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Abstract

Metabolic models provide a mathematical description of the complex network of biochem-
ical reactions that sustain life. Among these, genome-scale models capture the entire
metabolism of an organism, by encompassing all known biochemical reactions encoded by
its genome. They are invaluable tools for exploring the metabolic potential of an organ-
ism, such as by predicting its response to different stimuli and identifying which reactions
are essential for its survival. However, as the understanding of metabolism continues to
grow, so too has the size and complexity of metabolic models, making the need for novel
techniques that can simplify networks and extract specific features from them ever more
important.

This thesis addresses this challenge by leveraging the underlying structure of the net-
work embodied by these models. Three different approaches are presented. Firstly, an
algorithm that uses convex analysis techniques to decompose flux measurements into a
set of fundamental flux pathways is developed and applied to a genome scale model of
Campylobacter jejuni in order to investigate its absolute requirement for environmental
oxygen. This approach aims to overcome the computational limitations associated with
the traditional technique of elementary mode analysis.

Secondly, a method that can reduce the size of models by removing redundancies is intro-
duced. This method identifies alternative pathways that lead from the same start to end
product and is useful for identifying systematic errors that arise from model construction
and for revealing information about the network’s flexibility.

Finally, a novel technique for relating metabolites based on relationships between their
concentration changes, or alternatively their chemical similarity, is developed based on the
invariant properties of the left null-space of the stoichiometry matrix. Although various
methods for relating the composition of metabolites exist, this technique has the advan-
tage of not requiring any information apart from the model’s structure and allowed for
the development of an algorithm that can simplify models and their analysis by extracting
pathways containing metabolites that have similar composition. Furthermore, a method
that uses the left null-space to facilitate the identification of un-balanced reactions in
models is also presented.
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Astratt

Il-mudelli metaboliċi huma deskrizzjoni matematika tan-netwerks tar-reazzjonijiet bi-
jokimiċi li jsostnu l-̄hajja. Fost dawn, il-genome scale models jiddeskrivu l-metabo-
liżmu komplet ta’ organiżmu billi jinkludu r-reazzjonijiet bijokimiċi li ġew moqrija mil-
ġenetika tiegh̄u. Dawn il-mudelli huma gh̄odod imprezzabbli gh̄all-esplorazzjoni tal-
potenzjal metaboliku ta’ organiżmu, per ezempju, billi jbassru ir-rispons tiegh̄u gh̄al
stimuli ambjentali jew jidentifikaw reazzjonijiet li huma essenzjali gh̄al-̄hajja. Madankollu,
kif l-gh̄arfien tal-metaboliżmu qed ikompli jikber, hekk ukoll id-daqs u l-kumplessità ta’
dawn il-mudelli. Dan l-fatt jagh̄mel l-̄htieġa gh̄al tekniki ġodda li jistgh̄u jissimplifikaw
in-netwerks u jestrattaw karatteristiċi minnhom aktar importanti.

Din it-teżi tindirizza din l-isfida bi tliet modi differenti. L-ewwel metodu hu algoritmu li
jiddekomponi imġieba metabolika f’numru ta’ pathways fundamentali. Dan l-algoritmu
hu applikat fuq genome scale model ta’ Campylobacter jejuni sabiex jigi studjat l-effetti
tas-saturazzjoni tal-ossiġnu ambjentali fuq dan l-bacteria. Dan l-algoritmu gh̄andu l-
gh̄an li jegh̄leb il-limitazzjonijiet komputazzjonali assoċjati mat-teknika tradizzjonali tal-
elementary modes.

It-tieni metodu ’jnaqqas id-daqs tal-mudelli billi jidentifika u jneh̄h̄i redundancies fin-null-
space tal-lemin tal-matriċi tal-istojkjometrija. B’hekk jidentifika pathways alternattivi li
jwasslu gh̄all-istess prodotti. Dan l-metodu huwa utli biex jiġu identifikati żbalji sis-
tematiċi fill-kostruzzjoni tal-mudelli, u biex tiġi żvelata informazzjoni dwar il-flessibilità
tan-netwerks.

Fl-ah̄h̄arnett, teknika ġdida biex tirrelata l-metaboliti, bbażata fuq relazzjonijiet bejn
il-bidliet fil-konċentrazzjoni tagh̄hom, jew alternattivament ix-xebh kimiku tagh̄hom, hi
deskritta. Din tuza’ l-proprjetajiet invarjanti tan-null-space tax-xellug tal-matriċi tal-
istojkjometrija. Gh̄alkemm jeżistu diversi metodi simili, din it-teknika gh̄andha l-vantaġġ
li ma teh̄tieġ l-ebda informazzjoni minbarra l-istruttura tal-mudell u b’hekk ippermettiet
l-iżvilupp ta’ algoritmu ġdid li jista’ jissimplifika l-mudelli u l-analiżi tagh̄hom billi jes-
tratta pathways li fihom metaboliti li gh̄andhom kompożizzjoni simili. Barra minn hekk,
metodu li juża n-null-space tax-xellug biex jidentifika mudelli li fijhom reazzjonijiet li
mhumiex ibbilanċjati b’mod tajjeb hu wkoll ppreżentat.
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Chapter 1: Introduction

The processes amongst living beings are all centred around a common goal: the assimi-

lation of resources from the environment to drive growth, generate energy, and eliminate

waste. To this end, all living processes happen via chemical reactions, described and stud-

ied within the field of metabolism. These reactions form a metabolic network in which

every reaction is connected to many others via the chemicals it acts upon, such that

the output of one reaction serves as the input of some others. They behave collectively

as a system, interacting with one another in complex ways. As a result, understanding

the behaviour of metabolic systems is a challenging task, which requires identifying the

network’s components and characterizing how they are interconnected.

Only a few reactions occur spontaneously in living beings; the majority are catalysed by

specialised proteins called enzymes [Campbell and Farrell, 2009, Chapter 6]. Therefore,

cellular metabolism can be described as a series of enzyme-catalysed reactions that convert

substrates into products, at a rate known as metabolic flux. Every cell contains thousands

of different types of enzymes, most of which are extremely precise molecular entities,

capable of promoting only one or a particular few chemical reactions and being likewise

associated with specific identifiable genes in genetic code. As a consequence, a cell’s

metabolic network can be inferred from its genetic code [Pitkänen et al., 2010].

In the latter decades of the 20th century, considerable time and effort were devoted to

characterising the behaviour of various enzymes and discovering the genes that encode

them. More recently, the rise of omics technologies has made this task much simpler,

allowing for the determination of genetic sequences, thus enabling biologists with the

means to map a wide variety of metabolic networks, from simple pathways containing a

few reactions to large datasets encompassing entire cells and microorganisms.

The resulting data is used both to understand the mechanisms behind metabolic phe-

nomena and to predict how environmental changes and modifications to the network’s

structure would affect metabolic behaviour. However, such insights are challenging to

come by, owing to the ambiguity and complexity often exhibited by these large datasets.

Conventional approaches attempt to clarify our interpretation of metabolism by parti-

tioning networks into a set of fundamental pathways: groups of reactions that collec-

tively transform one or more input metabolites into one or more output metabolites, thus
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defining a specific metabolic function. Although this reasoning is useful for designating

specialised functions, it ignores the fact that individual reactions are rarely members of

a single pathway, and therefore, the components of one pathway can interact with the

components of many others. Indeed, the degree of control that a given reaction exerts over

the flow of metabolites within a system cannot be predicted by studying its properties in

isolation [Thomas and Fell, 1998; Moreno-Sánchez et al., 2008]. For example, when one

reaction is perturbed, the metabolic network tends to compensate for the disruption—

often in ways that traditional methods find hard to predict. This is a major problem in

biotechnology, and in fact, it has been argued that our ability to edit genes is far superior

to our ability to predict how the changes will manifest [Fell, 1997, Page 2].

Systems Biology attempts to address this issue by studying the phenomena that emerge

from the organised interactions within a network, revealing patterns and relationships

that are not evident when observing components individually. These features are referred

to as emergent properties and their study is made possible through designing metabolic

models that can mimic metabolic behaviour.

Metabolic models are mathematical representations of these complex systems—established

through a collection of equations that detail the network’s components i.e. the reactions

and metabolites, and their way of interaction. Every reaction can be described by the

quantitative relationship between the chemical compounds involved (referred to as the

reaction’s stoichiometry), or by means of rate equations. Once a complete set of reac-

tions has been determined, this information is embedded into the model. Specifically, flux

changes are quantified by a series of ordinary differential equations that express the rate

of change of the concentration of each metabolic compound in terms of the reactions that

consume and produce it.

Models that contain only the stoichiometric information described above are referred to

as a structural models. These models embed the rules and conditions that arise from the

underlying structure of the network. On the other hand, kinetic models contain addi-

tional parameters that incorporate properties such as enzyme rate equations. They allow

metabolic systems to evolve from a given initial state by describing how flux and concen-

tration values change over time. However, their applicability is limited because many of
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the parameters required to construct kinetic models are difficult to obtain. Furthermore,

the results of such analysis can be challenging to interpret [Poolman et al., 2004a].

This thesis focuses solely on structural modelling, although every kinetic model must

implicitly also contain a structural model.

Once a metabolic model is complete, algorithms condense the complex web of interac-

tions into reliable information that is easy to understand, act upon, and manipulate. In

particular, computational simulations can predict how altering some component (such

as removing a reaction or specific nutrient source) would affect metabolic behaviour [Gu

et al., 2019; Fang et al., 2020]. For example, the deletion of a set of reactions might

redirect metabolic flux toward increased production of a desired product [Fatma et al.,

2018].

Established structural modelling techniques depend only on the assumption that metabo-

lite flow is constant while the cell is in a steady-state (i.e. the rates of production are

counterbalanced by equal rates of consumption, such that no metabolite is indefinitely

accumulating within the cell). One particularly useful technique, Elementary Modes

Analysis (EMA), details the flux distributions that a network’s structure can achieve at

steady-state, thus revealing insights on flexibility and metabolic vulnerabilities such as es-

sential genes [Schuster et al., 1999; Schäuble et al., 2011]. Each mode can be understood

as a minimal independent pathway, such that any steady-state flux distribution of the

system can be constructed via a non-negative linear combination of Elementary Modes

(EMs).

In addition, a method called Flux Balance Analysis (FBA), uses Linear Programming

(LP) methods to search for the steady-state pathway that best achieves an objective

whilst satisfying a set of user-defined constraints (for example, maximizing growth whilst

limiting nutrient uptake) [Fell and Small, 1986; Orth and Palsson, 2010]. This technique

is often used to determine which reactions are likely to be active when the cell is pursuing

a certain goal, and to predict the effects of nutrient/enzyme deficiency.

Using computational simulations is cheaper, safer, much faster, and more ethical than

conducting real-world experiments, thereby equipping biologists with ways to make more
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informed choices later in the lab. Amongst various uses, structural models have been

exploited to design strategies for the genetic manipulation of micro-organisms such that

they produce valuable products, identify potential drug targets by finding vulnerabili-

ties in disease causing microbes, and to design growth media by predicting the effects

that different nutrient combinations have on the growth and secretions of microorganisms

like algae and bacteria [Tejera et al., 2020]. For example, Hartman et al. [2014], con-

structed a genome scale model (GSM) of a Salmonella typhimurium which allowed for

the identification of reactions whose removal interferes with the organisms ability to grow

and generate energy, suggesting that inhibiting these reactions might severely interfere

with the organisms ability to respond to anti-biotic challenges or other stress factors.

Other applications concern third generation biofuels that aim to generate bio-diesel from

photosynthetic microorganisms [Jagadevan et al., 2018; Khan et al., 2019], as well as,

using genetically engineered organisms to manufacture materials that would usually be

produced from fossil fuels, such as butanediol (an industrial solvent) and bio-nylon [Biz

et al., 2019; Van Dien, 2013].

Despite these advances, many challenges still remain, most of which call for multi-disciplinary

solutions. One of the biggest obstacles is that many established techniques used to gen-

erate valuable insights from small models (tens of reactions), do not scale well for appli-

cations on larger systems (hundreds of reactions). For instance, EMA is a useful tool for

understanding the underlying architecture of a system. However, this technique is faced

with a combinatorial explosion and thus is impractical to apply to large models [Klamt

and Stelling, 2002]. On the other hand, FBA is widely applicable but has been criticised

for providing specific results that might omit important and useful information. For ex-

ample, any solution obtained from LP is often one of many, equally optimal, alternative

solutions, referred to as multiple optima, the complete set of which is difficult to calculate

[Mahadevan and Schilling, 2003]. Knowledge of these optima is useful in cases where the

genetic manipulation of one reaction is easier than the manipulation of another, among

others. In addition, large models that are generated from online databases often contain

various errors which are later corrected through a lengthy process called model curation.

This process typically entails many manual steps that could benefit from the creation of

novel error-detection algorithms.
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1.1 Aims and Structure

The goal of this thesis is to explore novel methods to extract information from the sto-

ichiometric structure of networks (structural modelling), influenced by the necessity for

novel tools, which along with aspects from more established methods can generate useful

insights whilst still being applicable to larger models.

To this end, this thesis contains the following chapters:

Chapter 2 introduces biochemistry and mathematical modelling methods. This is es-

pecially important since this thesis is aimed to be accessible to both biologists and

mathematicians.

Chapter 3 describes a method that decomposes flux measurements into a set of EMs.

This method addresses the lack of computational efficiency when applying EMA,

which, as mentioned above, obtains minimal fundamental pathways that expose

the underlying architecture of metabolic networks. Traditional methods aim to

accomplish this task by first calculating the entire set of possible EMs attainable

by the network. Although the results of such algorithms have a wide range of

applications, this methodology is troublesome since enumerating all EMs is not

practical in large systems. In contrast, the algorithm described in this chapter

obtains a candidate set of EMs quickly without requiring the a priori enumeration

of all of the EMs, therefore allowing aspects of EMA to be applied to GSMs.

This chapter concludes with the application of this algorithm to a GSM of the

bacteria Campylobacter jejuni to study this organism’s oxygen requirements, the

cause of which is still unclear.

Chapter 4 explores methods that reduce the steady-state behaviour of models, by de-

creasing the number of involved parameters. Two such concepts have been consid-

ered.

One relates to the definition of biomass components in models, which are the organic

compounds that a cell’s metabolism must produce for it to grow. When simulating

growth using FBA (where the objective is to minimize total flux), the model’s
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potential behaviour is reduced by enforcing these components to be produced in the

proportions in which they are needed by the organism. This can be accomplished in

one of two ways: either through the definition of the model’s output reactions, or,

as part of the definition of the LP problem. Both approaches are helpful in directing

FBA towards realistic results. However, determining which approach is the most

suitable has been the subject of debate. Chapter 4 resolves this dilemma by showing

that FBA solutions obtained from either method are mathematically equivalent.

The second concept regards the creation of an algorithm that reduces the size of

models by eliminating redundancies in the right null-space. Historically, such tech-

niques have been used to improve the efficiency of modelling algorithms. In ad-

dition to this advantage, the method proposed here also reveals network charac-

teristics of interest, specifically, alternate pathways that lead from the same start

to end products. This is achieved by the design of an algorithm that iteratively

eliminates two different types of redundancies from the model (enzyme subsets and

iso-stoichiometric groups), in contrast to the conventional technique by Pfeiffer et al.

[1999] that only eliminate enzyme subsets.

As demonstrated in Chapter 4, this novel method facilitates model curation by

identifying erroneous duplicate processes and reactions with incorrectly defined di-

rectionality, as well as aids model analysis by identifying redundant pathways and

calculating multiple optima in FBA.

Chapter 5 introduces methods that identify information about metabolites by exploiting

the left null-space. It has long been apparent that this space reveals conservation

relations i.e. sets of metabolites whose sum of molar amounts must remain constant

through time [Schuster and Hofer, 1991; Hofmeyr, 2020]. Although such an analysis

is a useful way to establish relationships between metabolites, conservation relations

are not uniquely defined as the left null-space may be represented by different sets

of generating vectors.

The work presented in Chapter 5 addresses this issue by showing that the angles be-

tween the rows of the orthonormal left null-space are uniquely defined, thus allowing

for the development of a ‘similarity measure’ that can relate metabolites indepen-
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dently of the choice of left null-space basis. Such a measure has many advantages,

for example, by leading to the identification of conserved moieties.

In addition, since information relating the chemical composition of metabolites is

embedded in the left null-space, this similarity measure was used to cluster metabo-

lites based on their chemical composition and extract pathways that contain chem-

ically similar metabolites. Notably, this technique relies solely on the network’s

structure and, therefore, does not require the input of external information about

the chemical composition of metabolites. Such information is often difficult to ob-

tain for all metabolites in a model. However, to cater for cases when only the

composition of some metabolites is known, a method that integrates this known in-

formation with the left null-space to infer the composition of unknown metabolites

and to identify the presence of unbalanced reactions is also presented.

Chapter 6 concludes this thesis by discussing how this work addresses the objectives

describe above, its contributions to the field of metabolic modelling, and an outlook

for future research.
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As the methods described in this thesis are focused on the analysis of metabolic net-

works, knowledge of biochemistry and linear algebra methods are essential. Therefore,

this chapter contains the following sections:

Section 2.1 introduces cellular metabolism,

Section 2.2 discusses the reductionist approach to understanding metabolic pathways

and its shortcomings,

Section 2.3 defines the mathematical definition of structural metabolic modelling,

Section 2.4 introduces the concept of large (genome scale) models,

Section 2.5 describes the software and models used in this thesis.

2.1 An Overview of Cellular Metabolism

Metabolism is a key concept in biochemistry—it refers to the collection of chemical reac-

tions that supply organisms with the energy and compounds required to sustain life.

The energy that drives metabolism in most organisms is ultimately derived from sunlight.

Photosynthetic organisms, including plants, algae, and certain bacteria, harvest light

energy to fix atmospheric CO2, thereby producing organic compounds, such as glucose,

that serve to store energy and sustain growth.

When these photosynthetic organisms are then ingested as food, their constituent com-

ponents are broken down into smaller compounds, thereby releasing the stored energy

and supplying cells with the chemical building blocks needed to maintain and synthesise

cellular components. Additional reactions allow cells to perform tasks such as eliminating

waste and transmitting cellular signals.

2.1.1 Metabolites

The small molecules involved in metabolism are metabolites. They, along with the poly-

mers (as defined below) that they combine to form, constitute the total amount of organic

material within a cell, which is referred to as its biomass.
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Organic compounds consist of carbon atoms linked together through covalent bonds, in

combination with some other atoms, the most abundant being hydrogen, oxygen, nitrogen,

phosphorus and sulfur. The type and number of atoms in a compound are described by its

chemical formula. In addition to the composition, these compounds’ physical and chemical

properties also depend on their structure (i.e. the three-dimensional arrangement of atoms

as defined by chemical bonding). In fact, isomers, meaning compounds which share an

identical chemical formula but distinct atomic arrangements, do not necessarily exhibit

the same behaviour.

There are four main categories of metabolites: carbohydrates, amino acids, nucleotides,

and lipids [Nelson and Cox, 2004, page 16]. The first three categories can act as monomers,

meaning that numerous compounds of the same category can combine together to create

larger molecules called polymers.

Carbohydrates serve to store and release energy and to provide cells with the carbon

atoms required for synthesising other cellular components. Carbohydrate monomers,

the most common being glucose, can be distinguished by being multiples of the

chemical formula CH2O. They can combine to form polymers such as starch (the

primary means of energy storage in plants, consisting of multiple glucose molecules).

Amino Acids consist of an amino group (-NH2), a carboxylic acid group (-COOH), and

an -R group which is specific to each type of amino acid. They combine together

to create proteins. Although there are only 20 distinct proteinogenic amino acids,

different permutations and linkages can generate an extremely large number of pro-

teins, each with a specialised function. For example, enzymes catalyse chemical

reactions, while keratin is a structural component of hair and nails.

Nucleotides contain a five-carbon sugar attached to a phosphate group and a nitroge-

nous base. Adenosine triphosphate (ATP) is a nucleotide that provides the energy

needed to support many cellular processes. In addition, nucleotides can combine in

chains to create two main types of polymers called nucleic acids: deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA). These polymers store and transmit ge-

netic information, which is encoded as a specific sequence of nucleotide types, each

distinguished by containing a different type of nitrogenous base. Genes are short
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segments of DNA that carry the instructions for synthesising a particular protein,

in a process known as gene expression.

Lipids such as oils and fats, have diverse structures with a tendency to be generally

insoluble in water. Fatty acids are lipids that consist of a head and a tail region,

where the head contains a carboxyl group and attracts water, while the tail is a hy-

drocarbon chain that repels water. This property permits phospholipids—molecules

that contain 2 fatty acid chains linked to a glycerol backbone—to aggregate when in

water, making them important cellular membrane components. Other lipids, such

as triglycerides, are used for long-term energy storage, while others, like steroids,

are used for signalling.

Furthermore, metals and minerals are present in minor to trace amounts.

2.1.2 Chemical Reactions and Thermodynamics

The transfer of energy in the universe is governed by the fundamental laws of thermody-

namics. Therefore, it is these laws that dictate whether a chemical reaction can occur.

Specifically, metabolites may spontaneously react if the transition from substrate to prod-

uct is thermodynamically favourable, a criterion that depends on the structure of the

involved metabolites, as well as variable conditions including metabolite concentrations,

environmental temperature, and pressure. These factors are combined to calculate the

equilibrium constant, Keq, such that in a closed system, as a reaction progresses, the

concentration ratio of substrate to product gradually decreases until reaching the value

of Keq [Campbell and Farrell, 2009, chapter 15]. At this point, the system reaches a state

of equilibrium, and the substrate/product concentration remains constant. In accordance

with this line of reasoning, some reactions are considered to be reversible, meaning they

can proceed in either direction depending on the initial concentration ratio of the in-

volved metabolites. In contrast, other reactions are irreversible since the concentrations

required for the reverse direction cannot feasibly exist inside living cells. In addition,

Hess’s law states that the above-defined thermodynamic properties for given net conver-

sion of metabolites are independent of the pathway through which the conversion occurs

[Leicester, 1951]. Therefore, different reactions that when combined have the same net-
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stoichiometry must also have the same overall directionality.

The minimum amount of energy required for a reaction to take place is the activation

energy, Ea. This energy is needed to break the existing chemical bonds within substrates,

therefore allowing their atoms to rearrange and form new products. The activation energy

determines the rate at which a reaction takes place, since, for example, a reaction with

a higher Ea requires a greater amount of energy to initiate and so will occur at a slower

rate.

2.1.3 Enzyme-Catalysed Reactions

If metabolites are left to react unaided most would not react at all, whilst others would

do so at a rate that is too slow to be of use. Thus, specialised proteins called enzymes

are needed to drive, regulate, and direct metabolism. Notably, enzymes can increase the

rate of chemical reactions by a magnitude ranging from 108 to 1020 times the original.

Enzymes catalyse reactions by lowering the activation energy, Ea, needed for a reaction to

take place. In addition, thermodynamically unfavourable reactions can be driven forward

by coupling them with reactions that release energy. Commonly, this is achieved through

the hydrolysis of ATP, a molecule that releases energy upon donating a phosphate group

(a high-energy bond) to other molecules.

Several mathematical frameworks that define how reaction conditions influence an en-

zyme’s rate of catalysis have been established [Campbell and Farrell, 2009]. Referred to

as enzyme kinetics, these methods allow reaction rates to be estimated from knowledge

of metabolite concentrations and specific enzyme characteristics. They form the basis of

kinetic modelling (Section 1), which is beyond the scope of this thesis.

2.1.4 Controlling Metabolism

As discussed above, every reaction is catalysed by one or more enzymes. Therefore,

enzymes are central in directing and regulating the flow of material (flux) within the cell.

Apart from substrate/product concentration, an enzyme’s activity is regulated through

multiple factors such as the presence of effectors and co-factors, covalent modification,

and gene expression [Campbell and Farrell, 2009, chapter 7].
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Effectors are compounds that bind to an enzyme and alter its activity. Furthermore, most

enzymes do not function unless assisted by specific molecules called co-factors. These are

most often derived from vitamins and minerals, and together with effector molecules,

regulate enzyme behaviour depending on the extent of their presence within the cell. In

addition, some enzymes can be (de)activated by bonding with additional molecular groups

via covalent bonds, a mechanism known as covalent modification.

Finally, the amount of enzymes synthesised within the cell is also essential—a cell may

contain hundreds of thousands of copies of one enzyme but only a few copies of another.

Therefore, gene expression, the mechanism by which the genetic information is used to

synthesise proteins (including enzymes) functions as a highly regulated means for influ-

encing metabolic activity.

2.2 Investigating Metabolism Through the Reduc-

tionist Approach

The ongoing study of cellular metabolism has identified an immense amount of metabolic

processes occurring within living cells. Recent advances in genome sequencing and an-

notation, a process that determines the order of nucleotides in an organism’s DNA and

gives it meaning by deducing the enzymes (and corresponding reactions) encoded in the

constituent genes, have contributed significantly to this development. As a consequence,

databases, like KEGG1 and BioCyc2, that list the reactions in thousands of organisms are

now available [Kanehisa and Goto, 2000; Karp et al., 2018].

The reductionist approach aims to understand networks by dividing them into smaller

modules based on location (via cellular compartments) or specific roles (by assigning

specialised pathways). For instance, several key pathways have been studied as being

universally important for carrying out particular tasks. However, various problems arise

when attempting to use a reductionist approach to predict metabolic behaviour, as is

discussed further below.
1genome.jp/kegg
2biocyc.org
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The first pathway to be elucidated was glycolysis [Meyerhof and Junowicz-Kocholaty,

1943], which extracts energy from glucose via a set of catabolic reactions that result

in the three-carbon molecule, pyruvate. The energy released by these steps is stored

in high-energy ATP and dihydronicotinamide adenine dinucleotide (NADH) molecules

that can then be used by enzymes to drive other reactions. Similarly, the pyruvate and

other intermediate molecules produced by glycolysis can be used by other pathways. For

example, the citric acid cycle (TCA cycle) uses pyruvate, as well as other compounds

derived from nutrients, to generate energy and pre-cursors for cellular components. Most

of the energy produced by the TCA cycle feeds into the electron transport chain (ETC)

pathway which consumes oxygen to generate further energy that is stored in the form of

ATP. The creation of ATP from nutrients via the ETC is referred to as respiration.

Cells also contain many important anabolic pathways which synthesise cellular compo-

nents from smaller compounds. For example, the pentose-phosphate pathway (in the cy-

tosol) uses glucose to produce five-carbon sugars needed for the synthesis of nucleotides,

and dihydronicotinamide adenine dinucleotide phosphate (NADPH) which provides the

reducing power needed to drive other anabolic processes such as lipid synthesis. The fact

that the pentose phosphate pathway has several enzymes in common with the Calvin

cycle—the pathway that photosynthetic organisms use to convert light energy to organic

compounds—demonstrates the interdependence of metabolic pathways. Indeed, the for-

mer pathway breaks down glucose and releases CO2 and NADPH, whilst the latter uses

ATP, NADPH and CO2 to generate glucose.

Although the above description of pathways implies a degree of separation, it would be

deceiving to assume that metabolic networks can be split into separate components that

each perform a single function. In fact, most metabolites in a cell can participate in

more than one pathway simultaneously, such that any change in the concentration of one

metabolite will quickly propagate to affect many others. For example, the pyruvate pro-

duced in glycolysis can be converted into different substrates by many enzymes, resulting

in different pathways competing for the same pyruvate molecule. The same is also true

for many other small molecules within the cell.

It is therefore apparent that an understanding of a metabolic system requires the study
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Figure 2.1: A simple metabolic network where A, B, C, and D are metabolites and r1 and
r2 are reactions.

of the interactions between its components, which motivates the use of metabolic models.

2.3 Investigating Metabolism Through Structural Mod-

elling

2.3.1 Defining Structural Models

The stoichiometry of a reaction specifies the type and number of metabolites participating

in it. When defining a metabolic model, the individual stoichiometries of all the network’s

reactions are combined to form a single system of simultaneous equations that collectively

describe the network’s structure. As an example, consider the model in Figure 2.1. This

metabolic network contains the two reactions:

r1 : 2 A→ B,

r2 : B→ C + D,
(2.1)

where the first reaction, r1, converts two moles of metabolite A (the substrate) into one

mole of metabolite B (the product), whilst the second reaction, r2, proceeds to split every

metabolite B into equal amounts of C and D.

The network formed by these reactions is mathematically defined by characterising changes

in metabolite concentrations as a set of ordinary differential equations (functions that de-

scribe the rate of change of a quantity with respect to time) [Heinrich and Schuster, 1996,

pages 10-13]. Specifically, the rate of change in the concentration of each metabolite is

calculated as the difference between the rate at which the metabolite is being produced

and the rate at which it is being consumed. Therefore, denoting the flux of reactions r1

and r2 as v1 and v2 respectively, the metabolic model in Figure 2.1 can be described by
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the following set of equations:

da
dt = −2v1 (2.2a)
db
dt = v1 − v2 (2.2b)
dc
dt = v2 (2.2c)
dd
dt = v2, (2.2d)

were a, b, c, and d denote the concentration of metabolites A, B, C, and D within the

system, respectively.

The above equations can be equivalently represented in matrix form by introducing the

stoichiometry matrix, N, that collectively embodies the stoichiometry of all reactions in

the network, such that each element of N, nij, corresponds to the stoichiometric coefficient

of metabolite i in reaction j:

N =



r1 r2

A −2 0

B 1 −1

C 0 1

D 0 1


, (2.3)

and therefore, 

da
dt

db
dt

dc
dt

dd
dt


=



−2 0

1 −1

0 1

0 1



v1

v2

 , (2.4)

Denoting s as the vector of metabolite concentrations and v as a vector of flux values

concisely represents this system as:

ds
dt = Nv. (2.5)

In summary, the stoichiometry matrix is a transformation that converts a vector of flux
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values, v, into a corresponding vector of varying metabolite concentrations, ds
dt .

A practical advantage of this representation is its invariability. Indeed, although many

variables are in a state of constant fluctuation, the underlying structure of the network

remains constant. Thermodynamic and kinetic restrictions, such as whether a reaction is

reversible, are also unchanging [Heinrich and Schuster, 1996].

The Quasi Steady-State Assumption

Many structural modelling techniques are based on the assumption that the environment

within the cell exists in a dynamic steady-state, where the concentration of metabolites

within the system stays constant. However, it is important to note that lack of change

in metabolite concentrations does not imply that nothing is changing, but rather that

the rates of synthesis are counterbalanced by equal rates of degradation, such that no

metabolite is indefinitely accumulating within the cell.

Therefore, the quasi steady-state assumption equates the rate of change of the concentra-

tion of each metabolite to zero (i.e. ds
dt = 0), leading to the algebraic system:

ds
dt = Nv = 0, (2.6)

meaning that, every feasible steady-state flux distribution, v, allowed by the mathematical

structure of a metabolic network must satisfy the equation:

Nv = 0. (2.7)

External Metabolites

Metabolic networks facilitate the conversion of nutrients (or other inputs) into valuable

outputs that contribute to the cell’s functioning. Thus, networks that represent liv-

ing systems contain two types of metabolites: the internal metabolites described above,

whose concentration can dynamically evolve through time, and the external input/output

metabolites, that provide the matter/energy needed to sustain the network’s metabolic

activity. These external metabolites are transferred between the model and its environ-

ment via transporter reactions. Their concentrations are assumed to remain constant and
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Figure 2.2: A simple metabolic network where A, B, C, and D are internal metabolites,
x A, x D, and x C are external metabolites, r1 and r2 are internal reactions, and transporter
reactions are shown in grey.

therefore they are not included in N [Sauro and Ingalls, 2003].

Through these definitions, N, can be referred to as the internal stoichiometry matrix.

Correspondingly, the external stoichiometry matrix, denoted in this thesis as N , extends

the rows of N to include external metabolites, which, in this thesis, are denoted with an

‘x ’ prefix.

For example, the model in Figure 2.1 can be modified to include the external metabolites

x A, x C, and x D, and corresponding transport reactions as shown in Figure 2.2.

The reaction, A tx, that transports metabolite A into the system can be represented by:

A tx : 2 x A→ 2 A. (2.8)

Whilst similar reactions exporting C and D are:

C tx : C→ x C

D tx : D → x D,
(2.9)

Hence, the internal stoichiometry of this network matrix is:

N =



A tx r1 r2 C tx D tx

A 2 −2 0 0 0

B 0 1 −1 0 0

C 0 0 1 −1 0

D 0 0 1 0 −1


, (2.10)
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and the corresponding external stoichiometry matrix is:

N =



A tx r1 r2 C tx D tx

x A −2 0 0 0 0

A 2 −2 0 0 0

B 0 1 −1 0 0

C 0 0 1 −1 0

D 0 0 1 0 −1

x C 0 0 0 1 0

x D 0 0 0 0 1



. (2.11)

Note that N denotes an open system that continuously interacts with the environment

by exchanging inputs and outputs, whilst the system denoted by N is closed.

2.3.2 Null-Space Analysis

Once a stoichiometry matrix is established, various methods can be applied to extract

information from the network, many of which make use of the null-space (or kernel).

Every matrix is associated with two different null spaces: the right and the left null-

spaces. Their use is made possible by following two distinct assumptions about metabolic

behaviour: the ‘quasi steady-state assumption’ and the ‘mass conservation rules’ respec-

tively, as discussed below.

The Right Null-Space

The number of possible steady-state flux vectors, v, (i.e. the vectors, v, that satisfy

Nv = 0) is infinite, but can be defined by calculating the right null-space (or kernel)

matrix of N using linear algebra techniques [Heinrich and Schuster, 1996, Section 3.2].

The right null-space matrix, K, often referred to as simply the null-space, satisfies the

equation:

NK = O, (2.12)

where O denotes a zero matrix. The columns of K consist of a set of linearly independent
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vectors called a basis. These vectors span the set of steady-state flux vectors of the system,

such that any steady-state flux vector (i.e. a solution, v, of Nv = 0) can be generated

by a linear combination of the column vectors of K.

For example, consider the model in Figure 2.2, a right null-space matrix of the corre-

sponding stoichiometry matrix is:

K =



A tx 1

r1 1

r2 1

C tx 1

D tx 1


, (2.13)

such that,

NK =



A tx r1 r2 C tx D tx

A 2 −2 0 0 0

B 0 1 −1 0 0

C 0 0 1 −1 0

D 0 0 1 0 −1





1

1

1

1

1


=



0

0

0

0


. (2.14)

Therefore, whenever the metabolic network described by Figure 2.2 is carrying a steady-

state flux, all of the reactions in the network must be equal to each other.

It is important to note that the set of basis vectors spanning the null-space is not unique,

i.e. K can be represented through different sets of vectors which span the same space.

Mathematically, the right null-space matrix embodies the linear dependencies between the

columns of N (i.e. the reactions), such that its dimension corresponds to the number of

linearly dependent columns in N, as stated by the fundamental theorem of linear algebra.

In fact, let k be a column vector of the right null-space matrix. Then, the entry, ki, of k

corresponds to the ith column of N, ni, such that a linear combination of the columns of
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N with the corresponding entries of k as coefficients sum to a vector of zeroes:

k1n1 + k2n2 + ...+ krnr = 0, (2.15)

where r is the number of reactions in N.

Therefore, any column of N corresponding to a non-zero entry in k, can be obtained

through a linear sum of some other columns in N.

Further properties of this space are discussed in Section 2.3.3

The Left Null-Space

An important feature of metabolic interaction is the presence of constraints arising from

conservation laws. In a closed system, the flow of material, energy, and redox potential

must be conserved at each step [Smith and Missen, 1979; Sauro, 2012]. These constraints

lead to mathematical relationships between metabolites that influence the dependence

between the rows of N, which in turn, determines the left null-space matrix, G.

This matrix is the kernel of the transpose of the stoichiometry matrix, such that:

N>G = O, (2.16)

or equivalently:

G>N = O. (2.17)

Much like the right null-space, G is not uniquely defined and its columns span the space

of vectors, g, that satisfy:

N>g = 0. (2.18)

Every element of such vectors, gi, corresponds to a metabolite of the system, and it

is through this reasoning that G is seen to reveal conservation relations i.e. groups of

metabolites whose linear combination of concentrations remains constant through time

[Reder, 1988; Stelling and Klamt, 2006; Schuster and Fell, 2007]. Conservation relations

shrink the possible dynamic behaviour of the network: if at the beginning of an experiment
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the value for the total concentration of metabolites in a conservation relation is known,

then this value will stay constant at all times.

For example, consider a left null-space matrix for the model in Figure 2.1:

G =



1 0

2 0

2 1

0 −1


, (2.19)

which results in the following conservation relations:

a(t) + 2b(t) + 2c(t) = λ1, (2.20)

and

c(t)− d(t) = λ2. (2.21)

where a, b, c and d are the concentrations of metabolites A, B, C, and D respectively and

λ1 and λ2 are constants.

Note that such relationships between metabolites equate to metabolite concentrations in

models of single compartments. However, relating concentrations in multi-compartment

models requires the relative volume of the different compartments to be taken into account,

as described by Hofmeyr [2020].

The identification of conservation relations is essential for the application of kinetic mod-

elling techniques, as many of these methods require a non-singular Jacobian matrix to be

calculated from the stoichiometry matrix, which is only possible if N has full row-rank (a

criterion that is ensured by eliminating the linearly dependent rows as identified by the

conservation relations [Vallabhajosyula et al., 2006]).

2.3.3 Modelling Steady-State Behaviour

Many metabolic modelling methods exploit properties of the right null-space to reveal in-

sights into the capabilities of an organism’s steady-state behaviour. Prominent methods
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include: the identification of dead reactions, the grouping of coupled reactions into mod-

ules called enzyme subsets [Jevremovic et al., 2011; Pfeiffer et al., 1999], flux correlation

analysis [Poolman et al., 2004b], and elementary modes analysis (EMA) [Schuster et al.,

2000; Gagneur and Klamt, 2004].

2.3.3.1 Enzyme Subsets

Enzyme subsets, as described by Pfeiffer et al. [1999], are groups of reactions that always

carry proportional fluxes at a fixed ratio when the system is at steady-state. Therefore,

knowledge of the flux of one of the subsets’ reactions allows for the calculation of all other

fluxes of the subset.

Enzyme subsets can be identified as proportional rows of the right null-space matrix and

arise from redundancies within the columns of N. For example, consider the right null-

space matrix, K (Equation 2.13), of the model in Figure 2.2. Since K consists of one

column corresponding to the vector k1, the reactions within the model must always carry

flux at the proportions specified by k1 for the system to be at steady-state.

Once enzyme subsets are identified, the stoichiometry matrix can be reduced in size by

replacing the reactions of each subset with a single reaction that embodies the subset’s

overall (or net) stoichiometry. This transformation does not discard any information

about steady-state flux, and is useful to improve the efficiency of algorithms that perform

calculations on N.

Enzyme subsets expose structural couplings between reactions of metabolic networks,

which can then be used to deduce details about the underlying regulatory mechanisms

of the network [Gagneur and Klamt, 2004; Schuster et al., 2002]. Furthermore, since

any increase in the flux of one reaction in a subset is accompanied by a proportional

increase in the flux of all other members, enzyme subsets have become useful tools both

for metabolic engineering and experimental measurements. For example, the flux of a

target reaction may be dramatically increased by causing a small increase in the flux of

another reaction. Similarly, deactivating one reaction of the subset concurrently stops

steady-state flux from passing through the entire subset, facilitating the development of

gene knock-out strategies as the deletion of any enzyme of the subset brings about the
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same effect (equivalent knock-outs) [Burgard et al., 2004].

2.3.3.2 Dead Reactions

Inconsistencies that arise when defining metabolic models may lead to some reactions

being unable to carry flux at steady-state, that therefore should be removed from the

model prior to analysis. There are two types of such reactions: (i) reactions identified

as rows of zeroes in the right null-space, and (ii) reactions that form part of inconsistent

enzyme subsets.

Any reaction that corresponds to a row of zeroes in the right null-space matrix, K, can

never be assigned flux at steady state since every steady-state flux vector of the network

must be created from a linear combination of the columns of K. Furthermore, if an enzyme

subset is inconsistent, then its enzymes have conflicting thermodynamic constraints such

that they cannot operate as required by the subset when at steady-state, leading to every

reaction of such subsets being inactive.

2.3.3.3 Steady-State Flux Correlation Analysis

Another way to study the null-space is by analysing the correlation between its rows. In

the case of the right null-space, such analysis allows reactions to be hierarchically clustered

into modules based on the similarity between their potential steady-state fluxes. Poolman

et al. [2004b], used this approach to extend the notion of enzyme subsets by exploiting

the fact that the cosine of the angles between the rows of an orthogonal basis for the

right null-space, K, is equivalent to Pearson’s correlation coefficient between all possible

steady-state fluxes spanned by K.

2.3.4 Elementary Modes Analysis

Describing the steady-state behaviour of a given network through the right null-space is

not ideal. Indeed, the vectors in K do not necessarily satisfy reaction reversibility criteria

(since irreversible reactions can have a negative flux in K) and the associated basis cannot

be uniquely defined.

These shortcomings are remedied by elementary modes analysis (EMA), a technique that
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constructs a steady-state flux basis in a way that is most biologically meaningful. Specif-

ically, as described by Schuster et al. [1999], elementary modes (EMs), consist of the

irreducible elements of a network that much like the null-space can be combined to form

all possible steady-state pathways. In addition, any EM basis is uniquely defined and

adheres to reaction reversibility constraints such that any steady-state flux vector, v,

obtained from a non-negative linear combination of EMs is stoichiometrically balanced

and carries flux in a thermodynamically feasible direction. For example, the model in

Figure 2.3 can be decomposed in three EMs that give rise to all of the model potential

steady-state behaviour.

