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Abstract
Teleparallel gravity (TG) has significantly increased in popularity in recent decades, bringing
attention to Einstein’s other theory of gravity. In this Review, we give a comprehensive
introduction to how teleparallel geometry is developed as a gauge theory of translations together
with all the other properties of gauge field theory. This relates the geometry to the broader
metric-affine approach to forming gravitational theories where we describe a systematic way of
constructing consistent teleparallel theories that respect certain physical conditions such as local
Lorentz invariance. We first use TG to formulate a teleparallel equivalent of general relativity
(GR) which is dynamically equivalent to GR but which may have different behaviors for other
scenarios, such as quantum gravity. After setting this foundation, we describe the plethora of
modified teleparallel theories of gravity that have been proposed in the literature. We attempt to
connect them together into general classes of covariant gravitational theories. Of particular
interest, we highlight the recent proposal of a teleparallel analogue of Horndeski gravity which
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offers the possibility of reviving all of the regular Horndeski contributions. In the second part of
the Review, we first survey works in teleparallel astrophysics literature where we focus on the
open questions in this regime of physics. We then discuss the cosmological consequences for
the various formulations of TG. We do this at background level by exploring works using
various approaches ranging from dynamical systems to Noether symmetries, and more.
Naturally, we then discuss perturbation theory, firstly by giving a concise approach in which this
can be applied in TG theories and then apply it to a number of important theories in the
literature. Finally, we examine works in observational and precision cosmology across the
plethora of proposal theories. This is done using some of the latest observations and is used to
tackle cosmological tensions which may be alleviated in teleparallel cosmology. We also
introduce a number of recent works in the application of machine learning to gravity, we do this
through deep learning and Gaussian processes, together with discussions about other
approaches in the literature.

Supplementary material for this article is available online
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Nomenclature

GR General Relativity
GW Gravitational Waves
CDM Cold Dark Matter
TG Teleparallel Gravity
TEGR Teleparallel Equivalent of General Relativity
DoF Degrees of Freedom
NGR New General Relativity
wrt with respect to
FLRW Friedmann–Lemâıtre–Robertson–Walker
EoS equation of state
LHS Left hand side
RHS Right hand side
STEGR Symmetric teleparallel equivalent of general

relativity
TEGB Teleparallel equivalent of the Gauss–Bonnet
PPN Parameterized post-Newtonian formalism
SN Supernova (we use abbreviations SNeIa and

SNIa to refer to supernova type 1a)
BAO Baryonic Acoustic Oscillations
CC Cosmic Chronometers
DE Dark energy
HDE Holographic Dark Energy
PlDE Pilgrim Dark Energy
QCD Quantum Chromodynamics

CMB Cosmic Microwave Background
SVT Scalar-Vector-Tensor
VLBI Very Long Baseline Interferometry
SH0ES Supernova H0 for the equation of State
HST Hubble Space Telescope
TRGB Tip of the red-giant branch
TDCOSMO Time-delay Cosmography
SLACS Sloan Lens ACS
LISA Laser Interferometer Space Antenna
ACT Atacama Cosmology Telescope
SPT South Pole Telescope
DR Data Release
Gaia EDR3 Gaia Early Data Release 3
WL Weak Lensing
DES Dark Energy Survey
SDSS Sloan Digital Sky Survey
dF degree field
BOSS Baryon Oscillation Spectroscopic Survey
JLA Joint Light-curve Analysis
KiDS Kilo-Degree Survey
BBN Big Bang Nucleosynthesis
GP Gaussian processes
CMASS Constant stellar MASS
MCMC Markov chain Monte Carlo
KVNO Keck+VLT+UVES+Oklo measurements
LiteBIRD Lite (Light) satellite for the studies of B-mode

polarization and Inflation from cosmic
background Radiation Detection

CORE Cosmic Origins Explorer
PIXIE Primordial Inflation Explorer
PRISM Polarized Radiation Imaging and Spectroscopy

Mission
PICO Probe of Inflation and Cosmic Origins
SKA Square Kilometre Array
DESI Dark Energy Spectroscopic Instrument
BINGO Baryon acoustic oscillation In Neutral Gas

Observations

1. Introduction

General relativity (GR) is an astonishing theory both in its sim-
plicity and its ability to retain a theoretically consistent frame-
work while satisfying observational tests at almost all scales
of physics. Together with quantum field theory, it forms one
of the two pillars of modern physics. Its precise predictions
and influence over physical processes in the Universe has set
a standard for which all other physical theories aspire to.

After framing gravity through the perspective of his strong
equivalence principle, Einstein then formulated his field
equations by adopting the Riemann tensor as the fundamental
building block of geometric deformation, as suggested by
Marcel Grossmann [1]. On the demand that the field equations
be conserved, Einstein worked out their exact form through
a process of reconstruction and elimination. Later on, it was
noticed that they could have also been derived from the Bian-
chi identities, from which one can derive an Einstein tensor
◦
Gµν that is covariantly conserved

◦
∇µ

◦
Gµν = 0 (for a covari-

ant derivative
◦
∇µ defined using the Levi-Civita connection

◦
Γρµν which is further explained in section 1.3) [2]. However,
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Einstein did not have this information at the time. Using his
approach, he was able to write down the field equation as [3]

◦
Gµν =

8πG
c4

Θµν ,

for an energy-momentum tensor Θµν , and where G is New-
ton’s constant of gravity and c the speed of light [4]. These
equations remain unchanged from their original form as
presented by Einstein to the Prussian Academy of Sciences in
November 1915 [5]. It is these equations which have been used
to explore the expansion and evolution of the Universe from
its infinitesimal beginnings to its currently accelerating expan-
sion phase, as well as the nature of black holes, the propagation
of gravitational waves (GW) [6] and the formation of galactic
and compact structures in the Universe. There are even several
attempts to extend the theory to meet the growing challenges
from quantum theory and high energy particle physics.

The development of GR has undergone astounding suc-
cess over the decades. However, the establishment of quantum
mechanics in the 1920s and then quantum field theory later on
already started to expose some of the limitations of the theory
early on. Observational constraints have also focused attention
on some of the failings of GRwhich not only occur on the very
small scale of the physical spectrum but also on larger scales
such as for galactic systems where modifications of the stand-
ard model of particles physics [7–9] are necessary to preserve
GR as the underlying theory of gravity. This has led to the
realization that dark matter plays an important role in galaxies
and their clusters [10–12] in the astrophysical context but also
has a crucial role in the cosmological context in the dynamics
of the early Universe [13]. The best macroscopic version of
this is cold dark matter (CDM). GR also needs the addition of
further corrections in the matter sector when considering the
very early Universe where a rapid period of inflation [14, 15]
is necessitated to explain the extremely flat and homogeneous
Universe we observe at present. Saying that, there are other
solutions to explain how inflation came about without any
modification to the matter description of the standard model
such as the Starobinsky’s model [16] which modified the early
Universe evolution in comparison to the standard model of
cosmology. It may also be the case that modifications to the
gravity sector may also explain this feature of galactic rotation
curves such as in the case of Starobinsky gravity [17] and con-
formal Weyl gravity [18]. In the same vein, the late-time Uni-
verse is undergoing a period of accelerated expansion [19, 20]
which requires a cosmological constant Λ [21] to adequately
describe the observed expansion using GR as the fundamental
to describe gravitational phenomena.

Altogether, GR can thus explain most phenomena provided
adequate modifications are considered in the matter sector so
that we consider the widely accepted concordance model in
ΛCDM plus inflation cosmology. However, the exotic nature
of these particle species remains a total mystery in terms of
observations despite significant theoretical advances in phys-
ics beyond the standard model of particle physics. In the
same vein, it may also be the case that the standard model of
particle physics does not require a significant a restructuring
for meeting these observational challenges and it is that the

gravitational section needs further revisiting. This may take
the form of extensions from GR or even modifications bey-
ond GR that may be an alternative to its original formulation.
In the literature there have been numerous proposals for new
theories of gravity [22–26] which are motivated either through
phenomena or some theoretical approach, as well as for other
reasons such as from quantum physics. One interesting possib-
ility that has been gainingmomentum in the literature in recent
decades is that of teleparallel gravity (TG) where curvature
is replaced by torsion as the mechanism by which geometric
deformation produces a gravitational field. It does this by dis-
lodging the uniquely curvature-based Levi-Civita connection
with a torsion-based teleparallel connection. In fact, there are
now thousands of publications related to the topic in the liter-
ature. One of the many theories that torsion-based approaches
to gravity has produced is the teleparallel equivalent of gen-
eral relativity (TEGR) which is dynamically equivalent to GR,
meaning that they cannot be distinguished through classical
experiments.

In fact, even Einstein himself, while not aware of the obser-
vational motivations for modifying GR, was also one of the
first proposers for modifications of GR shortly after its incep-
tion. This took various forms with varying degrees of novelty.
However, Einstein was captured by teleparallelism due to its
reliance of the tetrad frames and its absolute teleparallelism
feature [27]. Similar to the largely silent period between his
papers on special and GR, Einstein devoted himself to telepar-
allelism and its potential for a unified field theory. He spent
this time in correspondence with many of the main proponents
for the new geometric framework at the time such as Roland
Weitzenböck, Élie Cartan, Luther P Eisenhart, HermanMüntz,
Jakob Grommer and Cornelius Lanczos to mention some. The
main objective for Einstein was to use this new approach of
absolute teleparallelism to unify gravity and electromagnet-
ism since tetrad fields can support 16 independent components
representing ten degrees of freedom (DoF) that are related to
the metric tensor while the remaining six would correspond to
a separate connection that he wanted to show could be yielded
to produce the electromagnetic sector. However, after three
intense years of research between the 1928 summer and 1931
spring, together with eight publications on the topic, Einstein
eventually abandoned the idea. He failed to establish a rela-
tionship between this new connection and electromagnetism
which was his ultimate goal of having a unified field theory
approach to gravity and electromagnetism. Instead he found
that these seemingly extra DoF were related to the Lorentz
group and simply a manifestation of the local Lorentz freedom
of gravity.

The unified approach was largely abandoned after that time
and only revived much later on by Møller [28] and then
Pellegrini and Plebanski [29] where they formulated a Lag-
rangian that satisfies the concepts behind absolute parallelism.
This was also followed by [30] where the first ideas of a well
defined energy-momentum tensor for gravitationwere concep-
tualized, and which led to significant advances in later dec-
ades as compared with the analogous case in GR, which we
now know to be quasi-local [31]. Work on the topic remained
in the foundations sector for the next couple of decades with
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compelling works such as the review by Hehl et al [32]. Inde-
pendently, Hayashi and Nakano [33] also started to revive a
form of Einstein’s origin work. In their work, they formu-
lated absolute teleparallelism through a gauge theory of trans-
lations on the Lorentz group. This was further extended to a
fully fledged gravitational theory in [34] where a new gen-
eral relativity (NGR) formalism was presented together with
its weak field limit. It was at this time that the motivations
for looking for theories of gravity beyond GR was starting to
take off with many new toy model proposals tackling various
theoretical and observational issues in the topic. In this back-
ground, absolute teleparallelism was not actively studied bey-
ond very select groups. This was partly due to its very founda-
tional nature as compared to other popular toy model theories
at the time, which appealed to a much larger audience. This
naturally leads us to the question of howwould modern gravit-
ational research look like if Einstein had continued to work on
the concepts surrounding absolute teleparallelism, or if he had
formulatedGR in terms of torsion from the beginning (namely,
TEGR)? This construction of gravity would have been written
in terms of gauge theories thus eliminating the need for many
future works on formulating GR as a gauge theory within the
curvature-based Levi-Civita connection. This is all the more
prescient due to the fact that both GR and TEGR both predict
the same observational outcomes in their classical predictions
(due to their dynamical equivalence).

Absolute teleparallelism was finally revived in its latest
incarnation in the numerous works by Aldrovandi and Pereira
(among others) which culminated in two pivotal books on the
topic. The first is [35] where the underlying geometry of GR
is revisited and the foundational ideas behind various con-
cepts in TG are put on a concrete mathematical basis, while
the second is [36] where the physics on which TEGR is fully
fleshed out together with potential future work on quantum
gravity and quantum field theory. These works again resur-
rect Einstein’s original goal of reconciling gravity with other
branches of physics [37]. TEGR continues to be studied for
potential benefits as compared with GR such as in its quantum
regime, and others. On the other hand, TG has since undergone
a renaissance with respect to (wrt) potential modified theor-
ies of gravity. The first such modification was presented by
Hayashi and Shirafuji [34] where GR was slightly modified to
allow for small deviations from TEGR through a decompos-
ition of its Lagrangian. However, the most impactful sugges-
ted modification came from Ferraro and Fiorini [38] where a
form of f (T) gravity first appeared in the literature, and later
by Linder [39]. The rationale here follows the same reason-

ing as in the very popular f(
◦
R) theory of gravity [40–42]. The

spectrum of modified teleparallel theories has since drastic-
ally expanded to also include nonminimal couplings to matter,
scalar fields as well as vector and tensor field additions, giv-
ing a plethora of teleparallel theories in which gravity can be
formulated and studied.

The literature on TG features a wide range of works with an
increasing intensity of new additions to the growing body of
publications on the topic. In this considerable body of works,
we would like to point out two important reviews on the topic.

Firstly, [43] where the foundations of TG and its particular
application to TEGR, f (T) and some other teleparallel theories
was explored. This work built on foundational work represen-
ted in the book in [36] and covered important advances on the
issue of covariance in TG [44], among other topics. Another
hugely important work is [45] where foundational aspects,
such as the Poincaré gauge gravity origins of the theory, are
explored but also many applications, both astrophysical and
cosmology. These are important works in the community but
the literature has since drastically evolvedwith evenmore clar-
ity on the covariant formulation of TG and its relationship
to metric-affine theories being more laid out. TG also now
hosts a significantly expanded number of new theories of grav-
ity, of particular interest we point out advances in the scalar-
tensor sectionwhere an analogue of Horndeski gravity has also
started gain popularity. In terms of observational astrophysics
and cosmology, there has been serious new results such as in
the regime of precision cosmology, observational constraints
in new teleparallel models and novel approach to cosmology
such as machine learning, as well as important progress in
galactic and stellar physics. At the same time, observational
physics, and particularly cosmology, is reaching the border of
the region in which GR can satisfy measurements such as with
the late-time cosmological tensions as well as ambiguities in
early Universe physics. Given these critical advances in the lit-
erature and the resolution of many more foundational issues in
TG as well as the growing pressure from observational cosmo-
logy for competitive new theories of gravity, we are motivated
to reevaluate the topic and to bridge the gap between founda-
tional theory and it observational consequences in astrophys-
ical and cosmological systems.

1.1. Original results and corrections to the literature

This Review contains some original results that have not been
reported in the literature yet. In addition, throughout the pro-
cess of reviewing the most important literature of TG, we have
noticed some mistakes that we have corrected. We list them
here for each section:

• In section 4.1 we provide a general description for any TG
theory in order to have a theory which certain physical prop-
erties such as having local Lorentz invariance of both the
matter and gravitational action.

• In section 5 we re-derived the field equations for the most
popular teleparallel theories and express themwith the same
notation.

• In section 5.12.1 we found the twomost general good tetrad-
spin connection pair in spherical symmetry for f(T,B,ϕ,X)
gravity when one assumes that the teleparallel connection
and the tetrad respect spherical symmetry.

• Equation (5.8) corrects a sign mistake in [46].
• In section 6 we derived the flat Friedmann–Lemâıtre–

Robertson–Walker (FLRW) equations for each model in
a consistent way. We also corrected the reported FLRW
equations in higher order derivative TG (see section 6.6.2).
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• We verified the validity of the reconstructed solutions
especially in cases where the modified gravity component
behaves as a dark energy fluid. This appears in f (T) in
section 6.1.1 and for f(T,Θ) in section 6.4.1. Other repor-
ted solutions have been checked and corrected where applic-
able.

• In section 6.3.3, we have corrected the stability conditions
for the Minkowski solution in the case of f(T,TG) gravity.

• We corrected the Noether symmetry conditions and the
dynamical systems approach reported in the minimal f (T)-
scalar coupling in sections 6.5.2.1 and 6.5.3.1.

• We corrected the dynamical analysis for the non-local f (T)
gravity approach in section 6.6.1.2.

• In the supplementary annexes (supplementary 1), the find-
ing good tetrad-spin connection pairs approach for differ-
ent anisotropic cosmological scenarios has been performed.
Sets of good tetrad-spin connection pairs are also presented.
We also corrected instances where bad tetrad-spin connec-
tion pairs have been used in literature.

• In anisotropic cosmologies, some reconstructed solutions
such as in the supplementary annexes (supplementary 1)
have been corrected. Moreover, in another part of the sup-
plementary annexes (supplementary 1), the FLRW limiting
behavior in the Noether symmetry approach has been cor-
rected.

• A brief new discussion about the generalized Birkhoff’s the-
orem in f(T,B) gravity is provided in section 9.2.

• In section 10.1 we provided a full compendium of TG
models and their analysis perspectives in precision and
observational cosmology.

• In section 10.4.2 we analyzed TG theories using machine
learning techniques.

• In section 10.3.4 we corrected the kinetic equations for
f (T) cosmography. This is manifested in equations (10.15c)
and (10.15d) where we corrected the snap parameters terms,
which changes the current results already reported in the lit-
erature up to third order. For future analysis, this can change
the kinetic evolution of the Universe at higher redshifts.

There are also some other minor new additions or corrected
mistakes from the literature that we believe, are not so import-
ant to mention above.

1.2. Review structure

The Review is intended to cover the main developments in TG
and its impact on astrophysics, GW and cosmology. To facil-
itate this, we divide the Review into four main thematic areas
covering the most important results coming from the last few
decades while still comprehensively describing its origins. We
show the Review breakdown graphically below and then go on
to describe how each section is broken down.

We first open with an exploration of the geometric under-
pinnings of metric-affine geometry in section 2 where the so-
called trinity of gravity is cemented as our starting off base. In
section 3, we then focus on the specific foundations surround-
ing torsional teleparallel geometry. We here motivate telepar-
allel geometry as a gauge theory of translations and describe it

as having an associated gauge field strength. We also discuss
symmetries and transformations in teleparallel geometry and
discuss how it couples to matter with the minimal coupling
prescription.

GR is built on the geometric foundations set by Riemann
and others at the around the beginning of the twentieth century.
In a similar vein, TG is build on the work by Weitzenböck
and many others who laid the geometric foundations for a tor-
sional rather than curvature-based formulation of gravity. In
section 4, we explore the foundational construction of tele-
parallel theories and its application to the formulation of the
TEGR, which is dynamically equivalent to GR while being
born out of an entirely distinct geometric setting. Due to the
tetrad-spin connection pair basis in which TG is construc-
ted, we revisit a number of tenets of this theory of gravity
such as its ADM formalism and the possible effects it may
have on quantum gravity (where it may no longer be equival-
ent to GR). As in curvature-based theories of gravity, exten-
sions to TEGR are interesting to study, as are modifications
and alternative to TEGR. We explore the most promising of
gravitational theories in section 5 where we introduce theories
through their actions and determinemany of their ensuing field
equations.

After laying the foundations of TG and exploring some
of its most popular manifestations in theory, we move to the
astrophysics sector in which we first describe the impact of
TG on gravitational radiation. We here focus on the polariza-
tion structure of GW in section 8 where we reexamine some of
the theories promoted in section 5, in this context. In section 9,
we then move on to other aspects of astrophysical systems in
TG such as the issue of spherically symmetric solutions and
issues related to time-dependent solutions, as well as other
symmetry settings. We use this information to discuss phys-
ical stars and to discuss open problems in this regime of the
literature. Finally we close this area with a discussion of some
work in the regime of galactic rotation curves in a particular
setting of f (T) gravity.

Finally, we tackle the cosmological consequences for some
of the modified teleparallel theories of gravity explained in
section 5. We start with an analysis of the numerous back-
ground cosmology analyses in section 6 which forms the
majority of works in the literature. This section delves into
the many works on reconstruction methods, Noether symmet-
ries, and dynamical systems. Following this lengthy explora-
tion, we turn to the perturbative side of TG in section 7, where
we explain how perturbations can be taken consistently in TG
and what form they should take. We also tackle the issue of
perturbations in a cosmological background and some impacts
on possible inflationary theory. Finally, section 10 contains the
core observational predictions from TG in the cosmological
regime. We here review works that constrain some of the most
popular models within TG through late-time, as well as give
new perspectives on prospects of machine learning applica-
tions in teleparallel cosmology. We also discuss the state of
the art in terms of the near-term prospects for observational
cosmology and its possible impact in discriminating between
models in gravity beyond ΛCDM.
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1.3. Notation and conventions

We lay out our conventions in this part of the Introduction. The
literature on TG contains numerous different combinations
of conventions since there exist a number of non-competing
choices one can take with respect to various definitions
throughout the layers on which TG is constructed. In the
remainder of this work, we refer to the definitions declared
here as the review convention.

Firstly, we use a metric signature (+1,−1,−1,−1) which
is the dominant signature in the TG literature. Also, we choose
to write spacetime indices using lower case Greek alphabet
letters (α, β, . . .) and capital Latin letters (A, B, . . .) for the
Minkowski spacetime (Lorentz indices). Capital Latin letters
starting from (I, J, . . .) will denote purely spatial indices on the
Minkowski spacetime (see section 8), while lower case Latin
letters from the middle of the alphabet (i, j, . . .) are reserved
for purely spatial indices (see sections 2.2.1 and 4.2.1). We
also define the following commonly used terms related to the
foundational formulation of TG

• Teleparallel connection—the general torsional teleparallel
connection that is composed of both the tetrad and spin con-
nection defined in equation (3.30);

• Weitzenböck connection—the teleparallel connection in the
Weitzenböck gauge (see section 2.2.3) where the spin con-
nection vanishes (see section 5.1);

• Weitzenböck gauge—the case where the spin connection
vanishes (see section 4.2).

The line element for flat spacetime in Cartesian coordinates
is then described by

ds2 = ηµνdx
µdxν = dt2 − dx2 − dy2 − dz2, (1.1)

where d denotes the differential operator and ηµν the
Minkowski metric. All metric tensor line elements are pro-
duced by the tetrads eAµ and inverse tetrads E µ

A (see
section 3.2)

gµν = ηABe
A
µe

B
ν , and gµν = ηABE µ

A E ν
B , (1.2)

where the tetrad is a fundamental dynamical variable in the
theory. The tangent spacetime is described by trivial tetrads
which are denoted by hAµ with inverses H µ

A . We will also
define the one-forms eA = eAµdx

µ and vector tetrads EA =

E µ
A ∂µ (together with the trivial one-forms hA = hAµdx

µ and

trivial vector tetrads HA = H µ
A ∂µ) (see section 3.1).

Tensor and operator quantities that have a dependence
on the connection being employed are distinguished by the
following definitions for the different possible connection
options (see section 2)

• The general connection Γ̂αµν e.g. R̂αβµν ;

• The Levi-Civita Connection
◦
Γαµν e.g.

◦
Rαβµν ;

• The symmetric teleparallel connection
♢
Γαµν e.g.

♢
Rαβµν ;

• The teleparallel connection Γαµν e.g. Rαβµν ,

which are used throughout the Review. We also define the fol-
lowing derivative operators

• The covariant derivative∇µ (with over-symbols for the vari-
ous connection choices—as described above) which acts
only on the general spacetime;
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• The Fock–Ivanenko derivative Dµ which acts on Lorentz
indices only (see section 3.3);

• The exterior covariant derivative D and exterior derivative d
(see section 2.2.4);

• The d’Alembertian operator □=∇µ∇µ = gµν∇µ∇ν .

For any connection, we define the Riemann curvature
tensor (2.26) as [2]

R̂µναβ := ∂αΓ̂
µ
νβ − ∂βΓ̂

µ
να+ Γ̂µσαΓ̂

σ
νβ − Γ̂µσβΓ̂

σ
να,
(1.3)

which defines the Levi-Civita Einstein tensor as

◦
Gαβ :=

◦
Rαβ −

1
2

◦
Rgαβ , (1.4)

where
◦
R= gµν

◦
Rµν . On the other hand, the teleparallel connec-

tion is defined through

Γσνµ := E σ
A

(
∂µe

A
ν +ωABµe

B
ν

)
, (1.5)

where ωABµ represents the components of the teleparallel spin
connection (see section 2.2). This can then be used to build
the torsion (3.28), contortion (3.64) and superpotential (4.163)
tensors as well as the torsion scalar (4.162) defined through

TAµν := 2ΓA[νµ] = eAν,µ− eAµ,ν +ωABµe
B
ν −ωA

Bνe
B
µ =−2ΓA[µν], (1.6a)

Kρµν := Γρµν −
◦
Γ
ρ
µν =

1
2
(Tµ

ρ
ν +Tν

ρ
µ−Tρµν) , (1.6b)

Sρ
µν := Kµνρ− δµρTσ

σν + δνρTσ
σµ =−Sρνµ, (1.6c)

T :=
1
2
Sρ
µνTρµν , (1.6d)

where square brackets represent the anti-symmetric operator,
i.e. A[µν] :=

1
2 (Aµν −Aνµ). Also, all comma separated lower

indices will refer to partial derivatives, such as f,T = ∂f/∂T.
Unless otherwise stated, this Review observes the geometric
units convention where

c≡ 1, κ2 = 8πG, (1.7)

which will be mainly used for the foundations part of the
Review, while the observational sections will mainly use SI
units (as will be indicated).

As an example, consider the Einstein–Hilbert action (2.51)

SGR :=
1

2κ2

ˆ
d4x

√
−g

◦
R+Sm =

1
2κ2

ˆ
d4x

√
−gL

+Sm =
1

2κ2

ˆ
d4xL+Sm, (1.8)

where the GR subscript will be replaced for other theories, the
Lagrangian L is related to the Lagrangian density L through

L= L
√
−g, and where Sm refers to the matter action. We take

special note here for objects calculated using the Levi-Civita
connection (such asRρσµν) in that we refer to these as standard
gravity objects since they are determined using the Levi-Civita
connection. For minimally coupled matter system, the matter
action will then be given by

Sm :=

ˆ
d4x

√
−gLm =

ˆ
d4xLm, (1.9)

which then defines the energy-momentum tensor through the
variation

Θµν :=
−2√
−g

δLm

δgµν
= eAµ

(
1
e
δLm

δeAν ′

)
gνν ′ := eAµΘA

ν ′
gνν ′ .

(1.10)

The trace of the energy-momentum tensor will be denoted by
Θ=Θµµ.

When writing the FLRW line-element, we use t to
denote cosmic time (coordinate time as measured by a
comoving observer in a homogeneous matter field) and τ
(defined as dτ = N(t)dt/a(t)) to denote conformal time (see
section 6.7.2). Thus, the FLRW metric in spherical-like spa-
tial coordinates is written as (6.1)

ds2 = N(t)2dt2 − a(t)2
[

dr2

1− kr2
+ r2

(
dϑ2 + sin2ϑdφ2

)]
,

(1.11)

where N(t) is the lapse function and a(t) is the scale factor. We
would like to point out that the lapse function cannot a priori
be absorbed into the definition of cosmic time since it may be
dynamical in some branches of certain theories. We can then
define the cosmic and conformal time derivatives

ȧ(t) :=
da
dt
, (1.12a)

a ′(τ) :=
da
dτ
, (1.12b)

which then gives the Hubble parameter and the conformal
Hubble parameter definitions respectively as

H(t) :=
ȧ
Na

, (1.13a)

H(τ) :=
a ′

Na
, (1.13b)

where the lapse gauge (in whichN= 1) can be taken to recover
the corresponding regular definitions, namely H= ȧ/a and
H= a ′/a. Throughout this Review we will refer to the energy
density of a fluid as ρ, and its isotropic pressure as p. The
equation of state (EoS) is defined as

p≡ wρ, (1.14)

where w is the EoS parameter which often varies over the cos-
mic history of the Universe in modified theories of gravity.
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2. Metric-affine approaches

We start our Review with a brief overview of metric-affine
geometry and its fundamental properties, which lie at the
foundation of TG theories. In section 2.1, we provide a sum-
mary of general metric-affine geometry in its most commonly
used formulation in terms of a metric and an affine connection.
In the restricted case of TG, however, which is the main sub-
ject of this Review, a formulation in terms of a tetrad and spin
connection is more common; this is Reviewed in section 2.2.
Finally, in section 2.3, we discuss how different classes of
geometries can be used as alternative formulations of GR,
whose field equations agree with the usual, curvature-based
formulation.

2.1. Metric-affine geometry

We now give a summary here of metric-affine geometry and
its characteristic properties. In section 2.1.1 we summarize
the fundamental fields that constitute the metric-affine geo-
metry. Their characterizing, tensorial properties are displayed
in section 2.1.2. These tensorial quantities are related by the
Bianchi identities, which we display in section 2.1.3. Further,
we discuss how they can be used to decompose the connec-
tion in section 2.1.4. An overview of particular subclasses of
metric-affine geometries is given in section 2.1.5.

2.1.1. Fundamental variables. In the most general metric-
affine setting, which is more comprehensively reviewed in
[47], the fundamental variables are a metric (i.e. a symmetric
rank-two tensor field) gµν of Lorentzian signature, as defined
in the conventions section 1.3, as well as the coefficients Γ̂ρµν
of an affine connection, with associated covariant derivative
∇̂, both defined on a four-dimensional spacetimemanifoldM.
It thus follows that the metric has ten independent compon-
ents, while the connection has 64 independent components,
and there is no a priori relation between these two objects.
Here and in the following we will use a hat̂whenever we refer
to quantities which are related to this general affine connec-
tion. We have collected these notes on notation in section 1.3
for each of access.

