looked at the relationship of BMI with several variables associated with respiratory 

control in mitochondria from subcutaneous adipose tissue found an inverse association 

of BMI with ATP-linked mitochondrial respiratory capacity. Furthermore, this 

relationship was potentially mediated by a reduced mtDNA CN and a decreased protein 

expression of complex I and IV components of the electron transport chain in individuals 

living with obesity. This led authors to hypothesize that while adipocyte dysfunction in 

VAT is notoriously associated with the presence of obesity-related metabolic 

complications, human white SAT may also be contributing towards adipocyte 

dysfunction by impairing  mitochondrial respiratory capacity (Fischer et al., 2015). 

Additionally,  another study showed that high-fat diet-fed mice developed obesity, 

hepatic steatosis and IR and concomitantly also displayed reduced hepatic 

mitochondrial respiratory capacity and increased oxidative stress and efficiency, 

suggesting that alterations within the mitochondrial compartment could occur in 

response to long term high-fat feeding and which could potentially be responsible for 

the development of obesity and the other metabolic sequalae observed (Raffaella et al., 

2008).  
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Abnormalities of mitochondrial biogenesis have also been demonstrated from both 

human and mouse adipose tissue with acquired obesity. Accordingly, a decrease in 

mitochondrial mass was observed in white adipose tissue of genetic mice models of 

obesity (Rong et al., 2007).  Furthermore, a widespread reduction in the expression of 

both mitochondrial-and nuclear-encoded genes associated with mitochondrial 

biogenesis was observed in SAT of people living with obesity s compared to their leaner 

co-twins. Concomitantly a downregulation of mitochondrial proteins associated with 

oxidative ATP production and oxidative catabolic functions were also observed 

(Heinonen et al., 2015). Similar findings were also detected from VAT depots in studies 

from both humans with obesity as well as in animal models. One study found that a high-

fat diet in rats led to the down regulation of adipose tissue mitochondrial proteins 

(including reductions in cytochrome c, COX IV and PGC-1α expression) which are 

indicative of mitochondrial dysfunction and which subsequently led to the development 

of glucose intolerance (Gómez-Serrano et al., 2017; Sutherland et al., 2008).  

Furthermore, recent genome wide association scans have identified several 

independent loci that regulate mtDNA CN; thus it is also important to take into account 

the population genetic element within the context of mtDNA CN  (Guyatt et al., 2019; 

Longchamps et al., 2022).  Moreover, mtDNA CN also correlates with environmental 

factors including fine particulate matter (PM2.5) and components of the built 

environment (Z. Li et al., 2018; Zhao et al., 2020).  The Maltese population has an 

alarmingly high prevalence of obesity that is compounded by an ‘obesogenic’ 

environment and a limited infrastructure for active living (Cauchi et al., 2015).  It is thus 

essential that when undertaking molecular epidemiological studies to take into 
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consideration these environmental factors and how they impact on mtDNA CN and 

disease risk. 

Collectively, these studies keep providing additional evidence of the tight association 

between aberrations of mitochondrial bioenergetics and obesity. Yet, despite the well 

documented associations, a direct cause-effect relationship between mitochondrial 

function and obesity still remains a matter of debate and further studies are required to 

understand the underlying mechanisms responsible for impaired mitochondrial function 

in the context of obesity and its associated metabolic disorders. Future studies should 

also explore the directionality of any causal relationship. 
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5-6 Strengths and limitations  

The findings from this research are novel and for the first time demonstrate that mtDNA 

CN does not differ between metabolically healthy and unhealthy individuals with obesity 

. This lends further support to the idea that mitochondrial function (as assessed by a 

reduction in mtDNA CN) is impaired in obesity even when it is separated from its usual 

metabolic consequences.  Furthermore, these findings are consistent across several 

definitions of MH and thus reiterate that there is no healthy pattern of weight gain. This 

study is strengthened by the use of a well-phenotyped and adequately sized 

representative cohort of middle-aged adults encompassing a narrow age-range.  This 

thus excludes the potential of survival bias as well as age-related changes in muscle mass 

(such as sarcopenic obesity) and function as well as changes in fat distribution patterns 

(Kuk et al., 2009). Standard methods for data collection and for defining MH were used 

as already validated in previous studies. Furthermore, the same DNA extraction method 

was used in all participants.  This is relevant since it has been shown that DNA isolation 

methods influence mtDNA content measurement (Fazzini et al., 2018). The analysis was 

also adjusted to correct for differences in both amplification efficiency and blood cell 

type composition. Importantly, the abundant quantities of platelet mitochondria are 

known to artificially skew mtDNA CN, thus correcting for cell composition is considered 

essential for interpretation (Knez et al., 2016; Urata et al., 2008). All measurements were 

performed by the author in a single laboratory, with random allocation of participants 

to minimize batch effects.  To further limit the risk for possible pre-analytic effects, due 

care was taken to harmonise phlebotomy, sample transport as well as storage 

conditions. 
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This research also acknowledges a number of limitations.  Primarily its cross-sectional 

design limits the evaluation of the interaction between mtDNA CN and body 

composition phenotypes along the developmental trajectory to CVD endpoints.  mtDNA 

CN was inputted as an exposure variable driving metabolic outcomes, an approach 

which has also been adopted by other researchers (Memon et al., 2021). Thus, it is 

understood that no causal direction can therefore be robustly inferred from this 

analysis, and that a reverse causation could also be a possibility.  Fazzini and co-workers 

applied a mediation analysis approach which showed that a major proportion of the 

effect of mtDNA CN on T2 DM was accounted for by obesity parameters (Fazzini et al., 

2021). While the association between IR, obesity and defects in mitochondrial function 

and structure are now well recognised, it is still unclear whether these changes are 

mechanistically primary or secondary and thus future longitudinal studies are required 

to truly clarify whether mitochondria are the perpetrators of these disease states.   

