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Abstract: The diameter of a graph gives the length of the longest path among all the shortest paths between any two
vertices of the graph, and the diameter vulnerability problem measures the change in the diameter upon the deletion of
edges. In this paper we determine the diameter vulnerability of the generalized Petersen graph GP [tk, k] , for integers
t ≥ 2 and k ≥ 1 , and show that (except for some small cases) the diameter remains unchanged upon the deletion of one
edge. This work contributes towards a solution of the well-known (∆, D,D′, s) -problem, which attempts to find large
graphs with maximum degree ∆ and diameter D such that the subgraphs obtained by deleting any set of up to s edges
have diameter at most D′ , preferably equal to D itself. In cases when the delay in communication across a network is
directly related to the length of the paths between stations, network designers generally prefer to opt for graphs having
the property of being resistant to drastic shocks upon the deletion of edges. This reliability property makes this class of
graphs ideal to be used for modeling interconnection networks.
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1. Introduction and definitions
Let G be an undirected simple graph, where V (G) and E(G) denote the set of vertices and the set of edges,
respectively. For two vertices x1, x2 ∈ V (G) , x1 and x2 are adjacent if there is an edge e = x1x2 . The degree
d(x) of a vertex x is the number of vertices adjacent to x . Let δ = δ(G) and ∆ = ∆(G) be the minimum
degree and the maximum degree, respectively. When δ = ∆ = r , for some r ∈ N , the graph is regular of
degree r . The edge–connectivity λ = λ(G) is the minimum cardinality of a set S of edges whose deletion from
G results either in a disconnected graph or in a trivial graph. The path on n vertices and (n − 1) edges is
denoted by Pn . The length (that is, the number of edges) of the shortest path between any two vertices x1

and x2 of G is called the distance between x1 and x2, denoted by d(x1, x2) . The diameter D(G) is given by
max{d(x1, x2) : x1, x2 ∈ V (G)} . The girth g = g(G) is the length of the shortest cycle in G . Throughout this
work we use ⌊x⌋ to denote the maximum integer less than or equal to x ∈ R .

The notion of fault diameter was introduced in [8]. This notion examines the difference between the
diameter of a graph and the diameter of the subgraph obtained upon the deletion of some vertices, and is of
particular relevance when the subgraph obtained remains connected. Given a graph G with diameter D and
edge-connectivity λ , the diameter vulnerability problem considers the difference between D and the diameter
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D′
s of the resultant graph G′

s obtained by deleting s (< λ) edges from G . The general problem of determining
the maximum possible diameter for a graph obtained from a general graph G by deleting s edges has been
proved to be NP-complete [10]. The problem of finding large graphs with maximum degree ∆ and diameter D

such that the subgraphs obtained by deleting any set of up to s edges (or vertices) have diameter at most D′

is known as the (∆, D,D′, s) -problem (see, for example, [1] and [2]).
The effect that the deletions of vertices and edges has on a graph carries a practical interest because these

deletions can leave a drastic effect on the efficiency of a network modeled by these graphs, even in cases when
the underlying graph remains connected. This is especially the case when the time delay or the interference in
the transmission of signals within a network is directly related to the length of the shortest path between any
two stations in the network. Due to the nature of many interconnection networks, the possibility of a failure
in the links between stations is greater than that of a failure in the stations themselves. Thus, one important
measure of the reliability of an interconnection network is how the distance between stations changes when links
malfunction.

This leads to the problem of determining the diameter D′
s of the resultant subgraph when s edges are

deleted from the original graph of diameter D . The main interest obviously lies in families of graphs whereby
the difference between D and D′

s is small. The odd graphs, the n -cubes, the folded n -cubes and the enhanced
hypercubes are four families of graphs that have been studied in this context (see, for example, [7–9, 12]).
Shi and Lu [11] gave bounds of fault-tolerant diameter of three particular families of interconnection networks
introduced by Chen and Tan [4]. In the present work we shift our attention to a subfamily of the generalized
Petersen graphs and show its suitability for modeling reliable interconnection networks. The class of generalized
Petersen graphs was introduced by Coxeter [6] in 1950 and its name was coined in 1969 by Watkins [13]. This
class of graphs is defined as follows.

Definition 1 The generalized Petersen graph GP [n, k] , for n ≥ 3 and 1 ≤ k < n , is the graph on the 2n

vertices V (GP [n, k]) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and whose edge-set E(GP [n, k]) is composed of the
3n edges {uiui+1, vivi+k, uivi} , for i ∈ {0, 1, . . . , n− 1} , addition modulo n .

In the rest of this work, it is implicitly assumed that all the subscripts of the vertices of GP [n, k] are
taken modulo n .

For i ∈ {0, 1, . . . , n − 1} , the vertices ui are called the outer vertices and the vertices vi are called the
inner vertices. The generalized Petersen graph GP [tk, k] , for t ≥ 2 and k ≥ 1 , has order 2tk and is made
up of an outer cycle on the outer vertices, k inner cycles each of length t on the inner vertices, and spokes
connecting an outer vertex ui with an inner vertex vi (for i ∈ {0, . . . , tk − 1}). The edges on the outer cycles
are referred to as outer edges and those on the inner cycles as inner edges. When t = 2 , we consider the k inner
cycles of length 2 as simple edges, and thus, in this case, the inner vertices generate a union of k vertex-disjoint
inner edges. We also note that for k = 1 we restrict the values of t such that t ≥ 3 because GP [2, 1] is not a
simple graph. In the sequel we adopt the convention of labeling the outer vertices u0, u1, . . . , un−1 consecutively
around a plane embedding of the outer cycle.

The rest of this paper is structured as follows. In Section 2, we establish the exact value of the diameter
of GP [tk, k] for all values of t ≥ 2 and k ≥ 1 . For graphs, in general, it is known that D′

1 is at most 2D ,
and there are graphs (for example, odd cycles) for which this bound is sharp [5]. It is a well-known fact that
the generalized Petersen graphs GP [n, k] are 3-connected and 3-edge-connected, except when n = 2k . Thus,
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at most two edges can be deleted from GP [n, k] without disconnecting the graph, implying that the possible
values that s can take in the corresponding (∆, D,D′, s) -problem are s = 1 and s = 2 . In Section 3 we show
that, except for some small cases, the diameter of the generalized Petersen graphs GP [tk, k] remains unchanged
on the deletion of one edge (that is, D′

1 = D ). This result is synthesized in Theorem 10. It contributes further
towards the reliability of interconnection networks modeled by these generalized Petersen graphs because it
shows that they are very fault tolerant since the diameter remains unchanged on the deletion of one edge. We
end Section 4 by presenting a conjectured value for D′

2 for this class of generalized Petersen graphs.

