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Abstract

Genotype imputation of the human leukocyte antigen (HLA) region is a cost-effective means to infer classical HLA alleles
from inexpensive and dense SNP array data. In the research setting, imputation helps avoid costs for wet lab-based HLA
typing and thus renders association analyses of the HLA in large cohorts feasible. Yet, most HLA imputation reference
panels target Caucasian ethnicities and multi-ethnic panels are scarce. We compiled a high-quality multi-ethnic reference
panel based on genotypes measured with Illumina’s Immunochip genotyping array and HLA types established using a
high-resolution next generation sequencing approach. Our reference panel includes more than 1,300 samples from
Germany, Malta, China, India, Iran, Japan and Korea and samples of African American ancestry for all classical HLA class I
and II alleles including HLA-DRB3/4/5. Applying extensive cross-validation, we benchmarked the imputation using the HLA
imputation tool HIBAG, our multi-ethnic reference and an independent, previously published data set compiled of
subpopulations of the 1000 Genomes project. We achieved average imputation accuracies higher than 0.924 for the
commonly studied HLA-A, -B, -C, -DQB1 and -DRB1 genes across all ethnicities. We investigated allele-specific imputation
challenges in regard to geographic origin of the samples using sensitivity and specificity measurements as well as allele
frequencies and identified HLA alleles that are challenging to impute for each of the populations separately. In conclusion,
our new multi-ethnic reference data set allows for high resolution HLA imputation of genotypes at all classical HLA class I
and II genes including the HLA-DRB3/4/5 loci based on diverse ancestry populations.

Introduction
The major histocompatibility complex, in humans also named
human leukocyte antigen (HLA) complex, is a highly variable
gene cassette with major functions in the immune system.
The HLA region spans ∼5 Mb on chromosome 6p21 with
genomic positions ranging from 29 Mb to 34 Mb. Genes in this
region code for proteins that are involved in many complex
functions of the adaptive and innate immune system like
the presentation of peptides to the host immune system
and also code for proteins that aid peptide presentation or
antigen recognition. Results from over 10 years of genome-
wide association studies (GWAS) support the HLA as one
of the most important disease susceptibility loci for almost
every immune-mediated and autoimmune disease. In many
cases, the strongest association signals are found within the
highly polymorphic classical HLA genes in the class I and II
regions, a finding made long before the GWAS era for many
of these diseases (1). Therefore, pinpointing the exact genetic
variants in the HLA region, which are associated with these
diseases, is of utmost importance to disentangle the underlying
genetic pathophysiology (2). This is complicated by the highly
polymorphic nature of the region, resulting in the need for large
disease cohorts to increase statistical power in the detection of
genetic association. The costs per sample for Sanger- and next
generation sequencing (NGS)-based HLA typing is still at least
double that of a genome-wide single nucleotide polymorphism
(SNP) array analysis with the new chip platforms. Therefore,

imputation methods and reference panels have been developed
to provide geneticists with a tool to infer HLA alleles at the
classical loci in silico using inexpensive and dense SNP array
data. These have led to significant advances in fine-mapping
of disease relevant genetic variants for many inflammatory
and autoimmune diseases (3–5). Published and established HLA
imputation tools are amongst others SNP2HLA, HLA Imputation
using attribute BAGging (HIBAG) and HLA∗IMP (6–8). Imputation
of the HLA requires reference panels with high coverage of
alleles and genotypes in the region of interest as well as a broad
spectrum of samples in order to capture as many different
alleles as possible. Additionally, the ancestral background of
the reference panel used to impute a data set of interest must
be as close as possible to the study population as shown
for instance by Jia et al. (7). Most HLA imputation reference
panels target Caucasian ethnicities and although there has
been progress in the development of ancestrally diverse HLA
reference panels, studies in which multi-ethnic analyses are
performed are still scarce and limited in size (e.g. for chronic
inflammatory diseases, (9)). Several imputation references have
been published in the past using various genotyping chips
and at different resolutions. All reference panels have sig-
nificantly advanced HLA imputation and analysis conducted
with the produced data. However, to date, no full context
four-digit multi-ethnic HLA imputation reference panel exists
for fine mapping of the HLA region across the totality of the
mentioned loci.
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Figure 1. Flowchart of steps taken in preparation and benchmarking of our multi-

ethnic reference panel. HLA allele calls were made based on NGS reads. Genotype

information was measured using the Illumina Immunochip. These data were

combined to train a HIBAG imputation model. Benchmarking was performed

using a 5× cross-validation and the independent, previously published, 1000

Genomes data set (24).

With this study, we aimed to create a comprehensive high-
quality multi-ethnic HLA reference data set, including HLA-DPA1,
-DPB1 and -DRB3/4/5, using populations of African American,
East Asian (Japan, South Korea and China), European (Germany,
Malta) and Middle Eastern (India and Iran) descent.

We generated HLA allele calls from next generation sequenc-
ing (NGS) reads for ulcerative colitis (UC) and control individuals
of each population, using HLAssign (10) and genotype infor-
mation using the Illumina Immunochip SNP array [Illumnina,
San Diego, CA, USA] (Fig. 1). Using multidimensional scaling
(MDS) analysis, we analyzed population structure based on HLA
allele frequencies. The combination of called HLA alleles and
SNP array genotypes served as training data sets for our new
multi-ethnic reference using the HLA imputation tool HIBAG
(6). We benchmarked the imputation, applying extensive cross-
validation on our multi-ethnic reference panel (Supplementary
Material, Fig. S1). The performance of our final model was addi-
tionally assessed using the previously published HLA calls of
the 1000 Genomes project (11). We also conducted a literature
search into the genetic architecture of HLA-DRB3/4/5 in relation
to HLA-DRB1, as the presence of the HLA-DRB3/4/5 are highly
dependent on which HLA-DRB1 allele is carried by an individ-
ual. These loci are of particular interest, since they represent a
functional variation that has not been considered in many of the
previously published reference data sets and hence have been
largely excluded in association studies.

Results
MDS-based clustering of reference samples on HLA
allele frequencies

Using MDS analysis on relative frequencies of single HLA G
grouped alleles across each cohort, we observed distinct clusters
for individuals with East Asian, African and European back-
grounds (Fig. 2), except for HLA-DRB3/4/5 and HLA-DQB1. The
different subpopulations of our multi-ethnic study population
cluster well with respective ethnicities of the 1000 Genomes
population. For the 1000 Genomes population, exons 2 and 3

(class I) or exon 2 (class II) were typed only for loci HLA-A,
-B, -C, -DQB1 and -DRB1 but not for HLA-DPA1, -DPB1 and
-DRB3/4/5. However, to the best of our knowledge no custom
G groups were defined (11). Samples did not show population-
specific clustering for HLA-DQB1, because frequencies of the
HLA alleles in European individuals were similar to those in the
Yoruban, African American and European individuals of the 1000
Genomes population. We did not detect consistent clusters for
the HLA-DRB3/4/5 genes, possibly because there was not enough
variability to allow good clustering results. In our multi-ethnic
data set we only observe four, three and six different four-digit
alleles for the HLA-DRB3/4/5 genes, respectively. In addition,
these genes also included a high percentage of null alleles (HLA-
DRB3, 48.45–81.28%; HLA-DRB4, 65.78–84.52%; HLA-DRB5, 71.28–
85.66%; Table 1) that dominate the frequency spectrum and thus
the MDS analysis. With ‘null allele’ we here refer to the absence
of a locus in a given individual. These null alleles are named
DRB3∗00:00, DRB4∗00:00 and DRB5∗00:00 throughout this paper.
In summary, the MDS analysis reveals significant population
heterogeneity for the classical HLA genes and thus, imputation
tools should be able to account for this heterogeneity by using
population-matched and diverse reference panels.