This research involved the quantification of mtDNA CN extracted from total peripheral 

blood leukocytes which are a heterogenous cell population and thus can dilute biological 

effect sizes. In effect, studies which investigated the relationship between mtDNA CN 

and white blood cell composition and platelet count found that it varied by leukocyte 

subtype.  Accordingly, most studies found an inverse association with total WBC count 

and neutrophil count while positive associations were observed for proportions of 

lymphocytes, monocytes and platelets count implying that overall leucocyte 

composition may be a confounder in the association between mtDNA CN and several 

disease traits (Guyatt et al., 2018; Liu et al., 2021b). Although mtDNA CN was adjusted 

for total platelet count in this study, adjusting for white cell subpopulations was not 
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possible which might have been a potential source of bias.  Furthermore, estimates of 

mtDNA CN levels obtained from peripheral blood leukocytes may not be directly 

extrapolated to other more physiologically relevant target tissues such as adipocytes, 

skeletal myocytes, and hepatocytes. However, obtaining tissue samples such as 

myocytes or adipocytes requires an invasive approach which makes it less feasible for 

epidemiological studies.  On the other hand, peripheral blood has the advantage of 

being easily accessible and entails a more acceptable approach for analysis.  

Nonetheless, the study by Huang et al. showed that in participants with  heart failure , 

peripheral blood mtDNA CN correlated strongly with human cardiac myocytes 

(Pearson’s r = 0.718, p = 0.019)  and therefore is more likely to reflect MH across other 

human tissues of interest.  

Additionally, this investigation centred only on mtDNA CN as the focus of mitochondrial 

dysfunction and did not factor in other measures of mitochondrial activity or other  

molecular elements which could impact on mitochondrial bioenergetics and disease and 

which, in turn, could have led to different outcomes in this study.  However,  while 

mtDNA CN is not a direct  measure of mtDNA damage,  it is associated with 

mitochondrial enzyme activity and ATP production such that a reduction in mtDNA CN 

is associated with mitochondrial dysfunction  making it a validated tool for assessing 

mitochondrial function (Malik et al., 2013).  Furthermore, it is quantified using relatively 

low-cost scalable assays (such as qPCR) allowing for rapid determination of  cellular 

mitochondrial content in a large number of samples and hence serves as a readily 

available  biomarker of mitochondrial function  in clinical practice (Jeng et al., 2008; 

Ashar et al., 2017). To date a variety of other  methods are available to examine 
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mitochondrial function including changes in mRNA levels of mitochondrial markers using 

microarray approaches, measurements of protein subunit levels of respiratory chain 

complexes via immunoblotting techniques, assessment of enzymatic activity of key 

components of mitochondrial oxidation (such as citrate synthase activity and 

cytochrome c oxidase activity, changes in mitochondrial shape/size (using electron 

microscopy), measurement of oxygen consumption rate as well as  substrate oxidation 

studies (calorimetry studies) (Montgomery and Turner, 2015).  Accordingly,  while a 

number of  studies conducted in mice and humans  with T2 DM or obesity observed 

impairment of mitochondrial functional capacity (as assessed by several of the different 

methods described above) in skeletal muscle and adipocytes others failed to find an 

association  (Kelley et al., 2002; Choo et al., 2006; Nair et al., 2008; Litvinova et al., 2019; 

Phielix et al., 2008).  Moreover,  studies which assessed  mtDNA haplotypes and 

sequence variation (including single-nucleotide polymorphisms [SNPs] such as the 

4977bp deletion and structural variants) in relation to a variety of cardiometabolic 

endpoints also observed conflicting associations (Chinnery et al., 2010; Corral-Debrinski 

et al., 1992; Nardelli et al., 2013). Therefore, in light of the inconsistencies found in the 

literature regarding mitochondrial function, IR and adiposity, future larger and well-

powered studies utilizing different methods  for assessing mitochondrial function should  

be conducted in different populations in order to fully elucidate the relationship 

between mitochondrial function and the different body composition phenotypes.  

The environmental and lifestyle determinants of mtDNA CN are poorly understood with 

several factors being implicated (Zhao et al., 2020). Importantly, interactions between 

certain medications and mtDNA content may also introduce bias for example statins 
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have pleiotropic immunomodulatory effects which can negatively impact mitochondrial 

function and mtDNA CN (Mollazadeh et al., 2021). This study also did not factor in data 

on pro-inflammatory cytokines, diet, imaging-based assessment of visceral adiposity or 

cardiorespiratory fitness. Obesity was defined by BMI thresholds which could have 

misclassified individuals of a short stature or muscular build.  Moreover, no uniform 

definition of MH exists to date in the scientific literature (Rey-López et al., 2014).  This 

study recruited premenopausal females only.  The MHO phenotype is known to be 

highly prevalent in premenopausal females, however MHO is not a static trait and a  

transition to the metabolically unhealthy phenotype has been observed in longitudinal 

studies as part of the natural course of obesity. (Blüher, 2014; Eckel et al., 2018). Thus, 

future studies investigating the relationship between mtDNA CN and disease transition 

are required.   The metabolically unhealthy normal weight phenotype was under-

represented and unequal sex representation restricts interpretation of the findings 

within these cohorts.   