EMs are defined as minimal sets of reactions able to operate as a continuous pathway at

steady-state, with the respective enzymes weighted by the relative flux that they need to

carry for the EM to function [Schuster et al., 2000]. In the context of EMs, the minimal

property states that a given EM cannot be decomposed into a set of simpler modes since

deleting any enzyme will prevent the mode from operating at steady-state.

Definition 2.3.4.1. A non-negative (or conic) linear combination of a set of vectors

E = {e1, e2, . . . , et} is a weighted sum λ1e1 + λ2e2 + · · · + λtet, where the λi are non-

negative constants. Therefore, let E represent the set of EMs of a given network, then

any steady-state vector v can be represented as a non-negative linear combination of the

vectors in E.

EMs facilitate the determination of paths that lead from a specific starting material to

the desired product, and hence, are widely used for studying the metabolic capabilities of

organisms [Trinh et al., 2009; Unrean et al., 2019; Khan et al., 2018]. For example, when

engineering recombinant bacteria to produce cyanophycin, EMA was used to study the

effect of different carbon sources and oxygen on production [Cardoso Diniz et al., 2006].

This was done by running EMA for each carbon source and evaluating the EMs which

were involved in cyanophycin production.

2.3.4.1 The Flux Cone

EMA is achieved by defining the steady-state solution space as a convex polyhedral cone,

referred to as the flux cone, C, whose set of generators consists of the EMs of the system.
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Figure 2.3: A metabolic network that has three EMs. The model is shown three times,
with the different EMs outlined in blue. Every possible (input to output) flux distribution
of the system can be represented as a positive combination of these EMs.

Thermodynamic consistency is ensured by embedding reaction reversibility constraints

into this space as explained below.

Consider a system where all reactions are irreversible. From a geometric perspective, the

convex polyhedral cone, C, generated by the steady-state conditions and the reactions’

reversibility constraints, is defined as follows:

C = {v ∈ Rr|Nv = 0,v ≥ 0}, (2.22)

where v ≥ 0 means that all the elements of v are non-negative. A more detailed definition

is given by Appendix B and Gagneur and Klamt [2004], which also illustrate how reversible

reactions can be included by splitting them into forward and backward components.

Convex cones are the solution set of a system of homogeneous linear inequality constraints

(for detailed terminology see [Rockafellar, 1969; Fenchel, 1953]).

Definition 2.3.4.2. Consider the system of linear inequality constraints, Av ≤ b where

v is a vector of variables and A and b are a matrix and vector of constants respectively.

This system is homogeneous if and only if all the elements on the right-hand-side of the

equation are zero (i.e. b = 0 such that Av ≤ 0 )
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In the case of the flux-cone, every row of Nv = 0 and every reaction reversibility criteria

corresponds to a linear constraint. Consider a network with r reactions, such that C

(also known as the steady-state solution space) denotes a subset of flux vectors v in

Rr. As shown by Figure 2.4, every constraint shapes the cone by generating a hyper-

plane that divides Rr into two, where one half-space contains the vectors that satisfy the

constraint and the other half-space contains the vectors that do not. Therefore, each

hyper-plane can be thought of as a mechanism that eliminates the vectors that do not

satisfy that constraint from the set of possible solutions of the system (referred to here

as the solution-space). In this manner, every constraint of the system gives rise to a

corresponding hyper-plane that in turn eliminates more vectors from the solution-space,

such that eventually the cone will consist of the set of vectors, v, that simultaneously

satisfy all of the constraints imposed by the network’s stoichiometry.

Note that since the system of inequalities is homogeneous, every hyper-plane will pass

through the origin of Rr, such that the shape created by the intersection of all hyper-

planes is that of a cone.

Moreover, every intersection of hyperplanes (an edge of the cone) is referred to as an

extreme ray (or in the case of C, an elementary mode). By the Minkowski-Weyl theorem

[Fukuda and Prodon, 1996], the complete set of extreme rays is another way to mathe-

matically define the cone. More precisely, every point within the cone can be written as a

non-negative linear combination of its extreme rays, such that for a given set of extreme

rays, E, the cone can alternatively be represented as:

C = {v ∈ Rr| Eλ = v, λ ≥ 0}, (2.23)

where λ is a vector of positive constants. For an example, see Figure 2.4

This definition enables steady-state flux vectors to be interpreted as a summation of

elementary modes.

Definition 2.3.4.3. Let the support of a vector denote the set of indices of its non-

zero elements. As defined by Fenchel [1953], a vector, e, is an extreme ray of C if it

is not a non-negative linear combination of two linearly independent vectors of C, and
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Figure 2.4: A convex cone in three dimensions (r1, r2, and r3), generated by four half-
spaces, each corresponding to a constraint. The intersections of the half-spaces are four
extreme rays, such that any vector inside the cone can be expressed as a conic combination
of these extreme rays.

has minimal-support i.e. if two extreme rays have the same support then they must be

identical.

Therefore, the cone C can be equivalently described by Equation (2.22) or Equation (2.23),

where Equation (2.22) is referred to as the H-representation (where H denotes a half-

space), while Equation (2.23) is the V-representation (where V denotes a vertex). These

two definitions are referred to as the double description of the cone and, correspondingly,

calculating the entire set of EMs of a system entails obtaining the V-representation from

the corresponding H-representation, a computationally challenging problem referred to

as extreme ray enumeration [Gagneur and Klamt, 2004; Guil et al., 2020].

Unfortunately, the enumeration of the complete set of EMs pertaining to large models

is a challenging endeavour, accounting for thousands to millions of EMs that might be

present [Ullah et al., 2019; Acuña et al., 2009]. In fact, enumerating the vertices of general

(unbounded) polyhedra is NP-hard, whilst enumerating the vertices of bounded polyhedra

remains an open problem [Khachiyan et al., 2008]. Most EM enumerating algorithms rely

on the Double Description Method [Fukuda and Prodon, 1996; Gagneur and Klamt, 2004],

that iteratively inserts constraints and counts the generated extreme rays, whilst deleting

any previous rays which are no longer extreme. Alternatively, a Depth-First-Search can be
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used to move from ray to ray along the edges of the polyhedron. In this case, enumeration

is identical to the transversal of a graph whose nodes are bases and edges are pivots.

General speed-ups include parallel computing [Terzer, 2009, Chapter 5], as well as, reduc-

ing the size of the stoichiometry matrix by removing column redundancies. Furthermore,

more recent trends abandon the quest of complete enumeration and instead aim to solely

obtain a subset of EMs with desirable properties [Röhl et al., 2019]. Alternative meth-

ods such as Random Sampling [Herrmann et al., 2019], and meta-heuristic optimisation

algorithms [Hon et al., 2019], as well as, complementary approaches such as Minimal Cut

Set Analysis [Hädicke and Klamt, 2011; Röhl and Bockmayr, 2019]), can also be used to

explore this space.

2.3.5 Flux Balance Analysis and the Flux Polyhedron

Although calculating the entire set of EMs of a network is difficult, individual flux vec-

tors with desirable properties can be easily obtained using Linear Programming (LP), as

explained below.

The stoichiometric structure of a network may allow for many possible flux pathways,

but only a few of these are likely to exist in nature. For example, in a growing cell, the

reaction rates are capped by the number of enzymes and metabolites that can fit in the

space available. The availability of the cell’s surface area also limits the rate through

which metabolites can be exchanged with the environment. These facts, along with other

limiting factors (such as, the amount of available nutrients) allow the number of possible

steady-state flux vectors to be reduced by adding flux constraints. For example, if a

nutrient is unavailable then its corresponding transporter reaction can be constrained

such that it is always inactive.

Non-zero flux constraints are not homogeneous, and therefore, each such constraint gen-

erates a hyperplane that does not pass through the origin of Rr. Consequently, their

addition to the steady-state solution space restricts the flux cone into a convex polyhe-

dron, referred to as the flux polyhedron, P , whose H-representation is defined as:
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Figure 2.5: A convex polyhedron created by the addition of the plane caused by the
constraint r2 ≤ 5 to the cone in Figure 2.4. The vertices are marked in pink.

P = {v ∈ Rr| N̂v ≤ b, v ≥ 0}, (2.24)

where N̂ is a modified stoichiometry matrix and b a vector of constants, whose rows

contain the constraints imposed by Nv = 0 (as described above), as well as additional

rows corresponding to the novel flux constraints (as described in Chapter 3.3.3).

The intersections of flux constraints with the flux-cone are vertices as shown in Figure

2.5.

Definition 2.3.5.1. A point x ∈ Rr is a vertex of the polyhedron, P , if x ∈ P and

x does not lie on the line segment between any two other points, y and z, in P (i.e.

for 0 ≤ α ≤ 1, if x = αy + (1− α)z, then y = z = x).

Once P is defined, LP can be applied to identify the flux vector in P that best achieves a

desired biological goal a method is referred to as Flux Balance Analysis (FBA) [Fell and

Small, 1986].

LP is an optimisation technique originally devised for finding the best allocation of limited

resources. Each LP is defined as a set of constraints (in this case, P ), and a given objective
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function. The choice of objective function is subjective, and is often chosen to correspond

to the possible endpoints of evolutionary pressure, such as maximising growth [Feist and

Palsson, 2010]. Other objectives may seek flux vectors that maximise the production of

a desirable compound. In this thesis, LP are formulated to minimise intracellular flux, as

this corresponds to the minimisation of the cell’s total protein investment.

The solution of such an FBA problem must be a vertex of the flux polyhedron P . There-

fore, LP algorithms, such as the simplex methods, initiate from a starting vertex of P ,

and incrementally explore the space, moving from vertex to vertex, in pursuit of solutions

that best satisfy the objective function.

Note that FBA solutions obtained after the addition of just one flux constraint to C will

correspond to EMs [Maarleveld, 2015, page 63]. This can be understood intuitively since

the vertices of P will consist of the sites where the extreme rays (and hence EMs) of the

flux cone meet the hyperplane created by the constraint as shown in Figure 2.5. Adding

more constraints violates this statement, as the vertices will no longer all incorporate

extreme rays, but also consist of intersections between the constraints themselves, as

shown in Figure 2.6.

Flux Constraint Scanning

A common application of FBA is flux constraint scanning, a method that iteratively solves

an LP whilst varying specific conditions. This techniques was first described by Poolman

et al. [2009] who used it to study the plant Arabidopsis’s response to varying energy

demands. Another example, by Singh [2017, Chapter 4], regards varying light intensity

on algae and observing changes in the optimal steady-state flux. Such methods reveal how

the metabolism re-adjusts to account for changes in the environment, and was deployed

for drug target identification by Hartman et al. [2014], by pinpointing the enzymes whose

joint inhibition stops salmonella from regenerating ATP. The set of flux values resulting

from flux-scanning may be fed into algorithms such as Principal Component Analysis

that identify the reactions that account for most of the variance [Vijayakumar et al.,

2020; Culley et al., 2020].
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Figure 2.6: The Flux Polyhedron created by the addition of the constraints r3 ≤ 6.5 and
r2 ≤ 5 on the cone, C, in Figure 2.4. The vertices that correspond to original extreme rays
of C are marked in pink, the vertices created by the intersections of the flux constraints are
in yellow, whilst eliminated extreme rays of C are in grey.

Flux Variability Analysis

FBA is often used to determine which reactions are likely to be active when the cell

pursues a certain goal. However, the redundancy in metabolic networks mean that any

given FBA solution is likely to be one of many alternate pathways that achieve the same

objective using different routes (a problem known as multiple optima). Consequently,

reactions that do not appear in a solution may still be relevant. Furthermore, knowledge

of these optima is useful such as to determine network flexibility, or in cases where the

gene-editing of one enzyme may be easier than another.

A way to counteract this obstacle is by re-solving the problem repeatedly for varying

conditions through methods such as Flux Variability Analysis (FVA), which identifies the

range of values each flux can vary whilst still preserving the optimal value as identified by

the original LP [Maarleveld et al., 2015; Guebila, 2020]. This method determines network

flexibility by identifying fluxes which are fixed (cannot vary), and the level of flexibility

in the other fluxes. Essential reactions are identified as those which must always carry

flux in order for the system to achieve the optimal objective value.
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This method was used by Kelk et al. [2012], when maximizing biomass in GSMs, to

identify sub-networks that can achieve the same net stoichiometry using different internal

flux distributions.

2.4 Construction and Analysis of Metabolic Models

The techniques and tools outlined in the previous sections have allowed for the com-

plete metabolic capability of several cells and processes to be investigated. In fact, cur-

rent metabolic models range from small-scale hand-built models that define specific be-

haviour of well-known pathways, such as the Calvin cycle or glycolysis, to very large

computationally-built, GSMs that encapsulate the metabolism of entire organisms, such

as bacteria and algae [Tejera et al., 2020; Mesfin and Fell, 2019], or complex processes

within human cells [Masid et al., 2020].

Building structural metabolic models is a laborious process that involves characterising

reactions as described in Section 2.3.1. It is important to note that most such models are

built to serve a specific purpose, and thus include many simplifying assumptions.

First, a draft is automatically constructed from annotated genetic sequencing data and

metabolomic measurements (found in databases such as KEGG and BioCyc). However,

the set of reactions extracted from such databases usually contains various inconsisten-

cies that require human adjustments—a difficult and time-consuming task which aims to

ensure that every reaction in the model has the correct stoichiometry and directionality.

Common errors that arise from database artefacts include:

• metabolites that are not denoted by the same identifier across all of the reactions

of the model,

• reactions with incorrect stoichiometry or missing substrates/products, where some

are identified as violating the law of mass conservation, as described by Gevorgyan

et al. [2008],

• dead reactions, identified as described in Section 2.3.3.2,

• reactions with incorrect directionality, where some are identified as part of incon-
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sistent enzyme subsets, as described in Section 2.3.3.2, or as part of internal cycles

that violate the first law of thermodynamics by creating energy (in the form of

ATP/NAD(P)H) from no external input, as described by Fritzemeier et al. [2017],

• stoichiometrically disconnected reactions that arise from annotated genomes in which

not all enzymes had been identified. These errors are remedied by manual/auto-

matic gap-filling methods that make assumptions about which reactions to add to

the model such that all metabolites are connected, as described by Orth and Palsson

[2010].

Following these corrections, the model’s components are then iteratively improved to

achieve behaviour that agrees with experimental measurements, for example, by ensuring

that the model is capable of producing the organism’s known biomass components.

Both model construction process described above and the subsequent interrogation is

facilitated by many computational tools, such as ScrumPy3 (used within this thesis),

ModelSEED4, COBRA5, and COPASI6.

2.5 Software and Models Used as Part of this Thesis

2.5.1 ScrumPy Metabolic Modelling Software

The algorithms presented in this thesis are implemented in Python as add-ons to the

open-access ScrumPy metabolic modelling software, which is developed and maintained

by the Cell Systems Modelling (CSM) Group at Oxford Brookes University [Poolman,

2006]. ScrumPy is user-accessible through a Python IDLE7 shell and has an object-oriented

implementation. It facilitates both kinetic and structural modelling through specially

defined classes and the integration of third party open access software.

Classes frequently used in the thesis are described below:

• DataSets: A two-dimensional data structure, with labelled rows and columns.
3mudshark.brookes.ac.uk/ScrumPy
4modelseed.org/
5opencobra.github.io
6copasi.org
7python.org/3/library/idle
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• LP: Generates and solves an FBA problem for a given model. Attributes include

functions that add flux constraints and define the LP objective function. The LP

functionality is provided by the GNU Linear Programming Kit (glpk8).

• ElModes: Calculates the elementary modes of a given model using the algorithm

described by Schuster and Hilgetag [1994].

• EnzSubsets: Calculates the enzyme subsets of a given model as described in Section

2.3.3.1.

• StoMat: A two dimensional stoichiometry matrix, with metabolites labelled as rows

and reactions as columns. Attributes of this class include functions that calculate

its right and left null-space.

• Model: Models are stored within .spy text files, each Model object has an associated

StoMat and functions that return the model’s associated ElModes, EnzSubsets, and

LP objects amongst others.

2.5.2 Metabolic Models

Throughout the course of this thesis, several metabolic models were used to evaluate the

accuracy of the novel presented algorithms, and to derive biological insight. All of these

models were obtained from the archives of the CSM Group at Oxford Brookes University.

They consisted of three hand-built small scale models and four large GSMs, as described

by Table 2.1 and below.

Calvin cycle. This model contains the Calvin cycle and the oxidative part of the pen-

tose phosphate pathway, as described by Figure 2.7. The Calvin cycle occurs in the

chloroplast of plants, algae, and some bacteria. It is concerned with fixing environmental

CO2 into sugars, in a process referred to as carbon fixation. The enzyme RuBisCo in-

corporates CO2 into the five-carbon sugar ribulose-1,5-biphosphate (RuBP) to create two

molecules of the three-carbon sugar 3-phospho-D-glycerate (PGA). PGA is then converted

into other three-carbon sugars, D-glyceraldehyde-3-phosphate (GAP) and dihydroxyace-

tone phosphate (DHAP), in a process that uses energy harvested from sunlight.

8gnu.org/software/glpk/
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Table 2.1: The seven metabolic models used as described in this chapter.

Model Reactions Metabolites Inputs Output Output Reference
Products Bi-products

Calvin Cycle 21 28 5 4 1 [Poolman et al., 2003]
Simplified plant 75 77 3 2 4 [Poolman et al., 2007]
Photorespiration 90 113 7 1 0 [Huma et al., 2018]
Campylobacter jejuni 1150 1105 44 51 12 [Tejera et al., 2020]
Cupriavidus necator 1358 1454 109 1 9 [Pearcy et al., 2022]
Geobacillus thermoglucosidasius 1125 1198 8 54 6 [Ahmad et al., 2017]
Escherichia coli 1659 1714 6 46 7 unpublished
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Figure 2.7: The model of the Calvin cycle. See Appendix A.1 for reaction and metabolite
abbreviations. Replicated with permission of Poolman et al. [2004a].

Some of these three-carbon sugars are exported to supply the cell with the organic material

that it needs to build and maintain cellular structures, whilst the rest are used to (i) create

a fourth product, starch, which is retained in the chloroplast as a reserve of carbon and

energy during periods of darkness, and (ii) to regenerate RuBP, the starting product of

the cycle.

This model was first described by Poolman et al. [2004b] who used it to investigate energy

generation in plants, such as by quantifying the effects that different light conditions have

on the formation/degradation of starch.

Simplified plant model. This model was developed by Poolman et al. [2007] and

is a simplification of a model of potato carbohydrate metabolism described in Poolman

et al. [2004a]. This model describes how photosynthetic glucose, produced at the leaves

during growth, is transported to root cells where it is stored as starch within amyloplast

compartments. This starch serves as an energy reserve that allows plants to survive

periods of starvation, such as seasonal hibernation.

This model includes two chloroplast compartments, that each contain identical copies of

the Calvin cycle model, the cytosol (containing glycolysis and sucrose synthesis, which

are necessary for growth), and an amyloplast (starch synthesis). The chloroplast com-
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partments simulate carbon fixation in the leaves by creating the three-carbon sugar PGA

which is then transported to the cytosol. A portion of the PGA is used to generate en-

ergy via glycolysis, leading to the bi-product pyruvate, while the remainder is converted

to sucrose in the cytosol, and finally, starch in the amyloplast.

Photorespiration. This model extends that of the Calvin cycle to account for the

behaviour exhibited by plants, as shown in Figure 2.8. It captures the consequence of

the enzyme RuBisCo fixing O2 to RuBP instead of CO2. This reaction has two products:

PGA, which can be incorporated into the Calvin cycle, as well as, the two-carbon sugar

PG which must be converted into a three-carbon sugar before it can be used by the cell.

This conversion happens via a process that consumes energy and releases CO2.

In a study by Huma et al. [2018], EMA was applied to this model to analyse the impact of

photorespiration on the cell’s metabolism (in terms of O2 consumption/production relative

to other net conversions), where it was noted that photo-respiration enhances the rate

of photosynthesis since the amount of CO2 released by this process must be equivalently

recaptured. The authors also identified reactions that are essential for photorespiration

to occur and discussed how photorespiration provides plants with the means to dissipate

excess energy.

C. jejuni. This organism is one of the most common causes of food poisoning world-

wide. Its GSM was first described by Tejera et al. [2020] and used to design an optimal

minimal media to promote its growth [Tejera et al., 2020], a result achieved by identifying

the substrates that have the best effect on biomass generation.

C. necator. C. necator is of interest as it can produce the bio-plastics polyhydrox-

yalkonoates (PHA) when growing in nitrogen/oxygen limited conditions (where carbon is

abundantly available). Pearcy et al. [2022] developed this GSM and used it to understand

the regulatory mechanisms that lead to PHA production and to identify potential genetic

engineering strategies that can improve the yield of PHA.

G. thermoglucosidasius. This GSM was designed by Ahmad et al. [2017] to investi-

gate this organism’s capability to produce commercially valuable chemicals when feeding
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Figure 2.8: The model of photorespiration, where: Chloroplast: r1-r2:the cyclic and non-
cyclic photophosphorylation reactions, r3-r5:the plastidic reactions involved in the C2 cycle
namely, RuBisCo oxygenase,PGLP1 and GLYK, r6-r18:the C3/Calvin cycle, r19:MalDH,
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tion catalysed by aconitase) r51:Complex I, r52-r53:COX, r54:AOX, r55:ATP synthase,
r56:combined reaction for GDC and SHMT1, r57-r67:metabolite exchange reactions. Perox-
isome: r68-r74:C2 cycle, r75:MalDH, r76-r78:GSH-ASC cycle, r79-r89:metabolite exchange
reactions. Reproduced with permission of Huma et al. [2018].
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on rice straw hydrolysate (a waste product of the farming industry). By simulating the

metabolism of G. thermoglucosidasius under different growth conditions, it was shown

that this organism can convert the sugars present in rice straw hydrolysate into products

such as ethanol and acetate.

E. coli. The GSM of E. coli was developed as part of INNOTARGETs9, an ongoing

project that seeks to understand the bacterial metabolic response to antibiotics. This

model is currently in development and is therefore unpublished.

9https://innotargets.ku.dk
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3.1 Introduction

This chapter presents a novel method that efficiently decomposes flux vectors, obtained

from experiments or simulations, into a set of EMs, without requiring the calculation of

the entire set of EMs of the network.

As described in Section 2.3.4, EMs consist of the smallest non-decomposable pathways

within a metabolic system, that can combine to form every possible steady-state flux.

Decomposing flux measurements obtained from experiments or simulations into such a

set of constituents allows for their interpretation as a weighted sum of pathways (each

with associated external input and output), thus revealing how potential routes within

the network can contribute to the observed overall system behaviour, as well as providing

the means to assign relative flux values to EMs.

A number of methods for this task have been previously described. However, most rely

on having calculated a complete set of EMs a priori, which is not computationally prac-

tical for large metabolic models. Furthermore, since a given flux vector can be generally

decomposed into more than one distinct combination of EMs, these techniques can be

distinguished by the type of decomposition that they seek to achieve.

3.1.1 Decomposing Flux Vectors by Calculating All EMs in the

Network A Priori

The first such method was developed by Poolman et al. [2004b] who used it to reveal

changes in the relative flux assigned to EMs during different stages of the fermentation

progress in Lactobacillus rhamnosus. This approach decomposes a flux vector v into a

weighted sum of EMs in two steps. First, a matrix of EMs, E, is calculated. Then,

the pseudo-inverse of this matrix is multiplied with v, to obtain a vector of weights, w,

such that Ew = v. Alternatively, Schwartz and Kanehisa [2005] defined a quadratic

optimisation problem that when applied to a matrix of EMs E and steady-state flux

vector v, finds a vector of weights, w, such that the sum of square weights is minimal and

Ew = v.
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3.1.2 Decomposing Flux Vectors without Calculating All EMs

in the Network

Despite the difficulty of calculating a network’s entire set of EMs, individual EMs that

satisfy some desired attributes can be easily determined using optimisation techniques

[Song et al., 2017; de Figueiredo et al., 2009]. Consequently, methods such as LP and

Mixed Integer Linear Programming (MILP) have been previously utilized to decompose

flux-vectors into EMs, without needing to determine the complete set of EMs a priori

[Oddsdóttir et al., 2015; Hung et al., 2011; Jungers et al., 2011; Ip et al., 2011].

Oddsdóttir et al. [2015] designed an algorithm that calculates EMs that account for a

collection of observed transporter fluxes. The algorithm begins with a matrix, E, whose

columns, ei, contain a small sub-set of EMs, and a corresponding weighting vector, w.

Then, two optimisation problems are simultaneously solved: a least-squares data fitting

master problem that iteratively improves the weighting vector w, seeking to find a prod-

uct, Ew, that is consistent with the external flux measurements, as well as an additional

sub-problem that after every iteration of the master, calculates a new EM that when

added to E improves upon the least-square fit. The algorithm terminates when adding

more EMs to E no longer improves this fit. This method solves a quadratic program

at each iteration, which is inherently more computationally costly than LP, limiting this

algorithm’s applicability to large models.

An alternative algorithm, introduced by Hung et al. [2011] decomposes steady-state flux

vectors, v, through a series of iterations. At each phase, a succession of MILPs reduce

the reaction fluxes in v such that the number of zero fluxes in v continues to increase

until a solution that cannot be reduced further—and therefore is an EM— is found. This

EM is subtracted from v, and the previous steps are repeated until all constituent EMs

are identified. A disadvantage of this algorithm is its reliance on MILP, which, similarly

to the method described previously, is more computationally expensive than LP.

Another example, by Jungers et al. [2011], uses LP to decompose a steady-state flux

vector, v, into a minimal number of EMs. This algorithm extracts EMs from the solution

space created by combining the stoichiometry of the network with v. The first EM

is randomly extracted from this space, while additional EMs are chosen in a way that
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the distance between them and the previous EMs is maximal. This technique gradually

reduces the dimension of the solution space, and therefore, the number of constituent

EMs in the final decomposition cannot be greater than the dimension of the null-space.

This algorithm is likely to yield different results when applied to the same vector more

than once, making replication of findings challenging.

As of July 2023, the algorithm by Poolman et al. [2004b] was publicly available as part of

the open source ScrumPy software (Section 2.5.1). Similarly, a Matlab implementation of

the algorithm by Hung et al. [2011] was available on GitHub1 as an add-on to the COBRA2

toolbox. Implementations of the other aforementioned algorithms were not found to be

publicly accessible.

3.1.3 Aims and Objectives

The algorithm presented in this chapter, referred to as LPEMs, uses LP to decompose a

flux vector, v, into a linear combination of EMs, such that reactions carrying a propor-

tionally large flux in v are expected to contribute to a large number of EMs within the

decomposition.

Constituent EMs are obtained by solving a sequence of Linear Programs that iteratively

eliminate reactions from v. At each iteration, the LP problem is formulated such that

the reaction with the smallest flux in v, vmin, carries the same flux as v within the LP

solution, and, therefore, subtracting the LP solution from v eliminates vmin. At each

stage, the LP solution is either an EM or a combination of EMs that can be efficiently

calculated. This process repeats until all reactions in v are eliminated, and therefore all

constituent EMs are obtained.

This algorithm is applied to a GSM of C. jejuni [Tejera et al., 2020]. This gram-negative,

microaerophilic bacteria is recognised as one of the primary causes of bacterial gastroen-

teritis. It is commonly associated with poultry and, once ingested, infects the intestines

causing fever and diarrhoea. An unusual feature of C. jejuni’s metabolism is its use of

oxygen: although this organism has the capacity for anaerobic respiration, it still requires
1github.com/shjchan/DecompFlux
2opencobra.github.io
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small amounts of oxygen to grow [Sellars et al., 2002].

The study of the GSM of C. jejuni presented here investigates this oxygen requirement

with regards to biomass precursors, leading to the identification of various routes for

energy generation in C. jejuni and indicating that oxygen is required for the production

of pyridoxal phosphate (PLP), a biomass precursor that is essential for growth.

Initially, FBA (Section 2.3.5) was applied to simulate C. jejuni’s growth under different

oxygen conditions. However, as typically expected of LP solutions that constrain for many

products, the resultant flux vector was large and therefore difficult to examine. Hence, the

production of each biomass precursor was investigated, one precursor at a time, through

a sequence of LPs that included the production of a single precursor as their only output

flux constraint. This yielded smaller, more understandable pathways corresponding to

EMs (Section 2.3.4) . However, these EMs did not necessarily reflect the paths used by a

cell to simultaneously produce all biomass.

The LPEMs algorithm described here was able to tackle this challenge by decomposing

the FBA solution that simultaneously produced all biomass into a set of EMs that each

produce a subset of the biomass precursors, whilst taking the background demand for all

biomass into account. This algorithm simplified the analysis of the original FBA solution,

and exemplified how FBA solutions that only simulate the production of a single product

of interest must be interpreted with caution, by bearing in mind that the cell is likely to

refine its metabolism to simultaneously consider multiple constraints and objectives.

3.1.4 Chapter Structure Overview

This chapter contains the following sections:

Section 3.2 outlines the novel algorithm.

Section 3.3 introduces mathematical concepts relating to it. For example, a theorem

that states that, although the number of EMs in a system can be extreme, for every

steady-state flux there exists a minimal decomposition that contains at most r EMs,

where r is the number of active (non-zero) reactions in the measured flux vector.

Section 3.4 applies this algorithm to metabolic models of the Calvin cycle and C. jejuni.
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Section 3.5 discusses the results with emphasis on C. jejuni’s oxygen requirements.

The work presented in this chapter follows closely from the pre-print A Novel Algorithm to

Calculate Elementary Modes: Analysis of Campylobacter jejuni Metabolism, in Appendix

F, and a research paper with the same title submitted to BioSystems.

3.2 Methodology

The algorithm described within this section operates by exploiting the feasible steady-

state flux space that was introduced in Chapter 2.3.4.1. First the algorithm is described,

then the mathematical concepts related to are expanded upon in the subsequent section.

3.2.1 The Algorithm

Let the flux vector to be decomposed into EMs be denoted by v ∈ Rr, where r is the

number of reactions. Then, the output of the algorithm is a matrix, E, whose column

vectors, ei, consist of EMs, such that:

t∑
i=1

ei = v, (3.1)

where t is the number of EMs. Note that the EMs are not normalised in this instance,

such that the magnitude of each ei reflects the contribution of that EM to v.

Prior to starting the decomposition, v is ensured to be at steady-state. If this is not

the case, v is approximated to the closest vector that satisfies Nv = 0, where N is the

stoichiometry matrix, and the excess is saved as an error vector.

Then, the algorithm proceeds to iteratively obtain EMs, whilst simultaneously eliminat-

ing components of the flux vector (starting from the smallest first). Consider the loop

described by Algorithm 1, at each iteration, the following LP problem is used to obtain a
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Algorithm 1 Decomposing v into a set of EMs, E
1: while |v| > 0 do
2: vmin = minimum value in v
3: v′ = F(v,N) given by Equation (3.2)
4: if v′ is not an EM then
5: decompose v′ into a set of EMs
6: append these EMs to E
7: else
8: append v′ to E
9: end if

10: v− v′ → v
11: end while.

solution, v′, that has specific properties that depend on v:

F(v,N) = argmin ∑r
i=1 |v′i|

subject to


Nv′ = 0 ,

v′min = vmin ,

|v′i| ≤ |vi|, sign(v′i) = sign(vi), for all i ∈ {1, 2, . . . , r} .

(3.2)

The LP is constrained such that the reaction with the smallest non-zero flux value in

v, vmin, has the same flux as in v within the solution (i.e. vmin = v′min). In addition,

the value of every other reaction in the solution, v′i, is constrained to not exceed the flux

values found within v, and the LP objective is to minimise the total flux in the solution.

Once an LP solution is obtained, the Rank Test (Section 3.3) is applied to determine

whether v′ is an EM (Step 4 in Algorithm 1).

If the solution is not an EM, it is decomposed into constituent EMs by creating a sub-

matrix of N that contains only the reactions present within v′ and enumerating its EMs.

Once the EMs of this sub-system are obtained, a conventional algorithm (described by

Poolman et al. [2004b]) assigns a set of fluxes to the EMs by obtaining the pseudo-inverse

of the EM matrix, E (EMs as columns reactions as rows), such that Ew = v′ where w is

a vector of flux weightings assigned to each EM.

The one or more obtained EMs are saved, and the loop restarts using the modified flux

48



Chapter 3: Decomposing Flux Vectors into Elementary Modes

vector v, that is obtained by subtracting the solution from v such that vmin is eliminated:

v− v′ → v, (3.3)

or, 

v1

v2

...

vmin

...

vr



−



v′1

v′2
...

v′min

...

v′r



=



v1 − v′1

v2 − v′2
...

0
...

vr − v′r



. (3.4)

The loop continues to iteratively append EMs to E whilst simultaneously eliminating

components of the flux vector v, until the final flux vector v is equal to 0. The elimination

of components starting by the smallest first is based on the assumption that the smallest

component is the most likely to contribute to the least amount of EMs.

3.2.2 Implementation

This algorithm is implemented in Python and is publicly accessible as part of release 3 of

ScrumPy3 (Section 2.5.1).

Rounding errors are treated as follows. Following Step 10 in Algorithm 1, absolute values

in v that are less than 10−7 are set to zero, where the value of 10−7 was chosen with the

assumption that the smallest possible absolute value in the original v is 10−8.

At each stage, the numerical accuracy of the results is verified by ensuring that the

difference (v − v′) is a steady-state flux of the system. If due to rounding errors, this

is not the case then the decomposition is treated to have failed and the residual from

steady-state (corresponding to N(v− v′)) is returned to the user.

Finally, when the algorithm terminates, the numerical accuracy of its result is verified by

checking that Equation (3.1) is satisfied (i.e. the EMs sum to v).
3gitlab.com/MarkPoolman/scrumpy/-/blob/master/ScrumPy/Structural/LPEMs.py
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3.3 Mathematical Considerations

This section presents mathematical aspects behind Algorithm 1.

Recall the following considerations:

1. EMs are obtained by defining the set of potential steady-state fluxes of a metabolic

system (i.e. the set of flux vectors, v, that satisfy the reaction reversibility criteria

and Nv = 0) as a convex polyhedral cone, C (referred to as the flux cone), whose

set of generators (i.e. the extreme rays) are EMs.

2. When carrying out FBA, it is common to add more constraints to the system in

order to eliminate fluxes with undesirable properties, thus reducing the flux cone

into a smaller sub-space known as the flux polyhedron, P , that is generated by a

set of vertices (or corners), such that the resulting LP solution will consist of the

vertex that best achieves a user defined objective. This vertex will be either an EM

or a conic combination of EMs.

Consider a system defined by an m × r stoichiometry matrix, N, and a corresponding

steady-state vector, v ∈ Rr .

As discussed in Section 2.3.4, S(v) denotes the set of indices of the non-zero elements of

v (sometimes referred to as the support), i.e.

S(v) = {i ∈ N|1 ≤ i ≤ r and vi 6= 0}, (3.5)

additionally, let Z(v) denote the set of indices of the zero elements of v (referred to as

the zero-set) i.e.

Z(v) = {i ∈ N|1 ≤ i ≤ r and vi = 0}, (3.6)

and let NS denote a sub-matrix of N that contains only the reactions in S(v).

This algorithm relies on the following three properties:

• The rank test, Step 4 in Algorithm 1. The vector, v, is an EM if NS has a null-

space of dimension one i.e. dim(ker(NS)) = 1 (proved in Lemma 2 of Gagneur and

Klamt [2004]).
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• Decomposing v into EMs, Step 5 in Algorithm 1. The EMs of the sub-model

generated by NS are a sub-set of the EMs of the original model. More specifically,

NS contains the EMs of N that only carry non-zero flux in the reactions of S(v),

and therefore can form part of a conic combination of EMs that sum to v. This

reasoning is extended to show that there exists a minimal decomposition of v into

at most dim(ker(NS)) EMs.

• Calculating a linear combination of steady-state fluxes, Step 10 in Algorithm

1. Consider two steady-state flux vectors, v and v′, where v ≥ v′, then their

difference, v− v′, is a steady-state flux vector of the system.

Additional results regarding FBA solutions that support statements made in Section 3.4

of this chapter, are:

• FBA solutions obtained from the addition of only one non-zero flux constraint to C

are EMs, and

• FBA solutions obtained from the addition of more than one non-zero flux constraint

to C are not necessarily EMs.

Please note that throughout this chapter, all flux values are assumed to be strictly non-

negative (i.e. all reactions are treated as irreversible) because of the nature of convex

geometry computation (further information about handling reversible reactions can be

found in Gagneur and Klamt [2004] and in Appendix B).

3.3.1 Decomposing a Flux Vector into Elementary Modes

This subsection aims to show that a vector, v ∈ Rr, can be decomposed into EMs by

enumerating the entire set of EMs of a sub-model that only contains the reactions that

carry non-zero flux in v.

Theorem 3.3.1.1. Consider the steady-state flux vector v defined above, then the EMs

of N that can make up v are equivalent to the entire set of EMs of NS.

Proof. Let the complete set of EMs of N be denoted by E = {e1, e2, . . . , et}.
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Since v can be represented as a conic combination of the EMs in E, there exist non-

negative constants λi such that

v = λ1e1 + λ2e2 + · · ·+ λtet. (3.7)

By the nature of conic combinations, if a reaction carries zero flux within v, then that

reaction must also be zero in all of v’s constituent EMs. Therefore, if ei is such an EM,

then Z(v) ⊆ Z(ei).

Let all such EMs of N be denoted by the set Es, i.e.

Es = {ei ∈ E| Z(v) ⊆ Z(ei)}. (3.8)

As discussed by Terzer [2009], Es are the EMs of the convex cone obtained when restricting

the flux cone, C, such that the fluxes corresponding to the reactions in S(v) are zero, i.e.

C = {u ∈ Rr|Nu = 0,u ≥ 0 andui = 0 for all i ∈ Z(v)}. (3.9)

Without loss of generality, let

uZ =



u1

u2

...

uk


, (3.10)

correspond to the subset of reaction fluxes constrained to zero, also, let the remaining

elements of u be denoted by uS. Similarly, let the reactions in uZ correspond to the first

k columns of N, denoted by NZ, whilst the remaining columns are the sub-matrix NS (as

defined previously), such that the system of equalities satisfied by C can be written as:

(
NZ NS

)uZ

uS

 = 0. (3.11)

By Fourier-Motzkin elimination, the variables of uZ can be eliminated from the system

whilst preserving the original solutions over the remaining variables [Williams, 1986]. The
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first step is achieved by moving NZuZ to the left hand side of the equation:

NSuS = 0−NZuZ. (3.12)

But since uZ = 0, this system is equivalent to:

NSuS = 0. (3.13)

where u can be calculated from uS by appending r − k zero elements to uS (at the

appropriate indices).

Therefore, the EMs in Es, i.e. the set of EMs of N that can constitute v, are equivalent

to those of NS, i.e. the generators of the cone Cs:

Cs = {uS ∈ Rr−k|NSuS = 0,uS ≥ 0}. (3.14)

Corollary 3.3.1.1. For any flux vector v, given the above definitions, there exists a

minimal decomposition of at most dim(ker(NS)) EMs.

Proof. Let, v, be a flux vector with k ≤ r reactions that carry a zero flux. Then, by

Proposition 3.3.1.1, all of the possible constituent EMs of v can be found in the convex

cone Cs:

Cs = {uS ∈ Rr−k|NSuS = 0,uS ≥ 0}. (3.15)

The dimension of such a cone is z = dim(ker(NS)), assuming that NS has full row-rank.

By Carathéodory’s Theorem for polyhedral cones [Cook and Webster, 1972; Grotschel

et al., 1988], for any point, v, lying within a cone, Cs, of dimension z, being generated

by the conic hull of a set of EMs, Es, there exists a minimal composition of at most z of

these EMs.

In fact, let v = ∑`
i=1 λiei be a minimal decomposition for v with a set of coefficients
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λi > 0.

Suppose that ` > z, then ` − z of the ei’s must be linearly dependant, such that there

must exist a linear dependence 0 = ∑`
i=1 µiei for a set of coefficients µi, some of which

are non-zero.

Hence, a sufficiently small α ∈ R can be found such that:

• λq + αµq = 0 for at least one q ∈ {1, 2, . . . , `}, and

• and λi + αµi > 0 for all other i.

This creates conic decomposition, v = ∑l
i=1(λi + αµi)ei, with non-negative coefficients,

(λi + αµi), one of which must vanish.

But v = ∑`
i=1 aiei was chosen to be minimal, thus resulting in a contradiction.

3.3.2 Calculating a Linear Combination of Steady-State Fluxes

Proposition 3.3.2.1. Consider two steady-state flux vectors, v and v′, where v ≥ v′,

then their difference, v− v′ is a steady-state flux vector.

Proof. Let v and v′ ∈ Rr be two steady-state flux vectors corresponding the metabolic

network defined above. Suppose that v ≥ v′ and all reactions are irreversible such that

v,v′ ≥ 0.

Consider the vector v′′ obtained by the linear combination:

v′′ = v− v′, (3.16)

Since any steady-state flux vector of this metabolic network must be an element of the

right null-space of N, then

Nv = 0, (3.17)

and

Nv′ = 0. (3.18)
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Therefore,

Nv′′ = N(v− v′) = Nv−Nv′ = 0. (3.19)

Hence, v′′ is an element of the right null-space of N.

Furthermore, since v ≥ v′, then v′′ ≥ 0. Consequently, v′′ satisfies the reaction reversibil-

ity criteria of the system.

Hence, since v′′ satisfies the constraints arising from the stoichiometry and reaction re-

versibility criteria of the system, then v′′ is in the flux cone and is therefore a steady-state

flux of N.

3.3.3 FBA Solutions and EMs

Proposition 3.3.3.1. FBA solutions obtained after adding only one non-zero flux con-

straint to C are EMs.