Imputation benchmark

We performed HLA imputation of the HLA class I loci HLA-A,
-B, -C and class II loci HLA-DQA1, -DQB1, -DPA1, -DPB1, -DRB1 and
-DRB3/4/5 using HIBAG and three different constellations: (i) our
multi-ethnic reference panel in full four-digit context (Fig. 3 and
next paragraph), (ii) our multi-ethnic reference panel combined
with the 1000 Genomes data set on G group level (Supplementary
Material, Fig. S2 and Supplementary Material, Table S1) and (iii)
our multi-ethnic reference panel on G group level as a com-
parison (Supplementary Material, Fig. S3 and Supplementary
Material, Table S2). We also used the 1000 Genomes panel to test
the performance of our data (Table 2) with special focus on the
imputation for the non-European population panels, as one of
the main innovations of this work.

Using a cross-validation approach (Supplementary Material,
Fig. S1), we divided the data of each specific population into five
random subsamples irrespective of case–control status. For each
of the subsets, using the remaining 80% of the population, as
well as the HLA allele and genotype information of all other
populations, we trained a HIBAG model. The HLA alleles were
predicted for the 20% of data from the analyzed population that
were not used for training. We calculated accuracies for each of
the five subsamples of our population of interest and imputa-
tion accuracies for unrelated individuals of the 1000 Genomes
population. The results of the cross-validation are depicted in
Figure 3 and Table 3. Overall accuracies were high with average
accuracies ranging from 0.924 in the Chinese to 0.967 in the
Maltese populations (Table 3; Supplementary Material, Table S3).
More specifically, high overall accuracies were achieved for the
HLA-C, HLA-DP and HLA-DQ loci whereas the HLA-A, -B and
-DRB1 loci were more challenging to impute across all ethnicities
with accuracies as low as 0.862 for HLA-DRB1 in the Iranian
panel. This is also reflected in the posterior probability curves
depicted in Figure 3b. Posterior probabilities in HIBAG are used as
an additional measure to control prediction accuracies and are
generated as an average over all classifiers. Low overall posterior
probabilities for a locus indicate that the majority of the alleles
were challenging to impute. Note, that correct calls, e.g. for
rare alleles, also tend to have smaller posterior probabilities,
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Figure 2. MDS analysis of HLA typed allele data: the MDS analysis was performed using a Euclidean distance measure. Alleles with a frequency <1% were excluded to

produce a clustering that is not biased by similarity in low frequency variants. Colors show the origin of the cohort. Red: African American (AA) and African background;

Green: European and Middle Eastern background: German (GER), Indian (IND), Iranian (IRN), Maltese (MLT); Blue: Asian background: Hong-Kong Chinese (CHN), South

Korean (KOR) and Japanese (JPN); Purple: Non-reference admixed American individuals. Capital acronyms in the panels depict the 1000 Genomes populations as

described in Auton et al., (24). The 1000 Genomes populations include Americans of African Ancestry in the Southwest USA (ASW), Africans from Kenya (LWK), Nigeria

(YRI), Columbian (CLM), Mexican (MXL) and Puerto Rican (PUR), Han Chinese in Beijing (CHB), Southern Han Chinese (CHS), Japanese in Tokyo (JPT), Finnish (FIN), British

(GBR), Tuscan (TSI) and samples with Western European Ancestry collected in the CEPH diversity panel (CEU). For HLA-DPA1, -DPB1, -DQA1 and the -DRB3/4/5 loci no

data was available in those panels. For the MDS analysis across all loci (HLA CLASS I II) we included HLA-A, -B, -C, -DQB1 and -DRB1. Samples of our own cohorts cluster

well with the corresponding 1000 Genomes population.

while incorrect calls can have a high posterior probability when
haplotypes of two alleles are similar across many classifiers.
Therefore, we decided to additionally use other measures such
as sensitivity and specificity, and allele specific accuracy to
evaluate allele specific results in the following analyses. With
29–55 alleles per population, and 75% (Malta) to 82% (Japan) of
the alleles having frequencies of <1% (Supplementary Material,
Tables S4 and S5), HLA-B presented a particular challenge for
imputation. Similarly challenging were HLA-A and -DRB1, which
are discussed further below. The remaining loci were not as
variable or had a smaller and more even frequency spectrum
(Supplementary Material, Table S5), such that posterior probabil-
ities were higher. HLA-DPA1 and -DPB1 had the most “on target”
SNPs (30 and 51 SNPs, respectively) (Supplementary Material,
Table S6), reflecting the fact, that these loci are least variable and
therefore better suited to be captured on a SNP genotyping array.
Overall, between 682 (HLA-DPB1) and 1,794 (HLA-A) SNPs were
located within the different gene loci including flanking regions
of 500 kb upstream and downstream of each gene. A median
of 41.5 (HLA-DRB5) to 81 (HLA-A) SNPs were used by the single
classifiers of HIBAG.

In the following, we show the results of the imputation with
our own reference data set divided by ethnic background and
also compare our data to previously reported HLA imputation
accuracies on published data sets from Dilthey et al. (8), Jia et al.
(7), Okada et al. (12), Kim et al. (13) and Zheng et al. (6) (Table 4). It is
of importance to note, that high accuracies for a reference panel
using a specific benchmarking panel are best achieved when
the benchmarking panel follows the same allele nomenclature
and grouping as the panel used for imputation. We could not
determine to which extent this was considered in each of the
above studies, but we estimate that the effect should not be
detrimental if differences only occur between slightly different
custom allele groupings (i.e. we assume that the allele that a
grouping is based on is also the most frequent allele) and not
between different levels of grouping (i.e. full context versus G
groups). A summary of these data sets is described in Table 4.
The following results are specific to the imputation of HLA
alleles into the respective populations using our multi-ethnic
four-digit full context reference panel. If not stated otherwise,
mean accuracies were compared for four-digit allele imputations
of HLA-A, -B, -C, -DQB1 and -DRB1. These are the loci that are
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Figure 3. Imputation accuracies employing the multi-ethnic reference panel: accuracies and post-imputation probabilities of HLA imputation with HIBAG using a

5-fold cross-validation scheme and the multi-ethnic data set with full four-digit allele information. 20% of the data with a specific ethnic background were used

as the validation set after training a model that used 80% of the remaining data and all data from other ethnic backgrounds. We included 1,360 African American

(AA), Hong-Kong Chinese (CHN), German (GER), Indian (IND), Iranian (IRN), Japanese (JPN), South Korean (KOR) and Maltese (MLT) samples in total. (a) Accuracies

are depicted according to post-imputation probabilities with cut-off thresholds at 0 (no confidence filtering), 0.3, 0.5, 0.8 (only high confidence genotypes). Loci are

shown according to alphabetical order. Imputation accuracies are especially high for HLA-C, -DPA1, -DPB1, -DQB1 and the -DRB3/4/5. HLA-DRB1 accuracies are especially

lowered by misclassifications of DRB1∗04:03, DRB1∗04:04 and DRB1∗11:04. (b) Posterior probabilities are depicted as proportion of the number of samples with a posterior

probability smaller than a threshold (x-axis).
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Table 1. Frequencies of HLA-DRB3/4/5 in our multi-ethnic reference panel: frequencies of HLA-DRB3/4/5 in the typed HLA data for African
American (AA), Hong-Kong Chinese (CHN), German (GER), Indian (IND), Iranian (IRN), Japanese (JPN), South Korean (KOR) and Maltese
(MLT) populations at full four-digit context. Null alleles have the highest frequencies. For HLA-DRB4 mainly one other allele, DRB4∗01:03,
exists. DRB5∗01:01 is the second most abundant of the HLA-DRB5 alleles in all but the Japanese and Iranian panels, where DRB5∗01:02 is
seen more often.

