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Abstract
In view of the EU’s long-term vision of zero fatalities in road transport by
2050, transport authorities require accurate, up-to-date, and easy-to-use
technologies to help them address road anomalies.
Smartphone devices offer a compelling solution because of their availabil-
ity and various inbuilt sensors. With this in mind, this study shows how
smartphone devices can help identify road anomalies. In our study, we
used the smartphone’s inertial measurement unit (IMU) and camera sen-
sors to track road anomalies. This study uses two identical smartphone
devices to capture the data simultaneously. The first hosts the IMU sens-
ing application, whilst the second hosts the object detection component.
The IMU road anomaly detection is based on a supervised machine learn-
ing model. Meanwhile, the vision solution employs a lightweight object
detection architecture to detect anomalies in real-time. In addition, the
GPS data provides the backbone to synchronise both applications and also
pinpoint the anomaly locations. Finally, we use a simple data fusion tech-
nique to merge the IMU and vision results into one reporting system. This
simple yet powerful reporting solution allows operators to assess the ac-
curacy of both systems and also provides a richer reporting data set. Our
study finds that a dual system yields more conclusive results than conven-
tional mono-sensing systems, as the system provides a straightforward
method for verifying both the IMU and vision predictions.
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Chapter 1

Introduction

Transportation is one of the main pillars of the EU economy as it contributes to economic
growth between the EU’s states. Notably, the road network is still the primary means
of mobility within the states. Governments have invested heavily in road networks for
efficient and safe travel. However, road accidents have claimed the lives of over 25,000
people, with a further 135,000 people left seriously injured in 2018 in the EU1. As a result,
member states must make serious inroads in the next decade to reach the EU’s long-term
strategic goal of ‘Vision Zero’2.

With volatile weather and heavy usage, road surfaces develop weak spots leading to
asphalt cracks, depressions and potholes. Degradation of the road surface can affect the
safety and roadworthiness condition of vehicles. In particular, potholes, cracks, and as-
phalt deformation can influence the safety of motorcycles, according to Bella et al. (2012).

Pothole repair and road maintenance are also costly for road agencies to repair. A
study conducted by RAC3 in the UK shows that one-third of drivers experience pothole
damage to their vehicles. For instance, the average repair bill for pothole damage is £142.
This is costing the UK’s authorities £6 million annually in compensation. In addition, a
study published by Local Authority and Road Maintenance UK4, reveals that the UK gov-
ernment spent £118 million in 2015 to fix urgent potholes.

In another RAC5 study, one-fifth of motorists claim to have sustained damage from
1European Commission (4 April 2019), Publication of preliminary road safety statistics 2018:https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1951 (Accessed 02 September 2021)2REPORT on the EU Road Safety Policy Framework 2021-2030 – Recommendations on nextsteps towards ‘Vision Zero’ (22 June 2021), https://www.europarl.europa.eu/doceo/document/A-9-2021-0211_EN.html (Accessed 02 September 2021)3Pothole damage - https://www.rac.co.uk/drive/news/motoring-news/one-third-of-uk-drivers-suffer-pothole-damage-to-their-cars/ (Accessed 05 September 2021)4ALARM - https://www.asphaltuk.org/wp-content/uploads/ALARM_survey_2016.pdf (Accessed 02September 2021)5Speed bump study - https://www.rac.co.uk/drive/news/motoring-news/drivers-report-speed-bump-
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speed bumps. There were over 29,000 speed bumps in the UK and, according to the
study, driving over speed bumps without slowing down causes underside and suspension
damage. The average repair cost for speed bump damage is £141 per claim.

Overall, road maintenance is a reactive process, which causes budget shortfalls for
the authorities. Road agencies primarily rely on road safety audits and onsite inspections
to assess the road’s condition. These are labour-intensive processes, as they depend on
road safety inspectors to report road damage. In contrast, some road agencies proposed
different solutions to tackle road anomalies. These include online portals to encourage
commuters to report road defects. Dedicated personnel then investigate these images
and update the records accordingly. However, the effectiveness of these systems de-
pends on the participation of road users, which might not be active in rural and arterial
road networks.

Naturally, road networks will keep expanding, and the number of road users will keep
increasing. As a result, it will put more pressure on the authorities and urban planners to
deliver safe transportation. These adversities are paving the way for more autonomous
reporting systems. The EU directive 2010/40/EU6 introduces a framework for the de-
ployment of Intelligent Transport Systems (ITS) on road transport. The directive laid the
groundwork for artificial intelligence to be included in the transportation framework.

ITS is an area of study that aims to promote innovative services in the transport sec-
tor. Its primary aim is to provide commuters with better access to information to make
the journey safer, quicker, and smarter. The ITS initiative covers the entire transporta-
tion system. However, directive 2010/40/EU puts ITS at the core of its road transport
vision. Coupled with information and communication systems, ITS can improve traffic
management, mobility, and road safety.

Predominantly, smartphones are one technology segment that is thriving under this
ITS initiative. Smartphones have become ubiquitous in modern society. In addition, they
can collect high-quality data, such as imagery, vibration, and GPS data. Engelbrecht et al.
(2015) conducted a survey to analyse the usage of smartphones in ITS. The study evalu-
ated existing smartphone-based solutions tomonitor drivers’ behaviours, road conditions,
and vehicle telematics. The survey demonstrates that smartphone-based ITS solutions
can achieve respectable results. However, there are still several challenges facing the fu-
ture progress of such systems. One of the key issues is wide-scale deployments, as these
systems require a large user base and offer few incentives. Therefore, the adoption of
smartphone crowd sensing will be slow.
damage/ (Accessed 10 September 2021)6https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0040&from=EN (accessed01 February 2022)
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Other studies, however, have shown that smartphones can inspect and identify road
anomalies with high precision. Mednis et al. (2011) presented a novel threshold-based
method for detecting potholes by smartphone built-in three axes accelerometer sensor
readings.

Tai et al. (2010) andMohamed et al. (2015) extended the threshold-based solutions by
engaging machine learning solutions in their studies. Moreover, Silva et al. (2017) added
additional smartphone sensors to their research to improve their accuracy.

In contrast, one of the major challenges of using a single technique for detecting road
defects is that road anomalies have different structural characteristics. Therefore, it is
difficult to capture and categorise the anomalies based on one probing method. Vehicle
speed, pothole avoidance, and the vehicle’s suspension systems can affect the detection
process. As a result, stand-alone techniques can return non-precise classifications be-
cause of their inability to evaluate other types of ancillary sensors. Hence, this research
will incorporate two machine learning techniques: vibration-based models, capitalising
on inbuilt mobile accelerometers and gyroscopes sensors, and vision-based models using
smartphone cameras. The primary goal is to fuse the vibration and vision data sets to
enrich and augment the reporting dashboard. This involves the challenging task of col-
lecting both the visual and vibration readings synchronously. The two data sets can work
in sequence by providing validation for each other and providing a firm foundation for
drawing a conclusion.

We are nowwitnessing a shift in the trajectory of smartphones in the ITS field, thanks
to the vision machine learning solutions for smartphone devices. Innovative, vision ma-
chine learning models can now run directly on a smartphone device, smoothing the path
for more powerful machine learning techniques for detecting road anomalies.

Over the last decade, computer vision has emerged as a critical technology for a wide
range of applications, including road anomaly detection. Dib et al. (2020) presented a
thorough review of different computer vision pothole detection techniques. Their pri-
mary aim was to assess the strengths and limitations of the techniques under different
environmental conditions. Likewise, Chitale et al. (2020) confirmed that pothole detec-
tion using vision deep learning is also possible. However, one of the crucial difficulties of
vision techniques is the lack of effective training data sets to train the models. Specifi-
cally, supervised machine learning techniques require large data sets of annotated data.
The major drawback of annotated data is that this process is often biased, meaning that
the classes can be over or under-represented.
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1.1 Motivation
The primarymotivation of this research is to gather an in-depth understanding ofmachine-
learning techniques for automating road anomaly detection. We investigated various so-
cial real-world problems related to road anomalies in the early stages of the study. Road
safety is a major headache forMaltese authorities, drivers, and insurance companies alike.
For example, there are no available road anomaly data sets to help the authorities priori-
tise road maintenance. Likewise, local insurance companies cannot distinguish between
claims resulting from negligent driving and those resulting from road anomalies. As a re-
sult, the lack of detailed data sets endangers the safety of both motorists and commuters.

The goal of this study is to create a simple but effective platform for detecting road
anomalies. Similarly, by comparing historical data sets, we can evaluate road conditions
chronologically. Ultimately, road authorities can plan maintenance ahead of time. Our ini-
tial investigation focused on both traditional and modern monitoring techniques, such as
industrial-level sensors and smartphone sensing. It became clear that roadmonitoring is a
fascinating research topic, and researchers have been working on pothole detection tech-
niques for the past two decades. As we will see in this study, smartphones and machine
learning techniques can have a significant impact on road monitoring techniques.

1.1.1 Research Questions
This dissertation aims to address the following research question:

Can an efficient and cost-effective smartphone-based system be developed to detect
road anomalies, particularly potholes, by integrating inexpensive hardware, IMU, imagery,
and GPS data, while ensuring accurate and meaningful anomaly detection?

1.2 Aims and Objectives
The primary objective of this study is to combine different concurrent machine-learning
techniques to increase the accuracy of themonitoring operation. We strongly believe that
a single approach or algorithm will inevitably have limitations. In this study, we explore
how the two methods can handle different aspects of anomaly detection. Our aim is to
demonstrate how both systems can complement each other, each highlighting different,
but important, aspects of the detection process.

One can always adjust the algorithm’s hyperparameters to increase accuracy, how-
ever, the literature review shows that every monitoring technique has its limitations. Fur-
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thermore, relying on hyperparameter tuning of a single method to increase the accuracy
may lead to over-fitting of particular scenarios.

Comparatively, vision systems have demonstrated promising results in identifying road
abnormalities and can identify anomalies across a broader road surface than the IMU pro-
cesses. However, the camera’s position, lighting conditions, shadows, and training data
can severely impact the accuracy.

As a result, selecting the best hyperparameters and tuning for a single pothole detec-
tion method is beyond this research. Our primary goal, on the other hand, is to investi-
gate how two distinct approaches can coexist and work in tandem to improve accuracy.
Therefore, our aim is to investigatemodernmethods tomonitor road defects using a com-
bination of smartphones and machine learning techniques. Similarly, we will also examine
how we can fuse multiple data sources to validate the classification process.

To achieve the above aims, the following objectives for the proposal are being put
forward:

1. The creation of a mobile application to capture road vibration using the accelerom-
eter, gyroscope, and Global Position System (GPS) sensors, including annotation,
identification, and classification of road surfacing defects.

2. The creation of a mobile application to capture live images and the classification and
recording of different road anomalies, including the GPS position.

3. The comparison of the above two techniques to improve the accuracy of the tech-
niques and the augmentation of the data sets to create a cross-model unified re-
porting classification data set.

1.2.1 Research Scope
We limit this study to the development of vibration, angular velocity, and vision sensing
to address road anomaly issues. To collect the data, we use smartphone devices. This
study will collect four types of data: vibration, rotation, GPS, and imagery. We divided
the imagery process into two steps. First, we feed the first data stream to a CNN model
running on a standard Android smartphone device. Second, we keep the image stream
on the smartphone device for the fusion verification and future work. Importantly, we
are anonymising the image content using a separate process to conceal faces and vehicle
registration numbers.

This study is entirely based on commercially available smartphone devices. With this
in mind, we conducted extensive research on the hardware of the smartphone. In ad-
dition, we investigated the software interfaces available for accessing the smartphone’s
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sensors. It is important to note that access to the sensors is only available through the
device’s operating system. As a result, it is important to note that this study is based on
pre-processed data.
1.2.1.1 Research Contribution
This research has shown that we can fuse embedded smartphone sensors and imagery
techniques to enhance the detection and classification of road anomalies. We delineate
the contribution made by this study below:

1. The development of machine learning models to detect road anomalies using IMU
sensor data

2. The development of an efficient, smartphone-enabled, vision CNN to detect and
classify road anomalies

3. The development of a fusion reporting system combining the accelerometer and
gyroscope analysis with the vision-based object detection system

4. The release of the IMU and vision code, including the collected data, as open source
software

1.3 Proposed Solution
This study investigates how inexpensive smartphones can detect road hazards. We de-
fine road anomalies in this dissertation as road surface depressions and speed control
systems, such as potholes and speed bumps. This research proposes a simple and low-
cost architecture for identifying and tracking anomalies. In essence, we achieve our goal
by fusing together vibration, rotational, imagery processing, and GPS data. We build our
solution from the ground up using two native mobile apps. The first application records
the vibrations and rotational data of the vehicle. We then transfer this data to a server
for processing and analysis. Meanwhile, the second mobile application uses the smart-
phone’s hardware to detect and classify road anomalies using a Convolution Neural Net-
work (CNN) model. Finally, we send the classification and GPS location to the server to
be fused with the vibration data. Our proposed solution provides a constantly updated
model with up-to-date data feeds to assist road authorities in monitoring the road net-
work.
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1.3.1 Research Approach
Figure 1.1 outlines the overall method of the research. The initial research maps out the
machine learning methods to detect road anomalies, followed by the methods we will
deploy. This involves extensive research and literature reviews on vibration sensors and
vision models.

The vibration data analysis part follows this. Strong emphasis is being made on the
accelerometers and gyroscope sensors. As a result, we will explore the smartphone de-
velopment toolkit to develop the applications. Later, we will also investigate the vision
models to enhance the road anomaly detection process. For this purpose, we will com-
pare several vision models.

Figure 1.1: Schematic diagram of the research stages
In the second stage of the process, we will collect data from the embedded smart-

phone sensors using the custom-built mobile application. The subsequent phase includes
the analysis of the different data processing techniques. This consists of the familiarisa-
tion with time series data sets, data cleansing, re-sampling and feature engineering meth-
ods. One of the biggest challenges during the second stage of the research will be the
annotation of the vibration data. Consequently, we will use a dual smartphone setup to
achieve this task. The first device will capture the IMU data and the second device will
annotate the anomalies in real-time. Furthermore, we will carry out several experiments
to find the optimal sampling rate based on the smartphone’s capabilities.
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Similarly, work on the vision part includes a considerable number of tasks. For in-
stance, we conduct thorough research to identify a lightweight CNN model to be hosted
on the smartphone device. Also, we develop a prototype to evaluate the model’s capa-
bilities and hardware performance.

In the third and final stage of the study, we develop the fusionmodel based on the data
feeds from the vibration machine learning techniques, the visual model’s classification,
and geo-location data.

1.4 Document Structure
We organised the rest of the dissertation as follows.

In chapter 2, we present the background and literature review on the state-of-the-
art techniques for detecting road anomalies. In the first section, we inspect smartphone
devices and review how these were employed in previous research to detect road anoma-
lies. We also discuss the main smartphone sensors required to measure road anomalies.
We then move to the non-machine learning road anomaly detection techniques. Even
though these technologies are outdated, the data-gathering techniques are still relevant
in today’s models and form the foundation of today’s IMU machine-learning techniques.
Next, we cover the IMU and vision machine learning techniques and finally, we cover the
state-of-the-art road-anomaly detection models.

In chapter 3, we discuss thematerials andmethods used for our research. We describe
all the steps and procedures we carry out to achieve the research objectives, including the
design and data analysis. First, we give a general overview of the proposed solution and
deliverables. We then delve into the three main components consisting of the IMU, vision
and back-end modules. Next, we introduce the synchronisation techniques used in our
experiments, including the GPS data and filtering techniques, to improve the geolocation
readings. The capturing, processing, and data annotation processes to prepare the data
sets for the machine learning process follow this. Afterwards, we explain howwe address
the vision components’ shortfalls. Finally, we conclude by presenting the fusion solution
to reinforce both models and improve the results.

Chapter 4 covers the test results. First, we start with a summary of the IMU data set
and the machine learning models used in our testing to detect road anomalies. We then
move to the feature extractionmethods used to build our models and the high-pass filters
utilised to remove unwanted vehicle vibrations. Next, we cover themachine learning tests
and results obtained, including the classification outcome. The vision experiments follow
this and we conclude this chapter by reviewing the data fusion results.
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Chapter 5 discusses the evaluation process and suggests howdesigningmachine learn-
ing models with evaluation in mind can lead to successful and optimised solutions. Eval-
uation is a highly structured process and relates to machine learning techniques.

Chapter 6 presents conclusions and future work. This chapter discusses the main
contribution of the dissertation and its limitations.

9



Chapter 2

Background & Literature Overview

2.1 Introduction
The unparalleled success of machine learning, Deep Learning (DL), computer vision and
big data analytics in several demanding application domains, such as medicine and fault
detection, inspires this research. This dissertation focuses on road anomaly detection
and reviews the relevant state-of-the-art approaches and techniques. This chapter inves-
tigates how we can combine various machine-learning approaches to develop a hybrid
machine-learning approach to overcome the weaknesses of individual methods. Further-
more, we also review the literature related to machine learning approaches in relation to
IMU sensory and imagery data.

Machine learning is a subset of artificial intelligence and has become a key technique
for solving complex data analysis problems. This technique has become an effective data
analytical tool since we can now create complex models and algorithms to analyse huge
amounts of data. Detection and forecasting are based on prior learning and tendencies.
Today, we findmachine learning technologies in the products we use in our daily life, such
as natural language processing, image recognition, security, medical diagnosis, and many
more.

We divide machine learning into three categories: clustering, classification, and re-
gression. We normally associate clustering with unsupervised learning, where test data
sets only have inputs and no corresponding labels. As a result, we do not provide la-
belled data to the model during training in unsupervised learning. The model attempts
to discover the hidden pattern by analysing the statistical properties of the data set and
categorising it.

Classification and regression work with training data sets that have corresponding
labels. Therefore, when an input is given, the machine can correctly predict the corre-
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sponding label. Consequently, in supervised machine learning, we provide labelled data
set. To put it differently, we included the desired results in the learning process. As a re-
sult, supervised learning is more efficient and accurate. A high-level overview of machine
learning methods is shown in Figure 2.1

Figure 2.1: Machine learning methods
Depending on the type of data, we use different approaches to model our solutions.

Machine learning identifies anomalies or outliers in a data set by locating unusual data
points that differ significantly from the overall trends in the data set. In this dissertation,
we detect anomalies through the use of supervised IMU and vision methods. However,
clustering is also used to help us visualise the collected data.

We organised the rest of the chapter as follows. In section 2.2, we give a brief descrip-
tion of anomaly detection in relation to road surfaces. Section 2.3 discusses smartphone
sensing in ITS, including smartphone-based solutions used to detect road anomalies. In
section 2.4, we inspect various machine learning solution. Here, we discuss the IMU and
vision-based machine learning algorithms to detect road anomalies. In this section, we
also discuss the IMU and vision methods, including the classification process.

2.2 Road Anomalies
Anomaly detection is a pervasive challenge encountered across diverse domains, includ-
ing manufacturing, engineering, transportation, and healthcare. This technique plays a
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crucial role in identifying rare events or irregular patterns by analyzing data points that
deviate significantly from the norm.

The process of anomaly detection primarily revolves around:
• Observing Data Points: Anomaly detection involves carefully observing and gath-
ering data points from the target domain. These data points typically represent the
regular behavior or expected patterns within the data set.

• Establishing Baseline: By analyzing the observed data, a baseline or model of nor-
mal behavior is created. This baseline serves as a reference point for distinguishing
normal from anomalous instances.

• Detecting Deviations: The collected data is then compared against the established
baseline. Any data point that deviates significantly from the norm is flagged as a
potential anomaly.

Anomaly detection techniques utilize various approaches, including statistical meth-
ods, machine learning algorithms, and pattern recognition, to efficiently identify and flag
outliers or anomalies.

By harnessing the power of anomaly detection, industries gain the ability to proac-
tively identify irregularities, defects, or potential failures. This empowers them to take
timely corrective actions and elevate overall operational efficiency, safety, and quality
within their respective domains. Moreover, our road anomaly detection approach is built
upon a comprehensive EU1 study, which meticulously categorizes three distinct types of
road anomalies:

• Ruts - linear depressions created by a permanent deformation of the layers of bitu-
men caused by the load from a vehicle’s wheels

• Potholes - depressions brought about by the removal of the superficial layer of tar-
mac caused by traffic

• Depressions - permanent deformations in the road surface due to ground subsi-
dence

This anomaly classification is based on the International Roughness Index (IRI) which
is used widely in civil engineering to classify each group of anomalies. Similarly, vertical

1EU Road surfaceshttps://www.europarl.europa.eu/RegData/etudes/STUD/2014/529059/IPOL_STU(2014)529059_EN.pdf(accessed 01 October 2021)
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traffic calming devices, such as speed bumps and other traffic calming devices, are being
classified as road anomalies in our work.

2.3 Smartphone sensing
Advances in computer chip design and manufacturing techniques are constantly improv-
ing the performance and energy efficiency of these mobile sensing devices. As a result,
smartphone manufacturers are constantly increasing the number and accuracy of on-
board sensors. Therefore, the potential of using smartphone devices to build innovative
applications in the areas of environmental monitoring, healthcare and ITS is increasing, as
suggested by Abualsaud et al. (2019). According to the authors, the accuracy of smart-
phone IMU sensing components provides an efficient system for crowd sensing applica-
tions.

Smartphone-based monitoring applications are therefore of particular interest in ITS
studies. One major advantage of using smartphone devices as opposed to using factory-
fitted vehicle sensors is that these sensors are easier and cheaper to deploy. Another ma-
jor advantage is the ease of interfacing. Unlike onboard patented technologies, onboard
smartphone sensors are simpler to access and require no proprietary software protocols.

2.3.1 Smartphone sensing accuracy
However, smartphone sensing has its own set of challenges:

• Sensor quality and sampling rates – Built-in sensors are typically less accurate and
reliable than industry-rated sensors. The two most marketed features of smart-
phones are processing power and camera quality. Because of the competitive mar-
ket, manufacturers use less accurate components as opposed to industry-grade
components for accelerometers and gyroscopes sensors to save on cost.

• User interaction and positioning - Users interact in a variety of ways with their
smartphones. Given this, the device’s orientation and movement have a significant
impact on the sensing capabilities and data-capturing accuracy.

• Sensor noise - Smartphone sensors are extremely susceptible to sensor noise. Signal
interference, hardware design, and atmospheric conditions affect GPS geolocation
accuracy. Furthermore, the user’s interactionwith the device influences the sensor’s
reading. In a movement-sensing environment, the accelerometer sensors capture
the vibration caused by the user’s interaction with the smartphone.
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• Battery drain - Heavy CPU usage and high-frequency sensor data collection can
cause rapid battery discharge.

Moreover, according to Stisen et al. (2015), the accuracy of smartphone-embedded
sensors varies between brands andmodels. Their research used various smartphonemod-
els to compare sensor readings in a human activity recognition system. The study shows
that there are data disparities when using different smartphone models, which can impair
sensor-based data capture activities.