2.1.2. Characteristic tensors. The most general metric-
affine geometry defined by a metric and affine connection is
characterized by a number of tensorial quantities, whose defin-
ition and conventions we use in this Review are given below.
From the connection alone one obtains the curvature tensor

R̂µνρσ = ∂ρΓ̂
µ
νσ − ∂σΓ̂

µ
νρ+ Γ̂µτρΓ̂

τ
νσ − Γ̂µτσΓ̂

τ
νρ,
(2.1)

as well as the torsion tensor

T̂µνρ = Γ̂µρν − Γ̂µνρ. (2.2)

Using also the metric, one further defines the non-metricity
tensor

Q̂µνρ = ∇̂µgνρ = ∂µgνρ− Γ̂σνµgσρ− Γ̂σρµgνσ. (2.3)

These notions are illustrated in figure 1 by their effect on the
parallel transport of a vector defined by the affine connection
Γ̂µνρ. Curvature causes the parallel transport along a closed
curve to be non-trivial, i.e. to change the transported vector.
With torsion, the parallel transport is not symmetric under
exchanging the transported vector and the direction of trans-
port. With non-metricity, the length of the vector, as measured
by the metric, changes along the transport. Note that for the
general affine connection Γ̂ρµν , any of these tensorial quant-
ities may be nonvanishing. More restricted classes of connec-
tions can be obtained by demanding that certain quantities van-
ish; we will discuss such cases in section 2.1.5.

2.1.3. Bianchi identities. The characterizing tensors of a
general affine connection are not completely independent from
each other. In particular, the curvature and torsion are related
by the Bianchi identities [49]

R̂µ[νρσ] = ∇̂[ν T̂
µ
ρσ] + T̂µω[ν T̂

ω
ρσ], (2.4)

and

∇̂[ωR̂
µ
|ν|ρσ] =−R̂µντ [ωT̂τ ρσ]. (2.5)

This can easily be seen by direct calculation. For the first iden-
tity (2.4), one has

∇̂[ν T̂
µ
ρσ] =−2∂[ν Γ̂

µ
ρσ] − 2Γ̂µω[ν Γ̂

ω
ρσ] + 2Γ̂ω [ρν Γ̂

µ
|ω|σ]

+ 2Γ̂ω [σν Γ̂
µ
ρ]ω, (2.6)

and

T̂µω[ν T̂
ω
ρσ] = 2Γ̂µω[ν Γ̂

ω
ρσ] − 2Γ̂µ[ν|ω|Γ̂

ω
ρσ]. (2.7)

Combining these two terms, and sorting the indices, one
obtains the expression

∇̂[ωR̂
µ
|ν|ρσ] + T̂µω[ν T̂

ω
ρσ] = 2∂[ρΓ̂

µ
νσ] + 2Γ̂µω[ρΓ̂

ω
νσ]

= R̂µ[νρσ], (2.8)

which is the LHS of the Bianchi identity (2.4). Similarly, the
second identity (2.5) can be proven. Expanding the covariant
derivative on the LHS yields

∇̂[ωR̂
µ
|ν|ρσ] = ∂[ωR̂

µ
|ν|ρσ] + Γ̂µτ [ωR̂

τ
|ν|ρσ] − Γ̂τ ν[ωR̂

µ
|τ |ρσ]

− Γ̂τ [ρωR̂
µ
|ντ |σ] − Γ̂τ [σωR̂

µ
|ν|ρ]τ . (2.9)

Now it is easy to see that the last two terms are identical,

Γ̂τ [σωR̂
µ
|ν|ρ]τ =−Γ̂τ [σωR̂

µ
|ντ |ρ] = Γ̂τ [ρωR̂

µ
|ντ |σ]. (2.10)

Further using the definition (2.2) of the torsion, as well as cyc-
lically rearranging the indices within square brackets, the last
two terms of the expansion (2.9) can be combined to

−2Γ̂τ [ρωR̂
µ
|ντ |σ] =−R̂µντ [ωT̂µρσ], (2.11)
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Figure 1. Schematic geometrical representation of the curvature, torsion and non-metricity tensors by their effect on the parallel transport of
vectors [48]. Reproduced with permission from [48]. © EESTI TEADUSTE AKADEEMIA.

which is the RHS of the Bianchi identity (2.5). It remains
to show that the first three terms on the RHS of the expan-
sion (2.9) vanish. Expanding the curvature in the derivative
term using its definition (2.1) yields

∂[ωR̂
µ
|ν|ρσ] = 2∂[ω∂ρΓ̂

µ
|ν|σ] + 2∂[ωΓ̂

µ
|τ |ρΓ̂

τ
|ν|σ]

+ 2Γ̂µτ [ρ∂ωΓ̂
τ
|ν|σ]. (2.12)

The first term on the RHS vanishes, since partial derivatives
commute. In the remaining two terms one can substitute the
derivatives on the connection coefficients by curvature tensors,
which yields

2∂[ωΓ̂
µ
|τ |ρΓ̂

τ
|ν|σ] = Γ̂τ ν[σR̂

µ
|τ |ωρ] − 2Γ̂τ ν[σΓ̂

µ
|ϕ|ωΓ̂

ϕ
|τ |ρ],

(2.13a)

2Γ̂µτ [ρ∂ωΓ̂
τ
|ν|σ] = Γ̂µτ [ρR̂

τ
|ν|ωσ] − 2Γ̂µτ [ρΓ̂

τ
|ϕ|ωΓ̂

ϕ
|ν|σ].
(2.13b)

After permuting the indices in square brackets, one finds
that the two curvature terms found here cancel the second and
third term on the RHS of the expansion (2.9). Finally, for
the two terms cubic in the connection coefficients, one can
exchange the dummy indices τ ↔ ϕ in the first term to find

Γ̂µτ [ωΓ̂
τ
|ϕ|ρΓ̂

ϕ
|ν|σ] + Γ̂µτ [ρΓ̂

τ
|ϕ|ωΓ̂

ϕ
|ν|σ] = 0, (2.14)

due to the antisymmetry in the indices ρ and ω. This completes
the proof of the second Bianchi identity (2.5).

There are two notable special cases. For a symmetric con-
nection, T̂µνρ = 0, and so the Bianchi identities reduce to the
well known relations

R̂µ[νρσ] = 0, ∇̂[ωR̂
µ
|ν|ρσ] = 0. (2.15)

This is the case in particular for the Levi-Civita connection.
For a flat connection one has R̂µνρσ = 0, and so the second
Bianchi identity becomes trivial, while the first one reduces to

∇̂[ν T̂
µ
ρσ] + T̂µω[ν T̂

ω
ρσ] = 0. (2.16)

If both torsion and curvature vanish, both Bianchi identities
become trivial.

2.1.4. Connection decomposition. An important property of
metric-affine geometry is the fact that in the presence of a met-
ric, the coefficients Γ̂ρµν of the general affine connection can
uniquely be decomposed into three parts in the form

Γ̂ρµν :=
◦
Γ
ρ
µν + K̂ρµν + L̂ρµν , (2.17)

where we have introduced the coefficients

◦
Γ
µ
νρ :=

1
2
gµσ (∂νgσρ+ ∂ρgνσ − ∂σgνρ) , (2.18)

of the Levi-Civita connection, the contortion tensor

K̂µνρ :=
1
2

(
T̂ν
µ
ρ+ T̂ρ

µ
ν − T̂µνρ

)
, (2.19)

as well as the disformation tensor

L̂µνρ :=
1
2

(
Q̂µνρ− Q̂ν

µ
ρ− Q̂ρ

µ
ν

)
. (2.20)

In this regime, the Christoffel symbols (
◦
Γµνρ), the contor-

tion tensor (K̂µνρ), and the disformation tensor (L̂µνρ) respect-
ively quantify curvature, torsion, and non-metricity. Note that
although the torsion (2.2) is independent of the metric, this
does not hold for the contortion (2.19), due to the fact that
indices have been raised and lowered with the metric.

2.1.5. Metric-affine subclasses. By demanding that certain
of the tensorial quantities vanish, one may reduce the most
general class ofmetric-affine geometries, whichwe introduced
above and which is characterized by a general connection
Γ̂µνρ next to the metric gµν , and thereby obtain particular
subclasses. Various of these restricted geometries are relev-
ant and used to model theories of gravity in the literature. By
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Figure 2. Relation between different metric-affine geometries. Starting from the most general class of metric-affine geometries in the lower,
left, front corner, this diagram shows how more specific geometries are obtained by imposing that one or more of the tensorial quantities
defined in section 2.1.2 vanish. In the most restricted case, which is Minkowski space in the upper, right, back corner, all three quantities
vanish.

successive restriction, one finds the following special cases of
metric-affine geometries:

(a) R̂µνρσ ≡ 0: In the case of vanishing curvature, the connec-
tion is said to be flat. This case is also known as (general)
teleparallel geometry, if both torsion and non-metricity are
present.

(b) T̂µνρ ≡ 0: If the torsion vanishes, the connection is
called symmetric, since the connection coefficients satisfy
Γ̂ρ[µν] ≡ 0. This case is considered, e.g. in Weyl gravity.

(c) Q̂µνρ ≡ 0: For vanishing non-metricity, the connection is
calledmetric-compatible, and the corresponding geometry
is known as Riemann–Cartan geometry. This choice of the
connection is used in Poincaré gauge theory.

(d) R̂µνρσ ≡ 0, Q̂µνρ ≡ 0: If only torsion is nonvanishing,
one obtains the case of metric teleparallel geometry (also
called torsional geometry), which is the main topic of
this Review. For the metric teleparallel connection and its
related quantities, we will omit the hat, and simply write
Γρµν . Moreover, from section 3 we will just just the word
teleparallel to refer to this geometry.

(e) R̂µνρσ ≡ 0, T̂µνρ ≡ 0: An alternative class of geometries
is obtained by demanding that only non-metricity is non-
vanishing. This class of geometries is known as symmetric

teleparallelism. We will denote the symmetric teleparallel
connection and its associated quantities with a diamond on

top, i.e.
♢
Γρµν .

(f) T̂µνρ ≡ 0, Q̂µνρ ≡ 0: The most well known class of geo-
metries, which is also most commonly used in the descrip-
tion of gravity theories, including GR and its extensions, is
the symmetric and metric-compatible connection. In this
case the connection is uniquely determined as the Levi-

Civita connection, which we denote by a circle, i.e.
◦
Γρµν .

(g) R̂µνρσ ≡ 0, T̂µνρ ≡ 0, Q̂µνρ ≡ 0: Finally, if all tensorial
quantities vanish, also the metric is constrained, and one
finds the case ofMinkowski space. In this case the metric-
affine geometry is fixed up to diffeomorphisms and does
not carry any gravitational DoF.

The relations between the most general metric-affine geo-
metry, in which none of the tensorial quantities vanish, and the
special cases listed above, may be visualized in different ways.
Figure 2 shows how one may obtain the aforementioned spe-
cial cases by imposing restrictions on the most general metric-
affine geometry. Another visualization is given by the Venn
diagram in figure 3. Each of the three colored circles repres-
ents one of the tensorial quantities, which is nonvanishing for
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Figure 3. Classification of metric-affine geometries. Every circle
encloses those geometries in which one of the three tensorial
quantities defined in section 2.1.2 is nonvanishing. On the
intersections of the circles, more that one tensorial quantity is
nonvanishing. Not shown is Minkowski space, where all three
quantities vanish, and which is represented by the white area outside
all three circles.

all geometries inside the corresponding circle. The white outer
region represents Minkowski space, where curvature, torsion
and non-metricity vanish.

In the remainder of this Review we will mostly be work-
ing with a metric teleparallel connection Γρµν , and omit the
accent on all quantities such as the torsion tensor Tµνρ which
are derived from this connection. Any other connection, such
as the general metric-affine connection Γ̂µνρ, the Levi-Civita

connection
◦
Γµνρ and the symmetric teleparallel connection

♢
Γµνρ, and the quantities derived from these connections, will
be distinguished by denoting them with the corresponding
accent.

2.2. Tetrads and the spin connection

In the field of TG, which is the primary topic of this
Review, the underlying geometry of spacetime is convention-
ally described in the tetrad-spin connection formulation, which
we summarize here. In section 2.2.1, we display how these
quantities define the metric and the affine connection, which
we had introduced as independent quantities in the previous
section. The characteristic tensors describing the metric-affine
geometry are then expressed in terms of the tetrad and spin
connection in section 2.2.2. An important property of this
formulation is the local Lorentz invariance of the geometry,
which we discuss in section 2.2.3, and which allows to choose
a particular gauge for the spin connection in the teleparal-
lel case. Finally, in section 2.2.4, we provide an equivalent

Figure 4. Graphical representation of the tetrad, reduced to a
two-dimensional model manifold. A coordinate basis (∂x,∂y) of the
tangent space is, by definition, tangent to the coordinate lines at a
given base point, but not necessary orthogonal or normalized with a
given metric. In contrast, the tetrad corresponds to an orthonormal
basis (E1,E2) = (E1

µ∂µ,E2
µ∂µ).

mathematical description of the tetrad and spin connection in
terms of differential forms.

2.2.1. Relation to metric and connection. An alternative
description of the metric-affine geometry outlined in the
preceding section is to use a tetrad eAµ and a spin connec-
tion ω̂A

Bµ, where capital Latin letters A,B= 0, . . . ,3 denote
Lorentz indices, while small Greek letters µ,ν = 0, . . .,3
denote spacetime indices (where numbers refer to spacetime
coordinates on the respective spaces). From the tetrad one con-
structs the Lorentzian metric via the relation

gµν = ηABe
A
µe

B
ν , (2.21)

where ηAB = diag(1,−1,−1,−1) denotes theMinkowski met-
ric. For the metric gµν to be non-degenerate, one requires that
the tetrad possesses an inverse EAµ, which satisfies EAµeAν =
δµν and EAµeBµ = δ BA , and defines the inverse metric as

gµν = ηABEA
µEB

ν . (2.22)

Note that as a consequence, the vectors (EA) form an orthonor-
mal basis of the tangent space, i.e.

g(EA,EB) = gµνEA
µEB

ν = ηAB. (2.23)

This is visualized in figure 4. While the coordinate basis (∂µ)
is defined by the coordinate lines, and is in general neither
orthogonal nor normalized, the opposite is true for the tetrad
basis (EA).
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The frame coefficients EAµ are also required in order to cal-
culate the coefficients Γ̂µνρ of the affine connection from the
spin connection ω̂A

Bµ via

Γ̂ρµν = EA
ρ
(
∂νe

A
µ+ ω̂A

Bνe
B
µ

)
, (2.24)

which is the unique affine connection satisfying the so-called
‘tetrad postulate’

∂µe
A
ν + ω̂A

Bµe
B
ν − Γ̂ρνµe

A
ρ = 0. (2.25)

This condition necessitates that vectors remain parallel even at
a distance, which is the source of the term TG. It is this condi-
tion that forces the distinction between curvature and telepar-
allel based connections. Finally, note that for a given metric-
affine geometry, a tetrad, in general, exists only locally, and
that global tetrads exist only if the spacetime manifold M is
parallelizable; this fact can be understood by applying the the-
ory of fiber bundles [50].

2.2.2. Characteristic tensors. One advantage of the formu-
lation in terms of a tetrad and spin connection, which makes it
particularly useful for the description of teleparallel geomet-
ries, is the fact that the curvature and non-metricity defined
in section 2.1.2, and hence also the answer to the question
whether they vanish or not, become properties of the spin
connection only, and are independent of the choice of the tet-
rad. In this case, one defines the curvature tensor

R̂A
Bµν := ∂µω̂

A
Bν − ∂ν ω̂

A
Bµ+ ω̂A

Cµω̂
C
Bν − ω̂A

Cν ω̂
C
Bµ,
(2.26)

the torsion tensor

T̂Aµν := ∂µe
A
ν − ∂νe

A
µ+ ω̂A

Bµe
B
ν − ω̂A

Bνe
B
µ, (2.27)

as well as the non-metricity tensor

Q̂µAB :=−ηACω̂CBµ− ηCBω̂
C
Aµ. (2.28)

These are related to the previously defined quantities by

R̂A
Bµν = eAρEB

σR̂ρσµν , R̂µνρσ = EA
µeBν R̂

A
Bρσ, (2.29a)

T̂Aµν = eAρT̂
ρ
µν , T̂µνρ = EA

µT̂Aνρ, (2.29b)

Q̂µAB = EA
νEB

ρQ̂µνρ, Q̂µνρ = eAνe
B
ρQ̂µAB, (2.29c)

so that spacetime and Lorentz indices are simply exchanged
with the help of the tetrad and its inverse. The same convention
may also be applied to any other tensor, by defining

ZA1···An
B1···Bm := eA1

α1 · · ·eAnαnEB1
β1 · · ·EBmβmZα1···αn

β1···βm .
(2.30)

This allows to decompose the spin connection in the form

ω̂A
Bµ =

◦
ωA

Bµ+ K̂A
Bµ+ L̂ABµ, (2.31)

in analogy to the decomposition (2.17) of the affine connection
displayed in section 2.1.4. Here the Levi-Civita spin connec-

tion
◦
ωA

Bµ is obtained from its affine connection counterpart
◦
Γµνρ from definition (2.18) by making use of the tetrad postu-
late (2.25), with the general connection replaced by the Levi-
Civita connection. It then follows that the contortion K̂A

Bµ and
disformation L̂ABµ are again related to their counterparts with
spacetime indices by the tetrad and its inverse using the trans-
formation rule (2.30) for tensor indices.

2.2.3. Local Lorentz transformations andWeitzenböck gauge.
It is important to note that the tetrad eAµ and spin connection
ω̂A

Bµ are not uniquely determined by the metric gµν and affine
connection Γ̂ρµν . From the definition in equation (2.21), one
can see that the metric is invariant, gµν = g ′

µν , if one replaces
the tetrad by

eAµ 7→ e ′Aµ = ΛA
Be

B
µ, (2.32)

where ΛA
B is a local (spacetime point dependent) Lorentz

transformation, i.e. it must satisfy

ηABΛ
A
CΛ

B
D = ηCD. (2.33)

Note, however, that the connection coefficients (2.24) are not
invariant under this transformation of the tetrad alone, unless
the Lorentz transformation is global, ∂µΛA

B ≡ 0. To obtain
invariance of the connection also under local Lorentz trans-
formations, one must additionally transform the spin connec-
tion by the rule

ω̂A
Bµ 7→ ω̂ ′A

Bµ = ΛA
C(Λ

−1)DB ω̂
C
Dµ+ΛA

C ∂µ(Λ
−1)CB.

(2.34)

It thus follows that the tetrad and spin connection which
model a givenmetric-affine geometry are uniquely determined
only up to a local Lorentz transformation, and that any tet-
rad and spin connection related by the transformations (2.32)
and (2.34) define the same metric-affine geometry. Hence,
the tetrad and spin connection variables come together with
a Lorentz gauge symmetry.

The Lorentz gauge freedom is of particular relevance for
metric teleparallelism, with a flat, metric-compatible spin con-
nection. In this case it is always possible to choose a gauge
(at least locally, on a simply connected domain) such that the
spin connection vanishes identically, ωA

Bµ ≡ 0. This gauge is
known as theWeitzenböck gauge. It further follows that in any
other gauge the spin connection takes the simple form

ω ′A
Bµ = ΛA

C∂µ(Λ
−1)CB, (2.35)

and is thus a pure gauge DoF.
It is also helpful to note how the tetrad and spin connection

transform under infinitesimal Lorentz transformations, which
are of the form

ΛA
B = δ AB +λAB , (2.36)
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where the condition (2.33) translates to

ηCD = ηAB
(
δ AC +λAC

)(
δ BD +λBD

)
= ηCD+ 2λ(CD) +O(λ2),

(2.37)

and so λ(AB) = 0. In this case we find the transformation

δλe
A
µ = e ′Aµ− eAµ = λAB e

B
µ, (2.38)

for the tetrad, and

δλω̂
A
Bµ = ω̂ ′A

Bµ− ω̂A
Bµ

=−∂µλAB −ωA
Cµλ

C
B+ωCBµλ

A
C =−DµλAB ,

(2.39)

for the spin connection. We will make use of these relations
later, when we consider the variation of the teleparallel spin
connection and the notion of spacetime symmetries. Dµ is
called the Fock–Ivanenko derivative and is formally defined
in section 3.3.

2.2.4. Differential form formulation. A more compact
description of the relevant objects in the tetrad and spin con-
nection formulation, which can be found mostly in the more
mathematically oriented literature on metric-affine and TG,
makes use of the language of differential forms [49]. We
give a brief guide to the reader on how to translate the most
important quantities and relations from the differential form
formulation to the component notation we use in this review.
The starting point is the fact that the tetrad and the spin con-
nection constitute the components of one-forms eA = eAµ dxµ

and ω̂A
B = ω̂A

Bµ dxµ, where the presence of Lorentz indices
indicates that the former takes values in the Minkowski space,
while the latter takes values in the Lie algebra gl(4) of the gen-
eral linear group. In this language, also the tensorial quantities
we introduced before are expressed as differential forms. In
particular, we have the curvature

R̂A
B :=

1
2
R̂A

Bµν dx
µ ∧ dxν = dω̂A

B+ ω̂
A
C ∧ ω̂C

B, (2.40)

the torsion

T̂A :=
1
2
T̂Aµν dx

µ ∧ dxν = DeA = deA+ ω̂A
B ∧ eB, (2.41)

and finally the non-metricity

Q̂AB := Q̂µAB dx
µ = DηAB = dηAB− ω̂C

A ∧ ηCB− ω̂C
B ∧ ηAC,

(2.42)

where we defined the covariant exterior derivative D. Simil-
arly, the spin connection decomposes in the form

ω̂A
B :=

◦
ωA

B+ K̂A
B+ L̂A

B, (2.43)

using the contortion K̂A
B and disformation L̂A

B. Finally, the
Bianchi identities aremore commonly encountered in the form

DT̂A = R̂A
B ∧ eB, DR̂A

B = 0. (2.44)

However, in this Review we will mostly use the tensor com-
ponent notation introduced earlier, which is more common
in physical applications, and resort to differential forms only
when referring to relevant literature.

2.3. Geometric trinity of gravity

The existence of a unique decomposition (2.17) of the connec-
tion coefficients Γ̂µνρ for every metric-affine geometry leads
to an interesting consequence. It follows that the curvature
tensor R̂µνρσ allows for a similar decomposition

R̂µνρσ =
◦
Rµνρσ +

◦
∇ρD̂

µ
νσ −

◦
∇σD̂

µ
νρ+ D̂µτρD̂

τ
νσ

− D̂µτσD̂
τ
νρ, (2.45)

where we used the shorthand

D̂µνρ = Γ̂µνρ−
◦
Γ
µ
νρ = K̂µνρ+ L̂µνρ, (2.46)

called the distortion tensor. Two special cases of this rela-
tion deserve particular attention, which have in common that
they lead to a vanishing curvature tensor R̂µνρσ ≡ 0. The first
case is given by a metric teleparallel connection Γ̂µνρ ≡ Γµνρ,
which allows to express the Riemann tensor of the Levi-Civita
connection as

◦
Rµνρσ = KµτσK

τ
νρ−KµτρK

τ
νσ +

◦
∇σK

µ
νρ−

◦
∇ρK

µ
νσ,
(2.47)

in terms of the contortion tensor. The second special case is

that of a symmetric teleparallel connection Γ̂µνρ ≡
♢
Γµνρ. In

this case the Riemann tensor is expressed through the disform-
ation tensor as

◦
Rµνρσ =

♢
Lµτσ

♢
Lτ νρ−

♢
Lµτρ

♢
Lτ νσ +

◦
∇σ

♢
Lµνρ−

◦
∇ρ

♢
Lµνσ.

(2.48)

From these relations one further finds that the Ricci scalar can
be expressed as

◦
R= KµρνK

ρν
µ−KµρµK

ρν
ν − 2

◦
∇µK

µν
ν =−T+ 2

◦
∇µTν

νµ,
(2.49)

in the case of metric teleparallelism, and as

◦
R=

♢
Lµνρ

♢
Lρµν −

♢
Lµµρ

♢
Lρνν +

◦
∇ν

♢
Lµ

µν −
◦
∇µ

♢
Lµνν

=−
♢
Q+

◦
∇ν

♢
Qµ

µν −
◦
∇µ

♢
Qµνν , (2.50)

in the symmetric teleparallel case. Recall that the Ricci
tensor is the central element of the gravitational part of the
Einstein–Hilbert action

SEH =
1

2κ2

ˆ
d4x

√
−g

◦
R, (2.51)

of GR. Together with the previous findings, one thus sees that
by assuming a metric or symmetric teleparallel geometry, one
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Figure 5. Trinity of gravity. Arrows indicate the relations (2.49) and (2.50) relating the Ricci scalar of the Levi-Civita connection to the
torsion and non-metricity scalars.

may transform the Einstein–Hilbert action into alternative for-
mulations. For this purpose, note that the expressions (2.49)
and (2.50) for the Ricci scalar both involve a total divergence
part, which turns into a boundary term when these relations
are used in the Einstein–Hilbert action (2.51). Omitting these
boundary terms as well as the matter contribution, one arrives
at the actions

STEGR =− 1
2κ2

ˆ
d4x

√
−gT, (2.52)

of the TEGR, and

SSTEGR =− 1
2κ2

ˆ
d4x

√
−g

♢
Q, (2.53)

of the symmetric teleparallel equivalent of general relativity
(STEGR) [51], respectively. As the nomenclature suggests,
these theories are equivalent to GR in the sense that they lead
to equivalent dynamics for the metric, which is the only fun-
damental field variable in the latter theory. This mutual equi-
valence, which is summarized in figure 5, has been coined the
geometric trinity of gravity [52].

A few comments regarding the mentioned notion of equi-
valence are nevertheless necessary. First, it must be emphas-
ized that in the transition from the Einstein–Hilbert action to
the TEGR or STEGR actions the flat, teleparallel connection
has been employed only in the gravitational part of the action,
where it is used to substitute the Levi-Civita curvature scalar
by the torsion or non-metricity scalars. Thematter action, how-
ever, remains unchanged, and no direct matter coupling to the
teleparallel connections is introduced, in order to preserve the

weak equivalence principle. This means that all matter fields
retain their universal coupling to the metric and possibly its
Levi-Civita connection (in the case of spinor fields), with the
only possible substitution which arises from considering the
metric as a derived quantity obtained from the tetrad instead
of a fundamental field. It then follows that the dynamics of the
matter fields in TEGR and STEGR is unaltered compared to
GR, and also the energy-momentum tensor as the source of
gravity is retained, which establishes the equivalence between
these theories also at the matter side of the gravitational field
equations. Other couplings between matter and the symmetric
teleparallel connection may be conceived [53]; however, these
would exceed the scope of this Review. The coupling between
matter and the metric teleparallel framework will be discussed
further in section 3.2.

Another remarkmust bemade regarding the omission of the
boundary terms in the TEGR and STEGR actions. While this
does not influence the field equations, which are the Euler–
Lagrange equations derived from the action, it does have an
influence when spacetime boundaries are considered. This
is the case, for example, for the Casimir effect, black hole
entropy or Hamiltonian formulation. Hence, attention must be
paid in these cases, and possible non-equivalence may arise.
Here we will not further discuss the STEGR action; TEGR,
however, will be discussed in detail in section 4.3.

Further, as discussed in section 2.2, in the metric telepar-
allel case, in which only torsion is nonvanishing and which
encompasses the TEGR action (2.52), it is more common to
formulate the geometry in terms of a tetrad and spin connec-
tion, so that the metric determinant is replaced by the tetrad
determinant through the relation
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e=
√
−g (2.54)

in the action functional of TG theories.
Finally, we remark that also a more general teleparal-

lel, i.e. flat connection may be employed in the relation in

equation (2.45), in order to express the Riemann tensor
◦
Rµνρσ

in terms of the distortion tensor D̂µνρ, leading to the notion
of the general teleparallel equivalent of general relativity
(GTEGR) [54]. In this case, imposing the flatness condition
R̂µνρσ ≡ 0 implies that the Ricci scalar can be written as

◦
R= D̂µρνD̂ρνµ− D̂µρµD̂

ρν
ν +

◦
∇νD̂

µν
µ−

◦
∇µD̂

µν
ν

=−Ĝ+
◦
∇µ(2T̂ν

νµ+ Q̂ν
νµ− Q̂µνν), (2.55)

where

Ĝ=
1
4
T̂µνρT̂

µνρ+
1
2
T̂µνρT̂

µρν − T̂αµαT̂
βµ
β + Q̂µνρT̂

ρµν

− Q̂ α
µα T̂βµβ + Q̂ααµT̂

βµ
β +

1
4
Q̂µνρQ̂

µνρ

− 1
2
Q̂µνρQ̂

νµρ− 1
4
Q̂ α
µα Q̂µ β

β +
1
2
Q̂ α
µα Q̂ββµ. (2.56)

Omitting the boundary term, as for the TEGR and STEGR
actions, as well as the matter contribution, one thus arrives at
the GTEGR action

SGTEGR :=− 1
2κ2

ˆ
d4x

√
−gĜ. (2.57)

Comparing with figure 5, this theory would be joining the
lower two corners of the triangle. We end this section with
a comment that also more general theories may be conceived,
in which other tensorial quantities mediate the gravitational
interaction, and which still reproduce the Einstein equations as
the metric field equations obtained from the Einstein–Hilbert
action in GR, and that also for theories beyond GR various
equivalent and related teleparallel theories in their different
flavors can be constructed [55].

3. Torsional teleparallel geometries

In this section, we discuss the foundations of TG and how
it connects with a fundamental theory of gauge translations.
We also describe how TG has been used in other branches of
physics and its impact on the formation of gravitational scalar
invariants.

3.1. TG as a gauge theory of translations

Gauge theory is a powerful framework in which to express
physical theories as is well known. In GR, the first attempt in
[56] which led to the forced introduction of tetrads and the
Lorentz group being linked to an antisymmetric gauge cur-
rent. Despite the coupling of gravity to the symmetric energy-
momentum tensor in GR, it is also possible to formulate GR
as a gauge theory of translations [57, 58]. However, TG seems
to find more benefits for this treatment as will be explored in

this section. TG introduces the tetrad fields in a much more
natural way and can be interpreted as a native gauge theory
of translations [33, 36]. Through Noether’s theorem [59] this
results in a covariantly conserved energy-momentum tensor,
which would not necessarily be the case for a gauge theory of
rotation.