AA CHN GER IND IRN JPN KOR MLT

DRB3∗00:00 51.61 64.60 59.88 56.74 48.45 81.28 64.34 55.00
DRB3∗01:01 11.13 2.55 14.51 5.32 8.53 4.55 11.07 4.69
DRB3∗02:02 27.74 19.34 22.53 32.98 37.98 8.82 16.39 33.75
DRB3∗02:24 0.00 0.00 0.62 0.00 0.39 0.00 0.00 0.31
DRB3∗03:01 9.52 13.50 2.47 4.96 4.65 5.35 8.20 6.25
DRB4∗00:00 84.52 75.91 80.25 80.85 75.97 65.78 68.44 75.63
DRB4∗01:01 6.77 0.00 2.47 0.35 1.55 0.00 0.00 3.75
DRB4∗01:02 0.00 0.00 0.00 0.00 0.39 2.14 0.41 0.00
DRB4∗01:03 8.71 24.09 17.28 18.79 22.09 32.09 31.15 20.31
DRB4∗03:01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31
DRB5∗00:00 81.94 72.63 80.56 71.28 85.66 71.66 82.38 81.56
DRB5∗01:01 15.97 21.53 16.67 15.96 5.43 6.42 11.07 10.00
DRB5∗01:02 0.32 1.82 0.62 12.77 6.98 20.59 4.51 3.75
DRB5∗01:03 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00
DRB5∗01:08 0.32 2.19 0.00 0.00 0.00 0.27 0.41 0.00
DRB5∗02:02 0.97 0.36 2.16 0.00 1.94 1.07 1.64 4.69
DRB5∗02:03 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00
DRB5∗02:13 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. Imputation accuracies for 1000 Genomes populations: population groups are depicted in bold and the subpopulations in italic type.
African (AFR) samples are divided into Americans of African Ancestry in the Southwest USA (ASW), Africans from Kenya (LWK) and Nigeria
(YRI). Admixed American (AMR) samples are split into samples with Columbian (CLM), Mexican (MXL) and Puerto Rican (PUR) ancestry. East
Asians (EAS) were collected as Han Chinese in Beijing (CHB), Southern Han Chinese (CHS) and Japanese in Tokyo (JPT). Samples with European
Ancestry (EUR) are Finnish (FIN), British (GBR), Tuscan (TSI) and samples with Western European Ancestry collected in the CEPH diversity panel
(CEU). Accuracies of HLA-DRB1∗ are HLA-DRB1 measured without DRB1∗04:03, DRB1∗04:04 and DRB1∗11:04, which improved accuracies for all
ethnicities. HLA-A∗ are accuracies measured without A∗02:03, which improved accuracies for the Chinese samples. Overall accuracies were
highest for EUR samples and lowest for the non-AMR, for which no samples with similar backgrounds are included in our novel imputation
reference.

#samples A B C DQB1 DRB1 mean A∗ DRB1∗

AFR 162 0.920 0.833 0.932 0.951 0.886 0.904 0.920 0.906
ASW 41 0.939 0.805 0.915 0.939 0.902 0.900 0.939 0.923
LWK 75 0.880 0.853 0.960 0.980 0.893 0.913 0.880 0.899
YRI 46 0.967 0.826 0.902 0.913 0.859 0.893 0.967 0.902
AMR 193 0.909 0.756 0.972 0.984 0.710 0.866 0.909 0.766
CLM 67 0.925 0.709 0.970 0.985 0.687 0.855 0.925 0.711
MXL 56 0.857 0.688 0.973 0.991 0.598 0.821 0.857 0.674
PUR 70 0.936 0.857 0.971 0.979 0.821 0.913 0.936 0.888
EAS 260 0.929 0.931 0.975 0.992 0.940 0.953 0.941 0.951
CHB 82 0.939 0.921 0.988 0.994 0.939 0.956 0.948 0.967
CHS 92 0.935 0.924 0.967 0.995 0.935 0.951 0.963 0.944
JPT 86 0.913 0.948 0.971 0.988 0.948 0.953 0.913 0.943
EUR 322 0.983 0.944 0.994 0.989 0.890 0.960 0.983 0.968
CEU 52 0.981 0.922 0.971 1.000 0.865 0.948 0.981 0.987
FIN 95 0.984 0.974 1.000 0.989 0.926 0.975 0.984 0.959
GBR 86 0.977 0.959 1.000 0.983 0.884 0.960 0.977 0.993
TSI 89 0.989 0.910 0.994 0.989 0.871 0.951 0.989 0.944

present for all imputation references (Table 4). Within the cross-
validation framework, accuracies for a gene were calculated as
an average across the different cross-validation runs as it has
been done previously (12,13) and enables better comparison of
these values between studies. We also report median, minimum
and maximum values in Supplementary Material, Table S3.
We report accuracies across all imputed alleles in Table 3,
Supplementary Material, Tables S1 and S2. A few alleles were
especially challenging to impute, both within our as well as in

previously published reference panels. These alleles usually
have comparably lower sensitivity or specificity scores and sim-
ilar haplotype structures within the same 2-digit allele groups
(Supplementary Material, Tables S7 and S8, Supplementary
Material, Tables S5–S8 of Zheng et al., (6)). This is especially
important in the context of association analyses where the
greatest impact from these issues is seen with higher frequency
variants (AF >1%) and thus needs to be considered carefully.
Note that this also depends on the ethnicity of the samples
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Table 3. Imputation accuracies of the imputation with the multi-ethnic reference panel: 20% of the data with a specific ethnic background were
used as validation set after training a model with 80% of the remaining data and all data from other ethnic backgrounds. We included 1,360
African American (AA), Hong-Kong Chinese (CHN), German (GER), Indian (IND), Iranian (IRN), Japanese (JPN), South Korean (KOR) and Maltese
(MLT) samples in total in the imputation reference. Shown are mean accuracies of the HLA imputation with HIBAG using a 5-fold cross-validation
scheme and the multi-ethnic data set with full four-digit allele information. The given mean considers only the loci highlighted in bold, as
these are loci also analyzed in all previous publications. Accuracies of HLA-DRB1∗ are HLA-DRB1 measured without DRB1∗04:03, DRB1∗04:04
and DRB1∗11:04, which improves accuracies for all ethnicities. HLA-A∗ are accuracies measured without A∗02:03, which improves accuracies
for the Chinese samples. Overall, HLA-B is the most challenging to impute. Mean accuracies are higher than 0.925 across all cross-validation
runs. Best results are achieved for the GER, JPN and MLT populations.

AA CHN GER IND IRN JPN KOR MLT

#samples 312 140 162 143 132 189 122 160
A 0.969 0.900 0.976 0.955 0.973 0.936 0.939 0.984
B 0.877 0.868 0.917 0.875 0.885 0.938 0.934 0.947
C 0.953 0.986 0.975 0.979 0.974 0.973 0.968 0.988
DPA1 0.969 0.979 0.960 0.968 0.985 0.995 0.975 0.988
DPB1 0.925 0.949 0.960 0.944 0.954 0.979 0.963 0.956
DQA1 0.942 0.975 0.975 0.965 0.962 0.968 0.959 0.978
DQB1 0.962 0.964 0.988 0.990 0.981 0.984 0.975 0.984
DRB1 0.925 0.903 0.948 0.924 0.862 0.960 0.918 0.931
DRB3 0.971 1.000 1.000 1.000 1.000 1.000 0.996 0.994
DRB4 0.977 1.000 0.991 0.996 0.996 0.990 1.000 0.988
DRB5 0.987 0.982 1.000 1.000 1.000 1.000 0.992 1.000
mean 0.937 0.924 0.961 0.944 0.935 0.958 0.947 0.967
A∗ 0.969 0.954 0.976 0.954 0.973 0.935 0.937 0.984
DRB1∗ 0.930 0.904 0.954 0.952 0.956 0.968 0.926 0.971

evaluated. We describe A∗02:01/A∗02:03, DRB1∗11:01/DRB1∗11:04
and DRB1∗04:03/DRB1∗04:04 below for illustration purposes.

