Generation Of Synthetic Data To
Improve Financial Prediction Models

Stefan Xuereb

Supervisor: Dr. Vince Vella

July, 2023

Submitted in partial fulfilment of the requirements for the degree of M.Sc. in
Artificial Intelligence.

L-Universita ta' Malta
Faculty of Information &
Communication Technology

L-Universita
ta' Malta

University of Malta Library — Electronic Thesis & Dissertations (ETD) Repository

The copyright of this thesis/dissertation belongs to the author. The author’s rights in respect of
this work are as defined by the Copyright Act (Chapter 415) of the Laws of Malta or as modified
by any successive legislation.

Users may access this full-text thesis/dissertation and can make use of the information
contained in accordance with the Copyright Act provided that the author must be properly
acknowledged. Further distribution or reproduction in any format is prohibited without the
prior permission of the copyright holder.

Acknowledgements

The word wonder has two related meanings. The first is the emotion that
comes out of inquiry. The second, that is an even more potent emotion,
is what is felt when having an aesthetic experience that was previously
unknown to you. The time spent studying this subject was for me, a source
of constant wonder. | am truly grateful to the people that have made the
time | have spent on this course such an enriching experience, namely my
supervisor, Dr. Vince Vella, all the tutors of the various courses and my
partner, Althea, in her unwavering support.

Abstract

The main issue at the heart of this dissertation is the improvement of ML
financial prediction systems through the use of augmented training data.
An overview and assessment of various financial data synthesis methods
has been carried out. To be able to accomplish this assessment, a review
of evaluation methods had to be undertaken keeping in mind that asset
price time sequences have characteristics that will be missed if only the
typical statistical measures are used. This is because asset time sequences
have particular patterns that play out over the time dimension in addition
to the magnitude dimension.

Augmented asset price time sequences may be useful in a number of sce-
narios. High fidelity synthetic data may be needed to substitute real data
to preserve confidentiality. The temporal portions of the data that are of
interest may be short as is the case for financial bubbles or short lived
changes in the behavior of market participants which require the training
data to exhibit these particular characteristics repeatedly. In addition to
this, ML systems improve in their ability to deal with unseen data if they
are trained on larger datasets. The objective of this work is to choose the
best performing (in terms of fidelity) financial data synthesis method and
to verify that the data thus generated actually improves the performance
of an asset price prediction system.

We undertook to use a number of qualitative visual evaluation metrics
that helped confirm the quantitative assessments carried out. This re-
sulted in SigCWGAN being selected. The asset time series generated us-
ing this GAN were then used to train an ARIMA/RNN asset price pre-
diction system. The data obtained using SigCWGAN did, in fact result in
an improvement in the performance of the predictive system we used in
terms of MAE, MSE and MAPE metrics.

Contents

List of Figures

List of Tables

List of Abbreviations

1

Introduction

1.1 Motivation e
1.2 Aimand Objectives e
1.3 Contributions e
1.4 DocumentStructure e

Background and Literature Review
2.1 Historical Issues Regarding Financial Prediction
2.1.1 Fundamental Analysis
2.1.2 Technical Analysis
2.2 Efficient Market hypothesis
2.3 Machine LearninginFinance
24 Neural Networks e
2.5 GANS e
251 EarlyGANHistory,
2.5.2 Supervised vs unsupervised learning
2.5.3 Generatortechnologies
2.5.4 Problems manifested by theseearly GANs
2.5.5 Solutions adopted to overcome early problems
2.6 Prediction Algorithms
2.6.1 Prediction of asset pricesortrends
2.6.2 Technical Analysis Indicators
263 Arima ... e

Xi

Xiii

XV

CONTENTS

264 RNN . . . e 32
2.6.5 The Benchmark paper prediction algorithm 32
2.7 Evaluation 33
2.7.1 Evaluation MethodsSurvey 34
2.7.2 Visual Evaluations 36
273 PCAandt-SNE 40
2.7.4 Quantitative Evaluation 43
2.8 Time Series Augmentation 43
2.9 Synthesis and AugmentationMethods 48
2.9.1 Non-GAN AugmentationMethods 48
2.9.2 Synthesis and Augmentation of Financial Time Series 52
210 GANsinthisstudy e 54
2.10.1 Wassersteindistance (WD) 54
2.10.2 Signature Transform 56
2.10.3 SIigCWGAN e e 57
2.10.4 BigGAN e e 58
211 Conclusion e 60
Methodology 63
3.1 Experiments Overview 63
3.2 Experiment 1a- GAN Evaluation 63
3.2.1 Motivation 63
3.2.2 Actionsundertaken 65
3.23 Data e 65
3.24 ExperimentDesign., 67
3.25 GANs . .. e 68
3.2.6 EvaluationCriteria 69
3.2.7 Discriminative and Predictive Metrics 70
3.2.8 Selectionof parameters, 71
3.29 ExecutionDetails. 71
3.3 Experiment 1b - Non-GAN method evaluation 72
3.3.1 Motivation e 72
3.3.2 Actionsundertaken 73
3.3.3 Non-GAN Augmentationmethods 73
334 Data 73
3.3.5 EvaluationCriteria 73

CONTENTS

3.4 Experiment 2 - Improving daily return prediction

using Syntheticdata 74

3.4.1 Motivation 74

3.4.2 Actionsundertaken e 74

343 Data 74

3.4.4 Replication of BenchmarkPaper 76

345 EvaluationCriteria 77

3.5 Hardware Considerations 78
3.6 Softwareand Libraries 78

4 Results and Evaluation 81
4.1 Lack of EvaluationMethods 81
4.2 VisualEvaluations 81
4.3 Experiments e e e 86
4.3.1 DataPreparation 86

4.3.2 Experimentla e 86

4.3.3 Experimentlb 88

4.3.4 Experiment 2 and the BenchmarkModel 89

44 SUMMANY . . o o e e e e e e e e 91

5 Conclusions 93
5.1 Revisiting the Aims and Objectives 93
5.2 Critique and Limitations 94
53 FutureWork 95
5.4 Potential Applicability 97
55 FinalRemarks 98
References 99
Appendix A Non-GAN Stylised Facts 115
Appendix B Preliminary non-GAN Plots 127
Appendix C GAN Evaluation Methods 131
Appendix D BigGAN Layer Summary 133

List of Figures

2.1 Machine Learning Taxonomy - from Milana and Ashta (2021) 12
2.2 Autoencoder - from Grietzer (2017) e 17
2.3 GAN Architecture - from Chaudharietal. (2020) 17
2.4 Gaussian Mixture Model taken from Takagi and Pallez (2009) 21
2.5 DCGAN Generator - from Liuetal. (20183a) 24
2.6 Prediction Algorithm Taxonomy 26
2.7 stylised facts - from Takahashietal. (2019) 37
2.8 MNIST PCA and t-sne plots - from Thakur (2020) 42
2.9 Time Series AugmentationMethods L. 46
2.10 Non-GAN Augmentation e 47
2.11 Vanishing Gradient - from Violante (2018) 55
2.12 WGAN Gradient - from Arjovsky etal. (2017). 55
2.13 Wavenet - from Oord et al. (2016) 57
3.1 Experiment 1 Workflow 68
3.2 Time series for 200and 1000 epochs 72
3.3 Experiment 2 Benchmark code flowchart 75
4.1 Linear Unpredictabilityo 81
4.2 Heavy Tailed Distribution 82
4.3 Volatility Clustering 82
44 Lleverage Effect 83
4.5 Coarse-FineVolatility o 83
4.6 Gain-Loss Asymmetry e e 83
4.7 Returns 84
4.8 Linear Distribution 84
4.9 Probabiity Density Function 84
4.10 Autocorrelation e 85
411 SIigCWGAN . . . e 87

Xi

LIST OF FIGURES

412 BigGAN 87
413 Window Slice e 88
414 Window Warp . . . o o o e e e 88
A.1 Linear Unpredictability, 116
A.2 Heavy-Tailed Distribution 117
A.3 Volatility Clustering 118
A4 Leverage Effect 119
A.5 Coarse-FineVolatility 120
A.6 Gain-Loss Asymmetry 121
A7 LogReturns e e 122
A.8 Linear Distribution 123
A.9 Probability Density Function, Skewness and Kurtosis 124
A.10 Autocorrelation Function 125
B.1 Jitter e 127
B.2 Rotation 127
B.3 Scaling 128
B4 MagnitudeWarp 128
B.5 WindowSlice e 128
B.6 Permutation e 128
B.7 Spawner e e e e 129
B.8 TimeWarp e 129
B.9 WindowWarp 129
B.10 Random Guided Warp e 129
B.11 Discrim. Guided Warp 130
C.1 GANEvaluationMethods 132

Xii

List of Tables

21
2.2
2.3
24

3.1

4.1
4.2
4.3
4.4
4.5

D.1
D.2

Solutions to improve GAN performance 25
Time Series Evaluation Methods 34
General Time Series EvaluationMethods 35
Numeric and Visual EvaluationMethods 36
Experiments corresponding to Objectives 64
Skewness and Kurtosis Comparison, 85
S&P500 Yoon Evaluation e 87
Experiment 1bResults 89
Benchmark paper replication 90
Experiment 2 e 90
BigGAN generator 133
BigGAN discriminator 135

xiii

List of Abbreviations

ANFIS neuro-fuzzy inference system

ANN Artificial Neural Networks

AR-FNN autoregressive feedforward neural network
AR Autoregression

ARIMA Autoregressive Integrated Moving Average
CNN Convolutional Neural Networks

CV Computer Vision

DBN Deep Belief Network

DL Deep Learning

DSS Decision Support System

EMH Efficient Market Hypothesis

GA Genetic Algorithms

GARCH Generalized autoregressive conditional heteroskedasticity
GMM Gaussian Mixture Model

GRU gated recurrent unit

HMM Hidden Markov Model

HSI Hong Kong Hang Seng Index

L.LL.D Independent and identically distributed

| Integrated

ILSVRC ImageNet Large Scale Visual Recognition Challenge
IXIC NASDQ Index

KOSPI Korea Composite Stock Price Index 20 O

MA Moving average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

XV

List of Abbreviations

MLP Multi-Layer Perceptrons

MSD mean squared deviation

MSE Mean Squared Error

N225 Nikkei index

NB Naive Bayes

NN Neural network

PCA Principle component analysis
PSO Particle Swarm Optimisation
RBM Restricted Boltzmann Machine
ResNet Residual Networks

RF Random Forest

RNN Recurrent Neural Networks
SSEC Shanghai Composite Index

SVR Support Vector Regression
t-SNE t-Distributed Stochastic Neighbour Embedding
TA Technical Analysis

UCR University of California Riverside
VAE Variational Autoencoder

VGG Visual Geometry Group

XVi

1 Introduction

Synthetic data is defined by Nikolenko (2021) as "data produced artificially with the pur-
pose of training machine learning models". Akyash et al. (2021) state that "Data Augmen-
tation which refers to generating new training samples to generalize the model" and this
gives the impression that augmentation is synonymous with synthesis. We have found
the word augmentation used in a similar way in a number of papers (lwana and Uchida,
2021a; Oh et al., 2020; Shorten and Khoshgoftaar, 2019). The word augmentation means
"to enlarge" and in computer vision an augmented data set is one were the original real
data set has new synthetic images added to it. In this application augmented data simply
means new synthetic data that is added to the original data.

In the case of time sequences there is a distinction that must be made. We adopt the
Nikolenko (2021) definition for the word "synthetic" but we will here use "augmented" as
meaning a time series that has portions of synthetic data added to real data.

The term financial prediction also needs to be put in the context of the work presented
here. Financial prediction encompasses a number of financial areas where forecasting or
prediction are performed. Definitions are often fairly elastic and generally depend on
the area of discourse and the particular author. The terms forecasting and prediction
are often used interchangeably though forecasting is usually used in qualitative terms
as often happens when the management of a company discusses changes in strategic
direction. We, here, adhere to the quantitative meaning of prediction where financial
models of some mathematical or computational form are used to estimate some statistic.
Businesses monitor and attempt to forecast a number of internal statistics like projected
cash flow, future sales, costs of inputs and others. The financial quantities that are at
the focus of this work are asset or index prices as they are issued by the various stock
exchanges around the world.

The issue that will be dealt with in this dissertation is whether artificially generated
asset price time series will result in the improvement in the capability of a stock price
prediction system in terms of a number of standard accuracy metrics.

CHAPTER 1. INTRODUCTION

1.1 Motivation

A number of related rationales have influenced individuals and organisations involved in
finance to investigate data synthesis and augmentation. At the root of this interest is the
ongoing advance in the capabilities of machine learning (ML). The use of ML in finance is
clearly motivated by the fact that its application has resulted in substantial improvement in
profitability, risk management and the reduction in errors of human origin (Van Liebergen
etal., 2017).

The performance of a system is judged on the quality of its output given a range of
inputs in its operational phase (i.e. not during training). ML systems fall under one of
two basic categories: Regression or Classification. Regression operates like a continuous
mathematical function, i.e. given an input X from a given domain, the system will give an
output Y usually in a continuous range. Classifiers, on the other hand, will produce output
that falls in discrete classes. In finance both of these types of systems are employed. Thus,
the quality of a financial ML system is measured on how close to the correct answer, be
it a class or a value, the system produces. After multiple repetitions during the testing
phase, various statistics relating to the quality of the output of the system are produced.

Quality of the system output can be measured along two dimensions; bias and vari-
ance. To understand the meaning of these terms one should imagine the configuration
of darts landing on a target. The diffusion of the darts is equivalent to the variance; thus
low variance implies that the darts have landed close together. Bias, on the other hand,
measures how far off-target the cluster of darts is.

Two fundamental factors in the making of an ML system are the algorithm and the data
on which the system is trained. The quality of the system depends closely on both these
factors. A high level overview of ML systems, including academic papers and text books
will concentrate primarily on algorithms; their comparison and relative performance. This
literature will deal with data in terms of its sourcing and pre-processing such that it is
suitable as input to the given ML system.

An aspect pertaining to the issue of data that has been drawing increased attention in
the literature is the question of the sufficiency of the volume of data available to ML sys-
tems (Liu et al., 2022). Particularly in the case of neural networks, the more nodes these
have, the more data is needed to stabilise the weight values of the system’s nodes during
the training phase. Thus, the issue of the volume of training data becomes predominant.
It is easy to see that even though an advanced and complex algorithm may be available
it will be rendered useless unless a suitable amount of data is available for training. This
lack of data may lead to poor system performance in that it will either under-fit or over-fit
its output. Under-fitting results in a lack of output accuracy. Over-fitting happens when

2

1.1. MOTIVATION

the system is accurate when given data it has been trained with but performs badly with
unseen data. There are numerous cases where this happens in Financial applications of
ML. For example, ML is often used in the prediction of future stock values. Oftentimes
the only data available for these prediction systems are the daily opening and closing
prices. Thus, a year's worth of data will have 240 data points where the amount of data
to properly train the ML system may be several thousand.

Another type of problem arising from insufficient data is analogous to class imbalance
in tabular data (time sequences are predominant in finance, particularly in stock forecasts).
This problem manifests itself in at least two ways. First is the behaviour (i.e. adopted
strategies) of financial market traders, where successful strategies will only be used for a
finite period of time, after which the strategy no longer yields a profit (Assefa et al., 2020).
These changes in behaviour will affect the stochastic quality of the stock’s time series.
This means that if traders have recently adopted a new strategy and the ML system is
capable of identifying this trend, it will be unable to do so if it is not trained on a sufficient
amount of data containing the hidden new trend. This new trend may exist in only the
most recent data (possibly a couple of months). This makes the problem of a sufficient
volume of data considerably worse.

The second problematic area is the trends that are only temporary but may re-occur
in the future like the rise of financial bubbles and their bursting (Zhou et al., 2019). These
have occurred very rarely and are another case where sufficient data could lead to the
detection of a very important trend in a time series.

The two cases mentioned above are simply two special cases where additional rele-
vant data will improve the performance of financial ML systems. The value of data syn-
thesis and augmentation must not be underestimated in their ability to improve the per-
formance ML systems in general.

Since the need for suitable data is an integral part of the implementation of any ML
system, the scope of application of augmentation technology is similarly very broad. The
choice made here to focus on financial prediction is an attempt to balance general appli-
cability with a specific use case that is extensively employed in the finance industry.

Over the years since their introduction by Goodfellow et al. (2014) there has been a
growing interest in the effectiveness of Generative Adversarial Networks (GANs) in gen-
erating artificial data. Surveys like that performed by Pan et al. (2019) have pointed to an
implicit shift in preference towards the use of GANSs in artificial data generation.

That said, literature proposes a number of different approaches. Generative solutions
involving natural language have used Naive Bayes and Latent Dirichlet Allocation (Karim
and Rahman, 2013; Ma et al., 2023). Among the various generative applications of Gaus-
sian Mixture Models one should mention the generation of bag-of-visual words as used by

3

CHAPTER 1. INTRODUCTION

Fernando et al. (2012). Restricted Boltzmann Machines and their extension, Deep Belief
Networks have been used in generative applications of music and facial expressions (Lat-
tner et al., 2018; Susskind et al., 2008). Variational Autoencoders have found application
in the generation of graphs (Ma et al., 2018; Simonovsky and Komodakis, 2018).

1.2 Aim and Objectives

The aim of this dissertation is to identify generative machine learning approaches that
generate emulated data sets with satisfactory stochastic and temporal characteristics,
closely resembling real financial data "stylized facts." The generated simulated data will
be validated to ensure that it performs at least as well, if not better, than real data when
used to train a financial prediction system.

The following objectives have been identified as the means to achieve this aim. Our
first objective was to identify and validate whether GANs can be used to effectively gen-
erate synthetic financial data. We split our first objective into two sub-objectives:

« Objective 1a: We wish to analyse and compare different generative approaches
suggested by literature in the generation of financial synthetic data.

» Objective 1b: As a second part, We wish to analyse the performance of GANs in
relation to other methods proposed in literature.

» Objective 2: To identify whether the combination of GANs with a financial predic-
tion model can improve stock prices prediction performance.

1.3 Contributions

This dissertation focuses on enhancing financial prediction systems in machine learning
(ML) using augmented training data through the application of GANs. Various methods
for synthesizing financial data were comprehensively evaluated, considering the unique
temporal patterns present in asset price time sequences that cannot be captured by tra-
ditional statistical measures alone.

The chosen method, SigCWGAN (Signature Conditioned Wasserstein Generative Ad-
versarial Network), was validated using both qualitative and quantitative evaluations. The
generated asset time series were employed to train an ARIMA/RNN asset price prediction
system, leading to improved performance based on metrics like MAE, MSE, and MAPE.

As a result of this work, two contributions result from this undertaking:

4

1.4. DOCUMENT STRUCTURE

1. We show that GANSs, in particular SigCWGAN can be used to effectively generate
synthetic financial data.

2. In addition we show that data augmentation of real data with synthetic GAN gen-
erated data can improve the performance of financial prediction systems.

1.4 Document Structure

This document has been structured as follows: Chapter 2 provides the background infor-
mation that will help clarify the concepts discussed in this work. Chapter 3 describes the
methodology used and the structure of the solution presented here. Chapter 4 presents
the results of the experiments carried out to achieve the objectives described above to-
gether with an evaluation of these results. The final chapter serves as a conclusion were
an overview of what has been achieved is presented, as well as a discussion of future

work.

2 Background and Literature Review

This dissertation is a study of ways to improve financial prediction. The history of financial
prediction is instructive in understanding how this technology has arrived to its’ current
state, which is the focus of this work. Algorithmic trading is intimately concerned with
the ability of machines to predict stock market movements and thus, be able to benefit
from these predictions by executing the appropriate trades.

The technologies available to perform this financial prediction are overviewed in a
synopsis given below. Although the prediction technologies themselves are discussed
here, the main issue of concern is how these technologies can be improved by having
them operate on input that has been enhanced with the addition of synthetic data.

What follows is, thus, an overview of machine learning as applied to finance, trading
algorithms and data augmentation. Before addressing these issues, the question that was
most famously asked by Eugene Fama, i.e. is financial prediction at all possible, will be
dealt with.

2.1 Historical Issues Regarding Financial Prediction

In spite of Fama’s Efficient Market Hypothesis, researchers in the field of finance come
up with a range of methods to forecast the stock market (Cavalcante et al., 2016). One
school of thought follows what is called fundamental analysis, where statistics that are
used to evaluate the performance of companies are used to forecast future performance.
On the other hand there is technical analysis (TA), where predictions are based on the
assumption that observed trends in prices and volumes will reoccur in the future.

2.1.1 Fundamental Analysis

Fundamental analysis considers factors like the company’s balance sheet, the market and
economy it operates in. The amount of literature dealing with fundamental analysis is far
smaller than what is available regarding technical analysis (Cavalcante et al., 2016) since

7

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

it is much more challenging to build models that embody this knowledge and give accept-
able performance. Time series for gross domestic product, interest rates, customer price
indices, currency exchange rates and other macroeconomic indicators are used when do-
ing fundamental analysis (Boyacioglu and Avci, 2010) . Unstructured data like financial
news and blogs are also used but are difficult to deal with because of their varying for-
mats and irregular availability. One approach to handle these difficulties is text mining.
Other techniques used for stock price forecasting that is gaining traction are sentiment
analysis and social network analysis (Bollen et al., 2011) .

2.1.2 Technical Analysis

Technical analysis takes a completely different approach that mostly focuses on the ob-
servation of prices and volumes. The essential idea here is that price movements trace out
recognisable patterns that can be identified. The timely identification of these patterns
is used by traders to forecast what an asset price will do in the short term future as it is
assumed that the identified pattern will evolve in a predictable manner.

Technical analysis embraces a set of techniques that are essentially based on the be-
lief that history will repeat itself, that is, that past trends have a tendency to reoccur. The
origins of technical analysis may be traced back to Joseph de la Vega, a merchant from
Amsterdam with his accounts of the Dutch financial markets in the 17th century. Some at-
tribute technical analysis to Munehisa Homma, (1724-1803), also known as Sokyu Homm
who was a wealthy rice merchant from Sakata, Japan. He is believed to have originally
developed technical analysis because he invented candlestick charting, which is a funda-
mental technique of technical analysis even today.

The development of technical analysis in the US began later, in the late 19th century.
Scholars usually identify the writings of Charles Dow, who was the founder and editor
of " Customer’s Afternoon Letter" that was the precursor of the Dow Jones Industrial
Average. Dow is also remembered as the originator of the Dow Theory that has evolved
and is seen as the basis of today’s technical analysis.

Classical technical analysis (i.e. that performed by human traders) primarily deals with
what are known as technical indicators. Traders use Indicators as overlays on the chart
they are studying and this gives them additional information through suitable transfor-
mations of price and volume.

An overview of the literature reveals that technical analysis is the approach that has
been studied most (Aguilar-Rivera et al., 2015; Atsalakis and Valavanis, 2009; Cavalcante
et al., 2016). One of the underlying beliefs in technical analysis is that all new informa-
tion coming from news sources and published statistics, is already accounted for in stock

8

2.2. EFFICIENT MARKET HYPOTHESIS

prices. Thus the analysis of price patterns should be enough to predict future price move-
ments. Nazario et al. (2017) have carried out a survey of technical analysis studies over
55 years. This paper also presents an extensive study of technical indicators that are used
by technical analysts as their sources of buy and sell signals. There are, however, studies
like the one carried out by Park and Irwin (2007) that find that strategies that use techni-
cal indicators have limited success. Notwithstanding a widespread scepticism toward TA,
Park and Irwin (2004) have reviewed 58 positive studies from a total of 92.

There is ongoing controversy between the community of technical analysts operators
and the academics who study the subject. Flanegin and Rudd (2005) highlight this di-
vergence in a survey they carried out amongst academics and practitioners dealing with
technical analysis. It showed that TA operators ranked the books on TA in the given list far
higher than the academics. Strong (1987) had already noted that 60% of PhD’s believed
TA could not be used to improve investment selection and effectiveness. Malkiel (2019)
in his famous book "A Random Walk Down Street" asserts that TA "shares a pedestal with
alchemy". Lo et al. (2000) amongst others state that the effectiveness of technical analysis
is inferior to that of Fundamental analysis.

The main objection these authors attest is that asset price time sequences are like
random walks; their future behaviour cannot be surmised from their past; the sequences
have no "memory". This statement goes back to one of the founding fathers of Financial
Analysis as an academic subject; Louis Bachelier. In his 1900 PhD thesis Bachelier (1900)
comments "the mathematical expectation of the speculator is zero.". In Cowles 3rd and
Jones (1937) assert that stock market prices were fundamentally random. Cootner (1964)
made similar assertions. Eugene Fama (1965) wrote the seminal article in which he ex-
pressed his belief that the stock market is essentially random.

2.2 Efficient Market hypothesis

There are two fundamental questions that need to be tackled with regard to the possibility
of prediction in financial market prices. The first is whether the market allows profits to
be made if it is, in fact, "efficient" as stated by Fama (1965) in his thesis.

Some authors believe the EMH is a steady state theory rather than it holding true at all
times. Grossman and Stiglitz (1980) argue that since information is costly nobody would
seek it if it gave no advantage as stated by the EMH. Here we can also cite Samuelson’s
Dictum that states:

"Modern markets show considerable micro efficiency (for the reason that the minority
who spot aberrations from micro efficiency can make money from those occurrences and,

9

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

in doing so, they tend to wipe out any persistent inefficiencies). In no contradiction to the
previous sentence, | had hypothesized considerable macro inefficiency, in the sense of
long waves in the time series of aggregate indexes of security prices below and above
various definitions of fundamental values." quoted in Shiller (2015).

The second question is whether it is possible to predict asset prices or trends simply
by analysing the historical behaviour of the price of assets. If the "Efficient Market Hy-
pothesis" (EMH) were to be strictly correct then no profit could be made from technical
analysis (TA) or any analysis (including fundamental analysis). A definition of the EMH
states that "asset prices reflect all available information". This means that there should be
only one market price for any given asset and deviations from that price are guaranteed
to produce gains or losses once the buyers pay less or more for the said asset. A good
analogy to understand why the market price may be temporarily "out of kilter" is the con-
cept of steady state in economics. This is said to happen when there are no changes in
independent economic variables and thus dependent economic variables do not change
either. Thus, one could hypothetically calculate the value of dependent variables from
the appropriate theoretical laws. Economists do not believe that economies are ever in
"steady state" and, in fact, their subject is mostly about predicting economic outcomes
when independent variables change. In the same manner, the EMH should be seen as the
market’s hypothetical steady state.

The cost of information has been discussed by Cross et al. (2008). Rode et al. (1995)
of the Wharton school states that “substantial constraints on the information process-
ing time allowed,” where “there is also a continual abundance of new information made
available,” and that “this flow of information easily exceeds investor’s abilities to process
it completely.” Lo and MacKinlay (1988) in the article "The Adaptive Markets Hypothesis:
Market Efficiency from an Evolutionary Perspective" states that even if one accepts the
EMH, risk aversion varies and depends on market behaviour making it fluctuate with time.

The concept of "Information" should be looked into in the EMH definition. The EMH
assumes that "perfect information" is known to the market. What this means is that the
market as a whole is aware of the information necessary to value an asset but not that any
one participant is aware of that "perfect information”. In fact if it were the case that the
parties in a trade had perfect information, then the trade would most likely not happen
since no gain would accrue to any participant. This leads to understanding why trades do
in fact happen for two fundamental reasons.

First, the market and the market price for one particular asset do deviate from a "per-
fect market price" as events, especially trades themselves cause perturbances that take
time to settle back to the "steady state". An analogy to this is a guitar string. The steady
state is when the string is stationary and that would be the EMH price of the asset. Events

10

2.2. EFFICIENT MARKET HYPOTHESIS

are analogous to the string being struck and the oscillation of the string represents the
asset price being over or under it’s "real price". These oscillations can be the source of
profits or losses for traders.

The second reason why trades do in fact occur is that participants in the market hardly
ever possess "perfect information". The trade occurs, even if the market is in fact pric-
ing the asset correctly (which, as seen above hardly ever happens), because a deficit of
information leads one party in the trade to value the asset more than the market and
vice-versa.

A phenomenon that challenges the "purely random" point of view, as affirmed by the
EMH, is that of "fat tails". Much of the theory in academic financial analysis is based
on the normal distribution. This does not mean that there do not exist other statistical
distributions, but only that incorporating these more exotic distributions into the broader
theory is both hard and exceptional. This has lead to the fairly widespread view that
extraordinary market events like "Black Monday", the 2008 financial crises and indeed
the recent Covid-19 pandemic can "statistically" be ignored. Jackwerth and Rubinstein
(1996) state that:

"if the life of the universe had been repeated one billion times and the stock market
were open every day, a crash of that magnitude would still have been unlikely."

In his well known book "Why Stock Markets Crash" Didier Sornette (2009) states a
crash as large as the one that occurred on "Black Friday" should only happen once every
520 million years. This sort of faith in traditional statistical methods should surely justify
some level of scepticism.

A test of this scepticism was carried out by Lo and MacKinlay (2015) as they report the
results of the "Proportional Amplitude" test they carried out and found that stock market
price sequences fail this test. Larson (1960); Alexander (1961); Osborne (1962); Cootner
(1964); Steiger in Cootner (1964); Niederhoffer and Osborne (1966); and Schwartz and
Whitcomb (1977) also had previously made similar assertions.

There is also the question of the rationality of market participants who, according to
the EMH should behave rationally. Some irrationality has been introduced into the theory
by Black (1986) who allows for some noise trading that is not countered by "informed"
market participants.

The following is a list of behaviours that has been documented in the literature:

¢ Over-confidence based on little information (Barber and Odean, 2001; Fischhoff,
1980; Gervais and Odean, 2001).

¢ “Herding” (Huberman and Regev, 2001).

e Regret (Bell, 1982); Clarke et al. (1994).

¢ Miscalculation of probabilities (Lichtenstein et al., 1982).

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Classification
Supervised learning]<:‘
Regression

Reducing dimensionality

Machine Learning Unsupervised learning

Clustering

Skill acquisition

Reinforcement learning

Al

Robot improvements

Figure 2.1: Machine Learning Taxonomy - from Milana and Ashta (2021)

e Overreaction (De Bondt, 1993).
e Hyperbolic discounting (Laibson, 1997)

2.3 Machine Learning in Finance

In the last ten or fifteen years, artificial intelligence has seen a significant escalation in its
adoption in the field of economics (Agrawal et al., 2019; Brynjolfsson et al., 2021; Furman
and Seamans, 2019). Taddy (2018) states that Al is a technology with a very wide scope of
applicability. and has had an effect, directly or indirectly, in many academic, business and
industrial areas. The financial industry is one where Al has been more extensively used
(Biallas and O’Neill, 2020; Bredt, 2019). The range of ways in which Al has influenced
finance have been investigated academic literature for nearly forty years (Pau et al., 1986;
Pau and Tan, 1996; Shap, 1987).

Large Asset management companies like Black Rock, use Machine Learning (ML) tech-
niques like algorithmic trading and portfolio management. When dealing with portfolios
ML is used for rebalancing based on customer specifications (Tokic, 2018). ML is used to
moderate the biases that the human traders may have thus reducing potential risk. How-
ever Bhatia et al. (2020) claim that the technology is not mature enough to carry out risk
analysis for retail investors.

Mathematics, probability theory, and statistics are the theoretical foundations on which
ML is based. The main categories in ML are supervised learning, unsupervised learning,
and reinforcement learning as shown in figure 2.1 from Milana and Ashta (2021)

12

2.3. MACHINE LEARNING IN FINANCE

Supervised learning works by using feedback and labeled data (i.e. data that is unam-
biguously identified with a name or tag) to determine a correct outcome. On the other
hand, unsupervised learning determines structure or patterns from unlabeled data. Thus,
in unsupervised learning the system teaches itself autonomously. In Reinforcement learn-
ing the system must learn from the given data by credit assignment that is based on posi-
tive and negative messages (Boden, 1996; Li et al., 2018) . Reinforcement learning is used
in portfolio management where there is a need for continuous rebalancing (Luo et al.,
2019).

Algorithmic Trading systems are computational frameworks that are designed to re-
place or augment the work done by fund managers in selecting and trading financial in-
struments. This is done by adopting strategies that follow the same principles that human
fund managers use like portfolio optimisation and trend prediction but with the consider-
ation of a larger number of assets, at higher levels of accuracy and also at greater speed.
Fund managers’ goals are better profitability, lower draw downs and lower risk. It has
been reported (Burgess, 2021) that algorithmic trading improves on these criteria when
compared to the performance of human counterparts.

A problem that is continuously faced in the operation of algorithmic trading systems
is the dearth of available training data especially when considering advanced machine
learning models like Deep Learning (DL) Neural networks. One cause of this phenomenon
is the increase in complexity of the DL networks used in these systems that has been
facilitated by the continuous increase in component density that is available in the GPU'’s
that drive these networks as evidenced in van Rhijn (2020).

Another factor that justifies a greater demand for good quality training data is the fact
that some algorithmic trading strategies require specific types of data, like data arising in
high volatility periods or data that is typical of financial bubbles. It is a well known fact that
financial time series are non-stationary and the underlying distribution is ever changing
depending on the current market situation (Bures, 2021; Eckerli, 2021). This makes the
data availability a more difficult problem since data for specific conditions can be very
sparse. Le Guennec et al. (2016) and Lim and Zohren (2020) amongst others have stated
that one of the most significant drawbacks to using deep learning methods in algorithmic
trading is the shortage of usable training data. The number of parameters used in DL
neural networks is in the order of milions (Le Guennec et al., 2016). The number of data
points (closing prices for example) that are available for a particular asset in one year is
around 250.