Through their existence, tetrads connect a general manifold
to its local Minkowski space coordinates where a gauge trans-
lation transformation will appear as

x̃A → xA+ ϵA, (3.1)

in which ϵA = ϵA(xµ) characterizes the infinitesimal local
transformation. The differential operators PA = ∂A = ∂/∂xA

will then be the generators of these infinitesimal transform-
ations, which straightforwardly satisfy the commutation rela-
tions. In this way, the infinitesimal transformation can be writ-
ten as

δϵx
A = ϵB∂Bx

A. (3.2)

For a generic source field Ψ(x̃A(xµ)), infinitesimal transform-
ation on the local Minkowski space will be

δϵΨ(x̃A(xµ)) = ϵA∂AΨ(x̃B(xµ)), (3.3)

where the Minkowski point xB will appear for every
Minkowski space at point xµ. However, the derivative of this
field will transform as

δϵ (∂µΨ) = ϵA∂A (∂µΨ)+
(
∂µϵ

A
)
∂AΨ, (3.4)

which is only covariant when the parameter ϵA = ϵA(xµ) is a
constant. The second term breaks the gauge invariance and is
removed by the introduction of a gauge potential

Bµ = BAµ∂A, (3.5)

which is a one-form taking values from the Lie algebra of the
translation group. To remedy the gauge invariance violating
term in equation (3.4), the gauge potential can be used to define
the gauge derivative

eµΨ := ∂µΨ+BAµ∂AΨ, (3.6)

where inertial effects are initially ignored for clarity, they are
incorporated into this description in the explanation that fol-
lows. In this description inertial is referring to Lorentz frames
and particularly to the invariance of the theory under the action
of boosts and rotations in a Lorentz framework setting which
is a necessity for any eventual physical theory of gravity. This
derivative directly leads to the correct gauge invariance rela-
tion under an infinitesimal gauge translation

δϵ (eµΨ) = ϵA∂A (∂µΨ) , (3.7)

where the transformation appears as δϵBAν =−∂νϵA(xµ).
Thus, the translational coupling prescription replaces the par-
tial derivative with eµ through

∂µΨ→ eµΨ, (3.8)
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which observes the translational gauge invariance. For an
arbitrary point xµ on the manifold, the covariant derivative eµ
can be written in terms of the local Minkowski space as

eAµ∂AΨ= eµΨ= (∂AΨ)
(
∂µx

A
)
+BAµ∂AΨ, (3.9)

where eAµ = ∂µxA+BAµ is a non-trivial tetrad field. The
close relationship between the manifold and Minkowski space
indices through the tetrad field eAµ is called soldering.

A trivial tetrad would mean Hµ = hAµ∂A (BAµ = ∂µϵ
A),

and so the translational coupling prescription becomes

hAµ∂AΨ→ eAµ∂AΨ, (3.10)

where BAµ 6= ∂µϵ
A for the non-trivial tetrad field, and from

which it follows that

hAµ → eAµ, (3.11)

which is reminiscent of the Minkowski metric being raised to
an arbitrary metric tensor for the general manifold

ηµν → gµν . (3.12)

This is now a consequence of the prescription in
equation (3.11) due to the definitions ηµν = ηABhAµh

B
ν and

gµν = ηABeAµe
B
ν .

Thus far, inertial effects have been ignored to make the
argument clearer for the interpretation of TG as a gauge the-
ory of translations. We can now include inertial effects by
considering arbitrary Lorentz transformations ΛA

B from the
Lorentz groupO(1,3). These transformations only apply to the
local Minkowski space and their index representations, which
means that local coordinates will transform as

xA → ΛA
B(x)x

B = x ′A, (3.13)

so that scalar and tensor fields will similarly transform appro-
priately. Analogously, the gauge potential will also undergo
local Lorentz transformations on its inertial index, meaning
that

BAµ → ΛA
B(x)B

B
µ, (3.14)

will directly lead to the generalization of equation (3.9) to

eµΨ= eAµ∂AΨ= ∂µΨ+ωABµx
B∂AΨ+BAµ∂AΨ, (3.15)

where ωABµ is the teleparallel spin connection, which is a
purely inertial Lorentz connection. By observing the local
Lorentz invariance (such as through the transformation eAµ =

ΛA
Be

′B
µ), it follows that the spin connection takes on compon-

ents as we discussed in section 2.2.3

ωACµ = ΛA
B(x)∂µΛ

B
C (x), (3.16)

wrt the Lorentz transformations, which indeed is totally iner-
tial. The fuller tetrad can be reinterpreted as a local Lorentz
invariant trivial and spin connection pair tetrad

hAµ = ∂µx
A+ωABµx

B =DµxA, (3.17)

which raises the partial derivative to its local Lorentz invariant,
while the non-trivial tetrad also includes the gauge potential

eAµ = hAµ+BAµ, (3.18)

where Dµ is the inertial covariant derivative, i.e. the covari-
ant derivative wrt the Lorentz group which is associated with
the spin connection. Finally, to retain tetrad invariance under
infinitesimal gauge translations (δϵ

(
eAµ
)
= 0) implies that

δϵB
A
µ =−DµϵA, (3.19)

which can be viewed as a generalization of the partial derivat-
ive in equation (3.7).

3.2. Gravitational coupling prescription

In GR, through Einstein’s choice of the Levi-Civita connection
as the expression of geometric deformation (through Riemann
geometry), the coupling prescription associated with gravity
becomes

∂µ →
◦
∇µ, (3.20)

by choice rather than a result of a gauge theory. This then res-
ults in the well known geodesic equation

uµ
◦
∇µu

ν =
d2xν

dλ2
+

◦
Γ
ν
αβ
dxα

dλ
dxβ

dλ
= 0, (3.21)

from which it can be said that in GR gravitation is
not expressed in a force-like manner, i.e. its acceleration

vanishes (
◦
aν = 0). The coupling prescription described in

equation (3.20) is called the minimal coupling prescription
(namely, there the covariant derivative is coupled with the
Levi-Civita connection) since it lays out a scenario where the
spin connection of GR is used, in all other cases such as that in
teleparallel geometries, the coupling prescription is not neces-
sarily minimal [36]. This point is important since the coup-
ling prescription of teleparallel geometries canmake use of the
Levi-Civita connection components, while its spin connection
will always be different to that of GR.

The situation in TG is entirely different in that gravitation
emerges through a gauge theory of translations. In this setting,
the inertial covariant derivative hµ is raised to eµ in the pres-
ence of gravity, leading directly to equation (3.10) where the
inertial covariant derivative is raised to its non-trivial tetrad
field form in the presence of gravitation. The end result is the
translational gauge coupling prescription

hAµ → eAµ. (3.22)

The relationship with the inertial and general manifold metrics
now appear as results of this prescription where

ηABh
A
µh

B
ν → ηABe

A
µe

B
ν , (3.23)

which is equivalent to saying that ηµν is raised to the general
manifold gµν . In this way, we have a direct link between the
metric tensor and the tetrad fields that can be used to relate the
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components of the two objects. Another important feature of
these relations is that the mechanics of metric tensors (such
as ansatz choices) can be used to solve these relations for the
tetrad field components through equation (3.23).

3.3. The field strength of gravity

In the context of the gauge structure of TG, a gauge invariant
field strength can be defined as ameasure of the amount of geo-
metric deformation which is then expressed as a gravitational
or Maxwell-like force in the dynamical equations. Taking the
example of classical electromagnetism, the vector potentialAµ

induces a gauge field strength

Fµν :=
◦
∇µAν −

◦
∇νAµ, (3.24)

on the general manifold, which also obeys field conservation
laws [60]. Now, taking the translational covariant derivative
in equation (3.15), the gauge field strength can be similarly
defined from the gauge derivatives eµ as

[eµ,eν ] = TAµν∂A, (3.25)

where [eµ,eν ] := 1
2 (eµeν − eνeµ), and the translational field

strength is defined as

TAµν := ∂µB
A
ν − ∂νB

A
µ+ωABµB

B
ν −ωABνB

B
µ, (3.26)

and ∂A represents the generators of infinitesimal translations.
While direct, equation (3.26) can also be recast in terms of
the tetrad field eAµ by identifying the vanishing antisymmetric
identity

[Dµ,Dν ]xA ≡Dµ
(
DνxA

)
−Dν

(
DµxA

)
= 0, (3.27)

so that the translational field strength turns out to be expressed
as

TAµν = 2
(
∂[µe

A
ν] +ωAB[µe

B
ν]

)
= ∂µe

A
ν − ∂νe

A
µ

+ωABµe
B
ν −ωABνe

B
µ, (3.28)

which will also inherit the property of invariance under gauge
transformations T ′A

µν = TAµν , where square brackets are used
to denote the antisymmetric operator. Thus, the teleparallel
field strength turns out to be exhibited as an antisymmetric
expression which can be written in terms of only general man-
ifold indices as

Tρµν = E ρ
A TAµν = Γρνµ−Γρµν = 2Γρ[νµ], (3.29)

where Γρµν is the teleparallel connection defined as

Γρνµ := E ρ
A

(
∂µe

A
ν +ωABµe

B
ν

)
≡ E ρ

A DµeAν . (3.30)

In the class of frames in which the spin connection com-
ponents vanish, the connection reduces to Γρνµ := E ρ

A ∂µe
A
ν

which will later be introduced as the Weitzenböck gauge con-
nection, so that the torsion tensor becomes

TAµν = ∂µe
A
ν − ∂νe

A
µ, (3.31)

which acts as the field strength in TG. Another important fea-
ture of this geometric formulation is that the Riemannmeasure
of curvature vanishes for any frame in this regime, namely

RABνµ ≡ ∂νω
A
Bµ− ∂µω

A
Bν +ωACνω

C
Bµ−ωACµω

C
Bν = 0,

(3.32)

which can be seen as the substitution of the teleparallel spin
connection (3.16) into the metric-affine Riemann tensor in
equation (2.26).

3.4. Inertial and gravitational effects

The concept of inertia played a crucial role in Einstein’s for-
mulation of GR through the application of Mach’s principle
[61, 62]. To this end, Einstein’s attempt was to remove the
privileged role that inertial frames of reference play in clas-
sical mechanics by removing the dependence ofmeasurements
on the choice of coordinates. On the other hand, GR does not
fully resolve the foundational issues at the core of the defini-
tion of inertial such as the need, at times, to include absolute
elements. For instance, consider rotating matter wrt its local
inertial system. At its core, this points to a spacetime structure
that is not entirely governed by matter fields [63, 64].

The dynamical variable in TG for gravitation is the tet-
rad field which builds up to the metric tensor. Given that tet-
rad frames relate the general manifold with their Minkowski
spaces, TG offers a different perspective to this issue at the
core of GR. Consider again the concept of trivial tetrad (hAµ)
and spin connection pairs which relate inertial frames with
their Minkowski spaces. Tetrads can also be represented by
their tetrad fields which represent a basis of vectors for the
tangent space of an arbitrary point xµ on a manifold, i.e.

HA = H µ
A ∂µ and hA = hAµdx

µ, (3.33)

which conversely result in

∂µ = hAµHA and dxµ = H µ
A hA, (3.34)

when requiring that

hA (hB) = δ AB . (3.35)

This orthogonality condition directly leads to tetrad frame con-
ditions

hAµH
ν
A = δνµ and hAµH

µ
B = δAB . (3.36)

These frames and their associated conditions hold for any dif-
ferentiable manifold. Another way of characterizing the trivial
tetrad and spin connection pairs is through the so-called struc-
ture coefficients which are defined through the commutation
relation [35, 65]

[HA,HB] = fCABhC, (3.37)

which can also be interpreted as the coefficients of the
anholonomy of the tetrad fields. The dual expression, where
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the inverse tetrads are used, is found using the Cartan struc-
ture equation

dhC =−1
2
fCABh

A ∧hB =
1
2

(
∂µh

C
ν − ∂νh

C
µ

)
dxµ ∧ dxν ,

(3.38)

where the exterior (wedge) product is used. The structure coef-
ficients can be related to the tetrad frames straightforwardly
through

fCAB ≡ [HA,HB]hC (3.39a)

= H µ
A H ν

B

(
∂νh

C
µ− ∂µh

C
ν

)
, (3.39b)

where the last equations is a result of the orthogonality condi-
tions equation (3.36).

A special class of frames h ′
A exist in which

f ′CAB = 0, (3.40)

which directly sets dh ′
A = 0 meaning that h ′

A can be expressed
in closed differential form, and that for some x ′A, h ′A = dx ′A

locally. In this case, the basis h ′A turns out to be integrable, or
holonomic. However, hA refers to holonomic frames meaning
that all such frames observe this vanishing property. On the
other hand, non-holonomic frames do not generally observe
this vanishing condition, and indeed fCAB 6= 0 in such cases.

In special relativity, the inertial effects within a frame can
be represented by a so-called spin connection which is a
Lorentz connection coming from the Lorentz group of trans-
formations. As is well known, these effects do not occur in
every inertial frame such as in Minkowski frames. Spin con-
nection components can be generically induced by first con-
sidering a general coordinate system xµ with the holonomic
form

h ′A
µ = ∂µx

′A, (3.41)

where x ′A = x ′A(xµ) is position dependent. Taking an arbitrary
Lorentz transformation ΛA

B of vectors in this basis results in

xA = ΛA
B(x)x

′B, (3.42)

so that the frame gets transformed to

hAµ = ΛA
B(x)h

′B
µ. (3.43)

By writing this transformation in terms of the transformed xA,
the tetrad frame can be written in terms of the Lorentz matrices
as

hAµ = ΛA
B(x)h

′B
µ = ΛA

B(x)∂µ
(
Λ B
C (x)xC

)
= ∂µx

A+ωACµx
C,

(3.44)

where the inverse transformation of equation (3.43) and iden-
tity ΛA

BΛ
B

C = δ AC was used, and where the spin connection is
explicitly defined as

ωACµ := ΛA
B(x)∂µΛ

B
C (x), (3.45)

which has already been used in the general geometry frame-
work around equation (2.35). We can recognize this as the
inertial covariant derivative from equation (3.17) which lets
us write hAµ ≡DxA.

In this way, by initially considering an inertial frame, in
which ω ′A

Bµ = 0, Lorentz transformations can be performed in
a local (position-dependent) way throughΛA

B which produces
nonvanishing spin connection components. For each class of
frames, a global (position-independent) Lorentz transforma-
tion (ΛA

B = constant) can relate the frames for every global
point.

Noticing the property between Lorentz transformed trivial
frames

ΛA
B = hAµH

′ µ
B , (3.46)

which is derived through the transformation in equation (3.43).
The coefficients of the anholonomy can then be written as
Lorentz matrices by appropriately transforming some of the
tetrad frames in equation (3.39b) to give

fCAB = ωC
BA−ωC

AB, (3.47)

where the general manifold index was raised with the inverse
tetrad though ωC

BA = h µ
A ωC

Bµ.
For inertial frames hAµ which are related by the Lorentz

connection, i.e.

TAνµ ≡ ∂νh
A
µ− ∂µh

A
ν +ωACνh

C
µ−ωACµh

C
ν = 0, (3.48)

which one would expect for such frames. This condition guar-
antees that gravity vanishes, however, frames do exist that
exhibit nonvanishing torsion tensor components but which do
not feature non-inertial frames.

Considering again the spin connection, one can show that
it features an antisymmetry in its first two indices

ωABµ = ηADω
D
Bµ = ηADΛ

D
C∂µΛ

C
B =−ηBEωEAµ =−ωBAµ,

(3.49)

which leads to a number of properties. By taking three differ-
ent combinations of the vanishing torsion tensor together with
the antisymmetry property for the spin connection, it follows
that

0= f C
B A+ f C

A B− fCBA = ω C
BA −ω C

B A+ω C
AB

−ω C
A B−

(
ωC

AB−ωC
BA

)
, (3.50)

which directly gives the inverse relation to equation (3.47) as

ωABC =
1
2

(
f A
B C+ f A

C B− fA BC
)
. (3.51)

Through the spin connection, TG observes local Lorentz
invariance in all relations which is a fundamental symmetry of
Nature. Local Lorentz invariance should not produce dynam-
ics in a gravitational theory, but in TG it does produce a second
coupling prescription which will be related by the strong equi-
valence principle. This emerges as a correction term to the
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derivative terms for inertial frames which are raised to Lorentz
covariant derivatives. To see this transition, consider a vector
field ϕ ′C. Using the tetrad field

h ′
A = δµA∂µ, (3.52)

which acts on the vector field as

h ′
Aϕ

′C = δµA∂µϕ
′C. (3.53)

Transforming to an unprimed frame through ϕC = Λ C
D (x)ϕ ′D

gives

h ′
Aϕ

′C = δµA∂µ
(
Λ C
D ϕD

)
(3.54a)

= ΛB
AΛ

C
D ∂Bϕ

D+
(
ΛB

A∂BΛ
C

D

)
ϕD (3.54b)

= ΛB
AΛ

C
D

(
∂Bϕ

D+ωDEBϕ
E
)

(3.54c)

= ΛB
AΛ

C
D

(
∂Bϕ

D+
1
2

(
f D
E B+ f D

B E− fD EB
)
ϕE
)
.

(3.54d)

In terms of the vector representation of the Lorentz gener-
ators

(SBC)
A
D = δ BDδ

A
C − ηCDη

AB, (3.55)

the coupling prescription takes the form

∂Bϕ
D+

1
4

(
f D
E B+ f D

B E− fD EB
)
SEFϕ

F, (3.56)

where an extra half appears due to the Lorentz generators. For
a scalar field Ψ

∂µΨ→DµΨ (3.57a)

= ∂µΨ+
1
2
ωC

BµS
B

C Ψ (3.57b)

= ∂µΨ+
1
2
hAµω

C
BAS

B
C Ψ

= ∂µΨ+
1
4
hAµ
(
f C
B A+ f C

A B− fCBA
)
S B
C Ψ, (3.57c)

where S C
B now represents the Lorentz generators for the Ψ

field. The second term in the last relation is a compensating
term that imposes the local Lorentz covariance of the deriv-
ative in the new inertial frame. This coupling prescription is
hidden in the internal structure of GR and does not play an act-
ive role in many of its considerations. Thus in TG, the strong
equivalence principle takes on a more active role in the con-
struction of the theory. This concept is encapsulated in the idea
behind the general covariance principle where Lorentz covari-
ant formula in special relativity can be raised to its non-inertial
form by the coupling prescription.

The Lorentz covariant derivative can then be raised to
its non-inertial counterpart by the coupling principle in
equation (3.22) which gives

∂µΨ→DµΨ= ∂µΨ+
1
4
eAµ
(
f C
B A+ f C

A B− fCBA
)
S B
C Ψ,

(3.58)

where the coefficients of the anholonomy are now raised to

fCAB = E µ
A E ν

B

(
∂νe

C
µ− ∂µe

C
ν

)
, (3.59)

where we recall the definition in equation (3.39b).
A natural consequence of the coupling prescription is that

the torsion no longer vanishes organically in equation (3.48)
meaning that the relation between the structure coefficients
of the anholonomy and spin connection components in
equation (3.47) now takes the form

fCAB = E µ
A E ν

B

(
TCνµ−ωC

Dνe
D
µ+ωC

Dµe
D
ν

)
, (3.60)

or, in a more simplified form

fCAB+TCAB = ωC
BA−ωC

AB, (3.61)

where TCAB is the torsion tensor in inertial indices. This gives a
direct relationship between the structure coefficients, the tor-
sion tensor and the spin connection. Similarly, the Riemann
tensor in equation (3.32) is found to be

RABCD = h ν
C ∂νω

A
BD− h µ

D ∂µω
A
BC+ωAECω

E
BD

−ωAEDω
E
BC−ωABE f

E
CD. (3.62)

The same combination of indices as in inverse relation in
equation (3.51) for the nonvanishing torsion tensor results in

1
2

(
f C
B A+ f C

A B− fCAB
)
= ωC

BA+KC
BA, (3.63)

where the so-called contortion tensor is defined as

KC
BA :=

1
2

(
T C
B A+T C

A B−TCAB
)
, (3.64)

which aligns with a TG version of the general contortion
tensor in equation (2.19). Thus, the coupling prescription in
equation (3.58) can be written fully as

∂µΨ→ ∂µΨ+
1
2

(
ωC

Bµ+KC
Bµ

)
S B
C Ψ, (3.65)

where full gravitational coupling prescription is laid out and
where the Lorentz part of this coupling prescription is separ-
ated from the gravitational sector.

In GR, the spin connection takes the form of the full expres-
sion of the coefficients of the anholonomy in equation (3.63)
as [35]

◦
ωC

AB =
1
2

(
f C
B A+ f C

A B− fCAB
)
, (3.66)

which is the Levi-Civita spin connection, and results in the
fundamental identity

◦
ωC

AB = ωC
AB−KC

AB. (3.67)

The gravitational coupling prescription in equation (3.65) can
equivalently be written as

∂µΨ→ ∂µΨ+
1
2

◦
ωC

BµS
B

C Ψ, (3.68)
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which is the coupling prescription for GR. Thus, both
curvature- and torsion-based approaches to gravity utilize the
same coupling prescription, and are thus both consistent with
the principles of covariance and strong equivalence.

The potential for separating inertial effects is revealed here
as a fundamental difference between torsional- and curvature-
based prescriptions for gravity. In the Levi-Civita spin connec-

tion
◦
ωC

Bµ both gravitational and inertial are combined while
in torsional gravity, the inertial effects of the spin connection
ωC

Bµ is interpreted as being separated from the gravitational
effects represented by the contortion tensor KC

Bµ. In fact, for a
local frame in which the Levi-Civita spin connection vanishes,
the identity implies that the inertial and gravitational effects
exactly compensate for each other.

The separation of gravitational and inertial effects can
immediately be seen by a free particle in Minkowski space-
time in which

0=
duA

dτ
=

dxµ

dτ
∂uA

∂xµ
= uµ∂µu

A, (3.69)

where the four-velocity ua is subject to the Lorentz coupling
prescription, and τ is the proper time. In the GR case, the coup-
ling prescription in equation (3.68) which together with the
Lorentz generators in equation (3.55) tuns out to be

uµ
(
∂µu

A+
1
2

◦
ωC

Bµ(S
B

C )ADu
D

)
= 0, (3.70)

giving

uµ
(
∂µu

A+
◦
ωABµu

B
)
= 0, (3.71)

where the particle motion is dictated through the Levi-Civita
spin connection rather than a separate force representing grav-
ity. This again implies that the inertial and gravitational effects
within GR are compounded together. In TG, the coupling pre-
scription in equation (3.65) gives a different picture where

uµ
(
∂µu

A+
1
2

(
ωC

Bµ−KC
Bµ

)
(S B

C )ADu
D

)
, (3.72)

simplifies to

uµ
(
∂µu

A+ωABµu
B
)
= KADµu

µuD, (3.73)

where the effect of gravitation on the motion of a particle is
now totally different in which the gravitational force is act-
ing through the contortion tensor term. The geodesic equations
in equations (3.71) and (3.73) are equivalent by the identity
in equation (3.67) but represent the fundamental difference
between the effects of gravitation in GR and TG.

3.5. Coupling to matter

In TG, the curvature associated with the Levi-Civita connec-
tion is replaced by torsion associated with the teleparallel con-
nection. The gravitational sector can be readily reformulated

in this framework, as is laid out in this work. However, the
coupling to matter must remain consistent across these pos-
sible choices when generalizing the geometric underpinnings
of gravitation. As pointed out in [52] there are two important
subtleties to bear in mind when considering the matter sector
in a gravitational field, namely

• Ambiguities in the coupling to matter may arise when chan-
ging the geometry;

• The treatment of bosonic and fermionic fields may lead to
important differences that may lead to inconsistencies.

Considering a point particle in GR

S = mc2
ˆ

dτ. (3.74)

For fixed parametrization [66], this will follow the regu-
lar geodesic equation described in equation (3.71), and will
depend on the Levi-Civita connection. However, in other geo-
metric theories of gravity this point needs to be revisited
as discussed in section 3.2. This is important since observa-
tional constraints on the paths of test particles have become
extremely precise, making this a crucial test for the formula-
tion of any geometric theory of gravity.

The second difference to consider is the distinction between
bosonic and fermionic fields since the former couples to the
metric and is described by tensor representations while the
latter also couples to the connection and is represented by
spinors. Through the spinor representation, tetrads together
with their respective gravitational spin connections are utilized
to describe fermions.

In GR, the minimal coupling prescription is presumed
where

ηµν → gµν and ∂µ →
◦
∇µ, (3.75)

where the Levi-Civita connection,
◦
Γσµν , is taken. Moreover,

the condition of vanishing torsion and non-metricity forces the
matter Lagrangian to take the regular form, Θµν = −2√

−g
δLm
δgµν

(also given in equation (1.10)). If the Lagrangian had some

dependence on the connection, Lm = Lm(gµν ,
◦
Γσµν ,ϕ), would

lead to a nonvanishing hypermomentum that would necessar-
ily have to be equal to zero once the conditions of vanishing
torsion and non-metricity are imposed [52].

In TG, the change in connection associated with the cov-
ariant derivative and thus mediation of the gravitational field
imply a natural choice for the coupling to matter where the
covariant derivative assumes the teleparallel connection which
is torsionful and satisfies vanishing curvature and zero metri-
city. However, this is immediately problematic, for instance
consider the case of bosons through the simple example of
photons. In the absence of gravitation, the field strength is
described by

Fµν = 2∂[µAν], (3.76)
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where Aν is the vector potential associated with the electro-
magnetic field. If the teleparallel connection were taken for
the coupling prescription then this would give

Fµν → 2∇[µAν] = 2∂[µAν] +TσµνAσ, (3.77)

in a gravitational field. This would mean that the photon is
non-minimally coupled to torsion and does not observe the
U(1) gauge symmetry in its standard form which would be
extremely problematic.

On the other hand, fermions would also pose a serious prob-
lem to a matter coupling prescription that takes on the telepar-
allel connection. Consider the Dirac equation [67]

iγ AE µ
A Dµψ−mcψ = 0, (3.78)

where γA are the Dirac matrices, m is the mass parameter, and
ψ is the fermionic field. The fermionic covariant derivative is
given by

Dµ = ∂µ−ωABµ [γA,γB] , (3.79)

which arises so that a well-defined Dirac equation that
describes the dynamics of spinor fields on a general spacetime
[53]. It is this covariant derivative that is the source of the
problem with regard to using the teleparallel connection for
fermionic fields. In GR, the spin connection contains terms
beyond the Lorentz connection and so provides the coupling
required with the Levi-Civita connection. The spin connection
of TG is totally inertial and can be set to zero under an appro-
priate gauge condition which means that the connection will
no longer be coupled to the fermionic fields. This last point
will mean that the energy-momentum tensor will not always
be conserved which will produce an inconsistent theory.

One option is to choose the coupling prescription ∂µ → ∂µ
for bosons and ∂µ → Dµ, where Dµ is a fermionic covariant
derivative that retains the connection coupling such that the
energy-momentum tensor for matter is conserved. However,
this would be quite arbitrary as a coupling prescription choice.
It is for these reasons that the minimal coupling description
for gravitation, as described in section 3.2, is identified for all
matter coupling in TG [68, 69]. As examined below, it is this
choice that most consistently provides a sound avenue for con-
structing teleparallel theories of gravity [70], i.e. we adopt the
coupling prescription

hAµ → eAµ, (3.80a)

ηµν → gµν , (3.80b)

which is first introduced in equation (3.10). A consequence
of this is that the contortion tensor identity presented in
equation (3.67) can now be written as

Kρµν = Γρµν −
◦
Γ
ρ
µν =

1
2
(Tµ

ρ
ν +Tν

ρ
µ−Tρµν) , (3.81)

where the contortion tensor is recognized as the difference
between the teleparallel and Levi-Civita connections respect-
ively. Also, the definition in equation (3.64) was used.

3.5.1. Scalar fields. Considering the simple but revealing
case of a linear scalar field where the Lagrangian is given by

Lϕ :=
1
2

(
ηµν∂µϕ∂νϕ−µ2ϕ2

)
, (3.82)

which is defined on the tangent space, µ= mc/ℏ12 is the mass
associated with the scalar field, and the ϕ= ϕ(x) position
dependence is suppressed for brevity’s sake. The Lorentzian
Klein–Gordon equation is produced by taking a variation wrt
ϕ giving [67]

∂µ∂
µϕ+µ2ϕ= 0. (3.83)

By adopting the minimal coupling presenting in
equation (3.80), the Lagrangian density is promoted to

Lϕ =
1
2

(
gµν

◦
∇µϕ

◦
∇νϕ−µ2ϕ2

)
, (3.84)

where
◦
∇µϕ= ∂µϕ since ϕ is a scalar. Taking the variation of

this Lagrangian wrt the scalar field produces the gravitational
Klein–Gordon equivalent

◦
□ϕ+µ2ϕ= 0, (3.85)

where
◦
□ϕ= e−1∂σ (e∂σϕ) is the Laplace–Beltrami operator

[36], and e= det
(
eAµ
)
=
√
−g. However, by noticing that

∂µe= ∂µ
√
−g= 1

2
√
−g

∂µg=
1
2

√
−ggαβ∂µgαβ

=
√
−g

◦
Γ
σ
σµ = e

◦
Γ
σ
σµ = e

(
Γσµσ −Kσµσ

)
, (3.86)

implies that the Laplace–Beltrami operator on the scalar field
can be written as

◦
∇µ

◦
∇µϕ=

◦
∇µ∂

µϕ=
◦
□ϕ= e−1 [e∂µ (∂

µϕ)+ (∂µϕ)∂µe]
(3.87a)

= e−1
[
e∂µ (∂

µϕ)+ (∂µϕ)e
(
Γσµσ −Kσµσ

)]
(3.87b)

=
[
∂µ+Γσµσ −Kσµσ

]
∂µϕ. (3.87c)

Thus, the teleparallel Klein–Gordon equation (3.85) can be
written as(

∂µ+Γσµσ −Kσµσ
)
∂µϕ+µ2ϕ= 0, (3.88)

from which it follows scalar fields couple to torsion through
the contortion tensor.