African American panel

The imputation of HLA alleles into our own African American
data set achieved an average imputation accuracy on full context
four-digit level of 0.951 across all analyzed loci and of 0.937 on
average for loci HLA-A, -B, -C, -DQB1 and -DRB1 only (Table 3).
Employing our multi-ethnic reference data set on G group level
(ii), we were able to impute alleles of the genes HLA-A, -B, -C,
-DQB1 and -DRB1 of the 1000 Genomes African ancestry data with
a mean accuracy of 0.904 and highest accuracies for the Luhya
Kenyan samples alone (0.880–0.980; mean of 0.913; Table 2). In
comparison, Zheng et al. (6) imputed HLA alleles of random
subsets of their African American HLARES data combined with
the Yoruba Nigerians (YRI) HapMap samples with a reported
mean accuracy of 0.818 using their tool HIBAG (Table 4b). Jia
et al. (7) imputed the HLA alleles of YRI HapMap samples using
their Caucasian Type 1 Diabetes Genome Consortium (T1DGC)
reference panel with accuracies between 0.203 (HLA-DRB1) and
0.984 (HLA-C) across all loci and an overall mean accuracy of
0.750 (Table 4a).

East Asian panel

Employing our multi-ethnic reference data set (i) to impute
HLA alleles into our Chinese samples, we achieved accuracies
of 0.868 (HLA-B) to 1.000 (HLA-DRB3/4) and of 0.924 on average
for HLA-A, -B, -C, -DQB1 and -DRB1. We imputed HLA alleles
into our Japanese samples with accuracies of 0.936 (HLA-A)
to 1.000 (HLA-DRB3/5) and 0.958 on average for HLA-A, -B, -C,
-DQB1 and -DRB1. For our Korean samples imputation accu-
racies of 0.918 (HLA-DRB1) to 1.000 (HLA-DRB4) were reached,

with an average accuracy of 0.947 (Table 3). Additionally, we
imputed the HLA alleles of the East Asian 1000 Genomes data
on G group level (ii) with mean accuracies higher than 0.953
(Table 2).

In comparison, Okada et al. (12), Jia et al. (7), Kim et al. (13) and
Zheng et al. (6) reported mean accuracies between 0.77 to 0.922
for HLA-A, -B, -C, -DQB1 and -DRB1 (Table 4) for East Asian popu-
lations using their respective HLA imputation panels. HLA-DPA1
or HLA-DRB3/4/5 is not considered in any of the publications for
East Asian ethnicities. For single loci the reported imputation
accuracies vary between 0.656 (HLA-B with T1DGC reference for
Han Chinese in Beijing (CHB) and Japanese samples (JPT); (7)) and
0.984 (HLA-C with a Korean reference panel and the same test
population; (13)).

In the cross-validation benchmark the accuracy of locus HLA-
A in the Chinese population (Fig. 3a) was decreased due to a
misclassification of A∗02:03 to A∗02:01 in 32% of 37 samples in
which this allele occurred. This misclassification is due to the
high similarity between these alleles (Supplementary Material,
Supplementary Text). When excluding A∗02:03 from accuracy
calculations for HLA-A, accuracies improved for the Chinese
subpopulation from 0.900 to 0.954 (Table 3).

Iranian and Indian panels

Overall imputation accuracies for our Indian and Iranian panels
over all loci were 0.944 and 0.935, respectively. The accuracies
were high for all loci except HLA-B (0.875 and 0.885, respectively)
and -DRB1 (0.924 and 0.862, respectively) (Table 3).

The accuracy of the Iranian samples in the cross-validation
benchmark (Fig. 3a) at HLA-DRB1 was low due to a misclassi-
fication of DRB1∗11:04 to DRB1∗11:01 in 39% of the 36 Iranian
samples in which this allele occurs (Supplementary Material,
Supplementary Text). When excluding the DRB1∗11:04 as well as
the DRB1∗04:04 and DRB1∗04:03 alleles (see below) from accuracy
calculations for HLA-DRB1, the accuracies improved from 0.862
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Table 4. Previously reported imputation accuracies: accuracies measured for HLA reference panels, which are mainly based on Caucasian and
Asian data, with origin of the publications and cohorts used for training and validation as well as a comparison to accuracies achieved with our
own multi-ethnic reference panel (i) in the cross-validation experiment on our own data (see also Table 3) and on the 1000 Genomes cohorts (see
also Table 2). Accuracies of the cross-validation (own) framework and of the imputation into the 1000 Genomes population are shown. Mean
accuracies are calculated across HLA-A, -B, -C, -DPB1 and -DRB1 (loci highlighted in bold). Mean accuracies of the listed reference panels are lower
compared to our own reference panel in the majority of the cases, especially in the non-European population. (a) Accuracies published with
SNP2HLA. The international T1DGC reference panel (7) published along with SNP2HLA was used to gain the accuracies on the 1948 British Birth
Cohort and the HapMap-CEPH Cohort, two European ancestry panels. The T1DGC panel was further used for imputing the Yoruban Nigerian
(YRI), the East Asian Han Chinese from Beijing (CHB) and the Japanese from Tokyo (JPT) samples of the 1000 Genomes data sets. For the East
Asian 1000 Genomes panels accuracies reached by later-published ethnic-specific references (12,13) are also listed. (b) Accuracies published
with HIBAG using the HLARES data from GlaxoSmithKline (GSK) clinical trials of specific ethnic background combined with 1000 Genomes data
sets (6). (c) Accuracies published with HLA∗IMP:02 using different combinations of the Golden Set (GS = 1948 Birth Cohort/ HapMap CEU and
CEPH CEU+) and the HLARES data as references (8).

(a) SNP2HLA

Source Jia et al. (7) Okada et al. (12) Kim et al. (13)

imputation
reference

T1DGC Japanese Korean Korean

# training
samples

5,225 918 330 413

test population 1948 British
Birth Cohort

CEPH YRI CHB & JPT JPT random
subset

CHB & JPT

# test
samples

918 90 not specified not specified 44 83 61

A 0.981 0.991 0.699 0.981 0.908 0.908 0.91
B 0.968 0.968 0.905 0.656 0.943 0.859 0.893
C 0.969 0.991 0.984 0.688 0.989 0.928 0.984
DPA1 / / / / / / /
DPB1 / / / / / 0.95 /
DQA1 / 0.985 0.649 0.963 / / /
DQB1 0.983 0.991 0.961 0.964 0.894 0.937 0.893
DRB1 0.933 0.969 0.203 0.923 0.843 0.868 0.893
DRB3 / / / / / / /
DRB4 / / / / / / /
DRB5 / / / / / / /
mean 0.967 0.983 0.729 0.864 0.915 0.908 0.915
mean A-C,
DQB1, DRB1

0.967 0.982 0.75 0.842 0.915 0.9 0.915

mean A-C,
DQB1, DRB1

own

GER 0.961 GER 0.961 AA 0.937 CHN 0.924 CHN 0.924 CHN 0.924 CHN 0.924
MLT 0.967 MLT 0.967 JPN 0.958 JPN 0.958 JPN 0.958 JPN 0.958

KOR 0.947 KOR 0.947 KOR 0.947 KOR 0.947
1000 Genomes

EUR 0.96 EUR 0.96 ASW 0.9 CHB 0.956 CHB 0.956 CHB 0.956 CHB 0.956
LWK 0.913 CHS 0.951 CHS 0.951 CHS 0.951 CHS 0.951
YRI 0.893 JPT 0.953 JPT 0.953 JPT 0.953 JPT 0.953

(b) HIBAG

Source Zheng et al. (6)

imputation
reference

HLARES data of Asian
ancestry & CHB & JPT

HLARES data of
Hispanic ancestry

African American
HLARES data &
60 African YRI

HLARES data of European
ancestry

# training samples 720 + 90 (minus test) 439 (minus test) 173 + 60 (minus test) 2668 (minus test)
test population random subset random subset random subset random subset
# test samples subset subset subset subset
A 0.921 0.934 0.924 0.982
B 0.875 0.75 0.768 0.966
C 0.966 0.962 0.885 0.988
DPA1 / / / /

(Continued).