Proof. Consider a Flux Cone C, generated by the m× r stoichiometry matrix, N, as de-

fined above. Without loss of generality consider the addition of a minimum flux constraint,

vmin, to the flux v1, i.e. v1 ≥ vmin.

This new constraint corresponds to the half-space H, defined as follows

H = {v ∈ Rr|a.v ≤ −vmin, v ≥ 0, vmin ≥ 0}, (3.20)

where

a =
(
−1 0 0 . . . 0

)
, (3.21)

since

av =
(
−1 0 0 . . . 0

)



v1

v2

v3

...

vn


= −v1 ≤ −vmin. (3.22)
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The convex polyhedron, P , containing the set of flux vectors, v, that satisfy both the

constraints imposed by Nv = 0, as well as this new constraint is the intersection of C

and H:

P = C ∩H, (3.23)

This space, P , can be expressed as a system of inequalities:

P = {v ∈ Rr|N̂v ≤ b, v,b ≥ 0}, (3.24)

where

N̂ =


a

N

−N

 and b =

−vmin

0

 . (3.25)

Maximum flux constraints can be added in a similar manner.

The addition of such a constraint restricts the flux cone by one hyperplane, H, such that

the vertices of P will consist of the intersections between the extreme rays of C and the

hyperplane. Therefore, given that FBA solutions must be vertices of P , it follows that

such solutions must be EMs.

Corollary 3.3.3.1. FBA solutions obtained after adding more than one non-zero flux

constraint to C are not necessarily EMs.

Proof. Consider now a set of flux constraints expressed as a system of inequalities gener-

ating a polyhedron Q:

Q = {v ∈ Rr|Av ≤ vmin, v ≥ 0}, (3.26)

where A is a matrix whose rows consist of vectors each constructed in the same manner

as a in Proposition 3.3.3.1 above.

Note that since Q contains multiple constraints that each generate a hyperplane, then this
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system is itself a convex polyhedron with rays and vertices that arise from the intersection

of the imposed constraints.

As before, the solution space, denoted by P , consists of the intersection of the flux cone,

C, and convex polyhedron, Q:

P = C ∩Q, (3.27)

that can be expressed as a system of inequalities representing P :

P = {v ∈ Rr|N̂v ≤ b, v ≥ 0}, (3.28)

where

N̂ =


A

N

−N

 , and b =

vmin

0

 . (3.29)

This new system consists of the least convex polyhedron containing extreme rays and

vertices of both C and Q [Halbwachs et al., 2006]. However, since the extreme rays and

vertices of Q are not defined as EMs, then the extreme rays and vertices of P are not

necessarily EMs. Therefore FBA solutions obtained from P are either EMs or a conic

combination of EMs.

It should be noted that FBA solutions obtained when only adding two constraints to the

same reaction (i.e. a minimum and a maximum) must be EMs since the hyperplanes

corresponding to these constraints are parallel and therefore do not intersect.

3.4 Applications to Models

Two metabolic models were analysed: a small model of the Calvin cycle and a GSM of

C. jejuni (see Table 2.1 in Section 2.5.2 for a numerical description).

The Calvin cycle model was chosen since its behaviour is well understood and its EMs

are documented [Poolman et al., 2003]. Therefore, it was used to compare the results

obtained from the LPEMs algorithm with the expected biological behaviour, as well as

with the results obtained from the algorithm by Poolman et al. [2004b] that decomposes
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flux vectors into EMs by calculating the complete set of EMs a priori (described in Section

3.2.1).

Once the correctness of the algorithm was tested on the Calvin cycle, attention was

turned to the much larger C. jejuni model. As discussed in Section 3.1, this organism has

a requirement for oxygen, the reasons for which are still unclear. Moreover, the scale of

the model means that conventional EMA cannot be used to examine it, a problem that

motivated the application of the LPEMs algorithm.

For both models, traditional FBA methods were initially applied to obtain flux vectors

of interest, that were then used as input for Algorithm 1.

3.4.1 Analysis of the Calvin cycle

3.4.1.1 The Metabolism of the Calvin cycle

The Calvin cycle (Figure 2.7) is concerned with fixing environmental CO2 into three-

carbon sugars, in a process referred to as carbon fixation [Poolman et al., 2003].

The three-carbon sugars produced by this cycle (3-phospho-D-glycerate (PGA), glycer-

aldehyde 3-phosphate (GAP), and dihydroxyacetone phosphate (DHAP)) supply the cell

with the organic material that it needs to build and maintain cellular structures. Each

of these sugars is individually transported out of the chloroplasts via a triose-phosphate

translocator (TPT) reaction. A fourth product, starch, is retained within the chloroplast,

where it is used as a reserve of carbon and energy during periods of darkness.

By the principle of conservation of mass, the export of material from the system must be

balanced by the input of an equal amount of atoms. Furthermore, energy must be provided

to some of the enzymes driving the cycle in the form of ATP and NADPH created by

photosynthesis’s light-dependent reactions. Specifically, the enzyme RuBisCo fixes one

carbon atom from CO2 to form two molecules of PGA, that are then reduced to GAP and

DHAP in a process that requires the input of two molecules of ATP and NADPH (one pair

for each PGA molecule). Whilst a further input of one ATP molecule is needed such that

a portion of the three-carbon sugars is recycled back into the cycle’s starting compound,

thus allowing the cycle to continue and more carbon to be fixed. Alternatively, carbon
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PiADP
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r9 r10

Figure 3.1: An EM which is a futile cycle that dissipates excess ATP.

may also enter the cycle through the degradation of starch (imported as the 6-carbon

glucose moiety).

Hence, as described by Poolman et al. [2003], the Calvin cycle model has eight EMs (Table

C.1 in Appendix C) that connect inputs to outputs:

• three modes (ElMo 1 – ElMo 3) import CO2 and respectively export one of the

three-carbon sugars, see Figure 3.2a,

• three modes (ElMo 4 – ElMo 6) degrade starch to support the fixation of CO2 and

each export one of the three-carbon sugars, see Figure 3.2b,

• one mode (ElMo 7) imports CO2 and exports starch,

• one mode (ElMo 0) consists of a futile cycle that simultaneously creates and de-

grades starch, see Figure 3.1.

These pathways can describe the underlying metabolic mechanisms of every potential

steady-state flux and identify metabolic functions that can operate in accordance to spe-

cific cellular requirements and environmental conditions (such as to understand how the

export of a specific product depends on the availability of nutrients and light-derived

energy).

For example, since the export of carbon atoms out of the system requires the input of

an equivalent amount of carbon, the production of one unit of starch (exported as a six-

carbon glucose moiety) requires the fixation of six CO2 molecules by RuBisCo. Hence,

ElMo 7 must be supplied with 19 ATP molecules in order to function (where twelve ATP

are required to reduce PGA to GAP and DHAP, six ATP are needed to regenerate the

cycle’s starting compound, and one ATP is required to transform one glucose moiety into

starch).
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(a) The export of PGA using CO2 fixation.
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(b) The export of PGA using CO2 fixation and additional carbon provided by the degradation of starch.

Figure 3.2: The EMs that export PGA in the model of the Calvin cycle (Table C.1)
[Poolman et al., 2003].

60



Chapter 3: Decomposing Flux Vectors into Elementary Modes

Similarly, the output of one of the 3-carbon sugar molecules produced by carbon fixation

(ElMo 1– ElMo 3) requires the fixation of three CO2 molecules, and hence the input of

eight ATP in the case of PGA, and nine in the case of GAP and DHAP.

Meanwhile, supporting the export of carbon molecules by degrading starch requires less

energy. Therefore, the ATP demand of the EMs that support the production of three-

carbon sugars via starch degradation (ElMo 4 – ElMo 6) is one-third that of those that

do so solely on CO2 in the cases of GAP and DHAP, and one-fourth in the case of PGA.

However, note that it is not possible to export the three-carbon sugars solely through

starch degradation since these EMs also include RuBisCo.

ElMo 0 has been hypothesised to be a mechanism that dissipates excess energy produced

by the light dependant reactions. Such a mechanism is needed when the cell produces more

ATP than it requires, which is a possibility because of the activity of the light-dependent

reactions being controlled by the amount of light in the cell’s environment.

3.4.1.2 Flux Balance Analysis

The LPEMs algorithm described in this chapter was applied to a set of FBA solutions

that simulate how the Calvin cycle responds to variations in the plant’s demand for PGA.

The following LP problem was repeatedly solved:

Find : argmin ∑r
i=1 |vi|

subject to


Nv = 0 ,

vTPT PGA = tPGA, for tPGA ∈ {0, 5, 10, . . . , 50}.

vLReac = 100,

(3.30)

The flux carried by the PGA transporter, vTPT PGA, was incrementally increased (by a

factor of five) from one solution to the next. While, the flux of the light reactions (and

therefore the rate of ATP synthesis), vLReac, remained unchanged throughout the analysis,

ensuring that the same amount of energy is made available to the cycle in every iteration.

The LP was run such that the total sum of fluxes is minimized, and the results may be

found in Table C.2 in Appendix C.
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Figure 3.3: Relative fluxes of StPase, StSynth and RuBisCo with respect to changes
in PGA export, where StPase is the enzyme responsible for degrading starch, StSynth is
responsible to exporting starch, whilst RuBisCo fixes environmental CO2. If there is no
PGA demand, all energy provided by the light reactions is dissipated by the futile cycle.
Starch synthesis stops when the cycle’s maximum capacity for PGA export is reached.

In the first FBA iteration, the flux of the PGA transporter was constrained to be zero.

Correspondingly, the resulting FBA flux portrayed the scenario where no net output of

material was produced by the Calvin cycle. Hence, the only active reactions were those

leading to starch formation and starch degradation, both operating in such a way that

the ATP generated by the light reactions was being degraded at the same rate that it was

being produced.

As the flux of the PGA transporter gradually increased in subsequent iterations, the en-

ergy produced from the light reactions started being used to power the cycle in order

to meet the cell’s growing PGA demand. The carbon needed to produce PGA was im-

ported into the system through starch degradation and carbon fixation, such that the

rate at which starch was being degraded was greater than the rate at which starch was

being produced. This discrepancy between starch degradation and formation was seen to

increase with the cell’s PGA demand (see Figure 3.3).

The amount of PGA exported was incrementally increased until all of the energy derived

from the light reactions was consumed to create PGA. After reaching this point, it is
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no longer possible to obtain feasible steady-state fluxes that exported a larger amount of

PGA.

3.4.1.3 The LPEMs Algorithm

The algorithm described in this chapter was applied to this dataset of FBA solutions

(Table C.3 in Appendix C).

The first flux was identified as ElMo 0, i.e. the futile cycle, that makes and simultaneously

degrades starch. This outcome is consistent with biological expectations, as in the absence

of any output, all energy derived from the light reactions must be dissipated.

In subsequent iterations, a low PGA output was expected to correspond to the scenario

where not all of the ATP being produced by the light reactions is being used to export

PGA, such that excess ATP must be dissipated using the futile cycle portrayed by ElMo 0.

Accordingly, these fluxes were identified by the LPEMs algorithm as the sum of two EMs:

ElMo 0 and ElMo 5 (where ElMo 5 exports PGA through the degradation of starch).

As the rate of PGA export continued to increase, the discrepancy between starch degra-

dation and formation grew larger within the set of FBA solutions. This behaviour was

identified by the LPEMs algorithm as an inverse relationship between ElMo 0 and ElMo 5,

where the higher the PGA export, the lesser the amount of excess energy being dissipated

by ElMo 0 (see Figure 3.4).

These results were found to be identical to the results obtained after decomposing the

flux vectors into a sum of EMs through the conventional algorithm that requires the

calculation of all of the EMs of the system a priori (as mentioned in Section 3.1). Both

algorithms were also applied on a more complex steady-state flux of the Calvin cycle, and

the results obtained were found to be consistent with each other. However, note that the

decomposition of flux vectors into EMs is not necessarily unique.
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Figure 3.4: Relative fluxes of ElMo 0 (futile cycle, Figure 3.1) and ElMo 5 (PGA forma-
tion, Figure 3.2a) with respect to changes in PGA export.

3.4.2 Analysis of C. jejuni

Metabolism of C. jejuni

The metabolic properties of C. jejuni have been extensively studied. However, some

aspects are still uncertain (refer to Hofreuter [2014] for a detailed review).

This organism can survive in a variety of hosts and is therefore expected to be tolerant of

a wide range of environmental conditions, including varying temperatures, pH values, nu-

tritional sources, and oxygen concentrations. However, some usually important enzymes

in glycolysis and the pentose phosphate pathway are missing from its genome [Velayudhan

and Kelly, 2002; Wagley et al., 2014]. As a consequence, it is incapable of using common

carbohydrates (such as glucose) as a carbon source, and is believed to rely on pyruvate,

some amino acids (such as glutamine), and TCA cycle intermediates for energy [Westfall

et al., 1986; Guccione et al., 2008].

As discussed in Section 3.1.3, this organism has the capacity for anaerobic respiration (as

its ETC has alternative electron acceptors to oxygen) but requires oxygen to generate

biomass. Moreover, C. jejuni is a microaerophilic organism, meaning that it cannot

tolerate high oxygen environments.
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C. jejuni’s intolerance to high oxygen environments has been speculated to possibly re-

sult from the build-up of toxic by-products generated by reactions that involve oxygen,

such as hydrogen peroxide, which, if not neutralised, leads to damage in several cellular

components [Kim et al., 2015; Rodrigues et al., 2016]. This balance between the presence

of reactive oxygen species and the cell’s ability to detoxify them is referred to as oxidative

stress.

It has been suggested that its requirement for oxygen may be caused by a reliance on

an oxygen-dependent ribonucleotide reductase (RNR) enzyme for DNA synthesis [Kelly,

2008; Sellars et al., 2002]. RNR enzymes are a vital part of the DNA synthesis process.

They are involved in nucleotide metabolism by converting ribonucleotides (used in RNA)

into deoxyribonuclease (used in DNA) [Torrents, 2014]. These enzymes are organised into

three classes: I, II and III. The mechanism of class I enzymes requires oxygen to function,

whilst class II and III do not.

Sellars et al. [2002] and Alqurashi et al. [2021] reported that C. jejuni’s genome encodes for

oxygen-dependant class I RNR enzymes only, in contrast with E. coli, which encodes for

both class I and class III RNR [Boston and Atlung, 2003]. Sellars et al. [2002] supported

this hypothesis by showing that the presence of an RNR inhibitor (hydroxyurea) induces

the same filamentation behaviour in C. jejuni (cells that elongate but do not divide), as

that observed when the organism is placed in a strictly anaerobic environment.

Oxygen-dependant heme synthesis enzymes (HemN) have also been discussed within this

context [Sellars et al., 2002]. However, the presence of genes that encode several HemN

homologues within C. jejuni’s genome imply that the lack of anaerobic growth is unlikely

to be caused by a heme deficiency [Parkhill et al., 2000; de Vries et al., 2015].

The following sections investigate this dependence in the context of producing biomass

precursors whilst growing in a minimal medium.
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3.4.2.1 Flux Balance Analysis

The C. jejuni model (provided by Tejera et al. [2020]) was initially analysed using the

following LP problem:

Find : argmin ∑r
i=1 |wivi|

subject to


Nv = 0 ,

vb = tb, for one or all b ∈ {1, 2, . . . , B},

vO2 = 0 or unconstrained.

(3.31)

where t is a vector that specifies the production ratio of the B biomass components.

The LP’s objective was to minimise the weighted sum of fluxes in the solution, v, where

the flux, vi , carried by the ith reaction (where r is the total number of reactions), is

multiplied with the corresponding weighting coefficient wi. These coefficients were all set

to 1 (unless otherwise specified), assigning equal importance to the minimisation of every

reaction.

This LP was subject to the steady-state condition Nv = 0. Additionally, the production

of one or more biomass components was considered by imposing the constraint, vb = tb,

where the suffix b represents the bth out of B exported biomass components whose pro-

portional transport flux, vb, was defined in accordance with experimental measurements

by Metris et al. [2011]

When investigating the O2 requirement, the flux carried by oxygen transport, vO2 , was

either unrestricted or forced to be zero. Similarly, the corresponding penalty weighting,

wO2 , was configured as 1 or 106 as described below.

Thus five sets of flux vectors were in total obtained, as shown in Table 3.1 and discussed

below.

Simultaneous production of all biomass components, with unrestricted oxygen

uptake penalty.

When the simultaneous production of all biomass was considered, and the import of
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oxygen was unrestricted, Equation (3.31) returned an optimal solution, verifying that the

model can simulate growth on oxygen.

This flux vector, denoted here by faerobic, consisted of 324 reactions (excluding transport

processes), four of which required oxygen. These included the oxygen transporter reaction,

ATP synthesis (where oxygen is an electron acceptor within the ETC, R27 in Figure 3.5),

pyridoxine (pyridoxamine) 5′-phosphate (PNP) oxidase (a reaction that produces PLP

from PNP by using oxygen as a substrate and hydrogen peroxide is a by-product, R30

in Figure 3.5) and a catalase reaction (R31 in Figure 3.5) that degrades the generated

hydrogen peroxide into water and oxygen. The ATP synthesis reaction had the highest

flux within faerobic, showing the importance of aerobic respiration. Whilst the reaction

regarding the synthesis of PLP had a magnitude three times smaller than the median

flux.

faerobic included 28 import reactions (the most dominant being pyruvate, phosphate, and

glutamine) and 51 biomass output reactions (whose fluxes were defined when formulating

the FBA optimisation problem). The import reactions included glutamine as the most

dominant carbon source, followed by pyruvate. Glutamine, methionine, and cysteine

provided nitrogen to the organism, with the latter two amino acids also satisfying C.

jejuni’s demand for sulphur. Excess carbon was primarily exported in the form of carbon

dioxide and carbonic acid, whilst excess nitrogen was excreted as NH4.

Simultaneous production of all biomass components, with no oxygen uptake.

When oxygen import was set to zero, no solution was found, demonstrating that at least

one biomass component has a requirement for oxygen.

Simultaneous production of all biomass components, with penalised oxygen

uptake.

A solution that accounts for all biomass components while minimising oxygen import was

obtained by adjusting the objective of Equation (3.2) such that the weight corresponding

to the minimisation of oxygen, wO2 , is dominant (i.e. set to an arbitrarily high value

of 106). Thus the LP was encouraged to avoid using oxygen-requiring reactions in the
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resulting solution.

This solution, denoted by fanaerobic, also consisted of 324 reactions, of which 320 were in

common with faerobic. Three reactions required oxygen: the oxygen transporter reaction,

and the reactions that produce PLP and neutralise hydrogen peroxide. In this case, ATP

synthesis was not achieved using oxygen but via anaerobic respiration (using nitrate as an

electron acceptor). Changes in the inputs/outputs were all associated with the redirection

of the ETC from aerobic to anaerobic respiration. For example, the additional import of

nitrate.

Individual production of each biomass component, with no oxygen uptake.

To identify oxygen-dependent biomass components, Equation (3.31) was repeatedly solved,

once for each biomass component, with the oxygen transport constrained to zero in all

cases. This LP was formulated such that a feasible solution is only attainable if the spec-

ified biomass component can be produced without oxygen (and vice-versa). In this case,

optimal solutions were found for all biomass precursors, except for PLP, the active form of

vitamin B6 and a co-substrate for many enzyme-catalysed reactions (see Section 3.5.2.2),

thus implying that this precursor is responsible for C. jejuni’s lack of anaerobic growth.

Individual production of each biomass component, with unrestricted/penalised

oxygen uptake.

Similarly, two sets of solutions that produce each of the biomass precursors individually,

where the use of oxygen was (i) unrestricted and (ii) penalised were respectively obtained.

As shown by Proposition 3.3.3.1, all of these solutions were EMs.

When oxygen was unrestricted, 43 of the 51 biomass precursors used oxygen to drive

aerobic respiration. Aerobic respiration was substituted by anaerobic respiration (using

nitrate) when oxygen use was penalised. In this case, only the solution for PLP utilised

oxygen.

3.4.2.2 Applying the LPEMs Algorithm to the Aforementioned FBA Results

To further investigate the model’s response to varying levels of oxygen, Algorithm 1 was

applied to two of the FBA solutions, faerobic and fanaerobic. Both regarded the simultaneous
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Table 3.1: LP solutions obtained when solving Equation (3.31) under different conditions.

Biomass production Oxygen Uptake LP
1. all components unrestricted a solution
2. all components blocked no solution
3. all components penalised a solution

4. a sequence of LPs each
producing one component

unrestricted 51 solutions

5. a sequence of LPs each
producing one component

blocked 50 solutions
(none for PLP)

6. a sequence of LPs each
producing one component

penalised 51 solutions

production of all biomass. However, in faerobic, the use of oxygen was unrestricted, whilst,

in fanaerobic, the use of oxygen was penalised.

Algorithm 1 decomposed faerobic into 62 EMs, 60 of which required oxygen. All these

modes involved oxygen as an electron acceptor in the ETC, whilst one mode used addi-

tional oxygen molecules to synthesise PLP via PNP oxidase. Since the toxic hydrogen

peroxide is a by-product of PNP oxidase, this EM also contains a reaction that decomposes

hydrogen peroxide into water and oxygen.

When Algorithm 1 was applied to fanaerobic, this flux was also decomposed into 62 EMs,

only one requiring oxygen. As in this scenario, C. jejuni obtained energy via anaerobic

respiration. In fact, all of the EMs were found to include the electron acceptor nitrate

(rather than oxygen) in the ETC. As expected, the only EM that required oxygen syn-

thesised PLP.

Both sets of EMs concurrently produced multiple outputs, however only one EM in both

sets included the export of PLP. For example, the EM that produced PLP in fanaerobic

produced acetate, succinate, and AMP as bi-products.
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3.5 Discussion

3.5.1 Investigations on the Calvin Cycle

Applying the LPEMs algorithm to the results from the Calvin cycle yielded a clearer

description than that provided by simply observing the set of varying reaction fluxes

in Table C.2, by allowing users to compare the relative importance of the EMs in each

biological scenario.

Although the decomposition of flux vectors into EMs is not unique in general, the results

obtained here were identical to the results of the similar decomposition algorithm by

Poolman et al. [2004b].

3.5.2 Investigations on C. jejuni

3.5.2.1 Model Analysis in the Context Of Micro-Aerophilly

The presence of oxygen-dependant reactions within a metabolic system does not neces-

sarily identify which metabolites can and cannot be produced anaerobically. This is as

the inherent flexibility of metabolic networks typically results in multiple pathways that

can produce the same metabolite via alternative sets of reactions and input requirements.

Such advantages allow organisms to adjust their metabolism in response to environmental

changes.

In this work, PLP was identified to be the biomass precursor that cannot be exported

without oxygen input by simulating the export of each biomass component individually

under no oxygen import. However, this analysis did not reveal which specific reactions

are responsible for this oxygen requirement.

On the other hand, the LP solutions that produced PLP when the use of oxygen was (i)

unrestricted and (ii) penalized allowed for the production of PLP under these two different

circumstances to be compared (see Figure 3.5). The model was seen to switch from aerobic

to anaerobic respiration, depending on the availability of O2. However, oxygen was being

used by PNP oxidase (R30 in Figure 3.5) to generate PLP in both cases.

This reaction was confirmed to be the reason for oxygen dependency since it forms part
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of an enzyme subset with the reaction responsible for the transport of PLP out of the

network (Section 2.3.3.1). Note that, although the model contains the catalase reaction

(R31 in Figure 3.5) that degrades hydrogen peroxide into oxygen, this cannot be used

to generate internal oxygen as the generation of hydrogen peroxide itself must ultimately

depend on an exogenous oxygen source.

3.5.2.2 PLP Essentially

PLP is the active form of vitamin B6. More than 4% of known enzymes are thought

to depend on PLP as a co-factor, including amino-acid metabolism, lipid metabolism,

the synthesis of secondary metabolites derived from amino acids, gene expression, and

nucleotide synthesis (e.g. thymidylate synthase within the folate cycle). In fact, the loss

of PLP synthesis pathway in organisms has been reported to be lethal or lead to severe

developmental problems [Parra et al., 2018].

PLP deficiency in C. jejuni was previously studied by Asakura et al. [2013], who used a

C. jejuni mutant that is only capable of synthesising very small quantities of PLP. Lack

of PLP prevented C. jejuni from building flagella, and resulted in alterations of TCA

cycle intermediates. The authors suggested that the flagella impairment was because of

PLP being required to build O-linked glycans, whilst alteration in the TCA cycle reflect

the impact of PLP on C. jejuni’s energy metabolism.

3.5.2.3 Variation in C. jejuni’s Respiration

Numerous studies have observed C. jejuni shifting its respiration mode in order to account

for limited oxygen availability (such as after infecting cells) [Liu et al., 2012; Kim et al.,

2015; Reuter et al., 2010; Sellars et al., 2002; Wösten et al., 2017]. For example, Liu

et al. [2012] reported that the levels of several proteins, such as those involved in aerobic

respiration, are significantly reduced 20 hours after C. jejuni infects host cells. Similarly,

Woodall et al. [2005] measured the up-regulation of enzymes such as those involved in

TCA, electron transport, and dicarboxylate transport, as well as, down regulation of other

enzymes such as some involved in amino acid synthesis and membrane lipids.

Whilst C. jejuni’s oxygen-limited growth is severely reduced when using standard media,

the addition of fumarate, nitrate, nitrite, TMAO, or DMSO has been shown to have a very
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Figure 3.5: PLP synthesis in the C. jejuni model with and without out a penalty on
O2 uptake. Reactions in black are active under both the conditions. Reactions in blue are
active when there is no penalty on O2 uptake and reactions in red are active only when
the penalty is imposed. See Appendix A.3 for reaction and metabolite abbreviations. This
image was generated by Dr Dipali Singh for use in the pre-print within Appendix F.
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positive impact on its growth rate and final cell density [Sellars et al., 2002]. These results

indicate that the oxygen-limited growth of C. jejuni may be partially reliant on sources

like fumarate and nitrate (required as terminal electron acceptors within the ETC), that

are likely to be abundantly available within the gut. Although C. jejuni may use a wide

range of electron acceptors alternative to oxygen, it has been suggested to prefer to use

nitrate over fumarate, possibly as fumarate can alternatively be used as a carbon source

[Wösten et al., 2017].

3.5.2.4 PLP Synthesis

There are two known routes for the synthesis of PLP: the DXP (deoxy-xylulose 5-phosphate)

dependent and DXP independent pathways. This study observed that C. jejuni exhibits
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the DXP-dependent pathway, which can be identified as the 2-branched subset of the

pathway in Figure 3.5, starting from E4P and GAP and ending with the export of PLP.

Some organisms that use this pathway have additional reactions that enhance their

metabolic flexibility. For example, as shown in Figure 3.6, E. coli contains reactions

that can bypass the O2 dependant PNP oxidase reaction (R30 in Figures 3.5 and 3.6),

therefore allowing this organism to synthesise PLP without O2 [Sugimoto et al., 2017;

Ito and Downs, 2020]. These aforementioned reactions have not been reported C. jejuni

M1cam.

3.5.2.5 Elementary Modes

In this study, two distinct sets of EMs were obtained. Using LP to identify pathways

that synthesise each biomass precursor in isolation led to the identification of 51 EMs.

However, although the overall behaviour generated by the combination of all 51 of these

EMs produced all of the biomass precursors needed by C. jejuni, the resulting flux vector

was not equivalent to that produced by the LP solution that simultaneously produced all

biomass. This is as the summation of the 51 individual solutions required more reactions

and greater total flux, illustrating how the optimal solution for the synthesis of a single

product in isolation is not necessarily optimal in the presence of demand for additional

products. Therefore, FBA solutions that maximize the production of a single product

must be interpreted with care in the context of a growing organism.

3.5.3 Performance of the Algorithm

3.5.3.1 Efficiency of the Algorithm

A potential bottleneck regarding the efficiency of the LPEMs algorithm is the decompo-

sition of solutions in Equation (3.31) that are not EMs. In such cases, the LP solution is

decomposed into constituent EMs by creating a sub-model that only contains the reactions

present within the LP solution, v′, denoted by NS.

Obtaining the entire set of EMs of such a sub-model is efficient if the dimension of the

sub-model is small. This was ensured by using an LP objective function that minimizes

the l1 norm (i.e. the sum of the absolute reaction fluxes), an approach that is likely to
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drive reaction fluxes to zero such that the number of non-zero variables within the LP

solution is approximately minimal. In fact, minimization of the l1 norm is commonly

used to find approximate solutions for the problem of ‘minimizing the number of non-zero

variables in linear systems’, which is NP-hard [Amaldi and Kann, 1998]). Therefore, every

LP solution obtained from Equation (3.2) is likely to be either an EM or a flux vector

with a small number of active reactions.

Furthermore, all reactions are considered to be irreversible (in accordance with the di-

rection of the original flux in v) which further improves efficiency. Indeed, in the results

presented in this report (and other tests carried out during the algorithm’s development),

NS was sufficiently small such that EM enumeration could be achieved very quickly.

3.5.3.2 Accuracy and Reproducibility of the Algorithm

The accuracy of the algorithm is ensured by verifying that the EMs sum to the original

flux vector, and that, at each point, flux vectors are at steady state.

Generally, the decomposition of a flux vector into a combination of EMs is not unique

(since the number of EMs for a given system typically far exceeds the dimension of the

null-space). Therefore, although the algorithm presented here cannot be guaranteed to

generate a unique decomposition, as long as at each iteration of Algorithm 1, the value

of vmin is unique, then the results generated for a given flux vector are expected to be

reproducible (e.g. independent of initial row and column ordering of the stoichiometry

matrix). However, the presence of multiple optima when solving Equation (3.2) may lead

to repetitions of the algorithm yielding different results, but there was no evidence of this

during the course of this study.

3.5.3.3 Size of the Decomposition

The minimal size of the decomposition is 1, if the input flux vector is already an EM, to

at most
(

2r+m
2m

)
for a sub-model with m metabolites and r reactions, which is the upper

bound for the number of EMs in a model as shown by Theorem 2.4 in Terzer [2009,

page 42].

As stated by Corollary 3.3.1.1, for each flux vector there exists a minimal decomposition
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that has at most S(v) EMs. In this study the LPEMs algorithm decomposed the two LP

solutions of the C. jejuni model, into 62 EMs, which was close to the dimension of their

respective null-spaces (51 for both cases).

3.6 Conclusion

This chapter provides a novel method to decompose flux vectors into a set of fundamental

flux pathways called EMs, which gives a relatively simple and computationally efficient

way to leverage the advantages of EMA with respect to FBA solutions. Results describing

the implications of environmental oxygen saturation on a C. jejuni bacteria are presented,

and a collaboration with the Quadram Institute in Norwich is expected to conclude with

the publication of a research paper that is currently under review. Furthermore, the code

developed has been released as part of the ScrumPy metabolic modelling software.
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4.1 Introduction

This chapter discusses network reduction strategies, which aim to reduce the size of models

by decreasing the number of involved reactions and/or metabolites. Historically, different

algorithms based on this concept have been used to achieve a variety of goals, such as to

improve the efficiency of modelling algorithms, reduce the occurrence of multiple optima

in FBA, and emphasise characteristics of interest.

These techniques can be divided into two categories: lossy and lossless. Lossy techniques

permanently discard information (such as by removing reactions/metabolites), potentially

changing the overall behaviour of the network whilst preserving some desired attributes. In

contrast, lossless techniques reduce the size of networks without altering their behaviour.

This is achieved by removing redundancies from the stoichiometry matrix and allows the

reduction process to be reversed.

Alternatively, methods that reduce a model’s potential behaviour by imposing flux con-

straints also exist, with a notable example involving the export of biomass precursors in

models.

4.1.1 Lossy Model Reduction Techniques

Lossy techniques have been used to extract small sub-networks from GSMs. One of the

simplest approaches is to regard the output of FBA as a sub-network on which further

analysis can be performed [Hartman et al., 2014]. For example, Minimal Reaction Sets

use MILP to identify a minimal number of reactions forming a sub-network capable of

supporting growth. This method was first described by Burgard et al. [2001] to demon-

strate the high degree of redundancy in a model of Escherichia coli (720 reactions) by

showing how only a small subset of reactions (referred to as a growth-sustaining core) is

essential for supporting growth under a specific set of conditions.

NetworkReducer, developed by Erdrich et al. [2015], expands upon the concept of Minimal

Reaction Sets by preserving pre-selected properties, such as protected reactions and phe-

notypes. This technique uses FVA (Section 2.3.5) to iteratively remove reactions, starting

with the reaction whose flux range is closest to zero, until reaching a sub-network from
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which no more reactions can be removed without violating the pre-selected conditions.

Erdrich et al. [2015] applied this method to a model of E. coli (2383 reactions). NetworkRe-

ducer obtained a sub-network that included a set of pre-selected reactions from central

carbon metabolism and achieved a growth yield (on glucose) consistent with that of the

larger original model. Similar application on a GSM of the cyanobacteria Synechocytis sp.

(599 reactions) determined a sub-network that preserved the GSM’s phototrophic growth

and ethanol yield. This sub-network allowed the relationship between yield and growth

to be examined through EMA.

Alternatively, some approaches utilise graph theory: RedGem by Ataman et al. [2017],

starts with a set of user-specified sub-networks of interest (such as glycolysis and the

citric acid cycle) and identifies the additional reactions needed to connect these modules.

Afterwards, optimisation methods restore essential cellular functions (such as biomass

production) and ensure thermodynamic consistency [Ataman and Hatzimanikatis, 2017].

This approach aims to retain global features of the network, such as flux variability and

gene essentially. Ataman et al. [2017] applied this method to an E. coli GSM (1136

reactions). The authors selected six subsystems relating to central carbon metabolism

(glycolysis, pentose phosphate pathway, citric acid cycle, glyoxylate), then RedGem ex-

tracted more reactions from the original model in order to connect the subsystems and

allow for the production of 102 biomass precursors.

A drawback of these techniques is that the analysis of sub-networks is limited to the

context in which they were defined.

4.1.2 Lossless Model Reduction Techniques

Lossless techniques take advantage of the row and columns dependencies within the stoi-

chiometry matrix, each of which has been historically used in distinct ways.

As discussed in Chapter 2.3.2, linear dependencies between the rows of the stoichiometry

matrix lead to redundancies in the model’s dynamic behaviour. Specifically, conserva-

tion relations are groups of metabolites whose sum of concentrations must stay constant

through time. These relations cause the concentration of some metabolites to be de-

pendent on some others, and such dependent metabolites must be eliminated from the
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network prior to applying kinetic modelling techniques [Sauro and Ingalls, 2003].

Dependencies between the columns of the stoichiometry matrix provide the means to

decrease the number of reactions without sacrificing information about steady-state fluxes

and can therefore be used to reduce the size of structural models. Enzyme subsets (see

Chapter 2.3.3.1) correspond to groups of coupled reactions that can be combined into one

reaction that is defined by the group’s net stoichiometry. In addition, dead reactions (see

Chapter 2.3.3.2) can be deleted.

In most cases lossy techniques are expected to reduce models more than lossless techniques

[Singh and Lercher, 2020].

One advantage of lossless reduction is that since a reduced model retains the same

metabolic capacity as its larger original counterpart, any insights obtained from the

smaller model can be extrapolated to the larger. This has allowed this reduction technique

to be employed as a pre-processing step when implementing computationally costly algo-

rithms [Chindelevitch et al., 2014]. For example, decreasing the size of the stoichiometry

matrix by merging enzyme subsets before applying EM enumeration algorithms reduces

the computational resources required [Pfeiffer et al., 1999]. After the EMs of the re-

duced network are calculated, they are then converted to the equivalent EMs of the larger

network by reversing the steps taken when merging enzyme subsets.

4.1.3 Biomass Export Constraints

As discussed in Section 2.1.1, biomass precursors consist of the various chemical building

blocks that a cell’s metabolism must produce for the subsequent synthesis of its required

polymers (which are not defined in GSMs). Consequently, a model’s steady-state be-

haviour can be reduced by enforcing these precursors to be produced in the proportions

in which they are known to be utilised in the organism. This reduction is likely to direct

FBA towards realistic results and decrease the occurrence of multiple optima. It can be

achieved in two ways, as discussed below and in Section 4.4.2.

The first technique defines the output of GSMs as a single biomass reaction in which all the

components are assumed to combine, in appropriate ratio, to produce one unit (typically
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one gram) of biomass. Such a definition is convenient when using FBA objective functions

that maximise biomass output, since the corresponding LP objective is the maximisation

of this biomass reaction [Feist and Palsson, 2010].

The alternative approach, utilised by the CSM group at Oxford Brookes University, as-

signs individual pseudo-transport reactions to each biomass component. This was origi-

nally done as a technical convenience, as it makes it much easier to assess and investigate

the effect of changes to biomass composition on the entire network. It is also more realistic

as there is no single biomass reaction in vivo: in reality all precursors can be produced

independently and are combined by a number of different processes to produce the final

polymeric compounds that constitute biomass.

When using such models to simulate growth using FBA with an objective to minimise the

total amount of flux, a single constraint enforcing the production of one unit of biomass is

required for models that have combined biomass export [Al-Saidi, 2020, page 51], whilst

the LP for models that contain individual biomass transporters uses one constraint for

each precursor, all specified at the experimentally known proportions [Holzhütter, 2004].

The theoretical implications of the contrast between these two approaches have been the

cause for discussion. For example, it has been debated whether combining biomass leads

to a loss of information that may have detrimental consequences on the modelling results,

such as by resulting in less-than-optimal solutions, or losing track of the movement of

important metabolites and atoms.

4.1.4 Aims and Objectives

The algorithm presented in this chapter improves upon the reduction achieved through

enzyme subsets.

The chemical transformation associated with each enzyme subset is not necessarily unique

within the model — meaning that some subsets might have the same net stoichiometry

as other subsets or reactions in the system. Therefore, reducing the size of the models

by combining enzyme subsets has the potential to create duplicate columns in the stoi-

chiometry matrix, corresponding to groups of reactions with the same net stoichiometry
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(i.e. identical substrate and products) — defined here as iso-stoichiometric groups.

Iso-stoichiometric groups correspond to iso-enzymes or enzyme subsets that perform the

same chemical transformation [Schuster et al., 1999; Mavrovouniotis et al., 1990]. Schuster

et al. [1999] gave the example of the degradation of adenosine monophosphate (AMP),

which can either occur by dephosphorylation followed by deamination or the other way

around. The authors recommended that combining each of these groups into a single

reaction may decrease the computing burden of EMA.

In this chapter, a strategy that identifies and eliminates all iso-stoichiometric groups from

the stoichiometry matrix is presented. This technique, along with combining enzyme

subsets, enables the size of metabolic networks to be iteratively reduced in a lossless

manner — through a process defined here as compression — resulting in a model that

cannot be reduced further since all of its reactions have a unique stoichiometry and no

enzyme subsets are present.

Apart from achieving a better reduction than when merely combining enzyme subsets,

this approach aims to expose structural features in models. Specifically, identifying iso-

stoichiometric groups reveals alternative pathways from the same start to end prod-

uct (also referred to as parallel branches [Schuster et al., 1999; Mavrovouniotis et al.,

1990]). This technique facilitates model curation by (i) identifying duplicate processes

that are erroneously included in models when automatically constructing them from on-

line databases, and (ii) detecting thermodynamically-infeasible internal cycles, which are

known to cause errors during model analysis [Poolman et al., 2007; Kelk et al., 2012].

Once the errors arising from model construction are removed, knowledge of genuine alter-

native pathways provides insights into the redundancy mechanisms present in metabolic

networks, and can therefore be used to pinpoint routes that a network may use to compen-

sate for gene knockouts (therefore aiding the design of multiple-knockouts strategies), and

to widen the knowledge gained from FBA solutions by enabling the discovery of alternate

optima (as discussed in Chapter 2.3.5).

Furthermore, Section 4.4.2 mathematically defines the difference between the two ap-

proaches for defining biomass production in models by showing that (i) the steady-state
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solution space of a model with combined biomass export is a subset of the solution space

of an equivalent model that contains individual transporters for each biomass precursor,

and (ii) the solution space of the two aforementioned FBA problems are equivalent to

each other.

4.1.5 Chapter Structure Overview

This chapter contains the following sections:

Section 4.2 shows how redundancies in the steady-state behaviour of a network, in the

form of enzyme subsets or iso-stoichiometric groups, can be identified through the

stoichiometry matrix and removed.

Section 4.3 describes a novel lossless compression technique that sequentially eliminates

redundancies from the right null-space of metabolic networks, as well as a technique

that uses the information gained from the compression procedure to reveal alterna-

tive pathways from the same start and end product.

Section 4.4 provides mathematical results regarding enzyme subsets and the definition

of biomass production in models.

Section 4.5 applies these developed methods to various metabolic models.

Section 4.6 discusses the significance of results to model curation and analysis.

4.2 Background for the Novel Algorithm

4.2.1 Enzyme Subsets

As described in Chapter 2.3.3.1, enzyme subsets can be identified and removed from N

as explained below.

Consider the model introduced in Section 2.3 and Figure 2.2, consisting of the following
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internal stoichiometry matrix

N =



A tx r1 r2 C tx D tx

A 1 −2 0 0 0

B 0 1 −1 0 0

C 0 0 1 −1 0

D 0 0 1 0 −1


, (4.1)

for which the corresponding external stoichiometry matrix is

N =



A tx r1 r2 C tx D tx

x A −1 0 0 0 0

A 1 −2 0 0 0

B 0 1 −1 0 0

C 0 0 1 −1 0

D 0 0 1 0 −1

x C 0 0 0 1 0

x D 0 0 0 0 1



. (4.2)

The right null-space matrix, K, of N is:

K =



A tx 2

r1 1

r2 1

C tx 1

D tx 1


, (4.3)

such that, in any steady-state flux vector, v, of this system, the transport reaction for

A, A tx, must be operating such that its flux is twice that of all other reactions in the

network (which in turn must be equal to each other).
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Therefore, the reactions in v form an enzyme subset, Ess1, where their fluxes must satisfy:

vA = 2v1 = 2v2 = 2vC = 2vD, (4.4)

where vA, v1, v2, vC and vD are the fluxes of A tx, r1, r2,C tx and D tx respectively.