Another effect that insufficient data has on neural network performance is that it leads
to overfitting. This is the result of the trade-off between bias and variance. A high bias
means that the model predictions are off target. High variance indicates the model predic-

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

tions are too diffuse. Implicit in this discussion are the concepts of over or under fitting.
Overfitting happens when the accuracy of the model is high when using training data and
low when used on unseen (test) data. The greater the complexity (i.e. layers and neurons)
the more data is necessary to avoid overfitting.

The work that we have engaged in is the investigation of suitable methods by which
the amount of available, good quality data may be increased. The issue of data augmenta-
tion has been investigated by a number of researchers in various areas with some positive
results being reported (Fons et al., 2020; Fu et al., 2020; Lim and Zohren, 2020).

Data augmentation methods must produce good quality data in that it must:

e be suitable to the application area

e accurately reproduce the statistical features of the original (real) data

e preserve any time-wise conditionality

Various researchers in financial trading systems (Eckerli, 2021; Fu et al., 2020; lwana
and Uchida, 2021b; Shorten and Khoshgoftaar, 2019) have attempted to address these
problems by looking into data augmentation methods. The current literature shows that
there is a preference for the use of GANs over other methods although a variety of GAN
architectures have been attempted and a critical review of these needs to be done. GANs
have been used in algorithmic trading by Efimov et al. (2020), Zhang and Khoreva (2019),
Takahashi et al. (2019), Snow (2020) and Wiese et al. (2020).

A significant problem that arises from the survey of GAN augmentation is the lack of
an agreement on a common evaluation criterion, thus special attention to this has been
given in this study. This also emerges from the comprehensive overview of GANs used
in finance that Eckerli (2021) has compiled. Thus the key motivation of this work is the
search for an optimal data augmentation technique that will translate into better algorith-
mic trading performance that gives rise to improved profitability.

2.4 Neural Networks

We will now turn to the core technology underlying ML; Neural Networks. Artificial Neu-
ral Networks (ANN) are strongly influenced by the structure and operation of biological
brains after the work of Rosenblatt (1957). In 1992 Siegelmann (1993) showed that ANNs
can function as Turing machines. Because of their simplicity, early adoption in numerous
fields and their well understood operation, they have been extensively adopted in the
forecast of asset prices in the stock market. Bustos and Pomares-Quimbaya (2020) state
that the Multilayer Perceptron (MLP) is the most often used ANN technique to forecast
stocks.

14

2.4. NEURAL NETWORKS

Neural networks (NN) technology is one of the foundational techniques in the field
of Al. Neural networks comprise of collections of connected neurons. Neural Networks
have a variable number of layers excluding the outer ones. Deep Learning refers to Neural
Networks that have multiple inner layers. Some network topologies allow connections to
be eliminated and new ones to be put in (Boden, 1996).

In Neural Networks outputs are connected to inputs via what are usually referred
to as hidden layers of neurons (Li et al., 2018). Each neuron in the layer is connected
to any number of other neurons. Each of these neurons performs only one calculation.
The neurons in these layers trigger according to non linear functions at their inputs and
outputs. This non linearity is essential to the operation of NNs to avoid what is called the
"vanishing gradient" problem.

Once the neuron fires, its signal is amplified or attenuated by a weight factor before
the signal reaches the neurons in the next neural layer. Each neuron will produce an
output depending on the reaction an activation function has to an input. The activation
function may be as simple as a threshold or may be considerably more complex as those
used in recent technologies like LSTMs and Transformers.

The connections are assigned weights that usually are modified by some algorithm.
The most common approach to establishing the connection weights is by back propaga-
tion. The algorithm works from the final output layer and moves backwards through the
intermediate layers until it gets to the input. This involves calculating the derivative of
the activation function of the outputting neuron and passing a value from the receiving
neuron back to the outputting neuron. Thus, the connection weights are sequentially
modified from the output layer back to the initial input layer. This is known as loss func-
tion minimisation.

When NNs were first used in finance they were considered to be an evolution of re-
gression models that were habitually used in the industry (Bodt et al., 1995). Eventually
it was seen that NNs (or artificial NNs) have superior generalization power when com-
pared to the statistical tools that were in use up to that time (Quah and Srinivasan, 1999).
Other advantageous characteristics NNs exhibited was the ability to organize themselves
from a random initialisation and the fact that they did not require complete data (Boden,
1996). Li et al. (2018) state that in DL there is no need to specify the logic of the system
being modelled. Boden (1996) asserts that the salient characteristics of NN's are pattern
recognition, the association between patterns, tolerance of messy and incomplete inputs,
and robustness.

Li and Mei (2020) state that neural networks "allow intuitive learning" and are often
more effective than the techniques normally used by technical analysis operators. One
acknowledged drawback is that it is difficult to explain the results obtained.

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

In a study of the Chinese financial markets, the prediction of asset returns using NNs
with two layers improved over what was attained using statistical techniques. The study
by Li and Mei (2020) also showed that predictions with one layer or three layers were not
as good as those obtained using two layers. More recent studies of NNs in finance are
Coelho et al. (2019) , Hu et al. (2018) Qiu and Song (2016) , Mingyue et al. (2016) and
Zhong and Enke (2017). These all used MLP models using the backpropagation technique.

2.5 GANs

Generative modelling, which is the main data augmentation technique investigated here,
is considered to be in the class of unsupervised learning in ML. It essentially amounts to
automatically acquiring patterns that occur in input data into some sort of digital structure
that can then be used to generate new instances that seem realistic and plausible when
compared to the original input data.

2.5.1 Early GAN History

GANs have been developed in the field of Computer Vision (CV). Their most acclaimed
contribution has been the ability to generate images of human faces that are completely
artificial and practically indistinguishable from images of real human beings. The technol-
ogy that preceded GANs and was a precursor to their development was Autoencoders.
The origin of autoencoders is variously attributed to LeCun et al. (1998); Bourlard and
Kamp (1988) ; Hinton and Zemel (1993) and as early as Rumelhart et al. (1986).

Autoencoders consist of two neural networks back to back. The first takes an image
as input and this is passed to smaller and smaller neural layers. This is done to extract
the essential features of the input image and produce a "compression” that encapsulates
the fundamental characteristics of the input image. This compressed version of the input
data is stored in what is called the "latent space". This configuration is shown in figure
2.2 below. The output of this stage is then passed to a decoder stage that reconstitutes
the original image. Autoencoders have proven to be useful in CV applications such as
"denoising" of images.

GANSs have a similar structure to autoencoders in that they consist of two networks
back to back. The first network performs the generation stage which attempts to produce
the digital structure that is required, for example the image of a human face. This digital
structure is then passed onto the second stage that functions as a discriminator. The job
of the discriminator is to decide if the data at its input is real or artificial. Feedback loops
provide the loss functions to both networks. The generator assesses its performance as it

16

Input Image Recenstructed

Image

Latent space
Representation

Latent
Space

™

[EE]

Encoder Bottleneck Decoder

Figure 2.2: Autoencoder - from Grietzer (2017)

Generative Adversarial
Network

Real
Samples

e

. IsD .
~. Correct? |

D

Discriminato

Generated
Fake
T Samples

i Fine Tune Training

Figure 2.3: GAN Architecture - from Chaudhari et al. (2020)

17

2.5. GANS

can tell if the discriminator has been "fooled" or not. The generator assessment is passed

onto the discriminator which determines if its weights need to be changed or not. This is
shown in figure 2.3.

This process is a zero-sum game, meaning that if the discriminator is successful the
generator is penalised (and must thus perform a further training iteration) or vice versa.
Ideally the process may terminate once the discriminator is "fooled" half the time; i.e it
considers all its’ input sequences (both real and fake) as being real.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The generator seeks to minimise the cross-entropy loss given by Equation 2.1

min V(G) = Ervp,,, [log D(x)] + .., [log(1 — D(G(z)))] (2.1

The discriminator seeks to maximise the cross-entropy loss given by Equation 2.2

max V(D) = Exp,, log D(x)] + Eoop o log(1 - D(G()] (22

The formal equation representing the overall GAN minimax Loss function is given in
Equation 2.3.

mGin max V(D,G) = Exnpypn log D(x)] + E..p.(z) [log(1 — D(G(z2)))] (2.3)

The symbols used are as follows:

D = Discriminator

G = Generator

Pz(z) = Input noise distribution
Pdata(x) = Original data distribution
Pg(x) = Generated distribution

[E = Expectation

The left hand side of the equation means that the discriminator loss function is max-
imised whereas the generator loss function is minimised.

The generator stage of a GAN is seeded by a fixed length vector that comprises a
series of normally distributed random numbers. This vector functions in a similar fashion
to the latent space in autoencoders and goes by the same name. Once the training phase
has completed the various portions of the latent space will generate specific parts of
the synthetic object. Thus, seeding the latent space with a different random vector will
generate a new object that preserves the stochastic behaviour of the objects the GAN
was trained on. The latent space may therefore be seen as a "compression" of the high
level characteristics found in the training data.

The generator is the final product of the GAN system since it alone can be used to
produce new synthetic data. This means that after training the discriminator may be dis-
carded.

We will now give a brief overview of supervised and unsupervised learning as they
are typically understood in ML literature.

18

2.5. GANS

2.5.2 Supervised vs unsupervised learning

The discriminator and generator of a GAN belong to two different classes of ML mod-
els. The discriminator is an example of a predictive model, namely a classifier. Typically
classifiers are trained on labeled data and this labeling is a process that requires human
action and so classifiers are categorised as supervised models. Classifiers usually have to
distinguish between objects that fall under a number of different classes but in the case
of GAN discriminators they perform a simpler binary operation; i.e. is the input data real
or fake?

The use of labelled or tagged data is the fundamental characteristic that distinguishes
supervised learning in machine learning. This data is used to train or “supervise” algo-
rithms which classify data or make predictions. The resulting outputs are then evaluated
using any number of metrics that will be discussed further down.

During training in supervised learning, the algorithm “learns” from the training dataset
by making predictions iteratively on the input data and adjusting progressively towards
the correct answer. Supervised learning models are typically more accurate than unsu-
pervised learning models (Boden, 1996). Since human intervention is required to tag the
data, this sometimes causes misclassification errors.

Unsupervised learning models, work autonomously to discover the structure and lay-
out of the input data. Some human intervention may still be needed for validation of the
output, but the process usually gives a good starting point for human operators to elab-
orate. These clustering and classification systems are used to suggest to the customers
of online retailers, like Amazon, other products they might be interested in. Unsuper-
vised learning models are used principally in: clustering, association and dimensionality
reduction.

A subclass of unsupervised learning is that where the model’s function is to summarise
the statistical distribution of the input data so that a data set with analogous statistical
characteristics may be generated. These models are known as generative models. A very
simple generative model that operates on Gaussian distributions will simply measure the
mean and standard deviation of the input and produce a random number sequence fitting
those characteristics. This is the general principle behind generative models. Generative
models may not only produce plausible data sets but have produced data sets that have
proven to be indistinguishable from the real object (be it images or time sequences like
sound and financial data)

19

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.5.3 Generator technologies

Apart from GANs there are a number of other techniques that have been used as genera-
tive models. These generator models may be seen to fall under the two main technology
classes that underly machine learning: statistical methods and neural networks. We will
review three statistical methods; Naive Bayes, Latent Dirichlet Allocation and Gaussian
mixture models.

Before looking at Naive Bayes we will first describe an even simpler statistical method
that arises from the use of the normal distribution. If we are to model a system that ex-
hibits one random variable that follows the normal distribution, then we could model
that system by establishing the mean and standard deviation of the system. A genera-
tive model that simulates the given system is simply a random number generator whose
output are data points that fit in a Gaussian with the given mean and standard deviation.
Thus, this generator’s data will be a table consisting of one column.

A Naive Bayes generator model caters for multivariate data points, i.e. datasets whose
elements have a number of different characteristics, like the vehicle population in a city.
Vehicles will have a number of characteristic features; Type (sedan, truck, motorbike, etc),
make, colour, Engine capacity, seating capacity and possibly other features. Data may be
collected in a multicolumn database. The Naive Bayes generator is to generate a similar
table whose element distribution follows that of the real database.

A Naive Bayes classifier gives an estimate of the identity of a vehicle whose character-
istics were not in the training data. It does this by first calculating the probability of each
different element type, for example the probability of a vehicle being a sedan, truck or
motorbike from the actual data. The Naive Bayes algorithm is simply the multiplication of
the of the characteristics being considered, for example, the probability for bhp multiplied
by the probability for top speed if those are the only characteristics in the classification
guery. Thus the classifier will be able to tell that a car is a Ferrari given the engine power
and top speed because the probability for 400bhp and 300 km/h is far higher for a Fer-
rari than any other car type. The Naive Bayes generator ensures that the population of
elements in the generated table follows the probability distributions of the original data.

Latent Dirichlet Allocation that was developed by Blei et al. (2003) is typically used to
classify texts. In the case of texts the allocation works over three levels; words make up
books and books belong under topics. The distribution of words will differ depending on
the topic the book is dealing with. Evidently, medical books will contain medical terms and
law books will contain legal terms. Thus, once books have been classified under certain
topics in the training phase, the respective word distributions will be established. Given
these statistics an unclassified text may be given different probability scores that it be-

20

2.5. GANS

&0

140

120

100

41

40

20

'\\II.!

Figure 2.4: Gaussian Mixture Model taken from Takagi and Pallez (2009)

longs to a series of topics, resulting in an allocation with the highest probability. Similarly
to the data generation using Naive Bayes one may generate a text corpus that simulates
certain topics using LDA by ensuring that the word distributions in the generated texts
follows those in real texts.

Gaussian Mixture Models (GMM) are fundamentally a clustering technique. The pre-
eminent clustering technique is k-means clustering were the algorithm will identify groups
of elements that have similar characteristics. The shortcoming of the k-means method is
that it will be unable to identify superimposed clusters. GMMs overcome this problem.
The algorithm is similar to k-means in that it starts by randomly superimposing a number
(k) n-dimensional Gaussians over the target dataset. Let us say that each Gaussian is given
an identifying colour, red and blue, for example. Each point on the dataset is attributed
the probability of belonging to the superimposed Gaussian thus having a red component
and a blue component. As a second step, new red and blue Gaussians are superimposed
on the data elements where this time the red Gaussian covers the red "spot" distribution

21

00

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

and the blue Gaussian covers blue spots. This second step causes the distributions to
shift. The underlying data points are again given red and blue weights as in the first step.
The process is iterated until the overlying Gaussians stop moving. This will result in super-
imposed Gaussians as seen in figure 2.4. Here again, once the GMM process is performed
on the given data, the generation process to simulate the data will simply produce data
that follows the Gaussian distributions as ascertained by the GMM process.

Now we move to Neural Network Generators. Hinton and Sejnowski (1983) devel-
oped the Restricted Boltzmann Machines (RBM) that like VAEs have the ability to learn
the statistical characteristics of the input dataset. RBMs are based on the computation-
ally intensive Boltzmann Machine but operate with a reduced number of connections.
Restriced Boltzman Machines (RBM) may be used as data generators but are the con-
stituent element of the more complex Deep Belief Network (DBN). The RBM is a two
layer network were the first layer nodes are the visible nodes and the second layer nodes
are called the hidden nodes. Each visible neuron is connected to all the hidden neurons
but not to the other visible neurons. The hidden neurons are also not connected among
themselves. An RBM may be seen as someone looking at himself in a reflecting surface
whose image is constantly improving as the light photons bounce back and forth from
the subject to the image. Thus, an RBM will transmit the inputs at the visible layer onto
the hidden layer through weighted connections. These hidden neurons will simply trans-
mit the activation they receive back to the visible neurons over the weighted connections.
The loss function to be minimised is thus the difference at the visible neurons of the input
signal and the signal received from the hidden neurons. Once this settles to a minimum,
(i.e. the signal coming from the hidden neurons is very similar to the input) the RBM will
act as a generator that has the characteristics of the original input. Liang et al. (2017) used
this technique to predict the movement of the SSE Composite and the FTSE100 indices
by generating data with new features. Random Forest, SVM and Logistic Regression were
used as classifiers trained both on real and generated data achieving an accuracy of 61%.
Li et al. (2017) used a similar system trained on the S&P500.

DBNs were also developed by Hinton et al. (2006) and are simply stacked RBMs were
the hidden layer of the first RBM is attached to the visible layer of the second RBM. This
stacking can be repeated to give an N layer DBN. Each layer is trained independently, so
when the first layer is trained it is frozen and the second layer RBM is then trained. The
process carries on until all the RBM layers are trained. The fully trained DBN is then used
as a generator.

Autoencoders have been overviewed in section 2.5.1. Another architecture derived
from Autoencoders is the Variational Autoencoder (VAE). Kingma and Ba (2014) proposed
this solution where the encoding stage is regularised explicitly to follow the distribution of

22

2.5. GANS

the input samples. This is achieved by adopting a loss function that is a development over
the loss function in the original autoencoder that minimised the loss between the output
and input distributions. One shortcoming of the standard autoencoder was the way the
elements in the latent space were set with no particular scheme resulting in an essen-
tially random structure. Thus two adjacent latent space elements would result in two
completely different output morphologies. The variational autoencoder adopts a scheme
whereby the latent space is given a coherent structure. One way to understand this is
to imagine a 2 dimensional colour chart representing the latent space of a variational en-
coder where adjacent pixels would have similar colours and moving around on the colour
chart produces smooth changes. This is what is meant by having an enforced regularisa-
tion of the latent space. On the other hand the latent space of the standard autoencoder
would have the colour pixels being randomly distributed with no structure. The regular-
isation used in the variational autoencoder is achieved by having gaussian distributions
being encoded into the latent space rather than single values. The VAE loss function
still minimises the difference between the input and output data but also minimises the
difference between the encoded gaussians by using the Kulback-Liebler divergence.

Gu et al. (2019) used a VAE to generate data with specific market and macroeconomic
characteristics. This data was used to train an S&P500 index prediction system based on
the LSTM architecture. These predictions were then fed into a trading algorithm. Gu et al.
(2019) reported a prediction accuracy close to 83%.

2.5.4 Problems manifested by these early GANs

Particularly at the initial stages of development the operation of GANs was known to
present a number of difficulties. The information below has been drawn from Wang and
Yan (2021) and Jabbar et al. (2021):

¢ Nash-equilibrium that leads to non-convergence: the model parameters oscillate
and never converge. Nash-equilibrium is structural to GANs in that the discriminator
and generator should be seen as playing a zero sum game where one is trying to gain
advantage over the other. This process is intrinsically unstable and is at the heart of the
difficulty in using GANSs.

e Mode collapse: the generator produces a limited variety of samples. This happens
when the generator and discriminator cycle through a limited set of solutions because of
local minima in their respective loss functions.

e Vanishing gradient: the discriminator outperforms the generator and leads to van-
ishing gradient.

e Unbalance between the generator and discriminator causing overfitting.

23

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

1024

w
N
P
[
|
|
|
|
CIB
THERR
R
i VP
T
,II \\\\
|
()]

————
1002{H |:>4 ____________ I
\ g

Project and reshape

16

Stride 2

32 Stride 2

CONV 2 CONV 3 64

CONV 4 -

Figure 2.5: DCGAN Generator - from Liu et al. (2018a)

¢ High sensitivity to the hyperparameter selections: During development the operator
may cause instabilities by selecting hyperparameters aggressively.

¢ Internal covariate shift: This is caused by inputs having a different statistical distri-
bution to the ones in prior training that leads to a slowdown in learning rate.

e Lack of proper evaluation metrics.

2.5.5 Solutions adopted to overcome early problems

The DCGAN is included in this overview because it is considered to be the baseline GAN
architecture. The diagram in figure 2.5 shows the structure of the generator and it is taken
from the original DCGAN paper by Radford et al. (2015). As can be seen it is a canonical
5 layer CNN.

Various authors have explored a number of solutions many of which have been incor-
porated in the more recent implementations of GANs that are listed in Table 2.1

2.6 Prediction Algorithms

The concept of algorithms is integral to the understanding and function of ML in finance.
Algorithms may be seen to be a set of rules that are applied sequentially. They find appli-
cation in mathematics and computer science and are usually associated with the solution
of a specific problem. Simply put, they take an input, and produce an output. Once a

24

2.6. PREDICTION ALGORITHMS

GAN Technique

Paper(s)

Normalization techniques

Salimans and Kingma (2016); Salimans et al. (2016);
Miyato et al. (2018)

Mini-batch discrimination

Salimans et al. (2016)

Label smoothing

Szegedy et al. (2016)

Alternative loss functions

Mao et al. (2017)

Adding noise to inputs

Arjovsky and Bottou (2017); Senderby et al. (2016)

Hybrid model

Brock et al. (2016)

Feature matching

Salimans et al. (2016)

Historical averaging

Salimans et al. (2016)

Proper optimizer

Kingma and Ba (2014); Tieleman and Hinton (2012)

Unrolled GAN

Metz et al. (2016)

Two time-scale update rule

Heusel et al. (2017)

Using labels

Antipov et al. (2017); Kingma and Welling (2013);
Liu et al. (2018b)

Gradient penalty

Gulrajani et al. (2017)

Cycle-consistency loss

Zhu et al. (2017)

Self-attention GAN

Zhang et al. (2019a)

Relativistic GAN

Jolicoeur-Martineau (2018)

Sampling GAN

White (2016)

Table 2.1: Solutions to improve GAN performance

problem is identified, and a set of steps are seen as a potential solution, the procedure is
tested using data that covers as many potential scenarios as possible. The range of algo-
rithms is extensive as are the various taxonomies used to classify them. In both academic
and business realms involved in finance and stock markets, the range of algorithms used
is considerable (Kim et al., 2010).

There are two main classes of algorithms used in ML specifically in deep learning. The
first is characterised by the use of back propagation. As mentioned above this uses gradi-
ent descent were an error component arising from the training stage of an NN is gradually
reduced until it stabilises to a minimum value. The most prevalent area of application of
this class of algorithms is market forecasting and prediction. A second class of algorithms
are those that promote self organisation through competitive learning that is used for

25

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Bayesian Deep Leamin Ensemb e K ear Fuzzy Decision Tree Genetic Probabilistic nstance Based
Models 8 £ Classifiers Algorithms Graph Models

Multilayer
Percep tron

Logistic Takagi Sugeno c4s5

Figure 2.6: Prediction Algorithm Taxonomy - Taken from Bustos and
Pomares-Quimbaya (2020)

clustering and segmentation of financial markets into areas of similar behaviour. (Tiwari
et al., 2020).

2.6.1 Prediction of asset prices or trends

A number of authors have studied the difficulty that financial prediction entails. Araujo
and Ferreira (2013) state that its not only prices that are the issue in financial prediction
but other characteristics like volatility, noise and changes in trends are also critical. Tay
and Cao (2001a); Zhang et al. (2017) state that one of the problems lies with the fact that
financial data is non stationary. Bezerra and Albuquerque (2017); Gocken et al. (2016);
Kumar and Thenmozhi (2014) identify the dynamic, chaotic and noisy nature of asset
prices as being the main issues causing most trouble. This behavior is the result of the
underlying economy, government behavior and the erratic nature of individual investors
(Chen et al., 2017; Zhong and Enke, 2017). Technical analysis (section 2.1.2) and fun-
damental analysis (section 2.1.1) are two approaches that human analysts have adopted
in trying to predict asset prices. The non ML techniques used by these analysts include
autoregressive models, discriminating analyses and correlations (Kumar and Thenmozhi,
2014; Wang et al., 2012)

Figure 2.6 shows a taxonomy by Bustos and Pomares-Quimbaya (2020) of the scope
of market prediction algorithms. A brief overview of the more prevalent models is being
given here.

White (1988), implemented the earliest market prediction model, according to Yoo
et al. (2005), using a Feed Forward neural network. This attempt set out to search for
recurring patterns in asset prices that would have been missed by human analysts, thus
laying the foundations for what would become a fundamental tool in the finance industry.

26

2.6. PREDICTION ALGORITHMS

Statistical techniques: Prior to the uptake of machine learning methods, prediction was
accomplished using statistical methods that were used to produce correlations between
economic phenomena like inflation, interest rates and the stock market itself. Maddala
(1992) in his introductory ecomomics text book states that these correlations were estab-
lished using univariate and multivariate regression. Multivariate may be seen as univariate
regressions that are able to discern more than one causal factor (Van Eyden, 1996). One
of the initial and frequently used techniques is that by Box and Jenkins (1976). They out-
lined the ARMA method that is the precursor to the autoregressive integrated moving
average that is described in section 2.6.3. Lawrence (1997) described some issues re-
garding the Box-Jenkins method where he states that it necessitates the use of large data
sets and is best suited for short term prediction. Generalized autoregressive conditional
heteroskedasticity (GARCH) by Bollerslev (1986) is another well researched non-ML tech-
nique.

Genetic algorithms: Genetic Algorithms (GA), in their present form were invented by
John Holland in the 1960's and were refined by him and his students in the 1960’s and
70’s (Holland, 1975) at the University of Michigan. Holland’s original goal was not to have
GA'’s solve specific problems, he was more interested in developing a formal theory based
on adaptation as seen in nature that could be integrated into future computer systems. In
his 1975 book "Adaptation in Natural and Artificial Systems" Holland (1975) sees GA’s as
an abstraction of natural evolution and gives a theoretical framework for GA's. GA's, as
conceived by Holland, are a method for traversing from one population of "chromosomes"
(strings of ones and zeros, or "bits ") to a previously unseen population by using "natural
selection" methods together with the operations of crossover, mutation , and inversion
as seen in natural genetics.

In 2000 Phua et al. (2000) used a combination of NNs and GA to forecast the Singa-
pore stock exchange and reported 81% accuracy. In the same year Kim and Han (2000)
used an architecture similar to phua predicting weekly price rises and falls of of the Korea
Stock price Index 200 resulting in a stated 82% accuracy. Goldberg (1989) also reports
using GAs. GAs have been used to improve the performance of NNs in the selection of
the appropriate architecture, feature set optimisation and the determination of the num-
ber of hidden layers and their width (Yoo et al., 2005). Other researchers that have used
GAs together with NNs in financial prediction are Kimoto et al. (1990) and Nikolopoulos
and Fellrath (1994)

A technology that is somewhat similar to GAs is Particle Swarm Optimisation (PSO)
(Maijhi et al., 2008).

27

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Fuzzy logic: Fuzzy Logic tries to imitate the way humans reason. Fuzzy Logic consists
in the formulation of statements that resemble if-then rules, where the premises use cat-
egory sets instead of unitary values. Fuzzy Logic is often used to distil rules arising from
human expertise. Adaptive neuro-fuzzy inference system (ANFIS) is an algorithm that
usually used in the construction of such (expert) systems.

Fuzzy logic has been used by Appadoo (2006); Hassan (2009); Thavaneswaran et al.
(2007) in their pricing models. Carlsson and Fullér (2001) and Thavaneswaran et al. (2009)
have employed fuzzy techniques to estimate initial stock prices (Zhou et al., 2018)

Rough sets: Rough set theory is a mathematical technique to estimate uncertain data
that is similar to fuzzy sets. Kim et al. (2017) used Rough Sets to forecast the Korea Com-
posite Stock Price Index 20 0 (KOSPI). Their system also made use of other techniques,
like genetic algorithms and various trading strategies. When compared to other trading
strategies they used as benchmarks (e.g. buy and hold) Rough Sets performed better than
the benchmarks.

Support Vector Machines: SVMs have been developed in the 1970s by Vapnik (1999).
The algorithm will find a hyperplane (i.e. a boundary in higher dimensions) that renders the
distance between two sets of input data as large as possible using what is known as the
kernel trick (Bustos and Pomares-Quimbaya, 2020). SVMs use structural risk minimisation
that explicitly reduces generalisation error resulting in better generalisation performance
than other techniques like NNs. The SVM technique is the mostly used as a linear separa-
tion algorithm because it is essentially devoid of parameters. SVMs have been shown to
have similar or better performance than other more complex algorithms (Yoo et al., 2005).

SVM have drawn a great deal of attention because of their ability in classification and
regression tasks, particularly in time series like asset prices (Yang et al., 2002). Support
Vector Machines are used in both classification and regression systems. SVMs have been
noted for their ability to avoid overfitting, have good generalisation ability and are able to
work away from local minima that habitually cause problems for NN loss functions. Kim
(2003); Tay and Cao (2001a,b) have reported a number of instances where SVMs have
been used successfully. Kim (2003) compared SVMs to NNs and Case based Reasoning
and stated that SVMs gave the best results.

Neural networks: As seen above, NNs have been shown to perform better that tradi-
tional statistical techniques in non-linear systems like financial markets (Lawrence, 1997).
NNs have a number of characteristics that make them suitable for financial prediction.
They are able to extract relationships between features inherent in the data to be anal-

28

2.6. PREDICTION ALGORITHMS

ysed without these needing to be formally identified. Their accuracy is primarily depen-
dent on the amount of data they are trained on. They exhibit a level of tolerance to noisy
and incomplete data. They also manage to extract non-linear relationships in data and are
intrinsically non-parametric (Yoo et al., 2005). All these characteristics make them particu-
larly suited to financial prediction since data coming from these sources have a high level
of complexity that makes financial data otherwise hard to model. As Lawrence (1997)
states NNs will not make explicit the relationships that are extracted from the input data
(black box problem) hiding the significance of the variables on which the relationships de-
pend. Thus traders and analysts will not be able to use these relationships in their own
(non ML) trading strategies (Lawrence, 1997).

(Garliauskas, 1999; Schumann and Lohrbach, 1993; Yoon and Swales, 1991) have
looked into the performance of NNs when compared to the more conventional statis-
tical methods employed up to then. A comparison of NNs with discriminant analysis was
carried out by Yoon et al. (1993) and found that NNs performed better. Garliauskas (1999)
used NNs in combination with the 'kernel trick’ and recursive prediction. This study also
established that NNs perform better than classical statistical methods. The findings of
Kim et al. (1993); Patuwo et al. (1993); Subramanian et al. (1993); Yoon and Swales (1991)
came to similar conclusions.

A number of researchers have established that NN's can perform better than multi-
variate regression models (Garliauskas, 1999; Schumann and Lohrbach, 1993). Lawrence
(1997) used a GA/NN combination to forecast the Johannesburg Stock Exchange achiev-
ing an impressive 92% accuracy. This was in contrast with the Box-Jenkins that achieved
60%. Refenes et al. (1995) and Steiner and Wittkemper (1995) have also reported similar
results showing the superiority of NNs to multiple linear regression. Another study as-
serting similar results is that carried out by Yoon et al. (1993) where NN’s achieved 91%
accuracy against 74% using multiple discriminant analysis.

NNs have been used in conjunction with other ML techniques. Hiemstra (1995) used
NN's with fuzzy expert systems using fuzzy logic that, again, avoid the explicit identifica-
tion of the inherent variable relationships. NNs together with rule based technique was
used by Tsaih et al. (1998) to forecast daily direction change in the S&P500 index futures.

Deep learning: Deep learning models are a subset of neural networks, they were in-
tentionally classified in this way to differentiate from traditional neural networks that do
require feature engineering (Bustos and Pomares-Quimbaya, 2020).

Code Based Reasoning: Code Based Reasoning is often used to build expert systems.
Expert systems attempt to convert the knowledge held by human experts into what is

29

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

essentially a cascading list of if/then statements. The principal advantage of CBRs over
NNis is their ability to provide an explanation into how the results they produce were ac-
complished. This is a characteristic the NNs are often criticised for. The tendency for
NNs’ loss functions to get caught in local minima and their dependence on their stochas-
tic behaviour (that gives different results on separate runs) causes CBR solutions to be
sometimes preferred (Trippi and Turban, 1992)

A system that combined GAs with a CBR was implemented by Kim (2004). Motivations
for this solution were the optimisation of feature weighting and subset selection to be
used in the CBR system. The paper states that a simultaneous optimisation that uses both
feature weighting optimisation and subset optimisation performs better than systems that
adopt these optimisations separately or the unoptimised CBR.

Boosting, Bagging, and Stacking: Boosting is a meta-ensemble technique where models
are trained by varying the distribution of training data. Boosting will increase the weight
of training samples that failed to classify properly. McCluskey and Liu (2017) carried out
a study using Boosted Trees. The AdaBoost algorithm was used by Huang et al. (2018) to
model the U.S. stock market to improve a Naive Bayesian classifier.

Bagging or Bootstrap Aggregation techniques do not make changes to the data dis-
tribution but use subsets of the training data selected randomly. One of the most often
used Bagging algorithms is the Random Forest (RF). This algorithm entails the training of
a specific number of decision trees, that use diferent features randomly. There is a large
number of studies on stock market prediction that show that Random forests, namely;
Kamble (2017); Labiad et al. (2016); Patel et al. (2015); Napate et al. (2020); Zhang et al.
(2018). In particular Patel et al. (2015) showed that the Random Forests performs better
than SVMs with regard to stock price prediction.

Other ML based financial prediction technologies include Convolutional Neural Net-
work (CNN), Recurrent Neural Network (RNN), Decision Support System (DSS), Hidden
Markov Model (HMM), Naive Bayes (NB), Support Vector Regression (SVR).

2.6.2 Technical Analysis Indicators

The benchmark paper (YU and Li, 2018) used in this dissertation makes use of the moving
average that is anindicator that is very much used in the field of financial trading. Volatility
is also a factor that is used in the benchmark model. Below is a short description of the
prevalent classes of indicators:

30

2.6. PREDICTION ALGORITHMS

Trend indicators: Trend indicators will help identify which direction the market is mov-
ing in. They are also known as oscillators, since they move between high and low values
in a wavelike fashion.