2. The diameter of GP [tk, k]

The diameter of GP [t, 1] for t ≥ 3 is trivially ⌊ t
2⌋ + 1 . In Lemma 2 we establish an upper bound for the

diameter by considering the distance between any two vertices in GP [tk, k] for t ≥ 2 and k ≥ 2 . We then show
that we can always find a pair of vertices having this distance. For practicality reasons, in the proofs we fix a
labeling of the vertices of GP [tk, k] and take the vertex u0 as our point of reference.

We start by remarking that for any two integers k and t we have

−
(⌊

k + 1

2

⌋
+

⌊
t

2

⌋)
≤

⌊
−k − t+ 1

2

⌋
. (1)

This result follows by considering the parities of t and k and it eases some of our calculations in the sequel.

Lemma 2 Let G denote the graph GP [tk, k] for t ≥ 2 and k ≥ 2 . The diameter D = D(G) is such that

D ≤
⌊
t+ k + 3

2

⌋
.

Proof We consider first the paths from u0 to ui for any i < tk . Let m ≡ i (mod k) and i = sk +m , where
s ∈ Z+ ∪ {0} . We consider three cases, depending on the value of m .

Case 1 m <
⌊
k+1
2

⌋
For s ≤

⌊
t
2

⌋
, we consider the path

u0 → u1 → u2 → . . . → um → vm → vm+k → . . . → vm+sk → um+sk.

The number of the edges in this path is equal to m+ 2 + s , and thus

d(u0, ui) ≤
⌊
k − 1

2

⌋
+ 2 +

⌊
t

2

⌋
≤

⌊
t+ k + 3

2

⌋
.

For s >
⌊
t
2

⌋
, we consider the path

u0 → u1 → u2 → . . . → um → vm → vm+(t−1)k → . . . → vm+sk → um+sk.

The number of the edges in this path is equal to m+ 2 + t− s , and since −s ≤ −
⌊
t+2
2

⌋
≤

⌊−t
2

⌋
,

d(u0, ui) ≤
⌊
k − 1

2

⌋
+ 2 + t+

⌊
−t

2

⌋
≤

⌊
t+ k + 3

2

⌋
.
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Case 2 m =
⌊
k+1
2

⌋
For s <

⌊
t
2

⌋
, we consider the path

u0 → u1 → u2 → . . . → um → vm → vm+k → . . . → vm+sk → um+sk,

which has m+ 2 + s edges. Thus

d(u0, ui) ≤
⌊
k + 1

2

⌋
+ 2 +

⌊
t− 2

2

⌋
≤

⌊
t+ k + 3

2

⌋
.

For s ≥
⌊
t
2

⌋
, we let m′ = k −m and consider the path

u0 → u−1 → u−2 → . . . → u−m′ → v−m′ → v−m′+(t−1)k → . . . → v−m′+(s+1)k → u−m′+(s+1)k.

This path has (k −m) + 2 + t− s− 1 edges. Hence,

d(u0, ui) ≤ k + t+ 1−
⌊
k + 1

2

⌋
−
⌊
t

2

⌋
,

and by (1) we get d(u0, ui) ≤
⌊
k+t+3

2

⌋
.

Case 3 m >
⌊
k+1
2

⌋
For s <

⌊
t
2

⌋
, we let m′ = k −m and consider the path

u0 → u−1 → u−2 → . . . → u−m′ → v−m′ → v−m′+k → . . . → v−m′+(s+1)k → u−m′+(s+1)k.

The number of edges in this path is equal to m′ + 2 + s+ 1 , and thus

d(u0, ui) ≤ m′ + 3 + s ≤
⌊
k − 1

2

⌋
+ 2 +

⌊
t

2

⌋
≤

⌊
k + t+ 3

2

⌋
.

For s ≥
⌊
t
2

⌋
, we again let m′ = k −m and consider the path

u0 → u−1 → u−2 → . . . → u−m′ → v−m′ →v−m′+(t−1)k → . . . → v−m′+(s+1)k → u−m′+(s+1)k.

This path has m′ + 2 + t− s− 1 = k + t+ 1−m− s edges, implying that

d(u0, ui) ≤ k + t−
⌊
k + 1

2

⌋
−
⌊
t

2

⌋
,

and by (1) we get d(u0, ui) ≤
⌊
t+k+3

2

⌋
.

Thus, for i ∈ {1, 2, ..., tk − 1} , there exists a path of length at most
⌊
t+k+3

2

⌋
from u0 to ui . We next

show that, for i ∈ {1, 2, . . . , tk − 1} , there are paths from u0 to vi and from v0 to vi having length at most⌊
t+k+3

2

⌋
. For this end, we use the path from u0 to ui described above. In the case of a path from u0 to vi ,

we consider the corresponding path from u0 to ui and delete the spoke viui . Hence the path constructed in
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this way is one edge shorter than the path from u0 to ui described above. Similarly, the path from v0 to vi

also has the spoke viui missing when compared to the corresponding path from u0 to ui described above, but
has at most one additional spoke v0u0 , and hence its length is not increased.

Therefore, D ≤
⌊
t+k+3

2

⌋
. 2

We remark that in the next lemma we consider the case t ≥ 3 ; the case when t = 2 is discussed separately
in Remark 4(1).

Lemma 3 Let G denote the graph GP [tk, k] for t ≥ 3 and k ≥ 2 . There are two vertices u0 and uN of G
such that

d(u0, uN ) =

⌊
t+ k + 3

2

⌋
, where N =

{
( t2 )k −

⌊
k−1
2

⌋
if t is even

( t−1
2 )k +

⌊
k
2

⌋
if t is odd,

except when t = 3 and k = 2 .

Proof We let

N =

{
( t2 )k −

⌊
k−1
2

⌋
if t is even

( t−1
2 )k +

⌊
k
2

⌋
if t is odd,

and start by considering the two paths from u0 to uN consisting only of outer edges, namely

P (0) := u0 → u1 → ... → uN and P (1) := u0 → utk−1 → ... → uN .

Since |E(P (0))| = N and |E(P (1))| = tk − N , then |E(P (1))| − |E(P (0))| = tk − 2N ≥ 0 . Thus, |E(P (0))| ≤
|E(P (1))| , which implies that the shortest path from u0 to uN consisting only of outer edges is P (0) . We find
a shorter path from u0 to uN by utilizing an inner edge to bypass sets of k consecutive outer edges of P (0) , in
which case two spokes are used. In the sequel:

(i) if k divides N , then P (0) is decomposed into N
k sets of consecutive (outer) edges. This gives a path P (2)

on the vertices
u0 → v0 → vk → ... → vN → uN .