Let these reactions correspond to the columns (A tx), (r1), (r2), (C tx) and (D tx) in N .

Then these columns can be replaced by one column, (Ess1), corresponding to the net

stoichiometry of the subset:

Ess1 : 2 x A→ x C + x D, (4.5)

which is calculated as

(Ess1) = 2(A tx) + (r1) + (r2) + (C tx) + (D tx), (4.6)

such that the external stoichiometry matrix becomes

N =



Ess1

x A −2

x C 1

x D 1

. (4.7)

In general, for an m×r stoichiometry matrix N with columns (r1), (r2), . . . , (rr), consider

the enzyme subset, Ess2, that relates the fluxes of k ≤ r reactions of N such that:

v1 = 1
λ2
v2 = · · · = 1

λk
vk, (4.8)

where v1, v2, and vk denote fluxes of the reactions whose corresponding columns of N are

(r1), (r2), and (rk) respectively, and the λi’s are constants. Then, the reactions in Ess2

can be replaced by a column, (Ess2), with the net stoichiometry of the subset:

(Ess2) = (r1) + λ2(r2) + · · ·+ λk(rk), (4.9)
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in N, and similarly in N .

The above procedure applies column operations to N, which typically alter the null-space

and therefore the steady-state solution space. However, this specific procedure leaves the

solution space unchanged as shown in by Theorem 4.4.1.1 in Section 4.4.1.

4.2.2 Iso-stoichiometric Groups

Iso-stoichiometric groups are identified as proportional columns of the stoichiometry ma-

trix (where each column corresponds to a vector) and can be removed by deleting all but

one of the duplicate reactions (assuming that directionality is respected). For example,

consider the two reactions r1 and r2:

r1 : A→ B,

r2 : A→ B,
(4.10)

they form an iso-stoichiometric group, and can replaced by one reaction, iso;

iso : A→ B. (4.11)

Iso-stoichiometric groups that contain irreversible reactions that do not have the same

directionality as each other should be considered as inconsistent. Their presence gives

rise to internal cycles that can cause the results of analysis to violate the first law of

thermodynamics (which states that energy can neither be created nor destroyed, but

only altered in form [Nelson and Cox, 2004, page 490]) as shown by Figure 4.1. This

phenomenon occurs when the directionality of some reactions is wrongly defined during

model construction and can be remedied by analysing thermodynamic information relating

to all of the reactions in the group. Since this information is not automatically available,

an ad hoc solution used here is to ensure that the directionality of the retained reaction

reflects the joint capabilities of all reactions within its group, for example the following

two reactions:
r1 : A→ B,

r2 : A← B,
(4.12)
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A

r1

r2

B

Figure 4.1: An inconsistent iso-stoichiometric group (r1 and r2) which forms an internal
cycle.

are replaced by

iso : A↔ B. (4.13)

It should be noted that some iso-stoichiometric groups considered in this thesis do not

consist of individual reactions as described above, but instead contain pathways that

achieve the same net-stoichiometry through a sequence of interconnected reactions. These

groups are detected by first identifying each pathway as an enzyme subset, which is then

combined into a single reaction with the subset’s net-stoichiometry (as shown in Section

4.2.1), such that the members of the group are transformed into individual reactions with

identical stoichiometry as defined above.

4.3 Methodology

In this section, four algorithms are described:

• Algorithm 2, Compress: compresses a model,

• Algorithm 3, Decompress: when applied to a compressed model, reverses the steps

undertaken during compression,

• Algorithm 4, Expand vector: when applied to a flux vector obtained from the

analysis of a compressed model, reverses the steps undertaken during compression,

to return the equivalent vector/s of the original model,

• Algorithm 6, Alternate vector: when applied to a flux vector obtained from the

analysis of an original model, returns vector/s that achieve the same net stoi-

chiometry through different internal pathways (as identified by the model’s iso-

stoichiometric groups).
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The implementation of these algorithms is designed such that information about the steps

undertaken during model compression (Algorithm 2) is accessible to all other associated

algorithms (Algorithms 3 - 6).

4.3.1 The Compression Algorithm

Algorithm 2 Compress(N), which recursively reduces the size of a stoichiometry matrix
N, by sequentially combining enzyme subsets and iso-stoichiometric groups until a matrix
that cannot be reduced any further is reached.

1: Nmap = copy(N)
2: isos = find isostoichiometric groups(N)
3: replace isostoichiometric groups(N, isos)
4: ess = find enzyme subsets(N)
5: replace enzyme subsets(N, ess)
6: mapping = [isos, ess, Nmap]
7: save to mappings(mapping)
8: if col size(Nmap) > col size(N) then
9: Compress(N)

10: end if

The compression algorithm (described in Algorithm 2) reduces the size of a stoichiometry

matrix, N, by assuming that the following transformations do not alter the steady-state

behaviour of the network:

• Enzyme subsets can be replaced by a single reaction (as discussed in Section 4.2.1).

• Iso-stoichiometric groups can be replaced by a single reaction (as discussed in Section

4.2.2).

Before initialising the algorithm, dead reactions are identified and removed.

The algorithm then proceeds as follows: first, reactions that are members of iso-stoichiometric

groups are identified and removed (Steps 2 and 3, as discussed in Section 4.2.2). Af-

terwards, enzyme subsets are calculated (Step 4) and their reactions are combined as

discussed in Section 4.2.1 (Step 5). These substitutions result in a reduced stoichiome-

try matrix, containing fewer reactions and metabolites than the original, and may lead

to the formation of new iso-stoichiometric groups (i.e. duplicate columns that were not

present in the original matrix), which upon elimination may result in the formation of

more enzyme subsets.
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Figure 4.2: The process of the Compress algorithm applied to a simple model, where the state of the algorithm at the end of each iteration
is shown (the zeroth state corresponds to the state of N upon initialisation of the algorithm). The algorithm terminates at iteration three
when there is no changes in state in comparison to the previous iteration.
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Therefore, the previous steps are repeated, allowing for the size of the stoichiometry

matrix to be recursively reduced until a stoichiometry matrix that cannot be reduced

further, due to lacking iso-stoichiometric groups and enzyme subsets, is obtained (Steps

8 and 9).

At each iteration, information regarding the modifications done to the stoichiometry ma-

trix is saved (Steps 6 and 7), namely:

1. the names of enzyme subsets and the reactions that they contain (weighted by the

relative flux ratio that they must carry with respect to each other),

2. the names of iso-stoichiometric groups and the reactions that they contain (weighted

by their relative stoichiometry with respect to the reaction retained in N),

3. the directionality and stoichiometry of the reactions in the model (in the form of a

stoichiometry matrix).

Additionally, the names of inconsistent iso-stoichiometric groups are taken note of. The

progress of this algorithm when applied to a simple model is illustrated in Figure 4.2.

4.3.2 The Decompression Algorithm

Algorithm 3 Decompress(N), which when applied to a reduced stoichiometry matrix,
N, reverses the steps taken by the compression algorithm to return a stoichiometry matrix,
N′, that is equivalent to that of the original model.

1: mappings = retrieve mappings()
2: N′ = copy(N)
3: for [isos, ess, Nmap] in mappings do
4: N′ = expand enzyme subsets(N′, ess, Nmap)
5: N′ = expand isostoichiometric groups(N′, isos, Nmap)
6: end for
7: return N′

The decompression algorithm, described in Algorithm 3, reverses the steps undertaken

during compression. This algorithm initiates by retrieving the information that had been

saved by the compression algorithm, which describes the modifications made to the orig-

inal model at each step of the compression and stoichiometry of removed reactions.
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Figure 4.3: The process of the Decompression algorithm illustrated on a simple model, where the state of the algorithm at the end of each
iteration is shown (the zeroth state corresponds to the state of N upon initialisation of the algorithm). The algorithm terminates once there
is no more information left to retrieve from the compression algorithm.
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Then, an iterative process reverses the modifications made by the compression algorithm,

starting from the compression algorithm’s most recent iteration. At each step, the columns

of the stoichiometry matrix that correspond to enzyme subsets are removed and replaced

by columns that represent the reactions within the subset (Step 4), whilst reactions rep-

resenting iso-stoichiometric groups are duplicated and named according to the original

members of the group (Step 5).

Information regarding the directionality and stoichiometry of the reactions to be inserted

into the stoichiometry matrix is obtained by retrieving the information that was saved by

the compression algorithm (Step 1).

The progress of this algorithm when applied to a simple model is shown in Figure 4.3.

4.3.3 The Vector Expansion Algorithm

Algorithm 4 Expand vector(v), which when applied to a vector, v, obtained from the
analysis of a compressed model, expands it into the equivalent list of vectors, V, of the
model’s larger original counterpart. Step 5 is further explained by Algorithm 5.

1: v list = append to empty list(v)
2: mappings = retrieve mappings()
3: for [isos, ess, Nmap] in mappings do
4: v list = expand enzyme subsets(v list, ess, Nmap)
5: v list = expand v list isostoichiometric groups(v list, isos, Nmap)
6: end for
7: return V

Flux vectors resulting from the analysis of a compressed model (for example, EMA) can

be expanded into the equivalent vectors of the larger original model. This is achieved

through the one-to-many transformation shown in Figure 4.4.

This transformation is accomplished by the Expand vector algorithm (Algorithm 4). Sim-

ilarly to the algorithm described in Section 4.3.2, the vector expansion algorithm decom-

poses enzyme subsets into their constituent reactions.
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Figure 4.4: The process of the Expand vector algorithm, illustrated on a simple vector obtained from the compressed model shown in Table
4.2 (where blue arrows indicate active reactions). The state of the algorithm at the end of each iteration is shown. The algorithm terminates
once there is no more information left to retrieve from the compression algorithm.
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However, reactions corresponding to iso-stoichiometric groups are treated as follows. Since

each member of an iso-stoichiometric group corresponds to a group of alternative path-

ways from a starting to an end product, flux vectors that contain a representative reaction

from such a group must be split into a set of flux vectors, where each vector retains one al-

ternative pathway from the group (reactions that would violate directionality constraints

are omitted). For example, consider the vector, v, containing the reaction labelled Iso1.2

in Figure 4.4. This reaction represents an iso-stoichiometric group with two alternative

pathways from metabolites A to D (one via r1 and r3, and another via r2 and r4). There-

fore, v is expanded into two vectors, each corresponding to one of the two potential routes

in the group.

Algorithm 5 expand v list isostoichiometric groups(v list, isos), which when applied
to a list of flux vectors, v list, and a set of iso-stoichiometric groups, isos, expands the
list of vectors with respect to the alternate pathways of the group.

1: for group in isos do
2: for reaction in group do
3: if directionality not violated by v then
4: expanded list = get empty list()
5: for v in v list do
6: v′ = copy(v)
7: replace group with reaction(v′, group, reaction)
8: append(expanded list, v′)
9: end for

10: v list ← expanded list
11: end if
12: end for
13: end for

4.3.4 The Alternate Vectors Algorithm

Consider a vector, v, derived from the analysis of an uncompressed model. Algorithm

6 uses the knowledge of alternate pathways revealed during model compression to find

alternative paths to v, resulting in a list of alternative vectors that have the same net

stoichiometry as v but differ in some internal reactions (corresponding to members of the

iso-stoichiometric groups discovered during model compression). For example, consider

the vectors v1 and v2 shown in iteration 3 of Figure 4.4, that each show an alternate path

from metabolites A to D. Applying the Alternate vector algorithm to either one of these

vectors, would result in a list that contains both vectors.
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This algorithms proceeds as follows. First, the original flux vector is compressed using

a process that reverses the steps described in Section 4.3.3. Then, the vector expansion

algorithm is applied to the compressed vector to obtain the pathways alternate to it.

Algorithm 6 Alternate vector(v), which when applied to a vector, v, obtained from the
analysis of an un-compressed model, expands it into a list of vectors, V, that detail the
pathways alternative to the reactions in v, according to the iso-stoichiometric groups that
were identified during model compression.

1: mappings = retrieve mappings()
2: v compressed = compress vector(v, mappings)
3: return Expand vector(v compressed)

4.3.5 Implementation Details

The algorithms described within this chapter are implemented in Python and as an add-

on to ScrumPy (Chapter 2.5.1). They form part of a class, called Compression, that

was defined to store information regarding the transformations done to the model during

compression and make this information accessible to the other associated algorithms.

This is achieved through a stack attribute onto which information is added during each

iteration.

The stack enables the transformations to be graphically displayed in the form of a tree

where each reaction is shown as the parent of the reactions that it replaced, see Figure

4.5, where reactions replaced by enzyme subsets are shown via black branches, whilst

iso-stoichiometric groups are coloured in red.

The Compression class initiates by taking a ScrumPy model instance as an input. Some

of the functions associated with this class are:

• Compress(), an implementation of Algorithm 2,

• GetTree(), returns a tree object as described above,

• OriginalSMX(), an implementation of Algorithm 3,

• CompressVector(V), compresses a vector obtained from the analysis of an original

model,

95



Chapter 4: The Right Null-Space and the Steady-State Solution Space

• DecompressDataSet(V), an implementation of Algorithm 4.

4.3.5.1 The Compression Algorithm

This algorithm is implemented as described in Section 4.3.1.

Iso-stoichiometric groups are identified as proportional columns of the external stoichiom-

etry matrix and stored as a dictionary that specifies the ratio of the removed reactions

with respect to the reaction that is retained in the stoichiometry matrix.

Enzyme subsets are obtained through an existing function of ScrumPy that returns a

dictionary detailing the ratio of flux that reactions must carry with respect to each other

at steady-state. Their associated net stoichiometries are obtained through a ScrumPy

function that multiplies these dictionaries with the external stoichiometry matrix (where

each dictionary is transformed into a flux vector before this multiplication).

At each iteration, the dictionaries mentioned above, along with dictionaries specifying

the directionality of all removed reactions and stoichiometry of the reactions replaced by

enzyme subsets are appended to a list that is pushed to the stack. When compression is

complete, the list at the top of the stack will contain the most recent modifications made

to the model.

To ensure that all reactions are uniquely defined, a suffix, corresponding to the iteration

number, is appended to the names of all reactions during each iteration.

The names of dead reactions and inconsistent iso-stoichiometric groups are noted in list at-

tributes of the Compression class (deadReacs list and inconsistant Isos list respectively).

4.3.5.2 The Decompression Algorithm

This algorithm proceeds by unpacking the stack, one list at a time, and undoing the

transformations done by the compression algorithm at each iteration, as discussed in

Section 4.3.2.
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Figure 4.5: A tree showing the compression process on the simple model described by
Figure 4.2, where black lines refer to enzyme subsets, red lines refer to iso-stoichiometric
groups.

4.3.5.3 The Vector Expansion Algorithm

Similarly to the previous algorithm, the vector expansion algorithm relies on the stack

attribute to retrieve information, which is then processed as discussed in Section 4.3.2.

This algorithm requires input in the form of a ScrumPy DataSet object, where the vec-

tors to be expanded are listed as columns. Similarly, the output is a DataSet instance

containing the expanded vectors.

4.3.5.4 The Alternate Vectors Algorithm

As in the algorithm described above, this algorithm requires input in the form of a ScrumPy

DataSet object and returns a DataSet instance as an output.

4.3.5.5 Visualising The Compression Process as a Tree

The tree provides a graphical interface for exploring and visualising the redundancy char-

acteristics exposed during compression. To illustrate this, the compression algorithm was

applied to the simple toy model depicted in Figure 4.2 (with the addition of the external

metabolites x A and x D and corresponding transporter reactions). The tree associated

with its compression, shown in Figure 4.5, groups reactions that are present in the same

enzyme subset or iso-stoichiometric group as children of the same node. The stoichiometry

of each reaction can be visualised as an attribute of the corresponding node.
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4.4 Mathematical Considerations

4.4.1 Combining Enzyme Subsets

Note that for the sake of simplicity, the enzyme subsets in this section are considered to

be of size two.

Proposition 4.4.1.1. Combining enzyme subsets into a single reaction preserves the

steady state behaviour of the network

Proof. Consider an m× r stoichiometry matrix N, with columns (r1), (r2), . . . , (rr).

As discussed in Section 4.2.1, enzyme subsets arise as one or more constraints of the form

vi = 1
λ
vj, for some i, j ∈ {1, 2, . . . , r} (4.14)

where vi and vj denote the fluxes of reactions whose corresponding columns of N are

(ri) and (rj), and λ is a constant. The number of such constraints pertaining to a given

enzyme subset corresponds to one less than the number of reactions involved, where the

reaction on the left hand side of Equation 4.14 (i.e. vi) is invariant across all constraints,

while the reaction and constant on the right hand side of Equation 4.14 (i.e. vj and λ)

vary according to the relations specified by the subset.

Without loss of generality consider the following constraint

v1 = 1
λ
v2, (4.15)

corresponding to the enzyme subset Ess3 in Section 4.2.1.

Let the elements of N be denoted by nij for metabolite i and reaction j, and let the

rows of N, denoted by X1,X2, . . . ,Xm, correspond to the constraints {X1v = 0,X2v =

0, . . . ,Xmv = 0} that generate the flux cone, C.

Since Ess3 is an enzyme subset in N, then v2 = λv1 in all steady-state flux vectors of the
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system. Therefore the constraint av = 0, where

a =
(
λ −1 0 . . . 0

)
, (4.16)

must be embedded in the rows of N, since:

av =
(
λ −1 0 . . . 0

)



v1

v2

v3

...

vn


= λv1 − v2 = 0 (4.17)

Therefore, a can be added to the rows of N without altering the null-space (since av = 0

is a redundant constraint).

Without loss of generality, let a be added as the first row, (a), such that

N =



r1 r2 r3 . . . rr

a λ −1 0 . . . 0

X1 n11 n12 n13 . . . n1r

X2 n21 n22 n23 . . . n2r

X3 n31 n32 n33 . . . n3r
...

...
...

... . . . ...

X3 nm1 nm2 nm3 . . . nmr


, (4.18)

Since row operations on N do not alter its null-space, the row (a) can be added to every
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other row of N such that the column corresponding to reaction r2 is eliminated:

N =



r1 r2 r3 . . . rr

a λ −1 0 . . . 0

X̂1 (n11 + λn12) (n12 − n12) n13 . . . n1r

X̂2 (n21 + λn22) (n22 − n22) n23 . . . n2r

X̂3 (n31 + λn32) (n32 − n32) n33 . . . n3r
...

...
...

... . . . ...

X̂m (nm1 + λnm2) (nm2 − nm2) nm3 . . . nmr



,

=



r1 r2 r3 . . . rr

a λ −1 0 . . . 0

X̂1 (n11 + λn12) 0 n13 . . . n1r

X̂2 (n21 + λn22) 0 n23 . . . n2r

X̂3 (n31 + λn32) 0 n33 . . . n3r
...

...
...

... . . . ...

X̂m (nm1 + λnm2) 0 nm3 . . . nmr



,

(4.19)

where (X̂1) = ((X1) + n12(a)), (X̂2) = ((X2) + n22(a)), . . . , (X̂m) = ((Xm) + nm2(a)).

But as discussed below, a system Nv = 0, where N is of the form shown in Equation

(4.19) can be reduced in size by removing the column corresponding to r2 in N and the

corresponding flux, v2, in v, to result in the matrix Ñ and corresponding flux vector ṽ,

where

Ñ =



r1 r3 . . . rr

X̃1 (n11 + λn12) n13 . . . n1r

X̃2 (n21 + λn22) n23 . . . n2r

X̃3 (n31 + λn32) n33 . . . n3r
...

...
... . . . ...

X̃m (nm1 + λnm2) nm3 . . . nmr


. (4.20)

Any vector, ṽ, obtained from the analysis of Ñṽ = 0 can be transformed into a corre-

sponding vector of Nv = 0 by adding an element v2 to ṽ such that v2 = λv1.
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Note that enzyme subsets of size greater than two can be similarly eliminated by sequen-

tially removing each of the subsets’ constituent constraints from N as described above.

The system of equalities generated by Equation (4.19) is equivalent to that of Equation

(4.20) because of the following reasons.

Consider the flux cone,

C = {v ∈ Rr|Nv = 0,v ≥ 0}, (4.21)

where N is of the form as in Equation (4.19), then, this system can be regarded as an

intersection of two sets of constraints:

C = {v ∈ Rr|av = 0 ∩NCv = 0,v ≥ 0}, (4.22)

where:

a =
( r1 r2 . . . rr

λ −1 0 0 . . . 0
)
, (4.23)

and

NC =



r1 r2 r3 . . . rr

X̂1 (n11 + λn12) 0 n13 . . . n1r

X̂2 (n21 + λn22) 0 n23 . . . n2r

X̂3 (n31 + λn32) 0 n33 . . . n3r
...

...
...

... . . . ...

X̂m (nm1 + λnm2) 0 nm3 . . . nmr


, (4.24)

Now, the system av = 0 corresponds to the constraint:

v2 = λv1 (4.25)

where v1 and v2 are the fluxes of the reactions corresponding to the columns r1 and r2

respectively.

When considering NC, since the column r2 is zero, then the corresponding dimension is

unconstrained within the corresponding flux cone. Hence the column r2 and flux v2 can

be eliminated from Ncv = 0, resulting in the matrix Ñ and vector ṽ, without losing any

information from the system.
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Let this new system generate the flux cone:

C̃ = {ṽ ∈ R(r−1)|Ñṽ = 0, ṽ ≥ 0}, (4.26)

where the constraint v2 = λv1 can be taken into account by the transformation T that

converts any flux vector ṽ of C̃ into the corresponding vector v of C:

Tṽ =



1 0 0 0 . . .

λ 0 0
. . . 0

0 1 0

. . . 0 0 0 1





v1

v3

...

vr


=



v1

λv1

v3

...

vr


=



v1

v2

v3

...

vr


= v, (4.27)

and therefore,

ker(N) = T(ker(Ñ)), (4.28)

meaning that there exists a one-to-one transformation between the null-spaces of N and

Ñ, such that C̃ can be regarded as equivalent to C.

4.4.2 Combining Biomass Export

Consider the two simple networks shown below.

Y

A

Z

r1

Yout

Zout

Y

A

Z

r1 Bout

The model on the left exports the biomass precursors Y and Z via a single transporter

reaction, while the model on the right contains individual transporters for each precursor.

Therefore the stoichiometry matrix for each model is
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NC =

r1 Bout


A −1 0

Y 1 −1

Z 1 −λ

. N =

r1 Yout Zout


A −1 0 0

Y 1 −1 0

Z 1 0 −1

,

where NC is the stoichiometry matrix for the model with combined biomass export and

N is the equivalent matrix for the model with individual biomass transport.

When simulating growth using an objective function that minimises the total flux in the

system, the LP for the model with combined biomass enforces the export of one unit of

biomass via one export constraint. In contrast, the LP for the second model contains

individual export constraints for each precursor, such that the FBA problem for each

model is defined as

Find : argmin ∑2
i=1 |vCi|

subject to


NCvC = 0,

Bout = 1.

Find : argmin ∑3
i=1 |vi|

subject to


Nv = 0,

Yout = 1,

Zout = λ.

Therefore any steady-state flux vector of the model with combined biomass must be within

the convex cone, C ′ defined as follows

C ′ = {vC ∈ R2 : NCvC = 0,vC ≥ 0},

while the steady-state solution space, C, for the model with individual biomass is defined

as

C = {v ∈ R3 : Nv = 0,v ≥ 0}.

Similarly, any FBA solution must be within the convex polyhedra, P ′ and P , respectively

where

P ′ = {vC ∈ R2 : ACvC = bC,vC ≥ 0}, (4.29)

and

P = {v ∈ R3 : Av = b,v ≥ 0}, (4.30)

such that
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AC =

r1 Bout



Bcons 0 1

A −1 0

Y 1 −1

Z 1 −λ

, A =

r1 Yout Zout



Ycons 0 1 0

Zcons 0 0 1

A −1 0 0

Y 1 −1 0

Z 1 0 −1

,

and

bC =



1

0

0

0


, b =



1

λ

0

0

0


,

where the rows Bcons, Ycons and Zcons correspond to the biomass export constraints.

The following propositions show that C ′ ⊆ C and P ′ ∼= P .

Proposition 4.4.2.1. The flux cone, C ′, of a model with combined biomass is a subspace

of the flux cone, C, of an equivalent model with individual biomass transporters.

Proof. Consider the m × r stoichiometry matrix, N, and let this denote the model with

individual biomass export.

Without loss of generality, suppose that there are two biomass components Y and Z,

which correspond to the transporter reactions Yout and Zout respectively. Similarly, let

the stoichiometry matrix of the model with combined biomass be NC, where Bout denotes
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the biomass reaction, such that:

N =



r1 r2 . . . rr−2 Yout Zout

X1 n11 n12 . . . n1(r−2) 0 0

X2 n21 n22 . . . n2(r−2) 0 0

X3 n31 n32 . . . n3(r−2) 0 0
...

...
... . . . ...

...
...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1 0

Z nm1 nm2 . . . nm(r−2) 0 −1



, (4.31)

and

NC =



r1 r2 . . . rr−2 Bout

X1 n11 n12 . . . n1(r−2) 0

X2 n21 n22 . . . n2(r−2) 0

X3 n31 n32 . . . n3(r−2) 0
...

...
... . . . ...

...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1

Z nm1 nm2 . . . nm(r−2) −λ



. (4.32)

The flux cone, C, generated by N contains the flux vectors, v, that satisfy Nv = 0, where

each row of N is a constraint, i.e.

C = {v ∈ Rr|Nv = 0,v ≥ 0}. (4.33)

Let the constraint Zout = λYout, denoted by av = 0, be added to the rows of N to create

the matrix A and corresponding convex polyhedron P :

P = {v ∈ Rr|Av = 0,v ≥ 0}, (4.34)
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where

A =



r1 r2 . . . rr−2 Yout Zout

a 0 0 . . . 0 λ −1

X1 n11 n12 . . . n1(r−2) 0 0

X2 n21 n22 . . . n2(r−2) 0 0

X3 n31 n32 . . . n3(r−2) 0 0
...

...
... . . . ...

...
...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1 0

Z nm1 nm2 . . . nm(r−2) 0 −1



, (4.35)

and P is a subspace of the original solution-space C.

As shown in Proposition 4.4.1.1, the presence of such a constraint means that the columns

corresponding to the reactions Yout and Zout can be combined to create an equivalent

matrix, Ã, such that, such that Ã = NC.

Therefore, the flux cone of NC, C ′, is equivalent to P and therefore, is a subspace of the

flux cone of N, C, i.e. C ′ ⊆ C.

Note that in case where Yout and Zout happened to be in an enzyme subset at the ratio

Zout = λYout in N, then the constraint generated by a would be redundant and therefore

the spaces C and C ′ would be identical.

Proposition 4.4.2.2. The flux polyhedron, P , of a model with combined biomass is equiv-

alent to the flux polyhedron, P ′ of a corresponding model with individual biomass trans-

porters, given that biomass transporter in P ′ are constrained at a ratio proportional to

that specified in the combined biomass reaction of P .

Proof. As above, consider the two stoichiometry matrices N and NC, with corresponding

optimal solution spaces denoted by P and P ′ respectively.

Suppose that biomass constraints are added such that Yout = 1 and Zout = λ in P and

Bout = 1 in P ′.
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Then P ′ is defined as:

P ′ = {vc ∈ R(r−1)|Acvc = bc,vc ≥ 0}, (4.36)

where

Ac =



r1 r2 . . . rr−2 Bout

Bcons 0 0 . . . 0 1

X1 n11 n12 . . . n1(r−2) 0

X2 n21 n22 . . . n2(r−2) 0

X3 n31 n32 . . . n3(r−2) 0
...

...
... . . . ...

...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1

Z nm1 nm2 . . . nm(r−2) −λ



, (4.37)

and

bC =

1

0

 , (4.38)

and the row Bcons corresponds to the constraint Bout = 1.

Similarly, P is defined as:

P = {v ∈ Rr|Av = b,v ≥ 0}, (4.39)

where

A =



r1 r2 . . . rr−2 Yout Zout

Ycons 0 0 . . . 0 1 0

Zcons 0 0 . . . 0 0 1

X1 n11 n12 . . . n1(r−2) 0 0

X2 n21 n22 . . . n2(r−2) 0 0

X3 n31 n32 . . . n3(r−2) 0 0
...

...
... . . . ...

...
...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1 0

Z nm1 nm2 . . . nm(r−2) 0 −1



, (4.40)
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and

b =


1

λ

0

 , (4.41)

and the rows Ycons and Zcons correspond to the constraints Yout = 1 and Zout = λ respec-

tively.

But since Yout = 1 and Zout = λ then Zout = λYout must be a redundant constraint in P

that can be added as a row to A without altering the feasible solution space. Let this

constraint be denoted by a and be appended as the first row of the system:

A =



r1 r2 . . . rr−2 Yout Zout

a 0 0 . . . 0 λ −1

Ycons 0 0 . . . 0 1 0

Zcons 0 0 . . . 0 0 1

X1 n11 n12 . . . n1(r−2) 0 0

X2 n21 n22 . . . n2(r−2) 0 0

X3 n31 n32 . . . n3(r−2) 0 0
...

...
... . . . ...

...
...

Xm−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0 0

Y n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1 0

Z nm1 nm2 . . . nm(r−2) 0 −1



, (4.42)

and

b =



0

1

λ

0


. (4.43)

As shown in Proposition 4.4.1.1, NC can be transformed through row operations that
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eliminate the column Zout, leading to an equivalent matrix, Ã:

Ã =



r1 r2 . . . rr−2 Yout

Ỹcons 0 0 . . . 0 1

Z̃cons 0 0 . . . 0 λ

X̃1 n11 n12 . . . n1(r−2) 0

X̃2 n21 n22 . . . n2(r−2) 0

X̃3 n31 n32 . . . n3(r−2) 0
...

...
... . . . ...

...

X̃m−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0

Ỹ n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1

Z̃ nm1 nm2 . . . nm(r−2) −λ



, (4.44)

and corresponding vector b̃:

b̃ =


1

λ

0

 . (4.45)

Moreover, since the constraints generated by Ycons and Zcons are equivalent (Yout = 1

and λYout = λ), then one of them is redundant and can be removed. Without loss of

generality, let the constraint Zcons be removed and let the column Yout be renamed to Bout

and constraint Ycons be renamed to Bcons, then

Ã =



r1 r2 . . . rr−2 Bout

B̃cons 0 0 . . . 0 1

X̃1 n11 n12 . . . n1(r−2) 0

X̃2 n21 n22 . . . n2(r−2) 0

X̃3 n31 n32 . . . n3(r−2) 0
...

...
... . . . ...

...

X̃m−2 n(m−2)1 n(m−2)2 . . . n(m−2)(r−2) 0

Ỹ n(m−1)1 n(m−1)2 . . . n(m−1)(r−2) −1

Z̃ nm1 nm2 . . . nm(r−2) −λ



, (4.46)

and

b̃ =

1

0

 , (4.47)
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which is equivalent to the optimal solution space P ′ (since Ã = Ac and b̃ = bc).

Therefore P ′ ∼= P and hence the set of FBA solutions of both models are identical.

Models with biomass components of size greater than two can be similarly considered by

sequentially adding further redundant constraints to N as above.

4.5 Results

In this section, both the correctness of the algorithms presented here and their ability to

derive biological insights were investigated by applying them to the models listed in Table

2.1 (except for the simplified plant model). Two types of models were analysed: small

hand-built models and large GSMs.

The small models are related to the Calvin cycle and photorespiration. The GSMs describe

the metabolism of four bacterial species: C. jejuni, C. necator, G. thermoglucosidasius,

and E. coli. A description of these models is in Section 2.5.2.

In this work, the small models were used to verify the correctness of the compression

algorithm, whilst the GSMs were used to demonstrate that the algorithms can identify

specific features of large networks, including erroneous internal cycles, duplicate processes

arising from database artefacts, and genuine alternative routes from the same start to end

products.

4.5.1 Testing of the Algorithms

4.5.1.1 Correctness of the Compression/Decompression Cycle

An essential property of any compression algorithm is that it accurately preserves the orig-

inal data, ensuring that, in this case, decompressed models and flux vectors are identical

to the original.

To verify the correctness of compression and decompression algorithms, the models in Ta-

ble 2.1 were compressed and then decompressed. The stoichiometry matrix obtained after
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pyruvate

alanine

r3

glycine

glyoxylate

r2

α-ketoglutarate

glutamine

r1 r1r3

glutamine

α-ketoglutarate

Figure 4.6: The EM of the photorespiration model that is an internal cycle (where r1:
glycine transaminase, r2: alanine:glyoxilate transaminase, r3: glutamine:pyruvate transam-
inase). Identical metabolites/reactions are given the same colour to facilitate identification.

the decompression was confirmed to be identical to the original (i.e. Decompress(Comp-

ress(N)) = N)).

The algorithms described within this chapter have the potential to aid EMA as their

ability to decrease the number of parameters within a given model is expected to reduce

the computational burden associated with this technique. To this end, a model is first

compressed using Algorithm 2 and the EMs of the compressed model are calculated.

Then, the resultant EMs of the compressed model are converted into the equivalent set

of EMs of the original model using Algorithm 4.

To test the output of the vector decompression algorithm, the EMs of the original and

compressed models of the Calvin cycle and photorespiration were obtained. The vector

decompression algorithm was applied to the EMs of the compressed models as described

above and the output was confirmed to be identical to the EMs obtained from the original

models.

The above analysis was repeated using models where all constituent reactions had been

modified to be reversible. When comparing the EMs obtained for the reversible pho-

torespiration model, one EM identified from the original stoichiometry matrix was not

present in the set of EMs obtained from the compressed model. Upon further inspec-

tion, it emerged that the mode consisted of an internal cycle and so cannot carry flux at

steady-state (Figure 4.6).
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Table 4.1: Time to compute EMs in the compressed and uncompressed small models listed
in Table 2.1.

Computing Time
Model Original Model Compressed Model Improvement
Calvin cycle 0.6s 0.5s 11 %
Photorespiration 123.7s 28.5s 77 %

4.5.1.2 Performance

To determine the extent to which the compression algorithm reduces the size of models,

the size of the models listed in Table 2.1 before and after compression were compared.

The reductions obtained by only (i) removing dead reactions and (ii) combining enzyme

subsets only once (equivalent to one incomplete iteration of the compression algorithm)

was also considered.

The results in Table 4.2 showed that the algorithm presented in this chapter consistently

achieves a better compression ratio than when combining enzyme subsets only once.

To determine if model compression reduces the time required for EM enumeration, the

time taken to calculate the complete set of EMs for the Calvin cycle and photorespiration

model, both when using the original and compressed models (including the decompression

of the output as discussed in Section 4.5.1.1), was measured. The results in Table 4.1

demonstrate that the compression algorithm provided a slight advantage when calculating

the EMs of small models. In addition, attempts to apply EMA to larger models indicated

that the network reduction achieved by the compression algorithm is insufficient to make

EMA applicable to models on which EMA was previously inapplicable.

The EMA algorithm used is implemented as part of ScrumPy and incompletely compresses

models (as described above) before carrying out enumeration. Therefore in effect, the

results described in Table 4.1 compare the time taken to carry out EMA of an incompletely

compressed versus completely compressed model.
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Table 4.2: Reduction in the size of the models listed in Table 2.1 after removing dead reactions, one incomplete iteration of the compression
algorithm, and complete compression, as well as the iterations needed to achieve complete compression, where Sub-table (a) presents the
number of reactions/metabolites in the given models while Sub-table (b) gives the corresponding percentage reduction.

Original Model Removed Combined Complete No. Of
Dead Reacs Enzyme Subsets Compression Iterations

Model Reacs Mets Reacs Mets Reacs Mets Reacs Mets
Calvin Cycle 21 28 21 28 11 18 11 18 2
Photorespiration 90 113 74 100 22 43 20 39 3
C. jejuni 1150 1105 680 561 442 336 421 328 3
C. necator 1358 1454 865 752 431 340 406 330 3
G. thermoglucosidasius 1125 1198 591 453 401 268 386 261 4
E. coli 1659 1714 708 501 497 293 459 281 3

(a)

Removed Combined Complete
Dead Reacs Enzyme Subsets Compression

Model Reacs Mets Reacs Mets Reacs Mets
Calvin Cycle 0% 0% 48% 36% 48% 36%
Photorespiration 18% 12% 76% 62% 78% 65%
C. jejuni 41% 49% 62% 70% 63% 70%
C. necator 36% 48% 68% 77% 70% 77%
G. thermoglucosidasius 47% 62% 64% 78% 66% 78%
E. coli 57% 71% 70% 83% 72% 84%

(b)
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4.5.2 Analysis of Compressed Models

This subsection shows results obtained from the analysis of the models listed in Table

2.1. First, a collective summary of the results is presented, followed by a description of

the results for each individual model.

For each model, the algorithms presented throughout this chapter were used to extract

iso-stoichiometric groups. Then, the implications of these groups on the results of model

analysis, with an emphasise on LP solutions, was investigated.

Recall that, as discussed in Section 4.1, each iso-stoichiometric group represents a set

of alternate pathways from the same start to end products, which may exist in models

because of:

1. Database artefacts: when models are automatically constructed from databases,

some processes or reactions may be included more then once due to the presence of

duplicate entries in the database. This occurs, for example, when multi-step reac-

tions are incorporated as both the overall conversion and the individual intermediate

steps.

2. Genuine redundancies: reflecting an organism’s ability to achieve the same net-

conversion via different biochemical routes. These alternate pathways can help or-

ganisms fine-tune their metabolism in response to varying environmental conditions,

since, for example, redundant enzymes may have different catalytic and regulatory

properties.

4.5.2.1 Summary of Results

Following compression, every reaction in the reduced stoichiometry matrix either (i) is

equivalent to one reaction from the original model, or (ii) has a net stoichiometry that

incorporates a collection of reactions from the original model.

The number of such reactions in the compressed GSMs listed in Table 2.1 are described

in Table 4.3.

The total number of enzyme subsets and iso-stoichiometric groups identified throughout
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Table 4.3: The number of reactions in the reduced stoichiometry matrix of the models
listed in Table 2.1. The combined reactions have the net stoichiometry of a combination of
reactions from the original model. The number of reactions from the original model that
each combined reaction represents was investigated by calculating the median (middle value)
number of these constituent original reactions for the set of combined reactions in each each
model.

Model Retained Original Combined Reactions
Reactions Number Median Size

C. jejuni 342 79 3
C. necator 294 112 2
G. thermoglucosidasius 300 86 2
E. coli 369 90 2

Table 4.4: The number of enzyme subsets and iso-stoichiometric groups identified through-
out the course of the compression algorithm, when applied to the GSMs listed in Table 2.1,
where the median number of reactions in the subsets/groups is listed.

Model Enzyme Subsets Iso-stoichiometric Groups
Number Median Number Median Inconsistent

C. jejuni 92 2 13 2 3
C. necator 119 2 17 2 1
G. thermoglucosidasius 97 2 8 2 3
E. coli 115 2 19 2 1

the compression algorithm and the median number of reactions that each subset/group

contained (where the reactions correspond to those of the original stoichiometry matrix

during the first iteration, and a partially reduced stoichiometry matrix during subsequent

iterations) are listed in Table 4.4. Note that the number of enzyme subsets and iso-

stoichiometric groups identified may be more than the number of combined reactions in

the completely compressed model since subsets/groups identified during one iteration may

be combined to form other subsets/groups in subsequent iterations.

4.5.2.2 C. jejuni

The C. jejuni model contained four iso-stoichiometric groups at the first iteration. They

all related to duplicate reactions of the ETC (such as the reduction of cytochrome and

menaquinone).

The remaining eight iso-stoichiometric groups were all represented by enzyme subsets that

had identical stoichiometry with one reaction of the original model. Most of these subsets

involved database artefacts, involving the erroneous inclusion of multi-step reactions, the
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2-methylcitrate

H2O

r1

cis-2-methylaconitate

2-methylcitrate

2-methyl-trans-aconitate

H2O

r2

cis-2-methylaconitate

r3

Figure 4.7: The conversion of 2-methylcitrate to cis-2-methylaconitate as part of the
methylcitrate cycle. This reaction can occur directly via the enzyme 2-methylcitrate de-
hydratase (r1: EC 4.2.1.79). Some organisms do not have this enzyme, and instead carry
out the transformation via two reactions (r2: 2-methylcitrate dehydratase, EC 4.2.1.117; r3:
aconitate isomerase, EC 5.3.3.7) [Brämer and Steinbüchel, 2001]. The two alternatives are
distinguished as part of the methylcitrate cycle I and II respectively.

hydrolysis of ATP, or NAD/NADP-dependent transhydrogenase reactions (see Section

4.6.1.3).

Other iso-stoichiometric groups revealed genuine redundancies. For example, the methyl-

citrate cycle in bacteria is important for the detoxification of propionyl-CoA, a toxic

bi-product of amino acid catabolism and odd-chain fatty acid oxidation [Brock et al.,

2002]. As part of this cycle, the conversion of 2-methylcitrate to cis-2-methylaconitate

can occur directly via the enzyme 2-methylcitrate dehydratase, or by first converting

2-methyl-citrate to 2-methyl-trans-aconitate which is subsequently converted into cis-2-

methylaconitate [Brämer and Steinbüchel, 2001]. The model of C. jejuni was found to

contain both of these pathways, as illustrated by Figure 4.7.

4.5.2.3 C. necator

The model of C. necator contained six iso-stoichiometric groups at the first iteration.