3.5.2. Fermion fields. The half spin massive particles
are described by the Dirac field which has an associated
Lagrangian

12 We retain SI units for clarity here.
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Lψ :=
icℏ
2

(
ψ̄γ AH µ

A ∂µψ−H µ
A ∂µψ̄γ

Aψ
)
−mc2ψ̄ψ,

(3.89)

in the absence of gravity (where SI units are allowed so that
the appearance of constants in the Dirac equation is clearer to
see), and where ψ̄ denotes he conjugate transpose of ψ. This
produces the flat Dirac equation

iℏγ AH µ
A ∂µψ−mcψ = 0. (3.90)

Now using the spinor field covariant derivative defined in
equation (3.79), the Dirac field Lagrangian that is minimally
coupled to torsion will be transformed to

Lψ =
icℏ
2

(
ψ̄γ AH µ

A ∂µψ−H µ
A ∂µψ̄γ

Aψ
)
−mc2ψ̄ψ

(3.91a)

→ icℏ
2

(
ψ̄γ AE µ

A Dµψ−E µ
A Dµψ̄γ

Aψ
)
−mc2ψ̄ψ, (3.91b)

which conveniently separates the Levi-Civita and purely tor-
sional terms, giving

Lψ =
icℏ
2

(
ψ̄γ AE µ

A

◦
∇µψ−E µ

A

◦
∇µψ̄γ

Aψ

−eaµ̄gµ̄µebλecρ̄gρ̄ρKλρµ{γa, [γc,γc]}ψ
)
−mc2ψ̄ψ,

(3.92)

where {γa,γb}= 2γ(aγb). Using several identities relating the
Dirac matrices, it can be shown that [53]

{γa, [γc,γc]}= 4iϵ d
abc γdγ

5, (3.93)

where ϵABCD is the Levi-Civita symbol, and where the Lag-
rangian reduces to

Lψ =
icℏ
2

(
ψ̄γ AE µ

A

◦
∇µψ−E µ

A

◦
∇µψ̄γ

Aψ

−2iϵλρµνTλρµψ̄γ
5γνψ

)
−mc2ψ̄ψ. (3.94)

The teleparallel Dirac Lagrangian can be recast in terms
of the irreducible contributions to the torsion tensor. In
section 5.2.1, the irreducible nature of the torsion tensor will
be further probed. For the purpose of the present discussion,
consider the decomposition of the torsion tensor

Tλµν =
2
3

(
tλµν − tλνµ

)
+

1
3

(
δλµvν − δλν vµ

)
+ ϵλµνρa

ρ,

(3.95)

where aµ = 1
6ϵµνσρT

νσρ, vµ = Tσσµ and tσµν =
1
2 (Tσµν +Tµσν)+ 1

6 (gνσvµ+ gνµvσ)− 1
3gσµvν are the

axial, vector and purely tensorial parts of the torsion tensor as
discussed in equation (5.6). By considering the symmetries of
the torsion tensor, the Dirac Lagrangian can be further reduced
to [53]

Lψ =
icℏ
2

(
ψ̄γ AE µ

A

◦
∇µψ−E µ

A

◦
∇µψ̄γ

Aψ− 2iψ̄γ5γµaµψ
)

−mc2ψ̄ψ, (3.96)

where it can be noted that the Dirac spinors couple to the
axial part of the torsion tensor only, and so the other parts of
the torsion tensor can vary freely without altering the fermi-
onic sector. This is an important property to identify, it is also
important to point out that ultimately, the Dirac equation will
have the same solutions since TEGR is dynamically equivalent
to GR, and so the differences we recognize will only pertain
to the way that the TG contributions reproduce the standard
equation.

3.5.3. Boson fields. A large class of boson fields permeate
through the standard model of particle physics with the most
prominent being the photon under spin 1 representation of the
Lorentz group. We consider this example to show the general
matter coupling for bosonic fields in teleparallel geometries
[53, 71]. Taking the four-potential Aµ, the electromagnetic
tensor can be written as [60]

Fµν = ∂µAν − ∂νAµ, (3.97)

in the absence of gravity on the tangent space. By this con-
struction, it immediately follows that the Bianchi equation
below is satisfied by this field, i.e.

∂µFνσ + ∂σFµν + ∂νFσµ = 0, (3.98)

while the electromagnetic Lagrangian

LEM :=−1
4
FµνF

µν , (3.99)

produces the field equations

∂µF
µν = 0, (3.100)

when varied wrt the four-potential. Together equations (3.98)
and (3.99) constitute the source-less Maxwell equations [60].
Within the Lorentz gauge, where ∂µAµ = 0, equation (3.99)
directly leads to the wave equation

∂σ∂
σAµ = 0. (3.101)

These Lorentz equations can be raised to their gravita-
tional analogues by applying the coupling prescription in
equation (3.80) so that

∂σA
µ →

◦
∇σA

µ = ∂σA
µ+

(
Γµνσ −Kµνσ

)
Aν . (3.102)

Given the way that the electromagnetic tensor is defined, it can
be written as

Fµν =
◦
∇µAν −

◦
∇νAµ = ∂µAν − ∂νAµ, (3.103)

which retains the form of the electromagnetic tensor as in
Minkowski space, and where the second equation is the result
of the difference of the terms in the definition being symmetric.
Naturally, this means that the same Bianchi identities will con-
tinue to be satisfied, namely ∂µFνσ + ∂σFµν + ∂νFσµ = 0.
However, the Lagrangian will be altered such that

LEM =−1
4
FµνF

µν , (3.104)
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which produce

◦
∇µF

µν = 0, (3.105)

when varied wrt the four-potential. This constitutes the second
part of Maxwell’s equations in a teleparallel setting.

In this setting, the Lorentz gauge (
◦
∇µAµ = 0) can only be

applied when the commutator on the four-potential is con-
sidered since the covariant derivatives are not commutative,
i.e.[ ◦
∇µ,

◦
∇ν

]
Aµ =

◦
∇µ

◦
∇νA

µ−
◦
∇ν

◦
∇µA

µ =
◦
RµνA

µ =−PµνAµ,
(3.106)

where Pµν := Pσµνσ and is defined by the Riemann tensor
as calculated using both the teleparallel and Levi-Civita
connections

0≡ Rσµνρ =
◦
Rσµνρ+Pσµνρ, (3.107)

where the contortion tensor in equation (3.64) leads to a purely
teleparallel definition of Pσµνρ through

Pσµνρ := ∂νK
σ
µρ− ∂ρK

σ
µν +ΓσθνK

θ
µρ−ΓσθρK

θ
µν

−ΓθµνK
σ
θρ+ΓθµρK

σ
θν +KσθρK

θ
µν −KσθνK

θ
µρ.

(3.108)

In this context, the teleparallel Maxwell equation in
equation (3.105) reduces to [36]

◦
∇µ

◦
∇µAν +PνµA

µ = 0, (3.109)

where a coupling with the teleparallel connection appears
while continuing to satisfy the gauge invariance of the Max-
well equations. Comparing to standard gravity through the
equivalency in equation (3.107), the same action is observed
for the Levi-Civita connection in

◦
∇µ

◦
∇µAν −

◦
RµνAµ = 0, (3.110)

where the coupling also appears only in terms of the Levi-
Civita connection.

More generally, the teleparallel coupling prescription in
equation (3.80) has not been widely studied in the context of
other bosonic fields. It would be interesting to further investig-
ate how this coupling prescription may lead to further probes
of TG.

3.5.4. Effects on the geodesic equation. The coupling pre-
scription detailed in equation (3.80) describes how matter
couples to the geometry of gravity. In sections 3.5.1–3.5.3, the
cases of scalar fields, fermions and bosonic fields are explored
respectively through the TG analogues of the Klein–Gordon,
Dirac, and Maxwell equations. In these cases, the consistency
of the theory is preserved by taking the Levi-Civita covariant
derivative as the teleparallel coupling to matter.

An important nuance takes place when considering the
paths of particles in gravitational theories based on non-
Riemannian geometry. Given a Levi-Civita covariant derivat-

ive,
◦
∇µ, a tangent vector field, ξσ = dxσ

dτ , is said to be an auto-
parallel of Dµ provided that it remains parallel to itself along
the length of the path [72, 73]

ξσ
◦
∇σξ

µ = 0. (3.111)

Autoparallels generalize the concept of a straight line to a gen-
eral affine spacetime, while geodesics define the shortest path
between two points. However, geodesics require a determin-
ation of length such as the metric tensor in Riemannian geo-
metries. In GR, the Levi-Civita covariant derivative

◦
∇µξσ = ∂µξσ −

◦
Γ
ρ
µσξρ, (3.112)

results in the same equation when considering either geodesic
or autoparallel equations, given by

d2xµ

dτ 2
+

◦
Γ
µ
αβ

dxα

dτ
dxβ

dτ
= 0, (3.113)

which is the well known equation that describes the paths that
test particles take.

The teleparallel coupling prescription means that the
geodesic equation in equation (3.113) is transformed by
equation (3.81) to

d2xµ

dτ 2
+Γµαβ

dxα

dτ
dxβ

dτ
= Kµαβ

dxα

dτ
dxβ

dτ
, (3.114)

which is the result of the transformation from the curvature-
based Levi-Civita connection to the torsion-based teleparal-
lel connection. Thus, the geodesic equation in GR is now
transformed into a Lorentz-like equation where a force term
appears on the RHS featuring the contortion tensor which
drives test particle paths on the LHS. Importantly, both
equations represent the same paths and so feature the same
solutions albeit from different perspectives. This equation
highlights an important property to the GR geodesic equation
in that it recovers a Lorentz force-like form in that instead
of the geometry determining the path of test particles, these
particles are acted upon by a force-like contribution, in the
form of the contortion tension, which acts on the test particles
as a force term would.

For generalized teleparallel theories, the free fall paths
of particles continues to be determined by equation (3.114)
where the theory determines the particular geometry of the
spacetime.

3.5.5. A note on the energy-momentum tensor. Consider a
matter action (1.9)

Sm :=

ˆ
d4x

√
−gLm =

ˆ
d4xLm, (3.115)

which can be minimally coupled to any teleparallel theory of
gravity, and where Lm and Lm are the Lagrangian density and
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Lagrangian respectively. The matter section is treated using
the minimal coupling description (see section 3.2 [53]). Thus,
the general matter Lagrangian may depend on the matter con-

tributions ϕ and both the tetrad eAµ and connection
◦
Γρµν . By

taking variations wrt the tetrad and connections leads to the
definition of the regular energy-momentum tensor

Θµν :=
−2√
−g

δLm

δgµν
= eAµ

(
1
e
δLm

δeAν ′

)
gνν ′ := eAµΘA

ν ′
gνν ′ ,

(3.116)

from which we denote the energy-momentum trace as Θ=
Θµµ, and the hypermomentum as

∆ µν
ρ :=

δSm

δ
◦
Γ
ρ
µν

. (3.117)

In principle, the hypermomentum contributes to a connec-
tion field equation in the same way that the regular energy-
momentum tensor contributes to the metrical (tetrad) variation
field equation. As in the vast majority of the literature, we take
a vanishing hypermomentummeaning that thematter fields are
assumed to not couple to the connection. This will incur some
constraints on the matter section (such as with fermions which
do have nonzero hypermomentum due their coupling with the
axial torsion). However, this effect is largely suppressed in real
systems and is ignored in most works within and outside of
TG.

3.6. Symmetries of teleparallel geometries

As introduced in section 2.2, teleparallel theories have the tet-
rads and spin connection as their fundamental variables. Then,
the notion of symmetries in TG should be taken carefully
since, differently to purely metric based theories (as GR), now
both quantitiesmay ormay not respect the symmetries of a cer-
tain spacetime. This study was fully described in [74] where
it was assumed that both the tetrads and the teleparallel con-
nection satisfy these symmetries. A recent quick summary of
these results as long as some applications were also presented
in the recent paper [75].

In the following, we explain how these symmetries can be
connected to ansatz choices for the tetrad and spin connec-
tion. Let us start by defining what symmetries are in TG. A
geometric object (on the manifold M) will be invariant under
the group action φ : G×M→M, whereG being a Lie group
on M. Thus, the symmetry of TG geometries is defined as a
group action φ such that both the metric and affine connection
are invariant. For practical reasons, it is convenient to consider
infinitesimal symmetries to find out the symmetries underly-
ing a certain teleparallel theory. To do this, one can use the Lie
derivatives wrt a vector Xξ ∈ VectM acting on both quantit-
ies, which acting on the metric and the connection give us the
following

(LXξ
g)µν = Xρξ∂ρgµν + ∂µX

ρ
ξgρν + ∂νX

ρ
ξgµρ, (3.118a)

(LXξ
Γ)µνρ = Xσξ ∂σΓ

µ
νρ− ∂σX

µ
ξΓ

σ
νρ+ ∂νX

σ
ξΓ

µ
σρ

+ ∂ρX
σ
ξΓ

µ
νσ + ∂ν∂ρX

µ
ξ (3.118b)

=∇ρ∇νX
µ
ξ −∇ρ(X

σ
ξ T

µ
νσ), (3.118c)

where we have used the flat condition Rµνρσ ≡ 0 (see
equation (2.26)). It is worth mentioning that in the stand-
ard case where the connection is the Levi-Civita one, if
one assumes that the metric is invariant under a group G,
(LXξ

g)µν = 0, it follows that the Levi-Civita connection is

also invariant under the groupG,meaning that (LXξ

◦
Γ)µνρ = 0.

This property is true since the Levi-Civita connection depends
directly on the metric. However, for the teleparallel con-
nection, if we assume (LXξ

g)µν = 0, it does not mean that
(LXξ

Γ)µνρ = 0. Thus, these two quantities are zero if the met-
ric and spin connection are invariant under the action of the
group G. Since the TG fundamental variables are the tetrads
and spin connection, one easily finds that the Lie derivatives
acting on them are

(LXξ
e)Aµ = Xνξ∂νe

A
µ+ ∂µX

ν
ξ e

A
ν ,

(LXξ
ω)ABµ = Xνξ∂νω

A
Bµ+ ∂µX

ν
ξω

A
Bν . (3.119)

To fulfill the conditions (LXξ
g)µν = (LXξ

Γ)µνρ = 0 (invari-
ance under G), one then requires

(LXξ
e)Aµ =−λA

ξ Be
B
µ, (LXξ

ω)ABµ = Dµλ
A
ξ B, (3.120)

where Dµλ
A
ξ B = ∂µλ

A
ξ B+ωA

Cµλ
C
ξ B−ωCBµλ

A
ξ C was used

and λξ is the local Lie homomorphism (see [76]) given by

λξ(x) =
d
dt
Λξ̂(t)(x)

∣∣∣∣
t=0

. (3.121)

Now, one can use local Lorentz transformations (for both the
tetrads and spin connection) and choose a specific gauge ΛA

B

where the spin connection ω ′A
Bµ (Weitzenböck gauge) van-

ishes to simplify the above conditions. After doing this, one
gets that the conditions (3.120) become

(LXξ
e ′)Aµ =−λ ′ A

ξ Be
′b
µ, 0≡ (LXξ

ω ′)ABµ = ∂µλ
′ A
ξ B.

(3.122)

One can notice that in the Weitzenböck gauge, it is much
easier to solve the conditions in such a way that both the met-
ric and the connection are invariant under the group action.
We can define symmetric tetrads as the tetrads satisfying the
above conditions, leading to (LXξ

g)µν = (LXξ
Γ)µνρ ≡ 0, that

are related by global Lorentz transformations

Λ̄
′
FB

A = ΛB
DΛA

CΛ
′
FD

C. (3.123)

This condition is very important since using it, one is able
to find the symmetric tetrads that are compatible with the
underlying symmetries. Since all computations are easier in
the Weitzenböck gauge, we will omit the primes when we are
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computing the symmetries in this case and whenever we per-
form a Lorentz transformation, the transform quantities (tetrad
and spin connection) will be denoted with the primes.

It is also important to mention that the condition
(LXξ

Γ)µνρ = 0 implies that

(LXξ
Γ)σ [µν] =−1

2
(LXξ

T)σµν = 0, (3.124)

which tells us that the torsion tensor also satisfies the sym-
metries. This means that symmetric tetrads will automatic-
ally impose that the torsion tensor also respect the symmetries
assumed.

For any TG theory of gravity constructed from a tetrad, the
torsion tensor and their covariant derivatives (wrt Levi-Civita
or Weitzenböck) will also respect the symmetries, then, the
field equations of this theory Wµν will also satisfy the sym-
metry conditions. In principle, the conditions related to the
connection can be relaxed and only impose the symmetries in
the tetrads (or the metric).

We will now use the definitions above to derive the most
general tetrads in the Weitzenböck gauge satisfying axial,
spherical and cosmological symmetries.

3.6.1. Axial symmetry—SO(2). Let us first derive the sym-
metric tetrad for axial symmetry. We will work in spherical
coordinates (t,r,ϑ,φ). In this case, there is only one generator
given by Xz =−∂φ (only one of the generators of the case in
equation (3.130)) which is related to the SO(2) group. Then,
for axial symmetry, we can choose a local homomorphism in
the domain of the group SO(2). One canonical choice in this
domain gives us that the differential (3.121) acts on the gener-
ator Xz, which in this case gives

λ(Xz) =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 . (3.125)

We can solve the set of equations in equation (3.122) in the
Weitzenböck gauge and find the most general symmetric tet-
rad satisfying axial symmetry. One notices that there are two
possible branches which solve equation (3.122).

The first branch that we label as regular branch, reads as
follows

e0µ = C0
µ, e1µ = C1

µ cosφ−C2
µ sinφ,

e2µ = C1
µ sinφ+C2

µ cosφ, e3µ = C3
µ,

(3.126)

with CA
µ being 16 functions of the coordinates t,r,ϑ. It is

possible to perform a Lorentz transformation for both the tet-
rad (2.32) and the spin connection (2.34) in such a way that
the tetrads do not depend on φ. This can be done by choosing
the following Lorentz transformation

ΛA
B =


1 0 0 0
0 cosφ sinφ 0
0 −sinφ cosφ 0
0 0 0 1

 , (3.127)

and obtain another tetrad-spin connection pair satisfying axial
symmetry

e ′0µ = C0
µ, e ′1µ = C1

µ, e ′2µ = C2
µ, e ′3µ = C3

µ,
(3.128a)

ω ′1
2φ =−ω ′ 2

1φ =−1. (3.128b)

The second branch that we label as solely axially symmetric
branch which also solve the symmetry conditions (3.122) and
give us the following tetrad in the Weitzenböck gauge

e0µ = C0
µ, e1µ = C1

µ, e2µ = C2
µ, e3µ = C3

µ,
(3.129)

where again CA
µ are 16 arbitrary functions of t,r,ϑ, but now

there is not a φ dependant in this tetrad. This branch trivially
solves equation (3.122).We notice that this branch is related to
the first branch via equation (3.127). However, the above tetrad
has zero spin connection whereas in the first branch (3.128),
the spin connection is non-zero. Thus, these two branches
are different solutions satisfying axial symmetry in TG. One
important remark here is that the second branch cannot recover
spherical symmetry in TG in any limit. Even though the met-
ric can be spherically symmetric in a certain limit, the connec-
tion will always be axially symmetric. This is the reason why
we label this branch as solely axially symmetric branch. On
the other hand, the first branch (regular one), has a spherically
symmetric limit which will be the same tetrad that we will find
in the next section.

3.6.2. Spherical symmetry—SO(3). In this section, we
derive the most general spherically symmetric tetrads in the
Weitzenböck gauge. It is convenient to start the computations
using spherical coordinates as we did in the previous section.
In these coordinates, one finds three generators related to the
spherical symmetry

Xx = sinφ∂ϑ+
cosφ
tanϑ

∂φ, Xy =−cosφ∂ϑ+
sinφ
tanϑ

∂φ,

Xz =−∂φ. (3.130)

These generators are associated to the rotational group SO(3).
Now, we need to choose a local homomorphism Λ in the
domain of the group SO(3). A canonical choice forΛ is given
by

Λ=

(
1 0
0 R(α,β,γ)

)
(3.131a)

=


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1



1 0 0 0
0 cosβ 0 −sinβ
0 0 1 0
0 sinβ 0 cosβ



×


1 0 0 0
0 1 0 0
0 0 cosγ −sinγ
0 0 sinγ cosγ

 , (3.131b)
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where R(α,β,γ) = Rz(α)Ry(β)Rx(γ) are the rotation
matrices about the Cartesian coordinates axis with angles
α,β,γ. Then, the differential (3.121) of Λ acts on the gener-
ators of rotations as

λ(Xx) =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , λ(Xy) =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,

λ(Xz) =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .
(3.132)

In order to find the symmetric tetrad, we need to replace
the quantities in equation (3.122) and then solve the result-
ing equations. It is sufficient to just take the first part of that
equation, giving us the following form of the tetrad in the
Weitzenböck gauge

e0 = C1dt+C2dr, (3.133a)

e1 = sinϑcosφ(C3dt+C4dr)+ (C5 cosϑcosφ−C6 sinφ)dϑ

− sinϑ(C5 sinφ+C6 cosϑcosφ)dφ, (3.133b)

e2 = sinϑsinφ(C3dt+C4dr)+ (C5 cosϑsinφ+C6 cosφ)dϑ

+ sinϑ(C5 cosφ−C6 cosϑsinφ)dφ, (3.133c)

e3 = cosϑ(C3dt+C4dr)−C5 sinϑdϑ+C6 sin
2ϑdφ,
(3.133d)

where all the six functions Ci depend only on r and t, and
the ϑ dependence is fully determined. We can here notice that
this tetrad is a special case of the axially symmetric regular
branch (3.126) in the spherically symmetric limit. Since the
symmetry condition (3.122) in spherical symmetry only has
the above tetrad as a solution (in theWeitzenböck gauge), then,
one can conclude that the second branch in axial symmetry
(see equation (3.129)) cannot become spherically symmetric
in any limit.

The above symmetric tetrad is the most general tetrad satis-
fying spherical symmetry. The metric associated to this tetrad
is

ds2 =(C2
1 −C2

3 )dt
2 − (C2

4 −C2
2 )dr

2 − (C2
5 −C2

6 )

× (dϑ2 + sin2φdφ2)− 2(C3C4 −C1C2)drdt,
(3.134)

which is clearly non-diagonal.
We can simplify the form of the tetrad equation (3.133) by

performing a Lorentz transformation in order to eliminate all

the φ dependence. To do this, let us take the following Lorentz
transformation

ΛA
B =


1 0 0 0
0 sinϑcosφ sinϑsinφ cosϑ
0 cosϑcosφ cosϑsinφ −sinϑ
0 −sinφ cosφ 0

 , (3.135)

yielding the tetrad

e ′0 = C1dt+C2dr, e ′1 = C3dt+C4dr,

e ′2 = C5dϑ−C6 sinϑdφ, e ′3 = C6dϑ+C5 sinϑdφ,
(3.136)

and then also having the following non-zero components of
the spin connection

ω ′1
2ϑ =−ω ′2

1ϑ =−1, ω ′1
3φ =−ω ′3

1φ =−sinϑ,

ω ′2
3φ =−ω ′3

2φ =−cosϑ. (3.137)

The pair of equations (3.136) and (3.137) is equivalent as tak-
ing the tetrad in equation (3.133) with a zero spin connection
(in the Weitzenböck gauge).

Let us now consider that the field equations of any arbitrary
TG theory is denoted by Wµν and its antisymmetric part is
W[µν]. This raises the question of which components ofW[µν]

are nonvanishing if we consider that the field equations respect
spherical symmetry?

To respond to this question, let us first take the vector Xz
from the rotations in equation (3.130). The invariance ofW[µν]

to this generator will be given by

0= (LXzW)[µν] = ∂φW[µν], (3.138)

then, all the components of W[µν] do not depend on φ. Fur-
thermore, by considering the other two rotational generators
Xx and Xy (see (3.130)), we can compute

(cosφLXxW+ sinφLXyW)[µν]

=


0 0 −(sinϑ)−2W[tφ] W[tϑ]

0 0 −(sinϑ)−2W[rφ] W[rϑ]

(sinϑ)−2W[tφ] (sinϑ)−2W[rφ] 0 0
−W[tϑ] −W[rϑ] 0 0

,
(3.139)

which gives us that

W[tϑ] =W[rϑ] =W[tφ] =W[rφ] = 0. (3.140)

Furthermore, from the generators Xx and Xy we also find that

28



Rep. Prog. Phys. 86 (2023) 026901 Review

(cosφLXyW− sinφLXxW)[µν] =


0 −∂ϑW[tr] 0 0

∂ϑW[tr] 0 0 0
0 0 0 cotϑW[ϑφ] − ∂ϑW[ϑφ]

0 0 −cotϑW[ϑφ] + ∂ϑW[ϑφ] 0

 , (3.141)

where we have also used equation (3.140). The above equation
can be easily solved by setting

W[tr] = W̃[tr](t,r), W[ϑφ] = W̃[ϑφ](t,r)sinϑ. (3.142)

From here, we can conclude that the field equations Wµν

of any TG theory in spherical symmetry will have only two
nonvanishing antisymmetric components which are W[tr] and
W[ϑφ]. This statement is valid for any TG.

Let us finish this section by explicitly showing the form
of the torsion tensor for the tetrad in equation (3.133) in the
Weitzenböck gauge. As we pointed before, symmetric tetrads
respecting spherical symmetry will impose that the torsion
tensor Tαµν will also respect this symmetries. The non-zero
independent components for the torsion tensor Tαµν for the
symmetric tetrad (3.133) are

Tttr =
C4 (C2,t−C1,r)+C2 (C3,r−C4,t)

C1C4 −C2C3
, (3.143a)

T rtr =
C3 (C1,r−C2,t)+C1 (C4,t−C3,r)

C1C4 −C2C3
, (3.143b)

Ttϑφ =
2C2C6

C2C3 −C1C4
sinϑ, (3.143c)

T rϑφ =
2C1C6

C1C4 −C2C3
sinϑ, (3.143d)

Tϑtϑ = Tφtφ =
−C3C5 +C5,tC5 +C6C6,t

C2
5 +C2

6

, (3.143e)

Tφtϑ =− Tϑtφ
sin2ϑ

=
1

sinϑ

[C3C6 −C5,tC6 +C5C6,t

C2
5 +C2

6

]
,

(3.143f )

Tϑrϑ = Tφrφ =
−C4C5 +C5,rC5 +C6C6,r

C2
5 +C2

6

, (3.143g)

Tφrϑ =− Tϑrφ
sin2ϑ

=
1

sinϑ

[C4C6 −C5,rC6 +C5C6,r

C2
5 +C2

6

]
,

(3.143h)

where Ci,r = ∂Ci/∂r and Ci,t = ∂Ci/∂t. Note that C1C4 −
C2C3 6= 0 always, otherwise the inverse of the metric and the
inverse of the tetrad is singular. We directly notice that the tor-
sion tensor indeed also respects spherical symmetry.

3.6.3. FLRW cosmological symmetry. Here, we derive the
tetrads and spin connection satisfying cosmological symmet-
ries in a FLRW spacetime. First, we will derive the tetrads
in the Weitzenböck gauge and then as we did in previous
sections, we will perform a Lorentz transformation to find an
equivalent pair constructed from tetrads and a spin connec-
tion. The generators for cosmological symmetries are given
by equation (3.130) plus three additional vector fields related
to the translator generators, namely

X1 = χsinϑcosφ∂r+
χ

r
cosϑcosφ∂ϑ−

χsinφ
rsinϑ

∂φ,

(3.144a)

X2 = χsinϑsinφ∂r+
χ

r
cosϑsinφ∂ϑ+

χcosφ
rsinϑ

∂φ,

(3.144b)

X3 = χcosϑ∂r−
χ

r
sinϑ∂ϑ, (3.144c)

where χ=
√
1− kr2 and k is the spatial curvature describing

flat FLRW (k= 0), or open FLRWUniverse (k=−1) or closed
FLRW Universe (k= 1).

Following the same question procedure asked before,
which components of W[µν] are nonvanishing if we consider
that the field equations respect cosmological symmetries? To
respond to this question, we can first take the result found in
the spherical symmetry case. We find that the only nonvan-
ishing components are W[tr] and W[ϑφ]. Besides the rotational
generators in spherical symmetry, in cosmological symmet-
ries we also have the extra symmetries given by the trans-
lational generators in equation (3.144). If we apply X3 to
the remaining nonvanishing antisymmetric components of the
field equations, we find

(LX3W)[tϑ] =−χsinϑW̃[tr], m(LX3W)[rφ] =
sin2ϑW̃[ϑφ]

χr2
.

(3.145)

The above equations then gives us that W[tr] =W[ϑφ] = 0.
Thus, independent of the TG considered, the antisymmetric
part of its field equations is always zero. This a consequence of
the strong condition imposed by the cosmological symmetry.
This statement is also valid for any rank 2-tensor. Therefore,
if one is able to find symmetric tetrads satisfying cosmolo-
gical symmetries, they will automatically solve the antisym-
metric field equations in any TG. A recent paper [77] per-
formed a complete classification of cosmological teleparallel
geometries.
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In the following subsections, we will derive the tetrads
and spin connection satisfying cosmological symmetry for the
three possible cases: k= 0, k> 0 and k< 0.

3.6.3.1. Flat case (k=0)—ISO(3). We can take the result
found in spherical symmetry as a first step (3.133) in the
Weitzenböck gauge and now consider the generator X3, giv-
ing us that the functions Ci must have the following form

C1 = N(t), C4 = a(t), C5 = a(t)r, C2 = C3 = C6 = 0.
(3.146)

We can identify N(t) as the lapse function and a(t) as the scale
factor of the Universe. Thus, by replacing the above form of
the functions in the tetrad (3.133), we find that themost general
tetrad satisfying cosmological symmetries in the Weitzenböck
gauge becomes

e0 = N(t)dt, (3.147a)

e1 = a(t) [sinϑcosφdr+ rcosθ cosφdϑ− rsinϑsinφdφ] ,
(3.147b)

e2 = a(t) [sinϑsinφdr+ rcosθ sinφdϑ+ rsinϑcosφdφ] ,
(3.147c)

e3 = a(t) [cosϑdr− rsinϑdϑ] . (3.147d)

As we have shown before, this tetrad will give W[µν] = 0
for any TG theory. If we perform the Lorentz transforma-
tion (3.135) we find that the new tetrad can be written as fol-
lows

e ′0 = N(t)dt, e ′1 = a(t)dr, e ′2 = a(t)rdϑ,

e ′3 = a(t)rsinϑdφ, (3.148)

while having a non-zero spin connection with the same com-
ponents as (3.137).