Deriving meaningful comparisons to identical studies is also challenging, particularly in 

view of heterogeneity in patient ascertainment criteria especially in those used to define 

MH, variation in background prevalence of obesity and differences in study design 

(cross- sectional vs longitudinal). Furthermore, cohort-specific aspects such as 

sociodemographic factors including education level, physical activity and economic 

status also impact on the risk and progression of metabolic outcomes and can also 

potentially be a source of unaccounted for confounders.  In this study mtDNA CN was 

determined using a qPCR technique which generates relative measures of mtDNA CN 

(as opposed to absolute measurements derived from other techniques such as digital 
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PCR) (Castellani et al., 2020). Moreover, accurate and replicable quantification of mtDNA 

CN and the lack of integration of mtDNA CN with multi-omic datasets which capture the 

genomic, proteomic and metabolomic landscape of metabolic disease further 

constraints comparisons across other studies.  

 

Conclusion and future recommendations 

The findings from this study reinforce the association between reduced leukocyte 

mtDNA CN, obesity, and Met S.  While caution should be taken when making inferences 

on direction of causality, this study adds to the pathophysiology of obesity given that 

excess adiposity, even in the absence of metabolic abnormalities is associated with a 

reduction in mtDNA CN. Moreover, the distinction between healthy and unhealthy 

obesity may not be directly explained by molecular changes at the level of the 

mitochondria. Thus, the role of mtDNA CN in the stratification of different obese 

phenotypes requires further evaluation.  This study should be replicated in insulin 

sensitive- tissues to further assess the role of this biomarker in obesity and 

cardiometabolic risk classification. Furthermore, future efforts should focus towards 

standardising the definition of MH, assessing   the direction of the   association    

between mitochondrial  dysfunction and excess   adiposity  and metabolic   disease 

through longitudinal studies as well as to elucidate further the underlying molecular 

determinants of healthy and unhealthy obese phenotypes. 
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Chapter 6 - Summary of main findings 
and clinical implications 
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6-1 What is already known about the topic? 

Obesity is generally accompanied by a cluster of metabolic abnormalities which increase 

cardiometabolic disease risk. It is now evident that obesity is a heterogenous disease 

with  diverse phenotypes, thus generating a spectrum of ‘obesities’. One such 

phenotype is called ‘metabolically healthy obese’ (MHO) and is characterised by a subset 

of individuals who, despite exhibiting increased amounts of total fat mass,  present a 

high level of insulin sensitivity, a favourable metabolic and inflammatory profile, and 

preserved adipose tissue dynamics (including selective expansion of subcutaneous 

gluteofemoral adipose tissue through hyperplasia, reduced levels of visceral and ectopic 

fat and lower adipose tissue inflammation and fibrosis) compared to the metabolically 

unhealthy obese  (MUHO) phenotype. Thus, MHO individuals are deemed to be at lower 

cardiometabolic disease risk. At the other end of the spectrum are normal weight 

individuals who display an excess and dysfunctional adiposity level similar to that 

observed in obese states and are thus at higher risk for cardiometabolic diseases.  These 

individuals are called the metabolically unhealthy normal weight (MUHNW). Notably, 

one of the main traits of this phenotype is the presence of a low level of gluteofemoral 

fat mass as opposed to an elevated amount of visceral and liver fat which is typical of 

the MUHO phenotype.  Furthermore, the MUHNW phenotype is also associated with 

insulin secretion failure and IR, increased carotid intima-media thickness (cIMT) and an 

adverse cardiometabolic and inflammatory risk factor profile akin to individuals with 

unhealthy obesity (Figure 6.1). 

Globally epidemiological studies show that as many as 35% of  individuals living with 

obesity may be MHO while approximately 30% of normal weight adults  are 
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metabolically unhealthy. To date, no uniform standardised criteria exist to describe 

MHO and MUHNW, with many authors using different combinations (and cut-points) of 

cardiometabolic risk factor parameters and/or insulin sensitivity to define MH. 

Furthermore, long term outcomes of the MHO phenotype are conflicting, particularly 

those relating to CVD risk and T2 DM. Several studies point towards MHO as presenting 

an intermediate state of risk between that of healthy normal weight  and unhealthy 

obesity, while those studies pertaining to MUHNW show that its’ risk probably lies 

somewhere between MHO and MUHO.  Recently, analysis of the UK Biobank dataset 

showed that individuals with ‘MHO’   have modest alterations  in their cardiometabolic 

risk factor parameters when compared to healthy normal weight people .  For example, 

they displayed higher blood pressure and HbA1c values and a worse lipid profile than 

MHNW individuals and this was despite the greater use of lipid-lowering and 

antihypertensive medications in the MHO group. Compounding this are studies which 

made an in-depth analysis of the micro-metabolic milieu of the MHO phenotype.  These 

observed subtle differences in micro level indices compared to healthy normal weight 

individuals even though they were characterised as ‘healthy’ using standard screening 

criteria.  Accordingly, abnormalities in fat distribution patterns (higher visceral adiposity 

levels) and lipid metabolism, oxidative stress and chronic inflammation, as well as 

aberrations in small molecule metabolites (omics), were observed, which could in part 

explain the increased CVD risk found in individuals with MHO . Moreover, the lack of a 

standardised definition for MH is a recurring concept surrounding the differences 

observed both in prevalence as well as in CVD outcomes for the MHO phenotype. This 

is evidenced by the fact that several definitions allowed for the presence of one (or 
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sometimes even more) metabolic abnormalities and thus may not truly reflect a 

‘healthy’ obese state.  Additionally, researchers did not factor in regional adiposity (most 

studies used BMI rather than indices of central obesity measurement or cross-sectional 

imaging) to assess nutritional status and moreover did not properly control for key 

confounding factors such as dietary quality and quantity and cardiorespiratory fitness, 

both of which are known to modulate adipose tissue dynamics as well as metabolic 

function. These observations suggest: 

• Contemporary definitions for MH may be too crude and currently used cut-

points for several cardiometabolic parameters may need to be revised 

downwards in order to identify those individuals who are truly metabolically 

healthy and, possibly, at a similar cardiometabolic disease risk to that of MHNW.   