These included duplicates of glucose-6-phosphate isomerase and glycerol-3-phosphate de-

hydrogenase, the latter group being inconsistent.

Similarly to C. jejuni, a large number of groups regarded database artefacts arising from

multi-step reactions. This model contained genuine alternative routes for the detox-

ification of methylglyoxal, a highly reactive compound that can be produced by the
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Figure 4.8: Alternative pathways for converting methylglyoxal to R-lactate in C. necator
(where r1: D-lactate dehydratase, EC 4.2.1.130; r2: lactoylglutathione lyase, EC 4.4.1.5 ;
r3: hydroxyacylglutathione hydrolase, EC 3.1.2.6.) .

spontaneous dephosphorylation of triose-phosphates [Kumar et al., 2021]. Methylglyoxal

is converted to R-lactate through a two-step glutathione-dependent route (lactoylglu-

tathione lyase and hydroxyacylglutathione hydrolase), or alternatively, a shorter, single,

glutathione-independent step (D-lactate dehydratase), as illustrated by Figure 4.8, [Hasim

et al., 2014; Zhao et al., 2014].

4.5.2.4 G. thermoglucosidasius

The G. thermoglucosidasius model contained no iso-stoichiometric groups at the first in-

stance, whilst all of the iso-stoichiometric groups identified throughout the progression

of Algorithm 2 regarded database artefacts. Specifically, one iso-stoichiometric group

involved NAD/NADP-dependent transhydrogenase reactions, and the others involved

multi-step reactions.

4.5.2.5 E. coli

The E. coli model contained one iso-stoichiometric group at the first iteration, namely, a

duplicate of succinate dehydrogenase.

This model contained a comparatively large number of enzyme subsets, 33, that can only

act to hydrolyse ATP. Genuine alternative routes involved the conversion of methylglyoxal,

as described in C. necator, and the conversion of β-D-fructose to fructose-6-phosphate, as

shown in Figure 4.9.

117



Chapter 4: The Right Null-Space and the Steady-State Solution Space

β-D-fructose

D-mannopyranose

r4

H+

r1

ADP

ATP

D-fructose-6-phosphate

keto-D-fructose

r2

β-D-fructose

aldehydro-D-mannose

r3

D-mannopyranose6-phosphate

r5

ATP

H+

ADP

r6

D-fructose-6-phosphate

Figure 4.9: The conversion of β-D-fructose to fructose-6-photphate via fructokinase (where
r1: fructokinase, EC 2.7.1.4; r2: spontaneous; r3: mannose isomerase, EC 5.3.1.7 ; r4:
mannose isomerase, EC 5.3.1.7; r5: spontaneous ; r6: mannokinase, EC 2.7.1.7; r7: mannose-
6-phosphate isomerase, EC 5.3.1.8).

4.5.3 Analysis of Alternate Flux Vectors

FBA solutions of the C. jejuni and G. thermoglycosidasius were calculated to give insight

into the impact of the redundancies identified within this chapter on metabolic modelling

results. For example, to investigate whether the Alternate vector algorithm can identify

multiple optima when given a single FBA solution.

4.5.3.1 C. jejuni

The C. jejuni model was investigated using a LP where the production of C. jejuni’s 51

biomass precursors was set as a constraint (as detailed in Section 3.4.2.1). The Alter-

nate vectors algorithm was used to expand the LP solution into equivalent vectors that

achieve the same net stoichiometry through different internal pathways (as identified by

the model’s iso-stoichiometric groups). Two equivalent vectors were therefore obtained.

The difference between them regarded the conversion of acetyl-CoA to malonyl-CoA, as

shown in Figure 4.10.

To investigate the impact of iso-stoichiometric groups on enzyme knock-outs metabolic
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H+Pi ADP ATP HCO3

acetyl-CoA malonyl-CoA

Figure 4.10: Converting acetyl-CoA into malonyl-CoA in C. jejuni (where r1: acetyl-
CoA carboxyl transferase (bicarbonate), EC 2.1.3.15; r2: acetyl-CoA carboxyl transferase
(biotin), EC 2.1.3.15; r3: biotin carboxylase, EC 6.3.4.14).

modelling results, the impact of knocking out individual reactions on C. jejuni’s ability

to generate biomass (i.e. reaction essentially analysis as introduced in Section 2.4) was

studied using both the compressed and original model. This was achieved by repeatedly

solving the following LP:

Find : argmin ∑r
i=1 |vi|

subject to


Nv = 0 ,

vb = tb, for all b ∈ {1, 2, . . . , B},

vj = 0 for one j ∈ {1, 2, . . . , R}.

(4.48)

where the constraints vb ensure that the LP solution simultaneously produces all of C.

jejuni’s B required biomass precursors, while the constraint vj prevents one of the R

internal reactions from carrying flux at each iteration. Failure to obtain an optimal

solution indicates that the internal reaction constrained to zero is essential for growth.

Such an analysis of the compressed model revealed that the iso-stoichiometric group de-

scribed above (conversion acetyl-CoA into malonyl-CoA) is essential for the growth of C.

jejuni. However, as expected, the individual reactions of this group were not deemed to

be essential when Equation (4.48) was solved for the original model. This result indicates

that while knocking out one alternate pathway from the group does not prevent C. jejuni

from generating biomass, the simultaneous knock-out of both alternate pathways is lethal.
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4.5.3.2 G. thermoglycosidasius

Similarly, an LP algorithm was defined on the model of G. thermoglycosidasius with

the generation of biomass precursors and fermentation products as constraints and the

minimisation of total flux as the objective (as described in [Ahmad et al., 2017]). The LP

solution included reactions from five iso-stoichiometric groups (all but one of the groups

identified in this model). Every group contained two reactions; therefore, the LP solution

was expanded into 32 alternative solutions with the same net stoichiometry (since no

reversibility constraints were violated in the iso-stoichiometric groups).

4.5.4 Similarity Between The Compressed GSMs

After compression, the reduced stoichiometry matrices of all GSMs were compared to gain

knowledge about the metabolic processes that are common amongst them. Twenty-four

reactions with the net stoichiometry of (i) one or (ii) a combination of reaction/s in the

original models were found to be shared amongst all compressed GSMs.

Out of the 24 common reactions, 19 were equivalent to reactions retained from the original

GSMs, whilst five corresponded to a combination of the GSM’s original reactions in at

least one case as listed in Table 4.5.

4.6 Discussion

4.6.1 Model Curation

Repeatedly reducing the size of the stoichiometry matrix as described above can reveal

hidden systematic errors that often materialise when models are automatically built from

databases [Poolman et al., 2006], including the inclusion of duplicate processes and ther-

modynamically infeasible transformations. The identification and subsequent removal

of such errors is important since their presence can compromise the accuracy of model

analysis.
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Table 4.5: Some of the reactions, ri, that are common amongst the reduced stoichiometry matrix of all GSMs listed in Table 2.1, where
only common reactions that have a combined stoichiometry in at least one of the GSMs are listed. The number of original reactions that
each ri represents in each model is shown.

Model r1 r2 r3 r4 r5

C. jejuni 1 2 3 1 1
C. necator 4 2 6 1 2
G. thermoglucosidasius 1 2 1 1 1
E. coli 1 2 33 2 1

Table 4.6: The net stoichiometry of the reactions listed in Table 4.5.

Identifier Net stoichiometry
r1 threonine → 2-oxobutanoate + NH+

4

r2 L-aspartate + GTP + IMP → fumerate + Pi + AMP + GDP + H+

r3 ATP + H2O → ADP + H+

r4 D-threo-isocitrate + NADP → ketoglutarate + NADPH + CO2

r5 oxaloacetate + ATP ↔ phospho-enol-pyruvate + ADP + CO2
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r1

isocitrate

H2O

r2

r3

citrate
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isocitrate

Figure 4.11: The enzyme aconitase converts citrate to isocitrate through the intermediate
cis-aconitate (where r1: aconitase, EC 4.2.1.3; r2 & r3: sub-reactions of aconitase). The
three metabolites are kept at equilibrium (91% citrate, 3% cis-aconitate, and 6% iso-citrate
[Siebert, 1965]).

4.6.1.1 Duplicate Processes

All but one of the GSMs investigated included duplicate reactions. Further inspection

revealed that these reactions correspond to identical genes and should not have been

included as duplicates in the models.

Other duplicate processes involved one reaction of the model having an identical stoi-

chiometry with one or more enzyme subsets. The majority of these involved multi-step re-

actions, which are catalysed through the formation of one or more intermediate molecules

that are then converted into the final product. In some cases, both the net reaction and

the individual sub-reactions were found in the GSM. For example, the enzyme aconitase

(present in the TCA cycle) converts citrate to isocitrate in two steps: first transforming

citrate to cis-aconitate, and later cis-aconitate to isocitrate (Figure 4.11). The C. jejuni

and E. coli GSMs contained both the net-reaction of this process and the two reactions

which carry out the individual sub-steps. Similar instances regarded amino acid biosynthe-

sis. For example, isopropylmalate dehydrogenase and isopropylmalate dehydratase (part

of the L-leucine biosynthesis pathway, see Figure 4.12) were found similarly duplicated in

all of the GSMs listed in Table 2.1.

Other duplications involved the erroneous inclusion of enzyme components as metabolites.

An example is the involvement of biotin in the enzyme acetyl-coA carboxylase (an essential

part of fatty acid synthesis in bacteria) in the C. jejuni GSM. This enzyme catalyses
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Figure 4.12: The conversion of 3-isopropylmalate to ketoleucine (as part of luecine biosyn-
thesis) occurs through the enzyme isopropylmalate dehydrogenase that catalyses the oxidi-
sation of 3-isopropylmalate to create 2-isopropyl-3-oxosuccinate (r1/r2: EC 1.1.1.85). This
intermediate product is unstable and spontaneously degrades into ketoleucine.

the carboxylation of acetyl-coA into manonyl-coA in a process that first involves the

carboxylation of biotin into C-biotin, and then the transfer of the carboxyl group in C-

biotin to acetyl-coA (Figure 4.10). Both the overall stoichiometry of this process and the

individual steps were included; however, the latter representation is incorrect as biotin is

not an independent metabolite of the system (due to it forming part of the structure of

the enzyme).

The novel methods described in this chapter can be used to identify such occurrences,

which can then be manually removed from the model (care must be taken to preserve the

duplicate reactions that occur when organisms contain different enzymes that catalyse the

same net conversion). This is important since such occurrences cause systematic errors,

meaning that although the definition of the sub and overall reactions may be biologically

correct, including both (as duplicates) in a model might give rise to incorrect behaviour.

For example, their presence makes the identification of essential reactions more difficult.

The inclusion of an incorrect duplicate reaction for acetyl-coA carboxylase in C. jejuni

(Figure 4.10), led to this reaction to be not identified as essential in FBA, a result which

was rectified when the duplicates were removed by the compression algorithm ( Section

4.5.3). Similarly, duplicate reactions lead to unnecessary multiple optima in LP, such as

the 32 alternative pathways identified in the analysis of G. thermoglycosidasius (Section

4.5.3). However, it is important to note that an LP objective that minimises flux is likely
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Figure 4.13: An enzyme subset that can only act to hydrolyse ATP. First, glucosamine is
converted to glucosamine-6-phosphate in a reaction that uses ATP (where r1: glucosamine
kinase EC 3.1.3). This resultant glucosamine-6-phosphate is then de-phosphorylated (where
r2: glucosamine-6-phosphate hydrolase EC 2.7.1.8.

to avoid including multi-step reactions as optima, since a solution that includes a set of

sub-steps of a process would have a higher total flux than one that only contains the

overall reaction. This is not necessarily the case for objectives that involve maximisation

(such as maximising biomass yield [Schuster et al., 1999]), since the objective value of

such programs depends on the net stoichiometry of the solution.

4.6.1.2 Directionality

The methods described in this chapter identify internal cycles (with a zero net stoichiom-

etry) that form inconsistent iso-stoichiometric groups. Such occurrences arise from the

direction of reactions being incorrectly defined in the model and prevent the model from

obeying the first law of thermodynamics (see Section 4.2.2 and Poolman et al. [2007]).

4.6.1.3 Other Database Artefacts

Other identified iso-stoichiometric groups involved enzyme subsets that hydrolyse ATP,

such as, an enzyme subset in the E. coli model that consists of a glucosamine kinase

reaction. This reaction uses ATP to generate glucosamine 6-phosphate from glucosamine.

The resultant glucosamine-6-phosphate is then not used within any other reaction in the

model except for a hydrolase reaction that degrades it to release phosphate, see Figure

4.13. The presence of such subsets suggests that the organism requires them to deal with

a surplus of ATP [Poolman et al., 2003], or that some reactions have been incorrectly

included in the model (likely to be caused by the presence of genes that correspond to

the catalysis of multiple reactions [Poolman et al., 2006]).

Similarly, pairs of reactions that are identical except for the use of NADH/NADPH result
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in an enzyme subset with the net stoichiometry of one co-factor reducing the other (i.e.

the net stoichiometry: NADP + NADH → NADPH + NAD). These pairs corresponded

to enzymes that have an affinity for both NADH and NADPH as electron donors.

4.6.2 Model Analysis

After identifying and removing the model inconsistencies discussed above, the remaining

reactions provide insights into genuine model redundancies and allow for net-processes to

be compared amongst organisms.

4.6.2.1 Comparison of Compressed Models

Comparison of the reduced stoichiometry matrix of the GSMs listed in Table 2.1 revealed

similarities in the metabolism of the different bacteria, shedding light on net processes im-

portant for all the species discussed but which might occur through different intermediate

reactions.

Many shared reactions involved the synthesis and degradation of amino acids, such as

the conversion of serine and malate into pyruvate, and the conversion of isocitrate to

glutamate. Reactions from the non-oxidative branch of the pentose phosphate pathway

(ribulose-5-phosphate isomerase and transketolase) were also present.

Most of the net-conversions that varied across models were caused by multi-step reactions,

as discussed above. However, as part of the gluconeogenesis pathway, all GSMs except

for C. necator convert oxaloacetate to phosphoenolpyruvate via a phosphoenolpyruvate

carboxykinase enzyme that uses ATP as a substrate. C. necator uses ITP as a substrate,

which is then regenerated using a reaction that requires ATP (Figure 4.14).

Such comparisons were possible since all of the GSMs analysed in this chapter use identical

metabolite identifiers (since they were constructed directly from the MetaCyc database

using ScrumPy). It is important to keep in mind that the comparing models whose

metabolites are defined using different names/abbreviations would be difficult.
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Figure 4.14: The conversion of oxaloacetate to phosphoenolpyruvate occurs via a phos-
phoenolpyruvate carboxikinase enzyme that uses ATP as a substrate (r1: EC 4.1.1.49) in
all models except for C. necator, where ITP is first used as a substrate, and is afterwards
regenerated using a reaction that requires ATP (r2: EC 4.1.1.32 and r3: EC 2.7.4.6)

4.6.2.2 Genuine Alternative Routes

Iso-stoichiometric groups that arise from genuine alternate routes from a start to end prod-

uct were also identified. These occurrences may correspond to enzymes which are active

only under specific circumstances, the presence of which can be verified experimentally.

This information can enhance the insights attainable from current metabolic modelling

techniques. For example, when FBA is applied to compressed models, the resultant

pathway can be seen as a sub-module of the original model, which can subsequently be

decomposed into some alternative flux vectors. Such a decomposition can help allevi-

ate the problem of multiple optima (Section 2.3.5) when using LP by providing some

alternative solutions.

However, the relevance of the optima provided by the algorithm is dependent on the

optimisation criteria used. For example, the sum of fluxes of the alternate solutions for

the C. jejuni model were slightly different (135.0 and 136.0 units of flux respectively),

such that the two solutions would not be identified as alternate optima when the LP

objective function is the minimisation of the sum of fluxes.

EMA can also benefit from the techniques described. Although compression reduces

the number of EMs, their unique net stoichiometries remain unaffected. Grouping iso-

stoichiometric EMs is a known technique for simplifying the analysis of EMs. Standard

methods achieve this by first calculating the complete set of EMs. In contrast, the methods

described in this chapter eliminate the need for such an enumeration whilst also facilitating

the exploration of the simplifications that are made (such as through the tree in Figure
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4.5). Compression also eliminates some unfeasible EMs that may result from traditional

algorithms (as shown in Section 4.5.1).

4.6.3 The Combining of Biomass Export Transport Reactions

A theoretical result that followed from this chapter’s analysis of enzyme subsets regards

the export of biomass in GSMs. This work clarifies the distinction between the two dis-

tinct methods for defining biomass export by showing that, while models with individual

biomass export offer greater flexibility than their combined counterparts, results obtained

from (minimization) FBA when utilising either method are equivalent.

4.7 Conclusion

This chapter describes a method that iteratively reduces the size of metabolic networks.

This approach facilitates the understanding of large metabolic models, by providing a

framework for visualising and exploring enzyme subsets and redundant pathways. These

methods can also aid model curation by discovering systematic inconsistencies in GSMs

such as the inclusion of duplicate reactions and internal cycles with a net stoichiometry

of zero.

The associated algorithms will be incorporated into the ScrumPy source tree in due course.
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5.1 Introduction

As discussed in Chapter 2.3.2, the left null-space reflects linear dependencies between the

rows of the stoichiometry matrix and reveals relationships between metabolite concentra-

tions and their chemical composition.

5.1.1 Metabolite Concentrations

Relationships between metabolite concentrations are established through conservation re-

lations: groups of metabolites whose linear combination of molar amounts stays constant

over time. Each relation corresponds to a vector of the left null-space basis [Heinrich

and Schuster, 1996, pages 78-87], and allowed Reder [1988] to partition metabolites into

dependent and independent groups such that the concentrations of the dependent metabo-

lites can be calculated from those of the independent metabolites (via the link matrix as

described in Appendix D.1). This method is helpful to facilitate dynamic simulations. In-

deed, dependent metabolites must be eliminated from N prior to most kinetic modelling

techniques, as the calculation of a non-singular Jacobian matrix from N is only achievable

if N is full row rank [Stelling and Klamt, 2006; Sauro and Ingalls, 2003]. Nevertheless,

a network’s set of conservation relations cannot be uniquely identified, as various sets of

basis vectors can be used to define the left null-space of a matrix, and to date, no efficient

method for identifying all potential conservation relations of a system has been described.

Such a description would be helpful to reveal the potential relationships between metabo-

lite concentrations in the model and to show how structural changes (such as the removal

of a reaction) can impact these relationships.

5.1.2 Metabolite Composition

Since reactions comprise of molecules being chemically transformed through the breakage

and formation of bonds, metabolic networks can be characterised by the chemical building

blocks that combine in different arrangements to form the networks’ metabolites. Groups

of atoms that form an identifiable unit within a molecule are referred to as moieties.

Among these, conserved moieties remain intact throughout all transformations in the

network (the simplest of which are individual atoms). The identification of conserved
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moieties within networks establishes relationships between metabolites by recognising the

chemical species that they share [Schuster and Hilgetag, 1995; Famili and Palsson, 2003].

The conservation of each conserved moiety corresponds to a non-negative vector (i.e.

containing no negative elements) in the left null-space (to be discussed further in Section

5.2.2). However, although algorithms that can calculate a network’s entire set of such

(convex) basis vectors exist [Schuster and Hilgetag, 1995], assigning moieties to the vectors

is only possible if the chemical structure of each metabolite is available [Haraldsdóttir and

Fleming, 2016] — a requirement that is difficult to satisfy, especially when considering

large models.

Knowledge of metabolite composition is essential to ensure mass conservation when build-

ing models. Furthermore, once the structure of a group of metabolites is determined, it

can be used to compare similarities between them. For example, molecular-fingerprint

analysis compares metabolites on the basis of the molecular substructures that they have

in common, as described in Section 5.3.2.4. This technique has applications in fields such

as pharmacology, where the biological function of a novel compound is inferred by com-

paring its structure with those of metabolites whose functions are already known. This

reasoning is based on the assumption that metabolites with similar chemical structures

play similar physiological roles.

5.1.3 Aims and Objectives

The work described in this chapter shows that although the left null-space can be rep-

resented by different bases, the angles between the rows of an orthogonal left null-space

are invariant. This allows for the introduction of a similarity measure that can describe

the relationships between metabolite concentrations independently of the choice of basis,

and with minimal additional information.

This measure was previously applied to the right null-space by Poolman et al. [2007], where

it was shown to be equivalent to Pearson’s correlation coefficient between all possible

steady-state vectors. The authors used this result to relate steady-state fluxes such as by

identifying disconnected sub-networks (as discussed in Chapter 2.3.3.2).

In addition, since vectors representing chemical moieties are located in the left null-space,
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this similarity measure can be used to gain information about the chemical similarity

between metabolites. Therefore, since for a given model, it is often the case that some

(but not all) metabolite elemental composition data is available, a method that enhances

existing metabolite composition information by incorporating the information gained from

the left null-space was developed. This method can be used to calculate the composition

of metabolites that were previously unknown, and identify models that violate the law of

conservation of mass.

Furthermore, two algorithms, referred to as the network pruning and pathway finding

tools, that aim to follow the transfer of material in a network based on the similarity

between the substrates and products were also developed.

5.1.4 Chapter Structure Overview

This chapter contains the following sections:

Section 5.2 introduces the left null-space in the context of metabolite concentration and

composition.

Section 5.3 defines the similarity measure in the context of comparing metabolites by

their concentration changes and chemical composition. Additionally, novel algo-

rithms that can (i) calculate the elemental composition of unknown metabolites by

using the information gained from the left null-space, (ii) reduce the size of mod-

els by discarding metabolites that have a low similarity to metabolites of interest

(lossy compression) and (iii) extract pathways leading from a user-selected starting

metabolite, where each metabolites in the pathway is chosen to be most similar to

to the one preceding it, are developed.

Section 5.4 applies these methods to various metabolic models.

Section 5.5 discusses their implications on model curation and analysis.

Appendix D presents mathematical proofs regarding the similarity measure.
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5.2 Background

5.2.1 The Left Null-Space and Conservation Relations

In this thesis, the left null-space matrix is denoted by the matrix G, such that

N>G = Or×q
(
or G>N = Oq×r

)
, (5.1)

where N is an m × r stoichiometry matrix and G is m × q. Note that this method can

be equally applied to the external stoichiometry matrix, N l×r, to generate an external

left null-space matrix, Gl×t, that has a different interpretation from G (relating to the

chemical composition of metabolites, to be discussed further in Section 5.2.2).

Each row of G corresponds to a metabolite, and each column to a conservation relation, g,

derived as follows. Recall that the stoichiometry of a metabolic system can be represented

as a set of ordinary differential equations describing changes in metabolite concentrations,

s, with time:
ds
dt = Nv, (5.2)

where v is a vector of fluxes. Multiplying this system by the transpose of any left null-

space vector, g, on the left, yields

g>
ds
dt = g>Nv, (5.3)

which results in

g>
ds
dt = 0. (5.4)

Therefore identifying metabolites whose rate of change of concentrations must sum to

zero. Moreover, integrating Equation (5.4) with respect to time reveals:

g>s(t) = g>s(0) = λ, (5.5)

where s(0) is a vector of constants corresponding to initial metabolite concentrations such

that g>s(0) is a real constant, λ. Therefore, each g identifies a group of metabolites whose

rate of change of concentrations must sum to zero (Equation (5.4)), or equivalently, whose
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Figure 5.1: An enzyme catalysed reaction, where S: substrate; ES: enzyme-substrate
complex; E: free enzyme; P: product.

combination of total concentrations must stay constant through time (Equation (5.5)).

λ represents a constant sum of concentrations in models of single compartments and a

constant sum of metabolite molar amounts in models of multiple compartments. In the

latter instance, g can be converted into metabolite concentrations by taking the relative

volume of the different compartments into account (as described by Hofmeyr [2020]).

A simple example of a conservation relation is that described by the amount of enzyme in

enzyme-catalysed reactions as shown in Figure 5.1. At any point in time, as the enzyme-

substrate complex is produced, an equal amount of free enzyme must be consumed, such

that the total amount E + ES remains unchanging. This behaviour corresponds to the

conservation relation
dE(t)

dt + dES(t)
dt = 0, (5.6)

that is equivalent to:

E(t) + ES(t) = E(0), (5.7)

where E(t) and ES(t) represent the amounts of free enzyme and enzyme-substrate inter-

mediate, while E(0) is a real positive constant that represents the total amount of free

enzyme at time t = 0 (when ES(0) = 0).

More complex examples will be considered in Section 5.2.3.

5.2.2 Elemental Conservation

The elemental composition (empirical formula) of a metabolite describes the type and

number of atoms of which it is comprised. This information is associated with the left

null-space of the external stoichiometry matrix, G, since, in a closed system, the total

number of atoms of each element on both sides of a reaction must be equal, such that

vectors representing the proportion of elements in every metabolite of the network are in
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r2

r1

FBP

GAPDHAP
Figure 5.2: The two reversible reactions aldolase (r1) and triose-phosphate isomerase
(r2), where FBP: fructose-1,6-bisphosphate; GAP: glyceraldehyde-3-phosphate; DHAP: di-
hydroxyacetone phosphate.

G.

For example, consider the number of carbon atoms in the two reaction scheme shown

in Figure 5.2 which is comprised of the reactions r1 (aldolase) and r2 (triose-phosphate

isomerase), given by

r1 : C6H10O12P2→ C3H5O6P + C3H5O6P,

r2 : C3H5O6P↔ C3H5O6P,
(5.8)

or equivalently, by the set of ordinary differential equations:


dFBP

dt

dGAP
dt

dDHAP
dt

 =


−1 0

1 −1

1 1


v1

v2

 . (5.9)

A vector of positive integers, a, can be constructed such that every entry ai corresponds

to the number of carbon atoms in metabolite i, namely

a =


FBP 6

GAP 3

DHAP 3

. (5.10)

The result of multiplying the stoichiometry of any reaction within the network (corre-

sponding to a column of N ) with the vector a should be zero. For example, consider the
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first column of N , n1, then

n>1 a =
(
−1 1 1

)


6

3

3

 = 0, (5.11)

confirming that the number of carbon atoms being consumed (6) is equal to those being

produced (3+3).

Such relations hold for all of the reactions in the network and therefore a must be an

element of the external left null-space (i.e. N>a = 0). This can be extended to account

for every chemical element in the network to generate the atomic matrix, A, whose entries,

aij, correspond to the number of atoms of element j in metabolite i. The matrix A for

the system in Figure 5.2 is therefore

A =



C H O P

FBP 6 10 12 2

GAP 3 5 6 1

DHAP 3 5 6 1

. (5.12)

Since all columns of A are in the external left null-space, then by the Steinitz Exchange

Lemma (a well-known result in linear algebra which states that for a given vector space,

any set of linearly independent vectors within the space can be expanded, by adding more

vectors, to form a basis for the space [Stiefel, 1963]), it is possible to construct a basis

for the external left null-space that includes all of the linearly independent columns of

A (as shown by Proposition D.2.0.1 in Appendix D.2.0.1), such that these columns of A

(along with some additional columns if rank(A) < rank(ker(N>))) can combine to form

all possible external left null-space vectors of the network.

Note that in the above example, all columns of the atomic matrix are linearly dependent

(i.e. rank(A) = 1). This means that all elements appear at the same atomic ratio in all

three species in the system (C3H5O6P or its multiple), such that the chemical composition
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of the metabolites can be alternatively represented by

Amoie =



C3H5O6P

FBP 2

GAP 1

DHAP 1

. (5.13)

Atomic vectors are not necessarily in the left null-space, G, of the internal stoichiometry

matrix, N, since N represents an open system in which not all matter is conserved. For

instance, multiplying A by a vector of N corresponding to a transporter reaction will yield

the number of atoms that the external metabolites are comprised of (rather than 0 for

the corresponding vector of N ). However, multiplying A with a closed reaction (i.e. any

reaction that does not interact with external metabolites) yields 0. As a consequence, the

vectors of internal left null-space concern the conservation of elements/quantities within

a closed loop inside the network [Sauro and Ingalls, 2003], a concept that is expanded

upon below.

5.2.3 Moiety Conservation

Apart from atomic conservation, charge conservation (the flow of electrons) and moiety

conservation (the flow of intact atomic groups) have also been historically considered.

As discussed by Sauro and Ingalls [2003], conservation relations in the left null-space of

the internal stoichiometry matrix represent the flow of conserved moieties within closed

loops. For example, the conservation of the amount of enzyme as shown by the relation

described by Equation (5.7). While vectors of the external left null-space also include

quantities that are conserved as part of pathways leading from external inputs to outputs

(such as atoms, as discussed previously). Therefore, the vectors in G reveal a subset of

the information in G [Haraldsdóttir and Fleming, 2016].

Attempts to infer biological significance from the left null-space have been aimed at under-

standing the extent of the contribution that these different types of conserved quantities

have on G [Famili and Palsson, 2003; Haraldsdóttir and Fleming, 2016]. For example,

consider an extract of glycolysis depicted in Figure 5.3. The left null-space of its internal
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stoichiometry matrix is listed in Table 5.1. This matrix has three conservation relations

that reflect the conservation of the following moieties:

c1c1c1: phosphate,

c2c2c2: ADP,

c3c3c3: NAD,

where phosphate, ADP, and NAD, are each conserved via closed loops inside the net-

work. ADP is inter-converted between its phosphorylated and dephosphorylated forms

and NAD is inter-converted between its oxidised and reduced forms, whilst phosphate is

first transferred from ATP to the pathway’s 6-carbon sugars (by hexokinase and phospho-

fructokinase, denoted by r1 and r3), and then incorporated back into ADP (by pyruvate

kinase, denoted by r10) during the pathway’s final step, to regenerate ATP.

Note that glucose and pyruvate are not part of any conservation relation in G since they

do not contain moieties that are internally conserved in the system. Such an observation

would not be possible in case of G, as due to the principle of conservation of mass all

metabolites of the system must be present in at least one conservation vector.

If present, conserved moieties can be added to the columns of A. For example, a column

vector corresponding to the ADP moiety can be added to A, such that the metabolite

ADP is listed to contain one such moiety and the metabolite ATP is listed to contain one

molecule of ADP and one phosphate.

Although the left null-space basis shown above is simple to understand, bases obtained

from more complex networks can be challenging to interpret. Indeed, the calculation of

one basis does not necessarily lead to the identification of all conserved moieties. For

example, some vectors may not correspond to a single conserved quantity but a linear

combination of quantities (such the number of carbon atoms subtracted by the number

of hydrogen atoms), leading to entries with negative coefficients that cannot be assigned

to physical quantities. For example, consider the simple system in Figure 5.4, that only
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GAP DHAP

FBP

ATP

ADP

G6P

PEP

r5

r4

r1

x_PYR

r9
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x_GLC
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ADP
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NAD

NADH
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Pi

PGA
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NAD
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r10

ADP

ATP

x_H2O

Figure 5.3: An extract of glycolysis. See Appendix A.2 for reaction and metabolite ab-
breviations.
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Table 5.1: A left null-space basis of the internal stoichiometry matrix for the model of
glycolysis in Figure 5.3. The columns reflect the conservation of the phosphate, ADP, and
NAD moieties. See Appendix A.2 for reaction and metabolite abbreviations.

c 1 c 2 c 3
GLC 0 0 0
G6P 1 0 0
ATP 1 1 0
ADP 0 1 0
F6P 1 0 0
FBP 2 0 0
GAP 1 0 0

DHAP 1 0 0
NAD 0 0 1

Pi 1 0 0
NADH 0 0 1
BPGA 2 0 0

PGA 1 0 0
PEP 1 0 0
PYR 0 0 0

contains the following conservation relation, g,

g =



A 0

B 1

C −1

D 0


, (5.14)

This conservation relation shows that an increase in the concentration of B must be

accompanied by an equal increase in the concentration of C, but this does not correspond

to the presence of an identical physical conserved moiety in both metabolites.

5.2.4 Maximal Conserved Moieties

The largest possible sub-parts of metabolites that never get broken down are referred

to as maximal conserved moieties. Each maximal moiety was shown to correspond to a
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A

C

B

D
r1 r2

Figure 5.4: A simple system where an increase in the concentration of metabolite B must
be accompanied by an equal increase in the concentration of metabolite C.

fundamental solution of the system

{z ∈ Zm| N>z = 0 , z ≥ 0}, (5.15)

where m is the number of metabolites in the external stoichiometry matrix N and z

denotes a maximal conserved moiety vector Schuster and Hilgetag [1995]. The set of all

such vectors (i.e. all fundamental solutions of Equation 5.15) is denoted by Z.

An algorithm that can characterise Z was proposed by Schuster and Hilgetag [1995]. This

algorithm is based on the fact that conserved moiety vectors must always be non-negative

and integer, and is similar to that employed for the calculation of EMs [Schuster and

Hilgetag, 1994].

This method can relate metabolites by identifying potential conservation of moieties

among them (in terms of conservation in the empirical formula). However, does not

reveal the chemical composition of these conserved moieties. If the moieties’ composition

is of interest, additional information regarding the chemical composition/structure of the

metabolites of the network can be used to assign atomic groups to some of the vectors

in Z. For example, [Schuster and Hilgetag, 1995] calculated the complete set of maximal

conserved moiety vectors for a small network and manually identified that two out of the

network’s four maximal conserved moiety vectors correspond to conserved atomic groups,

one reveals the transfer of a hydrogen atom between metabolites, and the other is not

physically meaningful. Alternatively, Haraldsdóttir and Fleming [2016] designed an algo-

rithm that, when given information about metabolite structure, follows the position of

atoms as they move from substrate to product, such that atomic groups that remain intact

during the transformations are identified. Similarly to Schuster and Hilgetag [1995], the

authors noted that when the algorithm was applied to networks, not all of the calculated
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maximal conserved moiety vectors were found to be physically meaningful.

5.2.5 Calculating the Left Null-Space Basis.

The left null-space basis can be calculated through the Gauss-Jordan Method or Singular

Value Decomposition (SVD). The Gauss-Jordan method generates a sparse basis, whilst

SVD yields an orthogonal set of basis vectors. Although SVD is more efficient, the

Gauss-Jordan method has been historically favoured since its basis vectors are easier to

interpret in a biological context (since each vector is likely to involve a smaller number of

metabolites, for example, the basis in Table 5.1).

The methods presented here extract biologically relevant information from normalized

bases that are calculated using SVD.

5.3 Methodology

This section concerns the development of a similarity measure that can relate metabolites

both by the conservation relations that they are in, as well as by their chemical similarity.

Mathematical results relating to the similarity measure can be found in Appendix D.3.

The techniques and proofs described here were adapted from prior research by Poolman

et al. [2007], wherein the aforementioned similarity measure was applied to the right

null-space to establish relationships between steady-state fluxes.

5.3.1 Comparing Metabolites Through Conservation Relations

In this chapter, metabolites are compared by measuring the cosine of the angle between the

corresponding rows of an orthonormal basis for the left null-space matrix of the internal

stoichiometry matrix G, as defined by Equation (5.16):

φGij = cos(θGij) = GiGj
>√

GiGi
>
√
GjGj

>
, (5.16)

where φGij denotes the similarity between metabolites i and j, and Gi is a row of G.

This measure can alternatively be applied to the left null-space of the external stoichiome-
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try matrix, G, resulting in a different interpretation to when applied on G (to be discussed

later).

Although the basis of the left null-space can be expressed by different sets of generating

vectors, φGij is unique (as shown by Theorem D.3.1.1 in Appendix D.3, adapted from

Lemma 1 in [Poolman et al., 2007]) and corresponds to Pearson’s correlation coefficient

between the set of all possible conservation relations (see Proposition D.3.2.1 in Appendix

D.3.2.1).

Therefore, φGij relates metabolites based on how often they appear within the same con-

servation relation when considering the set of all possible conservation relations in the

network. It reflects the connectivity between the concentration values of metabolites

within the same compartment, and molar amounts of metabolites in different compart-

ments.

A correlation matrix, R, can be calculated using this measure such that every entry, rij,

corresponds to the similarity between metabolites i and j (i.e. rij = φGij). This matrix

can then be used to cluster metabolites by their similarity. In this thesis, this cluster-

ing is achieved through the Weighted Pair Group Method Using Arithmetic Averaging

(WPGMA) algorithm, as described by Poolman et al. [2007].

The values of φGrange from 0 to ±1 as discussed below.

Maximal similarity (proportional rows).

A value of φGij = ±1 implies that metabolites i and j must always be present together

in the same conservation relations, since every possible conservation relation, g, that

contains i must also contain j and vice versa (as discussed in Appendix D.3.4). A positive

value signifies that the concentration changes of metabolites i and j must have the same

sign in all conservation relations, whilst a negative value implies that they must have

opposing signs.

Furthermore, it is not possible to construct a link matrix in which i and j are both

independent metabolites, meaning that the system of differential equations, ds
dt = Nv,

cannot be modified such that the concentration of parallel metabolites is used to calculate

the concentration of some other metabolites (as shown in Appendix D.1).
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Maximal difference (orthogonal rows).

If there is no conservation relation vector, g, that contains non-zero elements for both

metabolite i and j then φGij = 0 (as shown in Appendix D.3.3). However, the reverse is

not necessarily true.

Hence some cases of φGij = 0 are expected to be caused by metabolites that have inde-

pendent concentrations, since no conservation relation vector, g, has non-zero elements

for both metabolites. In other words, the concentration of metabolite i is not influenced

by (and therefore cannot reveal information about) the concentration of metabolite j, for

example if the metabolites are in stoichiometrically disconnected sub-networks.

5.3.2 Comparing Metabolites Through Their Elemental Com-

position

This subsection describes the methods developed in this thesis for relating the elemental

composition of metabolites through:

1. inferring knowledge from the left null-space, by applying the similarity measure to

the orthonormal basis of the external left null-space,

2. retrieving metabolite composition information from online databases,

3. augmenting the information gained from the databases using the knowledge inferred

from the left null-space, by, when given a metabolite whose elemental composition

could not be retrieved from the database, predicting its composition using informa-

tion from the left null-space and the known composition of other metabolites.

5.3.2.1 The External Left Null-Space

Since every conserved moiety vector (including atomic vectors as discussed in Section

5.2.2) must be in the left null-space, the similarity measure described above can be applied

to the left null-space of the external stoichiometry matrix, G, to obtain information about

elemental composition as described below. Note that in this case, the absolute value of

the measure was considered in order to facilitate the clustering of metabolites.
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Maximal similarity (proportional rows).

A value of φGij = 1 implies that metabolites i and j must have an identical elemental com-

position ratio, since every maximal conserved moiety vector, z, and atomic composition

vector, a, must contain the same elements in both metabolites (as discussed in Appendix

D.3.4). The ratio of the rows pertaining to metabolites i and j in the left null-space indi-

cates whether they are isomers (1:1) or whether the empirical formula of one is a multiple

of the other.

Note that since φGij is dependent on the structural connectivity between the metabolites,

not all metabolites that have an identical elemental composition ratio are identified by

φGij (although all metabolites φGij = 1 must be so).

Maximal difference (orthogonal rows).

If there is no external left null-space vector, g, that contains non-zero elements for both

metabolite i and j then φGij = 0 (as discussed in Appendix D.3.3). However, the reverse

is not necessarily true.

Since, maximal conserved moiety vectors, z, and atomic composition vectors, a, are in

the external left null-space, then some cases where φGij = 0 will be caused by metabolites

i and j having an unrelated elemental composition.

As above, metabolites with an unrelated elemental composition may still contain identical

physical moieties (such as similar atomic groups), that are, however, considered to be

separate quantities in Z because no material transfer between the two metabolites (either

directly or through intermediates) can occur, for example, because the metabolites are in

unconnected compartments (to be further discussed in Section 5.4).

5.3.2.2 Information from Online Databases

Atomic matrices can be constructed by retrieving information from databases such as

MetaCyc and KEGG. However, retrieving all of the required information is difficult, often

caused by (i) human annotation of metabolites being different from the identifiers listed

in the database or (ii) metabolites (such as polymers) not having an associated empirical

formula.
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In this work, information was obtained from MetaCyc and the resultant matrix is denoted

by Adb.

5.3.2.3 Supplementing the Information Gained from Online Databases using

the Left Null-space

When given an incomplete atomic matrix, a novel algorithm that can calculate the com-

position of unknown metabolites by determining the values that can be assigned to them

when ensuring conservation of matter in the system was devised.

This approach also identifies reactions that violate conservation of mass (labelled here as

inconsistent reactions) when given Adb. This is accomplished by finding the reactions

that satisfy one of the following two conditions

1. if the composition of all of the metabolites in a reaction is known in Adb, then the

atoms in the left and right-hand side of the reaction are not balanced, or

2. if the composition of some of the metabolite in a reaction is unknown, then at

least one of the metabolites cannot contain a positive number of moieties without

violating the conservation of mass in the system.

The algorithm assumes that all metabolite composition information in Adb is correct and

proceeds as follows.

Consider an incomplete atomic matrix, Adb, specifying the elemental composition of a

subset of metabolites in a given system. Then, the atomic matrix, A, can be split into

two parts:

A =

 Aknown

Aunknown

 , (5.17)

where

1. Aknown is the set of metabolites whose composition is known (i.e. the metabolites

in Adb), and

2. Aunknown is the set of metabolites whose composition is unknown (i.e. the metabo-

lites in N but not in Adb).
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Algorithm 7 Extend(Adb, N ), which when applied to an incomplete atomic matrix
returns a matrix, Aextended, that extends upon the rows of Adb to include information
about more metabolites, and a matrix Aranges that specifies the range of values that the
metabolites which are still unknown must have.