(ii) if k does not divide N , then to go from u0 to uN we can

(a) either bypass
⌊
N
k

⌋
outer edges of P (0) by using inner edges and then go forward (that is, follow the

outer cycle in increasing order of the subscripts of the outer vertices) along the remaining (N mod k)

outer edges of P (0) ; this gives a path P (3) on the vertices

u0 → v0 → vk → v2k → . . . → v⌊N
k ⌋k → u⌊N

k ⌋k → u⌊N
k ⌋k+1 → . . . → uN ;

(b) or bypass
⌊
N
k

⌋
+1 outer edges by using inner edges and then go backward (that is, follow the outer

cycle in decreasing order of the subscripts of the outer vertices) along (k−N mod k) outer edges in
order to get to uN ; this gives a path P (4) on the vertices

u0 → v0 → vk → v2k → . . . → v(⌊N
k ⌋+1)k →u(⌊N

k ⌋+1)k → u(⌊N
k ⌋+1)k−1 → . . . → uN .
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We consider two cases, according to the parity of t .

Case 1. Let t be an even integer, t ≥ 4 .
If k = 2 , then k divides N , in which case N = t and we consider the path P (2) from u0 to uN . Now

|E(P (2))| = 2 + t
2 and

|E(P (0))| − |E(P (2))| = t−
(
2 +

t

2

)
≥ 0,

and thus |E(P (2))| ≤ |E(P (0))| . Hence, P (2) is the shortest path from u0 to uN and |E(P (2))| = 2 + t
2 =⌊

t+k+3
2

⌋
.

If k ≥ 3 , then k does not divide N , and

(a) considering the path P (3) from u0 to uN , we get

|E(P (3))| =
⌊
N

k

⌋
+N mod k + 2 =

(
t

2
− 1

)
+

((
t

2

)
k −

⌊
k − 1

2

⌋)
mod k + 2

=
t

2
+

(
k −

⌊
k − 1

2

⌋)
+ 1 since

⌊
k − 1

2

⌋
> 0 for k ≥ 3;

(b) considering the path P (4) from u0 to uN , we get

|E(P (4))| =
⌊
N

k

⌋
+ 1 + (k −N mod k) + 2

=

(
t

2
− 1

)
+

(
k −

(
k −

⌊
k − 1

2

⌋))
+ 3 =

t

2
+

⌊
k − 1

2

⌋
+ 2.

Now |E(P (3))| ≤ |E(P (0))| since

|E(P (0))| − |E(P (3))| =
(
t

2

)
k −

⌊
k − 1

2

⌋
−

(
t

2
+ k −

⌊
k − 1

2

⌋
+ 1

)
=

(
t

2
− 1

)
(k − 1)− 2 ≥ 0,

and |E(P (4))| ≤ |E(P (3))| since

|E(P (3))| − |E(P (4))| = k − 2

⌊
k − 1

2

⌋
− 1 ≥ 0.

Hence,
|E(P (4))| ≤ |E(P (3))| ≤ |E(P (0))|.

Thus, for t even, t ≥ 4 , P (4) is the shortest path from u0 to uN and we have

d(u0, uN ) = |E(P (4))| =
⌊
t+ k + 3

2

⌋
.

Case 2. Let t be an odd integer and t ≥ 3 .
For k to divide N , then

⌊
k
2

⌋
= 0 , which is not possible since k ≥ 2 . Thus k does not divide N and
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(a) considering the path P (3) from u0 to uN , we get

|E(P (3))| =
⌊
N

k

⌋
+N mod k + 2 =

(
t− 1

2

)
+

((
t− 1

2

)
k +

⌊
k

2

⌋)
mod k + 2

=
t− 1

2
+

⌊
k

2

⌋
+ 2 =

t+ 3

2
+

⌊
k

2

⌋
;

(b) considering the path P (4) from u0 to uN , we get

|E(P (4))| =
⌊
N

k

⌋
+ 1 + (k −N mod k) + 2 =

t− 1

2
+

(
k −

⌊
k

2

⌋)
+ 3

=
t+ 5

2
+ k −

⌊
k

2

⌋
.

Now |E(P (4))| > |E(P (3))| since

|E(P (4))| − |E(P (3))| = k + 1− 2

⌊
k

2

⌋
> 0.

Moreover, since

|E(P (0))| − |E(P (3))| =
(
t− 1

2

)
k +

⌊
k

2

⌋
−
(
t+ 3

2
+

⌊
k

2

⌋)
= (k − 1)

(
t− 1

2

)
− 2,

then |E(P (0))| ≥ |E(P (3))| if (k = 2 and t ≥ 5) or k ≥ 3 .
Thus, for t odd, t ≥ 3 , P (3) is the shortest path from u0 to uN provided that k ≥ 3 or t ≥ 5 when k = 2 ,
and we have

d(u0, uN ) = |E(P (3))| = t+ 3

2
+

⌊
k

2

⌋
=

⌊
t+ k + 3

2

⌋
.

2

Remark 4 It can be readily checked that:

(1) in the case when t = 2 and k ≥ 2 , there are two vertices v0 and vN where N =
⌊
k+1
2

⌋
such that a

shortest path between them is the path
v0 → u0 → u1 → . . . → uN → vN

having N + 2 =
⌊
k+5
2

⌋
=

⌊
t+k+3

2

⌋
edges (refer to Figure 1);

(2) in the case when k = 2 and t = 3 , there are two vertices vi and vi+3 , for i ∈ {0, . . . , 5} , (for example,
v0 and v3 ) such that d(vi, vi+3) = 4 =

⌊
t+k+3

2

⌋
(refer to Figure 2).

Thus, the following theorem follows from Lemmas 2 and 3 and from the remark above.

Theorem 5 The diameter D of GP [tk, k] for t ≥ 2 and k ≥ 2 is given by

D =

⌊
t+ k + 3

2

⌋
.

We note that the result of Theorem 5 agrees with that of Zhang et al. [16], which states that
D(GP [n, k]) = O

(
n
2k

)
for k ≥ 3 .
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vk+N+1

v2 k - 2

v2 k - 1
v0v1

v2

vN- 1

vN

vN+1

vk - 2

vk - 1 vk
vk+1

vk+2

vk+N- 1

vk+N

uk+N+1

u2 k - 2

u2 k - 1

u0
u1

u2

uN- 1

uN

uN+1

uk - 2

uk - 1
uk

uk+1

uk+2

uk+N- 1

uk+N

Figure 1. The graph GP [2k, k] for k ≥ 2 .

v5
v0

v1

v2
v3

v4

u5u0

u1

u2 u3

u4

Figure 2: The graph GP[6,2].