In contrast, while embedded smartphone sensors are not as accurate as industrial-
grade monitoring sensors, research has shown that they can still produce adequate read-
ings for scientific tasks.
2.3.2 Accelerometer Sensor
An accelerometer is a device for measuring and analysing linear and angular acceleration.
Accelerometers measure acceleration force in Gs and acceleration in multiple directions.
Moreover, accelerometers typically measure acceleration in three directions: X, Y, and Z.
When the accelerometer device is stable, a reading of 9.81 m/s2 is obtained on the axis
pointing to gravity.
2.3.3 Gyroscope Sensor
Gyroscope sensors are electronic devices thatmeasure an object’s orientation and angular
velocity. They can detect the tilt and lateral orientation of the device. Wemeasure angular
velocity in degrees per second, which is based on changes in an object’s rotational angle
per unit of time. The primary distinction between a gyroscope and an accelerometer
is that gyroscopes measure angular velocity (rad/sec), whereas accelerometers measure
specific gravity force.

Gyroscopes have three angular axes based on the following direction:
• Yaw - Rotation around the vertical axis
• Pitch - Rotation around the side-to-side axis
• Roll - Rotation around the front-to-back axis
In our setup, the Z (roll) gyroscope detects vehicle acceleration and deceleration. The

X (pitch) gyroscope detects the vehicle’s left and right movement, and the Y (yaw) gyro-
scope detects the vehicle’s up and down movement. Figure 2.2 shows the smartphone’s
accelerometer and gyroscope sensors and device orientation.
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Figure 2.2: Smartphone Accelerometer and Gyroscope Sensors for PreciseOrientation
2.3.4 GPS accuracy
Merry and Bettinger (2019) conducted a study on the horizontal position accuracy of
smartphone devices in urban environments. The research compared an iPhone 6 to com-
mercially available mapping devices. According to the results, the average position error
of an iPhone 6 is between 7 and 13 metres depending on the environment, which is con-
sistent with the general accuracy of recreational GPS receivers.

GPS positioning is determined by listening to radio signals transmitted by GPS satel-
lite systems. Because traditional smartphones use a single frequency Global Navigation
Satellite System (GNSS), smartphones receive only a single radiowave frequency from the
satellites. The authors of Angrisano and Gaglione (2022) demonstrate how gross errors
in measurements, usually related to multi-path and non-line-of-sight phenomena, have a
strong influence on GNSS performance in urban locations. As a result, a single frequency
is vulnerable to multi-path errors because the signal can bounce off other objects, such as
high-rise structures, and generate echo signals. This GPS multi-path distortion can cause
GPS reading inaccuracies of up to 5 metres. Even though these errors have no effect on
themachine learning models’ accuracy, it is important to note that they influence the road
anomaly’s geolocation data.
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2.3.5 Inertial measurement unit (IMU) threshold based solutions
To detect potholes, expansion joints, railroad crossings, and joints, the first generation
of IMU ITS solutions relied on simple threshold-based algorithms. Eriksson et al. (2008)
used an on-board computer to record vehicle vibration using the X and Z axes and GPS
positioning. The authors installed the accelerometers inside the vehicle’s cabin and used
seven vehicles to cover over 2,400 kilometres of road. A high-pass filter was used to
filter door slams, curb ramps turning and breaking. Furthermore, they filtered the data
with a Z-peak algorithm to detect road anomalies. Moreover, they developed a XZ-ratio
algorithm to identify various road anomalies. When the authors hit a pothole, the Z-
peak acceleration produces a noticeable peak on the X-axis. In another observation, the
authors discovered a relationship between the vehicle’s speed and the accelerometer Z
ratio, allowing them to detect small potholes while driving at high speeds. The system
correctly identified 90% of the road anomalies that needed to be repaired.

Mohan et al. (2008) were the first to use smartphones in road anomaly detection to
identify potholes and bumps. They used the Z accelerometer axis thresholds in their re-
search. Meanwhile, they ran the tests in a strict power management mode to reduce the
smartphone’s battery usage. Unfortunately, the authors did not explain the classifica-
tion process for potholes and bumps, instead they focused their paper on the anomalies
detection process.

A significant contribution by Mednis et al. (2011) demonstrates how threshold-based
algorithms can detect various pothole sizes, gaps, and drains. They compared three dif-
ferent algorithms based on the vertical accelerometer axis in their work: Z-THRESH, Z-
DIFF, and STDEV (Z). Their main contribution was the creation of a new algorithm called
G-ZERO, which included all three accelerometer axes. They carried out the experiments
using a portable computer and a three-axis analogue accelerometer. The sampling rate,
which was set to 100 Hz, is also critical. For large potholes, the G-ZERO algorithm can
detect road anomalies with 100% accuracy. However, the study concluded that the algo-
rithms missed 7% of the pothole clusters.

A study conducted by Fazeen et al. (2012), emphasised the significance of smartphone
placement and orientation when used to detect road anomalies. The experiment uses the
accelerometer’s X and Z axes with a sampling rate of 25 Hz. The X and Y axes, according
to the literature, can measure steering, acceleration, and braking. However, the authors
did not provide any additional technical information.

We can find another significant contribution in the work presented by Orhan and Eren
(2013). By combining accelerometer analysis with video streaming, the paper presented
a unique multi-modal analysis solution. Rather than analysing the entire video recording
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for anomalies, the accelerometer readings pinpointed the critical recording timelines that
are likely to contain a road hazard. Notably, the experiment produced excellent results,
with a recall value of 0.82 and a precision value of 0.93.

Furthermore, Douangphachanh and Oneyama (2014) proposed a four-smartphone
solution, with two smartphones attached to the vehicle’s dashboard, a third device in
the driver’s shirt pocket, and a fourth device in the car’s console. They sampled the three
accelerometer axes at a rate of 100 Hz. The authors extracted data from the GPS signal
to determine the vehicle’s speed. To avoid GPS inaccuracies, they sampled the road con-
dition in 100-meter increments. The authors removed unrelated low-frequency signals,
such as breaking and turning, using a high-pass filter. They mostly carried the experi-
ment out in the frequency domain. A summary of the threshold-based characteristics is
presented in Table 2.1

Table 2.1: Summary of Previous Research on Threshold-Based Accelerom-eter Road Anomaly Detection
Paper Sensors Axes Freq (Hz) FeaturesEriksson et al. (2008) Accelerometer X and Z 380 Accelerometer
Mohan et al, (2008) Accelerometer Z 310 Accelerometer
Mednis et al. (2011) Accelerometer X, Y and Z 26, 52, 74, 98 Accelerometer
Fazeen et al. (2012) Accelerometer X and Z 25 Accelerometer
Orhan & Eren (2013) Accelerometer Z 40 Accelerometer
Douangphachanh &Oneyama (2014) Accelerometer X, Y and Z 100 Accelerometer

2.3.6 IMU Machine Learning solutions
Perttunen et al. (2011) suggested an Support Vector Machine (SVM) model for detecting
potholes and bumps. Instead of using the time domain, the authors experimented with
features based on Fast Fourier Transformation (FTT). Bumps and potholes, according to
the authors, produce lower frequency components than other road surface anomalies.

The work conducted byWu et al. (2020) demonstrates that smartphones can monitor
road surface conditions without the use of specialised equipment or external hardware
setups. Features, data processing, data acquisition, and classification were the main com-
ponents of the research. Their system used Logistic Regression (LR), SVM, and Random
Forest (RF) for classification. They set the sampling rate to 50 Hz. However, because
the sampling frequency was inconsistent, they re-sampled the sensor’s data using data
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interpolation. Equally important, they maintained a constant speed of around 30 km/h.
Moreover, they implemented a two Hz cut-off Butterworth high-pass filter to remove
noise. With the highest F1-score, random forest had the best pothole-detection score.
SVM had the highest classification precision for potholes, but its recall rate was the low-
est.

As shown in Basavaraju et al. (2020), smartphone devices can predict road condi-
tions using accelerometer and gyroscope sensors. In their experiments, the authors used
three different techniques: SVM, Decision Trees (DT), and Neural Network (NN). The
authors settled on a sampling rate of 100 Hz. They classified the data into three cate-
gories: smooth surface, potholes, and deep traverse cracks. The results show that using
smartphones and machine learning techniques to monitor road networks is a viable and
cost-effective solution.

Silva et al. (2017) conducted an interesting study on the identification of sewer holes,
long and short bumps, and other anomaly categories. The data set included the ac-
celerometer, GPS, and timestamp records. From an algorithm point of view, the authors
used NN, tree-based models, RF, Gradient Boosting (GB), DT, and SVM, among other
machine learning algorithms. It is also worth noting that the authors were aware of the
problems associated with over-fitting. As a result, they used the WEKA tool to outline
and reduce the number of features from 39 to 10. Despite this reduction, they obtained
an accuracy score of 0.88. Similarly, Fox et al. (2015) used an SVMmodel and a list of 120
candidate features. The feature characteristics were based on observing the accelerome-
ter signal data properties, such as vertical and lateral accelerations, as well as their ratios
and products with vehicle velocity.

Likewise, Brisimi et al. (2016) proposed a system based on smartphones and machine
learning algorithms to classify road bumps. With an accuracy of 88%, the system classifies
speed bumps and identifies those that require immediate attention. Similarly, Bhoraskar
et al. (2012) proposed a machine learning application for detecting traffic conditions and
road bumps. The solution uses SVM and K-means clustering algorithms. According to
their findings, there is a strong correlation between vehicle make, mobile device, and road
condition. As a result, the study concludes that fixed threshold systems are less versatile
than machine learning solutions.

Carlos et al. (2018), on the other hand, assessed a set of 30 virtual roads generated by
an application called Pothole Lab. The resulting data set had several road flaws, such as
potholes and bumps. To identify the anomalies, they then used an SVM classifier model
based on various accelerometer-based engineered features. The sensitivity ranged be-
tween 0.575 and 1 for the 30 experiments. Furthermore, Cabral et al. (2018) used high-
dimensional features and innovative machine learning techniques in a similar study to im-

18



CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW

prove the system’s robustness and make it compatible with different vehicle models and
smartphone devices. We presented a summary of the machine learning characteristics in
Table 2.2

Table 2.2: Summary of Previous Research on Machine Learning-BasedModels Road Anomaly Detection
Paper Sensors Axes Freq.

Hz
Features Algorithm

Perttunen et al. (2011) Accelerometer X, Y, Z 38 95 - Time and freq domains SVM
Wu et al. (2020) Accelerometer X, Y, Z 50 144 - Time, freq and waveletdomains LR, SVM and RF
Bhoraskar et al. (2012) Accelerometer X, Y, Z 50 Mean, stdev SVM
Tecimer et al. (2015) AccelerometerGyroscopeMagnetometer

X, Y, Z 50 Freq domain SVM, KNN, NB, LMT, MLP

Brisimi et al. (2016) Accelerometer X, Y, Z 50 Stats, Freq domain SVM, RF, LR, Adaboost
Bhoraskar et al. (2012) Accelerometer X, Y, Z 50 Time domain SVM, K-means
Silva et al. (2017) Accelerometer X, Y, Z 50 Stats, integral SVM, RF, GB, NN, DT
Fox et al. (2016) Accelerometer X, Y, Z 100 120 - Stats SVM
Gonzalez et al. (2017) Accelerometer Z 50 Bag of words SVM, ANN, KNN, RF, DT, KR
Carlos et al. (2018) Accelerometer Z 50 Mean, stdev, range, threshold SVM, Ensemble
Cabral et al. (2018) AccelerometerGyroscope X, Y, Z 100 Mean, stdev, range, threshold SVM, HMM, ResNet, KNN

2.3.7 Vision
Rao et al. (2020) and Baek and Chung (2020) used a video camera to capture the road
surface condition. An onboard computer routine inspects the captured images. Conse-
quently, when it detects road surface anomalies, the system sends a notification. These
solutions, however, require the use of a dedicated video camera mounted on vehicles.

Maeda et al. (2018) conducted a comprehensive study on road damage detection and
classification, comparing two Single Shot Detectors (SSD) using Inception V2 and Mo-
bileNet. Inception SSD proved to be twice as slow as MobileNet. The recall patterns
were similar, and both scored the same precision results.

Silvister et al. (2019) proposed an enthralling dual mechanism pothole detection sys-
tem in which the authors combined an SSD and a sensory Neural Network model to
improve detection. To train the SSD model, the authors created a custom database of
pothole images. The reported accuracy of the Deep Neural Network (DNN) is 96.7%,
while an SSD model on the same data set produced an accuracy of 92.9%. In contrast,
they reported a major problem with sensory data annotation due to time synchronisation
issues.
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Tithi et al. (2021). carried out a similar study. In their experiment, they used an SSD
TensorFlow Lite model to detect speed bumps and potholes. They collected 2500 sample
images of potholes and speed bumps in their experiment. The model detected objects up
to 50 feet away with an accuracy varying between 67% and 92%.

In a recent study, Darapaneni et al. (2021) tested the YOLO family (v3,v4 and v5), SSD
and Unet models against a Kaggle data set repository containing 666 annotated images.
The YOLO family performed well, unlike the Unet and SSD models. The authors recom-
mended improving the SSD algorithm and adding image pre-processing techniques for
future work. Camilleri and Gatt (2020) conducted a similar study. The authors compared
YOLOv3, YOLOv3 tiny, YOLOv3 SPP,MobileNet V2 and LiteMobileNet V2. The reported
figures suggest the YOLO performed better results.

2.3.8 Evaluation benchmark
In Table 2.3 and Table 2.4, we highlight the top-performing state-of-the-art models based
on the above IMU and vision research. We will review these standards in the section
titled section 5.2 where we compare our results with these benchmarks.

It is worth noting that Brisimi et al. (2016) and Silva et al. (2017), which included speed
bumps, are not included in Table 2.3. Brisimi et al. (2016) reported the results in an Area
Under the Curve (AUC) metric, with RF receiving a score of 0.697. Meanwhile, Silva et al.
(2017)’s result metrics included a score for general overview and percentage of correct
classification. To keep the metrics consistent, we excluded these results from the classifi-
cation table. However, we will include Silva et al. (2017)’s work in our final evaluation to
compare our speed bump models.
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Table 2.3: Assessment Metrics Employed in Our Research: EvaluationBenchmarks for Performance Analysis - IMU
Source Algorithm Acc Crack Pothole / Depression Speed bump Smooth

Precision Recall Precision Recall Precision Recall Precision Recall
Basavaraju et al. (2020) SVM 0.886 0.403 0.438 0.722 0.678 0.944 0.947Decision tree 0.883 0.435 0.412 0.666 0.671 0.950 0.947NN 0.921 0.559 0.611 0.769 0.781 0.969 0.963
Wu et al. (2020) SVM 0.948 0.908 0.642 0.952 0.992LR 0.952 0.851 0.734 0.965 0.984RF 0.957 0.885 0.750 0.965 0.988
Silvister et al. (2019) DNN 0.967 n/a n/a n/a n/aSVM 0.929 n/a n/a n/a n/a

Table 2.4: Assessment Metrics Employed in Our Research: EvaluationBenchmarks for Performance Analysis - Vision
Source Algorithm Prediction accuracy Pothole / Depression Speed bump

Pothole Speed bump mAP Recall mAP Recall
Camilleri and Gatt (2020) Yolov3 SPP 0.688
Tithi et al. (2021) SSDMobileNetV2 0.670 - 0.920 0.790 - 0.930
Rani et al. (2020) SSDMobileNetV2 0.600 0.700
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2.4 Machine learning techniques

2.4.1 IMU Machine learning techniques
Classification is a machine learning technique that categorises data into distinct classes.
The goal of a data classification process is to identify and correctly classify new data.

The following is a list of terminologies used in machine learning classification:
• Classifier: An algorithm used to map the input data and classify it
• Classification model: The evaluation technique used to predict the category of new
data using the results of a training routine.

• Feature: It is an individual observation property of a phenomenon being investi-
gated

• Binary Classification: In this classification, the outcome has two potential values: 0
or 1

• Multi-class classification: It can classify data into more than two classes. To clarify,
this type of classification can only assign one type of class per output.

• Multi-label classification: This is similar to Multi-class classification. However, mul-
tiple labels can be assigned to one observation.

2.4.2 Overview of Bias and Variance
Supervised machine learning algorithms construct their models using the training data
provided during the model’s construction cycle. The primary goal is to best estimate the
mapping function (f) from the output label (Y) given an input variable (X).

We can break the prediction error down into two parts:
• Bias error
• Variance error

2.4.2.1 Bias Error
Bias represents the model’s simplifying processes used to simplify the target function
learning mode.
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Linear algorithms have a high bias, whichmakes themeasy to learn and understand but
limits their flexibility. As a result, they have poor predictive performance on complicated
structures that do not meet the algorithm’s bias’s simplified assumptions.

• Low Bias: Indicates that the target function has fewer assumptions. Mainly K-
Nearest Neighbors (KNN), SVM, and DT

• High Bias: Indicates more assumptions of the target function: Mainly LR, Linear
Regression Model (LRM) and Linear Discriminant Analysis (LDA)

2.4.2.2 Variance Error
Variance is the amount bywhich our estimate of f(X) would change if we estimated it using
a different training data set. For instance, the target function estimate should not change
much if we use different training data sets. This means that the algorithm has strong
underlying logic for identifying the relationship between the input and output variables.

• Low Variance: Shows lower changes to the target function’s estimate when we
change the training data. (LR, LRM and LDA).

• High Variance: Shows higher changes to the target function’s estimate when we
change the training data. (DT, KNN and SVM).

2.4.3 Bias-Variance Trade-Off
Ultimately, the main goal of any supervised machine learning algorithm is to create a low
bias and low variance function that has good prediction performance.

The rule of thumb is that:
• Linear machine learning functions normally have a low variance but a high bias.
• Nonlinear machine learning functions normally have a high variance but a low bias.
Themost difficult aspect of parameterisedmachine learning algorithms is determining

the optimal parameter setting to balance bias and variance. The following two algorithm
examples indicate how we can adjust the bias-variance trade-off:

• KNNalgorithm (low bias and high variance). We can improve the trade-off by chang-
ing the value of k, which increases the number of neighbours that changes the pre-
diction and increases the bias of the model.
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• SVM algorithm (low bias and high variance). We can tweak the trade-off by increas-
ing the C parameter that controls the number of infringements of the margin, which
increases the bias but decreases the variance.

2.5 Machine learning algorithms
The main idea behind machine learning is to use statistical models to allow computers to
learn to use generic programming code. Based on the above research, wewill now discuss
the machine learning algorithms used in our study.

2.5.1 K-means
K-means is a popular machine learning algorithm for categorising unlabelled data into dis-
tinct clusters. The function only needs one hyperparameter: the K value. The number of
clusters required is determined by this parameter. A centroid also identifies each cluster.
The concept behind the K-means algorithm is to minimise the sum of distances between
points and their respective cluster centroid. Iteratively, the K-means process adds a new
point to the cluster whose centre is closest to it.

We used clustering as an exploratory technique in our experiments to analyse the
hidden structure of our data. This technique allows us to better decompose the data set
into different subsets, each of which represents a group of similar points with the same
characteristics.

2.5.2 Logistic Regression (LR)
LR is a popular type of statistical analysis used in predictive analytics andmachine learning
modelling. LR can handle both binary and multinomial regression and is used to estimate
probabilities using a logistic regression equation to understand the relationship between
a known variable and one or more independent variables. A binary regression predicts a
two-state outcome, whereas a multinominal regression can handle multiple options.

Advantages: LR is a popular classification algorithm that was created specifically for
classification. It’s useful for understanding how multiple independent variables affect a
single outcome variable.

Disadvantages: The assumption of linearity between the dependent and independent
variables is the major limitation of LR.
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2.5.3 Support Vector Machine (SVM)
SVM is a supervised learning technique used for both classification and regression prob-
lems. SVM represents training data as points in space separated into different classifica-
tion by a clear gap between the classes. The theory behind the SVM is to have the gap
as wide as possible. We then plot test data into the same space and predict the category
according to which side it falls.

Advantages: SVM is memory efficient because it uses a subset of the training data.
Therefore, it is effective in high-dimensional spaces.

Disadvantages: Since the algorithm does not provide probability estimates, a cross-
validation data process is required.

2.5.4 K-Nearest Neighbors (KNN)
The KNN is a simple data classification algorithm that classified a new data point depend-
ing on the neighbouring classification groups. The closest it is to a classification group,
the more likely it forms part of that group.

KNN forms part of the “lazy learning” group of algorithms. To put it more simply, they
do not rely on models built on training data prior to classifying the data points. Thus, they
apply the classification model during execution. The classification of new data points is
based on a simple majority vote of the nearest neighbours. For every classification cycle,
the process has to search for its nearest neighbours and check the closest class group.
Therefore, this algorithm is resource intensive. Furthermore, the KNN algorithm only
requires one parameter, the K number. This represents the number of closest neighbours
that the algorithm has to check to classify the new data point.

Advantages: The KNN algorithm is simple to implement. It can handle noisy training
data, and works effectively with large training data.

Disadvantages: Finding the optimal K value can be tricky, and the computation cost
is high since it needs to check the distance of the point to all the training data set.

2.5.5 Random Forest (RF)
RF (Breiman, 2001) is a powerful, yet relatively simple, supervised machine learning tech-
nique. It allows fast and automatic identification of relevant information from extensive
data sets. The biggest strength of this algorithm is that it relies on the collection of various
predictions (trees) rather than trusting a single one.

In classification, each tree casts a vote for the final prediction.
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Advantages: The algorithm relies on the collection of various predictions (trees) rather
than trusting a single one.

Disadvantages: Random forests can be computationally expensive and require more
resources than individual decision trees, especially when dealing with a large number of
trees and complex data sets. Training and predicting with a large number of trees can take
considerable time and memory.

2.5.6 Naive Bayes (NB) classifier
Bayesian networks are probabilistic graphical models for representing undefined informa-
tion. These graphs are a collection of interdependent nodes connected via a network of
directed connections. Each node represents an attribute of interest in a problem domain,
such as vibration levels in a road monitoring application, to measure the likelihood esti-
mation of road anomalies. The node’s edges comprise the conditional probability of the
matching ransom value. The simplest Bayesian network classifier is called Naïve Bayes,
which is based on the Bayes’ theorem.

Naive Bayesian network relies on known data to work out the dependencies between
the attributes and the class labels and, by using this information, they calculate the out-
come probabilities of future events. This classifier uses the Bayes’ theorem as shown in
(2.1):

[P(A|B) = P(B|A)P(A)

P(B)
(2.1)

Where
• A and B are events
• P(X) is the probability that event X occurs.
• P(X|Y ) is the conditional probability that event X occurs if event Y is true
Advantages: This algorithm does not require large training data sets to establish the

required parameters. NB classifiers are extremely fast when compared to other complex
classification methods.

Disadvantages: NB is considered a poor estimator, so the probability outputs should
be interpreted with caution. Therefore, any probability outputs from the model should
be treated with care.
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2.5.7 Deep Neural Network (DNN)
Research on road anomalies is largely based on statistical machine learning techniques.
These methods require manual interventions to construct distinct features. However,
with the emergence of big data, scientists are looking beyond the traditional feature en-
gineering techniques for machine learning.

With techniques such as DL technologies, manual feature extraction is no longer re-
quired. DL works directly with raw data. We can find various studies concentrating on
DL methods for road anomaly detection.

As shown in Basavaraju et al. (2020), the authors used DL to identify road anomalies.
Similarly, Xu et al. (2019) used a DL to detect complex human activity recognition.

Deep learning models are based on artificial neural networks (ANN). Neural networks
contain three key components: the input layer, the hidden layer, and the output layer,
as shown in Figure 2.3. The first layer provides a channel for our raw sensor readings.
The middle layer follows this. Each layer has various nodes connected to the neighbour-
ing layer. This is where the model implements its logic. For more complex problems, we
can increase this section to multiple hidden layers. In the final section, we find the out-
put layer. The number of nodes varies depending on the number of classes the model
is identifying. In a binary classification mode, the output layer will contain two classes
representing a 1 and a 0.