1: Aextended = empty matrix()
2: Aranges = empty matrix()
3: for element in col names(Adb) do
4: aknown = get col(Adb, element)
5: ilp = F(aknown, N )
6: extended el dict = empty dictionary()
7: ranges el dict = empty dictionary()
8: aunknown = get difference rnames(Adb, N )
9: for met in aunknown do

10: min val = get sol minimize(ilp, met)
11: max val = get sol maximize(ilp, met)
12: if min val == max val then
13: extended el dict[met] = min val
14: else
15: ranges el dict[met] = (min val, max val)
16: end if
17: end for
18: add col(Aextended, extended el dict, name = element)
19: add col(Aranges, ranges el dict, name = element)
20: end for
21: return Aextended, Aranges.

The composition of the metabolites in Aunknown are inferred, one element at a time, by

Algorithm 7. Specifically, each metabolite is identified as:

• having a particular elemental composition, or

• having a composition from a known range.

This is accomplished by repeatedly solving the following Integer Linear Optimisation

Problem (ILP):

F(aknown,N ) = min/max ak , for one ak ∈ aunknown

subject to


N>a = 0 ,

ai = vali, for all ai ∈ aknown , vali ∈ Adb,

ai ≥ 0, for all ai ∈ aunknown.

(5.18)

The constraints are based on the fact that all atomic vectors, a, must have the following
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three properties:

1. a must be in the left null-space (i.e. N>a = 0),

2. the metabolites in aknown must be equal to their values in Adb (ai = vali, where

vali is the corresponding value in Adb), and

3. every element of a must be a positive integer (i.e. ai ≥ 0 and a ∈ Zm).

The algorithm iterates through all of the metabolites in aunknown and Equation (5.18)

is solved twice for each metabolite. The objective function is defined such that the first

solution obtains the minimum possible value that can be assigned to the metabolite whilst

satisfying the pre-defined constraints and the second solution obtains the maximum value

(Steps 10 and 11 in Algorithm 7). If the two values are equal, then only one elemental value

can allow conservation of matter in the system, and that value is saved for addition into

the extended atomic matrix Aextended (Step 13). If this is not the case, the metabolite’s

potential range of values is saved to be added to Aranges (Step 15).

The algorithm repeats the previous steps until all columns in Adb are extended.

Figure 5.5 shows examples of the output of the algorithm when applied to simple small

models.

Inconsistent reactions.

When constructing the ILP described by Equation (5.18), the rows of N> (each of which

corresponds to a reaction) are added as constraints one row at a time. At each step, the

reaction to be added is tested for whether it satisfies the law of conservation of matter

as specified by Adb and the constraints generated by rows of N> that had been already

added to the ILP. If this is found not to be the case, the reaction is assumed to not be

correctly balanced, recorded, and removed from the constraints of the ILP (i.e. deleted

from the rows of N>). A more comprehensive solution for this problem would be to

redefine unbalanced reactions to ensure the matter is conserved, but this has not been

considered in this thesis.
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Figure 5.5: The results of Algorithm 7 when applied to simple models, where the output of the algorithm is shown. In the first example,
the composition of both products of r1 is known, such that the composition of the substrate must be the sum of the composition of the
products. In the second example, only the composition of the substrate is known, such that the products can be assigned a range of values
reflecting the various ways through which the substrate can be divided in two. In the third example, r2 violates conservation of matter (since
its substrates and products have a different elemental composition) and is therefore labelled as inconsistent.
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Furthermore, note that, due to the sequential nature of the algorithm, reactions identified

as inconsistent do not necessarily have incorrect stoichiometry, but may be classified as so

because of incorrect reactions that were added to the ILP in earlier steps. For example,

consider the third panel in Figure 4.4, if the order of reactions in N was alternatively

{r2, r1}, then r2 would be the first reaction added to the ILP. Following this, r1 would be

determined to be inconsistent.

5.3.2.4 Molecular-Fingerprint Encoding

In this chapter, molecular-fingerprint encoding was used to compare the results obtained

from the similarity measure with those of more established techniques.

Molecular-fingerprint encoding is a widely used method for comparing the structure of

metabolites [Brown et al., 2005]. It was developed to facilitate the similarity-based virtual

screening aspect of the drug-discovery process, where large databases of small molecules

are evaluated for their likely-hood to bind to a drug target (by comparing their structure

with that of known ligand) [Willett, 2006].

This method assigns each metabolite a binary sequence (referred to as a fingerprint) that

details whether the metabolite contains occurrences from a set of pre-defined chemically

interesting substructures. Specifically, each bit in the sequence corresponds to a specific

substructure that is set to one or zero depending on whether the substructure is present in

the molecule. Subsequently, the fingerprints are compared with each other using methods

such as the Tanimoto coefficient, which compares two fingerprints by calculating the ratio

of substructures that are common to both fingerprints in relation to the substructures

that are present in only one of the fingerprints [Bajusz et al., 2015].

5.3.3 The Network Pruning and Pathway Finding Algorithms

As discussed in Section 1, one of the challenges in understanding metabolic networks and

the results of their analysis stems from their large size. Therefore, a use of metabolite

chemical composition data is to reduce the size of models by selectively retaining metabo-

lites of interest, in a process that can be referred to as lossy compression. For example,

removing co-factors (by considering them as external) was proposed as a method for al-
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leviating the combinatorial explosion associated with the calculation of EMs by Schuster

et al. [1999], while Huang et al. [2017] and Ghaderi et al. [2020] used atom mapping

information to extract pathways that follow the movement of specific moieties through

pathways.

A method that uses the similarity measure to simplify networks was developed as part of

this thesis, referred to here as network pruning. This method aims to linearise networks

as much as possible, resulting in mono-molecular reactions (only one substrate and only

one product) that retain the substrates and products that have a maximal amount of

similarity with each other.

Additionally, a novel method that uses the similarity measure to generate a path from a

start product, by connecting metabolites that have the highest similarity between them

was also designed and referred to here as the pathway finding algorithm.

The network pruning algorithm.

In order to simplify a metabolic network, metabolites are here classified as leading or

supporting, where in any reaction, the leading metabolites are assumed to have a maximal

similarity with the other leading metabolites in the network. For example, if a researcher

was interested in the paths leading to the generation of PGA by the enzyme RuBisCo as

shown by reaction r1:

r1 : RuBP + CO2 +H2O → 2PGA+ 2H+, (5.19)

Then RuBP and PGA would be classified as leading, whilst the supporting metabolites

would be carbon dioxide, water, and protons. Removing the supporting metabolites

results in an approximate reaction for visualising the transformation of PGA:

r̃1 : RuBP → 2PGA. (5.20)

This classification is achieved whilst ensuring that:

1. every reaction has at least one leading substrate and one product,

2. the similarity φ between each substrate and product is maximal,
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where the similarity measure can be taken to be:

1. the angle between the rows of the orthonormal external left null-space, φG, or

2. the angle between the rows of the atomic matrix, φA.

Given these definitions, this problem was tackled through the development of Algorithm 8

that iteratively removes metabolites from the network, in a process that identifies leading

metabolites until all reactions in the network have at least one leading substrate and

product.

First, an initial subset of labelled metabolites is obtained directly from N where

1. metabolites identified as proportional rows of N (corresponding to conservation

relations with two non-zero elements, which identify conserved moieties such as

ADP and NADP) are classified as supporting and removed from N (Steps 2 and 3

in Algorithm 8),

2. metabolites that are the sole substrate/product of a reaction are classified as leading

(Step 4),

3. metabolites with identical elemental composition ratios to any of the metabolites

labelled in points 1 and 2 above (identified as parallel groups by the similarity

measure) are assigned the same label as their parallel counterparts (Step 6).

Then, every unclassified metabolite in N is assigned a cost value (provided that it is on

the other side of (i.e. opposite to) a leading metabolite in at least one reaction):

costi = av dist from leadingi + λmet degreei, (5.21)

where av dist from leading is one minus the average similarity value between the con-

sidered metabolite and any leading metabolites that it is opposite to in a reaction (where

the smaller the value, the more similar), whist met degree is the proportion of reactions

that the metabolite is involved in (standardised such that the metabolite involved in the

largest number of reactions has a value of one), therefore taking into account that metabo-

lites involved in a relatively large number of reactions are likely to be co-factors. λ is a
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constant chosen by the user (chosen to be one during the work presented in this chapter).

The metabolite with the largest cost value is classified as supporting and removed from

N (Steps 8 and 9). Any metabolite, which, after this removal, becomes the sole sub-

strate/product of a reaction, is classified as leading (Steps 10). In addition, unlabelled

metabolites with identical elemental composition ratios to metabolites that were labelled

in the current iteration are assigned the same label (Step 12).

This process is iteratively repeated until all of the reactions in the model have at least

one leading substrate and product. Once this is achieved, all of the remaining unlabelled

metabolites are classified as supporting.

Algorithm 8 Network pruning(R, N ), which when applied to a correlation matrix, R,
and stoichiometry matrix, N , prunes metabolites from N , on the basis of maximising the
similarity between the substrates and products of reactions.

1: labels dict = empty dictionary()
2: cofacs = get cofacs(N )
3: del mets from N(N , cofacs)
4: leading mets = get leading(N )
5: save labels(labels dict, cofacs, leading mets)
6: extend labels to isomers(R)
7: while not every reaction has leading metabolites in left and right do
8: next supporting = get met highest cost(N , R)
9: del mets from N(N , next supporting)

10: leading mets = get leading(N )
11: save labels(labels dict, cofacs, leadin mets)
12: extend labels to isomers(R)
13: end while.

The pathway finding algorithm.

Similarly to Algorithm 8 described above, Algorithm 9 maximises the similarity between

metabolites. Starting from a user-selected substrate metabolite, the algorithm generates

a linear pathway, where, at each step, the product metabolite with the highest similarity

to the substrate is selected to be added to the pathway (or vice-versa in the case that a

product is chosen) (Steps 6 and 7 in Algorithm 9). This algorithm terminates when an

external metabolite is reached, or the length of the path reaches a user-specified maximum.

Note that this algorithm does not take the directionality of reactions into account. Fur-

thermore, groups of connected metabolites that are identified to have an identical ele-
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mental composition ratio by the similarity measure will be connected to each other in the

pathway produced by the algorithm.

Algorithm 9 Pathway finding(met, R, N , max iters = 10), which when applied to a
starting metabolite, a correlation matrix, R, and stoichiometry matrix, N , finds a linear
path starting from met where at each step, the next metabolite in the pathway is chosen
on the basis of maximising similarity.

1: path = [met]
2: while (path[-1] is not external met) and (path[-1] is not in path[:-1]) and (len(path)
< max iters) do

3: prev met = path[-1]
4: opposite mets list = get opposite to met in reacs(N , prev met)
5: next met = find most similar to(opposite met list, prev met)
6: path.append(next met)
7: end while
8: return path

5.3.4 Implementation

The algorithms described within this chapter are implemented as part of three modules.

The first module, contains a class called LeftNS that contains a left null-space basis and

associated correlation matrix. The second, AtomicMatrix retrieves atomic matrices from

the metacyc database and implements the Extend algorithm. Finally the ClassifyMets

module implements the network pruning and pathway finding algorithms.

New instances of LeftNS are initiated by giving a stoichiometry matrix as an input. A left

null-space basis is automatically calculated using an existing ScrumPy SVD algorithm that

forms part of the Scipy1 library. Since the work presented in this chapter is derived from

previous methods applied to the right null-space by Poolman et al. [2007], a function that

calculates the similarity measure, associated tree, and correlation matrix were existing in

ScrumPy. As part of this work, these functions were combined into a class called diffMtx

that contains a correlation matrix with the following additional attributes:

• GetIndep(): returns the metabolites that are orthogonal to each other,

• GetParallel(): returns that metabolites that are parallel to each other,
1scipy.org
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• GetTree(): returns a tree object that displays the correlation between metabolites

using the WPGMA algorithm as implemented in ScrumPy and described by Poolman

et al. [2007] and Morgan and Ray [1995], such that the greater the correlation

between any two metabolites, the closer they are found within the tree.

The atomic matrix was initially constructed as a ScrumPy DataSet instance, which is then

populated using existing ScrumPy functions that retrieve information from the MetaCyc

database. This matrix was then extended using an ILP, defined using the cvxopt2 Python

library (which is itself an interface for the GNU Linear Programming Toolkit, glpk3). The

ILP is implemented as part of a class that contains internal functions for defining the ILP

problem and finding unbalanced reactions. This class, called ExtendAtomic, is a child

class of LeftNS and requires an incomplete atomic matrix and an external stoichiometry

matrix instance as an input.

The classifyMets module contains a class that includes the following attributes:

• smx : a stoichiometry matrix instance, N , that is simplified by the network pruning

algorithm,

• diffMtx : a diffMtx instance that specifies the similarity between metabolites,

• ClassifyMets(): an implementation of the network pruning algorithm that classifies

all metabolites in N as leading or supporting and accordingly simplifies N .

• FindPathway(met): an implementation of the pathway finding algorithm that ob-

tains a linear pathway starting from the metabolite met.

In addition, molecular-fingerprint encodings for metabolites were calculated from SMILES

data using the Chem module of the RDkit4 chem-informatics Python library, and correlated

using the Tanimoto similarity metric.
2cvxopt.org
3gnu.org/software/glpk/
4rdkit.org/docs/source/rdkit.Chem
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Table 5.2: The sub-models of C. jejuni used as described in this chapter.

Model Reactions Metabolites Inputs Outputs
Biomass Sub-Model 319 365 30 61
PLP Sub-Model 47 63 6 5

5.4 Results

The methods described in this chapter were applied to the Calvin cycle, simplified plant,

photorespiration and C. jejuni models listed in Table 2.1 and described in Chapter 2.5.2.

The models of the Calvin cycle, simplified plant, and photorespiration are small, whilst

the model of C. jejuni is genome scale. Additionally, two sub-models were extracted from

the model of C. jejuni, as listed in Table 5.2, and analysed. One of these models contains

the reactions present in an FBA solution that produces all biomass components, and the

other, smaller, model contains the reactions in an FBA solution that produces only PLP

(obtained as described in Chapter 3.4.2.1).

All metabolites of the Calvin cycle and C. jejuni models are within one compartment (the

stroma in the case of the Calvin cycle). The photosynthesis model is compartmentalised

into the cytosol, chloroplast, peroxisome, and mitochondria, where chemically identical

metabolites are assigned different identifiers based on the compartment in which they are

located, and some are allowed to travel between compartments via transporter reactions.

Similarly, the simplified plant model includes two chloroplast compartments that each

contain identical copies of the Calvin cycle model (but whose internal metabolites are

labelled differently to be distinguished), the cytosol, and an amyloplast (site of starch

storage and synthesis within the roots), as shown by Figure 5.6. The only metabolites

exchanged between the chloroplasts and the cytosolic environment are PGA and phos-

phate.

5.4.1 Summary of Results

This section summarises the analysis of all the models in Table 5.2. The results are then

expanded upon within the context of each specific model in the following subsections.
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Cytosol

Amyloplast

PGA
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PiPi
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Pi Pi

Figure 5.6: The simplified plant model. The chloroplast and amyloplast are organelles
(subcellular structures enclosed by their own membrane) that perform specific functions
within a cell, while the cytosol refers to the fluid between the cell membrane and the or-
ganelles. This model contains the Calvin cycle in the chloroplasts, glycolysis and sucrose
synthesis in the cytosol, and starch synthesis in the amyloplast. Derived with permission
from Poolman et al. [2007].

The similarity measure.

To investigate the relation between the external left null-space and chemical similarity,

the models’ metabolites were compared on the bases of their correlation in the:

1. orthonormal internal and external left null-space bases,

2. atomic matrix, and

3. molecular-fingerprint encoding (Calvin cycle only).

The similarity measure applied to the rows of A, φA, compared metabolites according

to their empirical formula, while molecular-fingerprint encoding (Section 5.3.2.4) related

metabolites by the structural motifs that they have in common [Brown et al., 2005].

These relationships were shown as a tree having metabolites as leaves, see Section 5.3.1,

where the more similar two metabolites are to one another, the closer they are found

together in the tree.

The information gained from the left null-space of the internal stoichiometry matrix was

also investigated. However, the analysis that follows uses G (unless stated otherwise).

The rank of the matrices G, G, and A are listed in Table 5.3, while the number of
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Table 5.3: The rank of the left null-space and atomic matrices of the models used within
this chapter, where Algorithm 7 was used to calculate A for all models except for the
complete model of C. jejuni, whose A is comprised of only database records.

Model Rank(G) Rank(G) Rank(A)
Calvin cycle 2 8 5
Simplified plant 6 13 5
Photorespiration 20 26 6
C. jejuni 129 146 13
C. jejuni biomass sub-model 6 46 7
C. jejuni PLP sub-model 6 16 6

Table 5.4: The number of groups of parallel metabolites and pairs of orthogonal metabolites
identified from G and A of the models listed.

Parallel Groups Orthogonal Pairs
Model G A G A
Calvin cycle 4 5 0 1
Simplified plant 5 7 64 0
Photorespiration 21 27 630 127
C. jejuni 144 131 2317 5660
C. jejuni biomass sub-model 74 78 1086 674
C. jejuni PLP sub-model 10 14 0 24

parallel/independent metabolites identified by the similarity measure applied to G and A

are in Table 5.4.

The Extend algorithm.

Algorithm 7 was applied to all models except for the complete model of C. jejuni (due to

efficiency limitations of the algorithm). The results are in Table 5.5.

The network pruning and pathway finding algorithms.

The network pruning algorithm, described in Section 5.3.3 was applied to all models listed

in Table 5.2. The number of metabolites classified as supporting or leading when using G

and A are listed in Table 5.6.

In addition, to determine whether the pathway finding algorithm can successfully extract

chemically similar connected metabolites from models, this algorithm was used to generate

linear pathways starting from specific external metabolites. The biological relevance of
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Table 5.5: The number of metabolites in: (i) the external stoichiometry matrix, N , (ii)
the atomic matrix obtained from the metacyc database, Adb, and (iii) the atomic matrix
obtained after applying Algorithm 7 to Adb, A = Extend(Adb), for the models listed.

model Number Of Metabolites
N Adb A

Calvin 28 28 N/A
Simplified plant 77 60 73
Photorespiration 113 103 107
C. jejuni 1105 881 N/A
C. jejuni biomass sub-model 365 253 325
C. jejuni PLP sub-model 63 50 57

Table 5.6: The number of leading and supporting metabolites identified from G and A of
the models listed.

Leading Metabolites Supporting Metabolites
Model G A G A
Calvin cycle 18 18 10 10
Simplified plant 56 53 21 24
Photorespiration 60 53 53 60
C. jejuni biomass sub-model 173 142 192 223
C. jejuni PLP sub-model 30 33 33 30
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these pathways was evaluated using criteria such as the presence of chemical moieties that

are shared amongst the constituent metabolites and the pathways’ resemblance to known

synthesis routes of metabolic products.

5.4.2 The Calvin Cycle Model

The Calvin cycle model contains two moieties that are conserved within internal loops:

ADP and phosphate (see Section 5.5.1). Therefore, there exists an internal left null-space

basis that contains two atomic vectors as columns: one detailing the presence of ADP

in every metabolite (i.e. a coefficient of one for ADP and ATP and zero elsewhere), and

another showing the presence of phosphate (i.e. a coefficient of one for phosphates, two

for bi-phosphates, and zero elsewhere). As a result, the phosphate moiety and the cycle’s

sugar-phosphates were all parallel with each other in G.

The similarity between the metabolites of the external left null-space are presented as

trees in Figures 5.7, 5.8, and 5.9, where each figure shows the similarity in G, A, and

molecular-fingerprints respectively. All of the isomers (and compounds with an identical

elemental ratio) were perfectly correlated both in the external left null-space and atomic

matrix. However, the internal trios-phosphate sugars were weakly correlated with their

external counterparts in the left null-space. A potential reason for this observation is that

the impact of internal phosphate conservation led to the internal metabolites being more

correlated with each other than with the external metabolites of the network.

The Extend algorithm.

To verify the output of the Extend algorithm (Algorithm 7), a complete atomic matrix,

A, was manually built for the Calvin cycle model.

A number of metabolites were randomly selected and removed from A to create an incom-

plete atomic matrix, A. Then, the Extend algorithm, along with a traditional algorithm

that iteratively calculates the composition of unknown metabolites by balancing the re-

actions that have only one unknown (terminating when all reaction of the model that

contain unknown metabolites have at least two unknowns) were applied to A. The re-

sults of both algorithms, shown in Table 5.7, were confirmed to be consistent with the

original A. Furthermore, the Extend algorithm consistently identified a greater/equal
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RuBP_ch
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1.78461

Figure 5.7: The tree obtained from the left null-space of the Calvin cycle Model, where
the greater the similarity between two metabolites, the smaller the distance between them
in the tree. The external sugar metabolites are clustered together, as are the co-factor pairs.
The internal sugar metabolites of the cycle (except for PGA) can be found at the centre of
the tree where isomers are perfectly correlated. See Figure 2.7 for the original model.

number of metabolites then the traditional algorithm.

Furthermore, to assess Algorithm 7’s ability to identify unbalanced reactions, the model

of the Calvin cycle was modified such that some reactions were unbalanced. Then, the

algorithm was applied to incomplete atomic matrices in a similar process to that described

above. This algorithm identified the presence of unbalanced stoichiometry in all cases,

however, the specific reactions that were unbalanced were not always correctly identified

(seen here in iterations that contained a large number of unknown metabolites). This

result occurred since the identification of unbalanced reactions is dependent on the order in

which reactions are added to Equation (5.18). As a consequence, although this algorithm

can detect the presence of unbalanced reactions in models, it is not guaranteed to find
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Figure 5.8: The tree obtained from the atomic matrix of the Calvin cycle Model. In
contrast to the tree obtained from the left null-space, isomers are perfectly correlated with
each other irregardless of whether they are internal or external in the model. See Figure 2.7
for the original model.

the reactions that cause this unbalance.

The network pruning and pathway finding algorithms.

The results of the network pruning algorithm were identical both when using G and A,

where the metabolites retained within the reduced model were all of the carbon sugars

with the exception of E4P, as shown by Figures 5.10 and 5.11.

As described in Section 2.5.2, the Calvin cycle synthesises and stores starch during periods

of high light intensity. When less light is available, the rate of CO2 assimilation via

RuBisCo is reduced, which prompts starch to be degraded in order to supplement the

cycle’s production of triose-phosphate sugars with additional carbon.
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Figure 5.9: The tree obtained from the fingerprint similarity of the metabolites in the
Calvin cycle Model, illustrating the similarity between the chemical structure of the metabo-
lites. See Figure 2.7 for the original model.

This was investigated by using the pathway finding algorithm to generate pathways that

start from PGA, using both G and A. This resulted in different paths that linked PGA to

external starch (see Figures 5.12 and 5.13, respectively), where the external left null-space

extracted sugars from the reductive branch of the Calvin cycle, whilst the atomic matrix

extracted sugars from the regenerative branch of the cycle. The reason for this difference

is that PGA was most similar to BPGA in the left null-space, and RuBP in the atomic

matrix.

5.4.3 The Simplified Plant Model

Similarly to the results described above, the internal left null-space contained basis vec-

tors that show the conservation of phosphate and ADP/NAD moieties. Phosphate was
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Table 5.7: The number of metabolites in (i) an incomplete atomic matrix, (ii) the output
of a traditional Extend algorithm applied to A, and (iii) the output of the novel Extend
algorithm applied to A. The incomplete atomic matrices were created by randomly removing
five, ten, fifteen, and, twenty metabolites for each case. This process was repeated three
times and the average output of the algorithms is shown.

Number Of Metabolites
Incomplete A Traditional(A) Extend(A)
23 28 28
18 28 28
13 26 27
8 17 20

DHAP GAP

RuBP

CO
2

FBP

F6P

E4P

SBP S7P R5P

Ru5P

X5P

ATP

ADP
Pi

PGABPGA

ADP ATPPi NADP+ NADPH

G6P

G1P

Starch

Pi
ADP

ATP

Pi Pi Pi

Cytosol

StromaPi Pi Pi

Figure 5.10: The Calvin cycle model, where metabolites identified as supporting are
coloured in grey (including all currency metabolites and erythrose-4-phosphate). See Figure
2.7 for the original model.
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Figure 5.11: The simplified Calvin cycle model, obtained after supporting metabolites
are removed, leading to the linearisation of some reactions. See Figure 2.7 for the original
model.
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Figure 5.12: A pathway linking PGA to starch in the Calvin cycle model, obtained by
from the pathway finding algorithm and G. See Figure 2.7 for the original model.
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Figure 5.13: A pathway linking PGA to starch in the Calvin cycle model, obtained from
the pathway finding algorithm and A. See Figure 2.7 for the original model.

separately conserved as part of the Calvin cycle in the two respective chloroplasts, and gly-

colysis in the cytosol and amyloplast. This led to three groups of parallel sugar-phosphate

metabolites.

Comparison of the trees obtained from A and G showed that the external left null-space

was highly influenced by compartmentalisation, where identical carbohydrates present in

three different compartments (a Calvin cycle in each the two chloroplasts and glycolysis in

the cytosol), were more correlated with similar carbohydrates in their own compartment,

than their intra-compartment counterparts in G. As with the Calvin cycle, this result is

likely to have been caused by the conservation of internal phosphate (see Section 5.5.1).

All isomers were perfectly correlated within compartments; however, pyruvate in the

cytosol was parallel to fructose, maltose, sucrose, glucose, and starch in G, despite the

fact it does not have the same elemental composition ratio as the latter metabolites. This

relation was caused by a pyruvate kinase reaction that was not balanced for protons in

the model.

Upon identification of the orthogonal metabolites, NAD and NADH in the cytosol were

orthogonal to all metabolites in the model except for each other. In the model, these

metabolites were only involved in an internal cycle where NADH is oxidised by GAP
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NAD
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PiADP ATP NADH
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GAP PGA

Figure 5.14: An internal cycle involving the oxidization of NADH (where r1: merger of
phosphoglycerate kinase & GAP dehydrogenase; r2: oxidative phosphorylation). Note that
this cycle emerged since the stoichiometry of r1 is incorrect.

dehydrogenase and subsequently regenerated by the ETC. This cycle emerged since the

stoichiometry for GAP dehydrogenase was incorrectly merged with that of PGA kinase

as shown in Figure 5.14.

The Extend algorithm.

23 reactions were identified as unbalanced within this model. Most of these involved water

and protons, which was to be expected since the conservation of these metabolites was not

taken into account when the model was constructed (note that, since these metabolites

are external, their omission did not impact the results of analysis derived from the internal

stoichiometry matrix, for which the models were originally developed). Other reactions

regarded the synthesis/degradation of ATP or starch.

As a consequence of these unbalanced reactions, the majority of the metabolite composi-

tions calculated by the Extend algorithm were incorrect.

The network pruning and pathway finding algorithms.

Applying the network pruning algorithm returned a simplified model containing the car-

bohydrates of the Calvin cycle as shown in Figure 5.11, the sugars of glycolysis, and the

synthesis/degradation of starch in the amyloplast.

The results for G and A were identical except for ATP/ADP and phosphate in the amy-

loplast, which were retained in the simplified model when using G.

The pathway finding algorithm was used to investigate the formation of starch in the

chloroplasts and amyloplast. Seeking a pathway starting from external starch in the

amyloplast extracted the non-phosphorylated hexose sugars within this compartment, by

creating a cycle from starch to maltose, glucose, and finally starch once more, whereas,

166



Chapter 5: The Left Null-Space and Metabolite Similarity

pathways starting from starch in the chloroplasts grouped the sugar-phosphates of the

cycle (excluding DHAP) and phosphate.

The results of Algorithm 9 were identical for both G and A.

5.4.4 The Photorespiration Model

As in the previous models, the internal left null-space exposed the internal conservation

of moieties in the model. This included ADP in the Calvin cycle, photorespiration, and

TCA cycle.

In addition, the metabolite similarity associated with the external left null-space was

clustered in a way that reflects the compartmentalised nature of the model (see Figure

5.15). For example, isomers in the same compartment were parallel in G, while there were

several occurrences of identical metabolites present in different compartments that were

unrelated in G, including NAD/NADH and ADP/ATP.

This model contained 630 pairs of metabolites that were orthogonal to each other within

the left null-space. All pairs involved phosphate and ADP/ATP within the cytosol and

mitochondria, which form part of an internal cycle that synthesises ATP within the TCA

cycle and consumes it within the cytosol, see Figure 5.16.

The Extend algorithm.

Eighteen reactions were identified as unbalanced in this model. Similarly to the simplified

plant model, the majority of these were caused by the omission of protons and water.

Others were caused by the inclusion of reactions that include phantom metabolites to

simulate the cell’s ATP requirements. Finally, three reactions were falsely identified as

unbalanced due to the metabolite glycine being incorrectly defined in Adb.

Four additional metabolites where assigned a composition by Algorithm 7. These were

S7P, RuBP, ubiquinol, and a carbohydrate polymer. The calculated composition of S7P

was verified to be correct. However, proton unbalancing in the model lead to the compo-

sition of RuBP to be incorrect. Furthermore, the composition of ubiquinol was incorrect

as its oxidised form, ubiquinone, was incorrectly defined in Adb.

167



Chapter 5: The Left Null-Space and Metabolite Similarity

Figure 5.15: The tree obtained from the left null-space of the photorespiration model.
The modular nature of this tree is emphasised by labelling groups of metabolites that form
part of particular metabolic processes. See Figure 2.8 for the original model.
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Figure 5.16: An internal cycle where ATP hydrolysed in the cytosol is replenished by
ATP synthesis in the mitochondria. As a consequence of this cycle, the molar amounts of
ADP, ATP, and phosphate are independent from the other metabolites in the model. See
Figure 2.8 for the original model. Note that EM analysis of this model by Huma et al.
[2018] showed that ATP hydrolysis is actually driven by the creation of NADH from the
conversion of glycine to serine (r46 in Figure 2.8) and not by r47, which is inactive.

The network pruning and pathway finding algorithms.

When applying the network pruning algorithm, the results from G and A differed.

Metabolites identified as leading in both cases included most carbon sugars of the Calvin

cycle, metabolites involved in nitrogen metabolism, ATP in the chloroplasts, and oxy-

gen moieties in some compartments. Common discarded metabolites included NAD and

ATP in the mitochondria, protons, and CoA. Some amino acids were not retained in the

simplified model obtained from G, but were so when A was used. While G identified

ammonia and phosphate as supporting, which was not the case in when A was used to

establish similarity.

In this case, A was incomplete (as listed in Table 5.5), and so the total set of metabolites

classified was different for both similarity measures.

Similarly to the model of the Calvin cycle, the pathway finding algorithm was used to

obtain pathways starting from PGA. As shown in Figure 5.17, G led to a short cycle

of metabolites that share a phosphate moiety, whilst A produced a cycle that grouped

similar sugar-phosphates within the Calvin cycle, and similarly shows the conservation of

phosphate.

Note that the pathway obtained from G included a free phosphate since this molecule had
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Figure 5.17: The paths identified by the pathway finding algorithm, when starting with
PGA in the photorespiration model, both of which highlight the conservation of phosphate.
See Figure 2.8 for the original model.

a higher similarity with BPGA than with GAP within G. This is chemically accurate since

the elemental composition ratio of BPGA is also more similar to that of free phosphate

within A.

5.4.5 The C. jejuni Model

This model had 131 groups of parallel metabolites in the internal left null-space, reflecting

the extensive scale of this model. The biomass and PLP sub-models both contained

six such parallel groups, including the conservation of electron carrier moieties, such as

cytochrome, menaquinone, and ferrodoxin. In addition, the moieties ADP, NAD, and

Co-A were conserved in the PLP sub-model. While, acyl-carrier-proteins, a co-factor of

fatty acid biosynthesis, were conserved in the biomass sub-model.

All metabolites involved in isomerizations were identified as parallel in the external left

null-space. Additionally, groups of metabolites, which although not isomers, must have

an identical composition ratio because of the rules of conservation of mass, were also

obtained from G including metabolites that are co-transported with ions as well as the

ions themselves (such as internal and external alanine, internal and external phosphate),

and methyl-citrate and methyl-isocitrate which are connected together in the pathway

shown by Figure 5.18.
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methylaconitate
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methylcitrate

r2
H2O

methylisocitrate

Figure 5.18: A pathway connecting methylisocitrate to methylcitrate, where the two
metabolites are identified as having an identical elemental composition ratio in the left null-
space of the C. jejuni model, where r1: methylisocitrate dehydrogenase; r2 methylcitrate
dehydratase.

As discussed previously, not all metabolites with an identical composition ratio had pro-

portional rows in G. In fact, 31 groups of metabolites were identified as parallel in A but

not in G (taking note that A was incomplete). An example is lysine and its external coun-

terpart, which is co-transported into the cell by a reaction that requires the hydrolysis of

ATP. Similarly, a group containing hydrogen peroxide, a hydroxide ion, and a hydroxide

radical was not identified as parallel in G. This may be since, unlike A, N is also influence

by the conservation of electrons (which the above metabolites have a different number of).

Sodium ions (both internal and external) were independent of all other metabolites in

the model (both in N and A). These ions are co-transported with metabolites such as

protons, proline, and α−alanine, to ensure charge conservation in the model. Addition-

ally, the left null-space contained a number of metabolites that were independent of a

subset of other metabolites. The most significant was, palmitoleoyl-CoA, a metabolite

that acts in reactions that incorporate palmitoleoyl moiety into lipids. This metabolite

was independent of 34 metabolites (mostly involving metabolites that contain cysteine,

methyl-sulfanyl, or thiohydroximate residues).

The Extend algorithm.

Applying the Extend algorithm to the complete model of C. jejuni was challenging because

of the computational requirements of the algorithm. Hence it was only applied to the sub-

models obtained from LP solutions.
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Figure 5.19: The Network pruning algorithm applied to an FBA solution that produces
PLP in C. jejuni, where supporting metabolites are coloured in grey. See Figure 3.5 for the
original model.

The network pruning and pathway finding algorithms.

The network pruning algorithm was applied to the C. jejuni sub-models, where different

results were obtained for G and A. In the case of the biomass sub-model, 110 of the

leading metabolites were given the same label when using G and A, and 26 for the PLP

sub-model.

The results of this algorithm when applied on the PLP FBA solution using G is shown

in Figure 5.19, where metabolites such as NAD, ATP, CO2, CoA, and H2O, pyruvate and

E4P were labelled as supporting.

Furthermore, the pathway finding algorithm was applied to the C. jejuni model to gener-
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Figure 5.20: The paths identified by the pathway finding algorithm, when starting from
external PLP, applied to a FBA solutions that produce PLP and Biomass in C. jejuni. See
Figure 3.5 for the original model.

ate a path that produces PLP. In this case, only G could be used since the atomic matrix

generated for the model did not include PLP as an entry.

This algorithm was similarly applied to the PLP and Biomass sub-models, where the left

null-space resulted in the similar pathways shown in Figure 5.20. On the other hand, the

atomic matrix led to a pathway that contained sugars of the pentose phosphate pathway

for the PLP sub-model, while the results from the biomass sub-model contained additional

metabolites, such as some from methylerythritol phosphate biosynthesis pathway.

173



Chapter 5: The Left Null-Space and Metabolite Similarity

5.5 Discussion

5.5.1 The Similarity Measure

Conserved moieties in the internal left null-space.

As discussed in Section 5.1, conservation relations in the internal left null-space regard

moieties that are conserved within closed loops inside the network. However, these moi-

eties may be difficult to identify when given a set of basis vectors for G, since each such

vector does not necessarily correspond to the presence of a single moiety but rather a

combination of them. The similarity measure can address this challenge since groups of

metabolites that are parallel in G must contain the same conserved moiety. For example,

one such characteristic of the Calvin cycle is that the amount of phosphate inside the

cycle remains constant through time. This is as the amount of phosphate entering and

leaving the chloroplasts must always be equal (as shown in Figure 5.21). As a conse-

quence, all phosphate-containing metabolites of the cycle were parallel to each other in

G when investigated above.

Chemical similarity in the external left null-space.

The external left null-space was able to recover some (but not all) of the models’ known

chemical similarities. In fact, within single compartments, the relationships from the

external left null-space were found to be similar to those obtained from the atomic matrix.

This is to be expected since, as shown in Section 5.2.2, chemical moiety vectors have an

influence on the similarity measure applied to the external left null-space, G. However,

the extent of this influence is not guaranteed and also depends on whether reactions in

models are correctly balanced. Unbalanced reactions can distort results, as seen by the

relation of pyruvate to glucose in the simplified plant model. Moreover, similarities in

the empirical formula of metabolites (as measured by A) do not necessarily correspond

to similar metabolite structures. Indeed, the tree showing fingerprint similarity for the

Calvin cycle was different from those obtained from G and A. For example, fructose-6-

phosphate and fructose-1,6-biphosphate were loosely correlated in A and G, despite the

substantial similarity between their structures.

Both the identification of metabolites that are erroneously parallel to others, as well as,
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metabolites which are orthogonal to others were useful to identify errors in models as

shown in Section 5.4.3. Furthermore, the identification of pairs of orthogonal metabolites

exposed the presence of internal cycles and metabolites containing unique elements. For

example, sodium ions in the C. jejuni model are used for co-transport and not incorpo-

rated into any of the other metabolites in the model, such that no moiety conservation

vector that relates the sodium ions with other metabolites of the network can exist.

The influence of compartmentalisation.

Similarly to when the similarity measure was applied to the right null-space by Poolman

et al. [2007], compartmentalisation was found to have a significant impact on the way that

metabolites are clustered, which reflects that a matrix’s null-space is directly impacted by

the connectivity between the elements of the network that it generates, see Section 2.3.2.

For example, some chemically identical metabolites that were present in different com-

partments were not identified as parallel in the left null-space. These included metabolites

that are conserved within compartments or metabolites trapped within one or more com-

partments due to a lack of a transporter, such as, the non-decomposable ADP moiety in

the chloroplast of the photorespiration model which was unrelated to the ADP in other

compartments due to a lack of transport between the different compartments. In such

cases, although the same metabolite may be present in more than one compartment, lack

of material transfer between the compartments would prevent the elemental relationship

from being embedded into the stoichiometry matrix and thus in G.

Another example is the lack of a strong similarity between identical sugars in the two

chloroplasts of the simplified plant model. This observation is likely to be caused by

the conservation of phosphate inside the chloroplasts, a hypothesis that was tested by

removing the phosphate conservation from the model (achieved by allowing phosphate to

flow freely between the chloroplasts and the cytosol), which led to the identical sugars

emerging as parallel in the left null-space.

It was noted that although A is not constructed from the stoichiometry matrix, the

tree associated with it displays some modularity similar to that found in G since, due

to conservation rules, metabolites are more likely to share reactions (and thus be within

the same pathway in N ) with similar compounds rather than with ones that are highly
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Figure 5.21: The export of PGA balanced by the import of phosphate, where TPT:
triose-phosphate translocator.

different.

5.5.2 The Atomic Matrix

The tools provided here can facilitate the determination of the approximate elemental

composition of metabolites that are unknown. Furthermore, apart from calculating the

atomic composition of metabolites, the Extend algorithm was able to identify models that

are not correctly balanced, therefore facilitating model curation. This method improves

upon a technique previously developed by Gevorgyan [2009, pages 89-93], who used the left

null-space to determine whether all metabolites in a network can be assigned positive mass.

In the work presented in this thesis, available information on the elemental composition

of metabolites is also considered to further restrict the criteria for model correctness.

5.5.3 The Network Pruning Algorithm

Network pruning algorithms have been historically used to facilitate the application of

techniques from graph theory to models [Gerlee et al., 2009], and to aid the graphical

visualisation of pathways [Zhou and Nakhleh, 2011]. A common strategy is to eliminate

currency metabolites, identified by finding metabolites that are involved in a large number

of reactions.

When the pruning algorithm was used to simplify the Calvin cycle and simplified plant

models, the metabolites removed were all currency metabolites, therefore in agreement

with historical applications of network pruning. This observation was challenged when

applying the algorithm to the photorespiration model where some currency metabolites

were classified as leading. For example, such a labelling of ATP in the chloroplasts was

caused by this metabolite pertaining to a reaction that represents the light reactions

of photosynthesis, which contains ATP as the sole product. Similarly, protons in the

mitochondria were classified as leading directly from the stoichiometry matrix. This was
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because of being involved in ETC reactions that consisted of protons and metabolites

(such as ATP) that could be classified as supporting from the stoichiometry matrix. This

led to Succinyl-CoA in the mitochondria being classified as supporting, which simplified

an α−ketoglutarate dehydrogenase reaction into one that converts α−ketoglutarate into

protons, which is not biologically relevant. Similarly, a reaction involving the degradation

of hydrogen peroxide led to this metabolite being classified as leading, which in turn led

to an ascorbate oxidase reaction being simplified into one that converts hydrogen peroxide

into dehydroascorbate (rather than ascorbate into dehydroascrobate).

Moreover, applying the algorithm to FBA solutions facilitated their comprehension, lead-

ing to the simple illustration of PLP synthesis in Figure 5.19. However, direct comparisons

between the results obtained from G and A is difficult because of the use of incomplete

atomic matrices. This meant that some metabolites were considered to be missing from

the models when using A. For example, pyridoxine, the precursor of PLP was unac-

counted for in the C. jejuni model, hence the results of the pathway pruning algorithm

using A were not relevant.

5.5.4 The Pathway Finding Algorithm

The results obtained from the pathway finding algorithm were inconsistent. Application

to the Calvin cycle and simplified plant model highlighted the plants’ ability to inter-

convert similar sugars in processes that synthesise, store, and degrade starch. However,

the pathway obtained from the external left null-space of the photorespiration model was

less biologically relevant as it documented the exchange of free phosphate between four

metabolites of the model (Figure 5.17).