Momentum indicators: Momentum indicators give an indication as to the strength of
the trend in question. These indicators can also help identify whether a reversal is likely
to happen as well as price peaks and troughs.

Volume indicators: Volume is an important quantity that is the subject of analysis using
indicators as we have seen with prices. Volume indicators are used to asses price changes
since the volume can give a good indication of how significant the change is, where high
volumes show there is "bullish" sentiment on the given stock in that period.

Volatility indicators: Volatility is a very important characteristic in finance as it shows
instability and increased activity. Most profit making opportunities happen when there is
increased volatility as price movements are limited when volatility is low.

A good list of technical indicators is given by Achelis (2001).

The two prediction models used in the benchmark paper (ARIMA and RNN) will now
be described.

2.6.3 Arima

The first model is the autoregressive integrated moving average (ARIMA).

The development of time series analysis and machine learning techniques has lead to
their application in the prediction of asset prices and trends on stock markets. Work has
been ongoing in the investigation of time series models such as ARIMA (Autoregressive
Integrated Moving Average Model) that has been proposed by Box and Jenkins (1976).

The ARIMA technique gives good results when the data series is linear or at least
approximately linear, but may not be appropriate for forecasting future fluctuations if the
time series is nonlinear (Schmidhuber, 2015) as is often the case with stock market prices.
The fact that linear models like ARIMA may not be applicable for the analysis of nonlinear
time series that are often encountered, has lead researchers to look into nonlinear models
such as SVM (support vector machine) and neural networks.

It is best to explain the ARIMA model by describing each of its components:

Autoregression (AR): An AR model is one that focuses on a variable that correlates with
its own lagged values.

31

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Integrated (I): Time series data, particularly asset prices, will exhibit ramping up or
ramping down of the data points over time. A time series with no ramping is known
as being "stationary". The "integrated" (I) term in ARIMA indicates that the time series is
differenced such that it becomes stationary.

Moving average (MA): The moving average for a particular data point in a time series is
the average calculated on a arbitrary number of data points prior to the point of interest.
The observation of the asset price plot with the moving average plot superimposed is one
of the most often used tools by quantitative analysts.

The ARIMA model (pdarima) is used in this paper to give a low frequency (i.e. low
volatility) baseline This algorithm finds the best fit for the ARIMA parameters p, g and
d. The differencing order used by the algorithm is ascertained using Phillips—Perron,
Kwiatkowski-Phillips-Schmidt-Shin, or Augmented Dickey-Fuller. The result of the ARIMA
algorithm is then superimposed (added) to an RNN generated high frequency component
resulting in the final predicted time sequence.

2.6.4 RNN

Essentially RNNs are a set of daisy chained neural networks where the output of one
network will feed into the input of the next. This arrangement allows sequences of input
data to be processed rather than static data sets. Thus systems that are time varying may
be processed to extract time dependent patterns.

2.6.5 The Benchmark paper prediction algorithm

The first thing the algorithm does is to find the best Moving average (MA) period by se-
lecting the one where the resulting time sequence has kurtosis closest to 3. This is done
so that the MA sequence is as close to normal as possible. Once the optimal period is
found a low volatility time sequence is generated. This is simply the moving average of
the input sequence.

A high volatility time sequence is generated by taking the difference of the input se-
guence and the low volatility sequence mentioned above. Low volatility and high volatility
time sequences can be seen as the input sequence being passed through a low frequency
filter (thus giving a smoothed curve) and its high frequency residual.

The prediction error is calculated by adding two components; the ARIMA prediction
error and the RNN prediction error as described below.

32

2.7. EVALUATION

The ARIMA pass is done by generating an ARIMA model on the low volatility curve
(i.e. the moving average). This is done using the pmdarima python package. The MSE,
MAPE and MAE metrics between the input sequence and the prediction are calculated
using the sklearn package. The ARIMA prediction is done by using the model to predict
the next day on a 250 day sequence of input (i.e. real) test data that is increased by one
day for each successive prediction. This process requires a time series of closing prices.

The RNN consists of a 4 neuron input layer followed by a 2 neuron intermediate layer
feeding an dense single neuron output. The Keras library is used to implement the neural
network and its’ early stopping function was used to optimise speed performance and
reduced the risk of over-fiiting. The high frequency (volatility) time series is pre-processed
to bring its amplitude to between 0 and 1.

The RNN error metrics use, at their fundamental level, 4 day sequences as the inputs
to the RNN. The RNN in this algorithm does not work on the original time sequence but
on a delta of the original minus the low volatility sequence. Thus, implicitly it requires the
result that was obtained using the original time sequence.

The MSE, MAPE and MAE metrics obtained from the two passes are then added to
get a final metric. Twenty instances of the code were run asynchronously using a shell
script as this was the number of simultaneous runs the hardware could sustain without
significant performance degradation of any of the instances.

2.7 Evaluation

The issue of evaluation, particularly in the appraisal of GANs has been discussed by sev-
eral authors (Barua, 2019; Borji, 2019; Ducoffe et al., 2019; Eckerli, 2021; Jabbar et al.,
2021; Koochali et al., 2020; Simonetto, 2018). These authors all concur that GAN evalu-
ation is a challenge. As will be seen in the discussion of the selected GAN architectures
(section 2.10), the signature transform does provide a metric that measures how close
the synthetic output of a GAN matches the characteristics of the real training data. This
notwithstanding, all other surveyed GAN architectures will exhibit a flat loss function af-
ter a minimal number of training cycles. This means that the discriminators used in these
GAN: s struggle to distinguish the generated data set from the original data set.

The difficulty in finding a suitable discriminator algorithm implies that a suitable nu-
meric evaluation method is a major concern. This is true for GANs in their primary original
application, i.e. image creation, and in other utilisations like finance. A number of authors
have thus resorted to qualitative evaluations, including visualisations.

Before embarking on a description of evaluation techniques that are suitable for fi-

33

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

nancial time sequences, it would be pertinent to give a brief overview of the work done
on the evaluation methods developed to appraise GANs used in computer vision as this
is the matrix from which Financial time sequence GANs originated. For this purpose we
have included a list of CV evaluation methods taken from Borji (2019) in Appendix C.

2.7.1 Evaluation Methods Survey

Quoting Wang et al. (2021): "Previous work has proposed various evaluation metrics for
GANs (Barratt and Sharma, 2018; Borji, 2019; Gulrajani et al., 2017; Hartmann et al.,
2018; Heusel et al., 2017; Theis et al., 2015; Wang et al., 2020a,b; Xu et al., 2018) and it
is an active area of research."

Time Series Finance

Borovykh et al. (2017) X
Eckerli (2021) X
Smith and Smith (2020) X
Leznik et al. (2021) X
Efimov et al. (2020) X
Sun et al. (2020) X X
Hogenboom (2020) X
Zhang and Khoreva (2019) X
Franco-Pedroso et al. (2019) X
Wiese et al. (2020) X
Ni et al. (2020) X X
Takahashi et al. (2019) X
Yoon et al. (2019) X

Table 2.2: Time Series Evaluation Methods

Tables 2.2 and 2.3 represent the distribution of the different evaluation methods used
in papers surveyed of the authors shown in the first column. The column "Stats" in Table
2.3 indicates the adoption of various statistical metrics in the respective papers. Table
2.2 shows whether the paper mainly dealt with general "Time Series" or time series in
"Finance".

Table 2.4 illustrates the range of the various statistical metrics (first column) that were
used in the surveyed papers and the range of visualisations (second column) that have

34

2.7. EVALUATION

Predict Wasser. Stats Fid Entropy ACF Bespoke Visual

Borovykh X X
et al. (2017)

Eckerli X X X
(2021)

Smith X X
and Smith
(2020)

Leznik et al. X X X
(2021)

Efimov X X X
et al. (2020)

Sun et al. X X
(2020)

Hogenboom X
(2020)

Zhang and X
Khoreva
(2019)

Franco- X X X
Pedroso
et al. (2019)

Wiese et al. X X X
(2020)

Ni et al X X X
(2020)

Takahashi X X
et al. (2019)

Yoon et al. X X
(2019)

Table 2.3: General Time Series Evaluation Methods

been used by the authors of the papers surveyed.

"Bespoke" in Table 2.3 refers to the "DataQC" application developed by American
Express that uses a mix of the metrics illustrated above specifically to assess the quality
of generated data.

35

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Numeric Visual
Mean Q-Q plot
Std-Dev Histogram
Entropy ACF
Asymmetry PCA
Approx entropy t-SNE
Granger Heavy Tails
Johansen Volatility Clustering
P-values Gain/ Loss
chi-squared

Skewness

Kurtosis

Extreme Values

Table 2.4: Numeric and Visual Evaluation Methods

2.7.2 Visual Evaluations

What follows is a technical overview of stylised facts with their plots. The techniques
described in the papers by Takahashi et al. (2019) and Eckerli (2021) formed the basis
of the work presented here. Takahashi in particular, bases his analysis on "stylised facts"
rather than standard statistical measures as these will capture the characteristic behaviour
that is exhibited in financial price sequences and are absent from random walks based on
the normal distribution. Takahashi et al. (2019) bases his visual evaluation metrics on the
paper by Chakraborti et al. (2011). The metrics described below give a good indication
on the quality of generated financial time series and parties wishing to use synthetic time
series should be accustomed to these metrics.

Here a representation of the relevant stylised facts in financial time series that appears
in the Takahashi paper (Takahashi et al., 2019) is given.

Linear unpredictability: This is an important characteristic of financial time series. It is
expressed mathematically as:

E[(rr — 1) (tyag —
[(re sz(zwk L _ Corr(ry, ra) ~ 0, fork > 1 (2.4)

36

2.7. EVALUATION

1.00 107 10%
075 . Gy [
| Lot -
g 050 107 s |
& 025 k.3 & 1072
e T 1a= AN 9
E 0.00 107 N\ s _,: T
8 -0.25 | \\‘ g 10 :
3 2 |
< —ps0 104 Y = 10-4]
| 1
-0.75 . |
-1.00 -5 10-51
0 200 400 600 800 1000 i 10-1 10° 10° 10! 10° 10°
lag k normalized price return lag k
a) linear unpredictabili eavy tailed distribution ¢) volatility clustering
| predictability b) heavy tailed distributi latility clustering
0.014
| 07 -,
0 0.012 «
i \a| \ II\“| flf-ll‘ II' i E . e'-;:“
= J||| «‘ |I | \ 05 50010 .. »\\\.
LY
=2 | ‘l'll I ||. g 04 g o.008 # 3
¥ ‘lrlh'l V! so3 £ 0.006
| . =] .
-3 'In” 0.2 RTINS PO E0.004] -
_4 I\ 0.1 £ p.o02
0.0
51 ooooy 000 E—
0 20 40 60 80 100 -20-15-10 -5 0 5 1.0 15 20 10° 10! 107 10°
lag k lag k timestep t'
(d) leverage effect (e) coarse-fine volatility correlation (f) gain/loss asymmetry

Figure 2.7: stylised facts - from Takahashi et al. (2019)

Here y and o are the mean and the standard deviation of the daily (or periodic) asset
return. The equation represents the auto-correlation function of return. Figure 2.7 (a)
shows this behaviour against an increasing daily lag. The flatness of this plot indicates that
the S&P500 is quite efficient in the EMH sense (Chakraborti et al., 2011). This flatness is
also exhibited by the GAN synthesised time series (section 3.2.6).

Fat-tailed distribution: The plotin figure 2.7 (b) shows Fat tailed distribution. (Chakraborti
etal., 2011; Liu et al., 1999) state that the probability distribution of the asset returns P(r)
has been thoroughly analysed in various asset domains using various time scales. It has
been observed that the probability distribution P(r) exhibits a power-law decay in the tails:

P(r) ocr™® (2.5)

The exponent has been observed to have a range of 3 < «.

Volatility clustering: Even though there is very little, if any, auto-correlation of the
price returns (2.7 (a)), volatility clustering is still visible as figure 2.7 (c) shows. This phe-
nomenon can also be observed in figure 4.7, that shows returns, where it is evident that
price instability occurs in clusters of several days rather than separate individual days. By
observing these plots one can see that of periods of high volatility and low volatility are

37

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

often bundled together, and this is what renders the stylised fact of volatility clustering
so relevant. As can be seen from the plots of returns generated by the selected GANs
(section 3.2.6) this phenomenon is also visible and is similar to what is observed in the
real S&P500 returns plot in figure. 4.7.

Quantitatively, volatility clustering may be defined by the auto-correlation of the price
returns that follow power-law decay:

Corr(|re|, |resx|) < k7P (2.6)

It has been observed that in S&P500 data the exponent B ranges between 0.1 and
0.5.

Leverage effect: Leverage effect (2.7 (d)) refers to a tendency that has been observed in
asset price behaviour where the asset volatility is correlated with its returns, i.e. the price
rises when volatility diminishes and v.v. (Bouchaud et al., 2001). Bouchaud et al. (2001);
Qiu et al. (2006) state that this statistical property can be expressed mathematically as
the lead-lag correlation function in:

E[rt()[r(t+ k) — r(8)|r(t)[’]
Ef[r(t)P?

Qiu states that leverage effect is dependent on the observed market where the Ger-

L(k) = (2.7)

man DAX clearly exhibits this behaviour and Chinese markets tend to show the reverse
i.e. the anti-leverage effect.

Coarse-fine volatility correlation: The coarse volatility and the fine volatility (2.7 (e) has
been defined by Miller et al. (1997) as:

(2.8)

i=1

The coarse volatility is the absolute value of the price movement in T days whereas
the fine volatility is the sum of the absolute price return in T days. The coarse-fine volatil-
ity correlation has to be a multi-time-scale analysis of volatility since the effect is hardly
discernable with a single time-series at the daily scale.

Gain/loss asymmetry: Gain/loss asymmetry (2.7 (f)) indicates the fact that usually asset
prices drop faster than price increases. Jensen et al. (2003) defined this behaviour as:

38

2.7. EVALUATION

inf{t'|log pssp —logp: <=6, >0} (6 >0)

Thit(6) = (2.9)

inf{t'|logps+v —logp: <=6,/ >0} (6 <0)

where T!

tait(0) is the number of time-step ' required to reach the price return 6 from the

time ¢

Jensen et al. (2003) state that "This statistical property is also relatively noisy as the
clear functional form cannot be seen in a single stock data"

We now turn to the analysis of stylised facts as described by Eckerli (2021).

Analysis of returns: Eckerli (2021) dwells on the statistical behaviour of real and gener-
ated time sequences. These characteristics are certainly important in that the generated
sequences are inadequate for the job at hand if they do not emulate these factors cor-
rectly. Nevertheless, this behaviour is only necessary but not sufficient to satisfy the
requirement of synthesised financial time series. The following metrics will still produce
the same figures after the time sequence data set has been shuffled. Shuffling will destroy
time dependence but preserves the statistical qualities.

2.7.2.1 Probability distribution, Kurtosis and Skewness:

Skewness: Skewness measures the asymmetry of the distribution that is centred around
its mean. It measures the probability density that occurs off centre. Since asset prices ex-
hibit gain/loss asymmetry in their log returns a real asset should exhibit a negative skew-
ness because there are usually more large downward shifts in prices than large upward
ones.

Kurtosis: Kurtosis measures the aggregate weight of a distribution’s tails as compared to
the centre of the distribution. In other words it measures how much a given distribution’s
tails differ when compared to the tails of a gaussian distribution. So it indicates how "fat"
tails are; an important characteristic in financial data where these fat tails occur regularly.
This happens because these low probability events have a significant effect on financial
distributions as opposed to normal distributions that lack "fat tails"

Autocorrelation: Autocorrelation measures the similarity of sequential data to a time
shifted version of itself. In view of the linear unpredictability characteristic described
above, ACF should be very low.

The fundamental issue that impinges on the applicability of these plots is that they
depend both on the objectivity and acuity of the observer. This implies that a clear com-

39

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

parison of the performance of a given synthesis technique has no guarantee of reliability
and reproducibility. Thus, it was necessary to search for a quantitative metric that was a
reliable predictor of how the synthesised time sequence would perform when compared
to the real time sequence.

2.7.3 PCA and t-SNE

What follows is a theoretical overview of two visual evaluation techniques used here,
namely, PCA and t-SNE. These two visualisation methods have been adopted by several
authors (Arnout et al., 2021; Debnath et al., 2021; Efimov et al., 2020; Fawaz, 2020; Grilli
and Santoro, 2020; Lakshminarayanan et al., 2021; Santoro and Grilli, 2022; Snow, 2020).
The wide use of these visualisations is because they give a very good indication of the
similarity between time series. This is achieved by observing the overlap of the data sets
being analysed. This behaviour is essential to the ability to assess whether a generated
time series has characteristics that are found in the original data which is being emulated.

2.7.3.1 PCA: Principle Component Analysis (PCA)

Principle component analysis (PCA) is considered to be one of the mainstays of multi-
variate analysis based on the use of projections. The procedure was first mentioned by
Cauchy and given a mathematical treatment by Hotelling (1933).

The main goal of PCA is to obtain a projection of a body of data onto a space of fewer
dimensions. A photo of a three dimensional scene is a projection from three dimensions to
two that preserves a lot of the information present in the three dimensional space. PCA
seeks to do this by projecting a multidimensional (i.e. multivariate) space onto a space
composed of a minimum of orthogonal dimensions.

The projection in a given direction must have a maximum variance (i.e. the information
in the projection must be maximally spread out along that dimension). One way to visu-
alise this is to imagine taking a video of a billboard as one is driving along a road adjacent
to the billboard. There will be a point where the information on the billboard will produce
the largest projection on the camera’s sensor; that is the point where the variance of the
information in the projection is at its maximum.

The PCA process will rank the maximal projections in various directions and the pro-
jection with the greatest amount of information will be the first principal component fol-
lowed, in order, by other projections. This process may be done mathematically using
eigenvalues and eigenvectors of the covariance matrix of the data. Projection matrices
obtained using eigenvectors derived from an ordered set of eigenvalues will generate a

40

2.7. EVALUATION

set of principal components. The observation of the resulting PC's facilitates the selection
of the more relevant components and the exclusion of the components that have a mini-
mal impact and should thus not be fed into the ML system. This is done because training
with data that has no bearing (i.e. data that will not aid the regression) will degrade the
performance of the system.

2.7.3.2 t-SNE

Another technique that is used for visualisation of high dimensional data is t-Distributed
Stochastic Neighbour Embedding (t-SNE). This algorithm has been developed far more
recently than PCA by Van der Maaten and Hinton (2008). It is based on the SNE algorithm
developed by Hinton and Roweis (2002) but using the Cauchy t-distribution instead the
Gaussian distribution used in the original SNE algorithm. It addresses some of the defi-
ciencies of the PCA method. There are a number of characteristics that distinguish t-SNE
from PCA,;

« t-SNE is stochastic and accepts non-linear relationships in the data whereas PCA is
deterministic (though the probabilistic version of PCA used in this study is stochas-
tic).

» t-SNE preserves the distance of data that is close whereas PCA essentially preserves
large pairwise distances.

« t-SNE requires more computing power but will give visualistaions that show areas
of similarity more clearly as can be seen from the diagram 2.8 of the two techniques
being applied to the MNIST digits classification dataset.

The difference in quality will also be evident in the results section (4) where PCA and t-
SNE plots are used to compare the performance of the various GAN architectures that
have been investigated.

The t-SNE algorithm uses a similarity metric between pairs of data points both in high
dimensional space and in low dimensional space. It then uses a cost function (usually
Kullback-Liebler divergence) to optimise the two measures.

t-SNE uses the Gaussian and the t-distribution to transform the Euclidean distances
between all data points onto these distributions. This means that the Euclidean distance
between two data points is transformed to a measure of proximity rather than separation,
i.e. points that are close get a higher "distance" value than those that are further apart.
Let’s consider the Gaussian distribution of the heights of people in a population. The
people whose height is closest to the mean are indicated on the Gaussian curve as having

41

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

t-SNE Results: MNIST

PCA Results: MNIST

Figure 2.8: MNIST PCA and t-sne plots - from Thakur (2020)

a high ordinate value whereas those that are either exceptionally tall or short will sit on
the tails of the distribution and have a low ordinate value. So this transformation will
measure the "closeness" of any point with respect to the point of interest. This procedure
is performed for each point in the high dimension domain resulting in a "closeness" matrix
of all points with respect to all others.

A simple projection of the high dimension data onto two or three dimensions is then
performed. The "closeness" transformation is now carried out on this low dimensional
projection using the t-distribution instead of the Gaussian. Again this results in a close-
ness matrix as before. This new matrix will be disordered as the said projection does not
preserve the clustering information.

The next step involves sequential pairwise swapping in the matrix until the KL metric
between the matrix of the low dimensional projection and the high dimensional matrix is
a minimum. This results in clustering in the low dimensional representation to reflect that
of the high dimensional case.

At this point it should be noted that there is a connection between the dimension
reduction that PCA and t-SNE attempt to do and the concept of "embedding". The process
of embedding consists of translating high-dimensional data to low-dimensional data into
a vector space such that the two are semantically related. Generally, “embedding” refers
to the extraction of a portion from something of interest. Embeddings have been used to
improve the efficiency of ML models and are mentioned here because of their relevance
to the SigCWGAN model discussed below.

42

2.8. TIME SERIES AUGMENTATION

2.7.4 Quantitative Evaluation

Since the publication of the Yoon et al. (2019) paper a number of authors have converged
on the evaluation methods illustrated in that paper. (Arnout et al., 2021; Debnath et al.,
2021; Jabbar et al., 2021; Lakshminarayanan et al., 2021; Remlinger et al., 2022; San-
toro and Grilli, 2022) are papers written in or after 2021 that adopt the Yoon evaluation
methodology. In 2018, Simonetto (2018) uses an SVM as opposed to an LSTM to give a
discriminative metric.

Arnout et al. (2021) state that an evaluation process should focus primarily on fidelity
and usefulness. Borji (2019) defines fidelity as "the ability to distinguish generated sam-
ples from real ones i.e. discriminability". Since the synthetic data is primarily used in
predictive applications, "Usefulness" is interpreted by these authors (Arnout et al., 2021;
Jabbar et al., 2021; Lakshminarayanan et al., 2021; Remlinger et al., 2022; Santoro and
Grilli, 2022), as predictive ability.

Discriminative score: This metric measures the error of a standard RNN or LSTM clas-
sifier in distinguishing between the real and generated sequences

Predictive score: This metric measures the predictive ability of synthetic data. Here,
again standard RNN or LSTM networks are used. The Mean Absolute Error (MAE) ob-
tained by using these networks is given as the predictive score.

2.8 Time Series Augmentation

Time series constitute an important subset of the types of data that are the object of ML
systems. The analysis of time series is at the heart of a number of areas like biometrics,
sound, trajectories, the recognition of signals and various other sequences. The most
challenging characteristic of time series is the fact that time series store information not
only in the constituent data points, but more significantly, in their order. In a significant
portion of time series data, the time feature does not need to represent actual time but
is used to preserve the data point order.

Distance-based methods have in the past been used to analyse time series (Box and
Jenkins, 1976) but the recent surge in artificial neural networks has brought about an
number of significant advances (Schmidhuber, 2015; Wang et al., 2017). Numerous stud-
ies have shown that Recurrent Neural Networks (RNN) (Rumelhart et al., 1986) have been
effective in the use of time series in biosignals Kim and Pyun (2020); Xu et al. (2020), hand-
writing (Carbune et al., 2020; Sun et al., 2016). and gait recognition (Chen et al., 2019;

43

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Kluwak and Nizynski, 2020). Other ML techniques like Multi-Layer Perceptrons (MLP)
and temporal Convolutional Neural Networks (CNN) (Bai et al., 2018; LeCun et al., 1998)
have achieved good results for time series recognition (lwana and Uchida, 2020; Wang
et al.,, 2017). Much of this success in this application of ML is due to the considerable
growth in the amount of data that is amenable to these systems (Schmidhuber, 2015).
The availability of this data also helps improve the performance and the ability to gener-
alise of the models (Banko and Brill, 2001; Torralba et al., 2008).

A quick look at the Kaggle data repository will confirm that the number of data sources
is indeed large and constantly increasing but this wealth of data masks an underlying
problem; i.e. the data sets often do not have a usable number of data points. This may
be confirmed by looking at one of the most often used time series datasets: the 2018
University of California Riverside (UCR) Time Series Archive (Dau et al., 2019) where only
12 datasets out of 128 have more than a thousand data points.

A solution to the problem of having an insufficient volume of data is to generate it
synthetically which is the aim of data augmentation. Data augmentation is a process that
is independent of the model being used. Good quality data augmentation will increase
the ability of the ML models to perform successfully with unseen data by decreasing
overfitting and broadening their decision boundary (Shorten and Khoshgoftaar, 2019).
This performance may suffer if there is a lack of data or the data is not balanced (i.e.
some classes of data are heavily overrepresented in the training data) (Blagus and Lusa,
2013), Hasibi et al. (2019).

Computer Vision (CV), particularly image recognition, has been the area where data
augmentation was developed early and where it finds continued application. In Convolu-
tional Neural Networks (CNN) (LeCun et al., 1998), a technology that continues to be the
mainstay of CV, a number of successful applications have been trained using augmented
data. AlexNet by Krizhevsky et al. (2009) made its mark in 2012 by winning ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015). The sys-
tem used cropping, mirroring, and colour augmentation of the images in the competition
dataset. Other examples include:

¢ Visual Geometry Group (VGG) network (Simonyan and Zisserman, 2014) using scal-
ing and cropping,

e Residual Networks (ResNet) (He et al., 2016) using scaling, cropping, and colour
augmentation,

e DenseNet (Huang et al., 2017) which used translation and mirroring, and Inception
networks (Szegedy et al., 2015) using cropping and mirroring.

Even though augmentation is well established in image recognition using neural net-
works, it has yet to gain wide acceptance in time series analysis (Wen et al., 2020). By

44

2.8. TIME SERIES AUGMENTATION

using some techniques that were developed for CV augmentation, a number of data aug-
mentation techniques for time series use random transformations of the original input
data.

Augmentation has been applied to a number of application areas as image recognition
and object localization, recognition of human action, signals, sequences, sound, trajecto-
ries, biometrics, and vital signs analysis. A good overview of the available data augmen-
tation methods and its classification and taxonomy is given by lwana and Uchida (2021a).
The taxonomy in figure 2.9 is from that paper. As can be seen from Ilwana taxonomy,
there are four categories of data augmentation techniques; random transformation, pat-
tern mixing, generative techniques and decomposition.

Fons et al. (2020) presents a survey where the methods described here are applied to
Finance. Javeri et al. (2021) studies a wide variety of data augmentation techniques that
are applicable to finance.

One of the simplest procedures is to add random noise that has been used to improve
the performance of GANs before other more explicit augmentation techniques started
being used (Fields et al., 2019). Other techniques include slicing, cropping (Le Guennec
etal., 2016), scaling (Um et al., 2017), random warping in the time dimension (Fields et al.,
2019; Um et al., 2017), and frequency warping (Jaitly and Hinton, 2013).

Figure 2.10, taken from (lwana and Uchida, 2020) graphically illustrates the effects of
random transformations.

The problem with random transformation-based data augmentation is that there are
a diverse amount of time series each having different properties, and, thus, not every
transformation is applicable to every dataset. One issue that needs to be addressed is the
applicability of the particular augmentation techniques in different use cases since time
series arising from different types of sources will have different mathematical properties.
Whereas jittering (random noise) may be added to audio or ECG data that are inherently
noisy, it gives poor results with financial time series that have specific stochastic and,
more importantly, temporal properties.

An improvement on random transformations is the synthesis of time series in a manner
that preserves the information content (stochastic and temporal) of the original series.
This has been achieved with some success using the following techniques:

e Random transformation: Random transformation (lwana and Uchida, 2020) involves
perturbation, warping or slice transformations in the time, frequency or magnitude do-
mains.

45

Task Family Domain Method

A A A A
a W 4 N\ 7 NI N
Jittering [30,43,44]
-
Rotation [30] Flipping [42]
Magnitude
| Scaling[30,42]
\ Magnitude Warping [30)]
Permutation [3()] Random Shuffle [57]
-
Slicing [29] Window Warping [29]
4
Random Warping [30]
Random
Transformation Time Vowel Stretching [53]
e Time Warping
Time Stretching [54]
Time Perturbation [55]
\ Time Masking \ SpecAugment [$2]
Frequency Masking j
p
Frequency Frequency Warping VTLP [31]
STFT [52]
Y Fourier Transform (
N FT Perturbation [6]]
DFM [72]
(|
Interpolation SMOTE
Magnitude P e
Time Aligned SPAWNER [76]
o] _ Averaging 4
Pattern Mixing Time (_ wDBA 37]
_ Guided Warping [39]
Time Series EMDA [75]
Data Augmentation Frequency
SFM [56]
Gaussian Trees [32]
Linear Model [81]
(- Posterior Sampling 30}~
Statistical Models _ Markov Chain [82]
| LGT[7
_ GRATIS [78]
: MLP GAN
Generative Modeld LSTM [83] - Lk
' Recurrent GAN [20,8§]
GAN 1D Conv. GAN [90,91,92]
\ MNeural Networks 2D Conv. GAN [93]
WaveNet [§5]

_ Hybrid GAN [95]

__Encoder Decoder Autoencoder [86]

STL [35]

-
_ Decomposition ICA [36]

(_EMD [101]

Figure 2.9: Time Series Augmentation Methods - taken from Ilwana and
Uchida (2021b)

(a) Original

(b) Jittering (c) Flipping

(d) Scaling (e) Magnitude Warping [30]

=3 =] ST
(f) Permutation (g) Window Slicing [29]
(h) Time Warping [30] (i) Window Warping [29]

Figure 2.10: Non-GAN Augmentation - taken from Iwana and Uchida
(2020)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

e Pattern mixing: Pattern mixing (lwana and Uchida, 2020) combines two or more real
time series to give a new series that has the characteristics of the original input series.
Pattern mixing may still be carried out in the time, frequency and magnitude domains
but entails more sophisticated techniques that take into account the sequences’ local
characteristics.

e Generative models: Generative models attempt to reproduce the mathematical char-
acteristic of the target series, i.e. the statistical characterisation of the given sequence.
One such technique uses Gaussian trees as a statistical model that is then used as a gen-
erative template (Cao et al., 2014). Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020) fall under this category and are the subject of active research as illustrated
here.

e Pattern decomposition: Pattern Decomposition involves the extraction of features
and trends from the dataset (Bergmeir et al., 2016; Eltoft, 2002) to generate new patterns
that have similar features. The advantage of these techniques is that the distribution of
time series is preserved (Forestier et al., 2017), whereas other cruder methods may alter
the data distribution. Decomposition methods usually entail the breaking down of the
time series into different frequency domains like seasonal, monthly or daily granularity so
that each domain’s characteristics are extracted and used in the generation process.

2.9 Synthesis and Augmentation Methods

The main objective of this dissertation is the improvement of the performance of ML
financial prediction models in terms of accuracy as compared to classic (hon ML) methods
already attempted in the literature. The manner in which we have determined to achieve
this is by using data augmentation to produce more suitable data to train the selected
financial prediction system.

There are two categories of data synthesis methods; GAN synthesis and a number of
other methods that do not use GANs; the non-GAN methods. After an overview of non-
GAN time series augmentation methods we will give a synopsis of methods specifically
targeting the synthesis and augmentation of financial time series.

2.9.1 Non-GAN Augmentation Methods

Non-GAN methods fall under two sub categories; the ones that handle the magnitude of
the data and the ones that deal with the time aspect.

48

2.9. SYNTHESIS AND AUGMENTATION METHODS

2.9.1.1 Magnitude domain transformations.

Magnitude domain transformations operate by modifying the scalar value of each data
point in a time series and do not affect the sequence of the data in the time dimension.

Jittering: Jittering is one of the simplest and effective magnitude domain transforma-
tions and consists of adding noise to the time series. It is defined as:

X =x+e€1,..,X+€, ..., X7+ €T, (2.10)

where ¢ is typically Gaussian noise added to each time step t. One hyperparameter
that needs to be determined is the standard deviation ¢ of the noise that is being added.
The addition of noise is an accepted method that is used to increase the generalisation
of neural networks (An, 1996; Bishop, 1995). It is assumed that the new time series will
differ from the test or production time series by some amount of noise. It has also been
shown that jittering diminishes time series drift in some neural network models (Fields
et al.,, 2019). This drift happens when the distribution of the data shifts as new data is
added.

Rotation: Rotation is defined as:

x' = Rxq, .., Rxy, ..., Rxt, (2.11)

where R is an element-wise random rotation matrix for angle 6. Rotation has been
found to be effective in the image domain but it is recognised to be less effective in the
time series since it effects the time dependence of the data elements in the sequence
(Fawaz et al., 2018). This has been found to be so in neural networks when applied to time
series classification (lwana and Uchida, 2020; Ohashi et al., 2017; Rashid and Louis, 2019;
Um et al., 2017) found that it could be used when supplementing other augmentation
methods since an improvement in accuracy was reported.

Scaling: Scaling is done by changing the magnitude of the whole series by a given ran-
dom factor as given below:

x' = axqy, .., &xs, ..., 0XT, (2.12)

Here the scaling factor « is taken from a normal distribution as this factor multiplies
all data points with the standard deviation ¢ as a hyperparameter (Um et al., 2017). Alter-
natively ¢ is taken from a predefined set (Rashid and Louis, 2019). Scaling time series is

49

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

different to scaling images since a this process only increases the magnitude of each data
point and not the number of points in a time series.