• MHO is generally considered to be an unstable entity and as many as 50% of 

MHO individuals transition to develop more severe alterations in their 

cardiometabolic risk profile over time.   

• Evaluating outcomes relating to CVD risk and morality based on a single 

assessment of MHO may lead to an underestimation of the true risk associated 

with this phenotype.  

• Given that MHO is a transient phenotype associated with increased risks for 

several cardiometabolic diseases, identification of individuals who are in a ‘MHO’ 

state provides a window of opportunity  for the timely implementation of 

effective preventive strategies (via different modalities such as lifestyle,  

pharmacological and/or surgical interventions)  which would deter from further 

weight gain and/or  transition to a metabolically unhealthy state as well as the 
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institution of early treatment paradigms should metabolic abnormalities (or 

other complications) occur.  This in turn, would be expected to result in reduced 

medical and seriocomic costs associated with the management of obesity and 

obesity-associated comorbidities from a public health standpoint as well as 

reduce risk for premature morbidity and mortality at an individual level. 

• Metabolic health is also deemed to be unstable within the normal weight BMI 

range.  In fact, around 27% of healthy lean individuals  develop at least one 

metabolic abnormality over a period of 10 years, converting them into the 

unhealthy phenotype.   Furthermore, many mechanistic studies observed the 

MUHNW cohort to be ‘fatter’ (such as having a larger WC) than their healthy lean 

counterparts even though both groups fell within a normal BMI range. 

Additionally, this phenotype has been associated with several-fold greater risk 

for developing cardiometabolic disease not only compared to individuals with 

MHNW but also to those with MHO . 

From a molecular standpoint, studies have shown the important role of mitochondrial 

bioenergetics (as the organelle responsible for whole body energy homeostasis) in the 

pathophysiology of obesity, metabolic inflammation, and its associated sequelae (IR, T2 

DM, Met S, and atherosclerosis).   In fact, mitochondrial dysfunction (as assessed by a 

reduction in the abundance of cellular mitochondria [mtDNA CN] in several tissues) is 

directly associated with disorders linked to cardiometabolic risk such as atherosclerotic 

CVD, Met S, T2DM, hypertension, obesity and IR. However, to date the role of 

mitochondrial function in the different subtypes of obesities is still under- investigated.  
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6-2 What are the key questions? 

This research sought to evaluate two key aims: 

a) Evaluate the prevalence and characteristics of the body composition phenotypes 

in the Maltese population. 

b) Explore the relationship between mtDNA CN as a surrogate index of 

mitochondrial dysfunction and different body composition phenotypes. 

 

Rationale:  

Based on existing local and international epidemiological data, it was anticipated that 

approximately one third of the study population to be in the obese BMI category, and 

that one third of participants living with obesity to classify as MHO. Furthermore, it was 

expected that MHO presents an intermediate state risk (in terms of cardiometabolic and 

inflammatory profiles) between that of MHNW and MUHO. The molecular correlates of 

obesity phenotypes are also complex, and the relevance of mitochondrial dysfunction 

to differences in body composition are not fully ascertained.  This study thus sought to 

assess the distribution of mtDNA CN across different body composition phenotypes, in 

an attempt to refine the contribution of mitochondrial dysfunction across different 

obesity phenotypes.  
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Objectives:  

Using a well-phenotyped middle-aged Maltese Caucasian population, this research sets 

out to explore, for the first time, the following objectives: 

1) Establish the prevalence of the six body composition phenotypes (MHNW, 

MUHNW, MHOW, MUHOW, MHO and MUHO) according to multiple definitions 

of MH 

2) Explore which definition which best predicts IR 

3) Evaluate characteristics and determinants of the major phenotypes of interest 

(MHO and MUHNW) 

4) Assess sex differences in prevalence, anthropometric and biochemical 

parameters of each of the body composition phenotypes and in the 

determinants of IR 

5) Evaluate the discriminatory power and the respective cut-points of the various 

anthropometric and biochemical parameters in predicting IR 

6) Explore the relationship between peripheral blood leukocyte mtDNA CN and the 

different body composition phenotypes 
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Figure 6.1: Overview of the prevalence, characteristics, pathophysiological features and long term outcomes of the different body 
composition phenotypes  
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    Figure 6.1: (Continued)                      
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6-3 What are the study’s main findings? 

  Table 6.1: Summary of main findings 

Data are presented as number (percentage, %) 
OW/O-overweight/obesity; MHNW- metabolically healthy normal weight; MUHNW-metabolically unhealthy normal weight; 
MHOW/O-metabolically healthy overweight/obese; MUHOW/O-metabolically unhealthy overweight/obese; MH- metabolic 
health; IR – insulin resistance; VAI – visceral adiposity index ; LAP – lipid accumulation product ; WC – waist circumference; AUC 
– area under the Receiver-operating characteristic Curve;  
*Individuals having ≤1 ATPIII criteria from the following: waist circumference >102cm in men and >88 cm in women; systolic or 
diastolic blood pressure ≥130/85 mmHg or on antihypertensive medication; serum triglycerides ≥1.69mmol/L or on lipid-lowering 
medication; HDL-C <1.03 mmol/L in men and < 1.29 mmol/L in women or on treatment aimed to increase HDL-C; fasting glucose 
≥5.6mmol/L or on antihyperglycemic agents.  **Presence of  ≥2 NCEP ATPIII criteria for the metabolic syndrome ±Consisting of 
Wildman et al., Doumatey et al., Meigs et al., Hamer et al., Aguilar-Salinas et al., Lynch et al., Karelis et al., Lavie et al and NCEP 
ATP III (presence of either 0, 1 or 2 parameters) 
 ϯ defined as HOMA-IR ≥2.5 