Furthermore, while the left null-space of the sub-models of C. jejuni retrieved some of

the initial steps involved known PLP synthesis pathways (as illustrated in 3.5.2.4), the

insights that could be gained the Network pruning algorithm revealed more information

and therefore were seen to be more suitable for analysis.
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5.6 Conclusion

The theoretical results of this chapter show that the left null-space G is useful for identi-

fying invariant relationships between concentration changes of metabolites. Furthermore,

a novel method that can use the external left null-space to relate the elemental com-

position of metabolites is presented, which also facilitates model curation by identifying

errors such as reactions that do not satisfy the law of conservation of mass. Finally, two

algorithms that can simplify models and FBA solutions by extracting metabolites that

are most similar.

The associated algorithms will be incorporated into the ScrumPy source tree in due course.
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As, over the past decades, the understanding of cellular metabolism has been steadily

increasing, so too has the size and complexity of metabolic models. Although this scale

permits a more realistic portrayal of metabolic behaviour, the size itself makes the analysis

of these models more difficult, a problem that motivated the work presented in this thesis.

The primary aim of this research is to explore novel methods to extract information from

the stoichiometric structure of networks (structural modelling), which along with aspects

from more established methods can generate useful insights whilst still being applicable

to larger models.

This aim is achieved using three different approaches: extracting fundamental flux path-

ways from the network’s architecture (Chapter 3), exploring methods that reduce the

size of models (Chapter 4), and establishing relationships between the concentration and

composition of metabolites (Chapter 5). All of these techniques rely on the analyses of

the right and left null-spaces of the stoichiometry matrix. They have been further shown

to be useful in model curation as well as the subsequent analysis.

An overview of the research work presented in this thesis is given below, including the

primary results and findings, their novelty, and their relevance to the research field.

6.1 Summary of Methodology and Results

Chapter 3 describes a method that decomposes flux measurements into a set of EMs

with desirable properties. This task was first achieved by Poolman et al. [2004b], who

designed an algorithm that requires the entire set of EMs of a network to be calculated a

priori and, therefore, cannot be applied to GSMs. In contrast, the algorithm presented

in this thesis has a much smaller computational burden, making it suitable for large-scale

models (hundreds of reactions).

The algorithm decomposes a steady-state flux vector, v, into constituent EMs, via a

sequence of iterations that produce EMs. Every iteration solves an LP that extracts a

sub-vector, v′, from v. This LP is defined such that (i) the reaction with the smallest flux

in v, vmin, has the same flux in v′ (i.e. vmin = v′min), and (ii) v′ contains a much smaller

number of reactions than v. The second requirement increases the likelihood that v′ is
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an EM. If this is not true, then v′ is efficiently decomposed into EMs by calculating the

EMs of a small sub-model that only includes the reactions of v′ (as discussed in Theorem

3.3.1.1). After saving the calculated EMs, the loop restarts using a modified flux vector

that is obtained by subtracting v′ from v (such that vmin is eliminated).

The findings were consistent with those of the less efficient algorithm previously described

by Poolman et al. [2004b]. Furthermore, as discussed in Section 3.1.2, although similar

approaches to those presented here (that also use optimisation to decompose flux vectors)

exist [Oddsdóttir et al., 2015; Hung et al., 2011; Jungers et al., 2011], they were designed

with different aims and so are suitable for different problems, such as finding a minimal

decomposition. The distinguishing property of the decomposition provided here is that,

generally, reactions with a high flux value in v are likely to appear in many EMs within the

decomposition and vice-versa. Another significant advantage is that the implementation of

this algorithm is easily accessible as part of the open-source metabolic modelling software

ScrumPy.

Chapter 3 also presents a theorem stating that for any flux vector, v, there exist a minimal

EM decomposition whose upper-bound is the dimension of the right null-space of a sub-

matrix of the stoichiometry matrix that contains only the reactions that carry non-zero

flux in v (Corollary 3.3.1.1). Although Müller and Regensburger [2016] and Jungers et al.

[2011] have previously made similar claims, they only considered the original stoichiometry

matrix (rather than the smaller sub-matrix), and therefore this thesis defines a tighter

upper-bound.

Chapter 4 investigates methods that reduce the size of models by eliminating redun-

dancies in the right null-space of the stoichiometry matrix. This concept was first in-

troduced by Pfeiffer et al. [1999], who demonstrated that the stoichiometry matrix, N,

can be reduced by combining the reactions in enzyme subsets with a single reaction that

embodies the net stoichiometry of the subset. Combining enzyme subsets does not change

the steady-state behaviour of the network (as shown by Theorem 4.4.1.1) and is used as

a pre-processing step for EMA in software such as ScrumPy and MetaTool.

The algorithm described in Chapter 4 expands upon this idea by introducing the notion

of iso-stoichiometric groups. Each such group specifies a set of reactions that have iden-
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tical stoichiometry, such that all but one of these duplicate reactions can be removed

from N without affecting the net conversions of metabolites that can be performed by

the network. As a consequence, models that have been reduced through the elimination

of enzyme subsets can be further reduced by eliminating iso-stoichiometric groups. This

reduction may cause new enzyme subsets to emerge in N, and therefore, N can be recur-

sively reduced (by eliminating more enzyme subsets and iso-stoichiometric groups at each

iteration) until a stage is reached where no enzyme subsets or iso-stoichiometric groups

are present. Such a reduction is lossless: results obtained from the analysis of a reduced

model can be extrapolated to equivalent results of the original model.

Apart from leading to a better compression ratio than when merely combining enzyme

subsets, the identification of iso-stoichiometric groups reveals important network charac-

teristics useful in model curation and analysis, as discussed in the following section.

In addition, Chapter 4 investigates two alternate approaches for defining biomass output

in models. This can be accomplished in one of two ways: (i) a collective transporter that

exports 1 unit of biomass (at the required proportions), or (ii) individual transporters that

export each component by itself. When simulating growth using FBA (with a minimisa-

tion objective), one constraint that generates flux in the reaction with combined biomass

is used for the first type of model, whilst the latter models require individual constraints

for each biomass transporter. This thesis establishes that FBA solutions derived from

either approach are equivalent.

Chapter 5 exploits one of the defining features of metabolic interaction: the existence

of conservation laws which establish relationships between the network’s metabolites.

Although it has always been apparent that these laws impact on the left null-space of the

stoichiometry matrix, few tools have been described for extracting information from this

space.

Hence, Chapter 5 develops new methods for extracting information about metabolite

properties and relationships using left null-space analysis. This approach builds upon

methods applied previously to the right null-space in Poolman et al. [2007], which intro-

duced a similarity measure that when applied to the rows of the right null-space clustered

reactions according to the similarity in their steady-state flux. The work described extends
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upon this method by showing that applying this measure to the internal left null-space

clusters metabolites with closely linked concentration values. This technique has many

advantages, for example, including the identification of conserved moieties.

In addition, since information about the elemental composition of metabolites is embed-

ded in the external left null-space, this similarity measure is used to cluster metabolites

based on their chemical similarity and extract pathways that contain chemically similar

metabolites. Notably, this technique relies solely on the network’s structure and, there-

fore, unlike previous methods such as Haraldsdóttir and Fleming [2016], does not require

external information describing the elemental composition of metabolites. This is useful

to cater for cases where not all metabolites’ chemical formulae can be defined.

Furthermore, when the composition of some (but not all) metabolites is known, a method

that integrates this known information with the left null-space to calculate the compo-

sition of unknown metabolites and identify the presence of unbalanced reactions is also

developed. As shown in Chapter 5, this method performed better than standard tech-

niques that were previously utilised by the CSM group for calculating the composition

of unknown metabolites, and is able to identify models that were not mass balanced

correctly.

6.2 Further Potential Impact of Findings

The methods described above uncover features from the underlying structure of metabolic

networks. In addition to providing novel insights, these methods can be incorporated

into established modelling procedures by giving alternatives to time-consuming existing

techniques, or by providing ways to enhance their output. To this end, this thesis proposes

methods that facilitate model curation and that address the limitations of EMA and FBA,

as discussed below.

6.2.1 Model Curation

Chapters 4 and 5 both offer different techniques that can facilitate model curation by

identifying errors in models that can subsequently be manually corrected by the modeller.
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For example, Algorithm 2 in Chapter 4 can identify duplicate processes that arise when

automatically constructing models from databases, the most common being caused by

multi-step enzymes being included as both the net stoichiometry and individual sub-

steps. These duplications may cause errors in the results of model analysis, for example,

by making it more difficult to identify essential reactions, and therefore should be removed

from models. This algorithm also identifies iso-stoichiometric groups whose constituent

reactions have inconsistent reversibility criteria. Such groups give rise to internal cycles

that violate Hess’s law (Chapter 2.1.2). Furthermore, reactions with incorrect reversibility

may lead to energy being generated from no input, which is a known problem in metabolic

models [Adhikari, 2017, page 67]. Previous methods for identifying such cycles include

EMA (as EMs with a net stoichiometry of zero), which is less convenient than the methods

proposed here due to its computational burden.

In addition, Chapter 5 provides a technique that can identify elemental imbalances in

models by using the left null-space to calculate the chemical composition of metabolites.

Previously established methods that test mass balancing in models do so by either (i)

only considering reactions for which all metabolite compositions are known (as is com-

monly done at the CSM group and elsewhere [informal communication]), or (ii) identifying

whether every metabolite can be assigned positive mass [Gevorgyan et al., 2008]. The

method proposed here, however, combines and improves upon these two approaches by

identifying whether the metabolites with unknown composition in the model can be as-

signed a positive composition when given the known composition of the other metabolites.

In addition, further errors in the definitions of reactions were identified when analysing

and comparing metabolite similarities in the left null-space and atomic matrix of models.

6.2.2 Model Analysis

EMA decomposes metabolic networks into a collection of minimal independent pathways

called EMs [Schuster et al., 1999; Ullah et al., 2019]. This technique facilitates model

analysis by converting intractable networks into tractable pathways that can be manu-

ally analysed, understood, and whose function can be identified. However, calculating

a network’s set of EMs is computationally intensive and, therefore, impractical for large

models. Chapter 4 addresses this limitation by allowing aspects of EMA to be applied to
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the analysis of larger models. Another advantage of EMA reflected within this thesis is

the analysis of redundancies shown in Chapter 4, which can alternatively be identified as

groups of EMs with the same net stoichiometry.

Similarly, the technique of FBA uses Linear Programming (LP) to obtain a steady-state

pathway (which may or may not be minimal) that best achieves an objective whilst

satisfying a set of user-defined constraints [Orth and Palsson, 2010]. As discussed in

Section 2.3.5, the redundancy in metabolic networks mean that any given FBA solution

is likely to be one of many alternate pathways that achieve the same objective using

different routes (a problem known as multiple optima). Since the calculation of the

entire set of alternate FBA solutions is challenging, the most widely used method for

studying multiple optima is flux variability analysis, a technique introduced by Mahadevan

and Schilling [2003], that uses LP to obtain the range of values that each reaction can

take whilst preserving the objective. Chapter 3 provides an additional method through

which these alternate solutions can be explored, specifically uncovering redundancies that

cause alternate solutions, which led to the design of Algorithm 6 that calculates alternate

pathways to a given FBA solution.

Another limitation of FBA is that solutions that simultaneously produce multiple products

typically contain many reactions, making them difficult to understand. A method to

obtain more straightforward solutions is to reduce the number of FBA output constraints.

However, as shown by the application of Algorithm 1 to C. jejuni in Chapter 3, such

FBA solutions are not necessarily realistic since the pathways used by living beings must

simultaneously meet many demands. This thesis tackles this problem by offering two

methods that simplify FBA solutions by (i) decomposing them into EMs as described

above and (ii) simplifying their visualisation using the pathway finding algorithms in

Chapter 5.

6.2.3 The Oxygen Requirement of C. jejuni

An additional aim of Chapter 3 is to investigate the oxygen requirements of C. jejuni, a

gram-negative microaerophilic bacteria that is recognised as one of the primary causes of

food poisoning worldwide. This organism has the potential capacity for anaerobic respi-
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ration but requires small amounts of oxygen to grow. Previous authors have suggested

that this requirement is because of oxygen-dependent heme synthesis or DNA synthesis

enzymes [Kelly, 2008; Sellars et al., 2002]. However, the reason for C. jejuni’s dependence

on oxygen is still unclear, and until the analysis presented in this thesis, there had been

no study to investigate oxygen dependency with regard to biomass precursors. Therefore,

in Chapter 3, a genome-scale metabolic model of C. jejuni is used to calculate this organ-

ism’s metabolic response to changes in the rate of oxygen uptake, which raised the novel

hypothesis that oxygen is required for synthesising PLP, which is essential for growth.

6.3 Future Work

The methods developed in this thesis are expected to become standard procedures in the

model development and analysis pipelines at the CSM group at Oxford Brookes Univer-

sity and its collaborators. To this end, the algorithm discussed in Chapter 4 has been

integrated into the 3.0 release of the ScrumPy modelling software, while an implementa-

tion of the algorithms discussed in Chapters 4 and 5 will be similarly integrated in due

course.

The research presented in Chapter 4 is expected to result in the publication of a re-

search paper (currently under review). Future collaboration with the Quadram Institute

in Norwich will involve validating the theoretical result regarding C. jejuni’s oxygen re-

quirements in vivo.

The work presented in Chapter 4 can be developed further by applying Algorithm 1 to

additional GSM models and investigating the results. A potential plan for this is the

GSM of E. coli, which the CSM group is currently investigating. Furthermore, since the

output of Algorithm 1 was only compared with the algorithm by Poolman et al. [2004b], it

would be interesting to compare Algorithm 1 with the other similar algorithms discussed

in Section 3.1.2, therefore establishing the difference between the biological relevance of

the different approaches.

A further development of the analysis in Chapter 4 regards the investigation of how

the identified redundancies impact FBA solutions, for example, to facilitate the design
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of multiple gene knock-out strategies, and gather insight on the proportion of multiple

optima uncovered by Algorithm 6.

In addition, the analysis of two different approaches to defining biomass production in

GSMs is relevant to FBA solutions obtained using a minimisation objective function

(which is the strategy most commonly used by the CSM group); it would be helpful to

expand this work to include other objective criteria currently in use by the metabolic

modelling community.

Chapter 5 provides methods that relate the concentration of metabolites in models. Al-

though this is based on established theoretical concepts, the implications on metabolomic

data were not assessed. In relation to this topic, an interesting future investigation in-

cludes the development of a framework for understanding how the changes in the structure

of a network affect the relationship between metabolite concentrations as identified by the

similarity measure in Chapter 5. Once such a theory is established, it can be used to infer

which structural changes may have occurred to cause a change in concentration that is

observed via metabolomic data.

Moreover, the efficiency of the method that calculates missing atomic composition in

Chapter 5 can be improved further. Currently, a new MILP instance is created in each

iteration of the algorithm. Future work involves implementing the glpk1 MILP solver

as part of ScrumPy (in the same manner that the LP module), which would improve

the algorithm by allowing a single MILP instance to be used during all iterations (by

sequentially updating the constraints). Furthermore, although the method presented in

Chapter 5 can detect models that are not mass balanced, the algorithm depends on the

initial ordering of the stoichiometry matrix such that the reactions identified as incorrect

and therefore removed from the stoichiometry matrix are not necessarily the cause of this

mass balance. As seen in Chapter 5, this can lead to the composition of some metabolites

being incorrectly calculated. Hence, at this stage, the results of Algorithm 7 for models

that are not correctly balanced must be carefully analysed. A potential future remedy for

this is to design a strategy in which the reactions detected to be incorrect are chosen to

be minimal (rather than depending on their order in N). Another potential improvement
1gnu.org/software/glpk/
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is to take into account the fact that imbalances are more likely to be caused by missing

protons and water compounds.

In summary, this thesis describes new methods through which metabolic networks can

be investigated. It demonstrates the pivotal role that modelling plays in advancing fu-

ture breakthroughs within the field of metabolism research. Furthermore, the author

sincerely hopes that this work will serve as evidence of the importance of interdisciplinary

collaboration and inspire further research in this fascinating field.
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Appendix A

Metabolite/Reactions Keys

A.1 The Calvin Cycle

Table A.1: The abbreviations, common names, and chemical composition of the metabo-
lites found in the Calvin cycle.

Abbreviation Common name Chemical formula
Ru5P D-ribulose-5-phosphate C5H9O8P
SBP D-sedoheptulose-1,7-biphosphate C7H12O13P2

DHAP dihydroxyacetone phosphate C3H5O6P
F6P D-fructofuranose-6-phosphate C6H11O9P
E4P D-erythrose-4-phosphate C4H7O7P
G1P D-glucopyranose-1-phosphate C6H11O9P
R5P D-ribose-5-phosphate C5H9O8P
G6P D-glucopyranose-6-phosphate C6H11O9P
GAP D-glyceraldehyde-3-phosphate C3H5O6P
X5P D-xylulose-5-phosphate C5H9O8P
RuBP ribulose-1,5-biphosphate C5H8O11P2

BPGA 3-bisphospho-D-glycerate C3H4O10P2

FBP D-frunctose-1,6-biphosphate C6H10O12P2

S7P D-sedoheptulose-7-phosphate C7H13O10P
PGA 3-phospho-D-glycerate C3H4O7P
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eferencesTable A.2: The enzyme abbreviations and corresponding reactions found in the Calvin cycle model. Metabolites labelled with a ‘x ’ prefix
are external metabolites.

Step Label Enzyme Abbreviation Stoichiometry

Carbon fixation r1 RuBisCo N/A x CO2 + RuBP + x H2O −→ 2 PGA + 2 x Proton

Reduction and r2 PGA kinase PGK PGA + ATP ←→ BPGA + ADP
output to biosynthesis r3 GAP dehydrogenase GAPdh BPGA + x NADPH + x Proton ←→ x NADP + GAP + Pi

r4 triose-phosphate isomerase TPI GAP ←→ DHAP
r5 FBP aldolase Ald1 DHAP + GAP ←→ FBP
r6 fructose 1,6-bisphosphatase FBPase FBP + x H2O −→ F6P + Pi

Starch synthesis r7 phosphoglucose isomerase PGI F6P ←→ G6P
r8 phosphoglucomutase PGM G6P ←→ G1P
r9 starch synthase StSynth G1P + ATP + x H2O −→ ADP + 2Pi + x Starch + x Proton

Starch degradation r10 starch phosphorylase StPase x Starch + Pi −→ G1P

RuBP regeneration r11 F6P transketolase TKL1 F6P + GAP ←→ E4P + X5P
r12 FBP aldolase Ald2 E4P + DHAP ←→ SBP
r13 SBP biphosphatase SBPase SBP + x H2O −→ S7P + Pi
r14 S7P transketolase TKL2 GAP + S7P ←→ X5P + R5P
r15 R5P isomerase R5Piso R5P ←→ Ru5P
r16 Ru5P epimerase X5Piso X5P ←→ Ru5P
r17 Ru5P kinase Ru5Pk Ru5P + ATP −→ RuBP + ADP + x Proton

Sugar export N/A triose-phosphate translocator TPT PGA PGA + x Pi −→ Pi + x PGA
N/A triose-phosphate translocator TPT GAP GAP + x Pi −→ Pi + x GAP
N/A triose-phosphate translocator TPT DHAP DHAP + x Pi −→ Pi + x DHAP

Light reactions N/A N/A Lreac ADP + Pi + x Proton −→ ATP + x H2O
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A.2 Glycolysis

Table A.3: The abbreviations, common names, and chemical composition of the metabo-
lites found in the model of glycolysis in Figure 5.3.

Label Common Name Empirical Formula
GLC Glucose C6H12O6

G6P glucose-6-phosphate C6H11O9P
F6P fructose-6-phosphate C6H11O9P
FBP fructose-1,6-biphosphate C6H10O12P2

GAP glyceraldehyde-3-phosphate C3H5O6P
DHAP dihydroxyacetone phosphate C3H5O6P
BPGA bisphosphoglycerate C3H4O10P2

PGA phosphoglycerate C3H4O7P
PEP phospho-enol-pyruvate C3H2O6P
PYR pyruvate C3H3O3

Table A.4: The enzyme abbreviations and corresponding reactions found in Figure 5.3.

Label Common Name EC number
r1 glucokinase 2.7.1.1
r2 phosphoglucose isomerase 5.3.1.9
r3 phosphofructokinase 2.7.1.11
r4 FBP aldolase 4.1.2.13
r5 triose-phosphate isomerase 5.3.1.1
r6 GAP dehydrogenase (phosphorylating) 1.2.1.12
r7 PGA kinase 2.7.2.3
r8 GAP dehydrogenase 1.2.1.9
r9 enolase 4.2.1.11
r10 pyruvate kinase 2.7.1.40
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A.3 C. jejuni

Table A.5: The abbreviations, common names, and MetaCyc IDs of the metabolites found
in the C. jejuni model.

Abbreviation Common Name MetaCyc ID
GLN glutamine GLN
GLT glutamate GLT
2KG α-ketoglutarate 2-KETOGLUTARATE
SucCoA succinyl-CoA SUC-COA
SUC succinate SUC
FUM fumarate FUM
MAL malate MAL
OAA oxaloacetate OXALACETIC ACID
PEP phosphoenolpyruvate PHOSPHO-ENOL-PYRUVATE
PGA phospho-glycerate 2-PG
BPGA bisphospho-glycerate DPG
GAP glyceraldehyde 3-phosphate GAP
DHAP dihydroxyacetone phosphate DIHYDROXY-ACETONE-PHOSPHATE
FBP fructofuranose 1,6-bisphosphate FRUCTOSE-16-DIPHOSPHATE
F6P fructofuranose 6-phosphate FRUCTOSE-6P
E4P erythrose 4-phosphate ERYTHROSE-4P
S7P seduloheptulose 7-phosphate D-SEDOHEPTULOSE-7-P
R5P ribose 5-phosphate RIBOSE-5P
X5P xylulose 5-phosphate XYLULOSE-5-PHOSPHATE
Ru5P ribulose 5-phosphate RIBULOSE-5P
EN4P erythronate 4-phosphate ERYTHRONATE-4P
PAKB hydroxy-2-oxo-4 phosphooxybutanoate 3OH-4P-OH-ALPHA-KETOBUTYRATE
POT phosphooxy-threonine 4-PHOSPHONOOXY-THREONINE
AHAP amino-1-hydroxyacetone 1-phosphate 1-AMINO-PROPAN-2-ONE-3-PHOSPHATE
DX5P deoxy-xylulose 5-phosphate DEOXYXYLULOSE-5P
PNP pyridoxine 5′-phosphate PYRIDOXINE-5P
PLP pyridoxal 5′-phosphate PYRIDOXAL PHOSPHATE
PYR pyruvate PYRUVATE
Mq menaquinol MENAQUINOL
MqH menaquinone MENAQUINONE
Cy-Ox cytochrome c oxidised Cytochromes-C-Oxidized
Cy-Rd cytochrome c reduced Cytochromes-C-Reduced
Fd-Ox oxidised ferredoxin Oxidized-ferredoxins
Fd-Rd reduced ferredoxin Reduced-ferredoxins
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Table A.6: The abbreviations, enzyme, and EC number of the reactions found in diagrams
of the C. jejuni model.

Label Enzyme EC number
R1 glutaminase 3.5.1.38
R2a glutamate synthase 1.4.7.1
R2b glutamate dehydrogenase 1.4.1.4
R3 2-oxoglutarate synthase 1.2.7.3
R4 succinyl-CoA synthase 6.2.1.5
R5 succinate dehydrogenase 1.3.5.1
R6 fumerase 4.2.1.2
R7a malate oxidoreductase (quinone) 1.1.5.4
R7b malate dehydrogenase 1.1.1.37
R8 phosphoenolpyruvate carboxykinase 4.1.1.49
R9 enolase 4.2.1.11
R10 phosphoglycerate kinase 2.7.2.3
R11 glyceraldehyde 3-phosphate dehydrogenase 1.2.1.12
R12 triose-phosphate isomerase 5.3.1.1
R13 fructose-bisphosphate aldolase 4.1.2.13
R14 fructose 1,6-bisphosphatase 3.1.3.11
R15 fructofuranose 6-phosphate transketolase 2.2.1.1
R16 erythrose 4-phosphate dehydrogenase 1.2.1.72
R17 erythronate 4-phosphate dehydrogenase 1.1.1.290
R18 phosphohydroxythreonine aminotransferase 2.6.1.52
R19 hydroxythreonine 4-phosphate dehydrogenase 1.1.1.262
R20 deoxy-xylulose 5-phosphate synthase 2.2.1.7
R21 pyridoxine 5′-phosphate synthase 2.6.99.2
R22 transaldolase 2.2.1.2
R23 seduloheptulose 7-phosphate transketolase 2.2.1.1
R24 ribose 5-phosphate isomerase 5.3.1.6
R25 ribulose phosphate 3-epimerase 5.1.3.1
R26 nitrite reductase (NAD) 1.7.1.4
R27 oxygen reductase (cytochrome) 7.1.1.7
R28 nitrite reductase (cytochrome) 1.7.2.2
R29 nitrate reductase (cytochrome) 1.9.6.1
R30 pyridoxine 5′-phosphate oxidase 1.4.3.5
R31 catalase 1.11.1.6
R32 NADH peroxidase 1.11.1.1
R33 nitrate reductase (NAD) 1.7.99.4
R34 carbonic anhydrase 4.2.1.1
CV proton translocating ATP synthase 7.1.2.2
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Appendix B

Defining The Steady-State
Solution Space

Consider the flux cone C, generated by an m× r stoichiometry matrix, N,

C = {v ∈ Rr|Nv = 0,v ≥ 0}. (B.1)

Definition B.0.0.1. Pointed polyhedral cones are in general defined as a system of linear
inequality constraints, Av ≤ 0 where A has full column-rank.

As discussed by Gagneur and Klamt [2004], C can be expressed as a pointed polyhedral
cone:

C = {v ∈ Rr|Av ≤ 0}, (B.2)
where

A =


N
−N
−Ir×r

 . (B.3)

Including −Ir×r in A ensures that v ≥ 0 and that A has full column-rank.

Reversible reactions can be included in this definition by splitting them into two irre-
versible forward and backward components as follows.

For simplicity, re-order its columns such that the reversible reactions consist of the first
p columns. Then, these columns can be split into two, i.e. forwards and backwards
components, n+

i and n−i , such that n+
i = ni and n−i = −ni with the corresponding

fluxes being v+
i ,v−i ≥ 0 (in the same manner as free variables are split in LP), creating a

reconfigured m× q stoichiometry matrix N̄ where q = r + p, such that the columns of N̄
are n+

1 ,n−1 , . . . ,n+
p ,n−p ,np+1, . . . ,nr.

Therefore the matrix A in Equation (B.2) discussed above can be modified to create the

207



References

matrix Ā such that:

Ā =


N̄
−N̄
−Iq×q

 . (B.4)

This produces the following flux cone

C = {v̄ ∈ Rq| Āv̄ ≤ 0}. (B.5)

As discussed by Gagneur and Klamt [2004], any flux vector v̄ can be converted back
to the corresponding vector v by subtracting the components of each reversible reaction
(vi = v̄+

i − v̄−i for all indices i corresponding to reversible reactions). These authors proved
that EMs resulting from such a reconfigured network are equivalent to the EMs of the
original network (generated by N), with the exception of two-cycle EMs generated by the
forward and backwards component of the same reversible reaction.
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Appendix C

Results From Chapter 3

Table C.1: The EMs of the Calvin cycle model.

Relative Flux Measurements
Reactions ElMo 0 ElMo 1 ElMo 2 ElMo 3 ElMo 4 ElMo 5 ElMo 6 ElMo 7

RuBisCo 0 3 9 9 3 3 3 6
PGK 0 6 15 18 6 3 6 12
G3Pdh 0 6 15 18 6 3 6 12
TPI 0 3 6 6 4 1 1 5
Ald1 0 1 3 3 0 0 0 3
FBPase 0 1 3 3 0 0 0 3
PGI 0 0 0 0 -1 -1 -1 1
PGM 0 0 0 0 -1 -1 -1 1
StSynth 1 0 0 0 0 0 0 1
StPase 1 0 0 0 1 1 1 0
TKL1 0 1 3 3 1 1 1 2
Ald2 0 1 3 3 1 1 1 2
SBPase 0 1 3 3 1 1 1 2
TKL2 0 1 3 3 1 1 1 2
R5Piso 0 1 3 3 1 1 1 2
X5Piso 0 2 6 6 2 2 2 4
Ru5Pk 0 3 9 9 3 3 3 6
TPT PGA 0 0 3 0 0 3 0 0
TPT GAP 0 0 0 3 0 0 3 0
TPT DHAP 0 1 0 0 3 0 0 0
LReac 1 9 24 27 9 6 9 19
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Table C.2: A set of flux vectors corresponding to the reactions within the Calvin cycle (obtained via Flux Constraint Scanning). A list of
reaction stoichiometries and abbreviations may be found in Appendix A.

Relative Flux Measurements as Constrained by the Corresponding PGA Export Flux
Reactions PGA 0 PGA 5 PGA 10 PGA 15 PGA 20 PGA 25 PGA 30 PGA 35 PGA 40 PGA 45 PGA 50

RuBisCo 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
PGK 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
G3Pdh 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
TPI 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
Ald1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FBPase 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PGI 0.00 -1.67 -3.33 -5.00 -6.67 -8.33 -10.00 -11.67 -13.33 -15.00 -16.67
PGM 0.00 -1.67 -3.33 -5.00 -6.67 -8.33 -10.00 -11.67 -13.33 -15.00 -16.67
StSynth 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00
StPase 100.00 91.67 83.33 75.00 66.67 58.33 50.00 41.67 33.33 25.00 16.67
TKL1 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
Ald2 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
SBPase 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
TKL2 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
R5Piso 0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67
X5Piso 0.00 3.33 6.67 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33
Ru5Pk 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
TPT PGA 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
TPT GAP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TPT DHAP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LReac 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table C.3: The decomposition of relative flux values obtained from Flux Constraint Scan-
ning (found in Table C.2) into a set of EMs.

PGA (flux constraint) ElMo 0 ElMo 5

0.00 100.00 0.00
5.00 90.00 1.67
10.00 80.00 3.33
15.00 70.00 5.00
20.00 60.00 6.67
25.00 50.00 8.33
30.00 40.00 10.00
35.00 30.00 11.67
40.00 20.00 13.33
45.00 10.00 15.00
50.00 0.00 16.67
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Appendix D

The Left Null-Space

D.1 The Link Matrix
As first defined by Reder [1988], the link matrix, L, transforms the stoichiometry matrix
by removing its linearly dependent rows, such that the resulting reduced stoichiometry
matrix, denoted by Nr, has full row-rank.

Let the internal left null-space matrix, G, be m×q, where q is the rank of G. Then, N has
q linearly-dependent rows and p = (m− q) linearly-independent rows (i.e. p = Rank(N)).
Therefore, every linearly-dependent row can be formed through a linear combination of
some of the p linearly-independent rows.

Thus the stoichiometry matrix can be partitioned into independent and dependant com-
ponents (Nr and Nd, respectively):

N =
Nr

Nd

 , (D.1)

where Nr is p× r and Nd is q × r.

These two matrices are related through the link matrix, L,

L =
Ip×p

L0

 , (D.2)

which is defined such that
L0Nr = Nd, (D.3)

or, equivalently, Ip×p
L0

Nr =
Nr

Nd

 = N, (D.4)
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where L0 is calculated by transforming G into the following form:

G =
 L>0
−Iq×q

 . (D.5)

As a consequence of Equations D.4 and D.3, the vector of metabolite concentrations,
s, can also be partitioned into dependent and independent components, such that the
stoichiometry of the reactions in a system can assume the form:

d
dt

sr

sd

 =
Ip×p

L0

N rv, (D.6)

and therefore,
dsd

dt = L0
dsr

dt . (D.7)

Thus showing that the number of metabolites whose concentrations need to be known to
calculate all of the concentration changes in the system is equivalent to the rank of N, p.

D.2 The Atomic Matrix
Proposition D.2.0.1. The left null-space of the external stoichiometry matrix can be
constructed such that its basis includes the linearly independent vectors of the atomic
matrix, A, (along with some additional vectors if rank(A) < rank(ker(N>)).

Proof. Let the external stoichiometry matrix, N , be an l×r matrix, where l is the number
of metabolites in the system and r is the number of reactions.

The left null-space of N consists of all the vectors, g, that satisfy

N>g = 0. (D.8)

Let G be an lxt matrix whose columns are a set of basis vectors for the left null-space of
N :

G = {g1,g2, . . . ,gt}. (D.9)
Suppose the the atomic matrix, A, is an l × p matrix, with rank k, and defined by the
columns:

A = {a1, a2, . . . , ak, . . . , ap}, (D.10)
where, without loss of generality, the columns are ordered such that the first k columns
are linearly independent. Therefore, A contains k linearly independent column vectors
that form a basis, Ã, for Span(A), i.e.

Ã = {a1, a2, . . . , ak}. (D.11)

As discussed in Chapter 5.2.2, every column vector of A satisfies Equation (D.8). There-
fore, the space generated by the columns of A must be a subset of the left null-space of
N , i.e.

Span(A) ⊆ Span(G). (D.12)
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There are three different scenarios to consider.

(1) Suppose t < k.

As the dimension of a space is equal to the number of basis vectors generating it, then

dim(Span(G)) < dim(Span(A)). (D.13)

But since all of the vectors of A are elements of the left null-space, then

Span(A) ⊆ Span(G). (D.14)

Therefore,
dim(Span(A)) ≤ dim(Span(G)), (D.15)

which is a contradiction.

Hence, if the dimension of the left null-space is less than the number of assumed species in
the model, some of the column vectors of A, (at least p - t), must be linearly dependent.

(2) Suppose t > k.

The Steinitz exchange lemma states that any finite linearly independent set in a vector
space can be extended to form a basis.

Therefore, if Ã = {a1, a2, . . . , ak} is a set of linearly independent vectors of the left
null-space, and G = {g1,g2, . . . ,gt} is a basis for the left null-space, than there exist an
alternative basis for the left null-space such that

Span(G) = Span({a1, a2, . . . , ap, g̃k+1, . . . , g̃t}), (D.16)

where G̃ = {g̃1, g̃2, . . . , g̃t} is an appropriate re-ordering of G.

(3) Suppose t = p.

Since Span(A) ⊆ Span(G), and any two bases of a vector space must have the same
number of elements, then Ã = {a1, a2, . . . , ak} must be an alternative basis for the left
null-space.

D.3 The Similarity Measure

D.3.1 The Similarity Measure, φ, is Invariant to the Choice of
Orthonormal Basis

This subsection shows that the similarity measure, φG, defined by Equation (5.16), is
invariant to the choice of left null-space basis, G, given that G is orthonormal. The
following is derived from Lemma 1 and Theorem 1 in Poolman et al. [2007].

Definition D.3.1.1. If a matrix A is defined here as an orthonormal basis, then the
columns of A are normalized basis vectors where each column vector is orthogonal to
every other column vector.
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Let A and B be two different orthonormal bases for the same space, of size m× q.

Let the xth row of A be denoted by Ax and the ith column of A be ai, such that the
matrices A and B can be represented by the set of their columns A = [a1, a2, . . . , aq] and
B = [b1,b2, . . . ,bq].

Then, the dot product between rows x and y can be denoted by AxA>y such that the
similarity measure applied to the rows x and y, φAxy, is

φAxy = cos(θAxy) =
AxA>y√

AxA>x
√
AyA>y

. (D.17)

Therefore, to demonstrate that this measure is independent of the choice of basis, it is
sufficient to show that the dot product between any two rows of an orthonormal basis is
invariant to the choice of basis i.e. AxA>y = BxB>y

Lemma D.3.1.1. The product AA> where A is an orthonormal basis is invariant of the
choice of basis.

Proof. As defined previously in this section, let A and B be two orthonormal basis for
the same space.

As the columns of A and B are orthonormal, then the matrices are orthogonal and satisfy

A>A = Iq×q = B>B. (D.18)

Moreover, since the columns of the matrices A and B are two orthonormal bases that
span the same space, these matrices are related by an orthogonal matrix P, such that

A = BP. (D.19)

Therefore,
AA> = BP(BP)> = BPP>B>

= BIB> = BB>,
(D.20)

and hence,
AA> = BB>. (D.21)

Theorem D.3.1.1. φxy is invariant to the choice of orthonormal basis.

Proof. Consider the two orthonormal bases A and B, as discussed above.

As defined by Equation (D.17), the similarity measure applied to the rows x and y of the
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matrix A is:
φAxy = cos(θAxy) =

AxA>y√
AxA>x

√
AyA>y

. (D.22)

As shown by Lemma D.3.1.1 AA> = BB>, and consequentially AxA>y = BxBy>. There-
fore

φAxy =
AxA>y√

AxA>x
√
AyA>y

=
BxB>y√

BxB>x
√
ByB>y

= φBxy. (D.23)

D.3.2 The Pearson Correlation Coefficient
Following the approach of Poolman et al. [2007], this subsection shows that applying the
similarity measure to the rows of an orthonormal left null-space basis, is equivalent to the
Pearson’s Population Correlation Coefficient, ρ, applied to the same rows when given all
possible vectors that are spanned by the basis.

Therefore, φGxy applied to the left null-space of the internal stoichiometry matrix is equiva-
lent to ρxy applied to all potential conservation relations of the system. While, φGxy applied
to the left null-space of the external stoichiometry matrix is equivalent to ρxy applied to
all potential vectors spanned by the space (including the maximal moiety vectors, z).

The Pearson’s Correlation Coefficient, ρ, is defined as follows.

Two variables are said to be correlated when changes in one variable are met with similar
changes in the other. Consider a pair of variables x and y. Then, the Pearson’s population
correlation coefficient, ρxy, is given by

ρxy = Cov(x,y)
σxσy

, (D.24)

where σx and σy are the standard deviation of x and y respectively, and Cov(x,y) is the
covariance [Field et al., 2012, pages 456,461].

The standard deviation measures the dispersion of the data within a variable, x, in relation
to its mean, x, where a low value indicates that data-points are clustered close to the mean,
and is defined as

σ2
x = 1

N

n∑
i=1

(xi − x)2, (D.25)

where N is the size of the population.

The covariance is a measure of the linear association between the two variables, namely

Cov(x,y) = 1
N

n∑
i=1

(xi − x)(yi − y). (D.26)

A positive covariance indicates that as the values of one variable deviate from its mean
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in one direction so do the values of the other variable (with respect to their correspond-
ing mean), e.g both variables increase. Deviation in the opposite directions results in
a negative covariance. The covariance is unit-dependent and thus does not reveal the
strength of the linear association between x and y. This problem is counteracted in ρxy
by accounting for the standard deviation of the individual variables.

Substituting Equations (D.25) and (D.26) into (D.24) yields an approximate formula for
Pearson’s Correlation Coefficient, referred to as Pearson’s Sample Correlation Coefficient
and denoted by rXY :

rxy =
∑n
i=1(xi − x)(xi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (D.27)

where a value of rxy = ±1 indicates a perfect linear association between the variables,
where one increases proportionally to the other if rxy = 1 and inversely if rxy = −1. The
coefficient is zero if there is no linear relationship between the variables.

Proposition D.3.2.1. Measuring the cosine of the angle between two rows, x and y, of an
orthonormal left null-space basis, φGxy, is equivalent to measuring Pearson’s Correlation
Coefficient, ρxy, between the corresponding rows of a matrix that spans the set of all
possible conservation relations of the network.

Proof. Let G be an m×q orthonormal left null-space matrix for an internal stoichiometry
matrix N, withmmetabolites and r reactions. Consider a q×j matrix of random numbers,
Q, whose elements are independently and identically distributed from a distribution with
mean µ and variance σ2, where q is the dimension of the left null-space and j is arbitrarily
large.

Let qi denote the ith column of Q and let Qx denote the xth row of Q, such that Qxi is
the element at row x and column i.

Since G is a basis for the left null-space of N,

N>G = Or×q. (D.28)

Define an m× j matrix P such that P = GQ. Then,

N>P = N>GQ = Or×j. (D.29)

Therefore any column of P, pi, is within the left null-space of N .

As previously, let the xth row of P be denoted by Px, such that Pxi refers to the element
of P at row x and column i.

As defined by Equation (D.27), Pearson’s sample correlation coefficient, rxy, between the
rows x and y (metabolites) of P is:

rxy =
∑j
i=1(Pxi − P̄x)(Pyi − P̄y)√∑j

i=1(Pxi − P̄x)2
√∑j

i=1(Pyi − P̄y)2
, (D.30)
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where Pxi =< Gx,q>i >= Gxqi. and the sample mean of row x in P, P̄x, is

P̄x =
∑j
i=1 Gxqi
j

= Gx

∑j
i=1 qi
j

= Gxµ̂. (D.31)

Where µ̂ is a vector of length q such that each element consists of the mean value of the
corresponding row of Q.

Therefore,

rxy =
∑j

i=1(Gxqi−Gxµ̂)(Gyqi−Gyµ̂)>√∑j

i=1(Gxqi−Gxµ̂)(Gxqi−Gxµ̂)>
√∑j

i=1(Gyqi−Gyµ̂)(Gyqi−Gyµ̂)>
. (D.32)

However,
(Gxqi −Gxµ̂)(Gyqi −Gyµ̂)> = Gx(qi − µ̂)(qi − µ̂)>G>y , (D.33)

and thus

rxy =
Gx

∑j
i=1(qi − µ̂)(qi − µ̂)>G>y√

Gx(
∑j
i=1(qi − µ̂)(qi − µ̂)>)G>x

√
Gy(

∑j
i=1(qi − µ̂)(qi − µ̂)>)G>y

. (D.34)

Let V = 1
j

∑j
i=1(qi − µ̂)(qi − µ̂)>.

Note that V is a matrix where as j becomes sufficiently large the leading diagonal of V
approaches σ2 and all other elements approach 0:

lim
j→∞

V = σ2Iq×q. (D.35)

This is because the co-variance of any two rows, with index x and y, of Q is 1
j

∑j
i=1(qxi−

µ̂x)(qyi − µ̂y) which converges to σ2 if x = y (using the weak law of large numbers), and
to 0 otherwise, as j → ∞ (since the covariance of two independent random variables is
0).