Magnitude warping: Magnitude warping (Um et al., 2017) is a technique that applies
specifically to time series. Here a smoothed curve deforms (warps) the given time series
asin:

/
X = w1x1, ., KXt oo, KTXT, (2.13)

where the sequence a4, ..., a4, ..., & is generated by by interpolating a cubic spline S(u)
with knots u = uy, ..., uj, ..., Uy where the ui values are taken from a normal distribution as
is the number of knots. The standard deviation of this normal distribution is a modifiable
hyperparameter. The rational behind this method is to increase the complexity of scal-
ing augmentation by modifying the scaling factor according to a smooth function. As in
other transformations dependent on normally generated randomness, one drawback this
method has is that it may distort any time dependence the original time sequence may
have. Another issue is that this method depends on two hyperparameters (Knot number
and standard deviation) rather than one, making it more demanding to use than other
transformation based methods.

2.9.1.2 Time domain transformations.

The techniques described above with regard to magnitude may be modified to transform
the time domain. This entails displacing data points in the time series by different amounts
in the time domain.

Window Slicing: Slicing calls for the removal of chunks of the given time series from
its beginning and end. This is conceptually similar to cropping in the image domain. The
process is given by:

X' = Xg, ooy Xty ooy X4 s (2.14)

where W is the size of a window and ¢ is a random integer such that 1 < ¢ <T - W.
Slicing is also known as Window Slicing (WS) (Le Guennec et al., 2016) because it crops
to a window size W

Permutation: Um et al. (2017) first suggested permutation where parts of the time se-
guence are shuffled so that a new sequence is produced. This method implicitly negatively
affects any time dependence that exists between the data points in the time sequence.

50

2.9. SYNTHESIS AND AUGMENTATION METHODS

There are two versions of the tranformation where the segments are either equal or vari-
able in size (Pan et al., 2020). The equal segment version divides the sequence in N seg-
ments of the same size and then proceeds to shuffle them. Similarly, the variable segment
version partitions the series in N variable length segments that are also shuffled.

Random shuffling: Random shuffling is the same process but instead of segments, the
individual data points are permuted. Steven Eyobu and Han (2018) used this transforma-
tion in addition to local averaging both before and after shuffling.

Time warping: Time warping is similar to magnitude warping but affecting the time do-
main. It also uses a smooth warping path (Um et al., 2017). Here the time series becomes:

X/ = x’r(l)/'“/ xr(t),..., xT(T)/ (215)

where 7() is a warping function that warps the time steps based on a smooth curve
and this curve is a cubic spline S(u) with knots u = uy, ..., uj, ..., u;. The knot heights are
taken from a normal distribution. This transformation will change the input time series by
expanding and contacting different parts of the series.

Window warping: A second method of time warping involves window warping as sug-
gested by Le Guennec et al. (2016). Here a widow of the time series is either expanded
to twice the size or contracted to half its original length. These authors suggest that the
factor of 2 they used may be a variable hyperparameter.

Random Guided Warping and Discriminative Guided Warping: Time domain mixing
Guided warping (lwana and Uchida, 2020) involves using Dynamic Time Warping (DTW)
(Sakoe and Chiba, 1978). DTW is an algorithm that originated in dynamic programming
where it incorporates elastic element matching. The technique is used to compare to
time sequences by expanding or contracting segments of the second time sequence un-
til it maximally matches the first. Thus the target sequence is warped so that it gets to
resemble a 'teacher’ sequence using DTW.

Random Guided Warping: Random Guided Warping (RGW) uses a random intra-class
teacher sequence. Discriminative Guided Warping (RGW) on the other hand uses a di-
rected discriminative teacher (lwana and Uchida, 2020).

51

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

SPAWNER: Suboptimal element alignment averaging. Kamycki et al. (2019) developed
suboptimal warped time series generator (SPAWNER) . This algorithm generates sequences
using suboptimal time warping. SPAWNER is an adaptation of DTW that constrains the
warping to operate at various random points. SPAWNER may be seen as a process that
averages any number of aligned time sequences.

2.9.1.3 Selection

We have chosen to use Window Slice and Window Warping by Le Guennec et al. (2016)
as the non-GAN methods to be used in experiment 1b (section 3.3) since these were the
two methods that Iwana and Uchida (2021a) reported to be the best performers. A quick
perusal of the plots in appendix B showing a preliminary overview of non-GAN methods
also confirms that Window Slice and Window Warp behave in a satisfactory manner.

2.9.2 Synthesis and Augmentation of Financial Time Series

We now focus on the efforts made in data augmentation specifically targeting financial
data. Financial data has a number of application areas like high frequency trading, laun-
dering detection and its use in Monte Carlo methodologies (Athey et al., 2021; Jullum
et al., 2020). Operators in this field have reported a number of challenges regarding the
quality of available financial data like missing or inconsistent data and restricted access
due to privacy or ownership concerns (Liu, 2020). Even though data may be available it
may also be noisy or out of date. There is also the issue that some established augmen-
tation methods, like oversampling, will perform less than satisfactorily since important
characteristics like temporal information will be degraded.

It is pertinent here to mention a number of non-ML methods of artificial data genera-
tion that are mentioned in most introductions to the subject of financial data generation;
ARIMA by Box and Jenkins (1976) and GARCH by Bollerslev (1986) that have been de-
scribed in section 2.6.1 as statistical prediction techniques. These have, nevertheless,
been used as generative models in their own right using the maximum likelihood tech-
nique.

A number of authors have suggested ways to address the challenges mentioned above.
ML models have been proposed by Liu et al. (2021) together with other techniques. Duan
et al. (2022) reports the use of new features like macroeconomic measures and various
market signals to train ML models. Transfer learning has been suggested by Jgrgensen
and Igel (2021) where models trained on the data from particular companies is used to
help analyse companies were data is scarce. Lahmiri (2020) and Braun et al. (2019) have
investigated wavelet transformation as a data augmentation method.

52

2.9. SYNTHESIS AND AUGMENTATION METHODS

Reinforcement learning has been used by Tizziano (2018) on data that was generated
by a recurrent GAN. Reinforcement learning has been mentioned briefly in section 2.3.
It works by having the system maximise a reward that in this case was the profit made
from trading assets. Tizziano (2018) states that the trading system performed better with
augmented data since it was able generalise over a wider spread of data.

There has been a surge, in the last few years, of studies that relate to GANs used in
financial data augmentation. de Meer Pardo (2019) uses the Wasserstein GAN (WGAN) to
generate data that simulates the S&P500. The evaluations used to validate the generated
data were autocorrelation and the kurtosis figure in addition to loss and accuracy plots.
The author then trains a ResNet model using real and synthetic data. The paper states
that a 70% accuracy was achieved using this methodology.

Another GAN that has been mentioned numerous time in the literature is TimeGAN by
Yoon et al. (2019). Liu et al. (2022) state that " TimeGAN is the most suitable GAN-based
generative model for augmenting our training dataset with realistic synthetic data". Our
preliminary test using TimeGAN found that because of the difficulty in generating time
series that are longer than the ones generated in Yoon's paper (usually 24 data points) it
was considered unsuitable for this dissertation as the sequences used spanned years (i.e.
at least 250 data points) that made TimeGAN computationally intractable.

Other GANs used for the generation of financial time sequences are:

Conditional GAN (RCGAN) (Esteban et al., 2017)]

« CGAN [fu201%time] C-RNN-GAN [Mogren (2016)]

« WaveGAN [Donahue et al. (2018)]

« Conditional Generative Adversarial Networks (cGANSs) [Jordon et al. (2018)]
« QuantGAN [wiese2020quant] and StockGAN [Li et al. (2020)]

The papers of Efimov et al. (2020), Zhang and Khoreva (2019), Takahashi et al. (2019),
Snow (2020) and Wiese et al. (2020) describe a series of GAN architectures specifically
targeting GAN data augmentation in finance.

An augmentation model that is inspired by the GAN architecture is the Generative
Teaching Network (GTN) developed by Such et al. (2020). GTNs also have two primary
components; the generator and the learner. The generator is not constrained by the fact
that it has to produce data that is similar to real data but is allowed to produce a wider
range of data. The burden of constraint is shifted to the learner unit were the validity of
the generated data is determined by how accurately the learner is able to perform the

53

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

required regression or classification job. Thus, when the generator produces data that
is not very realistic but still allows the learner to perform better, the data is considered
satisfactory.

2.10 GAN:Ss in this study

An initial overview of the literature covering GANs and in particular GANs used in finance
has lead us to select two GANs to be investigated here; BigGAN and SigCWGAN.
Brophy et al. (2021); de Meer Pardo et al. (2022); Eckerli (2021); Labiad et al. (2021)
all report that SigCWGAN gave the best results from the investigation they carried out.
Before dealing with the GAN architectures themselves we will first overview two fun-
damental design solutions; the wasserstein distance and the signature transform.

2.10.1 Wasserstein distance (WD)

The Wasserstein distance may be seen to be the minimum cost of transporting mass as
data distribution g is converted to the to the data distribution p. The Wasserstein distance
for the real data distribution Pr and the generated data distribution Pg is mathematically
defined as the greatest lower bound (infimum) for any transport plan that is the cost for
the cheapest plan. The term "Distance" is somewhat of a misnomer here as the WD is
actually the minimum sum of a product (just like work is force x distance) of the weight
of what is being moved multiplied by the distance moved. The "Plans" mentioned in the
definition given above are the possible paths through which the "weights" (i.e. chunks of
the distributions) will be moved. The WD algorithm will calculate all the "distances" of all
plans and chose the one with smallest cost. One can now see why the WD metric is also
known as the "Earth Mover" metric.

The use of various loss functions have been attempted in different GAN architectures
over time. Since the purpose of a loss function is to measure the difference between the
network’s prediction and the actual data, various algorithms have been used, two of the
most popular being the Kullback-Leibler (KL) divergence and the Jensen-Shannon (JS)
divergence. In the figure 2.11 are their characteristc plots.

The figure 2.11 illustrates one the most consequential issues with the choice of loss
function in GANs and that is the "vanishing gradient" problem. The training phase of any
neural network involves the "gradient descent" mechanism were the network is supposed
to look for an optimal configuration of the weights of its neurons by descending a slope in
the error lanscape. This will obviously prove to be impossible if the gradient is very close

54

2.10. GANS IN THIS STUDY

Vanishing Gradient

1000 i : KL s JS
800
&
600 4
4
400
2]
200
0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
mean of g mean of q

Figure 2.11: Vanishing Gradient - from Violante (2018)

1.0 . - - - - T T

— Density of real

— Density of fake
— GAN Discriminator
—— WGAN Critic

-0.2} Vanishing gradients 1
in regular GAN
-0.4 — L L L L L 1 1
s -6 -4 -2 0 2 4 6 8

Figure 2.12: WGAN Gradient - from Arjovsky et al. (2017)

to zero. This is one of the main reasons why the generators in previous GAN configura-
tions failed.

Using the Wasserstein distance as a loss function gives better results as seen in the
figure 2.12.

55

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.10.2 Signature Transform

One way to understand the function of the signature transform is to compare it to the
Fourier transform where the target of these transforms are sequences of data like financial
time series. Whereas the Fourier transform captures frequency information, the signature
transform condenses order and area information. In another difference to the Fourier
transform, order and area signify the range of nonlinear effects in the data. This means
the signature transform is referred to as a "universal nonlinearity". This means that all
continuous functions of the input stream will be approximated (up to an arbitrary limit)
by a linear function of its signature.

Chevyrev and Kormilitzin (2016) provide a comprehensive overview of the mathemat-
ics of the signature transform. One path to grasp the essential elements of the transform
is to work through a series of concepts that should be understood before exploring the
signature transform:

e The Taylor series as an expansion of a function into a polynomial.

e The Fourier expansion that breaks a function down into component frequencies.

e The Picard algorithm that analyses ordinary differential equations into a series of
iterated integrals.

It must be stated that what is being referred to as a function above is actually a path
in a topological space. The non linear features of financial time series may be handled as
the analysis allows for linear piecewise paths.

The signature transform has a number of properties that make it very useful in ML,
namely:

« Itis well behaved when data is missing or sampled irregularly.
« It may be translation invariant.
« It may be sampling invariant.

Thus the signature transform is used to provide an embedding that accurately represents
the statistical characteristics and time dependencies of the target time sequence. This
embedding is then used to ascertain the proximity of the distribution of the input time
sequence with the generated time sequences using the Wasserstein distance covered in
section 2.10.1 above.

For these reasons it is used in the SigCWGAN as a replacement to the discriminator
stage found in the standard GAN configuration.

56

2.10. GANS IN THIS STUDY

Hidden Layer
Dilation = 2

lr' 29 fa

oy ‘7) Qutput
: Dilation = &

™y r.

o Q Hidden Layer
Dilation = 4

b I
o 0

Hidden Layer
Dilation = 1

2.10.3 SigCWGAN

The SigCWGAN by Ni et al. (2020) also nominally follows the standard GAN architecture
having a discriminator and a generator as in figure 2.3. The generator is a autoregres-

Input

Figure 2.13: Wavenet - from Oord et al. (2016)

sive feedforward neural network (AR-FNN) that has an architecture inspired by WaveNet
(Oord et al., 2016) in figure 2.13. The main idea in an autoregressive neural network is
that a number of previous data points (i.e. temporal predecessor data points) are fed as
inputs to the neural network which then produces an output based on that (historical)
data.

The signature transform is the primary architectural component in the operation of
SigCWGAN. Its’ purpose is to produce a highly condensed mathematical characterisation
of an input data sequence. Using this signature on the real and generated time sequences,
the discriminator can produce a loss statistic using the Wasserstein distance. The basic
idea behind the Wasserstein distance or Earth-Mover distance is for the algorithm to mea-
sure how much "content" (i.e. earth) must be moved from the target distribution to the
source distribution such that they are the same. Kulback-Liebler divergence is based on
information theory. Any communication (i.e. information) may be encoded using a min-
imal encoding scheme, that is, an encoding scheme that will reduce to a minimum the
number of bits necessary for that information to be transmitted. KL divergence measures
how much more information (bits) must be used to transmit a target message using en-
coding optimised for a source message. Entropy is related to KL Divergence in that KL
divergence measures the average number of bits required whereas entropy measures the
total number of bits. Thus, SigCWGAN operates like a standard GAN in minimising this
loss function.

Ni et al. (2020), who is the author of the original SigCWGAN paper compares SigCW-
GAN with TimeGAN (Yoon et al., 2019), RCGAN (Hyland et al., 2017) and GMMN (Li et al.,

57

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2015). His evaluations show that SigWGAN globally performs better than the other gen-
erators. This result is particularly significant as it shows that SigCWGAN performs better
than TimeGAN that is considered by many authors as an outstanding benchmark. Labiad
et al. (2021) state "The results of experiences conducted on the S&P 500 index (SPX)
and Dow Jones index (DJI) data show that SigCWGAN achieves superior or comparable
performance to the other baselines." This is significant because the experiments carried
out show SigCWGAN's suitability in generating synthetic financial data. Li et al. (2022)
compares SigCWGAN with RCGAN (Hyland et al., 2017) and TimeGAN (Yoon et al., 2019)
and also shows that SigCWGAN performs as well or better than the other benchmarks.

2.10.4 BigGAN

A GAN architecture that has been very successful in addressing the difficulties mentioned
in section 2.5.4 is BigGAN by Brock et al. (2018). BigGAN has performed very well in the
evaluations carried out here and therefore the techniques it implements are overviewed
here.

Ding et al. (2022); Jabbar et al. (2021); Makhmudkhujaev and Park (2021); Tseng et al.
(2021); Wang et al. (2021); Wiatrak et al. (2019); Zhang et al. (2019b) all have found
that BigGAN performed as well or better than any other GAN in the Computer Vision
applications they investigated. Ding et al. (2022); Tseng et al. (2021); Wang et al. (2021);
Wiatrak et al. (2019); Zhang et al. (2019b) have cited BigGAN as being "State of the art".
Google scholar states that the original BigGAN paper by Brock et al. (2018) was refered
to by over 3500 other publications, far more than any architecture we have surveyed. It
is for these reasons that we chose BigGAN as one of the architectures to be investigated
in this study.

The extent of the design characteristics listed here may be appreciated by perusing
the BigGAN discriminator and generator summaries reproduced in appendix D

Self-Attention Module and Hinge Loss: The Self-Attention Module and Hinge Loss tech-
nigues are adopted from the paper byZhang et al. (2019a). As can be seen from the dia-
gram below, this involves the introduction of a self attention mechanism to a DCGAN. A
problem with simpler GAN architectures is that the target of the convolutional mechanism
may be too mall and miss the importance of larger scale features which may result in well
generated noses being placed in the wrong position on the face. The self-attention mech-
anism provides feedback at larger scales. This solution is applied both to the discriminator
and to the generator.

58

2.10. GANS IN THIS STUDY

Class Conditional Information: This technique is derived from two papers:
1. A Learned Representation For Artistic Style by Dumoulin et al. (2016)

2. Spectral Normalization for Generative Adversarial Networks by Miyato et al. (2018)
In essence the benefits of Conditional GAN’s (CGAN) are employed using an em-
bedding mechanism that increases fidelity and reduces training speed.

Spectral Normalization: The Spectral Normalisation technique was also first escribed in
the Miyato et al. (2018) cited above. The highly effective batch normalisation procedure
is modified to operate on stochastic gradient descent.

Update Discriminator More Than Generator: This is a technique that has been widely
adopted by GAN developers and has been reported to be effective in several papers and
literature. In BigGAN the discriminator is updated twice for every time the generator is
updated.

Moving Average of Model Weights: This development is by Karras et al. (2017) Here,
the authors have suggested that the weights of the generator are moderated by the value
of a moving average across prior iterations.

Orthogonal Weight Initialization: In the paper Saxe et al. (2013) it is suggested that
model weights are initialised to a random orthogonal matrix that satisfies:

WI.Ww=1 (2.16)

Larger Batch Size: The BigGan developers tested the use of very large batch sizes all the
way up to 2048 images. The experiments conducted indicated that there were improve-
ments by doing this and the best results (46% improvement) were obtained by using a
batch size of 2048. The authors posit that this happens for a reason similar to why Self-
attention works i.e. the network’s convolutions have a broader view of the distributions
of the processed images.

More Model Parameters: The quest for increased size also targeted the quantity of
model parameters, whereby the number of feature maps in each layer was doubled. This
lead to an IS score improvement of 21%.

59

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Skip-z Connections: An approach that was then developed comprehensively in Style-
GAN is the adoption of skip-z connections. This involves the connection of the latent
space not only to the input of the generator but also to deeper layers. The authors state
that this led to a training speed improvement of 18%

Orthogonal Regularization: Here this technique was introduced by Brock et al. (2016).
This approach takes the idea used in "Orthogonal weight initialisation" (described previ-
ously) and applies it to regularisation by adding a term in the cost function that promotes
this behaviour.

Truncation Trick: Inthe training and inference phases of the GAN process, the generator
is fed two different distributions; a normal Guassian in the training phase and a truncated
Guassian in the inference (generation) phase. This allows the generated images to be
either more varied with a wider gaussian or more accurate (higher fidelity) with a narrower
sampling range.

2.11 Conclusion

The outcome that has been sought in this study is the improvement of financial prediction
by increasing the amount of data that is used to train the prediction system. Financial pre-
diction is by no means a given and this is evident from the amount of discordant literature
dealing with this subject. A consistent number of very authoritative opinions that uphold
the Efficient Market Hypothesis exclude the possibility of financial prediction. The posi-
tion that has been subscribed to here is that the EMH should be seen as a steady state
view and that this, then, would allow the possibility of prediction during the transient
periods between market events.

Machine Learning financial prediction systems depend on two significant antecedents;
human financial analysis and Machine Learning technologies. Again, with regard to finan-
cial analysis, an explanation must be sought to justify why ML financial prediction has
followed on the techniques pursued in Technical Analysis rather than, the more academ-
ically reputable Financial Analysis. Apart from the arguments debated in the literature,
the main argument in favour of TA is a pragmatic one; there is substantial evidence that
ML prediction (adopting TA techniques) works.

An overview of ML prediction techniques has been given here (section 2.6). The ob-
jective in this work was to establish whether data augmentation would enhance the per-
formance of a financial prediction system. The choice of an optimal financial prediction

60

2.11. CONCLUSION

system was beyond the scope of this dissertation. The review of the literature carried
out here showed a predominance of Neural Networks being used in financial prediction
systems (section 2.3) and were, thus, used here. This reasoning extended to the choice
of the benchmark paper that uses both a statistical (ARIMA) prediction technique as well
as an ML technique (RNN).

There were a number of issues that had to be dealt with regarding financial data syn-
thesis and augmentation. Even though there was a predominance of the use of Generative
Adversarial Networks (GANSs) in papers (section 2.8) that dealt with data augmentation
in time sequences (including financial time sequences) it was decided to include other
augmentation methods in this study. Following on the assessment by Iwana and Uchida
(20214), the two methods developed by Le Guennec et al. (2016), namely Window slice
and Window Warping were chosen as the alternative (hon-GAN) augmentation methods
to be evaluated here.

An issue that was prevalent in the literature dealing with all forms of data synthe-
sis and augmentation was the evaluation of the suitability of the generated sequences
(section 2.7). There were clearly two methodologies that emerged from the literature;
the Visual/Qualitative and the Quantitative evaluations. Although the visual/qualitative
evaluations were dependent on observation and were thus somewhat subjective, they
were still used in our appraisal to confirm the quantitative assessments. On the quanti-
tative front, a consensus emerged from the perusal of the papers reviewed in favour of
discriminative/predictive metrics as described by Yoon et al. (2019).

The problems (jabbar2021survey) faced early in the development of GANs lead to
a wide range of solutions being explored as can be construed from a number of survey
papers (Brophy et al., 2021; Iwana and Uchida, 2021a; Jabbar et al., 2021; Shorten and
Khoshgoftaar, 2019; Wang et al., 2021; Wen et al., 2020; Wiatrak et al., 2019). BigGAN
was selected since it was deemed by many authors to represent the state of the art and
a benchmark against which other GANs have been compared.

SigCWGAN by Ni et al. (2020) is a recent development and was chosen for the el-
egance of the solution adopted and the fact that it was reported to perform well. The
literature we have perused has shown that the application of SigCWGAN to generate
augmented data for the purpose of training a financial prediction system has not yet been
attempted.

61

3 Methodology

3.1 Experiments Overview

As described in the introduction (section 1) the motivation for this study is to explore data
augmentation methods in view of enhancing ML financial prediction models by making it
possible to provide more training data leading to an improvement in out of sample per-
formance. A number of candidate data augmentation methods were tested against a
selection of evaluation methods by Yoon et al. (2019), Eckerli (2021) and Takahashi et al.
(2019). Thus, the work here involved finding the data synthesis method that gave the best
results according to the Yoon et al. (2019) quantitative evaluations. This permitted a se-
lection of data augmentation methods. Visual/qualitative evaluation methods were used
to corroborate the quantitative results. Augmented data generated by the best perform-
ing synthesis method was then used to train the prediction algorithm described in the
YU and Li (2018) benchmark paper. Following the methodology in Teng et al. (2020) the
prediction algorithm was first trained with real financial time series to provide a baseline
for comparison. Subsequently the prediction algorithm was trained with synthesised data
using the generative method chosen after the testing mentioned above. The error metrics
as per the benchmark paper (YU and Li, 2018) were used to asses the performance of the
augmentation system being investigated in this study.

3.2 Experiment 1a - GAN Evaluation

3.2.1 Motivation

The first experiment is intended to fulfil objective 1a as stated in section 1.2. The aim
here is to evaluate the performance of the GAN architectures selected in section 2.10 so
that it may produce the financial time sequences required in experiment 2.

63

Experiment Objective

No

Experiment

1a

A survey of current literature dealing with Finan-
cial Time Series Augmentation indicates that Gener-
ative Adversarial Networks (GANSs) are the preemi-
nent technology in this field. The first objective in
this study is to establish which, out of a selection
of GAN architectures, performs best when these are
compared using a suitable evaluation metric. Thus,
the objective here is to produce a coherent tabulation
ranking of the GANs according to a specific metric.

section 3.2

1b

Even though there is an apparent consensus that
GANs are the technology of choice with regard to
time series augmentation, it would be, nonetheless,
prudent to investigate alternative technologies. Thus,
objective 1b is to survey these non-GAN technolo-
gies and compare their performance using the same
evaluation metric that was used in the fulfilment of
objective 1a.

section 3.3

The second objective to be dealt with is to estab-
lish whether the augmentation method selected after
performing the experiments to fulfil the objectives 1a
and 1b result in the improved performance of a finan-
cial prediction system as measured by standard error
metrics. This will entail the comparison of the error
metrics obtained using real financial data against the
results obtained when using augmented data in the
training phase of the selected prediction system.

section 3.4

Table 3.1: Experiments corresponding to Objectives

3.2. EXPERIMENT 1A - GAN EVALUATION

3.2.2 Actions undertaken

1. We use the visual evaluation tools developed by Eckerli (2021) and Takahashi et al.
(2019) to perform a preliminary selection of GAN candidate architectures.

2. We use the evaluation methods developed by Yoon et al. (2019) to give a perfor-
mance metric of the GANs chosen from the previous task.

3. We verify that the evaluation obtained in task 2 is reflected in the quality of the
visualisations mentioned in task 1

3.2.3 Data
3.2.3.1 Data Sources

The replication of the benchmark paper selected (YU and Li, 2018) required the procure-
ment of the OHLC (open, high, low, close) for the S&P500, SSEC, N225, HSI and IXIC
indices. The S&P500 index, in particular was used as the ground truth data for for ex-
periments 1a and 1b. As suggested by Ni et al. (2020) (and also used in his code) the
Oxford-Man Institute’s "realised library" was used as a source for the indices’ OHLC data.
The downloaded data was loaded into comma delimited CSV files named for each specific
asset. These files included a date column.

3.2.3.2 Preparation

Below are a number of routines that are part of the standard processing that is carried out
on input data before it is fed to algorithms as carried out by YU and Li (2018) and Eckerli
(2021) in their code.

MinMaxScaling and StandardScaling: The purpose of scaling is to transform data that
has differences in scale and units to quantities that are comparable (Lezmi et al., 2020).
For example one set of data may be measured in kilometres whereas another is expressed
in light years. The scaling algorithms will ignore these differences and reduce the data
to some desired range, usually from zero to one. In the case of financial data this phe-
nomenon is evident in the wide range of current asset prices that range from fractions of
a dollar to at around $414,000 for Berkshire Hathaway class A shares, although the price
variations in the indices used in this study are less extreme. Normalisation reduces the
range of the input data to between zero and one using the formula:

y = (x — min) / (max — min) (3.1)

65

CHAPTER 3. METHODOLOGY

This is performed in the code by the scikit-learn MinMaxScaler function. Data stan-
dardisation will rescale the distribution of the input data such that its mean is zero and
its standard deviation is one. This assumes that the data is normally distributed. The
transformation is

y = (x — mean) /standard_deviation (3.2)

This is performed in the code by the scikit-learn StandardScaler function.

Date ranges, Price and log returns: Since the stochastic behaviour of most assets will
change over time, ensuring that the date range of the required data is consistent is im-
portant.

Following Eckerli (2021) and Ni et al. (2020) the principle format that the GANs used
as input and also their output was in terms of price. The process of generating log returns
by taking the difference in price on successive days transforms the price time series into
a series that is stationery. This facilitates the operation of statistical functions used in
various Al models. Log returns are scale free thus allowing a better comparison of the
performance of various assets and the synthesised data that simulates these assets.

A Log_Returns column was added to the generated files. This is because the generated
files had no intrinsic date or price information and only represented the relative movement
of the asset from one data point to the next. Thus, for there to be a comparison with the
original data, these movements had to be anchored to a starting price corresponding to
the asset price at a given date. To enable this process log returns were used. Code was
implemented to convert sequences of log returns to asset prices and vice versa.

Generating the training and test data sets: The data that was used as input to the
various algorithms was selected by the appropriate date range and then split into train
and test data in a 3:1 ratio as per the procedure in YU and Li (2018).

Sliding window slices and shuffling: Following Eckerli (2021), the GANs that have been
investigated have been trained on a number of short slices (24 data points) generated
from the price time series of the asset in question. Thus if the asset CSV contains 1000
sequential data points from n=0 to n=999, the first slice will contain data points n=0
to n=23, the second n=1 to n=24 and the kth slice n=k-1 to n=k+22. These slices are
added to a python list and this list is then shuffled so that the data set is independent and
identically distributed (I.1.D). This is the format that is fed into the GANs at the training
stage.

66

3.2. EXPERIMENT 1A - GAN EVALUATION

Stationarity: The GAN code following Eckerli (2021) and Ni et al. (2020) transformed
daily closing prices into log returns. This is done to ensure the stationarity of the GAN
training data.

Stationarity may be understood as the condition when the statistical properties of a
random process that produces a time series are invariant over time. This does not im-
ply that the time series does not change over time, only that it preserves its statistical
attributes. An analogy in simple algebraic terms is a linear function rather than a flat hor-
izontal line. In this analogy the mathematical feature that is preserved is slope and not
simply a constant y value.

Stationarity is a characteristic that is often required at the outset of most data analy-
sis processes since a large majority of the tools used for analysis require that the data is
stationary. Simply considering the most abundant type of data that is dealt with in stock
market trading; asset price time series, will lead to the realisation that not all stochas-
tic data is stationary since, like in the case of asset prices, these usually have a variable
mean; i.e. they ramp upwards or downwards. The process of differencing the time se-
ries one or more times is often what is needed to render the data stream stationary. The
first difference is another quantity that underlies several analytic processes, namely the
periodic (e.g. daily) return of an asset. An implication resulting from this is that since a sta-
tionary series has some statistical characteristic that is constant, then predictions may be
inferred from the data; the extrapolation of the stationary characteristic may be used to
make simple predictions. More complex models, also use and are dependent on data be-
ing stationary. Trend estimation, forecasting, causal inference and the GANs investigated
here use the stationarity of data.

3.2.4 Experiment Design

As stated in above an initial appraisal of the BigGAN hyperparameters was carried out re-
sulting in the retention of the values established in the paper (Brock et al., 2018). Eckerli
(2021) states he has adopted a "black box" approach in evaluating the performance of the
GAN models. This means that the various GANs were implemented as per the relative pa-
pers. The motivation behind this approach was to assess how the GANs perform "out of
the box" since Eckerli (2021) expects that these will be used as one of a number of build-
ing blocks underlying a more complex applications. Another reason for keeping changes
to the original code to a minimum is that a comparison can be done on their "baseline"
configurations, limiting the possibility of changes drastically improving the performance
of some of the architectures and not others. Eckerli (2021) adapted the code from that
in the original paper where the latter was designed to deal with images rather than time

67

CHAPTER 3. METHODOLOGY

download daily do a descriptive
SP500 data analysis of the
from yahoo data

Choose one GAN Build
to start with Discriminator

Perform

) Train the GAN Build Generator
Evaluation

End

Figure 3.1: Experiment 1 Workflow

series. This required the modification of the dimensions of the input layers. The workflow
adopted in this experiment is shown in the flowchart in diagram 3.1.

3.2.5 GANs

In this study, following the methodology by Eckerli (2021), 12 GANs where given an ini-
tial appraisal, namely: DCGAN, LSGAN, SAGAN, WGAN, WGAN-gp, DRAGAN, RAGAN,
RALSGAN, YLGAN, BigGAN, BigGAN_deep, TransGAN and SigCWGAN using the Visu-
al/Qualitative evaluation methods described in section 2.7.2.

BigGAN and SigCWGAN were selected from the wider list above after a visual evalu-
ation following the methods described by Eckerli (2021) and Takahashi et al. (2019) (Task
1). Another criteria for this choice of GAN architectures was the fact that they used intrin-
sically different loss functions. As stated in the Literature Review (section 2.10.4) BigGAN
was also selected since it is very often used as a benchmark in papers dealing with GAN
performance.

SigCWGAN was selected for three reasons. First, the authors that have investigated it
(Li et al., 2022; Ni et al., 2020) have found it to perform better than TimeGAN, a favourite
with authors working in financial time series augmentation. Secondly, it appears to solve a
problem that has afflicted most other GAN architectures that came before; i.e. the quick
stabilisation of the generator loss function (the vanishing gradient problem). Thirdly, it
substitutes a discriminator that requires training and behaves stochastically with a deter-
ministic function (the Signature Transform) and this reduces the computational burden
and the variablility of the result.

The implementation of BigGAN is adapted from Eckerli (2021). SigCWGAN was im-
plemented on code based on that provided by Ni et al. (2021).

68

3.2. EXPERIMENT 1A - GAN EVALUATION

3.2.5.1 BigGAN:

The BigGAN architecture is the synthesis of a substantial number of solutions to issues
that had been identified in the development of early GAN architectures. These solutions
were addressed by different authors in their corresponding papers. This makes BigGAN
one of the preeminent architectures available. The layers used in the BigGAN generator
and discriminator are given in tables D.1 and D.2.

3.2.5.2 SigCWGAN

The background regarding the signature function that underlies the function of the SigCW-
GAN architecture has been given in section 2.10.2 of the literature review.

SigCWGan still has the basic architecture that characterises GANSs, i.e it has a gener-
ator and a disccriminator. The Generator architecture chosen is autoregressive feedfor-
ward neural network (AR-FNN).

The signature function is used to characterise both the original time sequence and
the one that is produced by the AR-FNN generator. The loss function is then simply the
difference of the two signatures.