(2) in the case when k = 2 and t = 3, there are two vertices vi and vi+3, for
i ∈ {0, . . . ,5}, (for example, v0 and v3) such that d(vi,vi+3) = 4 =

⌊ t+k+3
2

⌋
(refer to Figure 2).

Thus, the following theorem follows from Lemmas 2 and 3 and from the remark
above.

Theorem 5. The diameter D of GP[tk,k] for t ≥ 2 and k ≥ 2 is given by

D =

⌊
t + k+3

2

⌋
.

We note that the result of Theorem 5 agrees with that of Zhang et al. [16]
which states that D(GP[n,k]) = O

( n
2k

)
for k ≥ 3.

3. Deleting one edge

For k = 1, it is easy to observe that the deletion of any edge e from G =GP[t,1]
leaves the diameter of the graph G′1 = G − e equal to that of G except when t = 3
and e is a spoke, in which case D(GP[3,1]− e) = 3 instead of 2. Thus, in the
sequel we will focus on values of k ≥ 2.

We consider the deletion of the three different types of edges (i.e. outer edge,
spoke and inner edge) of the generalized Petersen graph GP[tk,k] separately. We
choose an arbitrary edge e and then fix a labelling of the graph such that:

1. if the chosen edge e is an outer edge, then e = u0u1;

2. if the chosen edge e is a spoke edge, then e = u0v0;

3. if the chosen edge e is an inner edge, then e = v0vk.

10

Figure 2. The graph GP [6, 2] .

3. Deleting one edge

For k = 1 , it is easy to observe that the deletion of any edge e from G = GP [t, 1] leaves the diameter of the
graph G′

1 = G − e equal to that of G except when t = 3 and e is a spoke, in which case D(GP [3, 1]− e) = 3

instead of 2. Thus, in the sequel we will focus on values of k ≥ 2 .
We consider the deletion of the three different types of edges (i.e. outer edge, spoke, and inner edge) of

the generalized Petersen graph GP [tk, k] separately. We choose an arbitrary edge e and then fix a labeling of
the graph such that:

1. if the chosen edge e is an outer edge, then e = u0u1 ;

2. if the chosen edge e is a spoke edge, then e = u0v0 ;

3. if the chosen edge e is an inner edge, then e = v0vk .
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Further to the reasoning employed in Section 2, in each case we take the vertices u0 and v0 as our point
of reference, and find the distances of all the remaining vertices from these two. To do this, we examine the
lengths of paths from each of u0 and v0 to the other vertices ui and vi , where i ∈ {1, 2, . . . , tk − 1} . For
i = sk +m , where s ∈ Z+ ∪ {0} and m = i mod k , we consider the paths:

u0 → v0 → vk → . . . → vsk → usk → usk+1 → . . . → um+sk ,

u0 → u1 → v1 → v1+k → . . . → v1+sk → u1+sk → . . . → um+sk ,

...

u0 → u1 → . . . → um−1 → vm−1 → vm−1+k → . . . → vm−1+sk → um−1+sk → um+sk ,

u0 → u1 → . . . → um → vm → vm+k → . . . → vm+sk → um+sk .

It is clear that all these paths have the same length, namely m+s+2 . However, we remark that the first
path is the only one that includes the vertex v0 . Since in our work we are interested in finding the length of the
shortest paths from u0 and from v0 to the other vertices, the first path plays a different role to that played by
all the other paths. Thus, we consider the first path as being “essentially different” from all the others, which,
for the purpose of our work, are not regarded as being essentially different from each other. Henceforth, when
we say that we consider the possible candidates for a shortest path between two vertices, we implicitly imply
that we consider the essentially different paths between the two vertices.

3.1. Deleting one outer edge

We let e = u0u1 be an outer edge of G = GP [tk, k] , and consider the graph G′
1 = G − e . Due to the argument

used in determining the diameter D of G , we note that in G′
1 only the distances from each of u0 and v0 to

the vertices ui and vi , where i ∈ {1, . . . , k − 1} can change, while all the other distances remain unchanged.

Lemma 6 Let G denote the graph GP [tk, k] for t ≥ 2 and k ≥ 2 , and let e be an outer edge of G . The
diameter D′

1 of the graph G′
1 = G − e is given by

D′
1 =


k + 2 if either k = 2 and t = 2, or k = 3 and t ∈ {2, 3},
D if either k = 2 and t ≥ 3, or k = 3 and t ≥ 4,

⌊k+1
2 ⌋+ 4 if k ≥ 4 and either k is even and t ≤ 4, or k is odd and t ≤ 5,
D if k ≥ 4 and either k is even and t ≥ 5, or k is odd and t ≥ 6,

where D is the diameter of G .

Proof We consider G′
1 = G − e , where e = u0u1 is an outer edge of G , and let its diameter be denoted by

D′
1 . Starting from d(u0, ui) , where i ∈ {1, . . . , k − 1} , there are three possible candidates for a shortest path

from u0 to ui , namely:

P (1) := u0 → u−1 → . . . → ui−k → vi−k → vi → ui ;

P (2) := u0 → v0 → vk → uk → uk−1 → . . . → ui ;

P (3) := u0 → v0 → vk → uk → uk+1 → . . . → uk+i → vk+i → vi → ui .
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Thus, |E(P (1))| = |E(P (2))| = k − i + 3 (and hence P (1) and P (2) can be used interchangeably) and
|E(P (3))| = i+ 6 . We note that |E(P (1))| ≤ |E(P (3))| if and only if i ≥

⌊
k−2
2

⌋
=

⌊
k
2

⌋
− 1 . Thus,

(i) if i ≤ ⌊k
2 ⌋ − 2 , then d(u0, ui) = |E(P (3))| = i+ 6 ≤ ⌊k

2 ⌋+ 4 ,

(ii) if i ≥ ⌊k
2 ⌋ − 1 , then d(u0, ui) = |E(P (1))| = |E(P (2))| = k − i+ 3 ≤

⌊
k+1
2

⌋
+ 4 .