Figure 2.3: Illustration of a Basic Neural Network Architecture

2.5.8 Vision Machine learning techniques
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2.5.9 The You Only Look Once (YOLO) family
Redmon et al. (2016), introduced a new concept for detecting objects in images called
YOLO. Prior to their work, convolutional neural networks such as Region-Convolutional
Network (Girshick et al., 2014), were less efficient. They used to detect objects by first
producing bounding boxes around objects. Next, they applied post-processing techniques
to remove duplicate detections and improve the bounding boxes positioning. Thesemulti-
stage techniques of object detection were inefficient and difficult to optimise.

YOLO introduced new concepts in computer vision that allowed the extraction of fea-
tures and their predictions to be computed in one process. Themain idea behind YOLOv1,
the first release of YOLO, was to apply a seven by seven grid cell to the image. The process
then checks in which cell the centre of the object is located and assigns the object to that
cell. From that point onwards, the other cells will disregard that object. The authors called
this architecture Darknet. YOLOv2 (Redmon and Farhadi, 2017) followed in December
2017. It added a Batch Normalisation, which was introduced by Ioffe and Szegedy (2015).
The goal was to normalise the features to allow faster and more reliable training of the
neural network. YOLOv2 also increased the image resolution from 224x224 to 448x448.
Moreover, it introduced the concept of anchor boxes. Anchor boxes replaced the grid
cells in YOLOv1.
2.5.9.1 YOLOv3
Redmon and Farhadi (2018) released the third YOLO version in 2018, with several im-
provements on the previous two releases. Small objects were difficult to detect in the
previous versions because of the downsampling of the input image before forwarding to
the deep layers. The 2018 release of YOLO addressed this issue by combining YOLOv2’s
Darknet architecture and the Residual network (ResNet) which was proposed by He et al.
(2015).

ResNet introduced the concept of skip connectors to help the activators to access
deeper layers of the network with minimal detail loss, as shown in Figure 2.4

The network has a bottleneck structure with a one by one, followed by a three by
three convolution layer.

The authors also increased the Darknet architecture to 53 convolutions, as shown
in Figure 2.5. For the object detection process, it stacked 53 additional layers onto the
Darknet architecture, giving the algorithm 106 fully convolutional layers.
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Figure 2.4: Reset Skip connection - reproduced from He et al. (2015).

Figure 2.5: Darknet-53 - reproduced from Redmon and Farhadi (2018)
2.5.9.2 Multi-scale training
YOLOv3 can detect objects at three different scales, compared to its previous versions.
The authors achieved this by using the last three residual blocks by downsampling the
image by 32, 16 and 8 at layers 82, 94 and 106, respectively. The author used an input
resolution of 416 x 416, therefore, a downsampling stride of 32 will produce a feature
map of 13 x 13 Similarly, strides of 16 and 8 produce feature maps of 26 x 26 and 52
x 52. YOLOv3 could detect smaller objects that the previous releases could not. As the
map is more detailed, it can now detect fine objects.

In February 2020, Joseph Redmon announces on social media that he was withdraw-
ing from computer vision. Following his departure, the future of YOLO became unclear.
Some argue that YOLOv3 is the last YOLOmember and subsequent enhancements should
not use the YOLO name.
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2.5.9.3 YOLOv4
On April 2020, Bochkovskiy, Wang and Liao released YOLOv4. In their YOLOv4 paper,
the authors gave a detailed snapshot of the current trends in computer vision. Fig. 2.6
lists all the major components outlined in the paper.

Figure 2.6: Object Detection - Major components
YOLOv4 Architecture:
a) Backbone
Following several experiments and observations, the authors discovered the CSP-

Darknet53 produced better results than the most advanced convolutional networks at
the time of writing. The two other contenders were CSPResNext53 and EfficientNetB3.

It is important to note that both the CSPResNext50 and CSPDarknet53 are deriva-
tives of the DenseNet Huang et al. (2017) architecture. DenseNet consists of dense
block stages and transition layers. The CSP architecture uses the same concepts of the
DenseNet, but it separates the input into two portions instead of using a full-size input
feature map. CSP preserves the features through propagation and reduces the number
of network parameters. YOLOv4 eventually replaced the YOLOv3 Darknet-53 residual
blocks with dense blocks.

b)Neck
The primary role of the neck section is to act as a collection point for feature maps

from different sections of the backbone. The YOLOv4 head comprises the SPP block and
the PANet feature aggregation section.

He et al. (2015) released SPP in 2015. The primary role of the SPP is to solve the prob-
lem of handling images of various dimensions. Most CNN models work on pre-defined
dimensions, so they introduced SPP to generate a fixed-size output irrespective of the
input dimension. SPP also includes a function used to extract important features by pool-
ing multi-scale versions directly from the provided image data. Figure 2.7 shows the same
image being copied three times using differentmax poolingwith a kernel of different sizes.
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Figure 2.7: Classical SSP block - reproduced from He et al. (2015)
In YOLOv4, the original SPP block was fine-tuned by concatenating the feature maps

with the size of size(fmap) x size(fmap) x 512.
c)Neck – Feature Aggregation
The next step is called the feature aggregation phase, and this combines the features

formed in the convolutional network backbone. YOLOv3 uses an FPN for the feature ag-
gregation, as shown in Lin et al. (2017). The authors of YOLOv4, (Liu et al., 2018), chose
the PANet as the primary feature aggregator. PAN is an enhancement of FPN. The au-
thors added a bottom-up path as shown in Figure 2.8 In section (a), the red link shows
how the FPN system works for fine-grained features. The detailed features in FPN have
to travel longer to reach the higher-level layers. PANnet introduces a new shortcut that
feeds the fine features directly to the top augmented layer, as shown by the green path
in Fig. 2.8

Figure 2.8: PANet architecture (a) FPN backbone. (b) Bottom-up path aug-mentation. (c) Adaptive feature pooling. (d) Box branch. (e) Fully connectedfusion - reproduced from Liu et al. (2018)
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d)Head
The Head’s main functionality is to perform the dense prediction. A vector containing

the predicted bounding boxes coordinates, probability classes and confidence score. The
authors of YOLOv4 used the same head structure as YOLOv3.

e)Bag of Freebies.
A “Bag of Freebies” was introduced in YOLOv4. The authors introduced these added

features to augment the data and improve the performance without jeopardising the ac-
curacy.

2.5.10 EfficientDet
Tan, Pang and Le presented the EfficientDet single-shot family model in July 2020 as part
of the Google Research Team AI initiative. They built EfficientDet on Tan et al. (2020)
architecture.

The authors set forth two major contributions:
1. BiFPN - A weighted bidirectional feature pyramid network. They based it on the

ideas of FPN, PANet and NAS-FPN, which enable information to flow in both the
top-down and bottom-up directions.

2. Compound scaling: A new concept, which improves the backbone, feature network,
box/class network, and resolution.

2.5.11 Faster R-CNN
Faster R-CNN forms part of the region-based CNN family. Ren et al. (2017) released the
algorithm. In contrastwith the YOLO family and EfficientDet, Faster R-CNN is a two-stage
detector.

Both the previous R-CNN and Fast R-CNN algorithms used selective search to locate
the region proposals. Selective searches are a slow and time-consuming process. The
authors of the Faster R-CNN algorithm eliminated the bottleneck and created a new net-
work for region proposals or RPN for short, as shown in Fig. 2.9.

The authors have also introduced the concept of anchors. Anchors are the central
points of the sliding windows. These anchors assign labels based on two factors:

• The anchors with highest Intersection-over-Union overlap with a ground truth box
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Figure 2.9: EfficientDet Architecture - reproduced from Ren et al. (2016)
• The anchors with Intersection-Over-Union Overlap higher than 0.7

2.5.12 MobileNetV2
Sandler et al. (2018) released MobileNet V2 in April 2018. The V2 implementation has
several improvements to the previous V1 system, and it is suitable for Mobile devices
with low hardware resources.

The major difference between version one and version two is that v2 has two types of
convolution blocks, as shown in Figure 2.10. In contrast, version one has only one block.
The first is a residual block with a stride of one. The second block has a stride of two,
which is used for downsizing.

Figure 2.10: MobileNetV2 - reproduced from Sandler et al. (2019)
Both blocks comprise three layers. A ReLU6 one by one convolution layer is the first

layer. The second is a depth-wise convolution (different strides). The third is a linear one
by one convolution layer. Figure 2.11 shows the overall architecture of MobileNetV2.

33



CHAPTER 2. BACKGROUND & LITERATURE OVERVIEW

Figure 2.11: MobileNetV2 architecture - reproduced from Sandler et al.(2019)
2.5.13 Classification process
One important process in machine learning life cycles is the evaluation of the model. Dif-
ferent machine learning models perform differently on the same data set. To measure the
suitability of the model against a particular task, we use different metrics to quantify the
success rate.

To evaluate the model’s performance, we compare every prediction made in the test
with the record’s label and the predicted class value. There are mainly four outcomes:

• True Positive (TP) = A correct detection and classification
• False Positive (FP) = An incorrect detection and classification
• True Negative (TN) = The object was not in the image and was not detected by the
model

• False Negative (FN) = The object was in the image and the model did not detect it
We consider a TP prediction if the predicted value belongs to the same label class. If

the value prediction is not the same, then we mark it as TN. A FP proves that we wrongly
classified the test record as the same label class, but in reality, it does not form part of the
label class. When we classify the test record wrongly, we mark it as FN.
2.5.13.1 Accuracy, Precision, Recall and F1 Score
In Chapter 4, we used Accuracy, Precision, Recall and F1-score to assess the model’s
classification performance, as shown below:

Accuracy shows the percentage of correct forecast in respect to all classes. This is
presented as equation (2.2).
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Accuracy =
TP + TN

TP + FN + FP + FN
(2.2)

Precision is a crucial metric that highlights the proportion of relevant features pre-
dicted by the model, which are genuinely relevant. The precision formula is presented as
equation (2.3).

Precision =
TP

TP + FP
(2.3)

Recall is a vital metric that assesses the model’s proficiency in capturing all relevant
features present in the dataset. The formula for recall, denoted as (2.4), quantifies the
model’s ability to identify true positives correctly.

Recall =
TP

TP + FN
(2.4)

F1-score is a valuable metric that combines the precision and recall measures into a
single score, mitigating the influence of imbalanced datasets. The formula for calculating
the F1-score, denoted as (2.5), captures the balance between precision and recall, pro-
viding a more robust evaluation of the model’s overall performance.

F1Score =
2TP

2TP + FP + FN
(2.5)

2.5.13.2 mAP
The computer vision community has converged on the mAP metric to compare the per-
formance of object detection systems.

To calculate mAP, we first must find the Intersection over Union (IoU). This is the
overlap between the object detection bounding box and the ground truth box. Figure
Figure 2.12 shows the ground truth box, and the predicted bounding box of a pothole. The
lime and themagenta boxes represent the ground truth and predicted boxes, respectively.
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Figure 2.12: Visualizing Model Accuracy: Intersection over Union (IoU)
The True Positive, False Positive and False Negative are determined by the IoU formula

as indicated in equation (2.6).
IoU =

area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(2.6)
where the Bp is the bounding box and Bgt represent the ground truth box.
For a mAP of .50, we mark it as a true positive if the IoU is greater than 0.5. Similarly,

we register it as a false positive if the IoU is smaller than 0.5. No detection is a false neg-
ative. We do not evaluate true negatives because we assume an object is always present
in an image. Then we calculated the mAP by taking the area under the Precision/Recall
Curve for every class. We calculate this by taking the average of the calculated AP for all
the classes.

A model with 95% mAP yields better results than a model with a 60% mAP, but there
are cases where the precision and recall of a 60% mAP model performs better in real-life
scenarios.

2.6 Summary
This chapter has evaluated the state-of-the-art IMU and vision machine-learning tech-
niques for road anomaly detection. First, we briefly introduced the different machine
learning methods. In particular, supervised and unsupervised methods. Next, we pre-
sented smartphones in the road anomaly detection domain, including their advantages
and disadvantages. We also gave a brief introduction to the various smartphone-embedded
sensors. Later, we introduced the various smartphone solutions based on a comprehen-
sive literature review presented to understand the use of IMU and computer vision mod-
els.
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Chapter 3

Materials & Methods

3.1 Introduction
In chapter 2, we presented our review of the existing research on road anomaly detec-
tion. These include threshold-based solutions and machine learning approaches, includ-
ing deep learning and convolutional neural networks for imagery data. The vibration sen-
sory review shows that machine learning techniques are more accurate and versatile than
threshold techniques. However, it is clear from previous studies and experiments that de-
tecting road anomalies just from inertial readings is way harder than it looks. Notably, IMU
methods require a direct anomaly impact to sense an anomaly. As a result, an avoidance
manoeuvre will not detect a road defect.

Previous deep-learning imagery studies on road anomalies show that vision solutions
deliver excellent results and can categorise multiple object recognition and classifications.
Although there are numerous studies in this field, research into real-time road anomaly
detection is still ongoing. Particularly, distinguishing between an oil spill and a genuine
road anomaly, such as a pothole or crack, remains difficult. Furthermore, distinguishing
between a pothole and a depression remains difficult. To overcome these weaknesses,
this dissertation will fuse both the IMU and vision data to improve anomaly detection.

The rest of this chapter is organized as follows. We provide the solution overview in
section 3.2. In this section, we give a detailed overview of the entire solution, including
all the individual components and software used in this dissertation. In section 3.4, we
cover the IMU capturing application, including the methodology used to carry out the ex-
periments. Similarly, in section 3.5, we explain how we addressed the vision application
requirements. We then cover the vision application in section 3.5 followed by the smart-
phone placement to capture the road imagery. In the section 3.6 we cover the back-end
processes for both applications, including the data collection and processing techniques.
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Finally, in section 3.7 we discuss the data fusion methods proposals.

3.2 Proposed Solution
To the best of our knowledge, there are no publicly available road anomaly data sets
available for the Maltese islands. At the same time, the available foreign imagery data
sets lacked the timestamp and corresponding IMU data. With this in mind, the sensory
and MobileNetSSD images were both collected using our Android smartphone device.
We will inspect the data set collection and pre-processing stages later in this chapter.

The proposed road anomaly detection solution comprises three coremodules, as shown
in Figure 3.1.

Figure 3.1: Comprehensive System Overview: A Tripartite Breakdown
Both the IMU motion sensing and vision detection modules run on two separate

smartphone devices. The GPS data is providing the backbone for synchronising the appli-
cations and providing the vehicle speed and geolocation coordinates. We used a back-end
server for data cleansing, re-sampling, analysis, and reporting. As explained earlier, the
primary aim of this research is to detect road anomalies and produce a data-rich platform
to help the authorities to pinpoint road anomaly locations. As a result, we have included a
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data fusion platform to further enhance the prediction and also provide a rich data set for
further analysis. Additionally, an image feed, including the geolocation andmagnetometer
data, is also being captured and stored for future studies. Equally important, the stored
imagery data is being anonymised using a third-party product for privacy protection.

Figure 3.2 illustrates how we conducted our experiments. We started our first phase
with the development of the IMUdata-capturing application, followed by the experiments
stage. During the second phase, we addressed the vision module, where we trained a
MobileNetSSDmodel to detect road anomalies. Finally, we experimented with the fusing
of both data streams to further enhance the reporting.

Figure 3.2: Illustration of Experimental Methodology: Unveiling the Stagesand Processes in our Study

3.3 Software used
We can find a list of software used for this study in Table 3.1

Table 3.1: Comprehensive List of Utilized Software: Tools and ProgramsEmployed in the Study.
Software Version Usage
Flutter1 2.4.0 Mobile applicationsDart2 2.1.2 Mobile applicationsPython3 3.8.5 Backend, IMU and Vision models, data fusionPostgreSQL4 13.4 Mobile applications and reportingunderstand-ai/anonymizer5 n/a Vision applicationsGo6 1.18 ReportingJavaScript ES6 ReportingLeaflet7 1.8 Reporting
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3.4 IMU application overview
The fundamental concept behind the IMU application was to create a native smartphone
application that would capture the accelerometer, gyroscope, GPS coordinates, and clock
data at a predefined sampling rate. The application uses the smartphone’s operating sys-
tem programming interfaces to read data from the device’s sensors. We created software
functions that stored this data in an embedded smartphone RDBMS database, which was
then transferred to the back-end server for analysis.

3.4.1 Methodology
Figure 3.3 shows the methodology used for the IMU sensory experiment. To record the
vibration, we mounted one smartphone on the car’s dashboard. The device recorded
accelerometer and gyroscope readings, as well as GPS data and magnetometer readings.
Following that, we proceeded with the data preparation and feature extraction stages.
This process examined several iterations to determine the best sampling rates.

Figure 3.3: Illustration of the Adopted System Methodology

3.4.2 IMU sensing
As previously stated, we collected the sensory data using a custom native application de-
veloped in Flutter to capture the accelerometer, gyroscope and GPS data. Particularly, the
design process included the GPS timestamp with every sample. This was required to syn-
chronise and align the readings from the two smartphone applications. Literature review
shows that GPS time synchronisation is accurate and can synchronise devices where GPS
coverage is available. This topic is further discussed in 3.6.5. The accelerometer (X, Y and
Z) and gyroscope (X, Y and Z) data were sampled at 50 Hz. We considered sampling at

40



CHAPTER 3. MATERIALS & METHODS

higher rates, but due to hardware constraints, our experiments revealed that 50 Hz was
the best sampling frequency.

We also set the sampling rate for the GPS data at one Hz because of hardware con-
straints. Therefore, we collected 50 sensor samplings for every GPS coordinate. To be
more specific, each GPS location generates 300 unique sensor readings consisting of 50
samples of three accelerometer axes and three gyroscope axes. We collected the sam-
ples while driving on arterial, distributor, and secondary roads. We do not include tertiary
roads in this study.

3.4.3 Smartphone placement
We secured the smartphone to the centre console of the car. As shown in Figure 3.4, the
smartphone’s Z axis was tightly positioned against the back of the entertainment console,
and its Y axis was mounted horizontally on the dashboard. Placing the smartphone in full
contact with the car’s console guarantees that we always maintain the same mounting
angle. Likewise, the smartphone is always in full contact with the vehicle’s body, unlike
windscreen rubber-mounted stands.

Figure 3.5 shows the vehicle’s axis together with the mobile’s axis alignment. Our
setup is based on Basavaraju et al. (2020)’s work where the authors used a fixed smart-
phone position to gather the datawithout the need to realign the smartphone’s accelerom-
eter and gyroscope axes.

3.4.4 Kalman filter
Accurate GPS coordinates are of the utmost importance for this research. Research by
Raghunath et al. (2013) shows the advantages of using Kalman filters to enhance GPS
positioning by correcting false GPS readings and signal interference. In our experiments,
we included a simple Kalman filter in the native smartphone application to reduce the
GPS position errors in areas of bad GPS reception.

3.4.5 Data Annotation
Precise data labelling is crucial for supervised machine learning algorithms. The accuracy
of the models depends on accurate data and the corresponding labels. For this task, both
smartphones were used, one for reading the sensory data, as shown in Figure 3.6 (a) and
the other to annotate the anomalies, as shown in Figure 3.6 Figure (b).

Figure 3.7 shows the route used for our training data set. The data-collection exper-
iment was carried out on various roads in Malta, primarily in the northern and central
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Figure 3.4: Illustration of SmartphoneMounting on the Vehicle Dashboardfor Data Collection

Figure 3.5: Alignment of Vehicle Axis, Gyroscope, and Accelerometer: Il-lustrated Configuration
regions. These data-gathering events occurred during a relatively low traffic period, at a
constant driving speed of 25 to 40 km/h.

This exercise covered approximately 70 km in total distance. The arterial roads were in
relatively good condition. However, some urban and main roads were significantly worse,
with numerous potholes and depressions. Furthermore, we observed that speed bumps
were not as common as expected.

An assistant was given the job of labelling the road anomalies. To label the road
anomalies, the application provided five labelling options. These included:

1. Left Depression
2. Depression
3. Right Depression
4. Speed Bump
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a IMU Sensing b Vibration Annotation
Figure 3.6: Snapshot of IMU Sensing and Annotation Applications in Ac-tion

Figure 3.7: Illustration of Training Route: Sampling and Labeling ProcessEmployed in Our Test
5. Smooth Road
In the IMU tests, we grouped potholes, cracks, and other forms of road surface cavities

under one depression category. Table 3.2 shows a sample label data set consisting of three
different categories:

• Time Element (GPS time, smartphone time and time drift). As explained earlier, the
variance is used to measure the time difference between the smartphone clock and
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Table 3.2: Dataset Snapshot: Labeled IMU Samples for Training and Vali-dation
gpstime mobiletime time drift long lat speed label

1641628262000 1641628250772 114 35.8901005 14.4644139 9.43468475341797 1
1641628266000 1641628254610 114 35.8899563 14.4648398 10.7666940689087 1
1641628894000 1641628882850 114 35.8963245 14.4578413 7.38304233551025 1
1641628902000 1641628891213 114 35.8965452 14.4581358 7.70915126800537 1
1641629015000 1641629004576 114 35.9009803 14.4529821 10.722484588623 1
1641630269000 1641630258280 114 35.9142195 14.4482561 9.865159034729 1
1641630541000 1641630529997 114 35.8986568 14.4563057 7.81180143356323 1

theGPS atomic clock. We performed a similar reading on the sensory data capturing
application (Figure 3.6)(a) to synchronise both smartphones.

• GPS Element: (longitude and latitude). To capture the GPS coordinates
• Label Element (Label). The captured anomaly type.
Following several tests to determine the optimal sampling window, we concluded that

a two-second sampling window was satisfactory to capture the road anomaly. This time
window comprises a one-second sampling window before and after the user clicks on an
anomaly button. Therefore, for every anomaly label, we are annotating both the prior and
post 50 sensory readings. We consider this time window adequate for a user to locate
and press the correct label on the annotation smartphone, even during bumpy rides.

A clear limitation of this method is that, during the two-second interval, we might
have collected more than one anomaly and distort the sample readings. As we will see in
subsubsection 3.6.5.1, speed dependency is an important factor when monitoring road
anomalies. A vehicle travelling at 40 km/h covers roughly 22 meters of road in two sec-
onds. However, this solution is common in road anomaly detection and we are basing
our assumption that there is only one anomaly per time window. In addition, we will also
capture smooth road sampling in the process and this might negatively impact the ANN
model, since we will label the smooth sampling records as an anomaly during training.

On transferring both the sensory and annotation data sets to the back-end server,
a process aligned both data sets by utilising the GPS atomic clock variance method de-
scribed earlier.
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3.4.6 Hyper-parameters
In our experiments, we used the Sklearn grid search8 function to search for the optimal
hyper-parameter values. This is the simplest approach to optimisation to increase the
classification score. It is extremely easy to implement and use, but can be very time-
consuming depending on the size of the search grid. Table 3.3 shows the hyper-parameter
used for the above tests. Furthermore, the tables also show the parameters used in our
grid search test to find the optimal values.