 

 

Total population (n)      521 

Females, n (%) 330 (63.3%) 

Subjects with OW/O,  n (%) 365 (70%) 

Subjects with the metabolically unhealthy phenotype,  n (%) ** 171 (32.8%)  

Subjects with normal weight,  n (%) 156 (30%)  

MHNW, n (%)*  145 (27.8%)   

MHOW, n (%)* 149 (28.6%)  

MHO,  n (%)* 56 (10.7%)   

MUHNW,  n (%)** 11 (2.1%)  

MUHOW,  n (%)** 42  (8.1%)   

MUHO,  n (%)** 118 (22.6%)  

Prevalence of MHOW/O among overweight/obese subjects, n (%) 205 (56.1%)  

Prevalence of MHOW among overweight subjects,  n (%) 149 (78%)  

Prevalence of MHO among obese subjects,  n (%) 56 (32.1%)  

Gender differences 

                                                     Males                              Females 

Overall, n (%)  191 (36.7%) 330 (63.3%) 

Metabolically unhealthy phenotype,  n (%)** 78 (41.3%)  92 (27.8 %) 

MHNW,  n (%)* 26 (5%)  119 (22.8%) 

MUHNW,  n (%)** 3  (0.5%)  8 (1.5%)  

MHOW, n (%)* 67 (12.8%) 81 (15.5%) 

MUHOW,  n (%)** 24 (4.6%) 18 (3.5%) 

MHO,  n (%)% * 18 (3.5%)  38 (7.3%) 

MUHO,  n (%)** 52 (10%) 66 (12.7%) 

Prevalence range using different definitions of MH± 

MHNW,  (%)* 16.3 – 27.5% 

MUHNW,  (%)** 0.6% - 13.5% 

MHOW,  (%)*  11.9 – 32.9% 

MUHOW,  (%)** 3.8 – 25.0% 

MHO,   (%)* 2.1- 19.0% 

MUHO,  (%)** 14.6 – 31.2% 

Anthropometric and biochemical predictors of IRϯ 

                    Males 
Parameter (cut-off value) 

            AUC±SE 
(95%CI) 

Sensitivity% 
(95%CI)  

Specificity% 
(95%CI) 

LAP  (42.5) 0.79±0.04 (0.71-0.87) 86 (72-95) 63 (55-71) 

VAI (1.44) 0.78±0.04 (0.70-0.86) 86 (72-95) 66 (58-73) 

WC (96.5cm) 0.70 ±0.05 (0.61-0.79) 74 (58-86) 60 (52-68) 

                                                 Females 
Parameter (cut-off value) 

   

VAI (1.41) 0.82±0.04 (0.73-0.90) 80 (66-90) 77 (72-82) 

LAP (36.2) 0.81±0.04 (0.73-0.89) 76 (61-87) 80 (75-85) 

WC (82cm) 0.76 ±0.04 (0.69-0.84) 86 (73-94) 53 (47-59) 
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• More than 2/3 of the study population was overweight or obese (in keeping to 

that reported in the Maltese general population). A summary of the main 

findings observed in this study are summarised in table 6.1. 

• 1/3 (32.8%) of this working-age population was found to have a metabolically 

unhealthy phenotype which carries important clinical and public health 

implications. 

• While more than ¾ of individuals with overweight were metabolically healthy  

(78%), the majority of individuals with obesity were metabolically unhealthy 

(67.9%) and only 32.1% were MHO (using the presence of ≤1 parameters of the  

NCEP ATP III criteria). 

• 7.7% of MHOW and 3.7% of MHO were insulin resistant (HOMA-IR ≥2.5) while 

only 22%, 40.5% & 47.4% of MUHNW, MUHOW and MUHO respectively were 

insulin resistant when using NCEP ATPIII criteria to define MH.  Furthermore, 

compared to the NCEP ATPIII criteria, the IR definition for MH presents a worse 

cardiometabolic profile in MHOW/O participants  while within the MUHNW 

cohort, the NCEP ATPIII definition presents a worse cardiometabolic profile. 

• Overall, the metabolically healthy phenotype was more prevalent in females, 

those who were physically active, those who consumed alcohol and those with 

a tertiary level of education or held a white-collar occupation. This is consistent 

with other studies. 

• The prevalence of different body composition phenotypes is definition 

dependent.  In this study the prevalence of MHO was highest when adopting the 

Doumatey et al., Meigs et al. and Aguilar et al. definitions (population prevalence 
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of 19%) whilst the lowest prevalence was observed when using the NCEP-0 

criteria (2.15%).  Prevalence of MUHNW was highest when adopting the 

Wildman et al. definition (13.5%), whilst the lowest was observed when using 

the NCEP-2 criteria (0.6%). 

• In females the NCEP-2 definition had the highest odds for predicting IR (HOMA-

IR ≥2.5) (OR 19.7, CI 16.6 -22.3) even after adjusting for BMI. . 

• In males the Aguilar-Salinas et al definition had the highest odds for predicting 

IR (OR 18.7, CI 12.3 – 21.9) even after adjusting for BMI – this implies that sex-

specific definitions for MH may be required. 

• MUHNW were ‘fatter’ than MHNW, i.e., higher values for indices of central 

obesity measurements and higher values for several biochemical parameters 

were observed compared to MHNW. 

• MHOW/O participants  were comparable to MHNW in terms of lifestyle 

characteristics and in the proportion of individuals exhibiting any of the Met S 

criteria (except TG); however, they had higher values for anthropometric 

parameters and indices of central obesity measures and presented a worse 

cardiometabolic profile (in fact they had higher values for biomarkers of lipid and 

glucose metabolism, insulin resistance and inflammation). 