However, since
⌊
k+1
2

⌋
+4 ≥ ⌊k

2 ⌋+4 , the maximum distance from u0 to ui is
⌊
k+1
2

⌋
+4 when i = ⌊k

2 ⌋−1

and k ≥ 4 (since i ≥ 1). For k ∈ {2, 3} , then |E(P (1))| < |E(P (3))| and d(u0, ui) = k − i + 3 . Thus the
maximum distance from u0 to ui is k + 2 when i = 1 .

We remark that from the way that P (1) , P (2) and P (3) were defined, and recalling that P (1) and P (2)

can be used interchangeably, we get that

• d(u0, vi) ≤ d(u0, ui)− 1 by using P (1) and P (3) ,

• d(v0, vi) ≤ d(u0, vi) + 1 ≤ d(u0, ui) by using P (1) and P (3) , and

• d(v0, ui) ≤ d(u0, ui)− 1 by using P (2) and P (3) ,

and thus it is sufficient to check when d(u0, ui) exceeds D .
Thus, if k ∈ {2, 3} , then

D′
1 = max{k + 2, D} =

{
max{4, ⌊ t+5

2 ⌋} if k = 2,
max{5, ⌊ t+6

2 ⌋} if k = 3,

=


4 if k = 2 and t = 2,
D if k = 2 and t ≥ 3,
5 if k = 3 and t ∈ {2, 3},
D if k = 3 and t ≥ 4,

=

{
k + 2 if either k = 2 and t = 2, or k = 3 and t ∈ {2, 3},
D if either k = 2 and t ≥ 3, or k = 3 and t ≥ 4,

and if k ≥ 4 , then

D′
1 = max{⌊k+1

2 ⌋+ 4, D}

=

{
⌊k+1

2 ⌋+ 4 if either k is even and t ≤ 4, or k is odd and t ≤ 5,
D if either k is even and t ≥ 5, or k is odd and t ≥ 6.

2

3.2. Deleting one spoke

We let e = u0v0 be a spoke of G = GP [tk, k] , and consider the graph G′
1 = G − e . Further to the argument

used in determining the diameter D of G , we note that in G′
1 the distances from u0 to the vertices ui and vi ,

where i ̸∈ {0, k, . . . , k(t − 1)} remain unchanged, and the distances from v0 to the vertices ui and vi , where
i ≥ k and i ̸∈ {k, . . . , k(t− 1)} also remain unchanged. Thus, in the sequel we deal with the remaining cases,
and due to the symmetry property of the generalized Petersen graphs we need only consider

• d(u0, ui) and d(u0, vi) for i ∈ {0, k, . . . , ⌊ t
2⌋k} ;
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• d(v0, ui) and d(v0, vi) for i ∈ {1, . . . , k − 1} ; and
• d(v0, ui) and d(v0, vi) for i ∈ {k, . . . , ⌊ t

2⌋k} .

As a consequence of the difference in the structure of G′
1 when k = 2 and when k ≥ 3 , we consider the

two cases separately in Lemma 7 and Lemma 8, respectively.

Lemma 7 Let G denote the graph GP [2t, 2] for t ≥ 2 , and let e be a spoke of G . The diameter D′
1 of the

graph G′
1 = G − e is given by

D′
1 =

 4 if t = 2,
3 + ⌊ t

2⌋ if t ≥ 6 and t is even,
D if either t ∈ {3, 4, 5}, or t ≥ 7 and t is odd,

where D is the diameter of G .

Proof We consider G′
1 = G − e , where e = u0v0 is a spoke of G , and let its diameter be denoted by D′

1 .
Starting from d(u0, v0) , the shortest path is given by

P (1) := u0 → u1 → u2 → v2 → v0,

and thus d(u0, v0) = 4 . Similarly, d(v0, u1) < d(v0, v1) = 4 .
For i ∈ {k, . . . , ⌊ t

2⌋k} , we consider all the possible candidates for the shortest paths from u0 and from v0

to each of the vertices ui and vi . The distance from u0 to ui is greatest when i is largest, that is, i = ⌊ t
2⌋k .

Thus, we let x = 2⌊ t
2⌋ and consider d(u0, ux) , d(u0, vx) , d(v0, ux) , and d(v0, vx) .

For d(u0, ux) , there are three possible candidates for a shortest path from u0 to ux , namely:

P (2) := u0 → u1 → . . . → ux ;

P (3) := u0 → u1 → v1 → v1+k → . . . → vx−1 → ux−1 → ux ;

P (4) := u0 → u1 → u2 → v2 → v2+k → . . . → vx → ux .

Thus, |E(P (2))| = 2⌊ t
2⌋ and |E(P (3))| = |E(P (4))| = 3 + ⌊ t

2⌋ . We note that |E(P (2))| < |E(P (3))| if and only
if t ≤ 5 .

For d(u0, vx) , we again consider the three possible candidates for a shortest path from u0 to vx , as
follows:

P (5) := P (2) + uxvx ; P (6) := P (3) + uxvx ; P (7) := P (4) − vxux .

Thus, |E(P (5))| = 2⌊ t
2⌋ + 1 , |E(P (6))| = 4 + ⌊ t

2⌋ and |E(P (7))| = 2 + ⌊ t
2⌋ , noting that P (7) is the shortest

path for all values of t .
For d(v0, ux) , the shortest path is clearly

P (8) := v0 → v2 → . . . → vx → ux

having ⌊ t
2⌋+ 1 edges. Thus, d(v0, vx) = d(v0, ux)− 1 .
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Thus, if t ≤ 5 , then

D′
1 = max{|E(P (1))|, |E(P (2))|, |E(P (7))|, |E(P (8))|, D}

= max{4, 2⌊ t
2⌋, 2 + ⌊ t

2⌋, 1 + ⌊ t
2⌋, ⌊ t+5

2 ⌋}

=

{
4 if t = 2,
D if t ∈ {3, 4, 5},

and if t ≥ 6 , then

D′
1 = max{|E(P (1))|, |E(P (3))|, |E(P (7))|, |E(P (8))|, D}

= max{4, 3 + ⌊ t
2⌋, 2 + ⌊ t

2⌋, 1 + ⌊ t
2⌋, ⌊ t+5

2 ⌋}

=

{
D if t ≥ 7 and t is odd,

3 + ⌊ t
2⌋ if t ≥ 6 and t is even.