Another interesting result is that the tetrad (3.147) can be
transformed to Cartesian coordinates (t,x,y,z), and gives us
that the tetrad in the Weitzenböck gauge in Cartesian coordin-
ates reads

e0 = N(t)dt, e1 = a(t)dx, e2 = a(t)dy, e3 = a(t)dz,
(3.149)

or equivalently

eAµ = diag(N(t),a(t),a(t),a(t)). (3.150)

The above tetrad in Cartesian coordinates is diagonal and is
valid in the Weitzenböck gauge. Since the form of this tet-
rad is very simple, we will largely use this tetrad in the cos-
mology part in section 6 in a more practical setting. Further-
more, since this tetrad respects cosmological symmetries, we
will also haveW[µν] = 0 for any TG theory. It is also useful to

note that the torsion tensor in the diagonal tetrad in Cartesian
coordinates becomes very simple

T i0j = NHδij, (3.151)

where i, j= 1,2,3 are the spatial spacetime indices and
H= ȧ/(Na) is the Hubble parameter.

Let us finish this section by noting that we still have the
freedom to choose a different time coordinate t 7→ t̃ due to the
fact that the time diffeomorphisms commute with the cosmo-
logical symmetry. By doing this, one can always choose a con-
stant lapse function, which usually is chosen to be N(t) = 1.

3.6.3.2. Real tetrad for k⩾ 0—SO(4). The first non-trivial
case for a spatially curved FLRWcosmology has the following
translation generators

λ±(X1) =±


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ,

λ±(X2) =±


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 ,

λ±(X3) =±


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (3.152)

Using these translator generators and the rotational ones
(see equation (3.130)), we can solve the symmetric condi-
tions (3.122), which gives us the spherically symmetric tet-
rad (3.133) and some additional conditions on the functions,
namely

C1 = N(t), C4 =
a(t)
χ
, C5 = rχa(t), C6 =∓

√
kr2 a(t),

C2 = C3 = 0, (3.153)

where k ∈ {0,±1}, giving us that the final expression of the
symmetric tetrad satisfying cosmological symmetries in the
Wetizenöck gauge being equal to

e0± = N(t)dt, (3.154a)

e1± = a(t)
[ sinϑcosφ

χ
dr+ r(χcosθ cosφ±

√
krsinφ)dϑ

− rsinϑ(χsinφ∓
√
krcosϑcosφ)dφ

]
,

e2
± = a(t)

[ sinϑsinφ
χ

dr+ r(χcosθ sinφ∓
√
krcosφ)dϑ

+ rsinϑ(χcosφ±
√
krcosϑsinφ)dφ

]
,

e3± = a(t)

[
cosϑ
χ

dr− rχsinϑdϑ∓
√
kr2 sin2ϑdφ

]
.

(3.154b)
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Here, χ=
√
1− kr2. It should be noted that k= 1 (k=−1)

represents a closed (open) Universe whereas k= 0, a flat Uni-
verse. As expected, when k= 0, we have χ= 1 and then
we recover the flat FLRW symmetric tetrad (3.147). Note
that the above tetrad is real only if either k= 0 or k= 1, so

that, the tetrad becomes complex for the negatively curved
k (see section 3.6.3.3 for another tetrad which is real for
k⩾ 0).

In this case we have two different tetrads depending on the
sign chosen. By taking the following Lorentz transformation

ΛA
±B =


1 0 0 0
0 sinϑcosφ sinϑsinφ cosϑ
0 χcosϑcosφ±

√
krsinφ χcosϑsinφ∓

√
krcosφ −χsinϑ

0 ±
√
krcosϑcosφ−χsinφ χcosφ±

√
krcosϑsinφ ∓

√
krsinϑ

 , (3.155)

the tetrads (3.154) transform as follows

e ′0± = N(t)dt, e ′1± =
a(t)
χ

dr, e ′2± = a(t)rdϑ,

e ′3± = a(t)rsinϑdφ, (3.156)

which then induces a non-zero spin connection with
components,

ω ′1
± 2ϑ =−ω ′2

± 1ϑ =−χ, ω ′1
± 2φ =−ω ′2

± 1φ =±
√
krsinϑ,

ω ′1
± 3ϑ =−ω ′3

± 1ϑ =∓
√
kr, (3.157a)

ω ′1
± 3φ =−ω ′3

± 1φ =−χsinϑ, ω ′2
± 3r =−ω ′3

± 2r =±
√
k
1
χ
,

ω ′2
± 3φ =−ω ′3

± 2φ =−cosϑ. (3.157b)

As expected, the Lorentz transformation (3.155) becomes
the same one as the one performed in equation (3.135) for the
flat case, and then the spin connection (3.157) is also the same
as the one found in equation (3.137) when k= 0.

For the symmetric tetrad (3.154) in the Weitzenböck gauge
or equivalently, by considering the tetrad in equation (3.156)
with the spin connection in equation (3.157), we find that the
non-zero components of the torsion tensor Tαµν become

T itj = NHδij, Trϑφ =∓2
√
kr2 sinϑχ,

Tφrϑ =− Tϑrφ
sin2ϑ

=∓2

√
k
χ

cscϑ. (3.158)

As expected, the flat case k= 0 coincides with the torsion
found before in equation (3.151) and if k=−1, the torsion
tensor becomes complex, meaning that one needs to be careful
on interpreting the physical quantities for the negatively spa-
tial curvature. Even though the torsion tensor is complex, it is
important to mention that some important scalars as the tor-
sion scalar T and the boundary term B (see equations (4.158)
and (4.156), respectively) become

T=
6k
a2

− 6H2, B=−6Ḣ
N

− 18H2 (3.159)

are real for this tetrad for any k. Therefore, any action con-
structed from these scalars will be real for this tetrad.

3.6.3.3. Real tetrad for k⩽ 0—SO(1,3). Following the same
algorithm mentioned in the previous sections, there is another
non-trivial translator generators satisfying cosmological sym-
metries, namely

λ±(X1) =±


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

λ±(X2) =±


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

λ±(X3) =±


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 . (3.160)

Then, the spherically symmetric tetrad (3.133) for this case
becomes

e0± =±N(t)χdt∓ a(t)
√
−k r

χ
dr, (3.161a)

e1 = a(t)

[
sinϑcosφ

(
dr− N(t)

a(t)

√
−krdt

)
+ rcosϑcosφdϑ

− rsinϑsinφdφ

]
, (3.161b)

e2 = a(t)

[
sinϑsinφ

(
dr− N(t)

a(t)

√
−krdt

)
+ rcosϑsinφdϑ

+ rsinϑcosφdφ

]
, (3.161c)

e3 = a(t)

[
cosϑ

(
dr− N(t)

a(t)

√
−krdt

)
− rsinϑdϑ

]
,

(3.161d)
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where again χ=
√
1− kr2 and the functions were taken to be

of the form of

C1 =±χN(t), C2 =∓ r
χ

√
−ka(t), C3 =−

√
−krN(t),

C4 = a(t), C5 = ra(t), C6 = 0, (3.162)

to fulfill the symmetry condition n equation (3.122). As in the
previous case, this symmetric tetrad can become the flat FLRW
symmetric tetrad (3.147) but as it happened before, the above
tetrad is complex for k= 1. Similarly as we did in the previous
section, we can perform the following Lorentz transformation

ΛA
±B

=


±χ

√
−krsinϑcosφ

√
−krsinϑsinφ

√
−krcosϑ

±
√
−kr χsinϑcosφ χsinϑsinφ χcosϑ
0 cosϑcosφ cosϑsinφ −sinϑ
0 −sinφ cosφ 0

,
(3.163)

to rewrite the tetrad (3.161) as

e ′0± = N(t)dt, e ′1± =
a(t)
χ

dr, e ′2± = a(t)rdϑ,

e ′3± = a(t)rsinϑdφ, (3.164)

but now with a non-zero spin connection which has the fol-
lowing components,

ω ′0
± 1r =ω

′1
± 0r =−

√
−k 1

χ
,ω ′0

± 2ϑ = ω ′2
± 0ϑ =−

√
−kr,

ω ′0
± 3φ =ω ′3

± 0φ =−
√
−krsinϑ, (3.165a)

ω ′1
± 2ϑ =−ω ′2

± 1ϑ =−χ,ω ′1
± 3φ =−ω ′3

± 1φ =−χsinϑ,

ω ′2
± 3φ =−ω ′3

± 2φ =−cosϑ. (3.165b)

The nonvanishing components of the torsion tensor Tλµν
for the tetrad-spin connection pair (3.164) and (3.165) (or
equivalently with the Weitzenböck tetrad (3.161)) can be
expressed as

Ti0j =
(
H+

1
a

√
−k
)
Nδij. (3.166a)

Note that if k= 1, the above torsion tensor is complex. Fur-
thermore, the situation is slightly different than the previous
section since the the torsion scalar and boundary term (again
see equations (4.158) and (4.156))

T=−12
√
−kH
a

+
6k
a2

− 6H2,

B=−12
√
−kH
a

− 6Ḣ
N

− 18H2 (3.167)

are complex for k> 0, meaning that any action constructed
from this tetrad will be complex for the positively curved case.

Let us finish the cosmological symmetry section by
emphasizing again that the tetrads with zero spin connec-
tion components, namely equations (3.154) and (3.161), which
are valid for k ∈ {0,±1} will solve all the antisymmetric
field equations for any modified teleparallel theory of grav-
ity. Equivalently, the tetrad-spin connection pairs given in
equations (3.156), (3.157) and (3.164), (3.165) also satisfy
all the antisymmetric field equations for any teleparallel the-
ory. Then, we will use these tetrads in forthcoming sections to
study FLRW cosmology.

3.6.4. Maximally symmetric spacetimes—ISO(1,3), SO(1,4),
SO(2,3). A spacetime with the maximum number of sym-
metries can be obtained by taking the following generators can
be written as

X0 = χ∂t− krχTk(t)∂r, (3.168a)

XX = rsinϑcosφ∂t+χ2 sinϑcosφTk(t)∂r

+
cosϑcosφTk(t)

r
∂ϑ−

sinφTk(t)
rsinϑ

∂φ, (3.168b)

XY = rsinϑsinφ∂t+χ2 sinϑsinφTk(t)∂r

+
cosϑsinφTk(t)

r
∂ϑ+

sinφTk(t)
rcosϑ

∂φ, (3.168c)

XZ = rcosϑ∂t+χ2 cosϑTk(t)∂r−
sinϑTk(t)

r
∂ϑ, (3.168d)

where χ=
√
1− kr2 and we have defined

Tk(t) :=


tanh t for k= 1,

t for k= 0,

tan t for k=−1

. (3.169)

The metric reproduced by the above tetrad becomes

ds2 = dt2 −C2
k (t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2ϑdφ2

)]
,

(3.170)

where

Ck(t) :=


cosh t for k= 1,

1 for k= 0,

cos t for k=−1

. (3.171)

Thus, k= 0 represents Minkowski and k= 1 (k=−1) de-
Sitter (anti de-Sitter) spacetimes. The Minkowski case is rep-
resented by the ISO(1,3) group whereas for the de-Sitter (anti
de-Sitter) the group is SO(2,3) (SO(1,4)).

It is easy to notice that for Minkowski, the tetrad in the
Weitzenböck gauge (3.147) with N(t) = a(t) = const.= c, is
the solution of the symmetry condition under the generat-
ors (3.168), which gives us the following tetrad
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e0 = cdt, (3.172a)

e1 = c [sinϑcosφdr+ rcosθ cosφdϑ− rsinϑsinφdφ] ,
(3.172b)

e2 = c [sinϑsinφdr+ rcosθ sinφdϑ+ rsinϑcosφdφ] ,
(3.172c)

e3 = c [cosϑdr− rsinϑdϑ] . (3.172d)

One can also perform a coordinate transformation and find
that in Cartesian coordinates (t,x,y,z), the tetrad satisfying
Minkowski symmetries in the Weitzenböck gauge becomes a
diagonal one, namely

eAµ = cdiag(1,1,1,1). (3.173)

Finally, it is important to mention that for de-Sitter and anti
de-Sitter, there are not symmetry solutions to the symmetry
condition (3.122) under the generators (3.168). This means
that there are no de-Sitter or anti de-Sitter symmetries in TG.
Then, the metric can be de-Sitter or anti de-Sitter and then it
can respect the symmetries but the teleparallel connection can-
not respect this type of symmetry.

3.7. Conformal and disformal transformations

The concept of conformal and disformal transformations
arises from the question which is the most general possibility
to construct a metric g̃µν from a given metric gµν and a scalar
field ϕ. If one demands that the new metric depends only on
the values of the old metric and scalar field, but not on their
derivatives, one finds that the most general form of the new
metric is given by the conformal transformation [78]

g̃µν = A(ϕ)gµν , (3.174)

where A is a free function of the scalar field. If one allows
also for a dependence on first derivatives of the scalar field,
the most general class of transformations is of the disformal
type [79]

g̃µν = A(ϕ,X)gµν +B(ϕ,X)∂µϕ∂νϕ, (3.175)

with two free functions A,B of the scalar field and its kinetic
term

X=−1
2
gµν∂µϕ∂νϕ. (3.176)

If the metric is defined by a tetrad eAµ, it is more convenient to
introduce a different parametrization of disformal transform-
ations. In this case one may define [80]

ẽAµ = C(ϕ,X)eAµ+D(ϕ,X)∂µϕ∂νϕg
νρeAρ, (3.177)

while the spin connection is left unchanged, ω̃A
Bµ = ωA

Bµ,
since any transformation preserving its flatness and antisym-
metry could be absorbed into a local Lorentz transformation.

The relation between the different parametrizations is given by

A= C2, B= 2D(C−XD), (3.178)

where here, and in the remainder of this section, we will omit
the arguments ϕ,X for brevity’s sake. Note that we recover the
class of conformal transformations forC,X =D= 0, where the
subscript denotes the derivative wrt the argument X.

In order to obtain an invertible transformation, one must
demand C 6= 0 and C− 2XD 6= 0. This can also be seen from
the transformation behavior of the inverse tetrads, which is
given by

ẼA
µ =

1
C

(
EA

µ− D

C− 2XD
gµνEA

ρ∂νϕ∂ρϕ

)
, (3.179)

where is found using the inverse formula (3.36) (which can
also be used for the non-trivial tetrads), and likewise from the
transformation of the determinant of the tetrad, given by

ẽ= C3(C− 2XD)e. (3.180)

It is a remarkable fact that the transformation of the metric
determinant takes a similarly simple form

g̃= A3(A− 2XB)g= C6(C− 2XD)2g, (3.181)

in terms of the original parameter functionsA,B. It is straight-
forward to derive the corresponding transformation rules for
other relevant quantities in the teleparallel geometry, such as
the torsion,

T̃Aµν =CTAµν + 2∂[µCe
A
ν] + 2ηABEB

ρ

×
(
∂ρϕ∂[µD∂ν]ϕ+D∂[νϕ∇µ]∂ρϕ

)
, (3.182)

and contortion

K̃ABµ =KABµ+ 2E[A
αEB]

β

×

(
D

◦
∇µ

◦
∇αϕ

◦
∇βϕ

C− 2XD
+

D2
◦
∇µϕ

◦
∇αϕ

◦
∇βX

C(C− 2XD)

+
C,XDgαµ

◦
∇βϕ

◦
∇γϕ

◦
∇γX

C(C− 2XD)
+

D,X
◦
∇αX

◦
∇βϕ

◦
∇µϕ

C

+
C,X

◦
∇αXgβµ
C

+
C,ϕ

◦
∇αϕgβµ

C− 2XD

)
, (3.183)

which constitute a special case of a more general class of scale
transformations of the teleparallel affine connection [81]. Note
that the latter is independent of the teleparallel spin connection
ωA

Bµ, and can thus be obtained directly from the transforma-

tion of the Levi-Civita spin connection
◦
ωA

Bµ using the relation

0= ω̃A
Bµ−ωA

Bµ ≡
◦
ω̃A

Bµ−
◦
ωA

Bµ+ K̃A
Bµ−KA

Bµ.
(3.184)

To obtain the corresponding forms given only with spacetime
indices, one must take into account the transformation of the
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tetrad and its inverse, which relate these different representa-
tions. Explicit formulas can be found in [82].

A more compact form of the disformal transformations can
be obtained by using the language of differential forms. For
this purpose one defines the one-forms [83]

ψA = ϕ,Adϕ, πA = Dϕ,A = dϕ,A−ωB
A ∧ϕ,B,

◦
πA =

◦
Dϕ,A = dϕ,A−

◦
ωB

A ∧ϕ,B, (3.185)

using the abbreviation

ϕ,A = EA
µ∂µϕ. (3.186)

In terms of these one-forms, the disformal transforma-
tion (3.177) takes the simple form

ẽA = CeA+DψA, (3.187)

while the corresponding dual vector fields obey the
transformation

ẼA =
1
C

(
δ BA − D

C− 2XD
ϕ,Aϕ,Cη

BC

)
EB, (3.188)

which is obtained from the corresponding formula in
equation (3.179). Finally, we note that the torsion two-form
transforms as

T̃A =CTA+C,ϕdϕ∧ eA+C,XdX∧ eA+DπA ∧ dϕ

+D,XdX∧ψA, (3.189)

while for the contortion we have

K̃AB =KAB+ 2

×

(
−

Dϕ,[A
◦
πB]

C− 2XD
−

D2X,[Aϕ,B] dϕ

C(C− 2XD)

−
C,XDg−1(dϕ,dX)ϕ,[AeB]

C(C− 2XD)
+

D,XX,[Aϕ,B] dϕ

C

+
C,XX,[AeB]

C
+

C,ϕϕ,[AeB]
C− 2XD

)
. (3.190)

Similar expressions may also be derived for the transformation
behavior of the one-forms ψA and πA introduced above [83].

3.8. The teleparallel Gauss–Bonnet invariant

In (3+ 1)−dimensions, the Gauss–Bonnet term is a topolo-
gical invariant quantity that does not contribute dynamically
since it is a total divergence term in the gravitational action.
For a standard gravity scenario, based on the Levi-Civita con-
nection, this boundary term takes on the form [84]

◦
G :=

◦
R2 − 4

◦
Rµν

◦
Rµν +

◦
Rµνκλ

◦
Rµνκλ, (3.191)

where the variation δ[
´

d4x
√
−g

◦
G]/δgµν naturally vanishes as

a boundary term. In this setup, the Gauss–Bonnet invariant is
derived from first principles through the Gauss–Bonnet the-
orem which connects the curvature of surfaces in differential
geometry with their Euler characteristic in topology. The tele-
parallel equivalent of the Gauss–Bonnet (TEGB) invariant is

found by transforming the Gauss–Bonnet term
◦
G through the

contortion tensor to its teleparallel equivalent TG. This pro-
cedure will produce a dynamical scalar TG as well as a total
divergence term BG which together will sum to the Gauss–

Bonnet scalar
◦
G = TG+BG [85, 86]. This is the fundamental

difference between the scalar
◦
G and TG. A teleparallel ana-

logue to the Gauss–Bonnet theorem may lead to a separate
scalar invariant that does not depend on the results of standard
gravity.

The TEGB termwas first derived in [87] using the language
of forms, since the coordinate description leads to much more
cumbersome equations. In standard gravity, the Gauss–Bonnet
invariant is expressed in this context as

◦
G = ϵabcd

◦
Rab ∧

◦
Rcd, (3.192)

such that the variation of

◦
S◦
G
:=

1
2κ2

ˆ
◦
G+Sm, (3.193)

vanishes, where κ2 = 8πG (as described in equation (1.7)) is
the gravitational constant (whose value is not relevant here),
and the exterior (wedge) product is again used. Using the rela-
tion between the Levi-Civita and teleparallel connections in
equation (3.67), namely

◦
Γ
C
AB = ΓC

BA+KC
BC, (3.194)

together with the following properties

•
◦
D

◦
RAB = 0—The covariant derivative of the Lorentz

curvature,
◦
D

◦
RAB = dRAB+ωAC ∧RCB+ωBC ∧RAC, van-

ishes which gives the second Bianchi identity in the lan-
guage of differential forms [88];

•
◦
Dea = 0—The Levi-Civita Lorentz covariant derivative is
torsionless and satisfies metricity, and so the tetrad exterior
derivative will identically vanish;

•
◦
RAB+

◦
DKAB = RAB−KAC ∧KCB—This describes how the

Ricci tensors as calculated with both connections are related
together which can be observed from equation (3.107).
The Levi-Civita Lorentz derivative term can be expressed

in terms of the teleparallel connection through
◦
DKAB =

DKAB− 2KAC ∧KC
B which directly expresses the Levi-

Civita Ricci tensor in terms of teleparallel quantities as

◦
RAB = RAB+KAC ∧KC

B−DKAB. (3.195)

34



Rep. Prog. Phys. 86 (2023) 026901 Review

These properties combine to re-express the Levi-Civita
based Gauss–Bonnet invariant in equation (3.192) as [87, 89]

STEGB :=
1

2κ2

ˆ
(TG− dBG)+Sm, (3.196)

where the integrands can be expressed as

TG := TG e1 ∧ e2 ∧ e3 ∧ e4, (3.197a)

BG := ϵABCD

(
2KAB ∧

◦
RCD+KAB ∧

◦
DKCD

)
, (3.197b)

in which the TEGB Lagrangian is given by

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ+ 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+ 2δµνσλαβγϵK
αβ
µK

γ
χνDλK

χϵ
σ . (3.198)

In terms of coordinates rather than differential forms, these
scalar invariants can then be expressed as [85]

◦
G = TG+BG , (3.199)

where the boundary term is given by [85]

BG =
1
e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
KγξσK

ξϵ
λ−

1
2
R̊γϵσλ

)]
, (3.200)

with DλKχϵσ = ∂λKχϵσ + (̊Γ+K)χβλKβϵσ + (̊Γ+K)ϵβλ
Kχβσ − (̊Γ+K)βσλKχϵβ . This term is a total divergence term.
Thus, the total Levi-Civita Gauss-Bonnet invariant can bewrit-
ten in terms of the teleparallel connection through the scalars
in equation (3.202) which contain a teleparallel scalar and a
total divergence term. As in standard gravity, these scalars
can be used to construct theories of gravity [86, 90, 91], and
may also lead to a purely TEGB invariant constructed purely
within TG. Another important aspect of the Gauss-Bonnet
term formulated in equation (3.201) is that TG is a topological
invariant in 4 dimensions (as G̊) and BG is a boundary term in
all dimensions. also would be a boundary term.

TG =
(
KIEAK

EJ
BK

M
FCK

FL
D− 2KIJAK

M
EBK

E
FCK

FL
D

+ 2KIJAK
M
EBK

EL
FK

F
CD+ 2KIJAK

M
EBK

EL
C,D

)
δABCDIJML .

(3.201)

In terms of coordinates rather than differential forms, these
scalar invariants can then be expressed as [85]

◦
G = TG+BG, (3.202)

where the boundary term is given by

BG =
1
e
∂A
[
eKIJB

(
KKLC,D+KMCDK

KL
M

)]
δABCDIJML , (3.203)

which is a total divergence term. Thus, the total Levi-
Civita Gauss–Bonnet invariant can be written in terms of the

teleparallel connection through the scalars in equation (3.202)
which contain a teleparallel scalar and a total divergence term.
As in standard gravity, these scalars can be used to con-
struct theories of gravity [86, 90, 91], and may also lead to a
purely TEGB invariant constructed purely within TG. Another
important aspect of the Gauss–Bonnet term formulated in

equation (3.201) is that since
◦
G and BG are boundary terms,

this means that TG also would be a boundary term. Another
point to remark is that one can also construct theories by defin-
ing the following invariants

TG1 := δABCDIJML K
I
EAK

EJ
BK

M
FCK

FL
D, (3.204a)

TG2 :=−2δABCDIJML K
IJ
AK

M
EBK

E
FCK

FL
D, (3.204b)

TG3 := 2δABCDIJML K
IJ
AK

M
EBK

EL
FK

F
CD, (3.204c)

TG4 := 2δABCDIJML K
IJ
AK

M
EBK

EL
C,Dδ

ABCD
IJML , (3.204d)

such that TG = TG1 +TG2 +TG3 +TG4 , but these TGi alone
would not be boundary terms anymore and would have non-
trivial contributions linearly in an action.

3.9. Analogue with other branches of physics

TG offers a new perspective on interpreting gravitational
interactions that revisits the foundations on which gravity is
built. Similar to the introduction of curvature as the medi-
ator of gravitation in GR, attempts have been made in other
branches of physics to utilize this description, and its geomet-
ric baggage, in advancing or uniting these field descriptions.
One important direction in which the mechanics of geometric
gravity has been used to describe other phenomena is that of
lattice structures [92–94] which can be applied within the trin-
ity of geometric structures, namely Riemann curvature [95],
torsion [96–98] and non-metricity.

In the context of continuum mechanics, the geometric
tools of gravity have been used to describe various effects
in continuum mechanics. The different geometric tools avail-
able within the trinity of gravity can describe different types
of possible deformations within these structures as shown
in figure 6, where deformations are made to an analogous
Minkowski crystal. In figure 6 curvature, torsion and metricity
are shown to produce distinct and non-overlapping changes
to crystal geometry. For continuum mechanics, deformations
can be studied through this prism of a trinity of geometric
tools.

For torsional geometry, the tools being developed can
be used to describe dislocations which are crystallographic
defects, or irregularities, in the crystal structure [99]. Dislo-
cation movements appear as microstructures glide over each
other producing geometric information that can be interpreted
through the tensorial formalism associated with gravitational
theories. The creation and movement of a large number of dis-
locations can lead to plastic deformations, while more gener-
ally, the number and arrangement of dislocations can effect
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Figure 6. Crystalline structure and its analogy with curvature, torsion and non-metricity.

the properties associated with a material body. Thus, through
the lens of geometry the impact of dislocations can be studied
through the geometric tools being developed in gravitational
physics.

The dislocations in these structures take on the form of
particle-like bodies in that their behavior can be modeled in
this way. As identified in [100], this phenomenon can be
described by a deformation field is represented

ux = 0, uy = 0, uz =
b
2π

arctan
y
x
, (3.205)

which illustrates a screw dislocation in Cartesian coordin-
ates, and where b is the maximal displacement between the
microstructures, and u= (ux,uy,uz) is the dislocation velocity.
This is a solution to the Navier–Stokes equation and produces

a longitudinal length contraction by a factor
√

1− v 2

c 2
s
. The

dislocation also has an associated energy of E0/
√

1− v 2

c 2
s
(E0

being the rest energy of the dislocation). The transverse speed
of sound is represented by cs, which when identified with the
speed of light, renders the motion analogous to that of an elec-
tric field undergoing contractions or expansions. In this way,
propagating dislocation solutions behave exactly as relativistic
particles.

In [101], torsion is first related with dislocations in that their
density and dynamics could be mapped by the torsion tensor.
In figure 7, the two main types of dislocations are represented,
namely edge and screw type dislocations. As shown in the axis
defined in the figure, we take 1, 2 and 3 to point to the right,
backwards and up respectively. Hence, an edge dislocation can
be interpreted as the 1–3 plane being shifted in the 1-axis,
and so giving a contribution to T1

13 component of the torsion
tensor. Similarly, screw dislocations can be indicated as the 1–
2 plane being shifted in the 3−axis direction, and thus giving
a contribution to T3

12. In the context, torsion then becomes a
measure of dislocation density for a vanishing lattice spacing
scenario. There has been a number of important works that
build on this approach to using torsion for dislocation theory
[97, 102–105]. On the other hand, it may also be the case that
the torsion tensor can be used on a discrete space which may
better model certain crystal interactions.

Lattice discretizations using the TG framework has also
been applied using Regge calculus as in [106, 107] where dis-
locations are added with the curvature associated disclinations
to form a fuller theory of discrete lattice structures using dif-
ferential geometry. Another approach was attempted in [108]
where the usual Regge calculus is used within a torsional
framework in which the tetrads are used to replace the met-
ric. This approach is then used to replace the Riemann scalar
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Figure 7. Crystal dislocations are shown against a regular crystal with no dislocation (left), and where screw (middle) and edge (right)
dislocations are represented.

description with a TG approach. More recently, a more dir-
ect quantum gravity approach was used in [109] where the
Abelian gauge group of translations is used immediately as
the lattice variable without the use of additional structures.

In closing, TG has reached into a number of seemingly
unrelated topics but which share a geometric connection
through which the mechanics developed in the theory can be
more broadly applied. One other example of this is the body of
work related to Cosserat mechanics where the geometric man-
ifold is constrained to not express dislocations but only rota-
tions which is a long studied topic in continuum mechanics
[110]. This has been strongly connected to the mechanics of
TG by associating the tetrad again with the manifold deform-
ations and using the torsion tensor to express actions on the
manifold [111–118]. Another would be in condensed matter
media where low-energy fermions act like an effective and
non-relativistic torsional medium [119–121]. While the gov-
erning equations are different to those of gravity, it is another
application of this geometric outlook in another setting. On the
other hand, there has not been much progress of an analogous
interpretation of non-metricity in terms of crystal structures,
which may be an interesting area to focus future works on the
topic.

4. The teleparallel formulation of gravity and its GR
equivalent

In this section, we explore the theoretical foundations on
which we can construct TG theories. Ultimately, this is the
goal of gravitational physics, namely, producing theories
of gravity on which to probe Nature. Firstly, we describe
some general properties of teleparallel theories of gravity in
section 4.1, such as the local Lorentz structure of the gravita-
tional and matter contributions together with other symmetry
and conservation considerations. In section 4.2, we expand on
the 3+ 1 decomposition of teleparallel theories and the pro-
cedure by which this can be developed. The TEGR is then
extensively described in section 4.3 where we derive this from
first principles depending on only a few physical assumptions,

after which we then analyze the properties of this theory and
its dynamical equivalent to GR. Finally, we discuss some
quantum gravity attempts in section 4.4 where we also high-
light some future possibilities for the theory.

4.1. General properties of TG

Before we come to a detailed study of specific TG theories
and their properties, we discuss a number of general properties
which can be shown to hold for any TG theory. The starting
point for these considerations is a generic teleparallel action
and its field equations, which we derive in section 4.1.1. We
then derive a number of properties from the local Lorentz
invariance of the matter action in section 4.1.2, as well as the
gravitational action in section 4.1.3. In section 4.1.4, we show
how these properties appear within the Palatini approach. They
are further used in section 4.1.5, where we discuss the energy-
momentum conservation. The latter is closely related to the
Bianchi identities, which we discuss in section 4.1.6. Finally,
we study the premetric approach in section 4.1.7.