3.2.6 Evaluation Criteria

GAN's have originally been used in Computer Vision (CV). The evaluation of GANs has
always posed a challenge to the operators in the various Al fields that use this technol-
ogy. An overview of the literature has indicated that the methods described below have
attracted some consensus in the field (Borovykh et al., 2017; Eckerli, 2021; Efimov et al.,
2020; Franco-Pedroso et al., 2019; Leznik et al., 2021; Smith and Smith, 2020; Sun et al,,
2020; Wiese et al., 2020).

The function that is the most essential in achieving objectives 1a and 1b (section 1.2)
is the evaluation of the fidelity of the generated time series with respect to the original
time series, both with regard to statistical properties and crucially to time dependence.

Two approaches have been adopted in order to achieve this; a series of visual as-
sessments (Eckerli, 2021), Takahashi et al. (2019), and the predictive and discriminative
metrics as devised by Yoon et al. (2019). As described in the section 2.7.2 these metrics
are in addition to PCA and t-SNE plots that Yoon et al. (2019) also uses.

PCA was used as one of the two visual evaluation methods. To do this 2 dimensional
PCA using the sklearn python library was carried out. This PCA process was applied to the
time sequence to be tested, namely the generated and augmented asset time sequences
and compared to the real asset time sequence. If the generated sequences conserved

69

CHAPTER 3. METHODOLOGY

the features of the real data then the projections should overlap significantly. The t-SNE
implementation used here was also the one in the sklearn library.

Visual assessments were carried out as described by Eckerli (2021) using code adapted
from that supplied by him. Eckerli (2021) limits his evaluation to the comparison of "stylised
facts". The process was enhanced by also including the visual evaluation tools described in
Takahashi et al. (2019). The time series produced as described above (section 3.2.5) were
passed to a python program that produced the various graphs to enable the assessment
of the stylised facts described in section 2.7.2.

3.2.7 Discriminative and Predictive Metrics

Remlinger et al. (2022), Arnout et al. (2021), Santoro and Grilli (2022) and Lakshminarayanan
et al. (2021) have all adopted the discriminative and predictive metrics developed by Yoon
etal. (2019). Grilli and Santoro (2020) also adopt these metrics independently. Both these
metrics are neural networks built using the python Tensorflow library following the im-
plementation by Yoon et al. (2019).

The predictive model adopted by Yoon is essentially a regression algorithm. The al-
gorithm must simulate a hidden function that gives an output Y when given an input X
just like mathematical functions behave; for all points in a domain, corresponding points
within a range are output. As opposed to mathematical functions that are explicit, a func-
tion in an ML regression system must be inferred by the system from the training data.
Predictive systems in financial time series are a subset of regressors in that the input is
a short time sequence and the output are points (or a single point) that should follow
the input sequence. A large variety of regression algorithms have been investigated for
prediction applications in the past (section 2.6.1). The solution chosen here follows that
adopted by Yoon et al. (2019) that uses a gated recurrent unit (GRU) as a predictor. The
mean absolute error (MAE) of the predictions (vs. the original sequence) is then output
as the prediction metric.

It is worth noting that discriminative metrics have a history that goes back to the
evaluation of GANs in computer vision (Goodfellow et al., 2020) because one of the two
fundamental components is a discriminator. GANs were first used to generate pictures
of specific objects (horses, human faces etc.). The problem of gauging the quality of this
output concerned operators in the field as this automatic metric had to perform close
to appraisal that was done by human judges (Salimans et al., 2016). One solution that
was adopted was to measure if the generated image actually looked like the object it was
supposed to mimic. This was done by employing Google’s object classifier; the inception
machine (Barratt and Sharma, 2018). Following this tradition (Yoon et al., 2019) developed

70

3.2. EXPERIMENT 1A - GAN EVALUATION

his discriminative metric that is essentially a classifier network using a recurrent neural
network (RNN) to judge whether the given time sequence is real or generated. This is no
different from the discriminator networks used in GANs. The metric is given by:

(abs(classification accuracy — 0.5)) (3.3)

3.2.8 Selection of parameters

Eckerli (2021) states that his experimental framework intended to use the GANs with the
hyperparameters as suggested by the original authors; 'the black box’ approach (section
3.2.4). One hyper parameter that was tested here is the number of epochs that the GANs
were allowed to train on, namely 200 or 1000 epochs. As can be seen from the figure 3.2
below showing real vs. generated time series, the plots generated after 200 epochs are
more realistic in terms of price excursions that those generated using 1000 epochs. This
is an instance that highlights the fact that the loss-functions in GANs settle very quickly
and thus the GAN has no way of determining when to stop and will thus carry on training
indefinately. This is related to the evaluation problem mentioned in section 2.7.

Similar tests were carried out to establish whether the hyperparameters selected by
Brock et al. (2018) for BigGAN gave suitable results when generating financial time series.
The hyperparameters were:

1. Learning rates
2. Rl gradient penalty strength

3. Strength of the modified Orthogonal Regularization penalty in Generator

These preliminary tests using the orignal paper (Brock et al., 2018) hyperparameter
ranges all indicated that the author’s choice of hyperparameters were satisfactory.

3.2.9 Execution Details

The models were trained on the actual S&P500 time series of 5000 data points corre-
sponding to the prices of the index from the 1st January 2000 to the end of 2020. The
S&P500 was chosen as it condenses the performance of 500 of the largest companies
listed on US stock exchanges. The index is thus a good benchmark on the performance of
the US economy and it is widely used in the testing of financial models (Eckerli, 2021). The
price time series was converted to log returns and this series was used to train the various

71

CHAPTER 3. METHODOLOGY

—— Original Values
Synthetic Values

e

0 1000 2000 3000 1000 s0a0
Days

Price

8000

6000

4000

2000

—— Original Values
Synthetic Values

3500

3000

2500

—— Original Values
Synthetic Values

A

10000

8000

6000

—— Original Values
Synthetic Values

L L
£ 2000 2
o o
1500 4000
1000
2000
500 A
0 1000 2000 3000 1000 s0a0 0 1000 2000 3000 4000 s0a0
Days Days

Figure 3.2: This figure shows real and synthetic time series for 200 epochs
(left) and for 1000 epochs (right) for BigGAN (row 1), SigCWGAN (row 2)

GAN configurations. The resultant generated output was therefore a 20 year simulation
of log returns.

3.3 Experiment 1b - Non-GAN method evaluation

3.3.1 Motivation

This experiment is intended to fulfil objective 1b as stated in section 1.2. The aim here is
to appraise the quality of a number of non-GAN augmentation methods using the same
evaluation criteria used in experiment 1a; namely the quantitative evaluation described in
the paper by Yoon et al. (2019) followed by visual/qualitative assessments following the
Eckerli (2021) and Takahashi et al. (2019) papers. This is being done to ensure that the
GAN results from experiment 1a may be compared to those arising from the evaluation
of non-GAN methods being carried out here. This will ensure that we may choose the
most suitable synthesis method in order to proceed to experiment 2.

72

3.3. EXPERIMENT 1B - NON-GAN METHOD EVALUATION

3.3.2 Actions undertaken

1. We use the evaluation methods developed by Yoon et al. (2019) to quantitatively
evaluate a comprehensive selection of non-GAN methods.

2. We verify that the evaluateing obtained in task 1 is reflected in the quality of the
visualisations using the frameworks of Eckerli (2021) and Takahashi et al. (2019).

3.3.3 Non-GAN Augmentation methods

Even though the majority of the literature surveyed used GANs as the preferred time
series synthesis technology, there were papers that discussed other methods for time se-
ries synthesis (Fons et al., 2020), Fu et al. (2019), Liu et al. (2020) and Iwana and Uchida
(2021a). Thus the necessity arose to appraise non-GAN methods of augmentation and
compare their performance with the GAN results from experiment 1a. The Non-GAN aug-
mentation methods that were used to achieve objective 1b were adapted from the code
by Iwana and Uchida (2021b). The code was integrated into the Eckerli (2021) framework
described in section 2.7.2 so that all the evaluation metrics (both visual and quantitative)
operated seamlessly whether input was from a GAN or non-GAN generator.

3.3.4 Data

To replicate the chosen benchmark paper by YU and Li (2018), it was necessary to ob-
tain the OHLC (open, high, low, close) data for various indices such as S&P500, SSEC,
N225, HSI, and IXIC. Specifically, the S&P500 index was used as the reference data for
experiments 1a and 1b. Following the recommendation of Ni et al. (2020) and their code,
the OHLC data for these indices was sourced from the "realised library" provided by the
Oxford-Man Institute. The acquired data was then stored in CSV files, with each file
named after the corresponding asset and containing a column for dates.

3.3.5 Evaluation Criteria

The key function necessary to achieve objectives 1a and 1b (section 1.2) revolves around
evaluating the fidelity of the generated time series compared to the original time series.
This evaluation involves assessing both the statistical properties and, importantly, the
temporal dependence of the time series. To accomplish this, two approaches have been
employed. First, a series of visual assessments were conducted, following the methods
described by Eckerli (2021), Takahashi et al. (2019), and utilizing the predictive and dis-

73

CHAPTER 3. METHODOLOGY

criminative metrics developed by Yoon et al. (2019). These visual assessments comple-
ment the PCA and t-SNE plots utilized by Yoon et al. (2019), as described in section 2.7.2.

PCA was employed as one of the visual evaluation methods. It involved conducting
a two-dimensional PCA using the sklearn Python library. The PCA process was applied
to both the generated and augmented asset time sequences and compared against the
real asset time sequence. If the generated sequences preserved the characteristics of the
real data, the projections should exhibit significant overlap. The t-SNE implementation
utilized in this context was also sourced from the sklearn library.

Visual assessments, as outlined by Eckerli (2021) and adapted from the provided code,
were performed. Eckerli (2021) focused on comparing "stylized facts" in his evaluation.
To enhance this process, the visual evaluation tools described in Takahashi et al. (2019)
were also incorporated. The generated time series from section 3.2.5 were fed into a
Python program that generated various graphs, enabling the assessment of the stylized
facts detailed in section 2.7.2.

3.4 Experiment 2 - Improving daily return prediction
using Synthetic data

3.4.1 Motivation

The second experiment is intended to fulfil objective 2 as stated in section 1.2. The aim
here is to ascertain if the augmented data obtained by using the generative methods
selected in the first experiment and added to real data actually provides model training
and out-of-sample prediction improvement in the performance of the algorithm by YU
and Li (2018).

3.4.2 Actions undertaken

1. The compilation of 20 augmented time sequences from the synthesised time se-
quences for all indices generated by the previous experiments.

2. The running of the benchmark paper code with the augmented time sequences from
task 1.

3.4.3 Data

74

3.4. EXPERIMENT 2 - IMPROVING DAILY RETURN PREDICTION
USING SYNTHETIC DATA

Download Indices
data from
Oxford-Man Institute

Set MA filter Subtract

Low Wolatility
Time series

High Wolatility
Residual

Calculate ARIMA Calculate RNN
Error Metics Error Metrics

Figure 3.3: Experiment 2 Benchmark code flowchart

3.4.3.1 Data Description

The task to be carried out here follows from what was carried out in experiments 1a
and 1b. This involved the production of synthesised time sequences obtained by the
generation method that was found to give the best result when appraised by the Yoon
et al. (2019) criteria (section 2.7.4). These synthesised time sequences were used to build
the augmented time sequence data files that make up the inputs to the benchmark paper
code. This augmented data consists of synthesised data followed by real data in the ratio
of 3:1 one in one continuous CSV file.

Following from the generation of data described in section 3.2.5 all that is needed is
to pass the particular CSV file to the benchmark algorithm code on the command line.

75

CHAPTER 3. METHODOLOGY

The experiment was carried out with 20 separately generated augmented time se-
qguence files for each of the 5 indices (S&P500, SSEC, N225, HSI and IXIC). It was ob-
served that 20 repetitions resulted in a stable figure of the standard deviation that the
results generated, indicating that no substantial further variation would occur if more
repetitions were carried out.

3.4.4 Replication of Benchmark Paper

The benchmark paper adopted in this dissertation is "Stock price prediction based on
ARIMA-RNN combined model" by YU and Li (2018). The YU and Li (2018) paper uses
daily closing prices of five indexes: the Standard & Poor’s 500 index (S&P500), the NAS-
DAQ index (IXIC), the Nikkei index (N225),the Hong Kong Hang Seng Index (HSI) and
the Shanghai Compositelndex (SSEC). The YU and Li (2018) paper describes how two
time-honoured and well understood financial time series models (ARIMA and RNN) can
be combined together to produce an improved model. The experiment described here is
intended to achieve the aims set out in obective two (section 1.2).

A number of papers were considered before choosing the one by YU and Li (2018).
Feng et al. (2019) studied the relationships between stock on the Nasdaq and NYSE ex-
changes in order to be able to evaluate over 2700 stocks on these markets. The trading
strategy adopted was to buy the top 50 stocks and sell them after a day. The paper by
Mudassir et al. (2020) looked at the prediction of Bitcoin prices. They used ANN and
LSTM networks as their prediction models trained on multiple return intervals. Krauss
et al. (2017) and Fischer and Krauss (2018) implemented a trading system that evaluated
the S&P500 assets by focusing on the cross-correlations between these assets. All these
benchmark paper candidates were discarded because they all necessitated the genera-
tion of large multiples of correlated time series. The fact that it is quite feasible to train
DL networks with a high number of features does not necessarily mean that it is equally
computationally viable to have a GAN produce the required data.

The code implementing the YU and Li (2018) paper was an adaptation of the code by
Christopher Naimo that is available on GitHub?. This code required one input file in OHLC
format. The data was the same as that used in Experiments 1a and 1b (section 3.2.3.1)
and required no further processing. Python is used throughout the analysis process with
the help of the libraries mentioned in section 3.6.

https:/github.com/cnaimo/hybrid-ARIMA-LSTM-model

76

3.4. EXPERIMENT 2 - IMPROVING DAILY RETURN PREDICTION
USING SYNTHETIC DATA

3.4.5 Evaluation Criteria

The evaluation criteria used in this experiment follows that which was described in the
benchmark paper YU and Li (2018), namely the MAE,MSE and MAPE error metrics that
are briefly overviewed below.

3.4.5.1 Error Metrics

MAE Mean Absolute Error (MAE): MAE is a measure of the average error in a set of
predicted values (i.e. between the prediction and observation), independently of their
direction. The average is taken over the given data where all calculated differences have
equal weight.

1 n
MAE = EZ]xi—x\ (3.4)
=1

MSE Mean Squared Error (MSE): The mean squared error (MSE) also known as mean
squared deviation (MSD) of a regressed or predicted quantity is given by the average of
the squares of the errors; that is, the average squared difference between the predicted
values and the observation.

n
MSE =+ Y (Y = Y)?

ni3

(3.5)

MAPE Mean Absolute Percentage Error (MAPE): The mean absolute percentage error
(MAPE) is the average of the absolute percentage errors of the predicted values. An error
is understood to be the predicted value subtracted from the actual, observed value. In
Mape the absolute percentage errors are summed to give the metric.

actual value — forecast value
actual value

1
MAPE = - x) (3.6)

There is a distinction that needs to be made clear regarding the meaning of the terms
"synthetic data" and "augmented data". Synthetic data contains only artificial data that is
produced by the procedures mentioned in this study (the GAN and non-GAN methods in
sections 2.5 and 2.9.1). Augmented data is data where synthetic data is interspersed with
real data resulting in a dataset that is larger than the original. The augmentation carried
out in this study has not been used to enlarge the training set, but to ascertain whether
synthetic data could satisfactorily substitute the real data in the training stage.

77

CHAPTER 3. METHODOLOGY

For the purpose of replication, the procedure described in the benchmark paper was
carried out using real data so as to accurately follow the procedure described by YU and
Li (2018).

Augmented data is what has been used in experiment 2 (section 3.4) to verify that the
synthetic data behaved at least as well as the real data in terms of the evaluation criteria
described in section (3.2.6). Thus, the procedure adopted by the benchmark paper was
carried out using data that was all synthetic in the training phase and all real in the testing
phase. Since the code used a single integral data set and proceeded to split this data into
a training set and a testing set in the ratio of 3:1 (YU and Li, 2018), the augmented data
was compiled by adding synthetic data followed by real data in the same ratio. The code
was not modified to do this to preserve the integrity of the benchmark paper code, so the
augmented data compilation was carried out separately.

The two underlying models been described in section 2.6.3 and section 2.6.4 in the
Literature Review chapter.

3.5 Hardware Considerations

Development and experiments were carried out on a 64 core server motherboard with
an NVIDIA Tesla K80 with 24GB of ram running Ubuntu 20.04.5 LTS. The development
environment used was Anaconda version 4.13.0. Some of the code developed was based
on that supplied by the various paper’s authors. These were used in separate anaconda
environments each built with the recommended python version and "requirements" file.

3.6 Software and Libraries

The libraries listed below have been employed extensively in the code used in this disser-
tation. Although there is some overlap in the functionality of the libraries listed below,
only minimal changes were carried out to the code adopted from the various papers used
in this investigation. Since the code was usually based on a particular framework (Ten-
sorflow, Keras or Pytorch) substituting one framework for another would have involved
a very onerous code rewrite that would be very prone to error and might not have pre-
served the operation of the original code.

Numpy: Numpy is primarily used to handle numeric arrays with a syntax that is very
similar to Python arithmetic.

78

3.6. SOFTWARE AND LIBRARIES

Pandas: Pandas enables the manipulation of tabular data in a manner that is reminiscent
of SQL. It greatly aids the construction of data by allowing the merging of data from
diverse sources and its manipulation, selection and pre-processing. It is used seamlessly
with Numpy in the manipulation and processing of data in this work.

Matplotlib: Matplotlib is the python workhorse when it comes to data visualisation.
The plots that have been presented here are mostly generated using this library.

Scikit-learn: Scikit-learn is a python library with a consistent API that is made up of a
set of tools for ML and statistical modeling that includes regression, classification, dimen-
sionality reduction and clustering capabilities.

Tensorflow, Keras and Pytorch: Tensorflow, Keras and Pytorch are the three libraries
that were used to build the various Deep Learning networks used in this disseratation.
Tensorflow has been developed by Google whereas Pytorch was developed by Meta
(Facebook). Keras was originally an open source overlay to Tensorflow that has now been
incorporated in Tesorflow 2 by Google. These libraries allow the programmer to construct
almost any Neural Net architecture layer by layer, usually using just one line of code per
layer.

79

4 Results and Evaluation

4.1 Lack of Evaluation Methods

Barua (2019); Borji (2019); Ducoffe et al. (2019); Eckerli (2021); Jabbar et al. (2021);
Koochali et al. (2020); Simonetto (2018) all have emphasised the fact that GAN evalu-
ation, particularly in applications outside Computer Vision is highly problematic. The In-
ception score (Salimans et al., 2016) and Frechet Inception Distance (Heusel et al., 2017)
metrics, that have become the accepted evaluation metrics for GANs used in CV are not
applicable in the case were GANs are used to generate time series. An overview of this
issue is given in section 2.7.

4.2 Visual Evaluations

The plots were carried out using the time series generated by BigGAN and SigCWGAN
after being trained on the S&P500 time series. S&P500 was chosen as this series is used in
all trials and experiments performed here. The figures in this section should be compared
with figure 2.7. This set of figures are the one published in Takahashi et al. (2019) paper
and show the plots the authors generatted for the S&P500 index.

1.00 .00 1.00

075 075 075
050 050 050
O o025

025 025

0.00 &

0.00

correlation
2
correlation
correlation
X

-0.25 -0.25 -0.25

~0.50 ~0.50 -0.50

-0.75 -0.75 -0.75

-1.00 -1.00 -1.00
0 200 400 600 800 1000 0 200 400 600 800 1000 [200 400 600 800 1000

lag k lag k lag k

(a) SigCWGAN (b) BigGAN (c) Real S&P500

Figure 4.1: Linear Unpredictability

81

CHAPTER 4. RESULTS AND EVALUATION

10 10° 10! 10~ 10° 10° 107 10° 10t

Price Return r¢ Price Return ry Price Return ry

(a) SigCWGAN (b) BigGAN (c) Real S&P500

Probability Density Function P(r)
¢

Probability Density Function P(r)

Probability Density Function P(r)

Figure 4.2: Heavy Tailed Distribution

2

¥)"
2
r"}
(I
e
R 34 ol
r
rl
2k h.«»
3
L
rrn

correlation
5
correlation
s

.

-
correlation
-

5
5

5
5

10° 100 10t 107 10°

lag k lag k lag k

(a) SigCWGAN (b) BigGAN (c) Real S&P500

Figure 4.3: Volatility Clustering

Linear unpredictability: Autocorrelation of asset price is plotted against increasing time
lags. The plots shown here in figure 4.1 show that there is essentailly no correlation at
any time lag. This is an often quoted behavior that is often used to confirm the Efficient
Market Hypothesis, section 2.2 i.e. that prices carry no information from the past.

Fat-tailed distribution: As has been discussed in section 2.7.2 the phenomenon of fat
(or heavy) tails occurring in the distribution of returns may be observed using two different
methods. The plots in figure 4.2 exhibit a power law decay as described in section 2.7.2.
The Kurtosis figure 4.9 also highlights this phenomenon.

Volatility clustering: Figure 4.3 shows the average auto-correlation of price return in
a log-log scale of the GAN synthesised data that can be compared with that of the real
S&P500 time series. The power law decay is quite clear in figure 4.3 c and less so in
figures 4.3 a and b. These plots indicate the effect of temporal characteristics (i.e. time
dependence) that are typical in financial time series.

Leverage effect: All plots in Figures 4.4 show the leverage effect where they show a
diminishing exponential decay (i.e. tending to zero), but it is more evident in the generated
plots rather than the S&P500 plot.

82

4.2. VISUAL EVALUATIONS

00 0 t INIVANV. Y o y A A
S i
:‘1:' -02 § -20 g :Z:Z WW
[10 20 R 30 40 50 [10 20 . 30 40 50 [10 20 R 30 40 50
(a) SigCWGAN (b) BigGAN (c) Real S&P500

Figure 4.4: Leverage Effect

07

06 0.6
05 05

0.4 04

€2 i
=20 =15 -10 -5 Ia; k 5 10 15 20 =20 =15 -10 -5 Ia; k 5 10 15 20 =20 =15 -10 -5 ‘ago k 5 10 15 20
(a) SigCWGAN (b) BigGAN (c) Real S&P500
Figure 4.5: Coarse-Fine Volatility
10° 10* Stelpﬂ‘ 10° 10° 10* stelsl 10° 10° 10* StelF(:l 10°
(a) SigCWGAN (b) BigGAN (c) Real S&P500

Figure 4.6: Gain-Loss Asymmetry

Coarse-fine volatility correlation: In figure 4.5 T = 5 is chosen for weekly time-scales.
The asymmetry in the S&P500 plot at k = 1 is visible as the values move away from the
zero level shown by the horizontal black dashed line. As has already been stated in this
metric’s overview 2.7.2 and also stated by Takahashi et al. (2019), this phenomenon is
hard to discern in the behavior of single asset plots.

Gain/loss asymmetry: The results of our trials may be seen in figures 4.6. The plots
do not satisfactorily show the purported behaviour that is evident in the Takahashi paper
where the superimposed plots exhibit an evident shift.

83

CHAPTER 4. RESULTS AND EVALUATION

(a) SigCWGAN

(b) BigGAN

(c) Real S&P500

Figure 4.7: Returns
& Z: 8 oo g Z:
E ZZZ - E 0.00 R ann et "' ..’\.' g ZZ;
A_' o 75PI‘iCE Roeturn l’ts b 5__ e e ozs’riggo;e;lf;; rrU wo oo o E o 7;r[ce REYOLII'h re ’ b
(a) SigCWGAN (b) BigGAN (c) Real S&P500
Figure 4.8: Linear Distribution
(a) SigCWGAN (b) BigGAN (c) WGAN-gp

Analysis of returns:
characteristics. Assets returns, both generated and real are centred at zero and extend
between -10% and 10%. These plots are very similar in their volatility distributions to

that observed in the S&P500 plot.

Figure 4.9: Probabiity Density Function

The observation of figure 4.7 and 4.8 shows certain important

4.2.0.1 Probability distribution, Kurtosis and Skewness:

In figure 4.9 the distribution of returns for S&P500 is superimposed on that of the GAN
generated time sequence with the associated figures for skewness and kurtosis. The fig-

ure 4.9 shows that the two distributions overlap quite tightly implying that the synthetic

sequence displays aggregational gaussianity (i.e. normal distribution) as does the real dis-

84

4.2. VISUAL EVALUATIONS

Dbl ity T AV T ARSI i wm; PR T, m,m i “N—W
WH e “'M ‘ ““}"" i i ""‘Yuﬂ"hl\f‘\,‘t‘v'fl\ ' “ M‘M‘w‘l\w\ﬁ‘ M l” L !Nl.”‘\ Wiy kil

\‘ gl ‘j“\"‘vw it
T T

E 3

(a) SigCWGAN (b) BigGAN (c) WGAN-gp

Figure 4.10: Autocorrelation

tribution. This behaviour of the generated data is as would be expected of a satisfactorily
performing GAN.

Skewness: The discussion of skewness in the literature review section 2.7.2.1 describes
how skewness determines how by much the given distribution is off center. The observed
prevalence of more significant downward movements in price implies that the skewness
should be negative. The figures obtained confirm this.

Kurtosis: What should be noted in the statistics shown in table 4.1 is that the skewness
datum for BigGAN is practically identical to the real result whereas the kurtosis figure is
smaller. Both these figures substantially improve on the figures of SAGAN, DCGAN and
WGAN-gp as reported by Echerli in his paper.

Real S&P500 BigGan SAGAN* DCGAN* WGAN-gp *
Skewness -0.42 -0.43 -0.27 -0.14 -0.26
Kurtosis 11.69 6.3 3.62 2.38 5.6

Table 4.1: Skewness and Kurtosis Comparison. * Indicates Eckerli Paper
figures

Autocorrelation: The WGAN-gp ACF plot that Eckerli shows in his paper has been repli-
cated in figure 4.10. It has been reproduced here to show that WGAN-gp fails this test as
there are several shifts that have an ACF that is well beyond the thresholds that are repre-
sented by the black dashed lines. BigGAN and SigCWGAN, in contrast, overshoot these
limits as often as the real S&P500 sequence does, indicating the superior performance of
BigGAN and SigCWGAN.

85

CHAPTER 4. RESULTS AND EVALUATION

4.3 Experiments

Here we present the results arising from the application of Yoon's evaluative methodology
(section 2.7.4) when applied to experiments 1a and 1b.

4.3.1 Data Preparation

As mentioned in section 3.2.3.1 the data used for all the experiments carried out here

were obtained from the Oxford-Man Institute’s "realised library". The fidelity requirement
is essential in the training of GANs. This means that very little preprocessing is carried
out on the raw OHLC (open, high, low, close) data as operations like SMOTE would affect
the distribution and temporal characteristics of the input (training) data and consequently
the fidelity of the GAN output. The datapoints that would be interpreted as NAN by the
python code and libraries where deleted.

The data was loaded into a Pandas dataframe and a log return column was added. This
column was necessary when generating synthetic data is synchronised with the real data
(i.e. having the same starting price) as described in section 3.2.3.2.

Experiments 1a and 1b did not require augmented data but only synthetic data.

4.3.2 Experiment 1a

The Table 4.2 shows the results of Experiment 1a showing the discriminative and pre-
dictive sores of both GANs. As stated in the objective 1a in section 1.2, the aim of this
experiment is to find the GAN architecture that gives the best performance according to
the selected evaluation criteria as discussed in section 3.2.7. The trials were carried out
for the five indices that formed the basis of experiment 2 below.

The table 4.2 shows that the best performing GAN is SigCWGAN.

The variability across indices was evident in all experiments performed and confirms
the comment of Qiu et al. (2006) where he states that leverage effect is dependent on
the observed market. We are quoting Qiu as a case where the researcher has found that
certain (if not most) stylised facts exhibit different behaviours depending on the market
being studied.

Another feature that arises from the observation of the figures in table 4.2 is that the
results of each index are fairly close but the values across indices diverge. This, yet again
confirms the notion behind Qui's observation.

The figures 4.11 and 4.12 show Real vs Generated:

« Daily price plot

86

4.3. EXPERIMENTS

Index GAN Discriminative Std. Dev. Predictive Std. Dev.
S&P500 SigCWGAN 0.11470 0.04217 0.00558 0.00068
BigGAN 0.18637 0.05458 0.00598 0.00080
HSI SigCWGAN 0.13514 0.09469 0.01651 0.02228
BigGAN 0.22540 0.06360 0.06248 0.03253
IXIC SigCWGAN 0.20608 0.04765 0.01496 0.00594
BigGAN 0.19445 0.0651 0.04401 0.04059
N225 SigCWGAN 0.12892 0.05896 0.01652 0.00352
BigGAN 0.14358 0.05589 0.07263 0.00833
SSEC SigCWGAN 0.16983 0.04765 0.01052 0.00180
BigGAN 0.16533 0.07170 0.00976 0.00126

Table 4.2: S&P500 Yoon Evaluation

SP500 SigCWGAN -SNE plot PCA plot

1800 { —— Original 15 f—-‘h 0z Original
—— Generated s 020 Synthetic
1600 10 \
\ 015
100 5 "% - 010
g o VY aw
& 20 H Nd Lo 2 % g
1000 ={ & 000 ogee i -4 9’;
kG, . PR g™ —0.05 % ¢ 3 ? %
800 -10 . 010 . J
¢ Original
w0 -1 g s Saf Synthetic 015
0 500 1000 1500 2000 2500 3000 3500 4000 -15 -10 -5 o 5 10 15 20 -1 o 1 2 3
Days xpca
(a) Price Series (b) t-SNE Plot (c) PCA Plot

Figure 4.11: SigCWGAN

SP500 biggan +-SNE plot PCA plot
San.
5 Original N 03 original

Synthetic Synthetic
b S op® 02
3 !‘ ¥
5 a v
. £ . a 01 %
g ' ’ 5
] s e ;

- % -
.a ofs s o
L . TR

0 500 1000 1500 2000 2500 3000 3500 4000 -5 -0 -5] 5 10 15 -10 -05 00 05 10 15 20 25 30
Days *pea

1800
1600
1400

Y

g

& 1200

1000

!A"i
E#
“ 2
\i}

800

(a) Price Series (b) t-SNE Plot (c) PCA Plot
Figure 4.12: BigGAN
« t-SNE plot
« PCA plot

for BigGAN and SigCWGAN.
The plots shown are for the GANs used in this study, namely SigCWGAN and BigGAN.

87

CHAPTER 4. RESULTS AND EVALUATION

window slice
+-SNE p\ lot PCA plot

025

—— Original Values 15 > [.:at
nthetic
0 Synthetic Values ® jﬁm' ::
(1 ® 010 ¥
2000 T = 000 v ﬁgk $on F
: / » & o0 P o
‘i - .

o

i - s p

1000 _y/‘_' \('V‘ ¥ -15 0.10
-0.15

0 1000 2000 3000 4000 5000 -20 15 n -10 -05 00 05 10 15 20 25 30
Days *pca

(a) Time Series (b) t-SNE Plot (c) PCA Plot

Figure 4.13: Window Slice

window warp
+SNE p\ ot PCA plot

—— Original values 0 Original
Synthetic Values s 020 Synthetic
4000
015 .
10 -
010
o 3000 ‘/1 5 . A @ 4
£ 4 ’ J ‘ g‘ 005 # f“ .
< 1 I . # 5 3, e 8
b e 000 ~ 2 - e
P = , -- kS g, ¢ Lo
-r-" . 1 . g
;

27, A =
g e
1000 ¢ Yot x(. 15

0 1000 2000 3000 4000 5000 20 s -0 -5 0 5w 15 -1 0 1 2
Days xtsne xpca

(a) Time Series (b) t-SNE Plot (c) PCA Plot

y tsne

Figure 4.14: Window Warp

The Daily price plot shows that both the GANs studied here give plots that have a
behaviour that is satisfactory in terms of reversion to the mean of returns and price ex-
cursion (i.e. plots do not rise or fall in a way that the real price never does)

The t-SNE plot is probably the most revealing in that careful observation will show
that the SigGan and BigGan plots show a substantial amount of superposition of the red
and blue spots with smaller areas that are predominantly of one colour. The spots that
are pink indicate an overlap of the blue and red spots.

As mentioned in the overview of PCA in section 2.7.3, this plot is inferior to t-SNE in
its ability to show the similarity (or lack thereof) between real and generated asset data
sets. The SigCWGAN PCA plot does exhibit an evident overlap between blue and red
spots.

4.3.3 Experiment 1b

Table 4.3 shows the results of the Yoon evaluation metrics when carried out using the
non-GAN augmentation methods illustrated by Iwana and Uchida (2021a) as described
in section 2.9.1. This experiment was carried out to fulfil objective 1b as expressed in
section 1.2 where the synthetic performance of non-GAN methods are to be compared
to that of GANs. As can be seen by comparing the results shown in table 4.3, none of

88

4.3. EXPERIMENTS

Method Discriminative Predictive
SigCWGAN 0.11472 0.00564
window_warp 0.14963 0.10504
window_slice 0.15412 0.10614

Table 4.3: Experiment 1b Results

these methods approached the performance of SigCWGAN generated S&P500 time se-
quences. This affirms, quite conclusively, that SigCWGAN has surpassed the results in
the experiments carried out here and is thus the synthesis method that will be adopted
to carry out experiment 2.

The diagrams in figure B.5 and figure B.9 show Time Series, t-SNE and PCA plots for
both the implemented non-GAN synthetic methods.

The other non-GAN synthetic methods give results that are in a tight range both in
the discriminative score and in the predictive score. This is consistent with the moderate
plot excursions seen in time series figures for these methods.