2

Lemma 8 Let G denote the graph GP [tk, k] for t ≥ 2 and k ≥ 3 , and let e be a spoke of G . The diameter
D′

1 of the graph G′
1 = G − e is given by

D′
1 =



5 if k = 3 and t ∈ {2, 3},
6 if k = 4 and t ∈ {2, 3, 4},

4 + ⌊ t
2⌋ if either k = 3 and t ≥ 4, or k = 4, t ≥ 6 and t is even,

D if k = 4, t ≥ 5 and t is odd,
7 if k ∈ {5, 6} and t ∈ {2, 3},

5 + ⌊ t
2⌋ if either k = 5 and t ≥ 4, or k = 6, t ≥ 4 and t is even,

D if k = 6, t ≥ 5 and t is odd,
k+7
2 if k ≥ 7, k is odd and t ∈ {2, 3},

k+6
2 if k ≥ 8, k is even and t = 2,
D if either k ≥ 8, k is even and t = 3, or k ≥ 7 and t ≥ 4,

where D is the diameter of G .

Proof We consider G′
1 = G − e where e = u0v0 is a spoke of G , and let its diameter be denoted by D′

1 .
Starting from d(u0, v0) , there are two possible candidates for a shortest path from u0 to v0 , namely:

P (1) := u0 → u1 → . . . → uk → vk → v0 ;

P (2) := u0 → u1 → v1 → v1+k → u1+k → uk → vk → v0 .

Thus, |E(P (1))| = k + 2 and |E(P (2))| = 7 , implying that |E(P (1))| < |E(P (2))| if and only if k ≤ 4 .
For i ∈ {k, . . . , ⌊ t

2⌋k} , we consider all the possible candidates for the shortest paths from u0 to each of
the vertices ui and vi . The distance from u0 to either one of ui or vi is greatest when i is largest, that is,
i = ⌊ t

2⌋k . Thus, we let x = ⌊ t
2⌋k and consider d(u0, ux) and d(u0, vx) .

For d(u0, ux) , there are three possible candidates for a shortest path from u0 to ux , namely:

P (3) := u0 → u1 → . . . → ux ;

P (4) := u0 → u1 → v1 → v1+k → . . . → vx+1 → ux+1 → ux ;

P (5) := u0 → u1 → . . . → uk → vk → v2k → . . . → vx → ux .
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Thus, |E(P (3))| = ⌊ t
2⌋k , |E(P (4))| = 4+ ⌊ t

2⌋ and |E(P (5))| = k+ ⌊ t
2⌋+1 . We note that |E(P (4))| ≤ |E(P (5))|

since k ≥ 3 , and that |E(P (3))| < |E(P (4))| if and only if t ∈ {2, 3} and k ∈ {3, 4} .
For d(u0, vx) , the three possible candidates for a shortest path from u0 to vx are

P (6) := P (3) + uxvx ; P (7) := P (4) + uxvx ; P (8) := P (5) − vxux .

Thus, |E(P (6))| = ⌊ t
2⌋k + 1 , |E(P (7))| = 5 + ⌊ t

2⌋ and |E(P (8))| = k + ⌊ t
2⌋ . Here we note that since t ≥ 2 and

k ≥ 3 , |E(P (8))| ≤ |E(P (6))| , and |E(P (7))| < |E(P (8))| if and only if k > 5 .
We consider next the distance d(v0, ui) for i ∈ {1, . . . , k − 1} . There are two possible candidates for a

shortest path from v0 to ui , namely:

P (9) := v0 → vk → uk → uk−1 → . . . → ui ;

P (10) := v0 → vk → uk → uk+1 → . . . → uk+i → vk+i → vi → ui .

Thus, |E(P (9))| = 2+k−i and |E(P (10))| = 5+i , implying that |E(P (9))| < |E(P (10))| if and only if i ≥ ⌊k−1
2 ⌋ .

Hence, d(v0, ui) > D if and only if

(i) k is even, t = 2 , and i = k−2
2 , in which case d(v0, ui) = |E(P (9))| = k+6

2 ,

(ii) or k is even, t = 2 , and i = k−4
2 , in which case d(v0, ui) = |E(P (10))| = k+6

2 ,

(iii) or k is odd, t ∈ {2, 3} , and i = k−3
2 , in which case d(v0, ui) = |E(P (10))| = k+7

2 .

Taking into consideration the distance d(v0, vi) for i ∈ {1, . . . , k − 1} , there are two possible candidates
for a shortest path from v0 to vi , namely:

P (11) := P (9) + uivi ; P (12) := P (10) − viui .

In this case, 3 + k − i = |E(P (11))| < |E(P (12))| = 4 + i if and only if i ≥ ⌊k+1
2 ⌋ . Hence, d(v0, vi) > D if and

only if

(i) k is even, t = 2 , and i = k−2
2 , in which case d(v0, vi) = |E(P (12))| = k+6

2 ,

(ii) or k is even, t = 2 , and i = k
2 , in which case d(v0, vi) = |E(P (11))| = k+6

2 ,

(iii) or k is odd, t ∈ {2, 3} , and i = k−1
2 , in which case d(v0, vi) = |E(P (12))| = k+7

2 .

Finally, we consider the distance from v0 to each of the vertices ui and vi for i ∈ {k, . . . , ⌊ t
2⌋k} . Again,

this distance is greatest when i is largest, that is, i = ⌊ t
2⌋k . Thus, we let x = ⌊ t

2⌋k and consider d(v0, ux) and
d(v0, vx) .

For d(v0, ux) , the shortest path is clearly

P (13) := v0 → v2 → . . . → vx → ux

having ⌊ t
2⌋+1 edges, and thus |E(P (13))| < ⌊ t+k+3

2 ⌋ = D since k ≥ 3 . Moreover, d(v0, vx) = d(v0, ux)−1 < D .
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Thus, collating the above results, we get:

• if k = 3 and t = 2 or 3 , then D′
1 = max{k + 2, ⌊ t

2⌋k, k + ⌊ t
2⌋,

k+7
2 } = 5 ;

• if k = 3 and t ≥ 4 , then D′
1 = max{k + 2, 4 + ⌊ t

2⌋, k + ⌊ t
2⌋, D} = ⌊ t

2⌋+ 4 ;

• if k = 4 and t = 2 , then D′
1 = max{k + 2, ⌊ t

2⌋k, k + ⌊ t
2⌋,

k+6
2 } = 6 ;

• if k = 4 and t = 3 , then D′
1 = max{k + 2, ⌊ t

2⌋k, k + ⌊ t
2⌋, D} = 6 ;

• if k = 4 and t ≥ 4 , then

D′
1 = max{k + 2, 4 + ⌊ t

2⌋, k + ⌊ t
2⌋, D} =

 6 if t = 4,
4 + t

2 if t ≥ 6 and t is even,
D if t ≥ 5 and t is odd;

• if k ≥ 5 , k is odd, and t ∈ {2, 3} , then

D′
1 = max{7, 4 + ⌊ t

2⌋, 5 + ⌊ t
2⌋,

k+7
2 } =

{
7 if k = 5,

k+7
2 if k ≥ 7;

• if k ≥ 5 , k is even, and t = 2 , then

D′
1 = max{7, 4 + ⌊ t

2⌋, 5 + ⌊ t
2⌋,

k+6
2 } =

{
7 if k = 6,

k+6
2 if k ≥ 8;

• if k ≥ 5 , and either k is odd and t ≥ 4 or k is even and t ≥ 3 , then D′
1 = max{7, 4+ ⌊ t

2⌋, 5+ ⌊ t
2⌋, D} .