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/28/12/2078/5261434 by U
niversity of M

alta user on 03 April 2024



2086 Human Molecular Genetics, 2019, Vol. 28, No. 12

Table 4. Continued

(b) HIBAG

DPB1 0.898 0.931 0.8 0.947
DQA1 0.868 0.938 0.794 0.964
DQB1 0.96 0.957 0.742 0.992
DRB1 0.887 0.82 0.771 0.921
DRB3 / / / /
DRB4 / / / /
DRB5 / / / /
mean 0.911 0.899 0.812 0.966
mean A-C, DQB1, DRB1 0.922 0.885 0.818 0.97

mean A-C, DQB1, DRB1 own

CHN 0.924 AA 0.937 GER 0.961
JPN 0.958 MLT 0.967

KOR 0.947
1000 Genomes

CHB 0.956 PUR 0.913 ASW 0.9 EUR 0.96
CHS 0.951 LWK 0.913
JPT 0.953 YRI 0.893

(c) HLA∗IMP:02

Source Dilthey et al. (8)

imputation
reference

GS HLARES EU GS & HLARES ALL

# training
samples

1,585 1,758 2,055

test population HLARES_EU random subset African Americans
of random

subset

Asians of
random subset

Europeans of
random subset

Hispanic of random
subset

# test samples 1,060 872 1,008 (all populations)

A 0.96 0.97 0.73 0.79 0.96 0.82
B 0.9 0.95 0.73 0.68 0.95 0.63
C 0.96 0.96 0.97 0.82 0.97 0.92
DPA1 / / / / / /
DPB1 / 0.90 (2-digit) / / / /
DQA1 0.87 0.97 1 0.73 0.96 0.93
DQB1 0.98 0.98 0.87 0.83 0.97 0.97
DRB1 0.88 0.91 0.71 0.72 0.9 0.8
DRB3 / 0.94 (2 digit) / / / /
DRB4 / 0.98 (2 digit) / / / /
DRB5 / 0.99 (2 digit) / / / /
mean 0.93 0.95 0.84 0.76 0.95 0.85
mean A-C,
DQB1, DRB1

0.94 0.95 0.8 0.77 0.95 0.83

mean A-C,
DQB1, DRB1

own

GER 0.961 GER 0.961 AA 0.937 CHN 0.924 GER 0.961
MLT 0.967 MLT 0.967 JPN 0.958 MLT 0.967

KOR 0.947
1000 Genomes

EUR 0.96 EUR 0.96 ASW 0.9 CHB 0.956 EUR 0.96 PUR 0.913
LWK 0.913 CHS 0.951
YRI 0.893 JPT 0.953

to 0.956 (Table 3). Mean sensitivity values for DRB1∗11:04 for
the cross-validation runs were 0.307 for the Iranian popu-
lation and 0.208 for the Indian population (Supplementary
Material, Table S8). The frequency of this allele was 2.82%
and 13.85%, respectively (Supplementary Material, Table S5).

The improvement of the overall accuracy by excluding these
alleles in the Indian samples (0.924 to 0.952) was not as big as in
the Iranian samples because of the lower allele frequency (AF).
Previously reported sensitivity values for the DRB1∗11 alleles
(Supplementary Material, Tables S5–S8 of Zheng et al. (6)) range
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from 0.627 (DRB1∗11:04) to 0.993 (DRB1∗11:01) in the European
population. In this previous study, misclassifications occurred
for DRB1∗11:04, too, which was called as DRB1∗11:01 in 93% of
cases when a misclassification occurred in European samples
(6). This is in line with our own results.

Imputation for non-reference populations

The Latin American admixed populations of the 1000 Genomes
data set (containing Amerindian and European, for Puerto
Rico also West African ancestral admixture, here grouped
into Mexican, Columbian and Puerto Rican populations) were
imputed with mean accuracies ranging from 0.821 for the
Mexican, 0.855 for the Columbian to 0.913 for the Puerto Rican
population (Table 2). In particular, HLA-B and -DRB1 showed
low imputation accuracies (0.688 to 0.857 and 0.598 to 0.821,
respectively) while all remaining loci had accuracies higher than
0.857 (Table 2). Overall, the Puerto Rican data set showed highest
accuracies and only 40 out of 134 total measured alleles had
sensitivity values of lower than 1.000 (Supplementary Material,
Table S9). Out of these 40 alleles, 22 have an AF <0.1% in the
Puerto Rican panel. Accuracies for loci imputed within the Puerto
Rican data set ranged from 0.821 (HLA-DRB1) to 0.979 (HLA-DQB1)
(Table 2).

HLA-DRB3/4/5 haplotypes

Many imputation tools allow the imputation of HLA-A, -B, -C,
-DQB1 and -DRB1 but only a few studies have reported on the
imputation of the HLA-DRB3, -DRB4 and -DRB5 (HLA-DRB3/4/5)
loci, such as Dilthey et al. (8), who analyzed HLA-DRB3/4/5
imputation in Caucasian data sets (Table 4c). These genes can
be present or absent in an individual depending on the HLA-
DRB1 genotype. For the evaluation of the imputation of these
genes and to elucidate which HLA-DRB3/4/5 loci are known
to be located on the same haplotype as a specific HLA-DRB1,
we conducted an extensive literature review and present the
results below. We mainly focus on the information reported
by Holdsworth et al. (14), Robbins et al. (15) and Bontrop et al.
(16). According to literature, alleles of the HLA-DRB3/4/5 loci
occur within a specific HLA-DRB1 context, being present in some
haplotypes and absent in others. The results of this review are
summarized in Figure 4. Haplotypes with HLA-DRB1 always carry
the pseudogene HLA-DRB9, which is located downstream of HLA-
DRB1 and that consists of two exons (17). DRB1∗01, DRB1∗08 and
DRB1∗10 are not found with any HLA-DRB3/4/5 allele. Haplotypes
with DRB1∗03, ∗11, ∗12, ∗13 and ∗14 are found with HLA-DRB2
and -DRB3. DRB1∗04, ∗07, ∗09 are found with HLA-DRB4 as well as
-DRB7 and -DRB8. Finally, DRB1∗15 and ∗16 are reported to be
located on the same haplotype as HLA-DRB5. Exceptions to his
rule have been described for DRB1∗15 and ∗16, where especially
in African Americans HLA-DRB5/6 can be missing. DRB1∗07 has
been reported to occur with a non-expressed form of DRB4∗04:01
(15) and DRB1∗08 has also been previously identified together
with DRB3∗03:01 (15).

We investigated our herein-described multi-ethnic data on
HLA-DRB1 and -DRB3/4/5 for congruence with these previous
findings. In short, we determined the HLA-DRB1 alleles for every
sample and checked whether we could also find the expected
HLA-DRB3/4/5 alleles or the absence of these in the same sample.
All but four samples followed the haplotype structures depicted
in Figure 4. After re-analysis of the remaining four samples we
concluded that these samples must have been contaminated,
since three or more alleles could plausibly be called for all ana-

lyzed loci, with one allele having a smaller number of reads that
aligned to it. In further six samples we found one of the excep-
tions described in the literature. One Maltese sample did not
have HLA-DRB4 while DRB1∗07:01 was present and five African
American samples did not have HLA-DRB5 while DRB1∗15:03 or
DRB1∗16:02 was present.