The stylised fact plots for all the non-GAN methods investigated here may found in
Appendix A. Preliminary visual assesments for non-GAN methods are given in appendices
A and B.

4.3.4 Experiment 2 and the Benchmark Model
4.3.4.1 Benchmark Model

The benchmark model used in this study is due to YU and Li (2018)) and has been de-
scribed in section 2.6.5. The preparation of data for the replication phase is outlined in
section 3.4.4.

The results shown in table 4.4 were carried out using a code implementing the YU
and Li (2018) paper by Christopher Naimo that is available on GitHub?. This code used
LSTM instead of the RNN network that the benchmark paper authors used. The code was
thus modified to use an RNN network. As can be seen from table 4.4 the MSE and MAE
replication results improve on the ones quoted by the Shui paper for all indices except
for the SSEC index. The MAPE results show that replication performs better than the
benchmark for the SSEC and N225 indices. The MAPE result is close for the S&P500
index but not for the HSI and IXIC indices. The MAPE results are still very good in that
since any result below 20 is seen in the industry as acceptable.

Lhttps:/github.com/cnaimo/hybrid-ARIMA-LSTM-model

89

CHAPTER 4. RESULTS AND EVALUATION

MSE MAE MAPE
HSI Shui 13,650.66 86.94 0.37
Replication 11,241.46 78.93 0.55
IXIC Shui 616.32 18.52 0.35
Replication 606.48 19.30 0.62
N225 Shui 82,102.50 160.78 0.94
Replication 65,884.52 20343 0.76
S&P500 Shui 459.98 19.08 0.30
Replication 408.98 15.74 0.36
SSEC Shui 111.16 8.88 0.75
Replication 246.00 11.76 0.45

Table 4.4: Benchmark paper replication

4.3.4.2 Experiment 2

Experiment 2 has been carried out to fulfil objective 2 as described in section 1.2.

MSE MAE MAPE
HSI Replication 11,241.46 78.93 0.55
Aug 4,390.65 56.89 0.57
IXIC Replication 606.48 19.30 0.62
Aug 597.26 18.93 0.61
N225 Replication 65,884.52 20343 0.76
Aug 21,455.69 12548 0.78
S&P500 Replication 408.98 15.74 0.36
Aug 67.10 6.35 0.38
SSEC Replication 246.00 11.76 0.45
Aug 58.96 7.28 0.74

Table 4.5: Experiment 2

The results shown in table 4.5 show that the augmented data produced by SigCW-
GAN gives significant improvement over that obtained using the original data as seen in
table 4.4. MSE and MAE results show considerable improvement from a minimum of 2%
(IXIC, MAE) to a maximum of 76% (SSEC, MSE). The average MSE improvement is 58%
whereas the average MAE improvement is 33%. The MAPE results for HSI, IXIC, N225
and S&P500 within a 3% margin, with the MAPE SSEC result being the only significant
outlier. The unusual behaviour of the SSEC both here and in the replication require further

90

4.4. SUMMARY

investigation.

4.4 Summary

Experiments 1a and 1b were intended to search for a financial time series synthesis pro-
cedure that performed as closely as possible to real time sequences. The process involved
visual as well as quantitative evaluation methods. The procedure to chose the evaluation
methods themselves was in itself complex. After considering various visual methods that
focused on stylised facts, the methods described by Yoon et al. (2019) were adopted as
the definitive discriminant. The visual methods were used to corroborate the numeric
results.

Table 4.2 presents the results of Experiment 1a, which aimed to determine the GAN
architecture with the best performance based on selected evaluation criteria. The goal
was outlined in objective 1a in section 1.2. SigCWGAN emerged as the best-performing
GAN according to the provided table.

Table 4.3 demonstrates the results of the Yoon evaluation metrics for non-GAN aug-
mentation methods, fulfilling objective 1b as expressed in section 1.2. None of these
methods approached the performance of SigCWGAN in generating S&P500 time se-
quences, confirming SigCWGAN's superior performance. Hence, SigCWGAN was em-
ployed in Experiment 2.

The results shown in table 4.5 show that the augmented data produced by SigCWGAN
gives significant improvement over that obtained using the original data as seen in Table
4.4. MSE and MAE results show considerable improvement from a minimum of 2% (IXIC,
MAE) to a maximum of 76% (SSEC, MSE). The average MSE improvement is 58% whereas
the average MAE improvement is 33%. The MAPE results for HSI, IXIC, N225 and S&P500
within a 3% margin, with the MAPE SSEC result being the only significant outlier.

As can be seen from the results obtained in experiment 2 the augmentation process
using SigCWGAN of 5 market indexes gave very satisfactory results with regard to MSE,
MAE and MAPE metrics. This strongly suggests that augmentation using SigCWGAN can
be used to improve the performance of financial prediction models.

91

5 Conclusions

5.1 Reuvisiting the Aims and Objectives

Objective 1a: Our goal is to examine and contrast GAN architectures proposed in the
literature for creating synthetic financial data. An overview of literature dealing with gen-
eral data augmentation methods and data synthesis methods using GANs was carried out
not only to establish a suitable set of synthesis and augmentation techniques but also to
catalogue the various evaluation methods that were explored by the various authors. The
investigation into evaluation methods revealed that this was carried out along two broad
classes: visual evaluation and quantitative evaluation.

PCA and t-SNE seemed to garner the favour of the largest number of authors. These
plots compare two data sets; the real and generated asset price time sequences and en-
able the observer to judge how close the stochastic behaviour of these sequences is.
These plots do not, however, reveal if the sequences are displaying the behaviour that
characterises financial time sequences. This behaviour has come to be known as "stylised
facts" and financial time sequences have specific characteristics that are missing from a
random walk generated under a Gaussian distribution. Thus, in addition to PCA and t-SNE
a set of stylised fact plots was also used in our visual evaluations.

Following the practice adopted by a number of authors surveyed, it was decided to use
the discriminative and predictive metrics suggested by Yoon et al. (2019) as the quantita-
tive metric to assess the quality of the time sequences generated here. The "discrimina-
tive" value measures how well the neural network used in this metric is able to recognise
portions of the generated time sequence as being similar to those in the real time se-
guence. The "predictive" metric measures if the predictive neural network can foretell
the value of the n+1 data point when the previous n data points are input. Both the dis-
criminative and predictive metrics are reasonable in that they do correlate with the utility
of the application at hand.

The objective designated as 1b used the same criteria outlined above to determine
the best non-GAN augmentation method. It is worth noting that these are augmentation

93

CHAPTER 5. CONCLUSIONS

methods and not synthetic methods in that the original time sequence is modified and
not regenerated.

Obijective 2: To determine whether integrating GANs with a financial prediction model
can enhance the accuracy of stock price predictions. The paper by YU and Li (2018)
required the completion of two tasks; the replication of the paper and the running of the
ARIMA/RNN prediction system on the augmented data generated by the system chosen
arising from the completion of objectives 1a and 1b. The two tasks were accomplished in
a satisfactory manner.

Experiments 1a and 1b aimed to synthesize financial time series to emulate real data.
Evaluation involved visual and quantitative assessments, with a focus on stylized facts.
By using the discriminative and predictive metrics proposed by Yoon et al. (2019) as the
definitive measures (that were then validated visually), SigCWGAN emerged as the top-
performing GAN in experiment 1a. Experiment 1b showed that SigCWGAN significantly
surpassed the non-GAN methods tested. Thus SigCWGAN was chosen as the augmenta-
tion technique for experiment 2. Results showed SigCWGAN's effectiveness across five
market indexes using the standard metrics MSE, MAE, and MAPE, yielding satisfactory
outcomes. The results obtained by using augmented data were particularly creditable in
that the prediction error metrics obtained showed an appreciable improvement on the
figures obtained both by YU and Li (2018) and our replication of that paper.

5.2 Critigue and Limitations

Evaluation in Generative Adversarial Networks (GANSs) poses several challenges and can
be problematic for a number of reasons. GANs generate data that aims to be realistic,
but defining objective metrics to assess the quality and fidelity of generated samples is
difficult. Traditional evaluation metrics like accuracy or precision-recall are not directly
applicable in GANs since there is no ground truth for comparison.

Evaluation in GANs often involves subjective human judgment. Visual inspection by
humans is commonly used to assess the quality of generated samples, but this approach
is inherently subjective and can vary among different evaluators. GAN evaluation of-
ten involves striking a balance between the diversity and quality of generated samples.
Metrics that favour diversity might lead to low-quality samples, while those emphasizing
quality may restrict the diversity of generated outputs. Evaluating GANs on large-scale
datasets can be computationally expensive. Moreover, GANs may be sensitive to the spe-
cific characteristics of the training dataset, leading to biased evaluation results that may
not generalize well to unseen data.

94

5.2. CRITIQUE AND LIMITATIONS

The question of evaluation is not unique to GANs, or indeed many other technologies.
A telling comparison, from outside academia, may be made when observing how PC'’s, for
example, are evaluated in the wider press. Here a number of benchmark measurements
are adopted without there being any absolute standard. PC reviewers are familiar with
what their community is using and try to use measurements that convey an analysis that
is both understood and accepted by the this community. At the time of writing of this
dissertation the community reviewing GAN performance was certainly smaller that for
PC’s, but this will certainly be growing as evidenced by the expansion that is occurring in
the realm of Al. Another development that will very likely happen in the future is the trial
and adoption of more and better metrics. It is, in our opinion, a mistake to try and reduce
evaluation to one scalar value. Different metrics will highlight different qualities of the
data generated by GANs. Thus, just as there is an evolution in the quality and application
of GANs, there will very likely be a parallel evolution in GAN evaluation methods.

There is no doubt that the question of the evaluation of synthetic financial data still
needs to be resolved to the satisfaction and consensus of most researchers in this field.
The solution adopted here, namely to use the predictive and discriminative metrics by
Yoon et al. (2019) may be seen as simply running one simple prediction system to obtain
an early evaluation rather than using the prediction system that is being studied to do the
same job. From the work carried out here it was evident that having an evaluation stage
brought few advantages in terms of speed or accuracy. Thus the issue of evaluation is still
open in our view.

A limitation that is unavoidable in the execution of research in pursuit of an academic
degree is the constraint imposed by the amount of time that is available to carry out the
activities necessary. This time constraint imposed a limitation of the possible scope in a
number of areas. With regard to evaluation a selection from the possible methods had to
be made, possibly excluding metrics that may have superior performance. Another lim-
itation imposed by the time constraint is the range of input data that was investigated.
Individual company stock data and data from diverse markets like futures, crypto curren-
cies or commodities were not investigated in this work. Finally, it must be stated that
even though a considerable effort was made to select the best GAN architectures for this
inquiry, there is no guarantee that other architectures that may have merited attention
were not overlooked.

95

CHAPTER 5. CONCLUSIONS

5.3 Future Work

A few benchmark papers (Feng et al., 2019; Fischer and Krauss, 2018; Krauss et al., 2017;
Mudassir et al., 2020) were excluded from this work due to the requirement of large and
multivariate datasets, which could pose processing capacity challenges for the chosen
computational infrastructure. However, there is a growing trend in utilizing GANs for
predicting financial data, even though GAN generation demands more processing power
than traditional machine learning (ML) prediction. As processing power becomes more ac-
cessible, more powerful synthetic data generation systems using GANs will likely emerge.

Expanding the research beyond computing limitations, algorithms should also focus
on generating larger digital artefacts, such as images, videos, or simulated financial data.
By enabling GANs to produce larger datasets, the work conducted in this study can be ex-
tended to larger multivariate datasets. Additionally, considering alternative architectures
like Reinforcement Learning Networks (RL) may prove beneficial. RL networks trained on
augmented data should be considered as a future endeavour.

One area that deserves attention in the financial field is the analysis of the wide vari-
ability in prediction and discrimination metrics of ML prediction systems across different
assets and indices. Understanding the reasons behind these differences in accuracy, such
as agent behaviour, prevalent trading strategies, or trading intensity, could provide valu-
able insights. GANs, known for their ability to extract and reproduce underlying stochas-
tic behaviours, could potentially crystallize this information for comparative analysis and
deductions. Architectures such as RL, Conditional GANs, and Attention Mechanisms are
gaining attention and could help address these issues. RL stands out due to its ability
to learn through interaction with an environment, making it effective in complex and dy-
namic environments with scarce labelled training data. RL agents consider long-term con-
sequences, optimize behaviour based on rewards and penalties, balance exploration and
exploitation, handle delayed rewards, adapt to changing environments, and make optimal
decisions in uncertain and stochastic environments making them suitable for financial ap-
plications.

Conditional Generative Adversarial Networks (cGANs) extend the traditional GAN
framework by introducing conditional input. The generator and discriminator receive ad-
ditional information called the conditional vector, enabling controlled and targeted data
generation. The generator uses random noise and the conditional vector to produce sam-
ples aligned with desired conditions. The discriminator considers the conditional vector
to distinguish between real and generated data while evaluating how well the samples
match the condition. By optimizing both the GAN loss and conditional loss, the gener-
ator learns to produce samples resembling real data that satisfy the desired conditions.

96

5.4. POTENTIAL APPLICABILITY

cGANs, as demonstrated in TimeGAN (Yoon et al., 2019), have been utilized in financial
time sequence GANs to autonomously identify relevant features. They could also facili-
tate supervised teaching of relevant features, allowing the generation of time sequences
with explicitly defined behaviours like what precedes the bursting of financial bubbles.

In Generative Adversarial Networks (GANSs), attention mechanisms are often used to
enhance the generation process and improve the quality of generated samples. Attention
mechanisms in GANs typically involve introducing additional layers or modules within
the generator network to focus on specific regions or features of the input data. These
mechanisms allow the generator to allocate its generation capacity more selectively and
effectively, emphasizing important parts of the data during the generation process. This
is a desirable feature, as has been discussed above with regard to cGANs, where the
network is able to focus on relevant features.

5.4 Potential Applicability

In the context of GAN-generated time series, there are several implications and potential
applications in a range of areas. GAN-generated time series can be valuable in situations
where data distributions change over time. By training GAN models on historical data, the
generated time series can capture the characteristics and patterns of the past. This can be
useful for tasks such as predictive analytics, anomaly detection, or generating synthetic
data for simulation and scenario analysis in dynamic environments. Further research in
this direction could focus on developing GAN architectures that adapt to changing data
distributions, enabling the generation of time series that reflect the current context. Tech-
niques like online learning, continual learning, or adaptive GANs could be explored to ad-
dress the challenge of evolving contexts and facilitate the generation of time series that
accurately capture the changing patterns. Adaptive GANs can have various architectures,
such as incorporating attention mechanisms, utilizing adaptive optimization algorithms,
or dynamically adjusting the model’s architecture during training.

As the availability and size of time series datasets increase, there is a need to develop
GAN models that can effectively handle larger-scale data. Scaling up GANs for time series
generation requires addressing challenges such as computational efficiency, memory lim-
itations, and model stability. Ongoing research in this area includes exploring distributed
or parallel training techniques for GANs, model compression approaches, and architec-
tural modifications that can handle larger input sequences. Additionally, incorporating
attention mechanisms, such as self-attention or sparse attention, can help improve the
scalability of GAN-generated time series by selectively attending to relevant parts of the

97

CHAPTER 5. CONCLUSIONS

sequence.

GAN-generated time series can be applied to entirely new domains or contexts. For
example, trained GAN models on financial time series can be adapted for generating syn-
thetic time series in different economic scenarios. Similarly, GANSs trained on climate data
can be used for generating synthetic weather patterns. Future research can explore the
transferability of GAN-generated time series across different domains or contexts. This
can involve investigating techniques like domain adaptation, domain generalization, or
meta-learning to enable GAN models to adapt to new contexts with limited labelled data.
Additionally, exploring interpretability and explainability techniques for GAN-generated
time series can enhance trust and understanding when applying them to new domains.

5.5 Final Remarks

This work involved the search for a data synthesis method that would be able to sub-
stitute the real data used to train financial prediction systems. It must be said that the
preliminary tests with various GAN solutions resulted in the prediction systems perform-
ing worse on synthetic data than on real data. It was very few GANs that gave usable
results initially. The results obtained using SigCWGAN were very satisfactory not only
because the synthetic data outperformed the real data in terms of prediction accuracy
but also because it let us achieve our main objective i.e. showing that synthetic data can
actually improve the performance of a financial prediction system.

98

References

Achelis, S. B. Technical analysis from a to z, 2001.

Agrawal, A, Gans, J. S., and Goldfarb, A. Exploring the impact of artificial intelligence: Prediction versus judgment. Infor-
mation Economics and Policy, 47:1-6, 2019.

Aguilar-Rivera, R., Valenzuela-Renddn, M., and Rodriguez-Ortiz, J. Genetic algorithms and darwinian approaches in finan-
cial applications: A survey. Expert Systems with Applications, 42(21):7684-7697, 2015.

Akyash, M., Mohammadzade, H., and Behroozi, H. Dtw-merge: A novel data augmentation technique for time series
classification. arXiv preprint arXiv:2103.01119, 2021.

Alexander, S. S. Price movements in speculative markets: Trends or random walks. Industrial Management Review (pre-1986),
2(2):7, 1961.

An, G. The effects of adding noise during backpropagation training on a generalization performance. Neural computation,
8(3):643-674, 1996.

Antipov, G., Baccouche, M., and Dugelay, J.-L. Face aging with conditional generative adversarial networks. In 2017 IEEE
international conference on image processing (ICIP), pages 2089-2093. IEEE, 2017.

Appadoo, S. S. Pricing financial derivatives with fuzzy algebraic models: A theoretical and computational approach. 2006.

Araujo, R.d. A. and Ferreira, T. A. A morphological-rank-linear evolutionary method for stock market prediction. Information
Sciences, 237:3-17, 2013.

Arjovsky, M. and Bottou, L. Towards principled methods for training generative adversarial networks. arXiv preprint
arXiv:1701.04862, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein generative adversarial networks. In International conference on
machine learning, pages 214-223. PMLR, 2017.

Arnout, H., Bronner, J., and Runkler, T. Clare-gan: Generation of class-specific time series. In 2021 I[EEE Symposium Series
on Computational Intelligence (SSCI), pages 01-08. IEEE, 2021.

Assefa, S. A., Dervovic, D., Mahfouz, M., Tillman, R. E., Reddy, P., and Veloso, M. Generating synthetic data in finance:
opportunities, challenges and pitfalls. In Proceedings of the First ACM International Conference on Al in Finance, pages
1-8, 2020.

Athey, S., Imbens, G. W., Metzger, J., and Munro, E. Using wasserstein generative adversarial networks for the design of
monte carlo simulations. Journal of Econometrics, 2021.

Atsalakis, G. S. and Valavanis, K. P. Forecasting stock market short-term trends using a neuro-fuzzy based methodology.
Expert systems with Applications, 36(7):10696-10707, 2009.

Bachelier, L. Théorie de la spéculation. In Annales scientifiques de I'Ecole normale supérieure, volume 17, pages 21-86, 1900.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence

99

REFERENCES

modeling. arXiv preprint arXiv:1803.01271, 2018.

Banko, M. and Brill, E. Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th
annual meeting of the Association for Computational Linguistics, pages 26-33, 2001.

Barber, B. M. and Odean, T. Boys will be boys: Gender, overconfidence, and common stock investment. The quarterly
journal of economics, 116(1):261-292, 2001.

Barratt, S. and Sharma, R. A note on the inception score. arXiv preprint arXiv:1801.01973, 2018.
Barua, S. Towards improving the network architecture of gans and their evaluation methods, 2019.
Bell, D. E. Regret in decision making under uncertainty. Operations research, 30(5):961-981, 1982.

Bergmeir, C., Hyndman, R. J., and Benitez, J. M. Bagging exponential smoothing methods using stl decomposition and
box-cox transformation. International journal of forecasting, 32(2):303-312, 2016.

Bezerra, P. C. S. and Albuquerque, P. H. M. Volatility forecasting via svr-garch with mixture of gaussian kernels. Computa-
tional Management Science, 14(2):179-196, 2017.

Bhatia, A., Chandani, A., and Chhateja, J. Robo advisory and its potential in addressing the behavioral biases of investors
a qualitative study in indian context. Journal of Behavioral and Experimental Finance, 25:100281, 2020.

Biallas, M. and O’Neill, F. Artificial intelligence innovation in financial services. 2020.

Bishop, C. M. Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1):108-116, 1995.
Black, F. Noise. The journal of finance, 41(3):528-543, 1986.

Blagus, R. and Lusa, L. Smote for high-dimensional class-imbalanced data. BMC bioinformatics, 14(1):1-16, 2013.

Blei, D. M., Ng, A. Y., and Jordan, M. |. Latent dirichlet allocation. Journal of machine Learning research, 3(Jan):993-1022,
2003.

Boden, M. A. Artificial intelligence. Elsevier, 1996.

Bodt, E., Cottrell, M., and Levasseur, M. Les réseaux de neurones en finance: Principe et revue de la littérature. Finance,
16(1):25-91, 1995.

Bollen, J., Mao, H., and Zeng, X. Twitter mood predicts the stock market. Journal of computational science, 2(1):1-8, 2011.
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307-327, 1986.
Boriji, A. Pros and cons of gan evaluation measures. Computer Vision and Image Understanding, 179:41-65, 2019.

Borovykh, A., Bohte, S., and Oosterlee, C. W. Conditional time series forecasting with convolutional neural networks. arXiv
preprint arXiv:1703.04691, 2017.

Bouchaud, J.-P.,, Matacz, A., and Potters, M. Leverage effect in financial markets: The retarded volatility model. Physical
review letters, 87(22):228701, 2001.

Bourlard, H. and Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition. Biological cyber-
netics, 59(4):291-294, 1988.

Box, G. E. and Jenkins, G. M. Time series analysis: Forecasting and control san francisco. Calif: Holden-Day, 1976.

Boyacioglu, M. A. and Avci, D. An adaptive network-based fuzzy inference system (anfis) for the prediction of stock market
return: the case of the istanbul stock exchange. Expert Systems with Applications, 37(12):7908-7912, 2010.

Braun, J., Hausler, J., and Schifers, W. Atrtificial intelligence, news sentiment, and property market liquidity. Journal of
Property Investment & Finance, 2019.

Bredt, S. Artificial intelligence (ai) in the financial sector potential and public strategies. Frontiers in Artificial Intelligence, 2:

100

REFERENCES

16, 2019.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Neural photo editing with introspective adversarial networks. arXiv preprint
arXiv:1609.07093, 2016.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

Brophy, E., Wang, Z., She, Q., and Ward, T. Generative adversarial networks in time series: A survey and taxonomy. arXiv
preprint arXiv:2107.11098, 2021.

Brynjolfsson, E., Rock, D., and Syverson, C. The productivity j-curve: How intangibles complement general purpose tech-
nologies. American Economic Journal: Macroeconomics, 13(1):333-72, 2021.

Bures, M. Machine learning in algorithmic trading. 2021.

Burgess, N. Machine earning-algorithmic trading strategies for superior growth, outperformance and competitive advan-
tage. Outperformance and Competitive Advantage (March 29, 2021), 2021.

Bustos, O. and Pomares-Quimbaya, A. Stock market movement forecast: A systematic review. Expert Systems with Appli-
cations, 156:113464, 2020.

Cao, H., Tan, V. Y., and Pang, J. Z. A parsimonious mixture of gaussian trees model for oversampling in imbalanced and
multimodal time-series classification. IEEE transactions on neural networks and learning systems, 25(12):2226-2239,
2014.

Carbune, V., Gonnet, P., Deselaers, T., Rowley, H. A., Daryin, A., Calvo, M., Wang, L.-L., Keysers, D., Feuz, S., and Ger-
vais, P. Fast multi-language Istm-based online handwriting recognition. International Journal on Document Analysis and
Recognition (IJDAR), 23(2):89-102, 2020.

Carlsson, C. and Fullér, R. On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems, 122(2):
315-326, 2001.

Cavalcante, R. C,, Brasileiro, R. C., Souza, V. L., Nobrega, J. P, and Oliveira, A. L. Computational intelligence and financial
markets: A survey and future directions. Expert Systems with Applications, 55:194-211, 2016.

Chakraborti, A., Toke, I. M., Patriarca, M., and Abergel, F. Econophysics review: |. empirical facts. Quantitative Finance, 11
(7):991-1012, 2011.

Chaudhari, P., Agrawal, H., and Kotecha, K. Data augmentation using mg-gan for improved cancer classification on gene
expression data. Soft Computing, 24:11381-11391, 2020.

Chen, H., Xiao, K., Sun, J., and Wu, S. A double-layer neural network framework for high-frequency forecasting. ACM
Transactions on Management Information Systems (TMIS), 7(4):1-17, 2017.

Chen, Q., Liang, B., and Wang, J. A comparative study of Istm and phased Istm for gait prediction. Int J Artificial Intelli &
App, 10(4):57-66, 2019.

Chevyrey, I. and Kormilitzin, A. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788,
2016.

Clarke, R. G., Krase, S., and Statman, M. Tracking errors, regret, and tactical asset allocation. Journal of Portfolio Management,
20(3):16, 1994.

Coelho, J., D’almeida, D., Coyne, S., Gilkerson, N., Mills, K., and Madiraju, P. Social media and forecasting stock price change.
In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), volume 2, pages 195-200. IEEE,
2019.

Cootner, P. The Random Character of Stock Market Prices. Risk classics library. M.IT. Press, 1964. ISBN 9781899332847.
URL https://books.google.com.mt/books?id=1cfzAAAAMAAJ.

101

https://books.google.com.mt/books?id=lcfzAAAAMAAJ

REFERENCES

Cowles 3rd, A. and Jones, H. E. Some a posteriori probabilities in stock market action. Econometrica, Journal of the Econo-
metric Society, pages 280-294, 1937.

Cross, J. G. et al. A theory of adaptive economic behavior. Cambridge Books, 2008.

Dau, H. A, Bagnall, A., Kamgar, K., Yeh, C.-C. M,, Zhu, Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh, E. The ucr time
series archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293-1305, 2019.

De Bondt, W. P. Betting on trends: Intuitive forecasts of financial risk and return. International Journal of forecasting, 9(3):
355-371, 1993.

de Meer Pardo, F. Enriching financial datasets with generative adversarial networks. PhD thesis, Master’s thesis, Delft Uni-
versity of Technology, the Netherlands, 2019.

de Meer Pardo, F., Schwendner, P., and Wunsch, M. Tackling the exponential scaling of signature-based generative ad-
versarial networks for high-dimensional financial time-series generation. The Journal of Financial Data Science, 4(4):
110-132, 2022.

Debnath, A., Waghmare, G., Wadhwa, H., Asthana, S., and Arora, A. Exploring generative data augmentation in multivariate
time series forecasting: Opportunities and challenges. Solar-Energy, 137:52-560, 2021.

Ding, X., Wang, Y., Wang, Z. J., and Welch, W. J. Efficient subsampling of realistic images from gans conditional on a class
or a continuous variable. Neurocomputing, 2022.

Donahue, C., McAuley, J., and Puckette, M. Adversarial audio synthesis. arXiv preprint arXiv:1802.04208, 2018.

Duan, Y., Goodell, J. W.,, Li, H., and Li, X. Assessing machine learning for forecasting economic risk: Evidence from an
expanded chinese financial information set. Finance Research Letters, 46:102273, 2022.

Ducoffe, M., Haloui, I., Gupta, J. S., and Supaero, I. Anomaly detection on time series with wasserstein gan applied to phm.
PHM Applications of Deep Learning and Emerging Analytics. International Journal of Prognostics and Health Management
Reviewed (Special Issue), 2019.

Dumoulin, V., Shlens, J., and Kudlur, M. A learned representation for artistic style. arXiv preprint arXiv:1610.07629, 2016.
Eckerli, F. Generative adversarial networks in finance: an overview. Available at SSRN 3864965, 2021.

Efimov, D., Xu, D., Kong, L., Nefedov, A., and Anandakrishnan, A. Using generative adversarial networks to synthesize
artificial financial datasets. arXiv preprint arXiv:2002.02271, 2020.

Eltoft, T. Data augmentation using a combination of independent component analysis and non-linear time-series pre-
diction. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290),
volume 1, pages 448-453. IEEE, 2002.

Esteban, C., Hyland, S. L., and Ratsch, G. Real-valued (medical) time series generation with recurrent conditional gans.
arXiv preprint arXiv:1706.02633, 2017.

Fama, E. F. The behavior of stock-market prices. The journal of Business, 38(1):34-105, 1965.
Fawaz, H. |. Deep learning for time series classification. arXiv preprint arXiv:2010.00567, 2020.

Fawaz, H. ., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. Data augmentation using synthetic data for time
series classification with deep residual networks. arXiv preprint arXiv:1808.02455, 2018.

Feng, F., He, X., Wang, X, Luo, C., Liu, Y., and Chua, T.-S. Temporal relational ranking for stock prediction. ACM Transactions
on Information Systems (TOIS), 37(2):1-30, 2019.

Fernando, B., Fromont, E., Muselet, D., and Sebban, M. Supervised learning of gaussian mixture models for visual vocab-
ulary generation. Pattern Recognition, 45(2):897-907, 2012.

Fields, T., Hsieh, G., and Chenou, J. Mitigating drift in time series data with noise augmentation. In 2019 International

102

REFERENCES

Conference on Computational Science and Computational Intelligence (CSCI), pages 227-230. IEEE, 2019.

Fischer, T. and Krauss, C. Deep learning with long short-term memory networks for financial market predictions. European
Journal of Operational Research, 270(2):654-669, 2018.

Fischhoff, B. A little leaning: Confidence in multi-cue judgment tasks. Attention and performance, 8:122-138, 1980.
Flanegin, F. R. and Rudd, D. P. Should investments professors join the crowd. Managerial Finance, 2005.

Fons, E., Dawson, P., Zeng, X.-j., Keane, J., and losifidis, A. Evaluating data augmentation for financial time series classifi-
cation. arXiv preprint arXiv:2010.15111, 2020.

Forestier, G., Petitjean, F., Dau, H. A., Webb, G. I., and Keogh, E. Generating synthetic time series to augment sparse
datasets. In 2017 IEEE international conference on data mining (ICDM), pages 865-870. IEEE, 2017.

Franco-Pedroso, J., Gonzalez-Rodriguez, J., Cubero, J., Planas, M., Cobo, R., and Pablos, F. Generating virtual scenarios of
multivariate financial data for quantitative trading applications. The Journal of Financial Data Science, 1(2):55-77, 2019.

Fu, B., Kirchbuchner, F., and Kuijper, A. Data augmentation for time series: traditional vs generative models on capaci-
tive proximity time series. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to
Assistive Environments, pages 1-10, 2020.

Fu, R, Chen, J., Zeng, S., Zhuang, Y., and Sudjianto, A. Time series simulation by conditional generative adversarial net.
arXiv preprint arXiv:1904.11419, 2019.

Furman, J. and Seamans, R. Ai and the economy. Innovation policy and the economy, 19(1):161-191, 2019.

Garliauskas, A. Neural network chaos and computational algorithms of forecast in finance. In [EEE SMC’'99 Conference
Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), volume 2, pages
638-643. IEEE, 1999.

Gervais, S. and Odean, T. Learning to be overconfident. The review of financial studies, 14(1):1-27, 2001.

Gocken, M., Ozcalici, M., Boru, A., and Dosdogru, A. T. Integrating metaheuristics and artificial neural networks for im-
proved stock price prediction. Expert Systems with Applications, 44:320-331, 2016.

Goldberg, D. E. Gas in search, optimization and machine learning. Kluwe r Academic Publishers, Boston, MA, pages 1-40,
1989.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.
cc/paper/2014/file/5ca3e9b122f61£f8f06494c97blafccf3-Paper.pdf.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
adversarial networks. Communications of the ACM, 63(11):139-144, 2020.

Grietzer, P. A theory of vibe. Glass-Bead, https:/www. glass-bead. org/article/a-theory-of-vibe, 2017.
Grilli, L. and Santoro, D. Generative adversarial network for market hourly discrimination. 2020.

Grossman, S. J. and Stiglitz, J. E. On the impossibility of informationally efficient markets. The American economic review,
70(3):393-408, 1980.

Gu, C.-S., Hsieh, H.-P., Wu, C.-S., Chang, R.-I., and Ho, J.-M. A fund selection robo-advisor with deep-learning driven
market prediction. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2845-2850.
IEEE, 2019.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of wasserstein gans. Advances
in neural information processing systems, 30, 2017.

103

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

REFERENCES

Hartmann, K. G., Schirrmeister, R. T., and Ball, T. Eeg-gan: Generative adversarial networks for electroencephalograhic
(eeg) brain signals. arXiv preprint arXiv:1806.01875, 2018.

Hasibi, R., Shokri, M., and Dehghan, M. Augmentation scheme for dealing with imbalanced network traffic classification
using deep learning. arXiv preprint arXiv:1901.00204, 2019.

Hassan, M. R. A combination of hidden markov model and fuzzy model for stock market forecasting. Neurocomputing, 72
(16-18):3439-3446, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770-778, 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural information processing systems, 30, 2017.

Hiemstra, Y. Modeling structured nonlinear knowledge to predict stock market returns. Chaos & Nonlinear Dynamics in the
Financial Markets: Theory, Evidence and Applications, Irwin, Chicago, IL, pages 163-175, 1995.

Hinton, G. E. and Roweis, S. Stochastic neighbor embedding. Advances in neural information processing systems, 15, 2002.

Hinton, G. E. and Sejnowski, T. J. Analyzing cooperative computation. In Proceedings of the fifth annual conference of the
cognitive science society, pages 2554-2558, 1983.