Table 3.3: Configured Hyperparameters: Overview of Experimental Set-tings in Focus
Model Hyper-parameter Grid Search parameters
LR solver=’newton-cg’,multi_class=’auto’,C=1 ’C’: [1,5,10]
SVM kernel=’rbf’, gamma=1, C=1 kernel: [’rbf’,’linear’], ’C’: [1,10,20]
KNN n_neighbors = 3 n_neighbors: [1, 3, 5, 7, 9, 11, 13, 15]
RF n_estimators=11 n_estimators: [1,5,10,11,13]
NB var_smoothing = 1e-09 var_smoothing = 1e-09

8https://scikit-learn.org/stable/modules/generated/sklearn.modelselection.GridSearchCV.html
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3.5 Vision app overview
The vision application hosts theMobilenetSSDdetectionmodel for detecting road anoma-
lies instantaneously through an image feed using the smartphone’s camera. Once the
model detected an anomaly, we extracted theGPS coordinates and timestamps and stored
them in a database. The corresponding anomaly class and GPS data were also being sent
to the back-end server for processing.

3.5.1 Vision Methodology
Figure 3.8 shows the method of the vision module for the second experiment. We con-
ducted several tests from different mounting points to improve the visibility and model
accuracy. Furthermore, we used Roboflow 9, a third-party annotation and machine learn-
ing platform. Moreover, we trained the model on Colab10.

Figure 3.8: Visual Module System Overview: Illustrating the Functionality
In our preliminary experiments, we tested five advanced computer vision models to

compare their performance and object detection accuracy. We carried out the experi-
ments using the Roboflow pre-configured computer vision model libraries and code. The
code runs on Jupyter notebooks using Google’s Colab Pro cloud services. One major dis-
advantage of using Colab is that there is no guarantee that the cloud service will assign
the same hardware resources for every consequent run, therefore, the model’s frames
per second could not be correctly evaluated. We implemented three YOLO implementa-
tions using the PyTorch machine learning framework. We executed the EfficientDet and
TensorFlow V2 models using a pre-trained COCO 2017 data set. Faster R-CNN and Mo-
bileNetSSD both used the TensorFlow V1.5 models with a pre-trained COCO 2018 data
set.

9For more information see: https://roboflow.com/10For more information see: https://colab.research.google.com/
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For this experiment, we used a Roboflow public data set11 with 665 pothole images
in a 70-20-10 ratio for training, validation and testing. The data set contained various
potholes from different angles and distances as shown in Figure 3.9. We selected the
Roboflow pothole data set following several online searches. Atikur Rahman Chitholian12
originally released the data set as part of his undergraduate thesis. The data set is now
included in Roboflow’s public data set under the developers’ section to promote their
machine learning toolsets. Furthermore, the data set comes furnishedwith pre-annotated
road potholes. MobilenetSSD produced encouraging results, as can be seen in Table 4.17.

(a) Roboflow data setsample 1 (b) Roboflow data setsample 2 (c) Roboflow data setsample 3
Figure 3.9: Snapshot of Roboflow Dataset: Sample Images Illustrating theVariety of Data

To conduct live testing, we migrated the MobileNetSSD model to TensorFlow Lite to
run the model directly on our mobile applications. However, during our field testing, we
noticed the model was performing poorly in our setup. We were getting a high percent-
age of false positives and negatives. Therefore, we agreed to remove closeup images of
potholes and distant ones, and leave average-sized potholes. We also removed images of
potholes that were taken at 90 degree angles. To keep the same number of images, we
added new images taken from the new camera position to keep the data set size consis-
tent. We also added images of speed bumps to be consistent with the IMU experiments.
Following these changes, we trained a new model and ran additional tests. In addition,
according to our analysis, the new model and camera position were not yielding optimal
results.

3.5.2 Smartphone placement
In the course of our vision experiments, the smartphone placement played an important
role. We conducted numerous experiments to determine the optimal mounting location.

11Accessible from https://public.roboflow.com/object-detection/pothole12Atikur Rahman Chitholian https://www.kaggle.com/datasets/chitholian/
annotated-potholes-dataset

47

https://public.roboflow.com/object-detection/pothole
https://www.kaggle.com/datasets/chitholian/annotated-potholes-dataset
https://www.kaggle.com/datasets/chitholian/annotated-potholes-dataset


CHAPTER 3. MATERIALS & METHODS

Our primary aim was to capture road anomalies that were within the two-second time
window used for IMU machine sampling tests. This was required so that we could fuse
both results and augment the reporting dashboards. As a result, our primary objectivewas
to configure the smartphone camera so that we only capture anomalies within 20 metres
of the vehicle’s front wheels. Therefore, to ensure optimal performance, we strategically
positioned the smartphone at the highest available location on the vehicle’s windscreen,
as depicted in Figure 3.10. This placement methodology draws inspiration from the suc-
cessful approaches implemented by Camilleri and Gatt (2020), Tithi et al. (2021) and Rani
et al. (2020).

However, upon implementation, we encountered an unforeseen issue: the camera
captured not only the intended elements but also the pavements and other unrelated
objects. Regrettably, this unintended inclusion of irrelevant data rendered this solution
less effective for our specific application.

Despite drawing inspiration from previous works, the captured extraneous content
impacted the accuracy of our data collection. As a result, we explored alternative solu-
tions to address this challenge and refine our methodology for improved results.

Figure 3.10: Initial Test: Camera Position Configuration for Observation
Our next attempt was to mount the camera onto the front bumper closer to the front

vehicle wheels as shown in figure 3.11. This experimental design was based on the as-
sumption that the camera would be closer to the vehicle’s front wheel with unobstructed
views. Based on this assumption, we reintroduced closeup images of potholes and speed
bumps in our training data set. However, during live testing, there were trends in our
data suggesting that the smartphone camera could not maintain the focus when driving
at speeds of over 5 km/h. Therefore, we discarded this option.

We, therefore, investigated another method based on mounting the smartphone in
the vehicle’s cabin and setting the camera’s zoom to 300%. The main reason behind this
experiment was to capture as much road surface as possible and exclude sidewalks. As
a result, we focused our camera on the approaching road anomalies. Figure 3.12 shows
the capturing area in more detail. Once again, we removed all closeup images from the
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Figure 3.11: Second Test: Camera Position Configuration for Observation
data set and augmented the images by adding image flipping, shearing and brightness.

Figure 3.12: Third Test: Camera Position Configuration for Observation
We carried out the tests during various hours of the day and we could observe that

tests carried out around and during sunset and sunrise yielded better results. The low
angle of light softens the shadows, creating a flattering visual effect. In contrast, daytime
photos contained shadows, which increased the false positive rate.

3.6 Back-end system overview
The back-end system consists of a Linux server running on a cloud virtual machine. We
used a PostgreSQL database as a central repository where several Python scripts were
used to process the data and merge the IMU sensory and vision data sets to augment and
enrich the reporting data, as shown in Figure 3.13. The IMU, vision annotation and vision
applications files are all transferred to the server for processing.

3.6.1 Data Collection and Pre-processing
Data collection and pre-processing are a pivotal part of machine learning and a debated
subject in various communities. According to Ramírez-Gallego et al. (2017), data pre-
processing is a major feature in machine learning processes which normally accounts for
approximately 50% of the total effort during data analysis. As a result, we often under-
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Figure 3.13: Visualizing the Infrastructure: Overview of the Back-EndServer System
estimate this process during the planning stages. Data pre-processing mainly consists of
data acquisition, data labelling, and data preparation.

Raw data is prone to several irregularities, such as missing data, noise and irregular
sampling, which can drastically affect the performance and accuracy of the subsequent
learning and prediction steps. Therefore, it is imperative to perform a proper data pre-
processing exercise on the raw data sets to improve themachine learningmodel accuracy.

Another important task of data analysis is called feature engineering. This process
involves the designing of the features for the machine learning models. According to
Oyamada (2019), the ideal features must capture the characteristics of the data being
analysed to improve the predictive and performance of the models.

Roh et al. (2021) recognised the challenges associated with feature engineering and
argue that users need to become familiar with the problem domain to provide the best
features to train the models. In their survey, they also highlight that deep learning is now
changing the backdrop since deep learningmodels can now auto generate features, which
saves the user considerable time. Similarly, Bach et al. (2017) confirm that traditional
supervised machine learning techniques require access to labelled data to work, and this
is usually a major bottleneck in developing new methods and applications. Furthermore,
they also underline that deep learning requires larger amounts of training data to perform.
3.6.1.1 Resampling
For this dissertation, two identical Huawei P10 Lite smartphones were used to host both
the IMU and vision applications. We have carried out a thorough sensor sampling test-
ing exercise to find the optimal sampling frequency without overloading the smartphone
device. One has to remember that the number and types of sensors directly affected the
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sampling rate accuracy. For instance, apart from the accelerometer sensors, the applica-
tion also captured the gyroscope movements and GPS data. For this reason, we analysed
sampling rates ranging from 40Hz to 100Hz for sampling periods of 30 minutes each.
Sampling rates exceeding 55 Hz produced inaccurate sensing results and uneven sam-
pling batches.

Sampling ranging from48Hz to 52Hz produced stable readingswithminimal sampling
variances per second. We mainly attributed these variances to the sampling mechanism,
since we were using a software-based sampling thread to read the sensors. Ultimately,
we settled on a 50 Hz sampling frequency.

We, therefore, used a simple linear interpolation re-sampling technique to correct the
sampling deficiency, as shown by He (2018). The author combined decimation and inter-
polation to re-sample raw accelerometer data to extract a constant sampling rate.

3.6.2 Dimensionality reduction
3.6.2.1 Sequential Forward Selection and Sequential Backward Selection
Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS) are feature
selection techniques used in machine learning and statistics. Both methods aim to im-
prove model performance and reduce complexity by selecting the most relevant subset
of features from a larger set.

In Sequential Forward Selection, the algorithm starts with an empty feature set and it-
eratively adds one feature at a time, evaluating the performance of themodel after adding
each feature. The feature that provides the most improvement in model performance is
selected in each step until a predefined number of features is reached.

On the other hand, Sequential Backward Selection begins with the entire feature set
and removes one feature at a time in each iteration. The feature whose removal causes
the least drop in model performance is eliminated until the desired number of features is
achieved.

These techniques are useful when dealing with high-dimensional data and can help
prevent overfitting and improvemodel interpretability by selecting only the most relevant
features.
3.6.2.2 PCA
Principal Component Analysis (PCA) is a method used to make complex data simpler. It
takes a big set of information and turns it into a smaller one while keeping the important
parts.
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PCA does this by finding new directions that are at right angles to each other in the
original data. The first direction is the one with the most variation in the data. The next
ones are chosen to be perpendicular to the ones before and have the most variation left.

This way, PCA changes the data to be easier to understand and work with. It helps
researchers or analysts see the main patterns and connections in the data. PCA is used
before applying machine learning techniques to make the process faster and more accu-
rate.

PCA is particularly helpful when there is a large amount of data to handle, as it can be
challenging tomanage such extensive information. It helps users avoid problems that may
arise from having too much data to process, such as encountering technical difficulties or
making mistakes in the analysis.

3.6.3 Cross-validation
Since normally only a limited amount of data is available for developing and testing the
models, a data shuffling technique called cross-validation is used to recycle the data be-
tween the learning and testing phases. Cross-validation splits the data several times to
build a randomly built statistical training and test model to maximise the entire data set.
K-fold cross-validation evaluates the performance of classification algorithms as shown
by Wong and Yeh (2020). The K-fold technique divides the data set into a K subset and
performs the training and testing phases K times. At the end of the process, all K-fold
results get statistically analysed and presented for evaluation. Consequently, we used a
K-fold of five folds in our tests.

3.6.4 Feature Extraction
Our feature extraction is based on a similar work conducted by Hemminki et al. (2013).
The study is based on accelerometer-based techniques for accurate and fine-grained de-
tection of transportation modes on smartphones. In total, we extracted 204 distinct fea-
tures based on our research. We equally divided these between the accelerometer and
gyroscope data. Table 3.4 shows the final group of selected features used in our IMU
experiments. The table includes the feature, the feature’s time and frequency domain
usage, and the reference source extracted from the research phase.

3.6.5 GPS Time synchronisation
Smartphonemanufacturers rely on oscillator components to keep the clock running when
disconnected from the internet. The frequency rate of the oscillator determines the rate
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Table 3.4: Utilised IMU Features: Comprehensive Overview in the Featureused in our Experiments
Feature Time Domain Frequency Domain Source
Mean ✓ ✓ Cabral et al. (2018)
Variance ✓ ✓ Cabral et al. (2018)
Std dev ✓ ✓ Cabral et al. (2018)
Min ✓ ✓ Cabral et al. (2018)
Max ✓ ✓ Cabral et al. (2018)
Max-min diff ✓ ✓ Carlos et al. (2018)
Median ✓ ✓ Cabral et al. (2018)
Median abs dev ✓ ✓ Cabral et al. (2018)
Interquartile range ✓ ✓ Cabral et al. (2018)
Skewness ✓ ✓ Cabral et al. (2018)
Energy ✓ ✓ Cabral et al. (2018)
Signal magnitude area ✓ ✓ Cabral et al. (2018)
Kurtosis ✓ ✓ Cabral et al. (2018)
Negative count ✓ ✓ Fox et al. (2015)
Positive count ✓ ✓ Fox et al. (2015)
Positive less Negative ✓ ✓ Fox et al. (2015)
Values above mean ✓ ✓ Fox et al. (2015)
Number of peaks ✓ ✓ Fox et al. (2015)
Avg resultant ✓ ✓ Fox et al. (2015)

at which the clock runs, as shown by Sivrikaya and Yener (2004). In their survey, the
authors stressed on the importance of the trade-offs between precision and energy ef-
ficiency. Additionally, the authors argue that in some applications, the synchronisation
accuracy may be in the order of a few milliseconds. However, the on-board clocks may
become inaccurate over time because of frequency shifts, resulting in clock drifts.

One major contribution by Mazur et al. (2017) proposed a simple solution for syn-
chronising smartphone clocks in GPS. Manufacturers furnish smartphones with GPS re-
ceivers. GPS provides accurate longitude, latitude, and altitude data. Equally important,
it also provides an important fourth dimension needed to synchronise time. In particular,
GPS transmitters send out multiple atomic clock feeds with precise timing data, which,
according to the authors, are much more accurate than other synchronisation methods
such as Network Transport Protocol. Therefore, this simple technique of synchronising
smartphone clocks can yield high-precision time synchronisation between devices by us-
ing standard onboard smartphone components.

Moreover, Benndorf and Haenselmann (2016) recognised the benefits of using GPS
data to synchronise mobile devices. In their study, they determine the best options for
synchronising multiple Android devices. The authors confirmed that the GPS accuracy
surpasses all tested techniques where the GPS data was accessible.

In our experiments, we calibrated our applications by checking the clock variance be-
tween the smartphone internal clock and the GPS clock and included this offset variable
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in our data sets as shown in Figure. 3.14. The road anomaly sampling periods were less
than 30 minutes each and the evaluation results indicate minimal time drifting between
both clocks during these short data-gathering exercises.

Figure 3.14: Visualisation of Clock Offset and GPS Timestamp CalibrationProcess

3.6.5.1 Speed Dependency
Driving at 60 km/h means a vehicle covers a distance of 16.6 meters per second under
normal driving conditions. With a sampling rate of 50 Hz, every sensor sampling cycle
covers approximately 0.33 meters of road. This means that at a 50 Hz sampling rate, we
will capture road anomalies larger than 33 cm. At lower speeds, the system will capture
more detailed readings. This shows that driving speed is an important factor in our exper-
iments. As a result, there is a direct relationship between the sensor data and the driving
speed. In another observation reported by Lindfors et al. (2016), the authors show that
there is a strong correlation between vehicle speed and chassis vibrations. Therefore, the
accelerometer’s reading depends on the vehicle’s speed and not just on the road anomaly.
In our experiments, the driving speed during the data collection hovered around 25 km/h
to 35 km/h.

3.7 Data Fusion
As discussed earlier in this section, the primary aim of this research is to develop a fusion
model for the IMU and vision machine learning models. Figure 3.15 shows the methodol-
ogy used to combine the IMU and vision results. Our solution is based on the GPS atomic
time feeds and smartphone synchronisationmethodsmentioned earlier. Themethod that
we use is based on three distinct processes. In the first process, we stored the images from
the vision application and later transferred them to the back-end server for anonymisa-
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tion. Furthermore, we stored the image timestamp with the image. Next, we stored the
MoblenetSSD object detection results. Finally, we extracted the first 100 IMU readings
captured after the imagery timestamp to use in the IMU model.

Figure 3.15: Illustration of Fusion Methodology: Integrating Multiple DataSources for Enhanced Insights
The proposed solution allows us to set boundaries on the captured data andmake sure

that the models process only the corresponding data from the twomodels. In Figure 3.16,
we demonstrate how this is being achieved. The 100 readings represent a two-second
time window at a 50 Hz sampling rate. This translates to roughly ten meters per second
when driving at 35 km/h. Therefore, a stretch of 20 meters is being covered for every
IMU window. The vision method, however, requires a fair share of calibration to make
sure that we only capture roughly 20 meters of the road surface.

Figure 3.16: Illustration of Fusion Methodology: IMU and Vision data cap-turing techniques
Finally, we package all the information into a simple reporting dashboard where we

display all the fused information onto an interactive visual map using Geo-tagging and
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markers. Figure 3.17 shows the reporting methods used to produce the interactive Geo-
location map.

Figure 3.17: Visualised Reporting Dashboard: A Comprehensive Overviewof Key Metrics and Insights

3.8 Summary
In this chapter, we discussed the important attributes which affect the classification per-
formance of our anomaly detection solution. These mainly include the IMU smartphone
mounting points, speed, feature extraction and GPS data filtering. We also covered the
pre-processing techniques and filters used to improve the learning techniques in the chap-
ter. Next, we covered the three different components of our study, namely: IMU, vision
and back-end processes. Consequently, we explained the methodology of all three el-
ements. Also, in this chapter, we explained the different smartphone mounting points
for the vision application and their implications. More precisely, the capturing angle and
how these impacted the vision models. This chapter also covered another key compo-
nent in our dissertation, GPS synchronisation. We wrapped up this chapter by providing
the methods used to fuse both the IMU and vision data sets to improve and augment the
reporting data set.
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Chapter 4

Results & Discussion

4.1 Introduction
In this chapter, we will summarise our achieved results, and the experiment processes
used to solve the research questions. We begin by summarising the training data set,
feature extraction process and a brief description of themachine learning algorithms used.
Next, we present the results of our core modules. In section 4.2, we present our IMU data
set experiments and results. Because we want to identify the most relevant factors that
influence anomalies, we also included in this analysis the top ten features used in the IMU
models.

We then move to our vision experiments where in section 4.3, we present our results.
Finally, in section 4.4, we outline the data fusion model that blends the prediction of the
two models in one reporting dashboard, where we can assess the effectiveness of our
models. We conclude this chapter by discussing the data fusion results. In this section,
we present the combined results of the model’s prediction.

4.2 IMU -Accelerometer and gyroscopemachine learn-
ing results

As part of our thorough investigation into road irregularities, we collected a comprehen-
sive dataset during the empirical phase of our study. This data set encompassed 85,000
inertia readings, each obtained across five distinct categories, as visualised in Figure 4.1.
These categories are structured into classes, namely: depression left (1), depression right
(2), depression (3), speed bump (4), and smooth (5). To ensure precision and consistency,
we established a uniform sampling rate of 50 Hz, with each annotation encompassing a
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2-second interval, yielding a set of 100 inertial readings for each anomaly. In Table 4.1 a
summary of the counts per anomaly category is presented, which were aggregated during
the initial collection phase.

Figure 4.1: Distribution of Anomaly Instances Across Five Distinct Classes
Table 4.1: Anomaly-Specific Sample Counts: Distribution of Samples perAnomaly Category

Anomaly Sensor readings Label count

1 - Left Depression 23,600 236
2 - Right Depression 24,200 242
3 - Depression 2,700 27
4 - Speed bump 10,100 101
5 - Smooth 24,400 244

Notably, the depression (3) category, characterised by depressions exceeding the ve-
hicle’s wheel track, contained 27 samples, considerably fewer than other classes. This
inherent imbalance, coupled with the more substantial sample size of 101 in the speed
bump category, led to the emergence of an uneven dataset. Establishing a harmonious
equilibrium among the dataset classes holds paramount importance in the construction
of precise machine learning models. This undertaking not only enriches data quality and
rectifies class imbalances but also improves the model’s overall performance and preci-
sion. The presence of imbalanced datasets, characterised by minority classes, presents a
challenge for widely employed classification techniques, ultimately leading to diminished
accuracy.

In order to rectify this disparity, a substantial overhaul was implemented for the de-
pression category. This involved substituting the depression class with an equal distri-
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bution of both left and right depression readings. Initially, our experimental approach
involved categorising depressions into three distinct classes based on their locations:
left, right, and centre of a vehicle. However, upon further consideration, we recognised
that the crucial factor lay in accurately identifying potholes themselves rather than their
specific locations. Remarkably, empirical testing highlighted an absence of notable dis-
tinctions between left and right depressions in our modelling efforts. This revelation
prompted the consolidation of all depression instances into a singular class. This con-
solidation not only achieved a more cohesive data set but also adeptly tackled the chal-
lenges arising from class imbalance. It’s worth emphasising that with each alteration in
classes, we diligently executed a complete machine learning cycle, reconstructing the
models based on the freshly curated labelled data sets.

Conversely, the speed bump class unveiled a more complex challenge. Owing to its
unique characteristics, augmenting this category to match the smooth class presented
inherent difficulties. Consequently, an under-sampling technique emerged as the cho-
sen solution for the smooth class. This technique involved the prudent reduction of the
smooth surface training data set while meticulously preserving class representation. By
doing so, we re-established an equilibrium, ensuring that each category, including the
speed bump class, retained proportional representation.

It is imperative to recognise that the dimensions of our training data set need not be a
limiting factor in achieving noteworthy outcomes. Evenwhen dealingwith a small training
data set, the potential for yielding favourable results remains substantial. It’s important to
highlight that the quality of data, accompanied by its alignment with pertinent statistical
properties, holds far greater significance than the sheer size of the data set. The effective-
ness of a machine learning model hinges on the richness, accuracy, and relevance of the
information it processes. Therefore, if one pays careful attention to selecting high-quality
data with the appropriate statistical attributes, it is possible to achieve exceptional model
performance, surpassing the limitations of data set size.

Moreover, our sampling figures are consistent with the work carried out by Chen et al.
(2019), who used two small data sets. The first data set included 82 potholes and 17 speed
bumps. Consequently, they later added a second set of data, consisting of 236 potholes
and 138 speed bumps. Similarly, Silvister et al. (2019) used a data set of 125 labelled
potholes in their work to detect potholes using a deep-learning model.

To investigate the impact of the training data set size further, we ran two additional full
model run cycles with under-sampling data sets of 50 and 75 records per class. When we
compared the results of the three experiments, our findings revealed that there was little
difference between the three data sets. However, we could see that the data set with
75 records per class produced a lower score for the multi-class classification. Despite a
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positive overall result, we were still concerned with the size of our test data and how
this will impact our overall test cases. Consequently, we will address this limitation in our
future work. We can find the full test results in section D.7.

Figure 4.2 shows the IMU testing phases conducted during our testing cycles. The
process included four distinct cycles. First, we planned the test scripts based on our
research questions. Next, we focused on selecting the best features to use in our models.
The machine learning model’s fine tuning followed this, including the result analysis to
improve the model’s accuracy.