Frequencies of HLA-DRB3/4/5 are shown in Table 1. Overall,
HLA-DRB3 is the most variable of those genes according to its
frequency spectrum, with DRB3∗02:02 being the most common
non-null allele with an AF ranging from 8.82% in our Japanese
panel to 37.98% in our Iranian panel. For HLA-DRB4, DRB4∗01:03
is the most common non-null allele with frequencies ranging
from 8.71% in the African American to 32.09% in the Japanese
panel. DRB5∗01:01 is the most common non-null allele in all but
the Iranian and Japanese panels with frequencies of 5.43% in the
Iranian to 21.53% in the Chinese panel, while DRB5∗01:02 has a
frequency of 20.59% in the Japanese panel and a frequency of
6.98% in the Iranian panel. Our data suggest that DRB1∗15:01 is
located on the same haplotype as DRB5∗01:01, while DRB1∗15:02
(which is very common in Japanese samples) is located on
the same haplotype as DRB5∗01:02 (Supplementary Material,
Table S10). Accuracies of the HLA-DRB3/4/5 imputations are high
(>0.971; Table 3 and Fig. 3a). Sensitivity measures for the HLA-
DRB3/4/5 are generally high; however, for low frequency variants
(e.g. DRB3∗02:24 in the Iranian, Maltese and German panels
at frequencies of <0.62%) values as low as 0 were measured.
DRB4∗01:02 in the Japanese panel, DRB3∗01:01 and DRB4∗01:01
in the African American panel are common alleles (AF > 1%)
classified with mean sensitivity values of lower than 0.800 (0.375,
0.739, 0.690, respectively). We also observed, using the tool Dis-
entangler (18), that the phasing of HLA-DRB3/4/5 alleles might
present a challenge, with many of the null alleles occurring on
haplotypes with HLA-DRB1, when the respective HLA-DRB3/4/5
allele is present (Supplementary Material, Fig. S4; HLA-DRB3/4/5
are excluded here). The analysis of this particular topic, however,
is beyond the scope of this paper.

Discussion
We compiled three different imputation panels as pre-trained
HIBAG models that can be used for HLA imputation in different
ethnicities: (i) a multi-ethnic reference with four-digit full
context HLA alleles and (ii) a multi-ethnic reference with four-
digit HLA alleles as G groups. Both panels include HLA-A, -B, -C,
-DQA1, -DQB1, -DPA1, -DPB1, -DRB1 and -DRB3/4/5 and (iii) a multi-
ethnic reference panel combined with the 1000 Genomes data
(including data from HLA-A, -B, -C, -DQB1, -DRB1, -DPA1, -DPB1 at a
four-digit G group resolution). Our reference panels have high
accuracy values across different ethnicities and subsets of
the data and also achieve high accuracies in non-reference
ethnicities (Tables 2 and 3). The accuracies in non-reference
ethnicities are high, but lower than for our reference data sets,
as even though our reference is highly diverse the worldwide
diversity of the HLA is still not sufficiently captured. Average
accuracies of our multi-ethnic reference are larger than 0.924.
Tabulated results describing the accuracy measures of panels
(ii) and (iii) are presented in Supplementary Material, Tables S1
and S2. Using our reference data, few alleles remain challenging
to impute. This affects alleles of the HLA-DRB1 locus, like the
DRB1∗11 and DRB1∗04 group, which has already been described
as problematic in previous benchmarks of other imputation
reference panels (6–8) as well as alleles of the highly diverse
HLA-A and -C genes. We therefore recommend using a two-
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Figure 4. Known architecture of HLA-DRB3/4/5: HLA haplotypes that usually contain a specific HLA-DRB1 allele (HLA-DRB1 column) are shown. Two-digit alleles are

denoted. All loci are depicted in order of their genomic location. HLA-DRA, HLA-DRB1 and HLA-DRB9 coincide with all haplotypes. The remaining loci are present or

absent depending on the haplotype. The most prevalent haplotypes with the known exceptions are shown in the rows below. Exceptions are sometimes seen for

DRB1∗08, DRB1∗07, DRB1∗15 and DRB1∗16. DRB1∗08 can occur with HLA-DRB3, DRB1∗07 can occur without an expressed form of HLA-DRB4 and DRB1∗15 and DRB1∗16

can occur without HLA-DRB5/6. Loci that usually occur together are joined by a line. The name of the corresponding serotype is shown on the left and haplotypes are

ordered by serotype name. Information for this figure was retrieved from Bontrop et al., Holdsworth et al. and Robbins et al. (14–16).

digit resolution for these alleles and to consider the imputation
difficulties in the interpretation of association results for these
alleles. We further suggest that the interpretation of specificity
and sensitivity measures should be done separately by ethnic
background, since measures can vary between ancestries,
i.e. haplotypes for an allele that are highly predictive in one
ethnicity may not be highly predictive in another ethnicity.
We also verified that SNPs missing in the data set for which
HLA alleles are imputed—and that exist in the reference—
can negatively affect the imputation accuracy. This was the
case for DRB1∗04:03 and DRB1∗04:04, where exclusion of 4.4%
of the SNPs used by the HIBAG had a major impact on the
imputation accuracy for these alleles (Supplementary Material,
Supplementary Text). We therefore suggest, as a general rule,
to cautiously investigate the coverage of SNPs used by any
imputation reference panel prior to imputation with the
respective panel into a data set. Posterior probabilities are
often used to improve the quality of the data set. Indeed,
we also observe that the accuracies improve when using a
posterior probability threshold. However, for some alleles similar
haplotype structures can cause incorrect calls despite high
posterior probabilities. Especially for rare alleles, correct calls
are possible at a very low posterior probability. We therefore
suggest using the sensitivity and specificity tables we provide
in Supplementary Material, Table S8 to perform data filtering as
well as checking the posterior probability.

In summary, imputing HLA alleles into multi-ethnic genome-
wide association data sets with our reference panels provides
accurate results and can aid HLA fine mapping studies especially
in non-Caucasian populations in the future. It allows for HLA
imputation using the most recent HLA allele nomenclature at a
full context four-digit resolution and a high diversity of different
populations.

Nevertheless, larger sample sizes and even more diverse
reference panels are needed to adequately cover the existing
global HLA polymorphism and frequency spectrum particularly
for the ethnicities not included in our panel and also to impute
especially rare HLA alleles with high accuracy. DRB1∗01:03, for
instance, is an allele that has a higher frequency in North
American Caucasians (0.9–1.9%) than European Caucasians
(∼0.6%) (19). As over a million of samples will have been
genotyped and whole-genome sequenced in the near future,
it is just a matter of warranting global coverage, thus to include

representatives from every ethnicity for these efforts. Still, most
genetic research focuses on Caucasian ancestry cohorts and
neglects large segments of human populations. Decreasing
costs of high-resolution NGS-based HLA typing approaches—
including phased data sets from long-read technologies—will
further fuel the development of more comprehensive and even
more accurate imputation reference panels.