4.1.1. Action and field equations. In TG onemost commonly
assumes an action which of the form

STG := Sg[e,ω] +Sm[e,χ], (4.1)

where the gravitational part Sg of the action depends on the
tetrad eAµ and the spin connection ωA

Bµ, while the matter
part depends on the tetrad eAµ and arbitrary matter fields χI ,
but not on the spin connection; see [53, 122] for an extensive
discussion. In brief the reason for this is that we assume that
the hypermomentum vanishes which is one way of imposing
that this coupling does not occur. If it were to depend on spin
then we would be effective introducing a second matter tensor
whichwould result from the variation of thematter Lagrangian
wrt the spin connection. The variation of the matter part of
the action, after integration by parts to remove any derivatives
acting on the field variations, can thus be written in the form

37



Rep. Prog. Phys. 86 (2023) 026901 Review

δSm =

ˆ
d4xe(ΘA

µδeAµ+ΩIδχ
I), (4.2)

where ΩI = 0 are the matter field equations and ΘA
µ is the

energy-momentum tensor (1.10). The corresponding variation
of the gravitational action takes the form

δSg =−
ˆ

d4xe(WA
µδeAµ+YA

BµδωA
Bµ), (4.3)

with tensors WA
µ and YABµ arising from the variation and

integration by parts, whose explicit form depends on the par-
ticular theory under consideration. The expression for WA

µ

will be shown for a number of theories in sections 4.3 and 5;
see (4.165) for a simple example. We do not show YABµ here
for brevity, since it turns out to be redundant in the derivation
of the field equations, so that the latter are fully determined
fromWA

µ alone. We will show this explicitly in the remainder
of this section and in section 4.1.3.

From the variation wrt the tetrad one obtains the field
equations

WA
µ =ΘA

µ. (4.4)

Another, more common form of the field equations is obtained
by transforming the first index into a spacetime index with the
tetrad, while lowering the second index, to obtain

Wµν = eAµgρνWA
ρ, Θµν = eAµgρνΘA

ρ, (4.5)

so that the field equations take the form

Wµν =Θµν . (4.6)

The derivation of the field equations for the spin connec-
tion, however, is less trivial, since by definition it must be
flat, Rαβµν = 0, and metric-compatible, ∇αgµν = 0. Differ-
ent possibilities exist in order to maintain this property during
the variation procedure [123, 124]. One possibility is to expli-
citly restrict the variation of the spin connection such that its
curvature and non-metricity are unaffected. This is the case if
and only if the variation obeys the form

δωA
Bµ =Dµξ AB = ∂µξ

A
B+ωA

Cµξ
C
B−ωCBµξ

A
C, (4.7)

where ξ AB are the components of an antisymmetric matrix,
ξ(AB) = 0, where the index has been raised with theMinkowski
metric. The variation δωSg of the gravitational action wrt
the spin connection, while keeping the tetrad eAµ fixed, then
reads [125]

δωSg =−
ˆ

d4xeYA
Bµ(∂µξ

A
B+ωA

Cµξ
C
B−ωCBµξ

A
C).

(4.8)

After integration by parts, and applying the covariant diver-
gence formula

∂µ(eX
µ) = e

◦
∇µX

µ = e
(
∂µX

µ+
◦
Γ
µ
νµX

ν
)
, (4.9)

to the vector field Xµ = YABµξ AB, this takes the form

δωSg =

ˆ
d4xe

(
∂µYA

Bµ+
◦
Γ
µ
νµYA

Bν −ωCAµYC
Bµ

+ωB
CµYA

Cµ
)
ξ AB. (4.10)

Finally, recalling that the variation ξ AB must be antisymmetric,
the resulting field equations therefore take the form

0=−W̃AB =∂µY
[AB]µ+

◦
Γ
µ
νµY

[AB]ν −ωC[A
µYC

B]µ

+ω[B
CµY

A]Cµ. (4.11)

This equation is more conveniently expressed in spacetime
indices. For this purpose, note that the first term on the RHS
of the field equation (4.11) can be rewritten using

∂µY
[AB]µ = ∂µY

[ρσ]µeAρe
B
σ +Yρσµ∂µe

[A
ρe

B]
σ

+Yρσµe[Aρ∂µe
B]
σ. (4.12)

After transforming the third term in (4.11) by using the anti-
symmetry of the spin connection, from which it follows

−ωC[A
µYC

B]µ = ω[A|C|
µYC

B]µ = ω[A
CµY

|C|B]µ, (4.13)

the derivatives acting on the tetrad can be combined with the
spin connection to form the connection coefficients

Yρσµ∂µe
[A
ρe

B]
σ +ω[A

CµY
|C|B]µ = ΓνρµY

ρσµe[Aνe
B]
σ,

(4.14a)

Yρσµe[Aρ∂µe
B]
σ +ω[B

CµY
A]Cµ = ΓνσµY

ρσµe[Aρe
B]
ν .
(4.14b)

Finally, one is left with the task of transforming the second
term in the field equation (4.11). Here, we can use the relation

◦
Γ
µ
νµ =

◦
Γ
µ
µν = Γµµν −Kµµν = Γµµν = Γµνµ−Tµµν ,

(4.15)

which consists of the following three steps. The first equality
follows from the fact that the Christoffel symbol components
◦
Γµνρ are symmetric in their lower two indices. In the second
equality they are replaced by the teleparallel connection coef-
ficients and the contortion using the definition (2.17). In the
third equality the second term is omitted since the trace Kµµν
of the contortion over its first two indices vanishes due to anti-
symmetry in these indices. Finally, in the fourth and last equal-
ity the lower two indices of the teleparallel connection coeffi-
cients Γµνρ are switched by introducing a torsion tensor. This
can also be obtained directly using

◦
Γ
µ
νµ = Γµνµ−Kµνµ = Γµνµ−Tµµν , (4.16)

by taking the trace over the outer indices of the contortion
tensor (2.19). Combining the partial derivative and the con-
nection coefficients into a teleparallel covariant derivative, the
connection field equation finally reads
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0=−W̃µν =∇ρY
[µν]ρ−TσσρY

[µν]ρ. (4.17)

Note that by construction, it is antisymmetric in its two indices.
Another possibility to impose the properties of the spin con-

nection is by introducing Lagrange multipliers [123, 124]. In
this case one adds an additional term to the action, which is
given by

SLM :=

ˆ
d4xe

(
q̃(AB)µωABµ+ r̃A

BµνRA
Bµν

)
, (4.18)

where q̃ABµ and r̃ABµν are Lagrange multipliers. These
equations are obtained by taking a variation wrt these Lag-
range multipliers, and then enforcing that the spin connection
is flat, Rµνρσ = 0, and metric-compatible, Qµνρ = 0. Now the
spin connection field equation is obtained by the variation

δωSLM =

ˆ
d4xe

(
− 2r̃AB[µν]DνδωABµ+ q̃(AB)µδωABµ

−YABµδωABµ
)
, (4.19)

wrt the full spin connection δωA
Bµ. Integration by parts yields

δωSLM =

ˆ
d4xe

(
2

◦
∇ν r̃

ρσ[µν] + 2Kρων r̃
ωσ[µν]

+ 2Kσων r̃
ρω[µν] + q̃(ρσ)µ−Yρσµ

)
eAρe

B
σδωABµ

(4.20a)

=

ˆ
d4xe

(
2∇ν r̃

ρσ[µν] − 2Kµων r̃
ρσ[ων] − 2Kνων r̃

ρσ[µω]

+ q̃(ρσ)µ−Yρσµ
)
eAρe

B
σδωABµ, (4.20b)

so that the field equations read

2∇ν r̃
ρσ[µν] − 2Kµων r̃

ρσ[ων] − 2Kνων r̃
ρσ[µω]

+ q̃(ρσ)µ−Yρσµ = 0. (4.21)

Here the contribution which is symmetric in ρ and σ simply
determines the value of the Lagrange multiplier q̃(ρσ)µ, and so
it does not contribute to the field equations for the remaining
fields. One is thus left with the antisymmetric part

2∇ν r̃
[ρσ][µν] − 2Kµων r̃

[ρσ][ων] − 2Kνων r̃
[ρσ][µω] −Y[ρσ]µ = 0.

(4.22)

In order to eliminate the remaining Lagrange multipliers from
this equation, one may take its divergence with the teleparallel
connection ∇µ, and use the relation

2∇µ∇ν r̃
[ρσ][µν] = 2∇[µ∇ν]r̃

[ρσ]µν =−Tωµν∇ω r̃
[ρσ]µν ,

(4.23)

which follows from the fact that the teleparallel connection
has vanishing curvature, but nonvanishing torsion, to obtain
the equation

∇µ

(
Y[ρσ]µ+ 2Kµων r̃

[ρσ][ων] + 2Kνων r̃
[ρσ][µω]

)
+Tωµν∇ω r̃

[ρσ]µν = 0. (4.24)

Expanding the contortion tensor in terms of its defini-
tion (2.19), and applying the product rule, this equation
becomes

∇µY
[ρσ]µ− 2Tωωµ∇ν r̃

[ρσ][µν] − 3∇[ωT
ω
µν]r̃

[ρσ][µν] = 0.
(4.25)

On the last term, one can use the first Bianchi identity (2.16)
for a flat connection, which yields

3∇[ωT
ω
µν] =−3Tωτ [ωT

τ
µν]

= TωωτT
τ
µν +TωµτT

τ
νω −TωντT

τ
µω

= TωωτT
τ
µν , (4.26)

where the last two terms cancel each other due to symmetry.
This leads to the equation

∇µY
[ρσ]µ− 2Tωωµ∇ν r̃

[ρσ][µν] −TωωτT
τ
µν r̃

[ρσ][µν] = 0.
(4.27)

Comparing this with the antisymmetric equation (4.22), we
see that it matches the covariant derivative of the Lag-
range multiplier r̃[ρσ][µν], contracted with the torsion vector
Tωωτ . Performing the same contraction on the antisymmetric
equation (4.22) yields

Tωωτ
(
2∇ν r̃

[ρσ][τν] +Tτ µν r̃
[ρσ][µν] −Y[ρσ]τ

)
= 0, (4.28)

where we have once again used the definition (2.19) of the
contortion in terms of the torsion. Taking the sum of the last
two equations, we find that the Lagrange multiplier cancels,
and the remaining equation reproduces the spin connection
equation (4.17). This equation has six independent compon-
ents, and so it determines the six free components of the spin
connection, which are left after fixing the metric compatib-
ility and flatness constraints. The remaining components of
equation (4.22) determine the Lagrange multiplier. Hence, we
have shown that the method of Lagrange multipliers yields
the same field equations as the constrained variation which we
used earlier in this section.

We finally remark that a priori, there is no relation between
the field equations obtained by variation wrt the tetrad (4.6)
and the spin connection (4.17). However, this changes if one
imposes a number of conditions, as will be shown below.

4.1.2. Local Lorentz invariance of the matter action. We first
turn our attention to the matter action Sm, which does not
depend on the spin connection, following the assumed decom-
position (4.1). We demand that the matter action is invariant
under infinitesimal and local Lorentz transformations λAB with
λ(AB) = 0, which act on the tetrad following the transforma-
tion (2.38), and which we assume to act trivially on matter

39



Rep. Prog. Phys. 86 (2023) 026901 Review

fields, δλχI = 0. The resulting variation of the matter action is
therefore given by

δλSm =

ˆ
d4xeΘA

µλAB e
B
µ =

ˆ
d4xeΘµνλ

µν , (4.29)

where

λµν = gνρEA
µeBρλ

A
B . (4.30)

From the antisymmetry of λµν it thus follows that the anti-
symmetric part of the energy-momentum tensor vanishes,
Θ[µν] = 0. Note that this holds both on-shell and off-shell,
i.e. independently of the matter field equations, since these
have not entered the derivation. It does, however, depend on
the assumption that there is no direct coupling between the
matter fields and the spin connection. Given such a coupling,
one would obtain a contribution from the spin current [126].

We also remark that the condition of local Lorentz invari-
ance of the matter action is equivalent to demanding that the
tetrad enters the matter action only through the metric and its
derivatives (which appear through the Christoffel symbols in
covariant derivatives of the matter tensor fields χI). To see
this, one uses the symmetry of the energy-momentum tensor
to write the variation of the matter action wrt the tetrad as

δeSm =

ˆ
d4xeΘA

µδeAµ =

ˆ
d4xeΘνµηABe

B
(νδe

A
µ)

=
1
2

ˆ
d4xeΘµνδgµν , (4.31)

which shows that it is fully described by the variation of the
metric. Hence, the matter action does not depend on any other
DoF arising from the tetrad besides the ones which determine
the metric. The converse is obvious: if the tetrad enters into
the matter action only through the metric, then local Lorentz
invariance follows from the fact δλgµν = 0 that the metric is
invariant under local Lorentz transformations.

4.1.3. Local Lorentz invariance of the gravitational action.
Next, we turn our attention to the gravitational part Sg of the
action. Demanding invariance under local Lorentz transform-
ations, as discussed for the matter action above, we must here
also take into account the transformation (2.39) of the spin
connection. It then follows that the total induced variation of
the action is given by

δλSg =−
ˆ

d4xe
[
WA

µλAB e
B
µ−YA

Bµ
(
∂µλ

A
B +ωA

Cµλ
C
B

−ωCBµλ
A
C

)]
.

(4.32)

After integration by parts, we then find the expression

δλSg =−
ˆ

d4xe
(
WA

µeBµ+ ∂µYA
Bµ+

◦
Γ
µ
νµYA

Bν

−ωCAµYC
Bµ+ωB

CµYA
Cµ
)
λAB . (4.33)

Taking into account the antisymmetry of λAB, and comparing
with the field equations (4.6) and (4.17), we see that local
Lorentz invariance imposes that they are related by

W[µν] = W̃µν , (4.34)

and so the antisymmetric part of the tetrad field equation
agrees with the spin connection equation [125]. This reflects
the fact that the spin connection is a pure gauge DoF, which
is not restricted by an independent field equation. The linear
dependence between the field equations exactly accounts for
this gauge freedom. Hence, in the remainder of this Review
we will make use of this fact, and omit deriving the spin con-
nection field equations explicitly, as they are redundant.

As for the matter action, we can also obtain an equival-
ent description of local Lorentz invariance of the gravitational
action by demanding that the gravitational action is construc-
ted from the metric (2.21), the torsion (2.27) and its covariant
derivative. To see this, note first that the general variation of
the metric and the torsion tensor can be obtained from those
of the tetrad and the spin connection as

δgµν = 2ηABe
A
(µδe

B
ν),

δTρµν = EA
ρ
(
2δωA

B[µe
B
ν] + 2D[µδe

A
ν] −Tσµνδe

A
σ

)
.

(4.35)

Two properties follow immediately from these variations.
First, note that for a local Lorentz transformation given by the
relations (2.38) and (2.39), both δgµν and δTρµν vanish. This
can easily be seen by direct calculation, which yields

δλgµν = 2ηACe
A
(µe

B
ν)λ

C
B = 2eAµe

B
νλ(AB) = 0, (4.36)

as well as

δλT
ρ
µν = EA

ρ
[
2D[µ

(
λAB e

B
ν]

)
− 2EC

σD[µe
C
ν]λ

A
B e

B
σ − 2eB[νDµ]λAB

]
= 0.

(4.37)

Secondly, one finds that the variation of the spin connection
can be expressed in terms of the variations of the torsion and
the tetrad. This relation can be derived in multiple steps. First,
it follows from variation of the tetrad postulate (2.25) that the
variation of the spin connection takes the form

δωA
Bµ = eAρEB

ν
[
δΓρνµ−∇µ(EC

ρδeCν)
]
, (4.38)

in terms of the variations of the tetrad and the teleparallel affine
connection. The coefficients of the latter can then be decom-
posed using the relation (2.17), where the disformation van-
ishes, to obtain

δΓρνµ = δ
◦
Γ
ρ
νµ+ δKρνµ, (4.39)

where the variation of the Levi-Civita connection coefficients
is given by

δ
◦
Γ
ρ
νµ =

1
2
gρσ
( ◦
∇νδgσµ+

◦
∇µδgνσ −

◦
∇σδgνµ

)
. (4.40)
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The variation of the contortion follows from its defini-
tion (2.19) and reads

δKρνµ =
1
2
δTρµν − gρσgτ(µδT

τ
ν)σ + gρσT(µν)

τδgστ

−Tσ(µ
ρδgν)σ. (4.41)

Taking the sum of the latter two expressions, one finds that the
variation of the teleparallel affine connection is given by

δΓρνµ =
1
2
gρσ (∇νδgσµ+∇µδgνσ −∇σδgνµ)

+
1
2
δTρµν − gρσgτ(µδT

τ
ν)σ. (4.42)

Finally, substituting the metric variation δgµν in terms of
the tetrad variation given by the expression (4.35), we have
expressed the variation of the teleparallel connection in terms
of the variations of the tetrad and torsion.

With the help of the relations derived above, it is possible
to rewrite the variation in equation (4.3) of the gravitational
action in terms of the variations of the tetrad and the tor-
sion. By successive substitution and integration by parts, one
finds [125, 127]

δSg =−
ˆ

d4xe
{
WA

µδeAµ+Yρ
νµ
[
δΓρνµ−∇µ(EC

ρδeCν)
]}

(4.43a)

=−
ˆ

d4xe

{[
Wν

µ+Tσ
σρ(2Yµ(νρ) +Yνρ

µ)

+∇ρ(2Yν
[µρ] +Yρµν)

]
EA

νδeAµ+
[1
2
Yµνρ−Yρ

µν
]
δTρµν

}
(4.43b)

=−
ˆ

d4xe(UA
µδeAµ+Zρ

µνδTρµν), (4.43c)

where the variation terms are given by

UA
µ :=

[
Wν

µ+Tσ
σρ(2Yµ(νρ) +Yνρ

µ)

+∇ρ(2Yν
[µρ] +Yρµν)

]
EA

ν ,

Zρ
µν :=

1
2
Yµνρ−Yρ

[µν], (4.44)

where we have applied the antisymmetry of the torsion tensor
in its last two indices.

To derive the converse relation, one starts from the variation
of the action in the equivalent form

δSg =−
ˆ

d4xe(UA
µδeAµ+Zρ

µνδTρµν). (4.45)

Inserting the variation (4.35) of the torsion into this variation,
one obtains

δSg =−
ˆ

d4xe
[
UA

µδeAµ+Zρ
µνEA

ρ
(
2δωA

B[µe
B
ν]

+ 2D[µδe
A
ν] −Tσµνδe

A
σ

)]
(4.46a)

=−
ˆ

d4xe
[(
UA

µ−EA
νTµρσZν

ρσ − 2EA
ρKσρνZσ

µν

+ 2EA
ρ
◦
∇νZρ

µν
)
δeAµ+ 2EA

ρeBνZρ
µνδωA

Bµ

]
(4.46b)

=−
ˆ

d4xe
[(
UA

µ− 2EA
ρTσσνZρ

µν + 2EA
ρ∇νZρ

µν
)
δeAµ

+ 2EA
ρeBνZρ

µνδωA
Bµ

]
, (4.46c)

where we have performed integration by parts, and omitted
antisymmetrization in the last two indices of Zρµν , since it is
already antisymmetric due to the antisymmetry of the torsion
in the variation (4.45). By comparison with the action vari-
ation (4.3), one thus finds the relation

WA
µ := UA

µ− 2EA
ρTσσνZρ

µν + 2EA
ρ∇νZρ

µν ,

YA
Bµ := EA

ρeBν(Zρ
µν −Zνµρ), (4.47)

between the occurring terms, where the antisymmetrization in
the last term is due to the fact that the spin connection is, by
definition, antisymmetric in its two Lorentz indices. One eas-
ily checks that the relations (4.44) and (4.47) are indeed each
other’s inverses.

Writing the variation of the action in the form shown in
equation (4.45), the local Lorentz transformation (4.32) of the
gravitational part of the action can now simply be written as

δλSg =−
ˆ

d4xeUA
µλAB e

B
µ =

ˆ
d4xeUµνλ

µν , (4.48)

and thus it is of the same form as the corresponding local
Lorentz transformation (4.29) of the matter action. Hence, we
see that the gravitational action is invariant under arbitrary
local Lorentz transformations if and only if U[µν] = 0, since
λµν is antisymmetric by definition of a local Lorentz trans-
formation. With the relation (4.44), this translates to

0= U[µν] =W[µν] −TσσρYµν
ρ+∇ρYµν

ρ =W[µν] − W̃µν ,
(4.49)

and thus reproduces the Lorentz invariance condition (4.34)
which we derived from the variation in equation (4.32). Fol-
lowing the same routine as we did for the variation (4.31) of
the matter action, the gravitational action is locally Lorentz
invariant if and only if its variation can be written as

δSg =−
ˆ

d4x
√
−g
(
1
2
Uµνδgµν +Zρ

µνδTρµν

)
, (4.50)

thus also expressing the determinant of the tetrad through
that of the metric, which means that the action can be fully
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expressed through the metric and the torsion tensor (and their
covariant derivatives). Note that this is equivalent to the state-
ment that the gravitational action can be completely expressed
in terms of variables which are invariant under local Lorentz
transformations [50, 124, 128].

4.1.4. Palatini approach. The aforementioned considera-
tions regarding the local Lorentz invariance open the possibil-
ity for yet another formulation of TG theories, which is known
as the Palatini approach [129]. This approach is similar to writ-
ing the gravitational action and its variation in the form on
equation (4.50), using the metric gµν instead of the tetrad as
one of the fundamental field variables. For the second field
variable, the teleparallel affine connection with coefficients
Γµνρ is chosen. This allows one to write the variation of the
gravitational part of the action in the form

δSg =−
ˆ

d4x
√
−g
(
1
2
Uµνδgµν +Yµ

νρδΓµνρ

)
, (4.51)

while the variation of the matter action is expressed in the
form (4.31) through the symmetric energy-momentum tensor
Θµν and the metric variation δgµν . Instead of a priori assum-
ing that the connection is flat and metric-compatible, one
imposes these conditions by introducing an additional term

SLM =

ˆ
(r̃µ

νρσRµνρσ + q̃µνρQµνρ)
√
−gd4x, (4.52)

into the action, where r̃µνρσ and q̃µνρ are Lagrange multipli-
ers, which is similar to the corresponding term (4.18) in the tet-
rad and spin connection formulation. The equations obtained
by taking a variation wrt these Lagrange multipliers, which
then yields the conditions that the connection represented by
Γµνρ is flat, Rµνρσ = 0, and metric-compatible, Qµνρ = 0.
The remaining field equations are obtained by variation wrt
the metric and to the affine connection, essentially following
the same procedure as shown in section 4.1.1 using the tetrad
and spin connection as fundamental variables. Variation wrt
the affine connection, and raising one index for convenience,
yields the equation

2∇σ r̃
µν[ρσ] − 2r̃µν[ρσ]Kτ στ − 2r̃µν[στ ]Kρστ

− 2q̃ρ(µν) −Yµνρ = 0. (4.53)

As in the tetrad and spin connection formulation, one finds that
the symmetric part of this equation only determines the value
of the Lagrange multiplier q̃ρ(µν), so that one only retains
the antisymmetric part of the equation in order to derive a
field equation for the physical fields. Eliminating also the Lag-
range multiplier r̃µνρσ by taking the covariant divergence of
the antisymmetric equation, one derives the connection field
equation

∇ρY
[µν]ρ−Y[µν]ρTτ τρ = 0, (4.54)

thereby reproducing the field equation (4.17) for the spin con-
nection (see [124] for a detailed derivation). By taking a vari-
ation wrt the metric one obtains the equation

Uµν + 2∇ρq̃
ρ(µν) + 2q̃σ(µν)Kρσρ =Θµν , (4.55)

which now contains the Lagrange multiplier q̃ρ(µν). This must
be eliminated by substituting its value from the previously
found in equation (4.53), which contains the Lagrange mul-
tiplier r̃µνρσ; the latter is eliminated using the same procedure
as above, finally leading to the field equation

Uµν −∇ρY
(µν)ρ+Y(µν)ρTτ τρ =Θµν , (4.56)

which now contains only the physical fields. In order to relate
this equation to the field equations in the tetrad and spin
connection formulation, one substitutes Uµν from the rela-
tion (4.44), keeping only its symmetric part, as mandated by
the Lorentz invariance condition (4.49), and finally also uses
the connection field equation (4.17), to reproduce the tetrad
field equation (4.6). Hence, the Palatini approach yields the
same field equations as the more common approach we dis-
cussed before, albeit using different fundamental fields.

4.1.5. Energy-momentum conservation. Another important
relation can be derived from the demand that the action is
invariant under diffeomorphisms. Infinitesimally, these are
generated by vector fields X= Xµ∂µ, and the induced change
on any tensor field is given by its Lie derivative. For the tet-
rad and spin connection these Lie derivatives are given by the
relations (3.120). For the matter action this yields the variation

δXSm =

ˆ
d4xe

[
ΘA

µ(Xν∂νe
A
µ+ ∂µX

νeAν)+ΩILXχ
I
]
.

(4.57)

One then imposes that the matter field equations ΩI = 0 are
satisfied. Hence, it must be emphasized that everything which
follows holds only on-shell. Integrating by parts, as well as a
few transformations of the resulting terms, lead to

δXSm =

ˆ
d4xeΘA

µ(Xν∂νe
A
µ+ ∂µX

νeAν) (4.58a)

=

ˆ
d4xe

[
ΘA

µ∂νe
A
µ−

◦
Γ
ρ
µρΘA

µeAν − ∂µ(ΘA
µeAν)

]
Xν

(4.58b)

=

ˆ
d4xe

(◦
Γ
ρ
νµΘρ

µ−
◦
Γ
ρ
µρΘν

µ− ∂µΘν
µ
)
Xν (4.58c)

=−
ˆ

d4xeXν
◦
∇µΘν

µ, (4.58d)

from which follows the energy-momentum conservation

◦
∇νΘ

µν = 0, (4.59)
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since the vector field is arbitrary. A crucial step in this deriva-
tion is the substitution

◦
Γ
ρ
νµΘρ

µ =
1
2
gρσ(∂νgσµ+ ∂µgνσ − ∂σgνµ)Θρ

µ (4.60a)

=
1
2
Θµσ(∂νgσµ+ ∂µgνσ − ∂σgνµ) (4.60b)

=
1
2
Θµσ∂νgσµ (4.60c)

=ΘµσηABe
B
µ∂νe

A
σ (4.60d)

=ΘA
σ∂νe

A
σ, (4.60e)

which makes explicit use of the symmetry Θ[µν] = 0 of
the energy-momentum tensor. This shows that the Lorentz
invariance of the matter action is a necessary ingredient in
deriving the conservation equation (4.59). Note that energy-
momentum conservation is a consequence of the invariance of
the matter action under diffeomorphisms, and that its common
form (4.59) is a consequence of coupling to the metric only,
which is independent of the choice of the gravitational action.

4.1.6. Bianchi identities. Also, for the gravitational action
Sg the invariance under diffeomorphisms is imposed. In this
case the induced variation is given by

δXSg =−
ˆ

d4xe
[
WA

µ(Xν∂νe
A
µ+ ∂µX

νeAν)

+YA
Bµ(Xν∂νω

A
Bµ+ ∂µX

νωA
Bν)
]
.

(4.61)

This variation can be decomposed in a number of steps. We
start with the second part of this term, which contains the con-
tribution from the spin connection variation YABµ. After integ-
ration by parts this contribution reads

−
ˆ

d4xe
(
YA

Bµ∂νω
A
Bµ−YA

Bµ∂µω
A
Bν − ∂µYA

BµωA
Bν

−
◦
Γ
ρ
µρYA

BµωA
Bν

)
Xν , (4.62)

where the last term originates from the derivative of the
determinant e of the tetrad. Note that the first two terms consti-
tute an antisymmetric derivative of the spin connection. Using
the fact that its curvature (2.26) vanishes, one thus finds the
expression

−
ˆ

d4xe
(
YA

BµωA
Cµω

C
Bν −YA

BµωA
Cνω

C
Bµ− ∂µYA

BµωA
Bν

−
◦
Γ
ρ
µρYA

BµωA
Bν

)
Xν . (4.63)

After renaming indices, one can extract a common factor to
obtain

−
ˆ

d4xe
(
YC

BµωCAµ−YA
CµωB

Cµ− ∂µYA
Bµ

−
◦
Γ
ρ
µρYA

Bµ
)
ωA

BνX
ν . (4.64)

Comparing with the expression (4.10), and using the fact that
the spin connection is antisymmetric, we see that this is simply

−
ˆ

d4xeW̃ABωABτX
τ =−

ˆ
d4xeW[AB]ωABτX

τ , (4.65)

where we used the local Lorentz invariance, which implies the
relation (4.34) between the tetrad and spin connection field
equations. Inserting this in the variation (4.61), we thus find
the expression

δXSg =−
ˆ

d4xe
[
WA

µ(Xν∂νe
A
µ+ ∂µX

νeAν)+WABωABτX
τ
]
,

(4.66)

where we omitted the antisymmetrization brackets on the last
term, since it is contractedwith the antisymmetric spin connec-
tion. Once again, we perform integration by parts to obtain

δXSg =−
ˆ

d4xe
(
WA

µ∂νe
A
µ−WA

µ∂µe
A
ν − ∂µWA

µeAν

−
◦
Γ
ρ
µρWA

µeAν +WABωABν

)
Xν . (4.67)

Note that the second and third term can be combined by trans-
forming a Lorentz index into a spacetime index, which yields

δXSg =−
ˆ

d4xe
(
WA

µ∂νe
A
µ− ∂µWν

µ−
◦
Γ
ρ
µρWA

µeAν

+WABωABν

)
Xν . (4.68)

This can also be done with the remaining Lorentz indices, so
that one obtains

δXSg =−
ˆ

d4xe
(
Wρ

µEA
ρ∂νe

A
µ− ∂µWν

µ−
◦
Γ
ρ
µρWν

µ

+WρµeAρe
B
µωABν

)
Xν . (4.69)

Now the first and the last term can be combined to yield the
teleparallel affine connection

δXSg =−
ˆ

d4xe
(
Wρ

µΓρµν − ∂µWν
µ−

◦
Γ
ρ
µρWν

µ
)
Xν .