Figure 4.2: Stages of Testing Illustrated: Sequential Phases Of Our Tests
In our testing phases, we used seven ML techniques for our road anomaly detection

process. These included:
1. K-means
2. LR
3. SVM
4. KNN
5. RF
6. NB
7. DNN
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Items one through six are all based on the feature engineering techniques. We de-
scribe these techniques in 4.2.1. The process entailed converting the three accelerome-
ter and gyroscope axes into complex features to aid the machine learning models in their
predictions.

Our final IMU sensor test is based on the DNN machine learning technique, which
works with raw data. That is, the model uses only the raw accelerometer and gyroscope
(X, Y and Z axes) readings. In the final phase, we analysed the results, and adjusted the
model structure to improve the accuracy.

4.2.1 Feature extraction
Following the procedures outlined in subsection 3.6.4, we extracted 204 different fea-
tures from the original six IMU axes.

In their review of machine learning feature selection, El Aboudi and Benhlima (2016)
emphasise the importance of minimising the amount of features in the pre-processing
phase to improve the classification outcomes. Besides delivering superior outcomes, the
feature reduction procedure also lowers the computational cost. Equally important, the
authors also highlighted that dimensionality reduction is also critical for reducing over-
fitting.

Our feature reduction technique is based on the work carried out by Liu et al. (2020).
The authors used the SFS to select the significant features to improve the classification
accuracy on their time domain accelerometer data.

In our dissertation experiments, we also evaluated the Sequential Backward Selection
(SBS) technique, to meticulously evaluate our feature set. The detailed mechanism of
these two process is explained upon in the Materials & Method section, precisely under
paragraph 3.6.2.1.

Throughout the complex journey of feature selection, we meticulously evaluated the
model’s performance, harnessing the power of the multi-class accuracy metric. While
trying to distinguish between our different classes, including Left and Right depressions,
Speed bumps, and Smooth surfaces, we found that the multi-class accuracy metric was
the perfect fit. This metric not only encapsulated the complexity of our multi-class classi-
fication but also provided a comprehensive framework to gauge themodel’s effectiveness
across the spectrum of our categories.

Table 4.2 presents the sequential feature results based on our collected data and our
selectedML algorithms. The results demonstrated that SFS outperformed SBSwhen con-
sidering the specific machine learning techniques and data set utilised.
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Table 4.2: Sequential Feature Selector Results: Unveiling Optimal FeatureSubsets
Algorithm Selector Accuracy score
LR SFS 66%SBS 60%
SVM SFS 64%SBS 54%
KNN SFS 67%SBS 55%
RF SFS 65%SBS 56%
NB SFS 68%SBS 62%

4.2.2 High-pass Butterworth filter
Several studies (Brisimi et al. (2016), Carlos et al. (2018), Cabral et al. (2018)) highlighted
the importance of using Butterworth high-pass filters to sanitise the vehicle’s IMU data.
Results have shown that these filters remove unwanted noise. We carried out a series
of tests on our data to determine the optimal high-pass settings. Table 4.3 displays the
confusion matrix results that were carried out in this experiment. The frequencies ranged
between one hertz and three hertz, whilst the filter order varied between one and five.
The tests show that the optimal Butterworth filter parameters are a cutoff frequency of
two hertz and with an order of four for LR, SVM, RF and NB. KNN performed better with
a frequency of two hertz and an order of five. It was also observed that the high-pass
filter had a great impact on the accuracy of the machine learning algorithms.
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Table 4.3: Confusion Matrix Results for High-Pass Filter in Our RoadAnomaly Detection Experiments
Parameters LR SVM KNN RF NB

False True False True False True False True False True
Frequency: 2 Hz False 63 37 61 39 58 42 56 44 41 59Order: 1 True 37 63 33 67 41 59 37 63 22 78
Frequency: 2 Hz False 67 33 59 41 52 48 53 47 34 66Order: 2 True 31 69 36 64 42 58 34 66 23 77
Frequency: 2 Hz False 63 37 53 47 57 43 53 47 45 55Order: 3 True 33 67 32 68 43 57 32 68 30 70
Frequency: 2 Hz False 66 34 62 38 56 44 60 40 58 42Order: 4 True 30 70 29 71 39 61 33 67 26 74
Frequency: 2 Hz False 62 38 57 43 61 39 58 42 50 50Order: 5 True 39 61 30 70 29 71 38 62 31 69
Frequency: 3 Hz False 62 38 56 44 56 44 58 42 40 60Order: 1 True 30 70 31 69 38 62 32 68 23 77
Frequency: 3 Hz False 64 36 56 44 59 41 53 47 48 52Order: 2 True 31 69 36 64 48 52 37 63 30 70
Frequency: 3 Hz False 58 42 55 45 59 41 55 45 53 48Order: 3 True 40 60 44 56 44 56 35 65 31 69
Frequency: 3 Hz False 60 40 57 43 45 55 60 40 59 41Order: 4 True 38 62 36 64 45 55 35 65 35 65
Frequency: 3 Hz False 63 37 55 45 54 46 60 40 51 49Order: 5 True 35 65 26 74 33 67 35 65 28 72
No filter False 65 35 59 41 54 46 57 43 52 48True 32 68 29 71 35 65 36 64 33 67
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4.2.3 Test one: K-means clustering - Understanding our data
The unsupervised K-means clustering model serves as the foundation for our first ma-
chine learning exam. The K-means clustering algorithm is useful when attempting to un-
derstand the relationships and similarities among categorical data. Based on how the
categories perform on a set of variables, the algorithm generates a set of groups known
as clusters.

To reduce the 204manually engineered features and improve the accuracy of the task,
we used a Principal component analysis (PCA) dimensionality reduction technique similar
to the work conducted by Mishra et al. (2011) to minimise loss of information.

The choice of the ideal number of clusters to map the complete data set is a vital step
in developing a K-means clusteringmodel. The elbowmethod is a straightforwardmethod
employed to calculate the value of K. In this method, we calculate the distortion score
of each K parameter by applying the K-means clustering algorithm to a set of K values.
However, the elbow results in our testing to determine the ideal value were inconclusive.

On the other hand, a more systematic approach used to determine the k value is the
silhouette method approach, as shown in Shahapure and Nicholas (2020). When the sil-
houette coefficient value is close to a positive one, it shows that the data point belongs
to the right cluster. A coefficient close to a negative one shows the data point is in the
incorrect cluster, while values near zero suggest that it may belong to another cluster.

In Figure 4.3, we can see the two clusters based on the left and right road anomalies.
As we can see in Figure 4.3 (a), the elbow output does not clearly define the optimal
number of K clusters for our data. However, we can observe that the silhouette method
shown in Figure 4.3 (b) identified two clusters for the left and right road depressions.
Nonetheless, the coefficient value of the highest point hovered around 0.175, which is
considered too low. It also reflected the same pattern in the k-means data plot, as shown
in figure 4.3 (c). This test shows that it is highly challenging to distinguish between the
left and right depressions.

We then combined the smooth data with the left and right depressions for the sub-
sequent test. The elbow result produced modest results, as shown in figure 4.4 (a). In
the silhouette exercise (figure 4.4 (b)), we could observe that the smooth data impacted
the exercise outcome. The highest coefficient value is 0.24 for two clusters, followed by
four clusters with a coefficient of 0.228 and three clusters with a value of 0.22. This is an
improvement on the previous left and right depression test, which returned a coefficient
of 0.175. However, the exercise reveals that the optimal number of clusters is two and
not three, as we were expecting. Figure 4.4 (c) illustrates the final k-means plot with three
clusters representing left and right depression, and smooth data.
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(a) Elbow (b) Silhouette (c) K-means Clustering
Figure 4.3: K-means - Left and Right potholes

(a) Elbow (b) Silhouette (c) K-means Clustering
Figure 4.4: K-means - Left potholes, right potholes and smooth

We compared category three road depression to smooth data in the following experi-
ment. We only had 2,400 inertial readings in this category, as described in Section 4.1. To
keep the data set balanced, we replaced the depression data with an equal number of left
and right depression records. Once again, the silhouette provided crucial information as
the elbow method failed to determine the optimal number of clusters, as shown in Figure
4.5 (a). Figure 4.5 (b) reveals a coefficient of nearly 0.27 for two clusters and a coefficient
of 0.26 for three clusters. Figure 4.5 (c) illustrates the final K-mean plot which resembles
the previous left, right depression and smooth figure (Figure 4.4 (c)).

Even though the data is a subset of the left and right depression, we could observe
that the silhouette coefficient was higher in this test than in the prior depression test.

Our next investigation covered the speed bump category. The speed bump anomaly
is a distinct irregularity, as automobiles frequently strike speed bumps with both front
wheels at the same time.

In this test, we could observe that the k-means elbow test performed achieved supe-
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(a) Elbow (b) Silhouette (c) K-means Clustering
Figure 4.5: K-means - Left and right grouped potholes - Smooth

rior result by identifying two clusters, as shown in Figure 4.6 (a). The silhouette method
returned a coefficient of 0.275 for two clusters (Figure 4.6 (b)). As shown in Figure 4.6 (c),
the k-means plot exhibits an almost perfect two-node cluster for this data set.

(a) Elbow (b) Silhouette (c) K-means Clustering
Figure 4.6: K-means - Speed bumps and Smooth

In our final K-means test, we tested the road depressions, speed bumps and smooth
categories to evaluate the clustering capabilities and also better understand the data set
structure by visualising the data points.

Once again, we could observe that the elbow method did not perform so well under
this clustering scenario (figure 4.7 (a)). Figure 4.7 (b) illustrates that the silhouette method
produced coefficients ranging between 0.23 and 0.235 for clusters of ‘3’, ‘4’ and ‘5’ (de-
pression, speed bump and smooth). Finally, the k-means plot proves that there is a strong
clustering formation for the three selected classes as shown in figure 4.7 (c)
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(a) Elbow (b) Silhouette (c) K-means Clustering
Figure 4.7: K-means - Left and right potholes grouped, speed bump andSmooth

4.2.4 Supervised IMU machine learning techniques
In this section, we present the test results for the supervisedmachine learning techniques
for the accelerometer and gyroscope data.

As mentioned in subsection 2.3.3, the three gyroscope axes measure the following
vehicle rotation characteristics:

• The Z (roll) gyroscope senses the vehicle rolling left and right.
• The X (pitch) gyroscope senses the vehicle going up and down.
• The Y (yaw), veering left and right.

4.2.5 Test case two: Depression left VS Depression right
Description

In our first supervised test, we retested the left and right depression categories. Our
primary aim is to determine whether supervised techniques can distinguish between both
left and right depressions. We conducted this experiment using binary classification. We
achieved this by substituting the right depression with a ’0’ class and the left data set with
a binary ’1’ class.

Results and discussions
Table 4.4 shows that the findings support a similar conclusion for the K-means clus-

tering outcome, with no observable distinction between the left and right depressions.
With an accuracy of 0.69 and a precision, recall, and F1 score that ranged between 0.66
and 0.69, LR produced the best results. We provide the information in a confusion matrix
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Table 4.4: Test case two. Left VS Right test - (1) left, (0) Right
Algorithm Accuracy Class Precision Recall F1 score
LR 0.69 0 0.69 0.66 0.68

1 0.68 0.71 0.69
SVM 0.47 0 0.46 0.39 0.42

1 0.47 0.55 0.51
KNN 0.47 0 0.47 0.49 0.48

1 0.46 0.44 0.45
RF 0.49 0 0.49 0.50 0.50

1 0.49 0.48 0.48
NB 0.48 0 0.48 0.41 0.44

1 0.49 0.56 0.52

Figure 4.8:Test case twoLeft vs right depressionconfusion matrix

format, as shown in Table 4.8 The top ten features chosen by the sequential feature se-
lector for each of the five machine learning models are one intriguing finding from these
tests. Based on the cross-validation procedure, the estimator selected the optimal feature
to include. The ten leading features, including the sensors utilised, the axis, and the fre-
quency domain, are featured in Table 4.5. Our results at least provide a strong indication
that the gyroscope sensor could detect roll motions on the axes, especially the X and Z
axes, which in our situation correspond to the roll and pitch axes.

Test conclusion

The findings reveal that the proposed solution does not distinguish between left and
right depression.

Table 4.5: Left (1) and right (2) depression - LR features used
Feature name Sensor Axis Feature description Domain

xg_maxmin_diff G X Max-Min difference Time
zg_maxmin_diff G Z Max-Min difference Time

zg_mad G Z Median absolute deviation Time
za_IQR A Z Interquartile range Time

yg_peak_count G Y Number of Peaks Time
za_kortosis A Z Kurtosis Time
zg_kortosis G Z Kurtosis Time
zg_max_fft G Z Maximum Freq.
ya_IQR_fft A y Interquartile range Freq.

xg_peak_count_fft G x Number of peaks Freq.

Appendix D.1 presents all the features used in the SVM (Table D.1), KNN (Table D.2),
RF (Table D.3) and NB (Table D.4) tests. Furthermore, we present the corresponding con-
fusion matrices in Figure D.1 and Figure D.2
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4.2.6 Test case three: LeftDepression, rightDepression and Smooth
surface

4.2.6.1 Description
In our next test, we conducted an experiment on the left and right depression and smooth
surfaces. The aim of this evaluation is to test the depression data set against the smooth
surface data.
4.2.6.2 Results and discussions
Our findings are summarized in Table 4.6, where logistic regression demonstrated the
highest accuracy score of 0.76. Notably, this represents a significant improvement of
seven points compared to the previous test. Table 4.8 provides the data in a confusion
matrix format. Label ‘0’ in the matrix represents class ‘1’ (left depression), label ‘1’ repre-
sents class ‘2’ (right depression), and label ‘3’ represents class ‘5’ (smooth).

There were minor changes in precision, recall, and F1 score of the left and right de-
pression. The smooth data set improved the final accuracy score. We expected this result
since the smooth data set has minimal accelerometer and gyroscope movements. The k-
means result also confirmed this data trend. Therefore, we can conclude that it is possible
to detect depression and a smooth surface.

Table 4.6: Test case three.Left (1), Right (2) and Smooth (5)
Algorithm Class Precision Recall F1 Score Accuracy
LR 1 0.65 0.68 0.67 0.76

2 0.65 0.62 0.64
5 0.98 0.99 0.99

SVM 1 0.53 0.59 0.56 0.68
2 0.53 0.46 0.49
5 0.99 1.00 1.00

KNN 1 0.54 0.53 0.53 0.67
2 0.53 0.49 0.51
5 0.93 1.00 0.96

RF 1 0.54 0.44 0.48 0.67
2 0.52 0.61 0.56
5 0.96 0.97 0.97

NB 1 0.48 0.53 0.50 0.65
2 0.49 0.45 0.47
5 1.00 0.98 0.99

Figure 4.9: Test case three.Left, right depression andsmooth confusion matrix

From the LR features used in Table 4.7, we can observe that there were some notable
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changes. The gyroscope was once again the primary element that affected the results.
However, we also noticed that the top ten features differed from the previous left and
right depression test. We could also notice that the frequency domainwasmore prevailing
in this test.

Table 4.7: LR Features used
Feature Sensor Axis Feature Domain
yg_mad G Y Median absolute deviation Time

xa_above_mean A X Values above mean Time
avg_result_accl G X, Y and Z Average resultant Time

smaa G Z Signal magnitude area Time
xg_var_fft G X Variance Freq.
zg_var_fft G Z Variance Freq.

ya_peak_count_fft A Y Number of peaks Freq.
xg_peak_count_fft G X Number of peaks Freq.
zg_peak_count_fft G Z Number of peaks Freq.

zyZscoreRatio A Z and Y ZScore Freq.

Appendix D.2 presents all the features used in the SVM (Table D.5), KNN (Table D.6),
RF (Table D.7) and NB (Table D.8) tests. Furthermore, we present the corresponding con-
fusion matrices in Figure D.3 and Figure D.4
4.2.6.3 Test conclusion
The findings show the same patterns as in test case two, with no noticeable difference
between left and right depression.

4.2.7 Test case four: 50% left and 50% right depression grouped
and smooth surface

4.2.7.1 Description
We test a combination of 50% left and 50% right depression against a smooth surface. In
this test, we used a combination of left and right depression transactions to replace the
depression anomaly larger than the vehicle’s wheel track. As a result, we kept the data
balanced between all classes. We used a binary classification, relabelling the depression
to ‘0’ and smooth as ‘1’.
4.2.7.2 Results and discussions
We present the results in Table 4.8. All five techniques returned high accuracy, ranging
from 0.97 to 1.00, with NB scoring the best accuracy. This test demonstrates we can
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identify road depressions in a simple binary environment. Table 4.12 provides the data in
a confusion matrix format.

Table 4.8: Test case four. Left & Right (0) and smooth (1)
Algorithm Class Precision Recall F1 score Accuracy
LR 0 0.94 1.00 0.97 0.97

1 1.00 0.94 0.97
SVM 0 0.99 1.00 1.00 0.99

1 1.00 0.99 0.99
KNN 0 0.94 1.00 0.97 0.97

1 1.00 0.94 0.97
RF 0 0.99 0.99 0.99 0.99

1 0.99 0.99 0.99
NB 0 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00

Figure 4.10:Test case four.Combined left, right depression,and smoothconfusion matrix
From the NB’s top ten selected features shown in Table 4.9, we could observe that the

sequential forward selection selected both the accelerometer and gyroscope sensors for
all the three axes. Furthermore, the process selected the features from the time domain.

Table 4.9: Test case four. Naive Bayes Features used
Feature Sensor Axis Feature Domain

xa_mean A X Mean Time
ya_mean A Y Mean Time
za_mean A Z Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Time
za_var A Z Variance Time
smaa A X and Y Signal magnitude area Time

Appendix D.3 presents all the features used in the LR (Table D.9), SVM (Table D.10),
KNN (Table D.11) and RF (Table D.12) tests. Furthermore, we present the corresponding
confusion matrices in Figure D.5 and Figure D.6
4.2.7.3 Test conclusion
The test results revealed that the proposedmodel can correctly identify depressions. Fur-
thermore, we could not distinguish between left and right depression in the preceding two
tests, indicating a fault in our method.
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4.2.8 Test case five: Speed bump and Smooth surface
4.2.8.1 Description
With the depression data test completed, we thenmoved to analyse the speed bump data
set. For this test, we compared the speed bumps with smooth surfaces. We once again
used a binary classification to compare both data sets with the speed bump labelled as ‘0’
and the smooth data set as ‘1’.
4.2.8.2 Results and discussions
Table 4.10 displays the achieved results, where all five algorithms have returned high ac-
curacy scores. We expected this level of accuracy since we were comparing two discreet
sets of data sets with minimal sensor movements on the smooth side and high sensor
activity on the accelerometer device. Table 4.12 provides the data in a confusion matrix
format.

Table 4.10: Test case five. Speed bump and smooth
Algorithm Class Precision Recall F1 score Accuracy
LR 0 0.97 1.00 0.99 0.98

1 1.00 0.97 0.98
SVM 0 0.99 1.00 1.00 0.99

1 1.00 0.99 0.99
KNN 0 0.94 1.00 0.97 0.97

1 1.00 0.94 0.97
RF 0 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00
NB 0 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00

Figure 4.11:Test case five.Speed bump and smoothconfusion matrix

One intriguing finding that we observed in this experiment was that the features se-
lected for this speed bump test resembled the previous depression versus a smooth sur-
face test. Tables 4.11 and 4.12 list the ten features used for the speed bump vs smooth
test for RF and NB, respectively. One can see this resemblance in tables D.13 and 4.9

Appendix D.4 presents all the features used in the LR (Table D.13), SVM (Table D.14)
and KNN (Table D.15) tests. Furthermore, we present the corresponding confusion ma-
trices in Figure D.7 and Figure D.8
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Table 4.11: Test case five. Random Forest Features used
Feature Sensor Axis Feature Domain
xa_mean A X Mean Time
ya_mean A Y Mean Time
za_mean A Z Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
zg_var G Z Variance Time
za_std A Z Standard deviation Time
xa_aad A X Average absolute difference Time

Table 4.12: Test case five. Naive Bayes Features used
Feature Sensor Axis Feature Domain

xa_mean A X Mean Time
ya_mean A Y Mean Time
za_mean A Z Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Min Time
xa_var A X Variance Time
ya_var A Y Variance Time
za_var A Z Variance Time
smaa G X and Y Signal magnitude area Time

4.2.8.3 Test conclusion
The results show that our proposed model can detect speed bumps with high accuracy.
Furthermore, we can see a strong similarity between the selected features and the de-
pression model in the previous test.

4.2.9 Test case six: Depression, speed bump and smooth surface
4.2.9.1 Description
In our final IMU supervised machine learning experiment, we merged the depression,
speed bump, and smooth surface data sets into one test to simulate a real-life driving
journey.

4.2.9.2 Results and discussions
Table 4.13 shows the result of our tests.
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LR returned the best accuracy rate with a score of 0.88. We observed that the preci-
sion rate of the depression and speed bump were high too at 0.86 and 0.83 respectively,
with a recall value of 0.79 and 0.85. The F1 score reached 0.82 and 0.84, respectively.
The smooth surface’s precision, recall, and F1 score once again returned high scores: 0.95,
1.00 and 0.98.

SVM also returned a satisfying score of 0.82. However, the precision score for the
depression and speed bump was much lower. The high accuracy score was mainly the
result of a high-precision result for the smooth class.

Table 4.12 provides the data in a confusion matrix format. Label ‘0’ in the matrix
represents class ‘3’ (depression), label ‘1’ represents class ‘4’ (speed bump) and label ‘3’
represents class ‘5’ (smooth).

Table 4.13: Test case six. Depression, speed bump and smooth surface
Algorithm Class Precision Recall F1 Score Accuracy
LR 3 0.86 0.79 0.82 0.88

4 0.83 0.85 0.84
5 0.95 1.00 0.98

SVM 3 0.71 0.77 0.74 0.82
4 0.76 0.68 0.72
5 0.99 1.00 1.00

KNN 3 0.72 0.69 0.70 0.80
4 0.72 0.71 0.71
5 0.95 1.00 0.98

RF 3 0.62 0.64 0.63 0.75
4 0.65 0.65 0.65
5 0.99 0.96 0.97

NB 3 0.68 0.69 0.69 0.79
4 0.69 0.70 0.70
5 1.00 0.98 0.99

Figure 4.12: Test case six.Depression, speed bump and smoothconfusion matrix

Table 4.14 illustrates the features selected for the LR algorithm. This test revealed one
noteworthy finding that applies to the features chosen for the categorisation exercise.
Instead of the accelerometer data, the top three attributes were based on the gyroscope
sensor.

We also detected similar patterns in the other algorithms, as shown in tables: D.16,
D.17, D.18, and D.19 in Appendix D.

This shows that the gyroscope sensor played an important role in detecting depres-
sions and speed bumps.

AppendixD.6 presents all the features used in the SVM (TableD.16), KNN (TableD.17),
RF (Table D.18) and NB (Table D.19) tests. Furthermore, we present the corresponding
confusion matrices in Figure D.9 and Figure D.10
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Table 4.14: Test case six. LR Features used
Feature Sensor Axis Feature Domain
zg_mean G Z Mean Time

yg_median G Y Median Time
zg_median G Z Median Time

xa_IQR A X Interquartile range Time
ya_neg_count A Y Negative count Time

xa_above_mean A X Values above mean Time
avg_result_accl A X, Y and Z Average resultant Time

smaa G X, Y and Z Signal magnitude area Time
za_mean_fft A Z Variance Freq.

xg_maxmin_diff_fft G X Max-Min difference Freq.