We note that 4+ ⌊ t
2⌋ < 5+ ⌊ t

2⌋ for all t , and that 7 > 5+ ⌊ t
2⌋ if and only if t = 3 and k is even. Hence,

– for t = 3 and k even, 7 > D if and only if k = 6 ,

– for t ≥ 4 , 5 + ⌊ t
2⌋ > D if and only if either t is even and k ≤ 6 or t is odd and k = 5 .

Thus

D′
1 =


5 + ⌊ t

2⌋ if either k = 5 and t ≥ 4, or k = 6, t ≥ 4, and t is even,
7 if k = 6 and t = 3,
D if k ≥ 8, k is even, and t = 3,
D if either k = 6, t ≥ 5, and t is odd, or k ≥ 7 and t ≥ 4.

2

3.3. Deleting one inner edge

We let e = v0vk be an inner edge of the generalized Petersen graph G = GP [tk, k] , and consider the graph
G′

1 = G − e . In this case, we only need to consider the distances from each of u0 and v0 to the inner vertices
on the inner cycle containing v0 and to the outer vertices adjacent to them. Due to the symmetry property, in
Lemma 9 we consider d(u0, umk) , d(u0, vmk) , d(v0, umk) , and d(v0, vmk) , where m ∈ {1, 2, . . . , ⌊ t

2⌋} . We treat
the cases m = 1 and 2 ≤ m ≤ ⌊ t

2⌋ separately.
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Lemma 9 Let G denote the graph GP [tk, k] for t ≥ 2 and k ≥ 2 , and let e be an inner edge of G . The
diameter D′

1 of the graph G′
1 = G − e is given by

D′
1 =

 k + 2 if k ≤ 4 and t = 2,
7 if 5 ≤ k ≤ 8 and t = 2,
D if either k ≤ 8 and t ≥ 3, or k ≥ 9,

where D is the diameter of G .

Proof We consider G′
1 = G−e , where e = v0vk is an inner edge of G , and let its diameter be denoted by D′

1 . In
the two cases below, we consider d(u0, umk) , d(u0, vmk) , d(v0, umk) , and d(v0, vmk) , where m ∈ {1, 2, . . . , ⌊ t

2⌋} ,
for the different values of m .
Case 1. m = 1

We treat the cases t = 2 and t ≥ 3 separately.
Case 1.1. t = 2

The two possible candidates for a shortest path from v0 to vk are

P (1) := v0 → u0 → u1 → . . . → uk → vk ;

P (2) := v0 → u0 → u1 → v1 → v1+k → u1+k → uk → vk .

Thus, |E(P (1))| = k + 2 and |E(P (2))| = 7 and hence |E(P (1))| < |E(P (2))| if and only if k ≤ 4 . Clearly,
d(u0, uk) < d(u0, vk) = d(v0, uk) < d(v0, vk) , and thus it is sufficient to check when d(v0, vk) exceeds D =

⌊ t+k+3
2 ⌋ . Hence, when t = 2 , we have

D′
1 =

{
max{k + 2, D} if k ≤ 4,

max{7, D} if k ≥ 5,
=

 k + 2 if k ≤ 4,
7 if 5 ≤ k ≤ 8,
D if k ≥ 9.

Case 1.2. t ≥ 3

There are three possible candidates for a shortest path from u0 to uk , namely:

P (3) := u0 → u1 → . . . → uk ;

P (4) := u0 → u1 → v1 → v1+k → u1+k → uk ;

P (5) := u0 → v0 → v−k → . . . → vk → uk .

Thus, |E(P (3))| = k , |E(P (4))| = 5 , and |E(P (5))| = t+ 1 . We note that |E(P (3))| < |E(P (4))| if and only if
k ≤ 4 . Thus, for k ≤ 4 , we consider P (3) and P (5) and get that

(i) if k ≤ t , then |E(P (3))| < |E(P (5))| and d(u0, uk) = |E(P (3))| = k < D ,

(ii) if k ≥ t+ 1 , then |E(P (5))| ≤ |E(P (3))| and d(u0, uk) = |E(P (5))| = t+ 1 < D .

For k ≥ 5 , we consider P (4) and P (5) and get that

(iii) if t ≤ 4 , then |E(P (5))| ≤ |E(P (4))| and d(u0, uk) = |E(P (5))| = t+ 1 < D ,

(iv) if t ≥ 5 , then |E(P (4))| < |E(P (5))| and d(u0, uk) = |E(P (4))| = 5 < D .
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We remark that:

• when P (5) is the shortest path from u0 to uk (corresponding to (ii) and (iii) above), then d(v0, vk) <

d(u0, vk) = d(v0, uk) < d(u0, uk) < D ;

• when P (3) or P (4) is the shortest path from u0 to uk (corresponding to (i) and (iv) above, respectively),
then d(u0, vk) = d(v0, uk) ≤ d(u0, uk) + 1 ≤ D .

Thus, we still need to consider d(v0, vk) when either P (3) or P (4) is the shortest path from u0 to uk .

• When k ≤ 4 and k ≤ t−1 , then d(u0, uk) = |E(P (3))| = k ≤ D−2 , and thus d(v0, vk) ≤ d(u0, uk)+2 = D .

• When k ≤ 4 and k = t , we consider P (5) and obtain d(v0, vk) ≤ |E(P (5))| − 2 < D .

• When k ≥ 5 and t = 5 , we consider P (5) and obtain d(v0, vk) ≤ |E(P (5))| − 2 < D .

• When k ≥ 5 and t ≥ 6 , then d(u0, uk) = |E(P (4))| = 5 ≤ D− 2 , and thus d(v0, vk) ≤ d(u0, uk) + 2 = D .