(4.70)

After splitting the teleparallel connection in the first term into
a contortion and Levi-Civita connection

δXSg =−
ˆ

d4xe
(
Wρ

µKρµν +Wρ
µ
◦
Γ
ρ
µν − ∂µWν

µ

−
◦
Γ
ρ
µρWν

µ
)
Xν , (4.71)
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the remaining terms combine into a covariant derivative

δXSg =−
ˆ

d4xe
(
Wρ

µKρµν −
◦
∇µWν

µ
)
Xν , (4.72)

using the fact that the Levi-Civita connection is symmetric.
The resulting equations

WρνKρν
µ−

◦
∇νW

µν = 0, (4.73)

are the Bianchi identities for a general TG theory. Note that
although we have used the relation (4.34) between the tet-
rad and spin connection field equations, which follows from
the Lorentz invariance of the gravitational action, we have
not imposed that either of these field equations hold. Hence,
the Bianchi identities (4.73) hold both on-shell and off-shell,
i.e. they are geometric identities. Using the antisymmetry
K(µν)ρ = 0 of the contortion, one can decompose them into
their symmetric and antisymmetric parts

◦
∇νW

(µν) = 0, W[ρν]Kρν
µ−

◦
∇νW

[µν] = 0. (4.74)

Together with a corresponding decomposition

W(µν) =Θµν , W[µν] = 0, (4.75)

of the field equation (4.6), which follows from the symmetry
Θ[µν] = 0 of the energy-momentum tensor. We see that insert-
ing the field equations into the Bianchi identity (4.74) yields
the energy-momentum conservation (4.59). Hence, we find
that the latter is indeed imposed by the field equations.

Thus, for any TG theory we can always write its field
equations as the symmetric and antisymmetric Wµν (which is
the variation of the action wrt the tetrad). This then accounts
for both the tetrad and spin connection field equations.

4.1.7. Premetric approach. To conclude the preceding dis-
cussion of the general properties of TG theories, we finally
show how these can be found from the premetric point of
view [125, 130, 131]. For this purpose, we write the gravit-
ational part Sg of the general action in yet another form

Sg =
1
2

ˆ
TA ∧HA =−1

8

ˆ
d4xeTAµνHAρσϵ

µνρσ, (4.76)

where we introduced the gravitational excitation two-form

HA =
1
2
HAµνdx

µ ∧ dxν . (4.77)

Any TG theory can be defined by specifying a constitutive
relation, i.e. a functional dependence of HAµν on the tetrad
eAµ and the torsion tensor TAµν . It follows that its variation
can be expressed in the form

δHAµν = EABµνρδeBρ+
1
2
TABµνρσδTBρσ, (4.78)

where the quantities EABµνρ and TABµνρσ depend on the choice
of the constitutive relation. The full variation of the gravita-
tional part of the action is then expressed as

δSg =

ˆ
(ΥA ∧ δeA+ΠA ∧ δTA), (4.79)

in terms of a three-form and a two-form

ΥA :=
1
6
ΥAµνρdx

µ ∧ dxν ∧ dxρ, ΠA :=
1
2
ΠAµνdx

µ ∧ dxν ,

(4.80)

whose components are given by

ΥAµνρ :=
1
8
TBαβEBAγδ τ ϵαβγδϵτµνρ = 3TB[µνEBAρτ ] τ ,

(4.81a)

ΠAµν :=
1
2
HAµν −

1
16
TBαβTBAγδ ωτ ϵαβγδϵωτµν =

1
2
HAµν

+
3
2
TB[µνTBAωτ ]ωτ . (4.81b)

This variation is complemented with the variation of the
matter action, written as

δSm =

ˆ
ΣA ∧ δeA, (4.82)

in terms of the energy-momentum three-form

ΣA :=
1
6
ΣAµνρdx

µ ∧ dxν ∧ dxρ. (4.83)

This approach is related to the preceding discussion through
the torsion variation

δTA = DδeA+ δωA
B ∧ eb, (4.84)

from which follows that one can equivalently rewrite the vari-
ation (4.79) of the gravitational action as [125, 132]

δSg =

ˆ [
(ΥA−DΠA)∧ δeA−ΠA ∧ eB ∧ δωA

B
]
. (4.85)

By comparing with the variation in equation (4.3), one there-
fore obtains the identifications

WA
µ = ϵµνρσ

(
1
2
DνΠAρσ −

1
6
ΥAνρσ

)
,

YA
Bµ =

1
2
ϵµνρσΠAνρe

B
σ. (4.86)

Similarly, comparing the variations in equations (4.2)
and (4.82), one obtains the relation

ΘA
µ =

1
6
ΣAνρσϵ

µνρσ. (4.87)

With these identifications in place, we see that the Lorentz
invariance of the matter action, which is manifest in the sym-
metry of the energy-momentum tensor, takes the form

Σ[A ∧ eB] = 0, (4.88)
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while the Lorentz invariance of the gravitational action implies

Υ[A ∧ eB] +Π[A ∧TB] = 0. (4.89)

Further, these two relations can be used to derive the field
equation

D
(
Π[A ∧ eB]

)
= DΠ[A ∧ eB] +Π[A ∧TB] = 0, (4.90)

which is obtained from variation wrt the spin connection, from
the antisymmetric part of the tetrad field equation

DΠA−ΥA =ΣA. (4.91)

Finally, the covariant energy-momentum conservation takes
the form

◦
DΣA = 0, (4.92)

while the Bianchi identities for the gravitational sector read

◦
D(DΠA−ΥA) = 0. (4.93)

The main advantage of this premetric approach lies in its
formal analogy to electrodynamics and the possibility to write
the gravitational field equations in a form which is reminiscent
of gauge theories. This becomes apparent by writing the tetrad
field equation (4.91) in the form

DΠA =ΥA+ΣA. (4.94)

The RHS of this equation can be interpreted as the total
energy-momentum current, which contains both a gravita-
tional contribution ΥA and a matter contribution ΣA. This
total current is covariantly conserved wrt the teleparallel
connection,

0= D2ΠA = D(ΥA+ΣA), (4.95)

since D2 = 0 due to the flatness of this connection. Together
with the torsion relations

DeA = TA, DTA = 0, (4.96)

one easily recognizes the similarity to the equations

dA= F, dF= 0, d ⋆F= J, dJ= 0, (4.97)

in Lorentz–Maxwell electrodynamics, where A is the elec-
tromagnetic vector potential, F is its field strength and J is
the conserved electromagnetic current density. Also here more
general theories of electrodynamics, such as effects of media,
can be formulated by replacing the excitation ⋆F with a more
general constitutive relation [133]. This analogy is particularly
visible in the case that the gravitational excitationHA depends
linearly on the torsionTA, in which caseΠA =HA [130]. In the
non-linear case, this relation becomes more involved; a num-
ber of constitutive relations for various modified TG theories
are given in [125].

We finally remark that in other, curvature-based gravity
theories, similar formal analogies with electrodynamics or
Yang–Mills theories can be constructed. This is the case,
e.g. for MacDowell–Mansouri gravity [134] or Chern–Simons
gravity [135].

4.2. The ADM formalism

Avery useful tool to study gravity theories is the ADM formal-
ism, named after Arnowitt, Deser and Misner. Before discuss-
ing its application to particular TG theories, we now discuss a
few general aspects of its use in this context. In section 4.2.1,
we discuss the 3+ 1 decomposition of the teleparallel geo-
metry into space and time components. This leads to the intro-
duction of lapse and shift variables in section 4.2.2. The ques-
tion of Lorentz gauge fixing is discussed in section 4.2.3. In
section 4.2.4, we introduce canonical variables, and discuss
their irreducible decomposition in section 4.2.5.

4.2.1. 3 + 1 decomposition of teleparallel geometry. In
order to perform a Hamiltonian analysis, one usually starts
with a split of all dynamical variables in their space and time
components. Such a decomposition is done relative to a foli-
ation of spacetime with timelike hypersurfaces, i.e. one identi-
fies the spacetime manifold M, which is assumed to be glob-
ally hyperbolic, with a direct product of the form R×Σ. This
identification allows essentially two different possibilities to
split the dynamical variables into space and time components,
which we will write out explicitly for the tetrads and their
duals:

(a) In the first approach, one uses coordinates (xµ) = (x0 =
t,xi), where lowercase Latin letters denote spatial indices
following the convention 1.3, which are adapted to the foli-
ation, such that the time coordinate t parametrizes the dif-
ferent spatial slices, while (xi) are spatial coordinates on
each spatial slice Σt ⊂M. In these coordinates the tetrad
naturally decomposes as

eA = eAµdx
µ = eA0dt+ eAidx

i, (4.98)

while its inverse decomposes as

EA = EA
µ∂µ = EA

0∂0 +EA
i∂i. (4.99)

Notable works using this decomposition are [136–149].
(b) Another approach does not make use of adapted coordin-

ates, but employs the spacetime metric gµν . In this
approach, one starts from the unique normalized, future
pointing, hypersurface-orthogonal vector field nµ∂µ,
which satisfies

nµnµ = gµνn
µnν = 1, Xµnµ = gµνX

µnν = 0, (4.100)

for any vector field Xµ∂µ which is tangent to the spatial
hypersurfaces. The metric then decomposes into the form

gµν = nµnν − hµν , (4.101)
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where hµν restricts to a Riemannian metric on every spa-
tial hypersurface and nµhµν = 0. Raising one index, one
obtains two projectors

δµν = (P⊥)
µ
ν +(P∥)

µ
ν , (P⊥)

µ
ν = nµnν , (P∥)

µ
ν =−hµν ,

(4.102)

where it is convenient to write the indices directly on top of
each other, as for the Kronecker symbol δµν . These project-
ors can be applied to any covariant or contravariant index

Vµ = (P⊥)
µ
νV

ν +(P∥)
µ
νV

ν = nµnνV
ν − hµνV

ν , (4.103a)

Vµ = (P⊥)
ν
µVν +(P∥)

ν
µVν = nµn

νVν − hνµVν . (4.103b)

A common notation for the obtained projected compon-
ents is given by

nµV
µ = V⊥, nµVµ = V⊥, −hµνVν = Vµ̄,

−hνµVν = Vµ̄, (4.104)

where a bar on top of an index is a shorthand notation to
indicate that the corresponding index has been contracted
with a spatial projector. Hence, for the tetrad one has the
decomposition

eAµ = nµe
A
⊥ + eAµ̄, (4.105)

while its dual decomposes as

EA
µ = nµEA

⊥ +EA
µ̄. (4.106)

Notable works using this decomposition are [150–154].

Finally, one can analogously decompose also the teleparal-
lel spin connection ωA

Bµ. However, this step can be avoided
by working in the Weitzenböck gauge, which is always pos-
sible, as we shall see below.

4.2.2. Lapse and shift variables. Before performing the
Hamiltonian analysis, it turns out to be more convenient to
introduce a different set of variables in order to replace the
temporal tetrad components eA0 or eA⊥ introduced in the 3+ 1
decomposition. For this purpose one writes the components of
the unit normal vector field in the form

n0 =
1
N
, ni =−Ni

N
, (4.107)

introducing the lapse N and the components N i of the shift
vector field. They satisfy the relation

∂0 = Nnµ∂µ+Ni∂i, (4.108)

and therefore relate the two different possibilities to split
tensor components in the previous section. Using these vari-
ables, it is possible to express the temporal tetrad components
in the form

eA0 = NnA+NieAi, (4.109)

where nA = eAµnµ = eA⊥ is the expression of the unit nor-
mal vector field in the tetrad basis. A crucial insight in the
transition to the new variables is the fact that the latter can be
fully expressed in terms of the spatial tetrad components eAi,
without using the time components eA0. To see this, note first
that the condition that nµ is normal to the spatial hypersurfaces
can be expressed as

0= g(n,∂i) = nµgµi = nAηABe
B
i = nAe

A
i = ni, (4.110)

from which likewise follows

n0 = nAe
A
0 = nA(Nn

A+NieAi) = N. (4.111)

The second condition is the normalization, which in the tetrad
basis simply reads

1= nAnA = ηABn
AnB, (4.112)

and so involves only the Minkowski metric. These two condi-
tions uniquely determine nA up to a sign difference, and leads
to the expression [141]

nA =±1
6
ϵABCDε

ijkeBie
C
je
D
k, (4.113)

where εijk denotes the totally antisymmetric tensor field
defined by the induced metric hij = ηABeAieBj on the spatial
hypersurfaces. The sign is finally fixed by the demand that
the normal vector field is future pointing, which means pos-
itive lapse, N> 0, following the decomposition (4.107). This
can be conducted by realizing that the four Lorentz vectors
(nA,eAi) with i= 1,2,3 are linearly independent; this fol-
lows from the fact that only if the eAi are linearly independ-
ent, the metric hij is non-degenerate, while the orthogonality
condition (4.110) implies that also nA is linearly independ-
ent. Hence, these four Lorentz vectors constitute a basis of
Minkowski space. Assuming that the three spatial tetrad com-
ponents eAi are related to an oriented coordinate basis ∂i of the
spatial hypersurfaces, then translates the condition that nA is
future pointing into a condition on the orientation of the basis
(nA,eAi). This basis is oriented if the determinant

e= ϵABCDe
A
0e

B
1e
C
2e
D
3 (4.114a)

= NϵABCDn
AeB1e

C
2e
D
3 (4.114b)

=±1
6
NϵABCDϵ

A
EFGε

ijkeB1e
C
2e
D
3e
E
ie
F
je
G
k (4.114c)

=∓Nεijkhi1hj2hk3 (4.114d)

=∓Nε123 (4.114e)

=∓N
√
h, (4.114f )
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is positive, and so the lower sign must be chosen. This determ-
ines the normal vector to be given by

nA =−1
6
ϵABCDε

ijkeBie
C
je
D
k. (4.115)

Together with the relation (4.109), it is thus possible to express
the time component eA0 of the tetrad through its spatial com-
ponents, the lapse and the shift. In summary, this means that
the 16 components eAµ of the tetrad are equivalently expressed
by the 16 variables

N, Ni, eAi. (4.116)

This is the ADM decomposition of the tetrad in TG. With its
help, the inverse tetrad is written as

EA
0 =

1
N
nA, EA

i =−ηABhijeBj−
Ni

N
nA, (4.117)

where hij denotes the inverse of the spatial metric hij =
−ηABeAieBj. Further, for the metric this yields the usual ADM
decomposition

g00 = N2 −NiNjhij, g0i =−Njhij, gij =−hij, (4.118)

using the fact that ni = 0, together with the inverse metric

g00 =
1
N2
, g0i =− Ni

N2
, gij =

NiNj

N2
− hij. (4.119)

Transforming the indices of the metric to Lorentz indices with
the help of the tetrad, this yields the helpful relations

ηAB = nAnB− ηACηBDh
ijeCie

D
j, (4.120)

and

ηAB = nAnB− hijeAie
B
j. (4.121)

These allow us to express the orthogonal and parallel project-
ors (4.102) as

(P⊥)
A
B = nAnB, (P∥)

A
B =−ηBChijeAieCj, (4.122)

in the tetrad basis, which we will use later for the decom-
position of further quantities into the spatial and normal
components.

4.2.3. Lorentz gauge fixing. As discussed in section 4.1, the
covariant formulation of TG generically involves a Lorentz
gauge freedom, which is implemented via the flat, metric-
compatible spin connection ωA

Bµ. Since the latter represents
a pure gauge DoF, the question arises how to treat this vari-
able in the Hamiltonian formalism. The treatment of the spin
connection can essentially be classified into three approaches:

(a) Using Lagrange multipliers: As discussed in section 4.1.1,
one possibility to include the spin connection into the tele-
parallel action and enforce its flatness and compatibility
with the metric is by introducing Lagrange multipliers,
which impose the conditions of vanishing curvature and
non-metricity. In the Hamiltonian formalism, these lead
to constraints on the spin connection, thus implement-
ing its flatness and metric compatibility. Further primary
constraints arise from the Lorentz gauge freedom, link-
ing the spin connection and the tetrad through their com-
mon change under Lorentz transformations, which leave
the action invariant. Finally, also for the Lagrange mul-
tipliers, constraints arise which implement the condition
that their canonical momenta vanish identically. This large
number of variables and associated constraints therefore
makes this approach rather cumbersome. It is used in [136,
151, 152].

(b) Integrating the spin connection: Another approach to treat
the spin connection, which does not necessitate the use
of Lagrange multipliers, arises from the fact that loc-
ally it may be integrated in the form (2.35) and thus
expressed by a local Lorentz transformation ΛA

B. Instead
of ωA

Bµ, one thus considers ΛA
B as the fundamental

field variable which implements the Lorentz gauge free-
dom. As a consequence, the derived connection is flat
and metric-compatible by construction, and therefore does
not have to be enforced by constraints. Together with
the absence of Lagrange multipliers, the number of vari-
ables and associated constraints is therefore significantly
reduced compared to the aforementioned approach. Nev-
ertheless, constraints still appear from the gauge invari-
ance of the teleparallel action under local Lorentz trans-
formations, and these constraints intertwine the conjugate
momenta of the tetrad and spin connection DoF. However,
this approach is not common for the Hamiltonian analysis.

(c) Fixing the gauge: Finally, it is also possible to eliminate
the spin connection completely prior to performing the
Hamiltonian analysis. This can be achieved starting from
the preceding approach which integrates the spin connec-
tion locally to a variable ΛA

B, which constitutes a local
Lorentz transformation, by making a change of variables
according to

ẽAµ = (Λ−1)ABe
B
µ, Λ̃A

B = ΛA
B, (4.123)

which is equivalent to the change of ADM variables given
by

Ñ= N, Ñi = Ni, ẽAi = (Λ−1)ABe
B
i, Λ̃A

B = ΛA
B.

(4.124)

One finds that the new variable ẽAµ simply represents the
Weitzenböck tetrad which is associated to the original tet-
rad eAµ. Since the Weitzenböck tetrad is uniquely determ-
ined from the original tetrad (up to a global Lorentz trans-
formation) by the condition that ΛA

B relates the original
spin connection ωA

Bµ to the vanishing Weitzenböck spin
connection, it follows that the new variable ẽAB is invariant
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under any further local Lorentz transformation Λ̂A
B, which

acts on the original variables as

e ′Aµ = Λ̂A
Be

B
µ, Λ ′A

B = Λ̂A
CΛ

C
B. (4.125)

Note that here the Lorentz transformation Λ̂A
B is applied

only to the first index of the variable ΛA
B, but not to

the second. This is due to the fact that the first index of
ΛA

B represents the variable, non-Weitzenböck gauge, in
which the tetrad is given by eAµ, while the second index
refers to the fixedWeitzenböck gauge, fromwhich the spin
connection ωA

Bµ is obtained through the transformation
ΛA

B. This can also be seen by explicitly calculating the
transformation

ω ′A
Bµ = Λ ′A

C∂µ(Λ
′−1)CB (4.126a)

= Λ̂A
DΛ

D
C∂µ

[
(Λ−1)CE(Λ̂

−1)EB

]
(4.126b)

= Λ̂A
D

[
(Λ̂−1)EBΛ

D
C∂µ(Λ

−1)CE+ ∂µ(Λ̂
−1)DB

]
(4.126c)

= Λ̂A
D(Λ̂

−1)EBω
D
Eµ+Λ̂A

D∂µ(Λ̂
−1)DB, (4.126d)

which is the behavior (2.34) of a spin connection under
local Lorentz transformations. From the change of vari-
ables (4.123) one can see that these transformations cancel
each other for ẽAµ, as can be seen by explicitly calculating

ẽ ′Aµ = (Λ ′−1)ABe
′B
µg= (Λ−1)AB(Λ̂

−1)BCΛ̂
C
De

D
µg

= (Λ−1)ABe
B
µg= ẽAµ. (4.127)

Hence, Lorentz transformations act exclusively on Λ̃A
B,

so that the new variables (ẽAµ, Λ̃A
B) provide a split into

a gauge-invariant and a pure gauge variable. Further, one
finds that the metric and teleparallel affine connection,
which enter TG actions, are expressed in the new variables
as

gµν = ηABe
A
µe

B
ν = ηABΛ

A
CΛ

B
Dẽ

C
µẽ

D
ν = ηABẽ

A
µẽ

B
ν ,

(4.128)

as well as

Γµνρ = EA
µ
[
∂ρe

A
ν +ΛA

B∂ρ(Λ
−1)BCe

C
ν

]
(4.129a)

= (Λ−1)DAẼD
µ
[
∂ρ(Λ

A
Bẽ

B
ν)+ΛA

B∂ρ(Λ
−1)BCΛ

C
Eẽ

E
ν

]
(4.129b)

= (Λ−1)DAẼD
µ
[
ΛA

B∂ρẽ
B
ν + ẽBν∂ρΛ

A
B− ∂ρΛ

A
Eẽ

E
ν

]
(4.129c)

= ẼA
µ∂ρẽ

A
ν , (4.129d)

where the latter confirms the previous statement that ẽAµ
represents the tetrad in the Weitzenböck gauge. Since any
Lorentz invariant TG action can fully be expressed in terms

of the metric and teleparallel affine connection through its
torsion, as we have shown in section 4.1.3, it follows that
the action depends only on the gauge-invariant variable
ẽAµ, while the pure Lorentz gauge variable Λ̃A

B does not
contribute to the action. Its canonical momenta therefore
vanish identically, and it does not need to be considered
further in the Hamiltonian approach, so that one is left
with working with ẽAµ as the only teleparallel field vari-
able. Note that this approach is equivalent to imposing the
Weitzenböck gauge ωA

Bµ ≡ 0 from the beginning [148,
155], and thus to working in the non-covariant, pure tet-
rad formulation of TG. This is employed in [137–150, 153,
154].

In the following, we will follow the latter, gauge-fixed
approach, and use the Weitzenböck tetrad ẽAµ and its ADM
decomposition as the only teleparallel field variable. For con-
venience, we will drop the tilde on all variables, hence assum-
ing the Weitzenböck gauge from the beginning.

4.2.4. Canonical variables. In the following we will assume
that the gravitational dynamics is obtained from a teleparal-
lel action of the form (4.1), where we further assume that
the gravitational action Sg is of first derivative order in the
gravitational field variables. From the Lorentz invariance of
the gravitational action it then follows that it is constructed
from the metric gµν and the torsion tensor Tµνρ only, while
derivatives thereof are excluded, as they would introduce at
least second order derivatives of the tetrad. Hence, the action
depends only on the tetrads eAµ and their first order derivatives
∂µeAν , where the latter enter only through the torsion. Split-
ting these torsion into space and time components,

TA00 =0, TA0i =−TAi0 = ∂0e
A
i− ∂ie

A
0,

TAij =∂ie
A
j− ∂je

A
i, (4.130)

it follows from the fact that the torsion is antisymmetric in its
last two indices, that the only terms which enter the action are

eA0, eAi, ∂0e
A
i, ∂ie

A
0, ∂ie

A
j, (4.131)

while the time derivative ∂0eA0 does not contribute. Equival-
ently, one may use the relation (4.109) to replace eAi by the
ADM variables (4.116), so that the action is expressed by the
fields

N, Ni, eAi, ∂0e
A
i, ∂iN, ∂iN

j, ∂ie
A
j. (4.132)

The time derivatives (or velocities) of the spatial tetrad com-
ponents are conventionally denoted

vAi = ėAi = ∂0e
A
i. (4.133)

Variation of the gravitational action Sg wrt the velocities
defines their conjugate momenta πAi as

δėSg =

ˆ
d4xπA

i δėAi. (4.134)
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Note that by definition, they are tensor densities, i.e. they
include the density factor e given by the determinant of the
tetrad. It follows that also the Hamiltonian

H= πA
ivAi−L, (4.135)

like the Lagrangian L, is a scalar density.

4.2.5. Irreducible decomposition. As argued in
section 4.2.4, varying the action of a generic TG theory wrt
the velocities ėAi leads to the canonical momenta πAi, which
are conjugate to the spatial tetrad components eAi. These
momenta are obtained as functions which depend on the tele-
parallel field variables and their time derivatives. In order to
proceed with the Hamiltonian analysis, this relation needs to
be inverted and the velocities determined as functions of the
momenta. This task can become rather involved, since the
relation between momenta is, in general, non-trivial. How-
ever, it can be simplified by choosing a decomposition of the
momenta and velocities into irreducible components under
the rotation group acting on the spatial hypersurfaces. For the
momenta, one defines the objects

V
πi = nAπA

i, (4.136a)

A
πij = eAkh

k[iπA
j], (4.136b)

S
πij = eAkh

k(iπA
j) − 1

3
hijeAkπA

k, (4.136c)

T
π =

1
3
eAiπA

i, (4.136d)

where the letters V,A,S,T are chosen to indicate the vector,
antisymmetric, symmetric trace-free and trace components.
From these irreducible components, the original components
of the momenta are recovered as

πA
i = ηAB

[
nB

V
πi+ eBj

(A
πij+

S
πij
)
+ eBjh

ijTπ
]
. (4.137)

A similar decomposition is introduced for the velocities vAi =
ėAi, and which can be defined as

T
v i = nAv

A
i, (4.138a)

A
v ij = ηABe

B
[iv

A
j], (4.138b)

S
vij = ηABe

B
(iv

A
j) −

1
3
ηABhijh

kleBlv
A
k, (4.138c)

T
v =

1
3
ηABhijh

kleBlv
A
k, (4.138d)

and from which the original velocity components are
recovered as

vAi = nA
T
v i+ eAkh

kj

(
A
v ij+

S
vij

)
+ eAi

T
v . (4.139)

The virtue of this decomposition becomes apparent, for
example, in calculating the product πAivAi, which enters the
Hamiltonian. It follows from the irreducibility of the decom-
position above that this term reduces to

πA
ivAi =

V
πi

T
v i+

A
πij

A
v ij+

S
πij

S
vij+ 3

T
π
T
v , (4.140)

which can be seen explicitly as follows. First, note that the last
two terms in the decomposition (4.140) combine as

S
πij

S
vij+ 3

T
π
T
v =

(
eAkh

k(iπA
j) − 1

3
hijeAkπA

k

)
×
(
ηBCe

C
(iv

B
j) −

1
3
ηBChijh

lmeCmv
B
l

)
+

1
3
ηBCh

jkeAie
C
kπA

ivBj (4.141a)

= ηBCe
A
kh

k(iπA
j)eC(iv

B
j) +

2
3
ηBCh

jkeAie
C
kπA

ivBj

− 1
3
ηBCh

ijeAkπA
keC(iv

B
j) −

1
3
ηBChijh

lmeCmv
B
le
A
kh

k(iπA
j)

(4.141b)

= ηBCe
A
kh

k(iπA
j)eC(iv

B
j). (4.141c)

Together with the second term in the decomposition (4.140)
this yields

A
πij

A
v ij+

S
πij

S
vij+ 3

T
π
T
v = ηBCh

kieAke
C
iπA

jvBj = (P∥)
A
BπA

ivBi,
(4.142)

since cross-terms arising from the contraction of symmetric
and antisymmetric tensors cancel, and we obtain the parallel
projector (4.122). Finally, the remaining term is now simply
the orthogonal part

V
πi

T
v i = nAnBπA

ivBi = (P⊥)
A
BπA

ivBi, (4.143)

so that their sum indeed yields πAivBi. An alternative approach
to this result is by introducing the notation

V
πA

i = nA
V
πi,

A
πA

i = ηABe
B
j
A
πij,

S
πA

i = ηABe
B
j
S
πij,

T
πA

i = ηABe
B
jh
ijTπ (4.144)

and

T
v Ai = nA

T
v i,

A
v Ai = eAkh

kjAv ij,
S
v Ai = eAkh

kjSvij,
T
v Ai = eAi

T
v , (4.145)

for the terms in the decompositions (4.137) and (4.139). Using
this notation, the decomposition (4.140) equivalently reads

πA
ivAi =

V
πA

iTv Ai+
A
πA

iAv Ai+
S
πA

iSv Ai+
T
πA

iTv Ai, (4.146)

which is proven in a similar way. Another advantage of the
irreducible decomposition is that the different components
in the relations of the momenta and velocities generically
decouple, which simplifies inverting these relations. This will
be shown explicitly when we discuss the application of the
ADM formalism to specific TG theories.
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4.3. The teleparallel equivalent of GR

In the context and circumstances of the points raised in this
section thus far, a gravitational analogue to GR can be writ-
ten down that is dynamically equivalent. It was Einstein who
first proposed the TEGR [156], which was initially part of
his attempt to unify gravitational and electromagnetic inter-
actions. An attempt that ultimately failed but which produced
an independent theoretical formalism of gravitation that was
dynamically equivalent to GR. In practical terms, this means
that the field equations and so the classical predictions of the
theory, would be equivalent. However, given the differences
in their action formulations, these theories are not bound to
the same fate when quantum considerations are taken into
account, among other areas where it is the action rather than
the dynamical equations that play the more important role.