Materials and Methods
Resolution of imputation reference panels

Several imputation references have been published in the past
using various genotyping chips, allowing for the imputation
of different HLA genes at different resolutions, i.e. full context
four-digit (two-field), G group and P group resolution (as defined
by the IMGT/HLA database) or custom groups (mostly before
2010). Full context four-digit levels provide information on the
gene name, their allele group and the protein sequence of the
HLA molecule (i.e. A∗01:02—Gene: A; allele group: 01; protein:
02). Alleles that are within the same G group have identical
nucleotide sequences for exons 2 and 3 (HLA class I) or exon
2 only (HLA class II) and may differ in sequence in the other
exons. Alleles that are within the same P group encode for
identical amino acid sequences in exons 2 and 3 or exon 2
only. P and G group annotations were introduced in 2010 and a
major update in allele naming was conducted (ftp://ftp.ebi.ac.uk/
pub/databases/ipd/imgt/hla/Nomenclature_2009.txt), amongst
others the separator ‘:’ was introduced and alleles were renamed
especially alleles of the HLA-A, -B, -C and -DPB1 genes. Notably,
HLA allele calling conducted before this time, with alleles typed
only at exons 2 and 3 or exon 2, may not follow the known G
group and P group conventions published by the IMGT/HLA, i.e.
HLA alleles might be grouped in custom groups and some of
the alleles will carry outdated allele names. This issue should
be considered when merging reference panels, such that all
included alleles should map to the same allele groups and
also in benchmarking studies using external data. G grouping
published by the IMGT/HLA database is based on the highest
resolution that is recorded for an allele (i.e. eight digits or lower).
Note that the post-calling G grouping based on four-digit alleles
is problematic for some alleles listed in Supplementary Material,
Table S11.
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Cohorts & data preparation

Multi-ethnic data set. DNA of 96 healthy individuals and 96
UC patients were collected from different studies of Chinese,
German, Indian, Iranian, Japanese, Korean and Maltese popula-
tions that have been published and described elsewhere (20,21).
In short, Chinese samples were collected in and around Hong
Kong (Chinese University of Hong Kong), Korean samples in
South Korea (Yonsei University College of Medicine and Asan
Medical Centre, Seoul), Japanese samples in Tokyo (Institute of
Medical Science, University of Tokyo, RIKEN Yokohama Institute
and Japan Biobank), Iranian samples were collected in Tehran
(Tehran University of Medical Science), Indian samples in North
India (Dayanand Medical College and Hospital, Ludhiana),
all self-reported North Indian which was consistent with
their genetically determined background, German samples in
North Germany and Maltese samples in Malta (Department of
Gastroenterology, Mater Dei Hospital, Msida, Malta). In addition
to the data from the published UC studies, DNA samples were
obtained from 192 healthy controls and 192 UC patients, all self-
reported as African American, which was consistent with their
genetically determined background as each had an admixture
of West African and European ancestry (22). These subjects
were recruited in the United States of America and Canada
by the Johns Hopkins Multicenter African American IBD Study
as well as other Genetics Research Centers of the NIDDK IBD
Genetics Consortium. We also received 192 (96 healthy, 96 UC)
pre-analyzed Japanese samples directly from RIKEN Yokohama
Institute.

High density SNP-array data interrogating a wide proportion
of the extended HLA region were produced for these samples
using the Illumina, Immunochip (all but Malta) with 196,524
markers addressing immune relevant genes or the Illumina
Infimum ImmunoArray 24 (Malta only) with 253,702 markers
and subjected to strict quality control criteria as described in
the Supplementary Material, Supplementary Methods. DNA was
isolated and processed as described previously (10) in prepara-
tion for sequencing. Sequencing was performed on an Illumina
HiSeq2500 (http://systems.illumina.com) with 100 bp or 125 bp
paired-end runs on a panel of both case and control data in a
pool of 96 libraries per lane. A total of 192 Japanese samples
were provided by the RIKEN Yokohama Institute and sequenced
using 125 bp paired-end runs on the HiSeq2500 with pools of 94
libraries per lane. Four-digit HLA alleles for all classical HLA I and
HLA II genes HLA-A, -B, -C, -DQA1, -DQB1, -DPA1, -DPB1, -DRB1
as well as -DRB3/4/5 were manually curated and called using
HLAssign (10). In short, only reads mapping exactly to a reference
based on HLA sequences published with the IMGT/HLA database
version 3.27.0 (23) were used for calling, taking into consideration
evenness of read mapping, read equality and specific read map-
ping as described by Wittig et al. (10). We also cautiously looked at
cross-mapping events (reads mapping to multiple HLA loci) and
SNP patterns to identify e.g. alleles originating from concatena-
tion of true alleles. In total 1,360 samples were used in this study,
having been sequenced and called successfully based on their
DNA quality and internal HLAssign measures, i.e. sufficiently
large read coverage and also having passed our stringent criteria
for the quality control of the Illumina Immunochip array data
(Supplementary Material, Supplementary Methods). The HLA-
DRB3/4/5 calls were additionally evaluated for plausibility with
respect to the called HLA-DRB1 genotype. HLA-DRB3/4/5 alleles,
according to reported studies (14–16), occur on certain haplo-
types in tight linkage with specific HLA-DRB1 variants and can
either be present or not present at all (i.e. null allele, described

as DRB3∗00:00, DRB4∗00:00 and DRB5∗00:00 in the following) or
as one functional HLA-DRB3/4/5 allele in combination with two
of the HLA-DRB3/4/5 null alleles. For a detailed overview we
compiled Figure 4. A total of 312 African American (158 Controls,
154 UC cases), 162 German (78 Controls, 84 Cases), 140 Chinese
(68 Controls, 72 Cases), 143 Indian (78 Controls, 65 Cases), 132
Iranian (63 Controls, 69 Cases), 189 Japanese (96 Controls and
93 Cases), 122 South Korean (81 Controls and 41 Cases) and 160
Maltese (75 Controls and 85 Cases) samples were available for
construction of HLA imputation models with HIBAG.

1000 Genomes data set. Using the Phase 3 [version from
20130502] 1000 Genomes reference data set (24) and Vcftools
(version 0.1.12b), we extracted 174,538 phased SNPs that are
present in both the Phase 3 data set and on the Illumina
Immunochip used for the main part of our trans-ethnic
data. We then performed quality control as described in the
Supplementary Material, Supplementary Methods leaving out
batch and population stratification analyses. HLA data were
downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/working/20140725_hla_geotypes/. Publicly available
data from the 1000 Genomes data set do not include HLA-DPA1,
-DPB1, -DQA1 and DRB3/4/5 allele calls. In total 162 samples of
African Ancestry, 193 samples of South American Ancestry, 260
samples of East Asian ancestry and 322 samples of European
ancestry were available for construction of HLA imputation
models with HIBAG. The HapMap data used in other studies
(Table 4) are a part of the 1000 Genomes data set.

Calling of HLA-DRB3/4/5 alleles. Data were analyzed visually
using HLAssign (10). HLAssign does not calculate phases of
the HLA alleles and thus does not make hemizygous calls (i.e.
recognize null alleles) such that HLA-DRB3/4/5 genotypes were
edited with respect to the HLA-DRB1 allele post calling. For
consistency with the HLA-DRB3/4/5 with the literature (Fig. 3), we
introduced null alleles DRB3∗00:00, DRB4∗00:00 or DRB5∗00:00
when the HLA-DRB1 locus was called as DRB1∗01, DRB1∗08
or DRB1∗10, respectively. DRB3∗00:00 was assigned if no HLA-
DRB3 was present in the corresponding HLA-DRB1 haplotype.
Equally, DRB4∗00:00 and DRB5∗00:00 were assigned if haplotypes
corresponding to the absence of HLA-DRB4 or -DRB5 were
called. Samples with inconclusive HLA-DRB3/4/5 detected during
HLAssign analysis were re-analyzed using HLAReporter (25).
HLAReporter performs de novo assembly on the NGS reads within
the investigated HLA locus using the alignment tool TASR (26)
and compares these to either G groups or full context alleles
known in the IMGT/HLA database with the parameters (-m 50,
-o 5, -r 0.7, -u 0, -i 1, -t 0, -e 33, -c 0) for on target reads. Contigs
for samples with equal G group predictions were aligned against
each other to generate longer overlapping regions using contigs
with a coverage higher than 15 and then realigned to the known
IMGT/HLA reference alleles.