Hinton, G. E. and Zemel, R. Autoencoders, minimum description length and helmholtz free energy. Advances in neural
information processing systems, 6, 1993.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural computation, 18(7):
1527-1554, 2006.

Hogenboom. Generation of synthetic financial time series with generative - adversarial networks. 2020.
Holland, J. H. Adaptation in natural and artificial systems. University of Michigan Press, Michigan, USA, 1975.

Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24
(6):417, 1933.

Hu, H., Tang, L., Zhang, S., and Wang, H. Predicting the direction of stock markets using optimized neural networks with
google trends. Neurocomputing, 285:188-195, 2018.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4700-4708, 2017.

Huang, Q., Kong, Z., Li, Y., Yang, J., and Li, X. Discovery of trading points based on bayesian modeling of trading rules.
World Wide Web, 21(6):1473-1490, 2018.

Huberman, G. and Regeyv, T. Contagious speculation and a cure for cancer: A nonevent that made stock prices soar. The
Journal of Finance, 56(1):387-396, 2001.

Hyland, S. L., Esteban, C., and Ratsch, G. Real-valued (medical) time series generation with recurrent conditional gans. stat,
1050(8), 2017.

Iwana, B. K. and Uchida, S. Time series classification using local distance-based features in multi-modal fusion networks.
Pattern Recognition, 97:107024, 2020.

Iwana, B. K. and Uchida, S. An empirical survey of data augmentation for time series classification with neural networks.
Plos one, 16(7):e0254841, 2021a.

Iwana, B. K. and Uchida, S. Time series data augmentation for neural networks by time warping with a discriminative
teacher. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 3558-3565. IEEE, 2021b.

Jabbar, A, Li, X., and Omar, B. A survey on generative adversarial networks: Variants, applications, and training. ACM

104

REFERENCES

Computing Surveys (CSUR), 54(8):1-49, 2021.

Jackwerth, J. C. and Rubinstein, M. Recovering probability distributions from option prices. The journal of Finance, 51(5):
1611-1631, 1996.

Jaitly, N. and Hinton, G. E. Vocal tract length perturbation (vtlp) improves speech recognition. In Proc. ICML Workshop on
Deep Learning for Audio, Speech and Language, volume 117, page 21, 2013.

Javeri, |. Y., Toutiaee, M., Arpinar, |. B., Miller, T. W., and Miller, J. A. Improving neural networks for time series forecasting
using data augmentation and automl. arXiv preprint arXiv:2103.01992, 2021.

Jensen, M. H., Johansen, A., and Simonsen, |. Inverse statistics in economics: the gain-loss asymmetry. Physica A: Statistical
Mechanics and its Applications, 324(1-2):338-343, 2003.

Jolicoeur-Martineau, A. The relativistic discriminator: a key element missing from standard gan. arXiv preprint
arXiv:1807.00734, 2018.

Jordon, J., Yoon, J., and Van Der Schaar, M. Pate-gan: Generating synthetic data with differential privacy guarantees. In
International conference on learning representations, 2018.

Jargensen, R. K. and Igel, C. Machine learning for financial transaction classification across companies using character-level
word embeddings of text fields. Intelligent Systems in Accounting, Finance and Management, 28(3):159-172, 2021.

Jullum, M,, Lgland, A., Huseby, R. B., Anonsen, G., and Lorentzen, J. Detecting money laundering transactions with machine
learning. Journal of Money Laundering Control, 23(1):173-186, 2020.

Kamble, R. A. Short and long term stock trend prediction using decision tree. In 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS), pages 1371-1375. IEEE, 2017.

Kamycki, K., Kapuscinski, T., and Oszust, M. Data augmentation with suboptimal warping for time-series classification.
Sensors, 20(1):98, 2019.

Karim, M. and Rahman, R. M. Decision tree and naive bayes algorithm for classification and generation of actionable
knowledge for direct marketing. 2013.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

Kim, B.-H. and Pyun, J.-Y. Ecg identification for personal authentication using Istm-based deep recurrent neural networks.
Sensors, 20(11):3069, 2020.

Kim, J., Won, C., and Bae, J. K. A knowledge integration model for the prediction of corporate dividends. Expert Systems
with Applications, 37(2):1344-1350, 2010.

Kim, J. W., Weistroffer, H. R., and Redmond, R. T. Expert systems for bond rating: a comparative analysis of statistical,
rule-based and neural network systems. Expert systems, 10(3):167-172, 1993.

Kim, K.-j. Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2):307-319, 2003.

Kim, K.-j. Toward global optimization of case-based reasoning systems for financial forecasting. Applied intelligence, 21(3):
239-249, 2004.

Kim, K.-j. and Han, |. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction
of stock price index. Expert systems with Applications, 19(2):125-132, 2000.

Kim, Y., Ahn, W,, Oh, K. J., and Enke, D. An intelligent hybrid trading system for discovering trading rules for the futures
market using rough sets and genetic algorithms. Applied Soft Computing, 55:127-140, 2017. ISSN 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2017.02.006.

Kimoto, T., Asakawa, K., Yoda, M., and Takeoka, M. Stock market prediction system with modular neural networks. In
1990 IJCNN international joint conference on neural networks, pages 1-6. IEEE, 1990.

105

REFERENCES

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Kluwak, K. and Nizynski, T. Gait classification using Istm networks for tagging system. In 2020 IEEE 15th International
Conference of System of Systems Engineering (SoSE), pages 295-300. IEEE, 2020.

Koochali, A., Dengel, A., and Ahmed, S. If you like it, gan it. probabilistic multivariate times series forecast with gan. arXiv
preprint arXiv:2005.01181, 2020.

Krauss, C., Do, X. A., and Huck, N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on
the s&p 500. European Journal of Operational Research, 259(2):689-702, 2017.

Krizhevsky, A., Hinton, G,, et al. Learning multiple layers of features from tiny images. 2009.

Kumar, M. and Thenmozhi, M. Forecasting stock index returns using arima-svm, arima-ann, and arima-random forest
hybrid models. International Journal of Banking, Accounting and Finance, 5(3):284-308, 2014.

Labiad, B., Berrado, A., and Benabbou, L. Machine learning techniques for short term stock movements classification for
moroccan stock exchange. In 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA),
pages 1-6. IEEE, 2016.

Labiad, B., Benabbou, L., and Berrado, A. Improving stock market intraday prediction by generative adversarial neural
networks. 2021.

Lahmiri, S. A predictive system integrating intrinsic mode functions, artificial neural networks, and genetic algorithms for
forecasting s&p500 intra-day data. Intelligent Systems in Accounting, Finance and Management, 27(2):55-65, 2020.

Laibson, D. Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics, 112(2):443-478, 1997.

Lakshminarayanan, M., John, N. S., Channegowda, J., Raj, A., and Naaz, F. Devising high fidelity synthetic data using
generative adversarial networks for energy storage systems. In 2021 IEEE Mysore Sub Section International Conference
(MysuruCon), pages 202-205. IEEE, 2021.

Larson, A. B. Measurement of a random process in futures prices. In Proceedings of the Annual Meeting (Western Farm
Economics Association), volume 33, pages 101-112. JSTOR, 1960.

Lattner, S., Grachten, M., and Widmer, G. Imposing higher-level structure in polyphonic music generation using convolu-
tional restricted boltzmann machines and constraints. Journal of Creative Music Systems, 2:1-31, 2018.

Lawrence, R. Using neural networks to forecast stock market prices. University of Manitoba, 333:2006-2013, 1997.

Le Guennec, A., Malinowski, S., and Tavenard, R. Data augmentation for time series classification using convolutional
neural networks. In ECML/PKDD workshop on advanced analytics and learning on temporal data, 2016.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278-2324, 1998.

Lezmi, E., Roche, J., Roncalli, T., and Xu, J. Improving the robustness of trading strategy backtesting with boltzmann
machines and generative adversarial networks. Available at SSRN 3645473, 2020.

Leznik, M., Michalsky, P., Willis, P., Schanzel, B., Ostberg, P.-O., and Domaschka, J. Multivariate time series synthesis using
generative adversarial networks. In Proceedings of the ACM/SPEC International Conference on Performance Engineering,
pages 43-50, 2021.

Li, J., Wang, X., Lin, Y., Sinha, A., and Wellman, M. Generating realistic stock market order streams. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 727-734, 2020.

Li, W. and Mei, F. Asset returns in deep learning methods: An empirical analysis on sse 50 and csi 300. Research in
International Business and Finance, 54:101291, 2020.

106

REFERENCES

Li, X., Ngu, A. H. H., and Metsis, V. Tts-cgan: A transformer time-series conditional gan for biosignal data augmentation.
arXiv preprint arXiv:2206.13676, 2022.

Li, X, Yang, L., Xue, F., and Zhou, H. Time series prediction of stock price using deep belief networks with intrinsic plasticity.
In 2017 29th Chinese Control And Decision Conference (CCDC), pages 1237-1242. IEEE, 2017.

Li, Y., Jiang, W., Yang, L., and Wu, T. On neural networks and learning systems for business computing. Neurocomputing,
275:1150-1159, 2018.

Li, Y., Swersky, K., and Zemel, R. Generative moment matching networks. In International conference on machine learning,
pages 1718-1727. PMLR, 2015.

Liang, Q., Rong, W., Zhang, J., Liu, J., and Xiong, Z. Restricted boltzmann machine based stock market trend prediction. In
2017 International Joint Conference on Neural Networks (IJCNN), pages 1380-1387. IEEE, 2017.

Lichtenstein, S., Fischhoff, B., and Phillips, L. Calibration of probabilities: The state of the art to 1980. d. kahneman, p.
slovic, a. tversky, eds. judgment under uncertainty: Heuristics and biases. 1982.

Lim, B. and Zohren, S. Time series forecasting with deep learning: A survey. arXiv preprint arXiv:2004.13408, 2020.

Liu, B., Zhang, Z., and Cui, R. Efficient time series augmentation methods. In 2020 13th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pages 1004-1009. IEEE, 2020.

Liu, C., Ventre, C., and Polukarov, M. Synthetic data augmentation for deep reinforcement learning in financial trading. In
3rd ACM International Conference on Al in Finance, pages 343-351, 2022.

Liu, G. Data quality problems troubling business and financial researchers: A literature review and synthetic analysis.
Journal of Business & Finance Librarianship, 25(3-4):315-371, 2020.

Liu, J., Zhang, J., Ding, Y., Xu, X., Jiang, M., and Shi, Y. Pbgan: Partial binarization of deconvolution based generators. arXiv
preprint arXiv:1802.09153, 2018a.

Liu, Q., Wang, C., Zhang, P, and Zheng, K. Detecting stock market manipulation via machine learning: Evidence from china
securities regulatory commission punishment cases. International Review of Financial Analysis, 78:101887, 2021.

Liu, Y., Gopikrishnan, P., Stanley, H. E., et al. Statistical properties of the volatility of price fluctuations. Physical review e,
60(2):1390, 1999.

Liu, Y., Qin, Z., Wan, T, and Luo, Z. Auto-painter: Cartoon image generation from sketch by using conditional wasserstein
generative adversarial networks. Neurocomputing, 311:78-87, 2018b.

Lo, A. W. and MacKinlay, A. C. Stock market prices do not follow random walks: Evidence from a simple specification test.
The review of financial studies, 1(1):41-66, 1988.

Lo, A. W. and MacKinlay, A. C. Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification
Test. The Review of Financial Studies, 1(1):41-66, 04 2015. ISSN 0893-9454. doi: 10.1093/rfs/1.1.41.

Lo, A. W., Mamaysky, H., and Wang, J. Foundations of technical analysis: Computational algorithms, statistical inference,
and empirical implementation. The journal of finance, 55(4):1705-1765, 2000.

Luo, S., Lin, X., and Zheng, Z. A novel cnn-ddpg based ai-trader: Performance and roles in business operations. Transporta-
tion Research Part E: Logistics and Transportation Review, 131:68-79, 2019.

Ma, J., Wang, L., Zhang, Y.-R., Yuan, W., and Guo, W. An integrated latent dirichlet allocation and word2vec method for
generating the topic evolution of mental models from global to local. Expert Systems with Applications, 212:118695,
2023.

Ma, T., Chen, J., and Xiao, C. Constrained generation of semantically valid graphs via regularizing variational autoencoders.
Advances in Neural Information Processing Systems, 31, 2018.

Maddala, G. S. Introduction to economics. Macmillan, 1992.

107

REFERENCES

Majhi, R., Panda, G., Sahoo, G., Panda, A., and Choubey, A. Prediction of s&p 500 and djia stock indices using particle swarm
optimization technique. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pages 1276-1282. IEEE, 2008.

Makhmudkhujaev, F. and Park, |. K. Generative adversarial networks with attention mechanisms at every scale. IEEE Access,
9:168404-168414, 2021.

Malkiel, B. G. A random walk down Wall Street: the time-tested strategy for successful investing. WW Norton & Company,
2019.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. Least squares generative adversarial networks. In
Proceedings of the IEEE international conference on computer vision, pages 2794-2802, 2017.

McCluskey, J. and Liu, J. Us financial market forecasting using data classification with features from global markets. In
2017 2nd International Conference on Image, Vision and Computing (ICIVC), pages 965-969. IEEE, 2017.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

Milana, C. and Ashta, A. Artificial intelligence techniques in finance and financial markets: A survey of the literature.
Strategic Change, 30(3):189-209, 2021.

Mingyue, Q., Cheng, L., and Yu, S. Application of the artifical neural network in predicting the direction of stock market
index. In 2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pages 219-
223. IEEE, 2016.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv
preprint arXiv:1802.05957, 2018.

Mogren, O. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904,
2016.

Mudassir, M., Bennbaia, S., Unal, D., and Hammoudeh, M. Time-series forecasting of bitcoin prices using high-dimensional
features: a machine learning approach. Neural Computing and Applications, pages 1-15, 2020.

Midiller, U. A., Dacorogna, M. M., Davé, R. D., Olsen, R. B., Pictet, O. V., and Von Weizsacker, J. E. Volatilities of different
time resolutions—analyzing the dynamics of market components. Journal of Empirical Finance, 4(2-3):213-239, 1997.

Napate, S., Thakur, M., and B-School, D. Algorithmic trading and strategies. 11 2020.

Nazério, R. T. F,, e Silva, J. L., Sobreiro, V. A., and Kimura, H. A literature review of technical analysis on stock markets. The
Quarterly Review of Economics and Finance, 66:115-126, 2017.

Ni, H., Szpruch, L., Wiese, M., Liao, S., and Xiao, B. Conditional sig-wasserstein gans for time series generation. arXiv
preprint arXiv:2006.05421, 2020.

Ni, H., Szpruch, L., Sabate-Vidales, M., Xiao, B., Wiese, M., and Liao, S. Sig-wasserstein gans for time series generation. In
Proceedings of the Second ACM International Conference on Al in Finance, pages 1-8, 2021.

Niederhoffer, V. and Osborne, M. F. M. Market making and reversal on the stock exchange. Journal of the American
Statistical Association, 61(316):897-916, 1966.

Nikolenko, S. I. Synthetic data for deep learning, volume 174. Springer, 2021.
Nikolopoulos, C. and Fellrath, P. A hybrid expert system for investment advising. Expert Systems, 11(4):245-250, 1994.

Oh, C,, Han, S., and Jeong, J. Time-series data augmentation based on interpolation. Procedia Computer Science, 175:
64-71, 2020.

Ohashi, H., Al-Nasser, M., Ahmed, S., Akiyama, T., Sato, T., Nguyen, P., Nakamura, K., and Dengel, A. Augmenting wearable
sensor data with physical constraint for dnn-based human-action recognition. In ICML 2017 times series workshop,

108

REFERENCES

pages 6-11, 2017.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu,
K. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Osborne, M. F. Periodic structure in the brownian motion of stock prices. Operations Research, 10(3):345-379, 1962.

Pan, Q. Li, X., and Fang, L. Data augmentation for deep learning-based ecg analysis. In Feature engineering and computa-
tional intelligence in ECG monitoring, pages 91-111. Springer, 2020.

Pan, Z., Yu, W., Yi, X., Khan, A,, Yuan, F., and Zheng, Y. Recent progress on generative adversarial networks (gans): A survey.
IEEE access, 7:36322-36333, 2019.

Park, C.-H. and Irwin, S. H. The profitability of technical analysis: A review. 2004.

Park, C.-H. and Irwin, S. H. What do we know about the profitability of technical analysis? Journal of Economic surveys, 21
(4):786-826, 2007.

Patel, J., Shah, S., Thakkar, P., and Kotecha, K. Predicting stock and stock price index movement using trend deterministic
data preparation and machine learning techniques. Expert Systems with Applications, 42(1):259-268, 2015. ISSN 0957-
4174. doi: https:/ /doi.org/10.1016/j.eswa.2014.07.040.

Patuwo, E., Hu, M. Y., and Hung, M. S. Two-group classification using neural networks. Decision Sciences, 24(4):825-845,
1993.

Pau, L.-F. et al. Artificial intelligence in economics and management. In International Workshop on Artificial Intelligence in
Economics and Management (1985: Zurich, Switzerland). Sole distributors for the USA and Canada, Elsevier Science Pub.
Co., 1986.

Pau, L.-F. and Tan, P. Y. Artificial intelligence in economics and finance: A state of the art-1994: The real estate price and
assets and liability analysis case. Handbook of computational economics, 1:405-439, 1996.

Phua, P. K. H., Ming, D., and Lin, W. Neural network with genetic algorithms for stocks prediction. In Fifth Conference of
the Association of Asian-Pacific Operations Research Societies, 2000.

Qiu, M. and Song, Y. Predicting the direction of stock market index movement using an optimized artificial neural network
model. PloS one, 11(5):e0155133, 2016.

Qiu, T., Zheng, B., Ren, F,, and Trimper, S. Return-volatility correlation in financial dynamics. Physical Review E, 73(6):
065103, 2006.

Quah, T.-S. and Srinivasan, B. Neural network for stock selection. In APPLIED INFORMATICS-PROCEEDINGS-, pages 29-31,
1999.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

Rashid, K. M. and Louis, J. Window-warping: a time series data augmentation of imu data for construction equipment
activity identification. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction,
volume 36, pages 651-657. IAARC Publications, 2019.

Refenes, A.-P., Zapranis, A., and Francis, G. Modeling stock returns in the framework of apt: a comparative study with
regression models. In Neural networks in the capital markets, volume 7, pages 101-126. John Wiley & Sons Chichester,
1995.

Remlinger, C., Mikael, J., and Elie, R. Conditional loss and deep euler scheme for time series generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 8098-8105, 2022.

Rode, D., Parikh, S., Friedman, Y., and Kane, J. An evolutionary approach to technical trading and capital market efficiency.
The Wharton School University of Pennsylvania, 1, 1995.

109

REFERENCES

Rosenblatt, F. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. nature, 323(6088):
533-536, 1986.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M, et al.
Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Sakoe, H. and Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE transactions on
acoustics, speech, and signal processing, 26(1):43-49, 1978.

Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate training of deep neural
networks. Advances in neural information processing systems, 29, 2016.

Salimans, T., Goodfellow, l., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques for training gans.
Advances in neural information processing systems, 29, 2016.

Santoro, D. and Grilli, L. Generative adversarial network to evaluate quantity of information in financial markets. Neural
Computing and Applications, pages 1-18, 2022.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural
networks. arXiv preprint arXiv:1312.6120, 2013.

Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks, 61:85-117, 2015.

Schumann, M. and Lohrbach, T. Comparing artificial neural networks with statistical methods within the field of stock
market prediction. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences, volume 4,
pages 597-606. IEEE, 1993.

Schwartz, R. A. and Whitcomb, D. K. The time-variance relationship: Evidence on autocorrelation in common stock returns.
The Journal of Finance, 32(1):41-55, 1977.

Shap, K. Artificial intelligence in financial trading, 1987.
Shiller, R. J. Irrational exuberance. In Irrational exuberance. Princeton university press, 2015.

Shorten, C. and Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):
1-48, 2019.

Siegelmann, H. T. Theoretical foundations of recurrent neural networks. Technical report, Rutgers University, 1993.

Simonetto, L. Generating spiking time series with generative adversarial networks: an application on banking transactions.
2018.

Simonovsky, M. and Komodakis, N. Graphvae: Towards generation of small graphs using variational autoencoders. In
Atrtificial Neural Networks and Machine Learning-ICANN 2018: 27th International Conference on Atrtificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part | 27, pages 412-422. Springer, 2018.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Smith, K. E. and Smith, A. O. Conditional gan for timeseries generation. arXiv preprint arXiv:2006.16477, 2020.
Snow, D. Mtss-gan: Multivariate time series simulation generative adversarial networks. Available at SSRN, 2020.

Sgnderby, C. K., Caballero, J., Theis, L., Shi, W., and Huszar, F. Amortised map inference for image super-resolution. arXiv
preprint arXiv:1610.04490, 2016.

Sornette, D. Why stock markets crash. In Why Stock Markets Crash. Princeton university press, 2009.

Steiner, M. and Wittkemper, H.-G. Neural networks as an alternative stock market model. 1995.

110

REFERENCES

Steven Eyobu, O. and Han, D. S. Feature representation and data augmentation for human activity classification based on
wearable imu sensor data using a deep Istm neural network. Sensors, 18(9):2892, 2018.

Strong, R. A behavioral investigation of three paradigms in finance. Unpublished manuscript, University of Maine, College of
Business Administration, 1987.

Subramanian, V., Hung, M. S., and Hu, M. Y. An experimental evaluation of neural networks for classification. Computers
& operations research, 20(7):769-782, 1993.

Such, F. P, Rawal, A., Lehman, J., Stanley, K., and Clune, J. Generative teaching networks: Accelerating neural architecture
search by learning to generate synthetic training data. In International Conference on Machine Learning, pages 9206-
9216. PMLR, 2020.

Sun, H., Deng, Z., Chen, H., and Parkes, D. C. Decision-aware conditional gans for time series data. arXiv preprint
arXiv:2009.12682, 2020.

Sun, L., Su, T., Liu, C., and Wang, R. Deep Istm networks for online chinese handwriting recognition. In 2016 15th interna-
tional conference on frontiers in handwriting recognition (icfhr), pages 271-276. IEEE, 2016.

Susskind, J. M., Hinton, G. E., Movellan, J. R., and Anderson, A. K. Generating facial expressions with deep belief nets.
Affective computing, emotion modelling, synthesis and recognition, 2008(5):421-440, 2008.

Szegedy, C,, Liu, W.,, Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1-9, 2015.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna, Z. Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818-2826, 2016.

Taddy, M. The technological elements of artificial intelligence. In The economics of artificial intelligence: An agenda, pages
61-87. University of Chicago Press, 2018.

Takagi, H. and Pallez, D. Paired comparison-based interactive differential evolution. In 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC), pages 475-480. IEEE, 2009.

Takahashi, S., Chen, Y., and Tanaka-Ishii, K. Modeling financial time-series with generative adversarial networks. Physica
A: Statistical Mechanics and its Applications, 527:121261, 2019.

Tay, F. E. and Cao, L. Application of support vector machines in financial time series forecasting. omega, 29(4):309-317,
2001a.

Tay, F. E. H. and Cao, L. J. A comparative study of saliency analysis and genetic algorithm for feature selection in support
vector machines. Intelligent Data Analysis, 5(3):191-209, 2001b.

Teng, X., Wang, T., Zhang, X., Lan, L., and Luo, Z. Enhancing stock price trend prediction via a time-sensitive data augmen-
tation method. Complexity, 2020, 2020.

Thakur, A. Approaching (almost) any machine learning problem. Abhishek Thakur, 2020.

Thavaneswaran, A., Thiagarajah, K., and Appadoo, S. S. Fuzzy coefficient volatility (fcv) models with applications. Mathe-
matical and Computer Modelling, 45(7-8):777-786, 2007.

Thavaneswaran, A., Appadoo, S. S., and Paseka, A. Weighted possibilistic moments of fuzzy numbers with applications to
garch modeling and option pricing. Mathematical and Computer Modelling, 49(1-2):352-368, 2009.

Theis, L., Oord, A. v. d., and Bethge, M. A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844,
2015.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop. COURSERA: Neural networks for machine learning, 2012.

Tiwari, R., Srivastava, S., and Gera, R. Investigation of artificial intelligence techniques in finance and marketing. Procedia
Computer Science, 173:149-157, 2020.

111

REFERENCES

Tizziano, A. Direct reinforcement learning for the dva hedging through recurrent generative adversarial networks for
dataset augmentation. 2018.

Tokic, D. Blackrock robo-advisor 4.0: When artificial intelligence replaces human discretion. Strategic Change, 27(4):
285-290, 2018.

Torralba, A., Fergus, R., and Freeman, W. T. 80 million tiny images: A large data set for nonparametric object and scene
recognition. IEEE transactions on pattern analysis and machine intelligence, 30(11):1958-1970, 2008.

Trippi, R. R. and Turban, E. Neural networks in finance and investing: Using artificial intelligence to improve real world perfor-
mance. McGraw-Hill, Inc., 1992.

Tsaih, R, Hsu, Y., and Lai, C. C. Forecasting s&p 500 stock index futures with a hybrid ai system. Decision support systems,
23(2):161-174, 1998.

Tseng, H.-Y., Jiang, L., Liu, C,, Yang, M.-H., and Yang, W. Regularizing generative adversarial networks under limited data.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7921-7931, 2021.

Um, T. T., Pfister, F. M., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., and Kuli¢, D. Data augmentation of wearable
sensor data for parkinsons disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM
international conference on multimodal interaction, pages 216-220, 2017.

Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008.

Van Eyden, R. The application of neural networks in the forecasting of share prices (finance and technology publishing,
haymarket, va). 1996.

Van Liebergen, B. et al. Machine learning: A revolution in risk management and compliance? Journal of Financial Transfor-
mation, 45:60-67, 2017.

van Rhijn, J. Generating asset paths for financial sdes with gans. 2020.
Vapnik, V. N. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5):988-999, 1999.

Violante, A. An introduction to t-sne with python example, Aug 2018. URL https://medium.com/@violante.

andre/an-introduction-to-t-sne-with-python-example-47e6ae7dc58f.

Wang, J.-J., Wang, J.-Z., Zhang, Z.-G., and Guo, S.-P. Stock index forecasting based on a hybrid model. Omega, 40(6):
758-766,2012.

Wang, Y. and Yan, G. Survey on the application of deep learning in algorithmic trading. Data Science in Finance and
Economics, 1(4):345-361, 2021.

Wang, Z., Healy, G., Smeaton, A. F., and Ward, T. E. Use of neural signals to evaluate the quality of generative adversarial
network performance in facial image generation. Cognitive Computation, 12(1):13-24, 2020a.

Wang, Z., She, Q., Smeaton, A. F., Ward, T. E., and Healy, G. Synthetic-neuroscore: Using a neuro-ai interface for evaluating
generative adversarial networks. Neurocomputing, 405:26-36, 2020b.

Wang, Z., She, Q., and Ward, T. E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM
Computing Surveys (CSUR), 54(2):1-38, 2021.

Wang, Z., Yan, W.,, and Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In
2017 International joint conference on neural networks (IJCNN), pages 1578-1585. IEEE, 2017.

Wen, Q,, Sun, L., Song, X., Gao, J., Wang, X., and Xu, H. Time series data augmentation for deep learning: A survey. arXiv
preprint arXiv:2002.12478, 2020.

White, H. Economic prediction using neural networks: The case of ibm daily stock returns. In ICNN, volume 2, pages
451-458, 1988.

112

https://medium.com/@violante.andre/an-introduction-to-t-sne-with-python-example-47e6ae7dc58f
https://medium.com/@violante.andre/an-introduction-to-t-sne-with-python-example-47e6ae7dc58f

REFERENCES

White, T. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

Wiatrak, M., Albrecht, S. V., and Nystrom, A. Stabilizing generative adversarial networks: A survey. arXiv preprint
arXiv:1910.00927, 2019.

Wiese, M., Knobloch, R., Korn, R., and Kretschmer, P. Quant gans: deep generation of financial time series. Quantitative
Finance, 20(9):1419-1440, 2020.

Xu, G, Xing, G., Jiang, J., Jiang, J., and Ke, Y. Arrhythmia detection using gated recurrent unit network with ecg signals.
Journal of Medical Imaging and Health Informatics, 10(3):750-757, 2020.

Xu, Q., Huang, G., Yuan, Y., Guo, C,, Sun, Y., Wu, F., and Weinberger, K. An empirical study on evaluation metrics of
generative adversarial networks. arXiv preprint arXiv:1806.07755, 2018.

Yang, H., Chan, L., and King, |. Support vector machine regression for volatile stock market prediction. In International
conference on intelligent data engineering and automated learning, pages 391-396. Springer, 2002.

Yoo, P. D., Kim, M. H., and Jan, T. Machine learning techniques and use of event information for stock market prediction:
A survey and evaluation. In International Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), volume 2,
pages 835-841. IEEE, 2005.

Yoon, J., Jarrett, D., and Van der Schaar, M. Time-series generative adversarial networks. 2019.

Yoon, Y. and Swales, G. Predicting stock price performance: A neural network approach. In Proceedings of the twenty-fourth
annual Hawaii international conference on system sciences, volume 4, pages 156-162. IEEE, 1991.

Yoon, Y., Swales Jr, G., and Margavio, T. M. A comparison of discriminant analysis versus artificial neural networks. Journal
of the Operational Research Society, 44(1):51-60, 1993.

YU, S.-L. and Li, Z. Stock price prediction based on arima-rnn combined model. DEStech Transactions on Social Science,
Education and Human Science, 03 2018. doi: 10.12783/ dtssehs/icss2017 /19384.

Zhang, D. and Khoreva, A. Progressive augmentation of gans. arXiv preprint arXiv:1901.10422, 2019.

Zhang, H., Goodfellow, |., Metaxas, D., and Odena, A. Self-attention generative adversarial networks. In International
conference on machine learning, pages 7354-7363. PMLR, 2019%a.

Zhang, H., Zhang, Z., Odena, A., and Lee, H. Consistency regularization for generative adversarial networks. arXiv preprint
arXiv:1910.12027, 2019b.

Zhang, J., Cui, S., Xu, Y., Li, Q., and Li, T. A novel data-driven stock price trend prediction system. Expert Systems with
Applications, 97:60-69, 2018.

Zhang, N., Lin, A., and Shang, P. Multidimensional k-nearest neighbor model based on eemd for financial time series
forecasting. Physica A: Statistical Mechanics and its Applications, 477:161-173, 2017.

Zhong, X. and Enke, D. Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applica-
tions, 67:126-139, 2017.

Zhou, W.,, Chen, J., and Huang, Y. Co-citation analysis and burst detection on financial bubbles with scientometrics ap-
proach. Economic research-Ekonomska istrazivanja, 32(1):2310-2328, 2019.

Zhou, X., Pan, Z., Hu, G., Tang, S., and Zhao, C. Stock market prediction on high-frequency data using generative adversarial
nets. Mathematical Problems in Engineering, 2018, 2018.

Zhu, J.-Y., Park, T, Isola, P., and Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial net-
works. In Proceedings of the IEEE international conference on computer vision, pages 2223-2232, 2017.

113

A Non-GAN Stylised Facts

115

jitter_Linear_Unpredictability

°

correlation
°
3

—0.25
—0.50
—0.75
-1.00
200 400 600 800 1000
lag k
magnitude_warp_Linear_Unpredictability
100
0.75
0.50
O o025
® P
= 0.00
g b
5 025
S
-0.50
075
-1.00
200 400 600 800 1000
lag k
spawner_Linear_Unpredictability
100
075
050
c
S o025
B .
g ool M
=
5 02
S
050
—0.75
-1.00
200 400 600 800 1000
lag k
random_guided_warp_Linear_Unpredictability
100
075
050
c
S o025
® &
T 0001 i
‘5 —0.25
S
—0.50
-0.75
-1.00
200 400 600 800 1000
lag k

(i) Random Guided Warp

correlation

Figure A.1: Linear Unpredictability

correlation

correlation

rotation_Linear_Unpredictability

-0.25

-0.50

-0.75

-1.00
200 400 600 800

lag k

(b) Rotation

window_slice_Linear_Unpredictability

1000

200 400 600 800
lag k

(e) widow Slice

time_warp_Linear_Unpredictability

1000

-0.25

-0.50

-0.75

-1.00
200 400 600 800

lag k

(h) Time Warp

discriminative_guided_warp_Linear_Unpredictability

1000

-0.50

-0.75

-1.00
200 400 600 800

lag k

1000

(k) Discrim. Guided Warp

correlation

correlation

correlation
8

scaling_Linear_Unpredictability

g

-0.25
-0.50

-0.75

e

-1.00

200 400 600 800
lag k

(c) Scaling

permutation_Linear_Unpredictability

1000

lag k

(f) Permutation

window_warp_Linear_Unpredictability

1000

-0.25
-0.50

-0.75

-1.00

-0.50
-0.75

-1.00

200 400 600 800
lag k

(i) Window Warp

1000

[200 400 600 800

lag k

() Real SP500

1000

Probability Density Function P(r)

Probability Density Function P(r)

Probability Density Function P(r)

107

2

2

2

2

5

jitter_Heavy-Tailed Distribution

10 10° 100
Price Return r¢

(a) Jitter

magnitude_warp_Heavy-Tailed Distribution

Price Return r¢

(d) Magnitude Warp

spawner_Heavy-Tailed Distribution

Price Return r¢

(g) Spawner

Probability Density Function P(r) Probability Density Function P(r)

Probability Density Function P(r)

random_guided_warp_Heavy-Tailed Distribution

rotation_Heavy-Tailed Distribution

XN

107t 10° 10t
Price Return r¢

(b) Rotation

window_slice_Heavy-Tailed Distribution

107! 107 10!
Price Return ry

(e) Winow Slice

time_warp_Heavy-Tailed Distribution

Price Return r¢

(h) Time Warp

Probability Density Function P(r)

Probability Density Function P(r)

Probability Density Function P(r)

107

scaling_Heavy-Tailed Distribution

107 109 10*
Price Return ry

(c) Scaling

permutation_Heavy-Tailed Distribution

107! 10° 10
Price Return ry

(f) Permutation

window_warp_Heavy-Tailed Distribution

Price Return ry

(i) Window Warp

discriminative_guided_warp_Heavy-Tailed Distribution

10

Probability Density Function P(r)

Price Return r¢

(j) Random Guided Warp

10

Probability Density Function P(r)

Price Return ry

(k) Discrim. Guided Warp

Figure A.2: Heavy-Tailed Distribution

correlation

correlation

correlation

jitter_Volatility_Clustering

lag k

(a) Jitter

magnitude_warp_Volatility_Clustering

. o crame.