• MHOW/O and MUHNW individuals exhibited differences in key anthropometric 

parameters such that the MHOW/O phenotype had higher values for measures 

of peripheral fat accumulation (thigh circumference) and lower values for indices 

of central adiposity (VAI). Furthermore, MUHNW participants were more likely 
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to have an associated medical comorbidity and exhibited worse values for lipid 

parameters. 

• The major lifestyle determinants for the MHOW/O phenotype defined by the 

presence of ≤1 parameters of the NCEP ATPIII criteria were: engaging in physical 

activity, alcohol consumption, non-smoking status, and age <40 years.  

• No significant lifestyle determinants were observed for the MUHNW phenotype  

• Males were more likely to exhibit the unhealthy metabolic phenotype compared 

to females (41.3% vs 27.8%). 

• The majority of individuals with normal weight and overweight in  both sexes 

were metabolically healthy while the majority of males and females living with 

obesity were metabolically unhealthy (74.3% and 63.5%). 

• Overall, males tend to exhibit a less favourable metabolic profile and have higher 

values for indices of obesity measurements even when classified as healthy, 

except for thigh circumference which was higher in females. While having higher 

median BMI, a lower proportion of males exhibited an abnormally high WC 

(>102cm) compared to females (31.4% vs 39.1%, respectively).  

• BMI was the strongest determinant of HOMA-IR in males (ß=0.082, 95%CI 

00.046-0.119, p<0.01). In females, both BMI and WHR were independently 

associated with HOMA-IR (β=0.047, 95% CI 0.362-0.062, p=0.016 and β=1.91, 

95% CI 0.362-3.45, p=0.016 respectively).  

• LAP, VAI and WC were observed to have the strongest discriminatory power to 

predict a HOMA-IR ≥ 2.5 in both sexes in ROC analysis. 
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• The cut-off for WC in predicting HOMA-IR in both sexes was lower than those 

currently recommended (NCEP ATPIII). Possibly, sex-specific WC cut-offs may 

need to be revised in the Maltese population. 

• A comparable mtDNA CN was observed between MUHO and MHO participants  

(irrespective of the definition used); however, this was statistically lower than 

that observed in MHNW individuals  (p<0.01 for all comparisons).  

• A 10-fold reduction in mtDNA CN is associated with a higher odds of having the 

Met S (OR 1.05, 1.02-1.09), the metabolically unhealthy phenotype (OR 1.04, 

1.02-1.09) and of IR (defined as HOMA-IR ≥2.5) (OR 1.03, 1.01-1.07) in both 

sexes. 

• In females a 10-fold reduction in mtDNA CN was also associated with a higher 

WC (OR 1.07, 1.04-1.11), whilst in males it was associated with increased odds 

of having elevated serum TG (OR 1.02, 1.00-1.05). 

• Principal components analysis shows that lower mtDNA CN is associated with 

adiposity (BMI, WC) and insulin resistance (FPG, HOMA-IR) – further confirming 

the relationship between excess adiposity, insulin resistance and reduced 

mtDNA CN. 

• Figure 6.2 shows the salient characteristics of the different body composition 

phenotypes observed in this study. 
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 6-4 What is their novelty and how may they impact on clinical practice? 

The findings from this study have direct clinical implications, as outlined below: 

• A considerable proportion of the studied population were living with overweight 

or obesity (70%) and as many as 1 in 3 individuals carried the unhealthy 

metabolic phenotype across all BMI categories.  These findings are expected to 

result in increased future CVD burden within the Maltese population. 

• The MHOW/O phenotype is associated with subtle differences in several 

cardiometabolic risk parameters – including worse lipid, glycaemic and IR 

profiles compared to MHNW – implying that MHOW/O is not completely benign. 

• MUHNW participants  may be thought of as being ‘fatter’ than their MHNW 

counterparts and overall present a worse cardiometabolic profile than 

MHOW/O confirming this phenotype is not without its risks. 

• These findings thus suggest that the cardiometabolic risk associated with MHO 

may lie somewhere between that of metabolically healthy normal weight and 

that of metabolically unhealthy normal weight. Additionally, the prevalence of 

the different body composition phenotypes is definition dependent thus 

highlighting the need for having standard criteria. 

• The finding that only around half of MUHO participants  were insulin resistant 

(i.e., having a HOMA ≥2.5) is unexpected. It is generally assumed that an 

abnormal metabolic phenotype would be accompanied by IR. Furthermore, a 

small but significant number of metabolically healthy individuals with 

overweight and obesity   (MHOW/O) were insulin resistant. These findings may 
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imply that sole use of the NCEP ATPIII or HOMA-IR definitions to categorise MH 

may be insufficient to identify true metabolically healthy individuals.  This may, 

in part, also explain the heterogeneity in prevalence and long-term outcomes 

observed in several studies. 

• Males were consistently observed to have less favourable anthropometric and 

metabolic profiles compared to females across all BMI categories and even when 

classified as being metabolically healthy, suggesting that BMI cut-offs may need 

to be revised downwards in males. Furthermore, the fact that a lower 

percentage of males exhibited an abnormal WC despite a higher BMI compared 

to females suggests that currently used cut-offs for WC may be too high for males 

and should be lowered.  

• Timely and aggressive management of modifiable risk factors as well as 

preventive strategies (both with respect to obesity and in the development of 

metabolic abnormalities) need to be implemented across all BMI categories. 

• Several routinely available parameters can be used to predict IR in clinical 

practice, however some were observed to have lower thresholds than those 

currently recommended by ATPIII.  Future longitudinal studies especially those 

relating to hard outcomes are required to ascertain cut-offs so as to reflect a 

more contemporary population and which can be used as biomarkers for CVD 

risk in a clinical setting. 