Hence,

lim
j→∞

rxy = ρxy =
Gxσ

2Iq×qG>y√
Gxσ2Iq×qG>x

√
Gyσ2Iq×qG>y

=
σ2GxG>y

σ2
√

GxG>x
√

G>y G>y

=
GxG>y√

GxG>x
√

G>y G>y
= cos(θGxy ) = φG.

(D.36)

D.3.3 A φ of Zero.
Proposition D.3.3.1. If there exists no conservation relation, gi, such that gxi 6= 0 and
gyi 6= 0, then φGxy = 0.
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Proof. Recall the m × j matrix P and the m × q orthogonal left null-space matrix G
defined in Proposition D.3.2.1 (Equation D.29). As j → ∞ the columns of P consist of
the collection of vectors that can be spanned by the columns of G i.e. all of the potential
conservation relations of the system. Suppose that there exists no conservation relation
gi, such that gxi 6= 0 and gyi 6= 0, then there must be no column in P such that both
Pxi 6= 0 and Pyi 6= 0. Therefore, ρxy = 0 and φGxy = 0.

However, note that the reverse is not necessarily true.

D.3.4 A φ of One
As shown by Proposition D.3.2.1, applying the similarity measure to the rows of an
orthonormal left null-space basis, G, is equivalent to Pearson’s Correlation Coefficient,
ρ, applied to the rows of a matrix P having infinitely many columns that correspond to
the possible conservation relations of the network (i.e. the vectors that can be spanned
by the columns G). Therefore, for any two rows (metabolites) x and y where φGxy = 1,
the rows x and y in P are proportional to each other such that there exists a constant,
λ, where for any any left null-space vector, g, spanned by the columns of G, gx = λgy.

Hence, proportional rows in the internal left null-space matrix G, must be present in the
same proportion in all conservation relations. Whilst, proportional rows in the external
left null-space matrix G, must be present in the same proportion in all maximal conserved
moiety vectors, z, including the column vectors of the atomic matrix A.

Moreover, if two metabolites, x and y are parallel in the internal left null-space, then it
is not possible to construct a link matrix, L, where the metabolites are considered to be
independent.

For example, consider a four-metabolite system with the following two conservation rela-
tions, in which the metabolites A and B are parallel in the left null-space matrix, such
that their concentration changes are:

g1 : dA
dt + dB

dt + dC
dt = 0 and g2 : dA

dt + dB
dt + dD

dt = 0, (D.37)

where A, B, C, and D are metabolite concentrations. A left null-space matrix of the form
as in Equation D.5 for this system is:

G =
L>0
−I

 =


A −1 −1
B −1 −1
C −1 0
D 0 −1

. (D.38)

Since the rows pertaining to metabolites A and B are parallel in G, there is no possi-
ble permutation of the rows of G through which metabolites A or B can form part of
an identity sub-matrix in G, which is required for their concentration to be considered
independent in the link matrix L.
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Appendix E

Source-Code

These algorithms described in this thesis are implemented as add-ons to ScrumPy which
can be installed using the following link: mudshark.brookes.ac.uk/ScrumPy.

The code for Algorithm 1 in Chapter 3 is released as part of ScrumPy (as the LPEMs
module in the Structural directory). The source code for the algorithms in Chapters 4
and 5 is available in the appended CD (hard-bound thesis only) or alternatively, from
the author upon request. It is organised in the following directories: Util, Compress, and
LeftNS.

Util: modules that provide helper functions that are used by the algorithms in the below
modules (such as a general tree class and functions that manipulate datasets)

Compress: modules that implement the algorithms presented in Chapter 4:

• Compress: a class called CompressModel that implements the algorithms described
in Chapter 4.3 as its attributes, using helper functions and classes as defined below.
This class requires a model instance as an input. As discussed in Chapter 4.3,
Algorithm 2 is implemented as the attribute function Compress which modifies the
class’s associated model, while Algorithms 3 and 4 are called OriginalSMX and
DecompressDataSet and each return the respective algorithms’ output. Algorithm
6 is achieved by applying an attribute called CompressVector that compresses the
given vector and subsequently applying DecompressDataSet to its output.

• DeadReacs: helper functions that find and eliminate dead reactions.

• IsoForms: helper class that calculates, defines, and eliminates iso-stoichiometric
groups,

• Tree: the tree class as described in Chapter 4.3.5.5.

LeftNS: modules that implements the algorithms presented in Chapter 5:

• LeftNS : defines a left null-space matrix that has an associated correlation matrix
(as an attribute called diffMtx) whose associated functions relate metabolites (such
as by identifying groups of parallel and orthogonal metabolites) as described in
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Chapters 5.3.1 and 5.3.2.1. This is achieved by a function called GetLeftNS that
takes a stoichiometry matrix as an input and returns the left null-space matrix
defined above as an output.

• AtomsMatrix : calculates and stores an atomic matrix using database information
as described in Chapter 5.3.2.2. This is achieved through a function called Atoms-
Matrix that requires a stoichiometry matrix and ScrumPy BioCyc database object
as an input. Additionally, a method that creates an atomic matrix by reading in-
formation from a tsv file, as well as a method that extends the atomic matrix using
the conventional technique described in Chapter 4.6 are also present.

• ExtendAtomic: implements the ExtendA algorithm as described in Chapter 5.3.2.3.
This is done by a class called ExtendAtomic that takes a stoichiometry matrix and
an incomplete atomic matrix as an input (which is then modified by the ExtendA
algorithm).

• Fingerprints: calculates metabolite fingerprint correlation as described in Chapter
5.3.2.4. This information is calculated by a class called Fingerprints that requires
metabolite names as an output and calculates a correlation matrix (as an attribute
called diffMtx).

• ClassifyMets: implements the network pruning and pathway finding algorithms as
part of a class called LeftNSCluster, as described in Chapter 5.3.3. This class requires
a stoichiometry matrix as an input, the network pruning algorithm is implemented as
an attribute function called classifyMets and similarly the pathway finding algorithm
is implemented as GetPathway.

221



Appendix F

Research Paper: A Novel
Algorithm to Calculate

Elementary Modes: Analysis of
Campylobacter jejuni Metabolism.

The research paper titled A Novel Algorithm to Calculate Elementary Modes: Analysis of
Campylobacter jejuni Metabolism is published as a pre-print on bioRxiv a copy of which
can be found at www.biorxiv.org/content/10.1101/2023.01.11.521685v1 and below.
This paper is also currently under review at BioSystems1 (Elsevier).

1sciencedirect.com/journal/biosystems
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A Novel Algorithm to Calculate Elementary

Modes: Analysis of Campylobacter jejuni

Metabolism

Yanica Said*1,2 Dipali Singh3 Cristiana Sebu2 Mark Poolman1

August 24, 2023

Abstract

We describe a novel algorithm, ‘LPEM’, that given a steady-state flux vector from a

(possibly genome-scale) metabolic model, decomposes that vector into a set of weighted

elementary modes such that the sum of these elementary modes is equal to the original

flux vector.

We apply the algorithm to a genome scale metabolic model of the human pathogen

Campylobacter jejuni. This organism is unusual in that it has an absolute growth re-

quirement for oxygen, despite being able to operate the electron transport chain anaer-

obically.

We conclude that 1) Microaerophilly in C. jejuni can be explained by the dependence

of pyridoxine 5′-phosphate oxidase for the synthesis of pyridoxal 5′- phosphate (the bi-

ologically active form of vitamin B6), 2) The LPEM algorithm is capable of determining

the elementary modes of a linear programming solution describing the simultaneous

production of 51 biomass precursors, 3) Elementary modes for the production of indi-

vidual biomass precursors are significantly more complex when all others are produced

simultaneously than those for the same product in isolation and 4) The sum of elemen-

tary modes for the production of all precursors in isolation requires a greater number

of reactions and overall total flux than the simultaneous production of all precursors.

Keywords: Genome Scale Metabolic Model, Elementary Modes, Linear Programming, Campylobac-

ter jejuni, Microaerophilly
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1 Introduction

1.1 Camplylobacter

Campylobacter, a genus of Gram-negative, curved or spiral, highly motile bacilli, are

foodborne pathogens and the leading cause of acute bacterial gastroenteritis worldwide.

The most common routes of human infection is fecal-oral or via contaminated meat, with

poultry, in which it is a common gut commensal, being of particular concern. However,

it is also found in the gut of wild birds, other farmed animals such as pigs and cattle,

pets, as well as soil and contaminated water sources. The ability of this pathogen to

persist in the food chain and to contaminate food products poses a serious challenge for

food safety and global health.

Campylobacteriosis presents with typical symptoms of gastrointestinal infection, in-

cluding diarrhoea (often bloody), fever, nausea, and abdominal pain. It is a notifiable

disease in the UK with approximately 52,000 cases reported in 20161, with an annual

cost estimated as £700 million Daniel et al. (2020). Although the disease is commonly

self-limiting, it can be associated with a number of serious or life-threatening sequelae

including colitis, reactive arthritis, and Guillain-Barré syndrome (GBS), a neurological

autoimmune disorder causing muscle weakness and even paralysis requiring ventilation

in severe cases. The association of Campylobacter spp. with GBS is assumed to be due

to the similarity of a lipopolysaccharide cell wall component with a human ganglioside

Hadden et al. (2002); Poropatich et al. (2010).

1.1.1 Microbiology and biochemistry

Campylobacter jejuni is well known for being microaerophilic, having an absolute require-

ment for oxygen and growing optimally at a pO2 of ≈ 50 mbar but is non-viable (or at least

unculturable) at atmospheric pO2. The reason for the requirement for O2 is not well un-

derstood, although as C. jejuni is able to respire anaerobically, it has been proposed that

this is a biosynthetic requirement. It is of note that although the intestinal lumen is gen-

erally thought of as an anaerobic environment, in regions close to the mucosa, pO2 has

been reported as being as high as 60 mbar Albenberg et al. (2014); Zheng et al. (2015).

Another unusual feature of C. jejuni metabolism is that it lacks the enzymes form-

ing the initial steps of glycolysis (glucokinase and phosphofructokinase) as well as those

of oxidative limb of the oxidative pentose phosphate pathway (glucose-6-phosphate de-

hydrogenase, phosphogluconolactonase and phosphogluconate dehydrogenase) Parkhill
1https://www.gov.uk/government/publications/campylobacter-infection-annual-data, accessed Decem-

ber 2022.
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et al. (2000); Stahl et al. (2012). It also lacks the monosaccharide transporters found

in most other bacteria, although it has been suggested that some Campylobacter spp.

strains are capable of catabolising fucose (a common saccharide residue in intestinal

mucins), otherwise the preferred carbon sources are pyruvate, TCA cycle intermediates,

and amino acids Hofreuter (2014); Tejera et al. (2020); Wagley et al. (2014).

C. jejuni possess a branched electron transport chain (ETC) with the flexibility to

utilise a number of substrates as electron donors including H2 and formate (both present

in the intestinal lumen asmetabolic by-products of other gutmicrobes) Bernalier-Donadille

(2010); Kelly (2008); Weerakoon et al. (2009). O2 can act as the terminal electron accep-

tor, although NO3, NO2, SO4 and fumarate can also fulfil this function Stoakes et al.

(2022); van der Stel and Wösten (2019); van der Stel et al. (2017), allowing for the anaer-

obic operation of the ETC. However, despite this, C. jejuni is unable to grow anaerobically

Kaakoush et al. (2007); Sellars et al. (2002) and this has been proposed to be due the

existence of oxygen dependent reactions involved in the synthesis of one or more biomass

components, specifically: 1) coproporphyrinogen oxidase (EC 1.3.3.3) - a component of

heme biosynthesis, and ii) that O2 is required for the post-translational modification

of the enzyme ribonucleotide reductase (RNR) Sellars et al. (2002). However, as it has

also been reported that the C. jejuni genome encodes for the O2 independent copropor-

phyrinogen dehydrogenase (EC 1.3.98.3) capable of fulfilling the same physiological role

as its O2 dependent counterpart de Vries et al. (2015); Parkhill et al. (2000), in which

case the latter proposal would appear unlikely to be correct.

In order to further investigate the O2 dependence of Campylobacter spp. we here de-

scribe the analysis of a genome-scale metabolic model (GSM) of C. jejuni in order to

investigate oxygen utilisation for the production of individual biomass precursors whilst

growing in a minimal medium. We also present a novel algorithm to identify the pathways

(Elementary Modes - see below) utilised when all biomass precursors are synthesised si-

multaneously.

1.2 Modelling Background

GSMs are computational representations of all reactions (assumed to be) present in an

organism’s repertoire, typically derived in the first instance from an annotated genome,

with reactions defined in terms of stoichiometry, directionality and reversibility, but with-

out any information about reaction kinetics. Such models can be referred to as stoichio-

metric, or structural models.

The theoretical basis for the analysis of structural models can be divided into two

broad categories, those derived from null-space analysis, and in particular Elementary
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Modes Analysis (EMA) Schuster et al. (1999, 2000), and those derived from linear pro-

gramming (LP) Fell and Small (1986); Orth et al. (2010) ; both assume steady-state condi-

tions and both can be regarded as pathway identification tools. The essential difference

between the two is that whilst EMA identifies all possible independent routes through the

network, LP results typically identify a single (possibly non-unique) pathway through the

network that satisfies given optimisation criteria, and the two can be regarded as com-

plementary approaches.

An Elementary Mode (EM) is a minimal metabolic sub-network capable of sustaining a

steady-state flux whilst respecting reversibility criteria, associated with a net conversion

of substrates into products, and any steady-state flux distribution of the network can be

obtained from a non-negative summation of EMs Schuster and Hilgetag (1994); Schuster

et al. (2000). Given the complete set of EMs for a network and an associated flux vector, it

is possible to then calculate the flux carried by each EM Poolman et al. (2004); Schwartz

and Kanehisa (2005).

A well-known draw-back of EMA is the fact that it suffers from combinatorial explosion

(is NP-hard - Acuña et al. (2009); Klamt and Gilles (2004)), and therefore obtaining the

complete set of EMs of a GSM is impractical for most purposes, not only in terms of the

computational resources required but also the unwieldy size of any resultant data-set

should such a calculation be possible.

In contrast, flux vectors (modes which may or may not be elementary) with defined

properties can be obtained very rapidly using LP; methods based on this (such those

related to flux balance analysis (FBA) Orth et al. (2010); Schilling et al. (2000)) are cur-

rently the predominant means of analysing GSMs. One draw-back of using LP in the

context of a GSM, and in particular where the aim of the study is to account for growth

(and therefore the production of all biomass precursors), is that the resulting flux vector

still defines a large network that requires further analysis to be easily understood.

However, the solution to a given linear program applied to a GSMwill generally contain

a much smaller number of reactions than the original, and under some circumstances

may be small enough to be treated as a sub-network amenable for EMA (Hartman et al.,

2014; Mesfin, 2020).

A number of methods for decomposing flux-vectors into EMs without having pre-

viously determined the complete set of EMs have also been described. These utilise

LP and/or Mixed Integer Linear Programming (MILP) as strategies for finding individual

EMs that fulfil a set of desired attributes. Oddsdóttir et al. (2015), obtained EMs that

account for a set of observed transporter fluxes. Their algorithm starts from a matrix,

E, whose columns, Ei, comprise of a small sub-set of EMs, and a weighting vector, w.
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Two optimization problems are simultaneously solved; a least-squares data fitting mas-

ter problem that iteratively improves upon the weighting vector w, aiming to obtain a

product, Ew, that is consistent with the external flux measurements, and an additional

sub-problem that after each iteration of the master, obtains a new EM to be added to

the matrix E such that the least-square fit is improved. The algorithm concludes when

the fit can no longer be improved by the addition of more EMs. This strategy requires

solving a quadratic programme at each iteration, which due to being inherently more

computationally costly than LP limits this algorithm’s suitability for large models.

Hung et al. (2011), proposed an algorithm that decomposes a steady-state flux vector,

v, in series of stages. At each stage, a succession of MILPs reduce the number of non-zero

fluxes in v (whilst considering the values of v as an upper-bound) until a solution which

cannot be reduced further (and therefore is an EM) is obtained. The EM is subtracted

from v and the process is repeated until all constituent EMs have been discovered. A

drawback of this algorithm is the heavy use of MILPs, which are more computationally

costly then LP.

Jungers et al. (2011), used LP to decompose flux vectors into a minimal number of

EMs. This algorithm extracts EMs from the solution-space generated by combining the

network’s stoichiometry with the steady-state flux-vector, v. The first EM is chosen at

random from this space, whilst subsequent EMs are chosen such that the difference

from them and the previous modes is maximized. This technique reduces the dimension

of the solution-space one step at a time, and, as a consequence has the advantage that

the maximum number of EMs obtained must be equivalent to the dimension of the null-

space. However, it is likely to produce different results each time that it is used, making

the replication of findings difficult.

In this work we describe an algorithm (LPEM) which uses LP to extract a set of EMs

that account for a steady-state flux vector (which itself may be an LP solution) from a

(possibly genome-scale) metabolic model and demonstrate its application and utility by

investigating the phenomenon of micro-aerophilly in C. jejuni . The approach is simialr to

that described by Hung et al. (2011) but has the advantage that it requires only LP, and

not MILP. This algorithm is implemented as part of the open-source metabolic modelling

software package, ScrumPy Poolman (2006, 2020).
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2 Methods

2.1 The Model

The model used here is that described by Stoakes et al. (2022) (a revision of that pre-

viously described by Tejera et al. (2020)). As the genome lacks annotation for enzymes

involved in glyoxylate shunt (malate synthase and isocitrate lyase) there is no sink for gly-

colaldehyde, (a by-product of folate synthesis) and therefore a corresponding transporter

added. The model consists of 1029 reactions, 92 transporters and 988 metabolites. It

is capable of producing biomass components in a defined media as described in Tejera

et al. (2020).

2.2 Model analysis

Initial model analysis was performed using the linear program defined by Eq. (1).

min
∑n

i=1 |wivi|

subject to





Nv = 0 ,

vb = tb, for one or all b ∈ {1, 2, . . . , B},

vO2
= 0 or unconstrained.

(1)

The objective is to determine a flux vector v whose weighted sum of fluxes is min-

imised. Each component, vi , i = (1...n), where n is the number of reactions, vi corre-

sponds to the flux being carried by the ith reaction and wi is the associated weighting

coefficient. Except where specified, weighting coefficients, wi, were set to 1 giving equal

weight to the minimisation of flux carried by each reaction.

This is subject to the steady-state condition Nv = 0 and the production of one or more

biomass components may be taken into account by setting a fixed constraint, vb = tb,

where the suffix b denotes the bth out of B exported biomass components whose transport

flux, vb, is defined by its relative abundance, tb (m.gdw−1) multiplied by the growth-rate

which, for the purposes of this study, was arbitrarily set to unity. In order to investigate

the O2 requirement the associated transport flux, vO2
, was either set to zero or uncon-

strained and the corresponding penalty weighting, wO2 , was set either to 1 or 106 as

described below.

With vO2
set to zero, in combination with a demand for all biomass components, Eq.

(1) has no feasible solution, demonstrating that at least one biomass component has an

absolute requirement forO2. In order to identify theO2 dependent biomass component(s),

Eq. (1) was solved repeatedly for each biomass component at a time, with the oxygen
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Panel 1 The five solution sets used to analyse the oxygen requirement of C. jejuni

1. Individual solutions for vb = tb for a given b ∈ {1 . . . B}, vO2
= 0

2. Individual solutions for vb = tb for a given b ∈ {1 . . . B}, wO2 = 1

3. Individual solutions for vb = tb for a given b ∈ {1 . . . B}, wO2
= 106

4. A single solution for vb = tb, for all b ∈ {1 . . . B}, wO2
= 1

5. A single solution for vb = tb, for all b ∈ {1 . . . B}, wO2 = 106

transport flux constrained to zero. Obtaining a feasible solution with such a constraint

demonstrates that this component can be produced without oxygen, conversely, failure

to obtain a solution demonstrates that the synthesis of that component has an absolute

dependence on oxygen.

In order to identify a solution accounting for all biomass components while minimising

vO2
, wO2

, was set to an arbitrarily high value of 106 and Eq. (1) re-solved. Thus five sets

of flux distributions were obtained, as shown in Table 1.

2.3 Identifying EMs in a Steady-State Flux Vector

In order to identify individual EMs in LP solutions when all biomass components are

produced simultaneously we developed an algorithm combining LP with null-space as

follows.

The algorithm proceeds by iteratively removing one or more reactions at a time from

an initial solution, v, and identifying an associated subsystem, v′, which either contains

a single EM, or can be decomposed into a set of EMs. Then, v′ is subtracted from v and

the process continues until v = 0. We thereby obtain a matrix , E, whose column vectors

consist of EMs, such that:
m∑

i=1

Ei = v,

where m is the number of EMs. Note that, in this case, the EMs are not normalised in

order for the magnitude of each Ei to reflect the contribution of that EM to v.

At each iteration, the reaction to be eliminated, vtarg, is selected as the reaction with

the smallest (absolute) flux in v. The elimination is achieved by obtaining a solution, v′,

to the linear program:

min
∑n

i=1 |v′
i|

subject to





Nv′ = 0 ,

v′
targ = vtarg ,

|v′
i| ≤ |vi|, sign(v′

i) = sign(vi), for all i ∈ {1, 2, . . . , n} .

(2)
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Given these definitions the algorithm can be described by the pseudo-code in pre-

sented in Algorithm 1.

Algorithm 1 : LPEM - Using LP to decompose a steady-state flux vector, v, into a matrix
of EMs, E

1: while v > 0 do
2: vtarg = min(v)
3: solve Eq. (2)
4: if v′ is elementary then
5: add v′ to E
6: else
7: decompose v′ into a set of EMs
8: add these EMs to E
9: end if

10: v← v − v′

11: end while.

Verifying that v′ represents a single EM (step 4) is readily achieved by determining the

dimension of null-space of the subsystem it represents: if it is 1, then v′ is an EM. If not,

step 7 decomposes v into EMs using the algorithm by Schuster et al. (1999), and flux

assigned to each EM as described in Poolman et al. (2004). The constraints defined in Eq.

(2) along with the subtraction in step 10 ensure that the number of non-zero elements

in v decrease by at least one in each iteration of the algorithm, thereby guaranteeing

completion.

3 Results

3.1 Model responses penalties and constraints described in Panel 1

No solution exists when attempting to solve Eq. (1) with the oxygen uptake constrained

to zero, demonstrating an absolute requirement for oxygen to account for biomass pro-

duction in this model. The results obtained under the different conditions described in

Panel 1 were as follows:

1. Individual biomass components, oxygen uptake set to zero

Solutions could be found for all individual biomass components, with the exception

of pyridoxal 5′-phosphate (PLP), the active form of vitamin B6 and a co-substrate

for many enzyme catalysed reactions (see discussion).

2. Individual biomass components, with no constraint or penalty on oxygen up-

take

With no constraints on oxygen uptake, the synthesis of 45 of the 51 biomass precur-

sors utilised oxygen (including PLP synthesis), and all of these used proton translo-
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cating ATP synthase to satisfy some, or all, of their ATP demand; 43 (including PLP)

utilised cytochrome oxidase and/or NADH oxidase to generate some or all of the

necessary proton gradient to drive ATP synthesis.

3. Individual biomass components, with imposed oxygen uptake penalty

With the oxygen uptake penalty (weighting factor wO2
in Eq. (1)) set to 106 none

of the biomass precursors, with the exception of PLP, utilised oxygen. 43 of these

(including PLP) utilised the electron transport chain for ATP generation with NO3 or

NO2 acting as the terminal electron acceptor.

4. Simultaneous production of all biomass components, with no oxygen uptake

penalty

When Eq. (1) was solved to account for the simultaneous production of all biomass

components, the resulting solution contained 324 reactions (excluding transport

processes). The major carbon and nitrogen source was glutamine, accounting for

51% and 87% of total carbon and nitrogen uptake respectively. Most of the remain-

ing carbon uptake was satisfied by the uptake of pyruvate (39%) with the rest of

the carbon and nitrogen demand satisfied by serine, methionine and cysteine. The

latter two amino acids satisfied the demand for sulphur. Excretion of carbon by-

product was mainly in the form of carbon dioxide and carbonic acid (73%) with the

remainder exported as acetate. Excess nitrogen was excreted in the form of NH4.

5. Simultaneous production of all biomass components, with imposed oxygen

uptake penalty

When the oxygen uptake penalty of 106 was imposed on Eq. (1) with the demand

for the synthesis of all biomass precursors, the resulting solution also contained

324 reactions of which 320 were common to the solution obtained with no imposed

penalty. The fact that the two have the same number of reactions is assumed to be

coincidence. All changes to the flux distribution (qualitative and quantitative) were

associated with the redirection of the ETC from aerobic to anaerobic operation.

3.2 EMs of the production of biomass components

When solutions for individual biomass components were generated, no constraint was

placed on the production of other biomass components, thus allowing the potential for

the production of other components as by-products. Nonetheless, each solution resulted

in the generation of the target product only, and represented a single EM (see discussion

below). However, the total number of reactions utilised by all individual solutions was
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substantially greater than the number of reactions required to solve Eq. (1) for all com-

ponents simultaneously (423 vs 397 and 434 vs 395 for penalised and unpenalised O2

uptake respectively). Therefore the solution obtained for the simultaneous production of

all components is not simply the sum of the individual solutions for each component.

To further investigate this, the LPEM algorithm was used to identify EMs utilised for

each biomass component in whole solutions (Panel 1.4 and 1.5). The sets of EMs thus

calculated comprised a total of 62 EMs for both the penalised and unpenalised solutions.

All of the unpenalised EMs utilised oxygen but only one (responsible for PLP synthesis)

EM in the penalised set did so. Although the EM responsible for PLP synthesis with

penalised O2 uptake was not the same as the equivalent LP solution, the rate of O2

uptake was the same for both.

The major difference between the EMs extracted from the whole solution and the

individual LP solutions was that most EMs (all but one) generated more than one product

and, conversely, most end products were generated by more than one EM.

3.3 EMs of PLP production

The solution for the synthesis of PLP in the absence of demand for other products is

presented in Fig. 1 and summarised in Table 1. This is a superset of the the PLP syn-

thesis pathway reported in metacyc (PYRIDOXSYN-PWY), which in turn is derived from

the pathways proposed by Fitzpatrick et al. (2007) and described as the DXP-dependent

and DXP-independent pathways. The pathway presented here is more complete as it

balances all reactions starting from the external substrates glutamine and pyruvate, as

well as generating necessary ATP and reductant. It is interesting to note that although

both utilise the ETC for ATP generation, neither glycolysis (some reactions of glycolysis

are present but run in the reverse, gluconeogenic, direction) nor the TCA cycle is used;

sufficient reductant is generated by the oxidation of other substrates to satisfy the de-

mand for reductant by the ETC. In fact, there is a slight excess of reductant generated

which is then balanced by the reduction of external NO3 to NH3, which is in turn simply

excreted (reactions R26 and R33 in Fig. 1).

The EM obtained for the synthesis of PLP in the context of simultaneous synthesis

of other biomass components, without imposing a penalty on O2 uptake is considerably

more complex than the solution obtained for PLP as a single product (140 vs 46 reac-

tions). However it does utilise the majority of the reactions depicted in Fig. 1, with the

exception of those associated with oxidising excess reductant (R7a, R2a, R32, R33, R26

(NADP), R27). The other difference between this EM and the simple solution is that the

EM also produces small amounts of other biomass components: DTTP, FAD, and valine.
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Figure 1: PLP synthesis in the Campylobacter spp. model with and without out a penalty
on O2 uptake. Reactions in black are active under both the conditions. Reactions in blue
are active when there is no penalty onO2 uptake and reactions in red are active only when
the penalty is imposed. See key tables 1 and 2 for complete descriptions of reaction and
metabolite abbreviations.

A similar situation was found when comparing the EM producing PLP in the context

of simultaneous synthesis of other biomass components, with the penalty on O2 imposed

(136 vs 46 reactions), and contained 41 reactions in common with the simple solutions.

Of the those that were absent, one was associated with the oxidation of excess reductant

(nitrate reductase, R26 in Fig. 1), and two were associated with a move away from the

use of membrane bound electron carriers to nicatinamides (malate oxidoreductase (R7a)

and glutamate synthase (R2a) in Fig. 1). Somewhat unexpectedly, this EM did not

utilise transaldolase (R22) or sedoheptulose 7-phosphate transketolase (R23) indicating

that this EM has an alternative source of the pentose phosphate pathway intermediate,

X5P. Again this EM also produced a number of other biomass precursors, in this case

histidine, phosphatidyl-serine, FAD and valine.

3.4 Algorithm Performance

The LP solutions for production of all biomass components with free and penalised O2

uptake were comprised of 390 and 392 reactions respectively, the dimension of null-
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Table 1: Modes of PLP production with or without a background demand for other
biomass components and with or without O2 uptake penalty. The solutions for PLP
production are single EMs.

Penalty +Biomass Reactions Total flux O2 uptake Transporters

No No 46 4.6 ×10−4 2.9×10−5 10
Yes No 47 5.0 ×10−4 3.0×10−6 10
No Yes 140 1.1 ×10−3 3.8×10−5 15
Yes Yes 136 1.3 ×10−3 3.0×10−6 16

spaces of the subsystems defined by these solutions was 51 in each case. The LPEMs

algorithm decomposed these two solutions into 52 and 55 EMs, remarkably close to the

dimension of their respective null-spaces. Using a commodity desk-top PC with a 2.6

GHz AMD Ryzen processor the determination of the EMs for both solutions took about

70 seconds and required less than 1 GB of available memory.

4 Discussion and Conclusion

4.1 Micro-aerophilly in C. jejuni

The results presented above demonstrate that, in this model, O2 is essential for the

synthesis of PLP, the biologically active form of vitamin B6. This is an enzyme bound

co-factor for more than 140 reactions, mainly those involved in amino-acid metabolism

and predominantly transferase and lyase reactions Eliot and Kirsch (2004); Percudani

and Peracchi (2003, 2009). Animals are unable to synthesise PLP, and it is therefore

an essential vitamin. However, plants, fungi and bacteria are able to synthesize PLP

via one of two reported routes: the DXP (deoxy-xylulose 5-phosphate) dependent and

DXP independent pathway. In the DXP independent pathway, PLP is synthesised by

single heterodimeric complex from glutamine, ribose 5-phosphate, and glyceraldehyde

3-phosphate. Organisms lacking this pathway, mainly the proteobacteria, utilise the

DXP dependent pathway, commonly depicted as using erythrose 4-phosphate and glyc-

eraldehyde 3-phosphate as the starting point. The pathway depicted in Fig. 1 is in fact

a superset of the DXP dependent pathway.

Many other organisms which use the DXP dependent pathway have additional asso-

ciated reactions and transporters, allowing the uptake of additional precursors as well

as greater metabolic flexibility (Fig. 2), and in particular the potential to bypass the O2

dependent pyridoxine 5′-phosphate oxidase (R30 in Fig. 1 and 2) step Ito and Downs

(2020); Sugimoto et al. (2017). However, these have not been reported C. jejuni M1cam

and therefore O2 is an absolute requirement for PLP synthesis.
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Figure 2: Reactions involved in PLP metabolism in Escherichia coli . Reactions in red
are common to C. jejuni , those in green allow for the bypass of of the O2 dependent
pyridoxine 5′-phosphate oxidase step (R30). *** Reactions labelled R35a/R37a/R39a
are all catalysed by the same enzyme (similarly for reactions labelled R35b/R37b/R39b
and R30/R38). See key tables 3 for a complete key.

4.2 Oxygen dependence of PLP synthesis

That the LP solutions of all biomass precursors individually, with free and restricted O2,

were single EMs is unsurprising as the solutions of linear programs that contain only

one non-zero flux constraint have been shown to always consist of a single EMs Maar-

leveld (2015). What is more relevant is that this allows the unambiguous identification

of PLP production as the reason for the absolute dependence on O2 for this model to

account for growth, although this does not unambiguously identify which O2 consuming

reactions are responsible for the dependence. The model contains a total of 27 reactions

utilising O2 as a substrate, making it impractical to identify the essential reactions by a

combinatorial search strategy. However the problem may be readily solved by using the

technique of Enzyme Subsets analysis Pfeiffer et al. (1999) which identifies sets of reac-

tions in a network which must carry flux in a fixed ratio in any steady-state. A corollary

of this is that if any one reaction in a subset carries zero flux at a given steady state,

then every other reaction must also carry zero flux. Determining the enzyme subsets of

this model reveals that pyridoxine (pyridoxamine) 5′-phosphate oxidase (R30 in Fig. 1)

is in the same subset as the PLP transporter and therefore it is the reaction responsible

for the absolute dependency on O2 for the synthesis of PLP. It is interesting to note that,

although the model contains the catalase reaction (R31 in Fig. 1), this cannot be used
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to generate internal O2 as a substrate for these reactions, as the generation of hydrogen

peroxide itself must ultimately depend on an exogenous O2 source.

4.3 Sum of individual solutions compared to the decomposition of

the whole solution

By using LP to identify pathways for precursor synthesis in isolation and applying the

LPEM algorithm to an LP solution accounting for the simultaneous production of all

precursors, two sets of results were obtained. Although it might be intuitively expected

that the solution that accounts for all biomass precursors would be equivalent to the sum

of the 51 pathways that produce each precursor individually, this was not the case: the

summation of individual solutions required more reactions and greater total flux. This

suggests that the optimal solution for the synthesis of a single product in isolation is not

necessarily optimal in the presence of demand for additional products, and that therefore

individual solutions must be interpreted with care in the context of a growing organism.

The explanation for this appears to be that optimal individual solutions also generate by-

products, that must then be further metabolised before they can be exported. However,

when multiple products must be synthesised such by-products may be utilised for the

synthesis of other products. For example, the solution for PLP synthesis in isolation

(Fig. 1) generates excess reductant, which is then oxidised by the reduction of NO3 to

NH3 which is subsequently exported. However, when there is a requirement to synthesise

other products, these by-products become useful intermediates. A similar observation

was originally made by Fell and Small (1986) in one of earliest papers describing the

application of LP to metabolic networks.

4.4 Conclusion

The LPEM algorithm provides a relatively simple and computationally efficeint way to

leverage the advantages of FBA and Elementary Modes Analysis. This has shown that

the actual modes utilised by an organism in vivo may be rather more complicated than

consideration of individual FBA solutions would suggest, but that these may nonetheless

be more efficeint both in terms of the total number of reactions required and of the overall

flux they carry. Applying the approaches described here suggests that the reason for

micro-aerophilly in the pathogen C. jejuni is the dependence on oxygen for the production

of PLP, although this may not be exclusive.
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Keys to figures

Key 1 Fig. 1 (Reactions)
Label Enzyme Metacyc ID EC number

R1 glutaminase GLUTAMIN-RXN 3.5.1.38
R2a glutamate synthase RXN-12878 1.4.7.1
R2b glutamate dehydrogenase GLUTDEHYD-RXN 1.4.1.4
R3 2-oxoglutarate synthase 2-OXOGLUTARATE-SYNTHASE-RXN 1.2.7.3
R4 succinyl-CoA synthase SUCCCOASYN-RXN 6.2.1.5
R5 succinate dehydrogenase SUCCINATE-DEHYDROGENASE-MENAQUINONE-RXN 1.3.5.1
R6 fumerase FUMHYDR-RXN 4.2.1.2

R7a malate oxidoreductase (quinone) RXNI-3 1.1.5.4
R7b malate dehydrogenase MALATE-DEH-RXN 1.1.1.37
R8 phosphoenolpyruvate carboxykinase PEPCARBOXYKIN-RXN 4.1.1.49
R9 enolase 2PGADEHYDRAT-RXN 4.2.1.11

R10 phosphoglycerate kinase PHOSGLYPHOS-RXN 2.7.2.3
R11 glyceraldehyde 3-phosphate dehydrogenase GAPOXNPHOSPHN-RXN 1.2.1.12
R12 triose-phosphate isomerase TRIOSEPISOMERIZATION-RXN 5.3.1.1
R13 fructose-bisphosphate aldolase F16ALDOLASE-RXN 4.1.2.13
R14 fructose 1,6-bisphosphatase F16BDEPHOS-RXN 3.1.3.11
R15 fructofuranose 6-phosphate transketolase 2TRANSKETO-RXN 2.2.1.1
R16 erythrose 4-phosphate dehydrogenase ERYTH4PDEHYDROG-RXN 1.2.1.72
R17 erythronate 4-phosphate dehydrogenase ERYTHRON4PDEHYDROG-RXN 1.1.1.290
R18 phosphohydroxythreonine aminotransferase PSERTRANSAMPYR-RXN 2.6.1.52
R19 hydroxythreonine 4-phosphate dehydrogenase RXN-13179 1.1.1.262
R20 deoxy-xylulose 5-phosphate synthase DXS-RXN 2.2.1.7
R21 pyridoxine 5′-phosphate synthase PDXJ-RXN 2.6.99.2
R22 transaldolase TRANSALDOL-RXN 2.2.1.2
R23 seduloheptulose 7-phosphate transketolase 1TRANSKETO-RXN 2.2.1.1
R24 ribose 5-phosphate isomerase RIB5PISOM-RXN 5.3.1.6
R25 ribulose phosphate 3-epimerase RIBULP3EPIM-RXN 5.1.3.1
R26 nitrite reductase (NAD) RXN0-6377 1.7.1.4
R27 oxygen reductase (cytochrome) RXN0-5266 7.1.1.7
R28 nitrite reductase (cytochrome) 1.7.2.2-RXN 1.7.2.2
R29 nitrate reductase (cytochrome) NITRATE-REDUCTASE-CYTOCHROME-RXN 1.9.6.1
R30 pyridoxine 5′-phosphate oxidase PNPOXI-RXN 1.4.3.5
R31 catalase CATAL-RXN 1.11.1.6
R32 NADH peroxidase NADH-PEROXIDASE-RXN 1.11.1.1
R33 nitrate reductase (NAD) NITRATE-REDUCTASE-NADPORNOPH-RXN 1.7.99.4
R34 carbonic anhydrase RXN0-5224 4.2.1.1
CV proton translocating ATP synthase ATPSYN-RXN 7.1.2.2
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Key 2 Fig. 1 (Metabolites)
Abbreviation Common Name BioCyc ID

GLN glutamine GLN
GLT glutamate GLT
2KG α-ketoglutarate 2-KETOGLUTARATE

SucCoA succinyl-CoA SUC-COA
SUC succinate SUC
FUM fumarate FUM
MAL malate MAL
OAA oxaloacetate OXALACETIC_ACID
PEP phosphoenolpyruvate PHOSPHO-ENOL-PYRUVATE
PGA phospho-glycerate 2-PG

BPGA bisphospho-glycerate DPG
GAP glyceraldehyde 3-phosphate GAP

DHAP glycerone phosphate DIHYDROXY-ACETONE-PHOSPHATE
FBP fructofuranose 1,6-bisphosphate FRUCTOSE-16-DIPHOSPHATE
F6P fructofuranose 6-phosphate FRUCTOSE-6P
E4P erythrose 4-phosphate ERYTHROSE-4P
S7P seduloheptulose 7-phosphate D-SEDOHEPTULOSE-7-P
R5P ribose 5-phosphate RIBOSE-5P
X5P xylulose 5-phosphate XYLULOSE-5-PHOSPHATE

Ru5P ribulose 5-phosphate RIBULOSE-5P
EN4P erythronate 4-phosphate ERYTHRONATE-4P
PAKB hydroxy-2-oxo-4 phosphooxybutanoate 3OH-4P-OH-ALPHA-KETOBUTYRATE
POT phosphooxy-threonine 4-PHOSPHONOOXY-THREONINE

AHAP amino-1-hydroxyacetone 1-phosphate 1-AMINO-PROPAN-2-ONE-3-PHOSPHATE
DX5P deoxy-xylulose 5-phosphate DEOXYXYLULOSE-5P
PNP pyridoxine 5′-phosphate PYRIDOXINE-5P
PLP pyridoxal 5′-phosphate PYRIDOXAL_PHOSPHATE
PYR pyruvate PYRUVATE
Mq menaquinol MENAQUINOL

MqH menaquinone MENAQUINONE
Cy-Ox cytochrome c oxidised Cytochromes-C-Oxidized
Cy-Rd cytochrome c reduced Cytochromes-C-Reduced
Fd-Ox oxidised ferredoxin Oxidized-ferredoxins
Fd-Rd reduced ferredoxin Reduced-ferredoxins

Key 3 Fig. 2
Reactions

Label Enzyme Metacyc ID EC number
R35a pyridoxal kinase PYRIDOXKIN-RXN 2.7.1.35
R35b PLP phosphatase 3.1.3.74-RXN 3.1.3.74
R36 pyridoxal reductase PYRIDOXINE-4-DEHYDROGENASE-RXN 1.1.1.65

R37a pyridoxine kinase PNKIN-RXN 2.7.1.35
R37b PNP phosphatase RXN-14181 3.1.3.74
R38 PMP oxidase PMPOXI-RXN 1.4.3.5

R39a pyridoxamine kinase PYRAMKIN-RXN 2.7.1.35
R39b PMP phosphatase RXN-14046 3.1.3.74
R40 PM–OAA transaminase PYROXALTRANSAM-RXN 2.6.1.31

Metabolites
Abbreviation Common Name BioCyc ID

PN pyridoxine PYRIDOXINE
PL pyridoxal PYRIDOXAL
PM pyridoxamine PYRIDOXAMINE

PMP pyridoxamine 5′-phosphate PYRIDOXAMINE-5P
ASP aspartate L-ASPARTATE
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