4.2.9.3 Test conclusion
The results showourmodel can distinguish between depression, speed bump, and smooth
with high accuracy, precision, and recall.

4.2.10 Test case seven: Testing the DNN algorithm
4.2.10.1 Description
The final test we carried out on the IMU data sets is based on a deep neural network
model similar to the one used by Silvister et al. (2019)

The DNN architecture consisted of the first visible layer for the inputs, four hidden
layers and, an output layer. The visible layer has six neurons for the six sensor axes,
respectively. For the first hidden layer, we added 128 neurons. Following various test
iterations, we added two more hidden layers of 196 and 64 neurons, respectively. For
the final hidden layer, we applied a layer of 32 neurons. Table 4.15 presents the DNN
architecture in a table format.

We used a Rectified Linear Unit Activation (ReLU) function at the hidden layers and a
Sigmoid function at the output layer as the activation function.

4.2.10.2 Results and discussions
Wepresent the five test results for the ANNmodel in Table 4.16. In our first test, we could
observe a slight improvement in the left and right depression classification. However, the
accuracy was still trailing behind the traditional machine learning techniques.

As expected, the third and fourth tests performed well with both the grouped left and
right depressions and speed bump, and a 100% accuracy against a smooth surface.
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Table 4.15: DNN architecture
Layer Type Output Shape Activation Param
dense12 Dense 6 ReLU 42
dense13 Dense 64 ReLU 448
Batch Normalization Batch Normalization 64 256
dense14 Dense 128 ReLU 8,320
dense15 Dense 196 ReLU 25,284
dense16 Dense 64 ReLU 12,608
dense17 Dense 6 ReLU 390

In our depression, speed bump and smooth test, our neural network got an accuracy
of 0.82. This result is comparable to the previous SVM result shown in Table 4.13. Fur-
thermore, precision, recall, and F1 Score are all comparable to the previous test.

Table 4.16: Test case seven. Depression, speed bump, Smooth
Class Precision Recall F1 Score Accuracy

1 0.62 0.67 0.64 0.62
2 0.63 0.58 0.61
1 0.55 0.70 0.61 0.71
2 0.60 0.43 0.48
5 0.99 1.00 1.00
3 1.00 1.00 1.00 1.00
5 0.99 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00
3 0.73 0.75 0.74 0.82
4 0.74 0.72 0.72
5 0.99 1.00 1.00

4.2.10.3 Test conclusion
Surprisingly, the DNN model came in second place for our assessment of depression,
speed bumps, and smoothness. The result matches the SVM feature engineered model.

4.3 Vision results

4.3.1 Test case eight: Testing various vision models
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4.3.1.1 Description
In this test, we compare the smartphone enabled MobilenetSSD model to traditional ob-
ject detection models that require more computer resources, such as YOLOv3, YOLOv4,
EfficientDet D0, and Faster R-CNN.
4.3.1.2 Results and discussions
Table 4.17 shows how the six implementations perform against the raw single class data
set, multi class (MC) data set, and single class data set excluding large pothole images (SC-
EVL) as mentioned in subsection 3.5.1. Both the YOLOv5 and Mobilenet v2 performed
better on the raw dataset with 4.9% and 7.5% difference, respectively. YOLOv3, YOLOv4
and EfficientDet D0 produced better accuracy results on the SC-EVL configuration. The
results also show that, for YOLOv3 and YOLOv4, there was a minimal improvement be-
tween the accuracy of the Raw data and SC-EVL. In contrast, there was an increase of
16.5% accuracy for the EfficientDet D0 - SC-EVL technique.

On the other hand, Faster R-CNN produced poor results under all three tests. The ta-
ble sorting is based on the experiment order, with the bold readings represent the highest
precision for the three runs per method. The poor performance multi-class test results
can be attributed to the class annotation process. It is difficult to label and classify the
potholes because of the different photo angles and perspectives. We could easily have
misclassified small, medium, large, and oversized potholes during the labelling process,
affecting overall accuracy.

Table 4.17: Vision test results - Single class
Raw MC SC -EVL

Model Dataset mAP.50 mAP.50 mAP.50
YOLOv3 Pytorch RoboFlow DS 70 39.7 73
YOLOv4 Pytorch RoboFlow DS 77.3 31.97 77.35

EfficientDet D0 TF2 RoboFlow DS 52.17 54.49 68.69
Faster R-CNN TF1.5 RoboFlow DS 21.8 26.6 21.05

Mobilenet SSD v2 TF1.5 RoboFlow DS 60.3 45.04 52.77
Table 4.18 exhibits the results sorted by the accuracy performance per test. Our find-

ings on the MC data show that the object detection accuracy is much lower compared
with the other data sets. We speculate that this might be due to incorrectly annotated
data. As a result, it impacted the anomaly detection. YOLOv4 and YOLOv3 produced the

77



CHAPTER 4. RESULTS & DISCUSSION

best results for both the raw and SC-EVL images, with YOLOv4 scoring 7.3 points more
than YOLOv3 on the raw data and 4.35 points more SC-EVL.

Remarkably, YOLOv4 produced the same results for both the raw and SC-EVL con-
figurations. On the other hand, YOLOv3 achieved a 3% better accuracy on the SC-EVL
dataset compared to the raw dataset.

Table 4.18: Vision test results - Multi-class
Model Raw Model MC Model SC -EVL

mAP.50 mAP.50 mAP.50
YOLOv4 77.30 EfficientDet D0 54.49 YOLOv4 77.35
YOLOv3 70.00 Mobilenet SSD v2 45.04 YOLOv3 73.00
Mobilenet SSD v2 60.30 YOLOv3 39.70 EfficientDet D0 68.69
EfficientDet D0 52.17 YOLOv4 31.97 Mobilenet SSD v2 52.77
Faster R-CNN 21.80 Faster R-CNN 26.60 Faster R-CNN 21.05

4.3.1.3 Test conclusion
When testing raw and SC-EVL labelled data, our tests show that the YOLO family out-
performed the MobileNetSSD model. In the MC data set, however, we found the Mo-
bileNetSSD model outperformed the YOLO models. Furthermore, we discover that Mo-
bileNetSSD surpasses Faster R-CNN in all tests. Finally, we observed that MobileNetSSD
had a mAP of only 52.77% in the SC-EVL class. Despite the lower performance in the
SC-EVL classification, we believeMobileNetSSD has potential given the limited computer
power required to detect objects.

4.3.2 Test case nine: MobileNetSSDevaluation using a customanomaly
data set

4.3.2.1 Description
As described in the penultimate paragraph in subsection 3.5.1, we revised the training
data set. This was required tomatch the image set to our new camera position. Finally, we
created a new data set with 1891 images. We took the images during good weather con-
dition with no shadow from surrounding objects. The data set contained no waterlogged
potholes. Furthermore, we added speed bumps and cracks, which included depressions.
We asked a third party to annotate the images. As a result, we acknowledge that there
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might be some bias in the data set. Finally, we divided these into 1,500 training images,
257 validation images, and 134 training images.
4.3.2.2 Results and discussions
Table 4.19 displays the mAP and recall results for the second data set used for the live
testing after 120k training steps.

Table 4.19: Pothole, crack and speed bump
Model Metric Percentage Number of training steps
Mobilenet SSD v2 mAP.50 52.30 120,000

Recall 36.50 120,000

4.3.2.3 Test conclusion
Notably, the new data set’s findings back up the SC-EVL’s findings in test case seven. We
believe that the 0.523 mAP and 0.365 recall scoring make the object detection procedure
an interesting solution to our research topic because we may execute the model directly
on smartphone devices.

4.4 Data fusion - Field testing results

4.4.1 Test case ten: Data fusion and field testing result
4.4.1.1 Description
We linked the IMU and Vision data streams via a custom-built web application that forms
the core of the data fusion module, as shown in Figure 4.13. We can find the web page
at: http://maltaroadanomaly.info:8080/map.

The GPS atomic clock is the primary structural link between the two data sets. The
primary features of the application are the independent IMU and vision results after ap-
plying our anomaly detection machine learning algorithms. Moreover, we included the
fused IMU and vision results to augment the reporting data set. We can customise this
capability using the legendmenu at the bottomof theHTMLpage, as shown in Figure 4.14

The markers connected to the legend will appear when a user selects the components
in the legend. In addition, when a user clicks on a marker, a pop-up window containing a
picture of the detected anomaly appears. We divided the IMU part into three sections:
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Figure 4.13: Visualising Anomaly Maps: Experimental Results andAnomaly Distribution

Figure 4.14: Legend for the Data Fusion Website Interface: Visual Guideto Iconography and Features
depression, speed bump, and smooth surface. In Figure 4.15, we display the three major
road anomaly categories used in our study.

Table 4.20 summarises the IMU sensing anomalies according to the anomaly classes.
During our field testing exercise, we captured 1,003 IMU data points and corresponding
images.
4.4.1.2 Results and discussions
We observed some false positive detection in the IMU classification during our first ob-
servation of the classification process. We present samples of these incorrectly classified
data points in Figure 4.16.

Correspondingly, there are three subsections in the vision section: crack, pothole, and
speed bump. The markers are colour coded to make navigation easier for the user.

Despite the relatively high numbers of IMU depression and speed bump anomalies,
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(a) Depression (b) Speed Bump (c) Crack - Vision classifica-tion
Figure 4.15: Field Testing Results: Visual Examples of Speed Bump, De-pression, and Crack Anomalies

Table 4.20: Fusion IMU data
Anomaly Count
Depression 281
Speed bump 158
Smooth 564

the vision module returned conservative results. Table 4.21 reveals the deteriorated
anomaly detection results. The vision model detected 115 anomalies.

Table 4.21: Fusion Vision test results
Anomaly Count
Crack 37
Pothole 40
Speed bump 38

Navigating through the vision section, we could observe some false positives for the
speed bump classification. In Figure 4.17, we display three images that were incorrectly
predicted as speed bumps.

We speculate that this might be because of the close resemblance of the speed bump
training data. The pedestrian crossing, water culvert, and the tree shadow all resemble
some of the training speed bump images as seen in Figure 4.18.

We dedicate the final section of the legend to IMU and vision recognitionmatching. In
other words, we compare the prediction of the IMU and vision models based on the same
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(a) Road trenching sample 1 (b) Road trenching sample 2 (c) Road trenching sample 3

(d) Road trenching sample 4 (e) Road trenching sample 5 (f) Asphalt joint

(g) Aggressive breaking (h) Water culvert (i) Road trenching sample 6
Figure 4.16: Illustrating Instances of False Positive Speed Bump Detection

timestamp. This means the output of IMU after a two-second sensing time window, and
the vision module prediction of the image captured at the beginning of the IMU sensing.
There are three options in this section: Anomaly, Depression, and Speed Bump match.

The anomaly match legend displays all points where the IMU and vision detected a
dual anomaly. In other words, depression, speed bump, or crack. In the depression match
section, we display the matched IMU and vision depressions. Finally, in the speed bump
match, we display the speed bumps detected by both techniques.

Table 4.22 presents the combined anomaly detection and ratio for the depression and
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(a) Water culvert (b)Water culvert and shadow (c) Water culvert and pedes-trian crossing
Figure 4.17: raining Samples for Vision-Based Speed Bump Detection Il-lustrated

(a) Speed bump exhibit 1 (b) Speed bump exhibit 2 (c) Speed bump exhibit 3
Figure 4.18: nstances of False Positive Detection in Vision Speed BumpIdentification

speed bump anomalies. For the vision section, we grouped both the crack and pothole
classes as these and compared them with the IMU depression classification. The vision
represents 27.7% of the IMU classified data points. Similarly, the vision detected speed
bumps makes up 24% of the total IMU speed bumps.

Table 4.22: Fusion Anomaly detected per class and ratio
Anomaly IMU Vision Percentage
Depression 281 77 27.4
Speed bump 158 38 24.0

Furthermore, Table 4.23 lists the complete match of the same anomaly classes for
both models. The data reveals that the fusion module correctly matched 48% of the IMU
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and vision depression anomalies. Meanwhile, we observe a 21% match for the speed
bump anomalies.

Table 4.23: Fusion Anomaly dual detection
Anomaly Amount
Depression 37
Speed bump 8

4.4.1.3 Test conclusion
Test cases two and three concluded we cannot distinguish between left and right depres-
sions. On the other hand, test cases four, five and six confirm we can detect depressions,
speed bumps and smoothness. Furthermore, test case seven confirms that DNN tech-
niques are on par with traditional IMU systems for predicting road anomalies.

Test eight confirms that vision techniques can detect road anomalies with various de-
grees of accuracy. This test also confirmed that the MobileNetSSD performs well com-
pared to other resource-hungry vision solutions. Moreover, the results of test case nine
also kept consistent with test eight. This confirms that we can tune vision techniques to
detect objects at different angles without losing accuracy.

Test ten also confirmed that we can fuse IMU and vision systems together to augment
and improve the reporting capabilities. Consequently, we demonstrated that smartphone
devices can deliver multi-technique solutions for road anomaly detection.
4.4.1.4 Final remarks
We listed the research questions at the start of the project. This section summarises the
answers to these questions.

Question one: Canwe develop a concise automated road anomaly detection system?
In this dissertation, we demonstrated that road anomaly detection automation is a

viable solution. Furthermore, since the solution does not require any specialised hard-
ware and is easy to configure, we believe that the local authorities can use the proposed
solution to monitor road anomalies. Moreover, the fusion system can provide brief but
comprehensive results.

Question two: Can we use inexpensive hardware to collect satisfactory sensory and
image data to detect road anomalies?

84



CHAPTER 4. RESULTS & DISCUSSION

This research has revealed that inexpensive hardware can collect and process sensor
data to detect road anomalies. The results show that inexpensive hardware, combined
with machine learning techniques, can differentiate between depressions, speed bumps,
and smooth surfaces. However, as exhibited in test cases two and three, we conclude that
inexpensive hardware sensory reading does not collect enough granularity to distinguish
between left and right depressions.

Question three: Can smartphone devices provide a simple and cost-effective solu-
tion to detect road anomalies?

The results achieved in this study show that smartphones are a cost-effective solution
for identifying road anomalies. Test cases four, five, and six show our ability to recognise
depressions, speed bumps, and smoothness. Additionally, test case seven shows that
DNN methods are effective at predicting road anomalies as conventional IMU systems.

Furthermore, tests eight and nine demonstrate that vision techniques can detect road
irregularities with varying degrees of accuracy. Additionally, these tests confirmed that
the MobileNetSSD’s performance was comparable to that of other resource-intensive
vision solutions.

Question four: Can we combine IMU, imagery, and GPS data to create a more mean-
ingful road anomaly data set?

The data fusion assessment reveals that we can combine IMU and imagery machine
learning techniques to augment the road anomaly result set. Test case ten, including the
online dashboard solution, confirms this. As a result, we can combine both data stream
to produce a more meaningful reporting tool.

4.5 Summary
This chapter has discussed the results of the IMUmodels for detecting road anomalies. In
this research, we are detecting depressions, speed bumps and smooth surfaces. We com-
pared five different models with manually extracted features. Furthermore, we compared
the results with a neural network model based on raw data. Logistic regression produced
the best results with an accuracy of 0.88. The precision of the depression class achieved
a 0.86 and a recall rate of 0.79. Comparatively, the speed bump model produced a score
of 0.83 and 0.85. The DNN model yielded an accuracy of 0.82 with a precision and recall
rate of 0.73 and 0.74 for depression. Likewise, the speed bump returned similar ratings
of 0.74 and 0.72.

This chapter has also discussed the results of the vision anomaly detection module.
We tested five vision state-of-the-art object detection models to compare the accuracy.
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The MobileNetSSDv2 implementation, which is targeted towards resource-limited archi-
tectures, exhibited good results with an accuracy of 52.17%. Additionally, the model re-
turned a mAP.50 of 52.30% and a recall rate of 36.50%when used with a locally compiled
image set.

Finally, this chapter has examined the development of a fusion model to process IMU
and imagery data for road anomaly detection. We developed the fusion model by syn-
chronising the IMU and imagery classification results and project this information onto a
simple to use HTML dashboard. The fusion mechanism is based on the GPS atomic clock.

In the chapter that follows, we will discuss the evaluation process and provide ex-
amples of how designing machine learning models with evaluation in mind can lead to
efficient and ideal outcomes.
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Chapter 5

Evaluation

5.1 Introduction
This dissertation has discussed the usefulness of detecting road anomalies in real-world
scenarios. The research has addressed depression and speed bump detection by running
a sequence of experiments using IMU and vision approaches. Then we applied the IMU
approach to process vibration and rotation sensory data. Moreover, we applied a vision
model to confirm the IMU anomalies and also to detect anomalies that were not captured
by the vehicle’s vibration.

We organise the rest of the chapter as follows.
In subsection 5.1.1, we conduct a comprehensive evaluation of the field testing exer-

cise. To ensure accuracy, all the images were meticulously tagged by a third party, result-
ing in a reliable ground truth data set. Through this meticulous process, we were able to
draw meaningful conclusions about the performance of our approach. Moving forward
to section 5.2, we extend our evaluation by benchmarking our results against state-of-
the-art work in the field. This enables us to ascertain the level of advancement achieved
by our approach, highlighting its contributions to the existing body of knowledge.

Overall, our thorough evaluation in autorefFusion Evaluation and the subsequent com-
parison in section 5.2 demonstrate the robustness and efficacy of our methodology while
acknowledging the significance of our contributions within the broader research land-
scape.
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5.1.1 Fusion Evaluation
In this section, we will evaluate the field testing results to assess the machine learning
models’ performance. By comparing the results from the field testing and themodel train-
ing, we hope to determine the accuracy of our models.
5.1.1.1 IMU Depression
We appointed a third party to evaluate the 1,118 images and create a ground truth la-
belled data set. The process involved visually inspecting all the collected images and
tagging them under 12 categories. The classification included smooth, crack, not clear,
shadow, depression, road trench, pothole, turning, asphalt joint, gutter, excessive speed-
ing and speed bump. This image multi-tagging evaluation produced a feature-rich ground
truth data set linking images to multiple categories. Finally, we then compared the cor-
responding IMU and vision field testing classification results to this benchmark. We re-
moved images that were marked “not clear” from the analysis. In addition, we also re-
moved images taken at speeds over 50 km/h for the analysis. As a result, we ended up
with 895 images for the IMU section and 993 files for both the IMU and vision analysis.

In our first appraisal, we assessed the IMU depression performance. For this test, we
compared the predicted depression outcomes with the categorised data set for images
tagged as depression, road trenches, and potholes. Figure 5.1 demonstrates the con-
fusion matrix for this category. The analysis shows that the process wrongly predicted
58 false positive entries and 72 false negative anomalies. To put it differently, the false
positives resulted from data collection points that were wrongly predicted as depression.
In contrast, the false negatives reveal the depression entries that were not predicted as
depression. The model returned an accuracy of 0.854 and a recall of 0.681.

Next, we added the cracks, gutters and surface joint categories to the equation, as
shown in Figure 5.2.

Adding the three additional categories to the depression analysis improved the true
positive and false positive scores. We observed that by adding these additional cate-
gories, it correctly transferred 36 false positive observations to the true positive score.
In summary, gutters and surface joints improved the accuracy rating of the depression
anomaly. The model’s accuracy was 0.870, with a recall of 0.669.

Likewise, we conducted similar testing on the surface joint and gutter categories. We
performed this to further analyse how these categories affect depression prediction, as
shown in Figure 5.3 and Figure 5.4. These two categories can impact the classification of
the depression and speed bump categories since they can have identical physical charac-
teristics of depressions and bumps.
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Figure 5.1: IMU Test one:Depression, road trenchand pothole
Figure 5.2: IMU Test two:Crack, depression, road trench,pothole, gutter and asphalt joint

The ground truth data has shown that there were 26 surface joints and three gutters
that were classified under depression. Likewise, we could observe that, under the speed
bump category, we had 13 surface joints and eight gutters. The accuracy reduced to 0.77
in both evaluations, while the recall score returned 0.666 and 0.278, respectively.

Figure 5.3: IMU depression test three :Asphalt joint Figure 5.4: IMU depression test four:Gutter

5.1.1.2 IMU Speed bump
We relate one interesting observation that comes out of the next evaluation exercise.
This is in connection with the high amount of false positives in the speed bump category
review. We analysed three different confusion matrices to probe our field testing speed
bump classification. Data from Figure 5.5 demonstrates that the false positives outnum-
bered the true positives by a ratio of 3:1. The model’s accuracy is 0.885, and the recall
stands at 0.870. In contrast, the precision for the test returned a score of 0.167.

Even after adding the asphalt joint and gutter classifications, we noted that the false
positives and negatives remained high, as shown in Figure 5.6 and Figure 5.7. The ac-
curacy for both tests is 0.891 and 0.874, with a recall of 0.824 and 0.556, respectively.
Likewise, the corresponding precision score stood at 0.233 and 0.333.

The evidence appears to show that the small number of depression samples in the
learning stage could cause this low rating. As a result, in future work, we will increase
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Figure 5.5: IMU speed bump test one:Speed bump
the number of depression samples in the learning stage and reevaluate the classification
accuracy.

Figure 5.6: IMU Speed bump test two:Speed bump and gutter Figure 5.7: IMU Speed bump test three:Asphalt joint, speed bump and gutter

5.1.1.3 IMU Smooth
In our final IMU performance evaluation, we analyse the smooth classification. As shown
in Figure 5.8, we had 35 wrongly classified entries comprising 20 false positive and 15
false negative data points. The evaluation returned an accuracy of 0.961 and a recall of
0.973.

Figure 5.8: IMU Smooth test one:Smooth
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5.1.2 Vision
In the following three sections, we evaluate the vision model performance of our field
tests. Our ground truth data set for the vision evaluation contained 993 images, with
895 IMU and 98 imagery classified data points.

A closer look at the vision data indicated the model was less responsive when driving
at speeds higher than 20 km/h. In particular, we observed this lack of responsiveness
during our testing phases. Whilst driving at speeds lower than 15 km/h, we could ob-
serve that the model was more accurate. This is contrary to the findings of Camilleri and
Gatt (2020). However, we acknowledge that the camera zooming was a major source of
limitations. Digital zoom helps to crop the entire image, and then digitally enlarges the
size. As a result, there is a major reduction in the image’s quality.
5.1.2.1 Vision Crack
The classification process correctly identified 905 true negatives and 25 true positives
from the 993 manually classified images, as shown in Figure 5.9. Conversely, we also
observed that the model missed 59 cracks, including four images that were incorrectly
classified as road cracks. Given the speed issue, we believe the overall score is within
acceptable limits. This evaluation returned an accuracy of 0.937 and a recall of 0.297.

In addition, we added the road trench-tagged images to measure how these affected
the classification score. We present the results for the vision crack classificationwith both
the crack and road trenching results in Figure 5.10. The data suggest that road tranches
have no bearing on the results, with all the added images classified as false negatives. This
evaluation returned an accuracy of 0.866 and a recall of 0.162.