• The presence of obesity is associated with a reduced mtDNA CN level (and thus 

mitochondrial dysfunction) irrespective of whether it is healthy or unhealthy and 
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the distinction between MHO and MUHO may not be directly explained by 

pathophysiological changes at the level of the mitochondrion.   
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 Figure 6.2: Salient characteristics of the body composition phenotypes in the studied population 
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It will be useful to assess the relationship between the various definitions of MH and 

carotid-intima media thickness (cIMT), which is another well-established biomarker of 

atherosclerosis. Since both MH and adiposity are dynamic states, a longitudinal follow-

up study should be conducted to determine transitions in between body size phenotype 

of the currently investigated population as well as the determinants of such changes. 

Furthermore, the longitudinal relation between leukocyte mtDNA CN at baseline and 

transitions across MH phenotypes over the length of follow up should be evaluated. In 

addition, longitudinal approaches would enable assessment of the incident 

cardiometabolic disease burden in the study cohort. 

It will be worthwhile to study the prevalence of the body size phenotypes in the island 

of Gozo, which is generally more rural and where the population has a different lifestyle 

to that of the main island of Malta. Other possible studies include characterisation of 

the various body size phenotypes and studying sex differences in a more elderly cohort. 

As discussed previously, elderly individuals have different fat distribution patterns and 

less muscle mass and should therefore be studied separately. In addition to this another 

study could focus on determining the optimal cut-offs for the various cardiometabolic 

parameters to predict IR in this elderly cohort. 

Other studies which could be conducted to evaluate further the relationship between 

the different body composition phenotypes and mitochondrial function would involve 

measures of mitochondrial activity such as citrate synthase activity and oxygen 

consumption rate. It would also be interesting to investigate the effect of bariatric 

surgery, glucagon-like peptide 1 receptor agonists and the incorporation of a very low-

calorie diet (VLDL) on mitochondrial copy number and on mitochondrial function. 
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Molecular analysis could also incorporate additional biomarkers of oxidative stress and 

cell senescence and ageing. Specifically, the assessment of untargeted telomere length 

using qPCR approaches and how this relates to MH and different body composition 

phenotypes should be ascertained. Recent studies have also shown that individuals with 

obesity, particularly those with increased visceral adiposity, tend to have lower serum 

IGF-1 levels and a blunted growth hormone response on dynamic testing.  Furthermore, 

a diminished IGF-1 level in the serum was observed to be associated with a worse 

metabolic profile (Miller et al., 2005). IGF-1 is a peptide hormone produced primarily by 

the liver and has a molecular structure similar to that of insulin. It primarily mediates 

the effects of growth hormone (GH) through its mitogenic and anabolic actions and 

preliminary studies show that it could potentially act as a novel biomarker for identifying 

those clinical phenotypes at highest risk of adverse cardiometabolic outcomes (Masi et 

al., 2022). Thus, another study could entail the measurement of serum IGF-1 levels (or 

its surrogate marker, the IGF-1 z Standard of Deviation Score [zSDS]), within the studied 

population and assess how it varies among the different body composition phenotypes 

and in its relationship with mtDNA CN.   
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Appendix 1A: Copy of University of Matla Research Ethics Committee Study Approval. 
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Appendix 1B: Copy of Consent Form. 

 

I am a Maltese citizen, and I am 41 (±5) years of age  

I have been asked to participate in the research study entitled: 

Molecular determinants and prevalence of the different body composition phenotypes in a 
Maltese cohort  

The reason for this study is to identify the health status of people who are around 40 years of 
age (i.e., whether they are normal weight, overweight or obese) by assessing their body 
composition characteristics as well as to find out if they have presence of any underlying 
condition such as diabetes, high blood pressure and high cholesterol.   

This will be done by asking you to come to the diabetes clinic at the outpatient department of 
Mater Dei Hospital between 7am and 8: 30am whereby initially you will be asked a couple of 
questions regarding general information (this will include age, DOB, gender, ethnicity, area of 
residence, level of education and current or past occupations, smoking and alcohol practices 
and if you undertake any physical activity.  You will then also be asked questions regarding your 
current state of health including if you are known to suffer from any illnesses (such as diabetes, 
high blood pressure, asthma, or heart disease) or if you underwent surgical operations in the 
past or if you are currently taking any medications.  Thereafter I will proceed to examine you.  
At this point I will ask you to lie on the couch with light underwear clothing so as to assess the 
blood pressure, the waist, neck, thigh, hip and arm circumferences. Then I will assess your 
weight and height using a digital scale and stadiometer.  Following this I will then proceed to 
take a blood sample via a needle prick (roughly around 30 mls – 3 tablespoons of blood) so as to 
check your blood count, sugar, cholesterol, liver, kidney and thyroid levels.  Blood will also be 
used to isolate DNA in order to carry out genetic tests. 

It is envisaged that all the above will not last longer than 20-30 minutes. 

Further to this, at a later stage we would also like to assess the case notes of your mother in 
order to allow us to gather information regarding the time she was pregnant with you.  We shall 
be looking at any events or problems that cropped up during her pregnancy (such as diabetes or 
high blood pressure in pregnancy), if she took any medication, and if there were any problems 
during delivery. From the same notes we would also be able to capture information regarding 
your early life characteristics such as birth weight, weight of placenta, weight and height gained 
in the first year, if you were bottle or breast fed, and if you were ever exposed to cigarette 
smoke. Your mother will not be asked to attend for any visits or blood tests at hospital.  

All data that I will obtain throughout this research project will be anonymised, but should I 
encounter any adverse results both on examination or on blood testing a particular person I will 
contact you personally to make the necessary arrangements for further tests or treatment as 
required via the government health service either through their family doctor or in one of my 
afternoon clinics at Mater Dei Hospital (according to your preference). 