A e

lag k

(d) Magnitude Warp

spawner_Volatility_Clustering

e,

e,

lag k

(g) Spawner

random_guided_warp_Volatility_Clustering

correlation

10

correlation

correlation

rotation_Volatility_Clustering

scaling_Volatility_Clustering

10°
o 10 O
c
H £ 10 .
T g o :
i s ;
‘e o .
10
107°
10° 10° 10° 10 10° 10" 107 10
lag k lag k
(b) Rotation (c) Scaling
window_slice_Volatility_Clustering permutation_Volatility_Clustering
10°
107
c
S0
2
2
=107
£ :
g .
10 .
10
10° 10t 10? 10% 10° 10t 102 10°
lag k lag k
(e) Winow Slice (f) Permutation
time_warp_Volatility_Clustering window_warp_Volatility_Clustering
10°
T e e e, o e s e,
10t
. 5
4 2 102 B I
3! s L
R [.
=107 . N
. g -
. 104
1075
10° 10° 10% 10° 10° 10t 107 10°
lag k lag k

(h) Time Warp

discriminative_gu

(i) Window Warp

ided_warp_Volatility_Clustering

10° 10°

107 . 107
c c
S o ¥ 8 10 s
& 3 & 4
[c. [%
£ 10 . £ 102 .
o M o
S . S

10 10

107 107

10° 10" 107 10* 10° 10" 107 10*
lag k lag k

(j) Random Guided Warp

Figure A.3: Volatility Clustering

(k) Discrim. Guided Warp

jitter_leverage_effect rotation_leverage_effect scaling_leverage_effect

0.05 0.10 A N
00
0.00 4 A A 005 A V
-0.05 0.00 | 4 A A J “o1
s o W -
= -0.15 = o 5 o2
-0.20
-0.25 -03
-0.20
-0.25 -0.4
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
t t t
(a) Jitter (b) Rotation (c) Scaling
magnitude_warp_leverage_effect window_slice_leverage_effect permutation_leverage_effect
A - i]
00 \/\“ 00 Y W | IR W
-1 —~ 02 — 01 \/\\/\/\/V\/\/\/
s S
s, <
-02 =~ ~ 2
03 -0.5 -03
-0.6 -0.4
0 10 20 30 40 50 0 10 20 30 40 50 ! 0 10 20 30 40 50
t t t
(d) Magnitude Warp (e) Winow Slice (f) Permutation
spawner_leverage_effect time_warp_leverage_effect window_warp_leverage_effect
01 A 0.1 /
: A r
0.0 1 |
. Lo, \Il
o1 Vv \/\/\[-0 —01
< ., 3 —02 i:“— —02
-0.3 -0.3 -03
-04 -04 -4
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
t t t
(g) Spawner (h) Time Warp (i) Window Warp
random_guided_warp_leverage_effect discriminative_guided_warp_leverage_effect
02
A i .) [
00 A
T 02 \/\/J \/\/\/ T 02
~ ~
-0.4
0 10 20 30 40 50 0 10 20 30 40 50
t t

(j) Random Guided Warp (k) Discrim. Guided Warp

Figure A.4: Leverage Effect

jitter_CoarseFine_volatility

20 -15 -10 -5 5 10 15 2

o
lag k

(a) Jitter

magnitude_warp_CoarseFine_volatility

-20 -15 -lo -5 5 10 15 2

[
lag k

(d) Magnitude Warp

spawner_CoarseFine_volatility

20 -15 -lo -5 H 0 15 20

o
lag k

(g) Spawner

random_guided_warp_CoarseFine_volatility

rotation_CoarseFine_volatility

20 -15 -10 -5 5 10 15

0
lag k

(b) Rotation

window_slice_CoarseFine_volatility

20 -15 -0 -5 5 10 15

3
lag k

(e) Winow Slice

time_warp_CoarseFine_volatility

20 -15 -0 -5 5 0 15 20

0
lag k

(h) Time Warp

plk)

scaling_CoarseFine_volatility

20 -15 -10 -5 5 10 15

0
lag k

(c) Scaling

permutation_CoarseFine_volatility

20 -15 -0 -5 5 0 15

[
lag k

(f) Permutation

window_warp_CoarseFine_volatility

20 -15 -lo -5 5 10 15 2

0
lag k

(i) Window Warp

discriminative_guided_warp_CoarseFine_volatility

0s 07
05 0.6
04 0.5
- < o4
S <
Q02 Q 03
o 02
0 01
00
-0.1
-20 -15 -10 -5 5 10 15 20 -20 -15 -10 10 15 20

(j) Random Guided Warp

0
lag k

Figure A.5: Coarse-Fine Volatility

(k) Discrim. Guided Warp

distribution

distribution

distribution

jitter_GainLoss_asymmetry

rotation_GainLoss_asymmetry

scaling_GainLoss_asymmetry

c c
003 O o3
s g
£ =
a,., 2
H 5 . 5 3
. o1 . 01 .
: tee e, o
* o on— 0.0 e ————————————————— 0.0 o
10° 10t 102 10° 10° 10t 10? 10% 10° 10t 10 10°
step step step
(a) Jitter (b) Rotation (c) Scaling
magnitude_warp_GainLoss_asymmetry window_slice_GainLoss_asymmetry permutation_GainLoss_asymmetry
. 04l 0af *
5 5
.= 0.3 .= 03
E E
=02 T o2
. o] .
: z) z :
: 3 3
'n. 00 0, 00 * o
10° 10t 102 10° 10° 10 10% 10° 10° 10* 102 10°
step step step
(d) Magnitude Warp (e) Winow Slice (f) Permutation
spawner_GainLoss_asymmetry time_warp_GainLoss_asymmetry window_warp_GainLoss_asymmetry
. 05 .
. 0.4 . 04 .
s c
2 03 .% 03
Q o
=02 =
Z E 02
3 ° © .
01 3 0.1 N
‘. s s
* o, e, "'..
100 10" 107 10° 10° 10" 10% 10° 10° 10" 107 10
step step step

(g) Spawner

random_guided_warp_GainLoss_asymmetry

(h) Time Warp

(i) Window Warp

discriminative_guided_warp_GainLoss_asymmetry

05
0471 * 047 «
< c
So3 Lo3
=] b=]
5 5
2 2
o2 T o2
a 4
T ©
01 01 ¢
0.0 - 0.0 -
10° 10t 107 10° 10° 10t 107 10°
step step

(J) Random Guided Warp

(k) Discrim. Guided Warp

Figure A.6: Gain-Loss Asymmetry

(a) Jitter (b) Rotation (c) Scaling

(d) Magnitude Warp

(e) Winow Slice

(g) Spawner

h) Time Warp

i) Window Warp

e e

(j) Random Guided Warp

Figure A.7: Log Returns

(k) Discrim. Guided Warp

=
T
<
o
k9]
g
5
2
>
Z
@
2
5
a
Z

Probability Density Function P(r)

Probability Density Function P(r)

jitter_linear_distribution

014 N
012

010

1o - 0
Price Return r¢

(a) Jitter

magnitude_warp_linear_distribution

016 3
014
012
0.10 N
0.08
0.06
0.04

002 i

0.00

-10 -5 o 5
Price Return r¢

(d) Magnitude Warp

spawner_linear_distribution

010 .
008
0.06 ..
004 c,
0.02
-

YR P ——

-0 -8 -6 -4 -2 0 2

rice Return r¢

(g) Spawner

random_guided_warp_linear_distribution

= rotation_linear_distribution
&
c o1 .
5] .
5 on
c .
S
2 010 .
2008 .
g .
g 0.06 .

0.04 S
> ..

“
e
1o - 0 bt}
Price Return r¢

- window_slice_linear_distribution
T
c s
5 012
g
c 0.10 .
H
w008 .
Z .
D 006
< .
I3
0 0.04 .
> B

002

N

2 ~ .
EELT I ————m B —
2 -75 -50 -25 00 25 5.0 75
T

Price Return r

(e) Winow Slice

time_warp_linear_distribution

Probability Density Function P(r)

-25 0.0 25 5.0 75
Price Return r¢

(h) Time Warp

2 8 8 58 8 &

B

Probability Density Function P(r) Probability Density Function P(r)

Probability Density Function P(r)

scaling_linear_distribution

5

=

s

8

8

2

0.02

0.00

1o 5 [
Price Return ry

(c) Scaling

permutation_linear_distribution

=

s

8

8

2

g

-10 -5 0
Price Return ry

(f) Permutation

window_warp_linear_distribution

012

010

0.08

0.06

0.04

0.02

0.00

-10.0

discriminative_guided_warp_linear_distribution

-75 50 -25 00 25 50

Price Return r¢

(i) Window Warp

ty Density Function P(r)
4

0.00

Probability Density Function P(r)

(j) Random Guided Warp

o
Price Return ry

-100 -75

-25

00

Figure A.8: Linear Distribution

25

Price Return ry

(k) Discrim. Guided Warp

50

(i) Window Warp

(j) Random Guided Warp (k) Discrim. Guided Warp

Figure A.9: Probability Density Function, Skewness and Kurtosis

P YT STy PO g 1R 1A v
Ol ol
T

(c) Scaling

.
A AR i b e N
i O

- '{‘\"’“""“'""W"’W‘WNW'\'WHW“‘ b AT

[l) Mo g
oo ”' ! !

(g) Spawner (h) Time Warp

sl Ul cltin il b s U

(j) Random Guided Warp (k) Discrim. Guided Warp

Figure A.10: Autocorrelation Function

B Preliminary non-GAN Plots

price

jitter

— original values
Synthetic Values

0 1000 2000 3000 2000 5000
Days.

(a) Time Series

rotation

— original values
Synthetic Values

]

0 1000 2000 3000 2000 5000
Days.

(a) Time Series

+SNE plot

Original
Synthetic

: -'.E- -
\m (“ {

*'N' -L-v- k

xtsne

(b) t-SNE Plot

Figure B.1: Jitter

+SNE plot

Criginal il g, -

Synthetic

(b) t-SNE Plot

Figure B.2: Rotation

127

PCA plot
020 Criginal
Synthetic
015
010
A
005 i
ao® gt
000 & 4
R a
005 %
¥
-0.10
015
1o -05 00 05 10 15 20 25
xpca
PCA plot
Criginal
15 Synthetic
10
05
B 00
=
-05
-10
-15

-10

-05 00 05 10 15 20
*pea

(c) PCA Plot

scaling

—— Original Values
Synthetic Values

[1000 2000 3000 2000 5000
Days

(a) Time Series

magnitude warp

—— Original Values
Synthetic Values

(a) Time Series

window slice

—— Original Values
Synthetic Values

[} 1000 2000 3000 2000 5000
Days

(a) Time Series

permutation

—— Original Values
Synthetic Values

(a) Time Series

+SNE plot
Original m
- Synthetic ‘e ——
* : -
. o .
5 x'n ’w

5 o -, '™
=

xtsne

(b) t-SNE Plot

Figure B.3: Scaling

TSNE plot

= . g
]i ° 'g"e' hﬁ&
o "o <

. 0 ;
§ "% Lo~
g

+| .

" S, o
-10 o 8w L)
: L Original
15 H Synthetic
-15 -10 -5 0 5 10 15
ctene

(b) t-SNE Plot

Figure B.4: Magnitude Warp

TSNE plot

y tsne

W

:.)'**
~

03 L.~

Synthetic
xtsne

(b) t-SNE Plot

Figure B.5: Window Slice

+SNE plot

o w B &

ytsne
!
1

-10
-5 Original
" Synthetic -
2% -5 0 5 5 n 5 ox
xtsne

(b) t-SNE Plot

Figure B.6: Permutation

PCA plot
Original
02 Synthetic
01
g 00
=
-01
02
-03
A 0 1 2 3
xpea
PCA plot
06 Original
Synthetic
04 -
v
o
02 g
g oo .
=
°
0.2 - b
® e
-04 -
-06
1o 05 0@ o5 10 15 20 25 30
xpea
PCA plot
025 original
020 Synthetic
015
010
g uos . e%
= 8
000 " 1
005 Y :'g
-010 .
015
-lo 05 06 05 10 15 20 25 30
xpaa
PCA plot
Original
02 Synthetic
&
01 3 . "
o o 2 - W s g S
B s 2
o (Lo b 00 OF
-01 8%
-02
-5 1o -05 00 ©5 10 15 20 25

xpea

(c) PCA Plot

4000

3000

Price

2000

1000

spawner

— Original Values
Synthetic Values

0 1000 2000 3000 2000 5000
Days

(a) Time Series

time warp

— oOriginal Values
Synthetic Values

o 1000 2000 3000 2000 5000
Days

(a) Time Series

window warp

— oOriginal Values
Synthetic Values

o 1000 2000 3000 2000 5000
Days

(a) Time Series

random guided warp

— oOriginal Values
Synthetic Values

o 1000 2000 3000 2000 5000
Days

(a) Time Series

y tsne

y tsne

y tsne

Figure B.9: Window Warp

y tsne

+-SNE plot

» .\ Original
5 . ° Synthetic

0 ®
i h
e s

(b) t-SNE Plot

Figure B.7: Spawner

+-SNE plot

) - Original
5
o a®
o,

.

(b) t-SNE Plot

Figure B.8: Time Warp

+-SNE plot

]

20 Original
Synthetic
5

xtsne

(b) t-SNE Plot

+-SNE plot

Criginal i
5 Synthetic wee
.
b1
5

(b) t-SNE Plot

Figure B.10: Random Guided Warp

PCA plot
‘Criginal
Synthetic
B g, P05
Mﬁ » e
N Lo BN

10 05 00 05 10 15 20 2%
xpea

(c) t-SNE Plot

PCA plot
Criginal
Synthetic
.
» .
§ 7 d
7 STREIE O
afc8 rEA L
=3
b T
! A T
-1 0 1 2 3
(c) PCA Plot
PCA plot
Criginal
Synthetic
.
.
B
1“,;
o phet
A
-1 0 2
(c) PCA Plot
PCA plot
Criginal
Synthetic

10 05 00 05 10 15 20 25 30

(c) PCA Plot

Price

discriminative guided warp

— Original Values
Synthetic Values

[} 1000 2000 3000 2000 5000
Days

(a) Time Series

o w B &

y tsne

-5

-10

-15

Figure B.11: Discrim. Guided Warp

TSNE plot

original

Synthetic M.

xtsne

(b) t-SNE Plot

y.pea

PCA plot

Original
Synthetic .

&

% L]

o]

L a

e
Lo 05 00 05 10 1s 20 25 30

(c) PCA Plot

C GAN Evaluation Methods

131

A summary of common GAN evaluation measures.

Measure Description

1. Average Log-likelihood (Goodfellow et al., 2014; Theis et al.) « Log likelihood of explaining realworld held out/test data using a density estimated from the generated data (eg using KDE or Parzen window estimation). L = -,,l;r E.r- log Pyyaet %)
2. Coverage Metric [Tolstik] » 2017) « The probability mass of the true data “covered” by the model distribution © = Py oo (d P gep = 1 with 1 such that Py id P g = 1= 0095

3. Inception Scare (IS) (5 t al., 2016) » KLD} between conditional and marginal label distributions over generated data. exp [Ey |I{I.(;J il e |yn|]

4. Modified Inception Score (m-IS) (Gurumurthy et al,, 2017) « Encourages diversity within images sampled from a particular category. r:p[:{xj |Ex}. HELEPOp g [Py bl

5. Mode Score (MS) (Che et al.) » Similar to IS but also takes into account the prior distribution of the labels over real data. exp l[Ex [I{ [‘p (ylxpll g [f”"‘" } }I] - (pi e [‘,"""""‘}].J

6. AM Score (Zhou et « Takes into account the KLD between distributions of training labels vs. predicted labels, as well as the entropy of predictions. I{I,(pl_v"nin bl piy+E |H[_|-|a>|

1

Quantitative?- Fréchet Inception Distance (FID) (Heusel « Wasserstein-2 distance between multi-variate G fitted to data into a feature space FID{r.g} = |lur — pg ||% +TriZy + Xy - NE X

m

. Maximum Mean Discrepancy (MMD) (Gret = Measures the dissimilarity between two probability distributions F,. and J”.g uzing samples drawn independently from each distribution.

My P =By p K611 =28y p [66x. 51+ HJ‘-”'“Px Ty, ¥

9. The Wasserstein Critic (Ar]

ot al.) + The critic {e.g. an NN) is trained to produce high values at real samples and low values at generated samples Pi’{x,{._\,. Xg)= -,é,- E:\‘ | JF|KH-_\-[IJ = ',%r Z.:I f{x.u [0y

10. Birthday Paradox Test (Arora and Zhang) « Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates)

11. Classifier Two Sample Test (C25T) (Lehme Romanao, 20 » Answers whether two samples are drawn from the same distribution (e.g. by training a binary classifier)

12. Classification Performance (Radford et al; Isola et al) « An indirect technigque for evaluating the quality of unsupervised representations (e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) (Ye et al.).

13. Boundary Distortion (Santurkar et al., 2018) » Measures diversity of generated samples and covariate shift using classification methods.

14. Number of Statistically-Different Bins (NDB) (Richard, eiss) «» Given two sets of samples from the same distribution, the number of samples that fall into a given bin should be the same up to sampling noise

15. Image Retrieval Performance (W etal) « Measures the distributions of distances to the nearest neighbors of some query images (Le. diversity)

16. Generative Adversarial Metric (GAM) (Im et al.) » Compares two GANs by having them engaged in a battle against each other by ppi iscrimi or px|y = l.M]]pr[xl_»= J:-\-\I'I =ply = 1x:Dppx G fply = Lx: Dyiplx: G)

17. Tournament Win Rate and Skill Rating (Olsson et al.) « Implements a tournament in which a player is either a discriminator that attempts to distinguish between real and fake data or a generator that attempts to fool the discriminators into accepting fake
data as real.

18. Normalized Relative Discriminative Score (NRDS) (Zhang et a » Compares » GANs based on the idea that if the generated samples are closer to real ones, more epochs would be needed to distinguish them from real samples.

19. Adversarial Accuracy and Divergence (Y etal.) » Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained on real data and another on generated data, on a labeled validation set to approximate Fg{yx)
and F.(y|x). Adversarial Divergence: Compute Pa\'nyL Frixlxn

20. Geometry Score (Khrulkov and Ose 5] « Compares geometrical properties of the underlying data manifold between real and generated data.

21. Reconstruction Error (Xiang and Li, 2017) + Measures the reconstruction error (e.g. Ly norm} between a test image and its closest generated image by optimizing for = (Le. ming||Giz) — x""’”’llzl

22_ Image Quality Measures et al

« Evaluates the quality of generated images using measures such as S5IM, PSNR, and sharpness difference

23. Low-level Image Statistics (Zeng et al.; Karre « Evaluates how similar low-level statistics of generated images are to those of natural scenes in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.

24 Precision, Recall and F| score (Lucic e » These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.

1. Nearest Neighbors + To detect overfitting, generated samples are shown next to their nearest neighbors in the training set

Qualitative 2. Rapid Scene Categorization (Goodfellow et al., 2014) « In these experiments, participants are asked to distinguish generated samples from real images in a short presentation time (e.g. 100 ms); Le. real v.s fake
3. Preference Judgment (Huang et al., 2017; L Yietal) « Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples)
4. Mode Drop and Collapse (. 1 et al., 2017; Lin et al.) » Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are d as by ing the di: of generated data to mode centers
5. Network Internals (R et al,, 2016; Higgins et al; M etal., « Regards exploring and i ing the internal ref ion and ics of models (e.g space continuity) as well as visualizing learned features

2016; Zeiler and Fergus, 2014; Bau et al.,, 2017)

Figure C.1: GAN Evaluation Methods - Taken from Borji (2019)

D BigGAN Layer Summary

Table D.1: BigGAN generator

Layer Output Shape Param # Connected to
input_101 [(None, 100)] 0

spectral_normalization_1312 (None, 256) 26112 input_101[0][0]
reshape_84 (None, 2, 128) 0 spectral_normalization_1312[0][0]
batch_normalization_1008 (None, 2, 128) 512 reshape_84[0][0]
re lu 312 (None, 2, 128) 0 batch_normalization_1008[0][0]
up_samplingld_192 (None, 4, 128) 0 re_lu_312[0][0]
spectral_normalization_1313 (None, 4, 64) 41088 up_sampling1d_192[0][0]
batch_normalization_1009 (Batch (None, 4, 64) 256 spectral_normalization_1313[0][0]
up_sampling1d_193 (None, 4, 128) 0 reshape_84[0][0]
re_lu_313 (ReLU) (None, 4, 64) 0 batch_normalization_1009[0][0]
spectral_normalization_1315 (None, 4, 64) 8320 up_sampling1d_193[0][0]
spectral_normalization_1314 (None, 4, 64) 20608 re_lu_313[0][0]
tf.__operators__.add_296 (None, 4, 64) 0 spectral_normalization_1315[0][0]
batch_normalization_1010 (None, 4, 64) 256 tf.__operators__.add_296[0][0]
re lu 314 (None, 4, 64) 0 batch_normalization_1010[0][0]
up_samplingld_194 (None, 8, 64) 0] re_lu_314[0][0]
spectral_normalization_1316 (None, 8, 32) 10304 up_sampling1d_194[0][0]
batch_normalization_1011 (None, 8, 32) 128 spectral_normalization_1316[0][0]
up_samplingld_195 (None, 8, 64) 0 tf.__operators__.add_296[0][0]
re_lu_315 (None, 8, 32) 0 batch_normalization_1011[0][0]
spectral_normalization_1318 (None, 8, 32) 2112 up_sampling1d_195[0][0]
spectral_normalization_1317 (None, 8, 32) 5184 re_lu_315[0][0]
tf.__operators__.add_297 (None, 8, 32) 0 spectral_normalization_1318[0][0]

133

(continued...)

APPENDIX D. BIGGAN LAYER SUMMARY

Layer Output Shape Param # Connected to
spectral_normalization_1320 (None, 8, 4) 136 tf.__operators__.add_297[0][0]
spectral_normalization_1319 (None, 8, 4) 136 tf.__operators__.add_297[0][0]
max_pooling1d_144 (None, 4, 4) 0 spectral_normalization_1320[0][0]
tf.linalg.matmul_144 (None, 8, 4) 0 spectral_normalization_1319[0][0]
spectral_normalization_1321 (None, 8, 16) 544 tf.__operators__.add_297[0][0]
tf.nn.softmax_40 (None, 8, 4) 0 tf.linalg.matmul_144[0][0]
max_pooling1d_145 (None, 4, 16) 0 spectral_normalization_1321[0][0]
tf.linalg.matmul_145 (None, 8, 16) 0 tf.nn.softmax_40[0][0]
spectral_normalization_1322 (None, 8, 32) 576 tf.linalg.matmul_145[0][0]
residual_link_72 (None, 8, 32) 1 tf.__operators__.add_297[0][0]
batch_normalization_1012 (None, 8, 32) 128 residual_link_72[0][0]
re lu 316 (None, 8, 32) 0 batch_normalization_1012[0][0]
up_samplingld_196 (None, 16, 32) 0 re_lu_316][0][0]
spectral_normalization_1323 (None, 16, 16) 2592 up_sampling1d_196[0][0]
batch_normalization_1013 (None, 16, 16) 64 spectral_normalization_1323[0][0]
up_samplingld_197 (None, 16, 32) 0 residual_link_72[0][0]
re lu 317 (None, 16, 16) 0 batch_normalization_1013[0][0]
spectral_normalization_1325 (None, 16, 16) 544 up_sampling1d_197[0][0]
spectral_normalization_1324 (None, 16, 16) 1312 re_lu_317[0][0]
tf.__operators__.add_298 (None, 16, 16) 0 spectral_normalization_1325[0][0]
batch_normalization_1014 (None, 16, 16) 64 tf.__operators__.add_298[0][0]
re lu 318 (None, 16, 16) 0 batch_normalization_1014[0][0]
up_sampling1d_198 (None, 32, 16) 0 re_lu_318[0][0]
spectral_normalization_1326 (None, 32, 8) 656 up_sampling1d_198[0][0]
batch_normalization_1015 (None, 32, 8) 32 spectral_normalization_1326[0][0]
up_sampling1d_199 (None, 32, 16) 0 tf.__operators__.add_298[0][0]
re lu 319 (None, 32, 8) 0 batch_normalization_1015[0][0]
spectral_normalization_1328 (None, 32, 8) 144 up_sampling1d_199[0][0]
spectral_normalization_1327 (None, 32, 8) 336 re_lu_319[0][0]
tf.__operators__.add_299 (None, 32, 8) 0 spectral_normalization_1328[0][0]
batch_normalization_1016 (None, 32, 8) 32 tf.__operators__.add_299[0][0]
re_lu_320 (None, 32, 8) 0 batch_normalization_1016[0][0]

134

Table D.2: BigGAN discriminator

Layer Output Shape Param # Connected to
input_102 [(None, 32, 1)] 0

spectral_normalization_1330 (None, 32, 8) 56 input_102[0][0]
leaky_re_lu_760 (None, 32, 8) 0 spectral_normalization_1330[0][0]
spectral_normalization_1331 (None, 16, 8) 336 leaky_re_lu_760[0][0]
spectral_normalization_1332 (None, 16, 8) 32 input_102[0][0]
tf.__operators__.add_300 (None, 16, 8) 0 spectral_normalization_1331[0][0]
batch_normalization_1017 (None, 16, 8) 32 tf.__operators__.add_300[0][0]
leaky_re_lu_761 (None, 16, 8) 0 batch_normalization_1017[0][0]
spectral_normalization_1333 (None, 16, 16) 672 leaky_re_lu_761[0][0]
batch_normalization_1018 (None, 16, 16) 64 spectral_normalization_1333[0][0]
leaky_re_lu_762 (None, 16, 16) 0 batch_normalization_1018[0][0]
spectral_normalization_1335 (None, 8, 16) 288 tf.__operators__.add_300[0][0]
spectral_normalization_1334 (None, 8, 16) 1312 leaky_re_lu_762[0][0]
tf.__operators__.add_301 (None, 8, 16) 0 spectral_normalization_1335[0][0]
spectral_normalization_1337 (None, 8, 2) 36 tf.__operators__.add_301[0][0]
spectral_normalization_1336 (None, 8, 2) 36 tf.__operators__.add_301[0][0]
max_pooling1ld_146 (None, 4, 2) 0 spectral_normalization_1337[0][0]
tf.linalg.matmul_146 (None, 8, 4) 0 spectral_normalization_1336[0][0]
spectral_normalization_1338 (None, 8, 8) 144 tf.__operators__.add_301[0][0]
tf.nn.softmax_41 (None, 8, 4) 0 tf.linalg.matmul_146[0][0]
max_poolingld_147 (None, 4, 8) 0 spectral_normalization_1338[0][0]
tf.linalg.matmul_147 (None, 8, 8) 0 tf.nn.softmax_41[0][0]
spectral_normalization_1339 (None, 8, 16) 160 tf.linalg.matmul_147[0][0]
residual_link_73 (None, 8, 16) 1 tf.__operators__.add_301[0][O]
batch_normalization_1019 (None, 8, 16) 64 residual_link_73[0][0]
leaky_re_lu_763 (None, 8, 16) 0 batch_normalization_1019[0][0]
spectral_normalization_1340 (None, 8, 32) 2624 leaky_re_lu_763[0][0]
batch_normalization_1020 (None, 8, 32) 128 spectral_normalization_1340[0][0]
leaky_re_lu_764 (None, 8, 32) 0 batch_normalization_1020[0][0]
spectral_normalization_1342 (None, 4, 32) 1088 residual_link_73[0][0]
spectral_normalization_1341 (None, 4, 32) 5184 leaky_re_lu_764[0][0]

135

(continued...)

APPENDIX D. BIGGAN LAYER SUMMARY

Layer Output Shape Param # Connected to
tf.__operators__.add_302 (None, 4, 32) 0 spectral_normalization_1342[0][0]
batch_normalization_1021 (None, 4, 32) 128 tf.__operators__.add_302[0][0]
leaky_re_lu_765 (None, 4, 32) 0 batch_normalization_1021[0][0]
spectral_normalization_1343 (None, 4, 64) 10368 leaky_re_lu_765[0][0]
batch_normalization_1022 (None, 4, 64) 256 spectral_normalization_1343[0][0]
leaky_re_lu_766 (None, 4, 64) 0 batch_normalization_1022[0][0]
spectral_normalization_1345 (None, 2, 64) 4224 tf.__operators__.add_302[0][0]
spectral_normalization_1344 (None, 2, 64) 20608 leaky_re_lu_766[0][0]
tf.__operators__.add_303 (None, 2, 64) 0 spectral_normalization_1345[0][0]
batch_normalization_1023 (None, 2, 64) 256 tf.__operators__.add_303[0][0]
leaky_re_lu_767 (None, 2, 64) 0 batch_normalization_1023[0][0]
spectral_normalization_1346 (None, 2, 128) 41216 leaky_re_lu_767[0][0]
batch_normalization_1024 (None, 2, 128) 512 spectral_normalization_1346[0][0]
leaky_re_lu_768 (None, 2, 128) 0 batch_normalization_1024[0][0]
spectral_normalization_1348 (None, 1, 128) 16640 tf.__operators__.add_303[0][0]
spectral_normalization_1347 (None, 1, 128) 82176 leaky_re_lu_768][0][0]
tf.__operators__.add_304 (None, 1, 128) 0 spectral_normalization_1348[0][0]
batch_normalization_1025 (None, 1, 128) 512 tf.__operators__.add_304[0][0]
leaky_re_lu_769 (None, 1, 128) 0 batch_normalization_1025[0][0]
spectral_normalization_1349 (None, 1, 128) 82176 leaky_re_lu_769[0][0]
batch_normalization_1026 (None, 1, 128) 512 spectral_normalization_1349[0][0]
leaky_re_lu_770 (None, 1, 128) 0 batch_normalization_1026[0][0]
spectral_normalization_1350 (None, 1, 128) 82176 leaky_re_lu_770[0][0]
tf.__operators__.add_305 (None, 1, 128) 0 tf.__operators__.add_304[0][0]
batch_normalization_1027 (None, 1, 128) 512 tf.__operators__.add_305[0][0]
leaky_re_lu_771 (None, 1, 128) 0 batch_normalization_1027[0][0]
tf.math.reduce_sum_24 (None, 128) 0 leaky_re_lu_771[0][0]
spectral_normalization_1351 (None, 1) 130 tf.math.reduce_sum_24[0][0]

136

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Aim and Objectives
	Contributions
	Document Structure

	Background and Literature Review
	Historical Issues Regarding Financial Prediction
	Fundamental Analysis
	Technical Analysis

	Efficient Market hypothesis
	Machine Learning in Finance
	Neural Networks
	GANs
	Early GAN History
	Supervised vs unsupervised learning
	Generator technologies
	Problems manifested by these early GANs
	Solutions adopted to overcome early problems

	Prediction Algorithms
	Prediction of asset prices or trends
	Technical Analysis Indicators
	Arima
	RNN
	The Benchmark paper prediction algorithm

	Evaluation
	Evaluation Methods Survey
	Visual Evaluations
	PCA and t-SNE
	Quantitative Evaluation

	Time Series Augmentation
	Synthesis and Augmentation Methods
	Non-GAN Augmentation Methods
	Synthesis and Augmentation of Financial Time Series

	GANs in this study
	Wasserstein distance (WD)
	Signature Transform
	SigCWGAN
	BigGAN

	Conclusion

	Methodology
	Experiments Overview
	Experiment 1a - GAN Evaluation
	Motivation
	Actions undertaken
	Data
	Experiment Design
	GANs
	Evaluation Criteria
	Discriminative and Predictive Metrics
	Selection of parameters
	Execution Details

	Experiment 1b - Non-GAN method evaluation
	Motivation
	Actions undertaken
	Non-GAN Augmentation methods
	Data
	Evaluation Criteria

	Experiment 2 - Improving daily return prediction using Synthetic data
	Motivation
	Actions undertaken
	Data
	Replication of Benchmark Paper
	Evaluation Criteria

	Hardware Considerations
	Software and Libraries

	Results and Evaluation
	Lack of Evaluation Methods
	Visual Evaluations
	Experiments
	Data Preparation
	Experiment 1a
	Experiment 1b
	Experiment 2 and the Benchmark Model

	Summary

	Conclusions
	Revisiting the Aims and Objectives
	Critique and Limitations
	Future Work
	Potential Applicability
	Final Remarks

	References
	Non-GAN Stylised Facts
	Preliminary non-GAN Plots
	GAN Evaluation Methods
	BigGAN Layer Summary