Figure 5.9: Vision Crack test one:Crack Figure 5.10: Vision Crack test two:Crack and road trench
To evaluate this segment, we also added the asphalt joint tagged images under road

cracks. Once more, the classification as displayed in Figure 5.11 was unaffected by this
category. In our fourth test, we tested the gutter data set, and once again, we did not
notice any impact. We display the results in Figure 5.12. These evaluations returned an
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accuracy of 0.825 and a recall of 0.128 for the added asphalt join and 0.811 and 0.120
respectively, for the added gutter data.

Figure 5.11: Vision Crack test three:Crack, Road trench and Surface joint Figure 5.12: Vision Crack test four:Crack, road trench, asphalt joint and Gutter
Finally, we added the depression-tagged images to the evaluation data set. Figure 5.13

shows the results for the added depression class. This evaluation returned an accuracy
of 0.667 and a recall of 0.076.

Figure 5.13: Vision Crack test five:Crack, road trench, surface joint, Gutter and depression

5.1.2.2 Vision Pothole
Next, we evaluated the vision pothole prediction results. In this evaluation, we compared
all the data points that were tagged as potholes in our ground truth data set. As shown
in Figure 5.14, the model correctly recognised 27 images that contained potholes. In
contrast, the model missed 30 instances of pothole images while mistakenly identifying
ten images as containing a pothole anomaly. This evaluation returned an accuracy of
0.960 and a recall of 0.474.

Our second evaluation included road trenching images in the pothole category. We
carried out this exercise to investigate whether themodel could distinguish between both
categories. As we can see from Figure 5.15, there was no impact on the true positive and
false positive scoring. From the depicted results, we could notice that the vision model
correctly distinguished the potholes from road trenching. This evaluation returned an
accuracy of 0.894 and a recall of 0.205.
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Figure 5.14: Vision Pothole test one:Pothole Figure 5.15: Vision Pothole test two:Pothole and road trench
Forthwith, we added the road cracks tagged images to the pothole and road trench-

ing tagged images to determine the correlation between the three classes. The figure in
Figure 5.16 confirmed that the model did not misclassify the two distinct classes. This
evaluation returned an accuracy of 0.818 and a recall of 0.144.

Figure 5.16: Vision Pothole test three:Pothole, road trench and crack
Similarly, as we can see in Figure 5.17 and Figure 5.18, we established that neither

the asphalt joint nor the water gutter images impacted the model’s ability to distinguish
potholes. The evaluation for the fourth test returned an accuracy of 0.776 and a recall
of 0.119. Likewise, the gutter addition test returned an accuracy of 0.762 and a recall of
0.112.

Figure 5.17: Vision Pothole test four:Pothole, road trench, crack and asphalt joint Figure 5.18: Vision Pothole test five:Pothole, road trench, crack, asphalt joint and gutter
In our final analysis in this section, we added the depression tagged images to the pot-

hole class. Figure 5.19 shows our analysis results. This evaluation returned an accuracy
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of 0.622 and a recall of 0.075.

Figure 5.19: Vision pothole test five:Pothole, road trench, crack, asphalt joint and gutter

5.1.2.3 Vision Speed bump
The speed bump anomaly classification is the subject of our final evaluation for the visual
field testing exercise.

To determine the functionality and behaviour of the vision speed bump anomaly de-
tection, we ran five tests.

The first study involved analysing all the data points that the vision module had identi-
fied as speed bumps. Figure 5.20 illustrates the performance based on thewhole test data
set. The algorithm correctly identified 12 images. However, the model missed 23 images
containing potholes whilst it mistook 20 objects for potholes. This evaluation returned
an accuracy of 0.957 and a recall of 0.343.

From the evaluation of the images, we could observe that the vision model wrongly
classified surface joints, gutters, long shadows and road trenches as speed bumps.

To further evaluate this inconsistency, we added the asphalt joint-tagged images to the
pothole subset. The results show this category had little effect on the true positives, with
almost all surface joint tagged items being added to the false negative section, as shown
in Figure 5.20. This evaluation returned an accuracy of 0.920 and a recall of 0.187.

Figure 5.20: Vision speed bump test one:speed bump Figure 5.21: Vision speed bump test two:speed bump or asphalt joint
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In a similar vein, we included gutter-tagged images in the evaluation procedure. We
display the result of the added class to the speed bump category in Figure 5.22. This
impacted the false negative rating but also slightly improved the true positive. This eval-
uation returned an accuracy of 0.912 and a recall of 0.191.

We could see an interesting observation by introducing shadow-tagged images. We
could also observe that the vision module mistakenly classified six shadows as speed
bumps, as shown in Figure 5.23. This evaluation returned an accuracy of 0.912 and a
recall of 0.228.

Figure 5.22: Vision speed bump test three:Speed bump, surface jointor gutter
Figure 5.23: Vision speed bump test four:Speed bump, surface joint, gutteror shadow

Another observation reveals that when we added road trenching-tagged images to
the speed bump group, there was an increase in the true positives. Data from Figure 5.23
indicates an increase of five images. This evaluation returned an accuracy of 0.850 and a
recall of 0.121.

Figure 5.24: Vision speed bump test five:Speed bump, surface joint,gutter, shadow or road trench

5.1.2.4 Speed dependency
We introduced the speed dependency phenomenon in subsubsection 3.6.5.1. During our
field testing, we found it challenging to maintain the same constant speed as the training
exercise, and the outcomes impacted the classification. Furthermore, Perttunen et al.
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(2011) attempted to approximate the relationship between speed and inertial data as a
trend in the value of calculated features by using linear regression and then subtracting
that trend from the features used for classification. Furthermore, when evaluating road
anomalies, Seraj et al. (2015) considered the vehicle’s speed and how this affected the
vehicle’s vibrations. This is a significant limitation in our solution and we will investigate
ways to reduce this limitation in our future work to improve our models.

5.2 Evaluation with other papers
We compare our results with previous studies’ state-of-the-art work in Table 5.1 and Ta-
ble 5.2. Moreover, we also include our field test results after the third-party annotated
results data set and subsequent analysis.

5.2.1 IMU results
5.2.1.1 Overall accuracy
Our accuracy results demonstrated a notable discrepancy, ranging from 0.006 to 0.087,
across the three state-of-the-art research papers, as illustrated in Table 5.1. This variation
highlights the diversity in the performance of the various models or methods presented
in those papers.
5.2.1.2 Pothole detection
Our pothole precision finished in second place after Wu et al. (2020)’s work with a dif-
ference of 0.048 points from their best-performing model, which scored 0.908. From a
recall perspective. Our model produced the best result with a score of 0.790. Basavaraju
et al. (2020) registered the second-best score.
5.2.1.3 Smooth surface
Similar to the pothole result, our smooth precision trailed Basavaraju et al. (2020) andWu
et al. (2020) by a score margin of 0.019 from the best score. On the other hand, our recall
score finished in first place with a margin of 0.008.
5.2.1.4 Silva et al. (2017)’s speed bump results
Silva et al. (2017) scoring is based on the confusion matrix’s percentage of correct classi-
fication. They obtained a score of 0.778 and 0.639 for the Gradient boost and decision
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tree. We secured a result of 0.850 through our LR model, therefore, our speed bump
classification performed better results.

5.2.2 Vision results
As shown in Table 5.2, we could not match Camilleri and Gatt (2020) and Rani et al.
(2020)’s work in our visionmodel. Our pothole and depressionmAPfinished 0.165 behind
Camilleri and Gatt (2020)’s work. Furthermore, there was a difference of 0.065 between
our results and Rani et al. (2020)’s score.
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Table 5.1: Final evaluation - IMU
Source Algorithm Acc Crack Pothole / Depression Speed bump Smooth

Precision Recall Precision Recall Precision Recall Precision Recall
Basavaraju et al. (2020) SVM 0.886 0.403 0.438 0.722 0.678 0.944 0.947Decision tree 0.883 0.435 0.412 0.666 0.671 0.950 0.947NN 0.921 0.559 0.611 0.769 0.781 0.969 0.963
Wu et al. (2020) SVM 0.948 0.908 0.642 0.952 0.992LR 0.952 0.851 0.734 0.965 0.984RF 0.957 0.885 0.750 0.965 0.988
Silvister et al. (2019) DNN 0.967 n/a n/a n/a n/aSVM 0.929 n/a n/a n/a n/a
Our results LR 0.880 0.860 0.790 0.830 0.850 0.950 1.000SVM 0.820 0.710 0.770 0.760 0.760 0.680 1.000KNN 0.800 0.720 0.690 0.720 0.710 0.950 1.000RF 0.750 0.620 0.640 0.650 0.650 0.990 0.960NB 0.790 0.680 0.690 0.690 0.700 1.000 0.980DNN 0.820 0.730 0.750 0.740 0.720 0.990 1.000

Field testing LR 0.854 0.726 0.669 0.964 0.973

Table 5.2: Final evaluation - Vision
Source Algorithm Prediction accuracy Pothole / Depression Speed bump

Pothole Speed bump mAP Recall mAP Recall
Camilleri and Gatt (2020) Yolov3 SPP 0.688

Tithi et al. (2021) SSDMobileNetV2 0.670 - 0.920 0.790 - 0.930
Rani et al. (2020) SSDMobileNetV2 0.600 0.700

Our results SSDMobileNetV2 0.523 0.365 0.635 0.514
Field testing SSDMobileNetV2 0.726 0.669 0.910 0.191
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5.3 Summary
In this section, we discussed the evaluation techniques and offered suggestions for im-
proving our models. We demonstrated how designingmachine learningmodels with eval-
uation in mind can lead to successful and optimised solutions.

We started this section by discussing the classification process to evaluate ourmodel’s
performance. Next, we described how to calculate accuracy, precision, recall, and F1
scores. In addition, we discuss why such metrics are important in our classification pro-
cesses. We then reviewed our field testing exercise together with the fusion module. We
enlisted the assistance of a third party to evaluate the collected imagery data and extract
the ground truth from the images. Consequently, we divided the information into 12 cat-
egories. We then compared the prediction of our model to the ground truth data set.
According to the evidence, gutters, road tranches, and water gutters in the IMU model
influenced the accuracy of the depression and speed bump classes. Furthermore, speeds
above 50 km/h also influenced the accuracy. At these speeds, we noticed a significant
increase in speed bump false positives. As a result, speed dependency will play an im-
portant role in future work. In addition, evidence in the vision model suggested a link
between speed bumps, water gutters, and road trenches. We also demonstrated how the
surrounding shadows influenced the detection process.

We also illustrated how laboratory-controlled experiments vary from real-life usage.
Testing a model’s accuracy in a laboratory setting can produce better results. However,
this technique has some limitations. To illustrate, we narrowed the types of road anoma-
lies and also reduced our driving speed in our work. Therefore, we did not simulate real-
world usage. As a result, our laboratory experiments did not capture all real-life anomalies.
This was demonstrated in our field-testing result analysis.

However, despite the size of the IMU training data and the smartphone’s digital zoom
resolution reduction, our models produced respectable results. Most importantly, we
showed that we can fuse both techniques to better track road anomalies.
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Conclusion

6.1 Revisiting the Aims and objectives
The aim of this researchwas to create a solution for detecting and classifying road anoma-
lies. By combining two concurrent machine-learning techniques, we aimed at enhancing
the overall accuracy. More specifically, we created a simple but effective platform for
detecting and authenticating road anomalies. We achieved this by combining traditional
IMU techniques with innovative and robust visualisation models. In other words, our
goal was to combine the two techniques and create an augmented reporting data set. As
a result, we demonstrated how both systems can complement one another, with each
technique highlighting different but important, aspects of the detection process.

The first objective of this study was to use inexpensive smartphone devices to assess
road conditions. We target both the IMU and camera sensors to achieve the desired
results. Additionally, our second objective was to merge both pipelines and augment the
final reporting data set.

6.2 Experiments Conducted
Wepresented a general overview of the proposed solution in Figure 6.1. For this research,
we proposed a dual smartphonemethod to detect anomalies. The IMUand vision systems
operated independently of one another.

We strategically placed the IMU smartphone on the vehicle’s dashboard to capture the
vehicle’s vibration and rotation. To capture these movements, we employed the smart-
phone’s accelerometer and gyroscope sensors. In particular, we captured data from all
three axes, namely X, Y and Z. To pinpoint the anomaly’s geolocation, we employed the
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GPS sensor to extract the GPS coordinates. In addition, we based our synchronisation
methods on the GPS atomic clock data.

Figure 6.1: Illustration of the Proposed Road Anomaly Detection Solution
Likewise, we hosted the vision object detection module on the second smartphone

device. We employed an embedded MobileNetSSDv2 on this device. The model cap-
tured images from the smartphone camera and returned the classification results and
accuracy of the detected anomalies. Similarly, we extracted the GPS data from the sec-
ond smartphone and packaged the GPS reading with the vision data stream. Additionally,
we calibrated the timing by comparing the smartphone’s clock with the GPS atomic clock.
We also embedded the variance in both data sets.

In the final stage of the routine, we sent both data sets to the back-end server for
analysis. As can be seen in the solution diagram, we supplied the vision module data
to the fusion component. To emphasise, we used the vision classification process that
runs on the smartphone application. In contrast, the IMU anomaly prediction is being
processed on the back-end server. The DNN model works with raw IMU sensor data.
On the other hand, the traditional IMUmachine-learning techniques work on engineered
features. In summary, wemerge the IMU results with the vision predictions and fuse both
data sets under one augmented reporting portal.

This study collected 85,000 anomaly inertia readings at a frequency of 50 Hz. Ev-
ery anomaly consisted of a two-second sampling period. Therefore, every IMU anomaly
contained 100 sensor readings per label. For this reason, we built an application to label
the anomalies in real-time. In our study, we addressed the following five road anomaly
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classes: left, right depression, depression wider than the wheel track, speed bump and
smooth surface. Because of an imbalanced data set problem, we down-sampled the data
to simplify the machine-learning techniques. Most machine learning algorithms for clas-
sification were designed to work with an equal number of examples for each class. There-
fore, unbalanced data sets pose a challenge for predictive modelling. Following a series of
data cleansing and filtering routines, we proceeded with the machine learning model de-
velopment. We used six supervised machine learning techniques for our tests: LR, SVM,
KNN, RF, NB and DNN. For the first five traditional techniques, we manually engineered
the features. However, this step was not required for the DNNmodel, as neural networks
work with raw sensor data. This is one of the main advantages of this technique. The
results show that the anomaly prediction for DNN is on par with the traditional feature-
engineered models.

We trained the vision module using a Maltese anomaly data set of 1,891 images. For
the labelling task, we labelled the ground truth under three categories: crack, pothole,
and speed bump. We evaluated various smartphone mounting points for capturing the
road. Based on the results and observations, we changed the training data set by us-
ing various capturing angles to improve accuracy. Considering the limited resources, the
MobilenetSSD model returned satisfactory mAP and recall results.

In our data fusion solution, we produced a convenient dashboard for linking the IMU
and vision predictions. The main aim of our reporting tool is to reinforce the prediction
score and enhance the reporting data.

We also carried out a field texting exercise to test the effectiveness of the system. In
total, we collected 993 images and corresponding IMU readings. The field testing yielded
mixed results. Most notably, the number of false positives in the speed bump class and
depression. We analysed these issues in the evaluation section. We attributed these mis-
classifications to excessive speeding and the similarity between speed bumps and water
gutters and road tranches.

6.3 Summary of Results
In the IMU solution, we collected 85,000 inertia readings under five different road anoma-
lies: Depression left, depression right, depression, speed bump and smooth surface. Each
anomaly consisted of a two-second sensor reading. Additionally, we set the sensor fre-
quency rate at 50 Hz. As a result, we had 100 time-series readings per anomaly. To keep
the data set balanced, we used the downsampling technique. As a result, we replaced
the depression class that was bigger than the wheel track with equal parts of the left
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and right depression records. During the initial testing, we observed that the proposed
solution was not able to distinguish between left and right depression. Therefore, we ex-
cluded these classes from our tests. Logistic regression produced the best results, with
an accuracy of 88%. The depression class had a recall rate of 79% and a precision of 0.86.
On the other hand, the speed bump category produced scores of 83% and 85%. Similarly,
the DNN model produced accuracy and recall rates of 82%, 73%, and a precision of 74%
for depressions. The speed bump tests returned scores of 74% and 72%. Given that the
DNN works on raw data, the results are noteworthy. Next, we covered the outcomes of
the vision anomaly detection module. To compare the accuracy, we tested five innova-
tive object detection models for vision. The MobileNetSSDv2 implementation produced
positive results with an accuracy of 52.17%. We then used the MobileNetSSDv2 with a
locally compiled image set. The model produced similar scores with mAP.50 of 52.30%
and a recall rate of 36.50%. Finally, we analysed the data fusion model to process IMU
and imagery data for the detection of road anomalies. We built the fusion model by syn-
chronising the IMU and imagery classification results. Finally, we demonstrated how the
fused data can simplify the anomaly verification process by presenting the two results in
an easily operated dashboard.

6.4 Research question
In conclusion, the research undertaken to address the research question has demon-
strated the feasibility of developing an innovative smartphone-based system for detecting
road anomalies, with a primary focus on potholes. The results of extensive testing have
underscored the potential of this approach, indicating its viability for further exploration
and refinement.

The integration of various technologies, including inexpensive smartphone hardware,
IMU sensing, and vision-based anomaly detection, has proven to be successful in en-
hancing the accuracy and reliability of the system. By utilizing both IMU sensing and
vision-based techniques, a notable improvement in accuracy has been achieved. These
two approaches harmoniously complement each other, creating a more robust and com-
prehensive detection mechanism that enhances the overall reliability of anomaly identi-
fication.

One of the significant strengths of this solution lies in its utilisation of widely available
and affordable smartphone hardware, making it accessible to a broad user base. This
accessibility not only contributes to the proliferation of anomaly detection but also aligns
with the goal of creating a cost-effective and user-friendly solution.
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Furthermore, the system’s user interface provides an intuitive and easy-to-use portal
for accessing and interpreting the results. This feature allows for manual checks and ver-
ification of detected anomalies through a user-friendly interface, thereby adding an extra
layer of validation to the automated detection process.

In summary, this research has successfully demonstrated the potential of a smartphone-
based road anomaly detection system, particularly focused on potholes. The combination
of IMU sensing and vision anomaly detection techniques, along with the utilisation of in-
expensive smartphone hardware, has showcased encouraging results. Moving forward,
there exists substantial room for further exploration, refinement, and optimization, paving
the way for a more efficient and comprehensive solution to address the challenges posed
by road anomalies.

6.5 Critique and Limitations
In this section, we list the limitations of our study and discuss how they may affect the
validity of our findings.

Test vehicle: The first limitation in our study is related to the number of participat-
ing vehicles used to capture the training data. The IMU data set used for this study was
captured using only one vehicle. Therefore, the proposed model will not yield the same
results on other vehicles. This is a major limitation. In future releases, the data set will
have data from various vehicle makes and models to widen the user base. Furthermore,
the vision training data set model is based on a predefined angle and zoom size. As ex-
plained in Chapter 3.5.2, the windscreen mounting angle and vehicle bonnet restricted
the smartphone’s camera visibility. As a result, this visual restriction and the camera’s
digital zoom hampered our vision model.

Speed issue: As mentioned in subsubsection 5.1.2.4, onemajor limitation of this study
is that the model only works with limited and predefined speeds. In the future, we will
address this issue by including speed as a feature in our models similar to the work con-
ducted by Chen et al. (2019).

IMU training data set size: As described in Chapter 4, the IMU data set used was too
small. A larger training data set will increase the accuracy of the models.

Limited anomaly classes: During the field testing, we noticed we were missing several
anomaly classifications. In this study, we excluded the asphalt joints, road trenching, and
water gutters from the training data. As a result, this shortcoming impacted the overall
accuracy.

Vision training set: The vision training data set contains nowaterlogged potholes. This
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creates an operational constraint during winter. Likewise, the training images contained
no shadows from the surroundings.

6.6 Future research
Our solution used standard smartphones and custom applications to collect data. We
then transferred the compiled data to a back-end server in batches. In future releases,
the IMU data can be collected and processed in real time using cloud services.

Future research could include running traditional and DNN algorithms directly on
smartphone devices to minimise the back-end computing power required to classify the
anomalies. This will also provide instant results similar to our MobileNetSSD solution.

Future research could include investigating other lightweight smartphone-enabled
SSD solutions such as tiny Yolo for real-time object detection.

Future research can address the speed limitation constraints during road testing. This
will allow for greater driving flexibility during road analysis.

6.7 Summary and conclusion
In this dissertation, we embarked on a journey to develop a solution for the detection and
classification of road anomalies, with a specific emphasis on enhancing accuracy through
the synergy of two concurrent machine-learning techniques. By harmonising traditional
Inertial Measurement Unit (IMU) methods with robust visual models, we succeeded in
creating an effective platform for detecting and verifying road anomalies. Our overar-
ching objective was to combine these two techniques into an augmented reporting data
set, showcasing how each method brings its unique strengths to the anomaly detection
process.

We effectively harnessed the power of inexpensive smartphone devices to assess road
conditions, leveraging both IMU and camera sensors to gather crucial data. Our approach
focused on merging these two data pipelines to enrich the final reporting data set.

Our journey was not without its share of challenges, but we successfully navigated
them. An imbalanced data set posed a unique problem, but we addressed it through care-
ful data pre-processing and downsampling, ensuring a level playing field for our machine-
learning models. Furthermore, we employed a variety of supervised machine learning
techniques, including Logistic Regression (LR), Support VectorMachines (SVM), K-Nearest
Neighbours (KNN), Random Forests (RF), Naive Bayes (NB), and Deep Neural Networks
(DNN), each tailored to our specific data set needs.
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In the realm of vision anomaly detection, we trained our model using a diverse image
data set. We adapted our approach based on experimentation, fine-tuning the model to
achieve satisfactory mean Average Precision (mAP) and recall results.

Our findings hold significant implications for the future of road anomaly detection
in similar settings. Notably, the integration of diverse technologies, encompassing cost-
effective smartphone hardware, IMU sensing, and vision-based anomaly detection, demon-
strated remarkable success, promising substantial enhancements in accuracy and reliabil-
ity. This approach alignswith the goal of creating an accessible and cost-effective solution,
bridging the gap to a broader user base. Moreover, our user-friendly interface empowers
users to interpret results seamlessly, facilitatingmanual verification of detected anomalies
and reinforcing the automated detection process’s reliability. Additionally, future research
avenues may delve into real-time IMU data processing via cloud services, potentially de-
livering instant results akin to the MobileNetSSD solution we presented.

In conclusion, this dissertation has not only demonstrated the feasibility of a smartphone-
based road anomaly detection system but also laid the groundwork for future research
and innovation in this field. The fusion of IMU sensing and vision-based detection, com-
bined with the accessibility of smartphone hardware, paves the way for safer and more
efficient road analysis and maintenance, benefiting society as a whole.
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Media Content

A.0.1 Source code
The dissertation code is stored on a public GitHub account. We have six different repos-
itories.

Two for the IMU sensing part consisting of the IMU vibration annotation mobile appli-
cation and the second for the actual IMU sensing. We developed these using Flutter. The
third repository holds the vision MobileNetSSD application. We also developed this ap-
plication in Flutter, containing the TensorFlow Lite model. The fourth repository contains
all the IMU experiments and the testing data set. The fifth stores the fusion reporting
dashboard. We developed this application in Go and JavaScript. The sixth repository
contains the Roboflow Colab vision training model .Table A.1 shows the applications and
repository locations.