MDS analysis. Relative allele frequencies were calculated for
each allele across the entire multi-ethnic and 1000 Genomes
HLA data within the HLA-A, -B, -C, -DQ and -DR loci. For the
MDS analysis alleles with an allele frequency of less than 1%
in any subpopulation are excluded to avoid a clustering biased
by similarity in low frequency variants. The MDS analysis was
performed using R and the stats-Package (cmdscale) with a
Euclidean distance measure. For the MDS analysis across all loci
we used HLA loci HLA-A, -B, -C, -DQB1 and -DRB1.
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HLA imputation benchmark

Training of the reference panel. We performed HLA imputation
using the published imputation tool HIBAG (6). This is a
machine learning tool implemented in R that employs ensemble
classifiers built on bootstrap samples that has been shown to
perform with high accuracy in HLA imputation across multi-
ethnic data sets (6). In short, a training set with both HLA alleles
and SNPs typed in the HLA region on chromosome 6, between 29
and 34 Mb, is used to build several classifiers based on bootstrap
samples and a subset of SNPs, similarly to random forest as
proposed by Breiman et al. (27) that minimize the out-of-bag
errors. Once a model is trained, it can be used as reference
to predict HLA alleles from unknown samples using their
respective SNP genotype information, utilizing the posterior
probability as measure of confidence. For the benchmark, we
performed a 5× cross-validation using HIBAG (6) and HLA and
SNP genotype data from the following two sources: our multi-
ethnic cohort described above and the publicly available 1000
Genomes data set (24). The 1000 Genomes data set was typed
for HLA-A, -B, -C, -DPB1 and -DRB1, while the multi-ethnic data
set contained all classical HLA class I and class II loci and
additionally HLA-DRB3/4/5. For the 1000 Genomes data set,
typed HLA data were available for samples of the following
ethnicities: African, South American Ancestry, East Asian and
European. We grouped our data into three different data sets:
(i) our multi-ethnic reference containing eight different cohorts
described above, (ii) the same reference as in (i) with HLA alleles
transformed into their respective G groups (G groups combine
alleles with identical exon 2 and 3 (HLA Class I) or exon 2 (HLA
Class II) nucleotide sequence) using hla nom g.txt downloaded
from hlaalleles.org date: 2017-07-10, IPD-IMGT/HLA version
3.29.0) and (iii) our multi-ethnic panel and the 1000 Genomes
data set combined. In total we used 1,360 samples and 7,428
SNPs within the HLA region for the multi-ethnic reference, as
well as 937 samples from the 1000 Genomes data and 7,551
SNPs within the HLA region from the 1000 Genomes data set,
with 2,297 samples and 7,126 SNPs for the combined data set as
well as their respective HLA calls. For the 1000 Genomes panel,
we checked for nomenclature issues, making sure that all of
the HLA alleles used in the 1000 Genomes panel mapped to the
nomenclature for HLA alleles used since April 2010 (ftp://ftp.ebi.
ac.uk/pub/databases/ipd/imgt/hla/Nomenclature_2009.txt). For
alleles with unambiguous G groups (Supplementary Material,
Table S11), we assigned the lower number allele for reference
panels (ii) and (iii). Genotype data were prepared as described in
Supplementary Material, Supplementary Methods. Samples
with typed HLA information were extracted from each quality-
controlled, genotyped data set. The different cohorts were
merged and those SNPs with a consistent minor allele frequency
(MAF) of <1% (across all cohorts typed for the particular SNP)
were excluded. The data were randomly split into five equal
parts per cohort with respect to case–control status, thus
ensuring that a training set would include both case and control
data. Using HIBAG (version.1.8.3), we trained our models using
the reference containing the merged subpopulations, excluding
20% of the population of interest and 100 classifiers, as suggested
by the authors of the tool (Supplementary Material, Fig. S1).

Validation of the reference panel. The quality-controlled geno-
type data for each cohort were imputed using Beagle version 4.1
(28) with the cohort itself serving as an internal reference to fill
in any remaining missing data. Pretrained HIBAG HLA models
(see above) were provided with the respective 20% of the remain-

ing data of each analyzed population (Supplementary Material,
Fig. S1), using the genomic position as the identifier. HLA calls
were calculated and stored with their respective posterior prob-
abilities. Accuracies and the number of samples to be excluded
were calculated for different posterior probability thresholds and
compared between the different populations.

Calculation of accuracies. Imputation accuracies were calculated
on best-guess alleles compared with the known alleles of the
typed data. Accuracies for best-guess alleles were calculated by
counting the number of alleles imputed correctly per locus and
dividing by the number of samples multiplied by two. Per locus
and per allele accuracies were evaluated. We also calculated sin-
gle allele specificity and sensitivity values if possible. For this we
evaluated each allele separately, counting the number of times
an allele was predicted correctly as present (True Positive; TP)
or absent (True Negative; TN) and the number of times an allele
was incorrectly predicted as present (False Positive; FP) or absent
(False Negative; FN). We then used the standard definitions to
calculate sensitivity and specificity from these values.

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Accuracy = (TP + TN)/(TP + TN + FP + FN)

For the calculation of the accuracy, specificity and sensitivity
values within the cross-validation, the mean values across the
different runs were calculated for each locus or allele, as well
as median, minimum and maximum values for comparison. To
establish which alleles might have low sensitivity and specificity
values in a general setting for (i), we calculated these measures
using a model based on the entire population (i).

Imputation reference panels for comparison

A Caucasian reference panel based on genotypes retrieved from
the T1DGC (29), as well as a Pan Asian data set (30) using
three different Asian populations, were published along with
SNP2HLA (7) and are available on request from the SNP2HLA
authors. Here, loci HLA-A, -B, -C, -DQA1, -DQB1, -DPB1 and -DRB1
were typed (Table 4a). Two additional Asian reference panels
based on SNP2HLA were published at a four-digit resolution.
First, a Korean reference panel was published in 2014 (13) for the
imputation of amino acids and HLA alleles into East Asian pop-
ulations for HLA-A, -B, -C, -DQB1, -DPB1 and -DRB1 and second,
a Japanese reference data set was published in 2015 by Okada
et al. (12) with an evaluation of loci HLA-A, -B, -C, -DQB1 and
-DRB1. For these two last reference panels, we assume that they
were typed at a full context four-digit resolution. This has not
been explicitly mentioned in the respective publications (12,13),
but we find that the typed alleles best fit to the full four-digit
context based on which alleles are present. Pre-trained multi-
ethnic HLA models with European, Asian, Hispanic and African
ancestry (based on a total of 3,738 samples) are provided with
the HLA imputation tool HIBAG (6). The samples used for these
models were obtained from HLARES (samples GlaxoSmithK-
line clinical trials) (6) and the HapMap project. Loci HLA-A, -B,
-C, -DQA1, -DQB1, -DPB1 and -DRB1 were evaluated at four-digit
resolution (Table 4b). The remaining considered reference panels
based on HLA∗IMP:02 (8) are based on HLARES data and a study
specific "Golden Set" (GS) (Table 4c).
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Availability of resources

The herein-described reference data sets are available on
request from the authors (email contact: f.degenhardt@ikmb.uni-
kiel.de) as pretrained HIBAG models and are mapped to
IMGT/HLA database version 3.27.0 with G group definitions
derived from IMGT/HLA database version 3.29.0. Note that
allele names at four-digit levels did not change between these
two releases. The training of these models was performed as
described above without exclusion of any samples. A script that
will estimate the haplotype similarity between alleles based on
the genotype positions available in a data set is also available
upon request.

Supplementary Material
Supplementary Material is available at HMG online.
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