I would like to participate in this research study and I confirm that: 

The purpose and details of the study have been explained to me by Dr. Rachel Agius (principle 
investigator) and any difficulties which I raised have been adequately clarified. 
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I give my consent to the Principal Investigator (Dr. Rachel Agius) and her supervisor (Prof. S.  
Fava) to either make the appropriate observations/tests or both and to take the necessary blood 
samples. I am also aware that blood samples may be taken and stored for future genetic studies. 
I am aware of the inconveniences which this will cause. 

I understand that the results of this study may be used for medical or scientific purposes and 
that the results achieved from this study in which I am participating may be reported or 
published: however, I shall not be personally identified in any way, either individually or 
collectively, without my express written permission. 
I am under no obligation to participate in this study and am doing so voluntarily. 

I may withdraw from the study at any time, without giving any reason.  This will not influence in 
any way the care and attention and treatment normally given to me. 

I am not receiving any remuneration for participating in this study. 

In case of queries during the study I may contact Dr. Rachel Agius (principle investigator) on Tel 
No 79847509 

 

Signature of participant:                          ________________________________ 
 
Name of participant (in block letters)                ________________________________ 
 
Id. No.:                                                       _________________________________ 
 
Signature of principle investigator:                     _________________________________ 
Name of principle investigator:                           Dr Rachel Agius MD MRCP MSc 
Id. No.:                                                                     276781M  
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                                                   Appendix 1C: Copy of Study Proforma  

 

A) Index case anthropometric data 

Name                                                                 Surname 

Identification No.                                              Age                                    DOB 

Gender                                                               Race/ethnicity 

Area of current residence   north     □             central   □                             south □ 

Town of current residence 

Level of education:     primary □      secondary □       tertiary □ 

Occupation (ISCO-08) 1-Managers 
                                        2-Professionals 
                                        3-Technicians and associate professionals 
                                        4-Clerical support workers 
                                        5-Service and sales workers 
                                        6-Skilled agricultural, forestry and fishery workers 
                                        7-Craft and related trades workers 
                                       8-Plant and machine operators, and assemblers 
                                       9-Elementary occupations) 
                                       0-Armed forces occupations 
 

Smoking status:  lifelong non-smoker: (<100 cigarettes in their lifetime & not currently smoking □ 
                           
                              current smoker:  (>100 cigarettes in their lifetime & current smokers)  □   
                                                              no. per day □                      
                              ex-smoker: (>100 cigarettes in their lifetime but not presently smoking) □   
 

Alcohol intake:  non-drinker (<12 alcoholic  beverages in their lifetime) □      
                             < 1 drink/day □     1-2 drinks/day □       >2 drinks/day□  
 

Physical activity: type of activity 

                              No. of times performed per day                 week                  month 

                              Duration of each activity              (minutes) 
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Known medical illness:  T2DM □       HT  □       hypercholesterolaemia  □      CVD □       

                                        Others:      

Past surgical history: 

Drug history       antihypertensives 

                            Anti diabetic agents 

                            Lipid lowering agents 

                            Others  

Ht                               Wt                                  neck circumference 

BMI                           normal weight □              overweight □             obese □ 

WC                             waist index                     hip circumference       waist/hip ratio 

R arm circumference                                            L arm circumference 

R thigh circumference                                          L thigh circumference 

 

B) Measurement of cardiometabolic components and body size phenotype 

 

LFT                TC                  LDL                   HDL                 TG 

FBG          Hba1c              Insulin 

Uric acid      CRP             ferritin            Renal profile          Vitamin D      TFTs  

BP 

Body phenotype category:   normal weight   □      0-1 abnormalities □      ≥2 abnormalities □ 

                                                     Obese                □      0-1 abnormalities □      ≥2  abnormalities  
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 Appendix 2: Definitions of the Metabolic Syndrome as proposed by different organisations. 
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                                                Appendix 3: An overview of the DNA extraction process.  
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Appendix 4: Summary of proposed pathways linking AT mitochondrial dysfunction and cardiometabolic disease.

AT- adipose tissue, ROS-reactive oxygen species, ATP-adenosine triphosphate, MTC- mitochondria, FFA – free fatty acid 
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Appendix 5: Mitochondrial dysfunction. lipotoxicity and insulin metabolic signalling. 

 

The cellular mechanisms linking mitochondrial 
dysfunction, lipotoxicity and onset of  insulin resistance  
in classical insulin target tissues such as skeletal 
myocytes. In this model mitochondrial dysfunction or a 
reduction of mitochondrial content leads to a decrease 
in fatty acid beta-oxidation.  This is associated with 
intracellular accumulation of toxic metabolites such as 
fatty acyl CoA  and diacylglycerol.  The presence of these 
molecules causes activation of novel protein kinase C 
which in turn activates a serine kinase cascade (which 
possibly involves various stress pathways including NF-
kB and c-Jun N-terminal kinase (JNK) leading to increased 
phosphorylation of serine residue on IRS-1 (pS). 
Increased serine phosphorylation blocks IRS-1 tyrosine 
phosphorylation (Y)  by the insulin receptor which 
subsequently inhibits activity of PI 3-kinase.  This 
culminates in the suppression of insulin-mediated 
glucose uptake and the onset of insulin resistance. 

 

IRS-1, insulin receptor substrate-1; PIP3, phosphatidylinositol 
3,4,5-trusphosphate; PI3-kinase, phosphatidylinositol 3-
kinase; PTB, phosphotyrosine binding domain; PH, pleckstrin 
homology domain; SH2, src homology domain 

(Source: Lowell and Shulman, 2005)
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