Table A.1: GitHub repositories
Application Repository
Vibration annotation https://github.com/anthonyscerri/IMUVibrationAnnotation
IMU sensing https://github.com/anthonyscerri/IMUSensing
Vision MobileNetSSD https://github.com/anthonyscerri/VisionMobilenetSSD
IMU Experiments https://github.com/anthonyscerri/RoadAnomaly_IMU
Fusion reporting website https://github.com/anthonyscerri/ModelFusionDashboard
Roboflow Colab vision model https://github.com/anthonyscerri/RoboflowColabRoadAnomaly
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A.0.2 Pre-compiled APKs
Additionally, the pre-compiled Android APK files for the smartphone applications can be
downloaded from:

https://www.dropbox.com/sh/r9lkji37nb58vct/AACOj__hehO4sQ0pXI_jriBQa?dl=0
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Installation Instructions

B.0.1 Installing the Roboflow Colab Jupyter file
To install the Roboflow Colab Jupyter file, please follow the below instructions:

1. Download the Jupyter file from:
https://github.com/anthonyscerri/RoboflowColabRoadAnomaly

2. Upload the file to Colab
3. Run the notebook

B.0.2 Installing the Android APKs
To install the Android APKs on your Android smartphone, please follow the below instruc-
tions:

1. Download the desired application from the GitHub repository
2. Open the Settings app on your Android device.
3. In the Settings menu, tap Apps.
4. Tap Special app access (or Advanced > Special app access).
5. Tap Install unknown apps.
6. Select an app to use to install an APK file.
7. Tap the Allow from this source slider to allow APK files to be installed via that app.
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B.0.3 Installing IMU experiments files
To install the IMU experiments files, please follow the below instructions:

1. Download the IMU experiments folder from:
https://github.com/anthonyscerri/RoadAnomaly_IMU

2. Open the folder using your Jupyter editor
3. Run the notebooks

B.0.4 Installing Fusion reporting website
To install the Fusion reporting website, please follow the below instructions:

1. Download the Fusion reporting folder from:
https://github.com/anthonyscerri/ModelFusionDashboard

2. Follow the Go installation notes: https://go.dev/doc/install
3. Run the Go application
4. A pre-compiled version is available online http://maltaroadanomaly.info:8080/map
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User Manuals

C.0.1 Roboflow Colab Jupyter file user manual
1. Upload the Jupyter file to Colab
2. Run all the cells
3. The python script will automatically download the dissertation image files and an-

notations for the training

C.0.2 Android APKs file user manual
C.0.2.1 MobileNetSSD application

1. Follow the installation notes in subsection B.0.2
2. Run the application
3. Place the smartphone in a horizontal position
4. Note - There is a ten-second delay for the application to calibrate the onboard clock

with the GPS atomic clocks.
5. Adjust the camera position as required.

C.0.2.2 MobileNetSSD application
1. Follow the installation notes in subsection B.0.2
2. Run the application
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3. Affix the smartphone to the dashboard in a vertical position.
4. Note - There is a ten-second delay for the application to calibrate the onboard clock

with the GPS atomic clocks.
C.0.2.3 Vibration annotation application

1. Follow the installation notes in subsection B.0.2 to download the APK file
2. Run the application

C.0.3 IMU experiments files file user manual
1. Follow the installation notes in subsectionB.0.2 to download theRoadAnomaly_IMU

repository
2. Run the Jupyter files

a) PHML_1_featureSelection.ipynb contains the sequential feature selector code
as described in subsection 4.2.1

b) PHML_2_MLCodeBinary.ipynb contains the code of the LR, SVM, KNN, RF
and NB binary classification

c) PHML_2_MLCodeMultiClass.ipynb contains the code of the LR, SVM, KNN,
RF and NB multiclass classification

d) PHML_4_ANN.ipynb contains the code of the neural networkmodel for binary
classification

e) PHML_4_ANN_multiclass.ipynb contains the code of the neural networkmodel
for multiclass classification

f) PHML_5_KMEANS.ipynb contains the code of the K-means experiments
g) Live_PHML_2_MLCodeMultiClass.ipynb and Live_PHML_3_MLCodeMultiClass.ipynb

contain the field testing anomaly detection and fusion code to build the report-
ing dashboard

3. Additional instructions are included in the Jupyter notebook files

C.0.4 Fusion reporting website file user manual
1. Follow the installation notes in subsection B.0.2

121



APPENDIX C. USER MANUALS

2. Open static/app.js with your preferred text editor and replace the URL strings
’http://maltaroadanomaly.info’ with your local IP address and save the file

3. From the root folder
4. To compile the application:

a) $ go build fusion.go
b) $ ./fusion

5. Point your browser to HTTP://<your IP address>:8080/map
6. A pre-compiled version is available online http://maltaroadanomaly.info:8080/map
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Appendix D

Additional Test results

D.1 Test case two: Depression Left VS Depression Left

Table D.1: Test case two - SVM Features used
Feature Sensor Axis Feature Domain
xa_std A X Standard deviation Time
yg_max G Y Maximum Time

yg_maxmin_diff G Y Max-Min difference Time
ya_neg_count A Y Negtive count Time
xa_skewness A X Skewness Time
yg_mean_fft G Y Mean Freq.
ya_min_fft A Y Minimum Freq.

yg_median_fft G Y Median Freq.
yg_mad_fft G Y Median absolute deviation Freq.
yg_IQR_fft G Y Interquartile range Freq.

Table D.2: Test case two - KNN Features used
Feature Sensor Axis Feature Domain

xa_mean A X Mean Time
ya_var A Y Variance Time
yg_max G Y Maximum Time

xg_median G X Median Time
ya_neg_count A Y Negtive count Time
ya_pos_count A Y Positive count Time

yg_mad_fft G Y Median absolute deviation Freq.
yg_IQR_fft A Y Interquartile range Freq.

yg_peak_count_fft G Y Number of peaks Freq.
za_kurtosis_fft A Z Kurtosis Freq.
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Table D.3: Test case two - RF Features used
Feature Sensor Axis Feature Domain
yg_var G Y Variance Time
xg_mad G Y Median absolute deviation Time

xg_above_mean G X Values above mean Time
yg_above_mean G Y Values above mean Time
yg_peak_count G Y Number of peaks Time

ya_energy A Y Energy Time
xg_mean_fft G X Mean Freq.
ya_min_fft A Y Minimum Freq.

zg_maxmin_diff_fft G Z Max-Min difference Freq.
xg_median_fft G X Median Freq.

Table D.4: Test case two - NB Features used:
Feature Sensor Axis Feature Domain
ya_mad A Y Median absolute deviation Time

za_above_mean A Z Values above mean Time
yg_above_mean G Y Values above mean Time
yg_peak_count G Y Number of peaks Time
zg_skewness G Z Skewness Time
za_kurtosis A Z Kurtosis Time

avg_result_gyro G X, Y and Z Average resultant Time
zg_min_fft G Z Minimum Frequency

xg_peak_count_fft G X Number of peaks Freq.
xg_skewness_fft G X Skewness Freq.

(a) SVM Left and Right confusionmatrix (b) KNN Left and Right confusion ma-trix
Figure D.1: Test case one: LR, SVM and KNN confusion matrix



(a) RF Left and Right confusion matrix (b) NB Left and Right confusion matrix
Figure D.2: Test case two: RF and NB confusion matrix



APPENDIX D. ADDITIONAL TEST RESULTS

D.2 Test case three: Depression right, depression left
and smooth surface

Table D.5: Test case three - SVM features used
Feature Sensor Axis Feature Domain
za_var A Z Variance Time
xa_aad A X Average absolute differance Time
ya_aad A Y Average absolute differance Time

xg_pos_count G X Positive count Time
xa_above_mean A X Values above mean Time

xa_std_fft A x Standard deviation Freq.
za_aad_fft A Z Average absolute differance Freq.
zg_min_fft G z Minimum Freq.
xa_mad_fft A x Median absolute deviation Freq.

xg_peak_count_fft G X Number of peaks Freq.

Table D.6: Test case three - KNN features used
Feature Sensor Axis Feature Domain
zg_mean G Z Mean Time
zg_var G Z Variance Time
za_max A Z Maximum Time

ya_neg_count A Y Negative count Time
zg_neg_count G Z Negative count Time
zg_pos_count G Z Positive count Time

yg_peak_count G Y Number of peaks Time
xa_skewness A X Skewness Time

smaa A X and Y Signal magnitude area Time
ya_mad_fft A Y Median absolute deviation Freq.

Table D.7: Test case three - Random Forest features used
Feature Sensor Axis Feature Domain

xg_median G X Median Time
xa_mad A X Median absolute deviation Time

xg_pos_count G X Positive count Time
za_peak_count A Z Number of peaks Time
za_skewness A Z Skewness Time
za_kurtosis A Z Kurtosis Time
za_energy A Z Energy Time

smaa G X and Y Signal magnitude area Time
yg_peak_count_fft G Y Number of peaks Freq.

smaa_fft A Z Signal magnitude area Freq.
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Table D.8: Test case three - Naive Bayes features used
Feature Sensor Axis Feature Domain
zg_mean G Z Mean Time
yg_max G Y Maximum Time

xg_median G X Median Time
xa_IQR A X Interquartile range Time
zg_IQR G Z Interquartile range Time

xa_above_mean A X Values above mean Time
za_above_mean A Z Values above mean Time

zg_skewness G Z Skewness Time
yg_std_fft G Y Standard deviation Freq.
xa_IQR_fft A X Interquartile range Freq.

(a) SVM Depression - Smoothconfusion matrix (b) KNN Depression - Smooth confu-sion matrix
Figure D.3: Test case two: LR, SVM and KNN confusion matrix

(a) RF Depression - Smooth confusionmatrix (b) NB Left and Right confusion matrix
Figure D.4: Test case two: RF and NB confusion matrix

127
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D.3 Test case four: 50% left and 50% right depression
grouped and Smooth surface

Table D.9: Test case four - LR features used
Feature Sensor Axis Feature Domain

yg_mean G Y Mean Time
zg_mean G Z Mean Time
ya_var A Y Variance Time
xa_aad A X Average absolute difference Time

zg_median G Z Median Time
zg_neg_count G Z Negative count Time
zg_pos_count G Z Positive count Time

ya_energy A Y Energy Time
smaa G X and Y Signal magnitude area Time

zg_peak_count_fft G Z Number of peaks Freq.

Table D.10: Test case four - SVM features used
Feature Sensor Axis Feature Domain

xa_mean A X Mean Time
ya_mean A Y Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
ya_var A Y Variance Time
za_var A Z Variance Time
xg_var G X Variance Time
yg_var G Y Variance Time
zg_var G Z Variance Time
xa_IQR A X Interquartile range Time

Table D.11: Test case four - KNN features used
Feature Sensor Axis Feature Domain
xa_mean A X Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Time
za_var A Z Variance Time
xg_var G X Variance Time
zg_var G Z Variance Time
xa_std A X Standard deviation Time
xg_std G X Standard deviation Time
xa_mad A X Median absolute deviation Time
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Table D.12: Test case four - Random forest features used
Feature Sensor Axis Feature Domain
xa_mean A X Mean Time
ya_mean A Y Mean Time
za_mean A Z Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Freq.
yg_var G Y Variance Freq.
xa_mad A X Median absolute deviation Freq.

(a) LR Speed 50 % left and 50% rightdepression grouped and Smoothsurface confusion matrix
(b) SVM Speed 50 % left and 50% rightdepression grouped and Smooth sur-face confusion matrix

Figure D.5: Test case three: LR, SVM and KNN confusion matrix

(a) KNN Speed 50 % left and 50%right depression grouped and Smoothsurface confusion matrix
(b) RF 50 % left and 50% right depres-sion grouped and Smooth surface con-fusion matrix

Figure D.6: Test case three: RF and NB confusion matrix
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D.4 Test case five: Speed bump and Smooth surface

Table D.13: Test case five - LR Features used
Feature Sensor Axis Feature Domain

xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Time
xg_var G X Variance Time
yg_var G Y Variance Time
xa_std A X Standard deviation Time
za_std A Z Standard deviation Time
smaa A X and Y Signal magnitude area Time

Table D.14: Test case five - SVM Features used
Feature Sensor Axis Feature Domain
xa_mean A X Mean Time
za_mean A Z Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Time
yg_var G Y Variance Time
zg_var G Z Variance Time
xa_aad A X Average absolute difference Time

Table D.15: Test case five - KNN Features used
Feature Sensor Axis Feature Domain
xa_mean A X Mean Time
xg_mean G X Mean Time
yg_mean G Y Mean Time
zg_mean G Z Mean Time
xa_var A X Variance Time
ya_var A Y Variance Time
za_var A Z Variance Time
xg_var G X Variance Time
yg_var G Y Variance Time
xa_aad A X Average absolute difference Time
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D.5 Confusion matrices

(a) SVM Speed bump - smoothconfusion matrix (b) KNN Speed bump - smooth confu-sion matrix
Figure D.7: Test case four: LR, SVM and KNN confusion matrix

(a) RF Speed bump - smooth confusionmatrix (b) NB Speed bump - smooth confusionmatrix
Figure D.8: Test case three: RF and NB confusion matrix
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D.6 Test case six: Depression, speed bump and smooth

Table D.16: Test case six - SVM Features used
Feature Sensor Axis Feature Domain

xg_mean G X Mean Time
zg_var G Z Variance Time
xa_std A X Standard deviation Time
xg_aad G X Average absolute difference Time
za_min A Z Minimum Time
yg_mad G Y Median absolute deviation Time

yg_energy G Y Energy Time
smaa A X, Y and Z Signal magnitude area Time

zg_mean_fft G Z Mean Freq.
xg_peak_count_fft G X Number of peaks Freq.

Table D.17: Test case six - KNN Features used
Feature Sensor Axis Feature Domain
za_var A Z Variance Time
zg_var G Z Variance Time
za_std A Z Standard deviation Time
xa_max A X Maximum Time
xa_mad A X Median absolute deviation Time
zg_IQR G Z Interquartile range Time

avg_result_accl A X, Y and Z Average resultant Time
xg_max_fft G X Maximum Freq.

xg_maxmin_diff_fft G X Max-Min difference Freq.
yg_kurtosis_fft G Y Kurtosis Freq.

Random Forest Features used:
Table D.18: Test case six - Random Forest Features used

Feature Sensor Axis Feature Domain
za_mean A Z Mean Time
xg_var G X Variance Time
xa_mad A X Median absolute deviation Time
yg_mad G Y Median absolute deviation Time

ya_peak_count A Y Number of peaks Time
xa_skewness A X Skewness Time
xa_max_ftt A X Maximum Freq.
xg_max_fft G X Maximum Freq.

zg_median_fft G Z Median Freq.
za_peak_count_fft A Z Number of peaks Freq.
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Table D.19: Test case six - Naive Bayes Features used
Feature Sensor Axis Feature Domain

xg_mean G X Mean Time
xa_aad A X Average absolute difference Time

zg_median G Z Median Time
ya_IQR A Y Interquartile range Time

yg_std_fft G Y Standard deviation Freq.
xg_maxmin_diff_fft G X Max-Min difference Freq.

za_median_fft A Z Median Freq.
xg_peak_count_fft G X Number of peaks Freq.
yg_peak_count_fft G Y Number of peaks Freq.
za_skewness_fft A Z Skewness Freq.

(a) SVM Speed bump - smoothconfusion matrix (b) SVM Speed bump - smooth confu-sion matrix
Figure D.9: Test case four: LR, SVM and KNN confusion matrix

(a) RF Speed bump - smooth confusionmatrix (b) NB Speed bump - smoothconfusion matrix
Figure D.10: Test case three: RF and NB confusion matrix
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D.7 IMU Number of samples testing - 50 VS 75 VS 100 records

Alg Class Precision Recall F1score Accuracy

LR 0 0.66 0.58 0.62 0.641 0.62 0.70 0.66
SVM 0 0.54 0.42 0.47 0.531 0.52 0.64 0.58
KNN 0 0.59 0.54 0.56 0.581 0.57 0.62 0.60

RF 0 0.66 0.66 0.66 0.501 0.66 0.66 0.66
NB 0 0.64 0.46 0.53 0.601 0.61 0.60 0.59

(a) 50 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.65 0.65 0.65 0.651 0.65 0.65 0.65
SVM 0 0.61 0.56 0.58 0.601 0.59 0.64 0.62
KNN 0 0.57 0.57 0.57 0.571 0.57 0.57 0.57

RF 0 0.55 0.53 0.54 0.551 0.55 0.56 0.55
NB 0 0.58 0.51 0.54 0.571 0.56 0.63 0.59

(b) 75 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.69 0.66 0.68 0.691 0.68 0.71 0.69
SVM 0 0.46 0.39 0.42 0.471 0.47 0.55 0.51
KNN 0 0.47 0.49 0.48 0.471 0.46 0.44 0.45

RF 0 0.49 0.50 0.50 0.491 0.49 0.48 0.48
NB 0 0.48 0.41 0.44 0.481 0.49 0.56 0.52

(c) 100 records per class
Table D.20: IMU data set size test - Left (1) VS Right (0)134



Alg Class Precision Recall F1Score Accuracy

LR 1 0.71 0.74 0.73 0.802 0.72 0.66 0.695 0.96 1.00 0.98
SVM 1 0.56 0.70 0.62 0.702 0.59 0.40 0.485 0.93 1.00 0.96
KNN 1 0.55 0.58 0.56 0.672 0.54 0.44 0.485 0.89 1.00 0.94

RF 1 0.59 0.72 0.65 0.732 0.62 0.48 0.545 0.98 0.98 0.98
NB 1 0.61 0.70 0.65 0.752 0.64 0.56 0.605 1.00 0.98 0.99

(a) 50 records per class

Alg Class Precision Recall F1Score Accuracy

LR 1 0.60 0.65 0.63 0.742 0.62 0.56 0.595 0.99 1.00 0.99
SVM 1 0.56 0.61 0.59 0.702 0.58 0.49 0.535 0.95 1.00 0.97
KNN 1 0.57 0.53 0.55 0.702 0.56 0.56 0.565 0.94 1.00 0.97

RF 1 0.59 0.56 0.48 0.712 0.57 0.59 0.585 0.95 0.97 0.96
NB 1 0.56 0.60 0.58 0.712 0.57 0.53 0.555 1.00 0.99 0.99

(b) 75 records per class

Alg Class Precision Recall F1Score Accuracy

LR 1 0.65 0.68 0.67 0.762 0.65 0.62 0.645 0.98 0.99 0.99
SVM 1 0.53 0.59 0.56 0.682 0.53 0.46 0.495 0.99 1.00 1.00
KNN 1 0.54 0.53 0.53 0.672 0.53 0.49 0.515 0.93 1.00 0.96

RF 1 0.54 0.44 0.48 0.672 0.52 0.61 0.565 0.96 0.97 0.97
NB 1 0.48 0.53 0.50 0.652 0.49 0.45 0.475 1.00 0.98 0.99

(c) 100 records per class
Table D.21: IMU data set size test - Left (1), right (2) and smooth (5)



Alg Class Precision Recall F1score Accuracy

LR 0 0.93 1.00 0.96 0.961 1.00 0.92 0.96
SVM 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00
KNN 0 0.93 1.00 0.96 0.971 1.00 0.92 0.96

RF 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00
NB 0 1.00 0.98 0.99 0.991 0.98 1.00 0.99

(a) 50 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.95 0.99 0.97 0.971 0.99 0.95 0.97
SVM 0 0.99 1.00 0.99 0.991 1.00 0.99 0.99
KNN 0 0.93 1.00 0.96 0.961 1.00 0.92 0.96

RF 0 0.99 0.99 0.99 0.991 0.99 0.99 0.99
NB 0 1.00 0.99 0.99 0.991 0.99 1.00 0.99

(b) 75 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.94 1.00 0.97 0.971 1.00 0.94 0.97
SVM 0 0.99 1.00 1.00 0.991 1.00 0.99 0.99
KNN 0 0.94 1.00 0.97 0.971 1.00 0.94 0.97

RF 0 0.99 0.99 0.99 0.991 0.99 0.99 0.99
NB 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00

(c) 100 records per class
Table D.22: IMU data set size test - Left & right (0) and smooth (1)

Alg Class Precision Recall F1score Accuracy

LR 0 0.96 1.00 0.98 0.981 1.00 0.96 0.98
SVM 0 0.98 1.00 0.99 0.991 1.00 0.98 0.99
KNN 0 0.89 1.00 0.94 0.941 1.00 0.88 0.94

RF 0 0.98 1.00 0.99 0.991 1.00 0.98 0.99
NB 0 1.00 0.98 0.99 0.991 0.98 1.00 0.99

(a) 50 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.97 1.00 0.99 0.991 1.00 0.97 0.99
SVM 0 0.99 1.00 0.99 0.991 1.00 0.99 0.99
KNN 0 0.91 1.00 0.96 0.951 1.00 0.91 0.95

RF 0 0.99 0.99 0.99 0.991 0.99 0.99 0.99
NB 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00

(b) 75 records per class

Alg Class Precision Recall F1score Accuracy

LR 0 0.97 1.00 0.99 0.981 1.00 0.97 0.98
SVM 0 0.99 1.00 1.00 0.991 1.00 0.99 0.99
KNN 0 0.94 1.00 0.97 0.971 1.00 0.94 0.97

RF 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00
NB 0 1.00 1.00 1.00 1.001 1.00 1.00 1.00

(c) 100 records per class
Table D.23: IMU data set size test - Speed bump and smooth



Alg Class Precision Recall F1Score Accuracy

LR 3 0.85 0.92 0.88 0.894 0.90 0.76 0.835 0.93 1.00 0.96
SVM 3 0.81 0.70 0.75 0.844 0.75 0.82 0.785 0.96 1.00 0.98
KNN 3 0.82 0.74 0.78 0.854 0.80 0.80 0.805 0.91 1.00 0.95

RF 3 0.72 0.84 0.78 0.844 0.82 0.72 0.775 1.00 0.96 0.98
NB 3 0.75 0.80 0.78 0.854 0.79 0.76 0.785 1.00 0.98 0.99

(a) 50 records per class

Alg Class Precision Recall F1Score Accuracy

LR 3 0.75 0.71 0.73 0.824 0.78 0.75 0.765 0.90 1.00 0.95
SVM 3 0.64 0.71 0.67 0.764 0.68 0.59 0.635 0.97 1.00 0.99
KNN 3 0.62 0.57 0.60 0.734 0.61 0.63 0.625 0.95 1.00 0.97

RF 3 0.52 0.47 0.49 0.684 0.52 0.59 0.555 0.99 0.97 0.98
NB 3 0.58 0.59 0.58 0.724 0.59 0.59 0.595 1.00 0.99 0.99

(b) 75 records per class

Alg Class Precision Recall F1Score Accuracy

LR 3 0.86 0.79 0.82 0.884 0.83 0.85 0.845 0.95 1.00 0.98
SVM 3 0.71 0.77 0.74 0.824 0.76 0.68 0.725 0.99 1.00 1.00
KNN 3 0.72 0.69 0.70 0.804 0.72 0.71 0.715 0.95 1.00 0.98

RF 3 0.62 0.64 0.63 0.754 0.65 0.65 0.655 0.99 0.96 0.97
NB 3 0.68 0.69 0.69 0.794 0.69 0.70 0.705 1.00 0.98 0.99

(c) IMU data set size test - 100 records perclass
Table D.24: IMU data set size test - Depression, speed bump, smooth
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