Hence, when t ≥ 3 , we have that d(u0, uk) , d(u0, vk) , d(v0, uk) , and d(v0, vk) are always at most equal
to D .
Case 2. 2 ≤ m ≤ ⌊ t

2⌋
There are three possible candidates for a shortest path from u0 to umk , namely:

P (6) := P (3) + (uk → vk → v2k → . . . → vmk → umk) ;

P (7) := P (4) + (uk → vk → v2k → . . . → vmk → umk) ;

P (8) := u0 → v0 → v−k → . . . → vmk → umk .

Thus, |E(P (6))| = k+m+1 , |E(P (7))| = m+6 and |E(P (8))| = 2+ t−m . We note that |E(P (6))| < |E(P (7))|
if and only if k ≤ 4 .
Case 2.1. k ≤ 4

We consider P (6) and P (8) and note that |E(P (6))| ≤ |E(P (8))| if and only if m ≤ t−k+1
2 , in which case

t ≥ 3 + k since m ≥ 2 . Thus,

• when t ≥ 3 + k , we note that |E(P (6))| is greatest when m is maximum, say m = m̂ , where m̂ = t−k+1
2

when the parity of t and k is different, while m̂ = t−k
2 when t and k have the same parity. Hence,

d(u0, umk) = |E(P (6))| ≤ d(u0, um̂k) = k + m̂+ 1

=

{
k + t−k+1

2 + 1 = D if t and k have a different parity,
k + t−k

2 + 1 = D if t and k have the same parity,

• when t ≤ 2 + k , we note that |E(P (8))| is greatest when m is minimum, i.e. m = 2 . Hence,

d(u0, umk) = |E(P (8))| ≤ t ≤ D.

Thus, in either of these two cases, d(u0, umk) ≤ D .
Case 2.2. k ≥ 5

We consider P (7) and P (8) , and note that |E(P (7))| ≤ |E(P (8))| if and only if m ≤ t−4
2 , in which case

t ≥ 8 since m ≥ 2 . Thus,
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• when t ≥ 8 , we note that |E(P (7))| is greatest when m is maximum, say m = m̂ , where m̂ = t−4
2 when

t is even, while m̂ = t−5
2 when t is odd. Hence

d(u0, umk) = |E(P (7))| ≤ d(u0, um̂k) = m̂+ 6 =

{
t−4
2 + 6 ≤ D if t is even,

t−5
2 + 6 ≤ D if t is odd,

• if t ≤ 7 , we note again that |E(P (8))| is greatest when m is minimum, i.e. m = 2 . Hence

d(u0, umk) = |E(P (8))| ≤ t ≤ D.

As before, in either of these two cases, d(u0, umk) ≤ D .

Finally, to conclude Case 2, we remark that from the way that P (6) , P (7) , and P (8) were defined we get
that

• d(u0, vmk) ≤ d(u0, umk)− 1 < D ;

• d(v0, vmk) ≤ d(u0, vmk) + 1 ≤ d(u0, umk) ≤ D ;

• when P (8) is the shortest path from u0 to uk , then d(v0, umk) ≤ d(u0, umk)− 1 < D ;

• when either P (6) or P (7) is the shortest path from u0 to uk and m ̸= m̂ , then d(u0, umk) ≤ D − 1 and
d(v0, umk) = d(u0, umk) + 1 ≤ D . On the other hand, when m = m̂ (and thus d(u0, umk) = D ), we note
that

– if k ≤ 4 and m̂ = t−k+1
2 (corresponding to Case 2.1 when t and k have a different parity), then

|E(P (8))| = 2 + t−
(
t−k+1

2

)
= t+k+3

2 , and thus d(v0, umk) = |E(P (8))| − 1 < D ;

– if k ≤ 4 and m̂ = t−k
2 (corresponding to Case 2.1 when t and k have the same parity), then

|E(P (8))| = 2 + t−
(
t−k
2

)
= t+k+4

2 , and thus d(v0, umk) = |E(P (8))| − 1 ≤ D ;

– if k ≥ 5 and m̂ = t−4
2 (corresponding to Case 2.2 when t is even), then |E(P (8))| = 2+ t−

(
t−4
2

)
=

t+8
2 , and thus d(v0, umk) = |E(P (8))| − 1 < D ;

– if k ≥ 5 and m̂ = t−5
2 (corresponding to Case 2.2 when t is odd), then |E(P (8))| = 2+ t−

(
t−5
2

)
=

t+9
2 , and thus d(v0, umk) = |E(P (8))| − 1 ≤ D .

Hence, in either of the above cases, d(v0, umk) ≤ D , completing our proof. 2

3.4. Threshold values
From the results discussed above, we note that for some values of k there are threshold values T1(k) of t such
that, upon deleting one edge e from G = GP [tk, k] , the diameter of G′

1 = G − e is equal to the diameter D of
G for all t ≥ T1(k) . This result is presented in the next theorem, the proof of which is a direct consequence of
Lemmas 6 to 9.

Theorem 10 Let G denote the graph GP [tk, k] for t ≥ 2 and k ≥ 1 , and let e be any edge of G . The threshold
values T1(k) of t for which the diameter D′

1 of the graph G′
1 = G − e is equal to the diameter D of G are

given by
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• T1(1) = 4 ,

• T1(k) = 6 if k ≥ 7 and k is odd,

• T1(k) = 5 if k ≥ 8 and k is even.

4. Conclusion
In this work, we have determined that graphs belonging to the family of generalized Petersen graphs are a
solution to the (∆, D,D, 1) -problem. In particular, we have shown that for sufficiently large values of t and k

(as given in Theorem 10) the diameter of GP [tk, k] remains unchanged upon deleting one edge.
Interconnection networks are frequently modeled by graphs that have a small girth (less than the diameter)

[14] and that are 3-regular and 3-connected [16]. Among the graphs having the same connectivity parameters,
the most reliable ones are those that are super-connected and super-edge-connected (that is, graphs in which
every smallest set of vertices, or, respectively, edges, that disconnects the graph isolates a vertex). In [3] it is
shown that the class of generalized Petersen graphs GP [tk, k] are super-connected and super-edge-connected
for all k ≥ 1 and n > k except when n ∈ {2k, 3k} . All the above-mentioned properties, coupled with the main
result of this work (Theorem 10) showing that the diameter generally remains unchanged on the deletion of an
edge, contribute towards making GP [tk, k] one of the families of graphs that are the most ideal candidates for
modeling interconnection networks.

Furthermore, it is known that, in general, D′
2 ≤ 3D− 1 and the bound is attainable [15]. We conjecture

that for GP [tk, k] the deletion of two edges changes the value of the diameter by at most one, that is D′
2 = D+1 ,

except for some small cases. This result would make this class of graphs even more reliable.
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