4.3.1. The TEGR action and field equations. In GR, the
Einstein–Hilbert action is ultimately dependent on a single
dynamical variable, namely the metric tensor [2]. This occurs
through the metric tensor itself and the Riemann tensor
expressed through

◦
R
ρ
λνµ =

◦
Γ
ρ
λµ,ν −

◦
Γ
ρ
λν,µ+

◦
Γ
ρ
σν

◦
Γ
σ
λµ−

◦
Γ
ρ
σµ

◦
Γ
σ
λν ,

(4.147)

which gives a measure of the curvature associated with the
Levi-Civita connection. If this is exchanged with the telepar-
allel connection, the resulting Riemann tensor

Rρλνµ = Γρλµ,ν −Γρλν,µ+ΓρσνΓ
σ
λµ−ΓρσµΓ

σ
λν ≡ 0,

(4.148)

will identically vanish due to the connection being curvature-
less property. Using equation (2.17) the two connections can
be related together through the contortion tensorKρµν with the
relation

Γρµν =
◦
Γ
ρ
µν +Kρµν , (4.149)

which means that the two forms of the Riemann tensor can be
related through [36]

0≡ Rρλνµ =
◦
R
ρ
λνµ+Pρλνµ, (4.150)

where

◦
R
ρ
λνµ =−

(
Kρλµ,ν −Kρλν,µ+

◦
Γ
ρ
σνK

σ
λµ−

◦
Γ
ρ
σµK

σ
λν

+
◦
Γ
σ
λµK

ρ
σν −

◦
Γ
σ
λνK

ρ
σµ+KρσνK

σ
λµ−KρσµK

σ
λν

)
=:−Pρλνµ. (4.151)

It is important to note that the Pρλνµ tensor is expressed only
in terms of the teleparallel connection. Naturally, this will lead
to a relation for the Ricci tensor

0≡ Rλµ = Rρλρµ =
◦
R
ρ
λρµ+Pρλρµ, (4.152)

that ultimately produces the Ricci scalar associated with stand-
ard gravity resulting in

0= R=
◦
R+P, (4.153)

where R= gλµRλµ, and

P= gλµPρλρµ =
2
e
∂ρ
(
eTµρµ

)
+KρσµKµσρ−KρσρK

µσ
µ,

(4.154)

where the following identities were used

Kµρµ = Tµµρ, Tσµν =−Tσνµ. (4.155)

The first term in P is a total divergence term written as

B :=
2
e
∂ρ (eT

µ
µ
ρ)≡−2

e
∂ρ
(
eTµρµ

)
, (4.156)

while the remainder can be simplified to

KρσµKµσρ−KρσρK
µσ
µ =

1
4
TρσµTρσµ+

1
2
TµσρTρσµ

−TρρσT
µ σ
µ , (4.157)

which is the original definition of the torsion scalar, namely

T=
1
4
TρσµTρσµ+

1
2
TµσρTρσµ−TρρσT

µ σ
µ . (4.158)

Hence, the Ricci scalar differs by a boundary term wrt the tor-
sion scalar and then, it can be written as

◦
R=−P=−T+B, (4.159)

which guarantees the dynamical equivalence between the
Einstein–Hilbert and TEGR action (2.52) constructed from
the torsion scalar. In this way, GR and TEGR must produce
identical field equations, which may only be distinguishable in
appearance rather than in any dynamical features. The reason
a divergence term arises is because both the GR and TEGR
Lagrangians depend on the first and second derivatives of the
metric and tetrad respectively, however, the second derivative
elements in the tetrad instance simplify to a total divergence
term. In fact, the boundary term B is related to the origin of
the Lovelock theorem in that it forces even minor modifica-
tions of the Einstein–Hilbert action to produce high order field
equations. Thus, using the tetrad as the fundamental variable of
the theory, instead of themetric, gives the possibility of obtain-
ing second order field equations using more general actions
from a local Lagrangian, in four dimensions, which is consist-
ent with the Lovelock theorem.

On the boundary term, its definition has a noteworthy fea-
ture which is based on a well known theorem that related par-
tial and covariant derivatives using the metric tensor determ-
inant, namely

◦
∇µA

µ =
1√
−g

∂µ
(√

−gAµ
)
, (4.160)
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where Aµ is an arbitrary tensor. Using the tetrad determinant
relation in equation (2.54), this can be directly used to rewrite
the boundary term definition [157, 158] in the following way

B= 2
◦
∇µ

(
Tρ µ
ρ

)
, (4.161)

from which the total divergence nature of the term becomes
much more evident. In terms of making calculations, this
expression of the boundary term can be useful in determining
the value of the quantity. However, we highlight that despite
the calculation relying on the Levi-Civita connection, it does
not mean that this is not a genuine torsion term, its just an
algebraic way to re-express the term in this way.

On the other hand, an interesting property of the torsion
scalar is that it can be written in a so-called superpotential
format in which [159]

T=
1
2
S σµ
ρ Tρσµ, (4.162)

where the superpotential takes on the form

S σµ
ρ = Kσµρ− δσρT

ν µ
ν + δµρT

ν σ
ν , (4.163)

which observes the anti-symmetry S σµ
ρ =−S µσ

ρ .
Consider the following action for TEGR in which the mat-

ter contribution is also included (to the gravitational com-
ponent in equation (2.52)) and the boundary term is already
removed since it does not contribute dynamically

STEGR :=− 1
2κ2

ˆ
d4xeT+

ˆ
d4xeLm, (4.164)

where κ2 = 8πG as defined in equation (1.7), and the negative
sign for the gravitational sector appears so that the exact same
dynamics are obtained when compared with the Einstein–
Hilbert action. Using the variation identities in appendix A,
and the energy-momentum definition in equation (1.10), we
can write the TEGR field equations as

W µ
A = e−1∂σ(eS

µσ
A )−TσνAS

νµ
σ +

1
2
E µ
A T+ ωBAνS

νµ
B

= κ2Θ µ
A , (4.165)

after some lengthy simplification. By contractingwith eAβgµα,
we can rewrite the field equations as

eAβ gµα e
−1∂σ(eS

µσ
A )−TσνβS

ν
σ α+

1
2
gαβT+ωBβνS

ν
β α

= κ2Θαβ . (4.166)

The field equation components satisfy both symmetric and
antisymmetric equations

W(µν) =Θµν , and W[µν] ≡ 0, (4.167)

where we stress that the antisymmetric equations W[µν] for
TEGR are actually identically satisfied W[µν] ≡ 0 due to the
Bianchi identities (see section 4.1.6), and where the energy-
momentum tensor is expressed as Θαβ =Θβα = eAβΘAα =

eAβgµαΘ
µ
A . These field equations organically admit all solu-

tions that appear in GR since they are dynamically equival-
ent to each other. This can be seen after noticing that the Ein-
stein tensor can be written in term of teleparallel quantities as
follows

◦
Gαβ =−

(
TBνβSB

ν
α−ωB

βνSB
ν
α−

1
e
gµαe

A
β∂ν(eSA

µν)

−T
2
gαβ

)
. (4.168)

Also, these equations are invariant under local Lorentz trans-
formations and diffeomorphisms since each of the terms in the
torsion scalar in equation (1.6d) are invariant under these sym-
metries. The tetrad and spin connection represent independent
DoF and thus are determined through extra equations. In the
case of TEGR the spin connection field equations are found to
be identically satisfied [43] which is not the case for more gen-
eral theories as will be explored in section 5. This is consistent
with the spin connection implementation in TEGR where it
represents DoF associated with the Lorentz group and so can-
not contribute to the number of dynamical equations for an
arbitrary gravitational system [123, 151, 160].

It is interesting to note that these field equations can be
reformulated as a current equation using the gauge current
J µ
A (see section 4.3.2 for more details), which is derived in

appendix A.2, namely [161, 162]

e−1∂σ(eS
µσ
A )− 1

2
J µ
A = κ2Θ µ

A , (4.169)

where in this case J µ
A becomes the Noether energy-

momentum density of gravitation [28, 161, 163].
Using this formulation of the field equations [164], the

vacuum field equations can be written with the gauge current
as a source term

∂σ(eS
µσ
A ) =

e
2
J µ
A , (4.170)

so that the gravitational field can take on a Noether gauge cur-
rent structure. Also, the anti-symmetry of the superpotential
gives rise directly to the conservation equation

∂µ

( e
2
J µ
A + eΘ µ

A

)
= 0, (4.171)

which can be shown to produce the TEGR field equations.
The motivation for the particular choice of TEGR

action (4.164) was to produce a GR equivalent theory using
torsional terms. However, we can also arrive at this point using
a perspectives from gauge theory as our motivation. As dis-
cussed in section 3.1, TG can be written as the gauge theory of
translations and the field strength is the torsion tensor. As with
any gauge theory, the action is constructed from the trace of
the torsion tensor squared, and since there are three possible
contractions of the torsion tensor, it is natural to consider the
action [36]

STEGR =
1

2κ2

ˆ
tr
(
T∧ ⋆T

)
, (4.172)
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where T= (1/2)TAµνPAdxµ ∧ dxν is the torsion 2-field and
PA = ∂A is the translation generators (see section 3.1). The last
term appearing in the integral is the dual 2-form of the tor-
sion tensor, i.e. ⋆T= (1/2) ⋆TAµνPAdxµ ∧ dxν with ⋆TAµν ≡
(e/2)ϵµναβSAαβ . This is in analogy to Yang–Mills theory
where a gauge theory of the non-abelian symmetry group
is considered and its action is constructed from the trace of
the field strength. It turns out that after some identities, one
can show that the above action is identical to the TEGR
action (4.164). This means that even without the a priori
knowledge of GR, one can still formulate TEGR using inform-
ation coming from gauge theory and produce the dynamics of
GR using the standard formulation of gauge theory.

4.3.2. The gravitational energy problem. A direct con-
sequence of the fact that the field equation (4.165), being a spe-
cial case of the general field equation (4.4) arise as the Euler–
Lagrange equations arising from the action (4.164)

eWA
µ = ∂ν

∂L
∂(∂νeAµ)

− ∂L
∂eAµ

=
δLm

δeAµ
= eΘA

µ, (4.173)

of a first order Lagrangian, is the fact that they can be written
in the so-called potential form

∂ν(eSA
µν)−κ2eJA

µ = κ2eΘA
µ. (4.174)

Here the two terms on the LHS are given by

SA
µν =

1
e

∂L
∂(∂νeAµ)

= KµνA−EA
µTρ

ρν +EA
νTρ

ρµ,

(4.175)

and

JA
µ :=

1
κ2e

∂L
∂eAµ

=
1
κ2

(
EA

λSB
νµTBνλ

−1
2
EA

µT+ωB
AνSB

µν

)
.

(4.176)

One finds that the expression JAµ formally appears in analogy
to the matter energy-momentum tensor ΘA

µ. However, there
is a fundamental difference between these two objects. It is
well known that ΘA

µ is a tensor, and as such can only satisfy
a covariant conservation equation

◦
Dµ(eΘA

µ) = e(∂µΘA
µ− ◦

ωB
AµΘB

µ+
◦
Γ
ν
νµΘA

µ) = 0.
(4.177)

The quantity JAµ, in contrast, is not a tensor, which can already
be seen from the explicit appearance of the spin connection
ωA

Bµ in its definition (4.176). It follows from the antisym-
metry SA(µν) = 0 of the superpotential that in the absence of
matter it satisfies the conservation equation [165]

∂µ∂ν(eSA
µν)−κ2∂µ(eJA

µ) =−κ2∂µ(eJA
µ) = 0. (4.178)

In order to compensate for this difference, note that the last
term in the expression (4.176) can be combined with the first

term in the TEGR field equation (4.174) to form a Fock–
Ivanenko derivative,

∂ν(eSA
µν)−ωB

AνeSA
µν =Dν(eSAµν). (4.179)

This allows for us to write the TEGR field equations in the
form

Dν(eSAµν)−κ2e tA
µ = κ2eΘA

µ. (4.180)

In this equation,

tA
µ =

1
κ2

(
EA

λSB
νµTBνλ−

1
2
EA

µT

)
, (4.181)

is a tensor. In the absence of matter, it satisfies the covariant
conservation equation

DµDν(eSAµν)−κ2Dµ(etAµ) =−κ2Dµ(etAµ) = 0, (4.182)

where also in this case the first term vanishes since SAµν is
antisymmetric it its last two indices, while the Fock–Ivanenko
derivatives commute due to the flatness of the teleparallel con-
nection. It is common to interpret tAµ as the energy-momentum
tensor of gravity, while the difference

iA
µ = JA

µ− tA
µ =

1
κ2
ωB

AνSB
µν , (4.183)

is attributed to inertial effects. However, as can be seen
from the expression on the RHS, this term is not invariant
under local Lorentz transformations, and even vanishes in
the Weitzenböck gauge. It follows from this lack of Lorentz
invariance that it cannot be an observable quantity in a theory
in which Lorentz invariance is preserved, so that all physic-
ally observable quantities must also be invariant under local
Lorentz transformations; hence, and the physical relevance of
the split into iAµ and JAµ is questionable [36, 123, 166].

4.3.3. The DoF of TEGR. The number and nature of the DoF
of any field theory is a core question by which to assess its con-
sistency as well as thewellposedness of the Cauchy problem13.
These are central to our understanding of any formulation of
gravity since hidden DoF can infiltrate every numerical prob-
lem by introducing some uncertainty in the necessary num-
ber of initial conditions to determine a system. In field theor-
ies in which higher-order field equations appear, Ostrogradsky
instability is well known to lead to ghost-like DoF [168] which
has created a favorable environment for second-order formu-
lations of gravity. However, even in second-order theories of
gravity, its important to identify whether DoF are propagating
or non-propagating since the latter would not have an effect
on observations. This is not a trivial task and remains an open
question in many formulations of gravity.

13 The Cauchy problem is related to the existence and uniqueness of solutions
to the field equations given boundary conditions (for more information see
[167]).
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Themost popular way to count the number of DoF in TEGR
is to use a Hamiltonian analysis approach (see section 4.2)
which gives the total number of localized DoF associated with
a field theory [59]. In this setup, the DoF are associated with
the pairs of conjugate variables, namely the dynamical sys-
tem generalized coordinates and their conjugatemomenta. The
total number of DoF can then be calculated by finding the
number of irreducible first-class constraints a and second-class
constraints b and using the formula

Number of DoFs=
2N− 2a− b

2
, (4.184)

where 2N is the number of canonical coordinates [169]. In
this terminology, each first-class constraint eliminates a DoF
while it takes two second-class constraints to achieve the same
result. This is consistent with classical mechanics where it is
known that first-class constraints and their associated gauge
fixing conditions form a system of second-class constraints.

TEGR is dynamically equivalent to GR and so produces
the same classical predictions in their field equations such
as metric solutions and energy conditions. However, these
theories stem from starkly different Lagrangians as evidenced
in section 4.3.1 where the Ricci scalar in equation (4.159) is
separating into a contributing second-order torsion scalar and
a total divergence term. The result is a drastically different
Einstein–Hilbert and TEGR Lagrangian which naturally leads
to the question of how many DoF appear. Another import-
ant property of TEGR is its dependence on the tetrad rather
than the metric tensor which has a significant impact on the
Hamiltonian analysis implementation.

The formulation of the Hamiltonian structure of TEGR
has had a varied history in the literature. In [170] the TEGR
Hamiltonian was formulated using a strategy in which an
auxiliary field representing a 3+ 1 decomposition of the tor-
sion tensor was used to reduce the over-all order the Euler–
Lagrange equations [37, 136, 137, 140]. The approach is
altered in [151] where curvature is eliminated through the use
of Lagrange multipliers and the Weitzenböck gauge is not
immediately assumed. This larger set of dynamical variables
leads to a more intricate analysis that eventually produces
two physical DoF corresponding to a massless graviton. The
canonical formulation that makes up the Hamiltonian analysis
has also been put in the language of one-forms in [142, 143]
where it is shown that the constraint algebra is indeed closed.

The previous works on the topic of the number of DoF of
TEGR left some questions open which were then tackled in
[144] where an exhaustive study of the first- and second-class
constraints is conducted resulting in TEGR having the same
number of DoF as GR in n−dimensions, namely n(n− 3)/2.
In the context of TEGR, this point is again independently veri-
fied in [154] where the Hamiltonian analysis is revisited. It is
worth noting that both analyses were done in the Weitzenböck
gauge.

4.4. Outlook toward quantum TG and other dimensions

The prospect of a viable quantum theory of gravity has come
into sharp focus in the context of community efforts in recent

years. Given the expanded framework of alternative formu-
lations of GR and modified theories of gravity, the amount
of work in the literature has drastically increased with sev-
eral promising avenues of research. The added contribution
of possible detections through experimental and observational
advances in recent years has also highlighted the vital nature
of this subject and brought to the fore questions of quantum
gravity properties in many reformulations of gravitation.

Ultimately quantum gravity phenomena may be expressed
in a variety of possibles ways. The recent detection of GW
makes the likelihood of astrophysical or cosmological sig-
natures of quantum gravity a real possibility with the next
generation of GW observatories [171]. Another crucial outlet
for quantum phenomena in a gravitational context is through
gamma rays which may reveal some of the effects of quantum
gravity corrections within classical theories of gravity such as
energy-dependent dispersion relations [172]. Quantum gravity
could also have a strong impact on our measurements of bey-
ond the standard model of particle physics which has mostly
been directed at neutrino physics in the realm of gravitation
[173].

TEGR has a number of attractive properties which make
it might be more amenable to a quantization procedure. For
instance, the strong equivalence principle has been shown not
to be a fundamental requirement of the theory (as explained
further in section 3) unlike in GR where the theory necessit-
ates the principle a priori. The strong equivalence principle
continues to satisfy all observational constraints [174], while
on the other hand, the fundamental nonlocality of quantum
theory may eventually require the violation of this principle
where in TG may offer an alternative avenue that largely pre-
serve the dynamics of GR. Another crucial aspect to quantiz-
ing gravity is the fact that the spin connection is solely related
to the local Lorentz transformation while the teleparallel con-
nection includes no inertial effects and so represents a genu-
ine gravitational connection [175, 176]. In GR the connections
share these properties and so pose a serious issue for such pro-
cedures. TG offers a scenario that is more akin to the regular
field theory approach to quantum gravity. While not enough
in and of itself, these properties may help in the formation
of a quantum theory of gravity in TEGR where some of the
core issues of GR are eliminated ab initio. TEGR also has a
number of other properties which makes it more malleable for
a quantum setting such as its likeness to Yang–Mills theories
[177] giving TG a strong similarity to a particle physics theory.
Another notable property is that TG naturally has a Gibbons-
Hawking-York boundary term embedded in its action giving
the TEGR Hamiltonian a more well-defined expression [178].
Despite all this further work is needed on both the theoret-
ical development in terms of quantum predictions from TEGR
[179] as well as more information on the what observational
signatures to expect from a quantum theory of gravity.

Another interesting proposed route for a quantum TEGR
approach comes from [180], where the Poincaré group is
replaced with the de Sitter group which both retain the Lorentz
group of symmetries as a subgroup. This approach has some
attractive features which naturally define a particular length
scale l which may be related to the cosmological constant
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(Λ = 3/l2pl) [181, 182]. The length scale in this scenario may
coincide with the Planck length scale lpl. This is different to
the scenario in the Poincaré group where no invariant length
scale is possible at all. Thus, by coupling the field theoretical
approach of TGwith a special relativity that replaces the Poin-
caré with the de Sitter group provides an interesting regime
to produce a field theoretic theory of gravity that has a natur-
ally associated length scale (possibly relating the cosmological
constant with the Planck scale).

The literature already contains a number of intriguing
works on quantum aspects of TG. For instance, in [183] the
first quantization suggests a loop quantum gravity nature to the
discretization of TG similar to the development of regular loop
quantum gravity from the Einstein–Hilbert metric description.
Renormalization is tackled in [163] where the resemblance of
renormalization to the process of finding an appropriate spin
connection conjugate to a tetrad choice is pointed out and
used to highlight the possibility of defining local energy and
momentum densities in TG. Another important contribution to
the literature on the quantization of TG is the series of works
in [184–187] where projective techniques are used to con-
struct kinematic quantum states of TEGR. However, the work
needs more development to fully quantize the theory. More
generally, the quantum regime has also been studied in the
context of black hole solutions of TEGR such as [188, 189]
where the well known Weyl quantization procedure is applied
to the Schwarzschild and Kerr solutions, as well as [190] in
which an initial second quantization procedure is taken on the
Schwarzschild solution. Of note as well is some initial work
that has started in handling brane cosmology, namely [191,
192], but it is still in very early stages when compared with
standard gravity.

5. Modified TG theories

This section is devoted in the so-called extensions or modifica-
tions of TG. The motivation is the same as in GR: the difficulty
of finding a consistent quantum theory of gravity, the nature
of singularities, but mostly the unknown, dark Universe led
cosmology to the pursuit of a better description for the grav-
itational interactions. There have been a great many propos-
als for modifying the TEGR and in this section we will try to
present the features of most of them. In figure 8 one can see a
bird’s eye view of the spectrum of theories, deviating fromGR.
Together with the different ways of modifying GR, some of
the most important example theories are depicted as well. The
figure is drawn by thinking on breaking some of the conditions
in the Lovelock’s theorem. It turns out that some parts of the
figure are connected. For example, some theories which add
invariants can be rewritten as scalar-tensor theories. Further-
more, theories can be part of multiple branches of the figure.
An example of this could be teleparallel theories, which is a
framework beyond GR which modifies the geometry. As we
will see in this section, modified teleparallel theories can also
break other conditions in the Lovelock’s theorem, as it happens
in teleparallel scalar-tensor theories (see section 5.8) where
besides modifying the geometry, one adds a scalar field in
the Lagrangian. In what follows, we will summarize different

proposed teleparallel theories that have been studied in the
literature.

5.1. Foundations of modified teleparallel theories and how to
make them fully invariant

One of the main motivations of this Review, has been the fact
that TG gained a lot of interest in the astrophysics and cosmo-
logy community in the last few years. However, since it is a
not so well studied framework (yet), a lot of ambiguities and
misunderstandings have arisen through the years; especially in
the modifications sector of the theory.

TG, being a theory built on the tangent space, must be
invariant under general coordinate transformations, as well as
under local Lorentz transformations, because special relativ-
ity should be recovered in locally inertial frames [221]. As
already known from special relativity, local Lorentz trans-
formations define two classes of frames: the inertial frames,
being the ones in which inertial effects vanish, and the non-
inertial ones, where inertial effects are present. Quantitatively,
these frames can be distinguished by a purely inertial connec-
tion, also known as spin connection, which at inertial frames
vanishes, while at non-inertial frames is different from zero.

Before going in more depth, let us briefly explain the issue
of local Lorentz invariance. The first formulation of teleparal-
lel theories assumed that the spin connection was always zero,
and then the torsion tensor would only depend on the tetrads,
namely

Tλµν = EA
λ(eAν,µ− eAµ,ν). (5.1)

As we have explained in section 2.2.3, the above torsion tensor
is a particular one which is computed in the so-calledWeitzen-
böck gauge (where the spin connection vanishes). Now, let
us take a local Lorentz transformation only in the tetrads
e ′ Aµ = ΛA

BeBµ. By doing this transformation, the above tor-
sion tensor transforms as

T ′λ
µν = Tλµν +ΛA

BEB
λ(eCν∂µΛ

A
C− eCµ∂νΛ

A
C), (5.2)

where one immediately notices that this quantity is non-
covariant under local Lorentz transformations. Further, the tor-
sion scalar in this particular gauge will transform as [222]

T ′ = T+
8
e
∂µ(eη

CBEB
µ∂AΛ

A
C). (5.3)

From the above equation, we get that in the old version of TG
where one only has the tetrads as fundamental variables and
the spin connection is always zero, TEGR is a pseudo-local
Lorentz invariant theory. Since this extra term only appears
as a boundary term in the above equation, independently of
the choice of the spin connection (or local Lorentz transform-
ation), the manifestation of breaking the local Lorentz invari-
ance does not appear in TEGR (at least at the level of the field
equations—since it is just GR). For more information, please
check sections 2.2.3 and 3.3. However, the situation is very
different when one modifies the action and studies modified
teleparallel theories of gravity. In these theories, for example

54



Rep. Prog. Phys. 86 (2023) 026901 Review

Figure 8. Representation of some possible ways of modifying GR through breaking the Lovelock’s theorem along with some examples.

such as in f (T) gravity, the boundary term appearing in the
above equation is not a boundary term anymore, meaning that
theory will depend onΛA

B. This means that when one is modi-
fying TEGR, the theories would break local Lorentz invari-
ance if one assumes that the spin connection vanishes and
construct theories with the torsion tensor (5.1) only depend-
ing on the tetrads. This problem was not well understood
until the authors in [44] noticed that the problem of break-
ing the local Lorentz invariance was only related to choosing
the particular Weitzenböck gauge. This can be easily seen by
noticing that the torsion tensor (1.6a) transforms covariantly
under local Lorentz transformations if we take the simultan-
eous transformations in the tetrads and the spin connection
(see equations (2.32) and (2.34)), which indeed gives us that
T ′λ

µν = Tλµν . In conclusion, are teleparallel theories fully
invariant (diffeomorphisms and local Lorentz)? The answer
is yes, they are if we perform the simultaneous local Lorentz
transformations for the tetrad and the flat spin connection. In
addition, this quantity is a tensor and thus transforms invari-
antly under diffeomorphisms. This means that, any action
(and consequently field equations) constructed from the tor-
sion tensor will be fully invariant.

The spin connection in GR describes both gravitational and
inertial effects, and because of the equivalence principle, there
exists a local frame, where this connection vanishes. How-
ever, the picture in TG becomes different: gravitational effects
are described by a translational gauge potential, since TG is
a gauge theory of the translation group (see discussion in
section 3.1), while the spin connection represents purely iner-
tial effects. That is why, when one sets the spin connection to
zero local Lorentz invariance is broken.

Much of the work on TG has been performed in the
Weitzenböck gauge. When the community realized that

modified theories (and specifically f (T) gravity, as we will see
below) were not local Lorentz invariant, and since they were
(still) ignoring the fact that a nonvanishing spin connection
could solve the problem, they introduced the notion of ‘good’
and ‘bad’ tetrads [223]. Good were those tetrads that led to
non-trivial solutions of the field equations (of f (T) gravity),
with a vanishing spin connection, and bad were those tetrads
were the theory trivially reduced to TEGR. As expected, these
notions tend to become obsolete since the realization that tele-
parallel theories are local Lorentz invariant, but for old times’
sake, it is nice to keep a part of them and slightly modify it. For
this reason, and since it concerns all theories built on telepar-
allel geometry, we thought it would be better to discuss what
a good tetrad-spin connection pair would be, before we dive
into the realm of modified teleparallel theories.

In section 3.6 we defined the concept of symmetric tet-
rads, that are specific tetrads satisfying certain symmetries
related to teleparallel geometries. These tetrads are important
to study astrophysical systems and cosmology since in them,
one always has certain symmetries associated to the physical
situation, such as spherical or axial symmetry. In TG, one has
the additional complication that these type of tetrads do not
necessarily solve the antisymmetric part of the field equations
of a certain theory. Moreover, one also needs to be careful
that the choice of the symmetric tetrad is compatible with
the choice of the spin connection. Due to the Lorentz trans-
formations, one can always choose a specific gauge where
the spin connection vanishes (Weitzenböck gauge), but one
can also find a pair of tetrad with a non-zero spin connec-
tion which respects the symmetries and also solves the anti-
symmetric field equations of a theory as we will see later
in this section. Then, it is convenient to define a subclass of
symmetric tetrads being compatible with the choice of the spin
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connection satisfying the symmetries. We will label the ‘good
tetrad-spin connection pair’ as the pair satisfying the following
three conditions:

(a) The tetrad must be a symmetric tetrad compatible with
the choice of the spin connection. This means that it
must fulfill equation (3.122) (Weitzenböck gauge) or
equation (3.120) (non-zero spin connection).

(b) It must solve the antisymmetric field equations without
constraining the underlying theory.

This definition was put together in order to match and
extend the first ideas related to TG in different symmet-
ries [223], where the authors defined the good tetrads. These
first ideas were introduced in the non-invariant theory, so it
was not really clear that the spin connection plays an import-
ant role in TG. Let us here explain all the conditions in
more detail. The first condition ensures that the good tetrad-
spin connection pair satisfy the underlying symmetries of the
problem. A priori, there is no fundamental reason to assume
that the connection must also respect the symmetries of the
physical situation, but, it is a sensible choice to impose this
condition to then have the torsion tensor (and field equations)
satisfying the same symmetries as the tetrad (or the metric).
The second condition is the most important characteristic of
the good pair, meaning that they are some specific pair which
solve the antisymmetric field equations of a certain set of
equations of a TG. For practical reasons, these are the pairs
that one needs to use to compute the field equations for differ-
ent physical situations with a certain type of symmetry. It can
also be inferred that the pair depends on the theory studied and
it is possible to find that a good tetrad-spin connection pair in
one theory is not a good tetrad-spin connection pair in another
theory. It is of great importance though, that a good pair does
not constrain the theory itself. If for example, the antisymmet-
ric field equations, say in f (T) gravity, yield d2f/dT2 = 0, the
associated tetrad-spin connection pair would not be considered
as a good one. This condition is ignored in many studies con-
cerning TG.

Then, a good tetrad-spin connection pair satisfies the sym-
metry conditions that are compatible with either a zero spin
connection or a non-zero spin connection and also solve the
antisymmetric part of the field equations of the theory. Thus,
in any modified TG, one would first need to find a symmetric
tetrad (with or without zero spin connection) satisfying a cer-
tain the symmetry of the physical situation and then find the
good tetrad-spin connection pair which solve the antisymmet-
ric field equations of this theory, with the important condition
that the symmetric field equations cannot be the trivial ones
(GR+Λ). To match the existing literature, apart from the good
tetrad-spin connection pair, we will refer to good tetrads as the
ones that satisfy the conditions above and are computed in the
Weitzenböck gauge.

In the following, we will give a comprehensive review
of the most important modified teleparallel theories explored
in the literature, along with their most important theoretical
descriptions.

5.2. New general relativity

We start the discussion on modifications of TEGR with a class
of theories, dubbed NGR [34]. This was the first modifica-
tion of TEGR considered in the literature and it was formu-
lated in 1979 by Hayashi and Shirafuji. In their original use
of the name, NGR refers to a one-parameter subclass of a lar-
ger, three-parameter class of models, while nowadays the term
NGR is also used to refer to the whole three-parameter class.
In this section we will discuss the structure, action and field
equations of NGR in section 5.2.1, as well as its Hamiltonian
analysis and the number of DoF in section 5.2.2.

5.2.1. Action and field equations. A straightforward gener-
alization of the TEGR action (4.164) can be obtained by real-
izing that the torsion scalar can be decomposed into a sum
of three terms. Two different decompositions of this type are
commonly used, for which we introduce the notation

T=
1
4
T1 +

1
2
T2 −T3 =

3
2
Taxi +

2
3
Tten −

2
3
Tvec. (5.4)

Here the terms in the first parametrization read

T1 := TµνρTµνρ, T2 := TµνρTρνµ, T3 := TµµρTν
νρ.
(5.5)

Alternatively, one may use the decomposition of the torsion
tensor into parts which transform under irreducible represent-
ations of the Lorentz group, and which can be written in two
equivalent ways. First, one may define

aµ :=
1
6
ϵµνσρT

νσρ, (5.6a)

vµ := Tσσµ, (5.6b)

tσµν :=
1
2
(Tσµν +Tµσν)+

1
6
(gνσvµ+ gνµvσ)−

1
3
gσµvν ,

(5.6c)

where ϵµνσρ represents the totally antisymmetric Levi-Civita
tensor associated to the metric gµν . Note that the tensor part
tσµν is symmetric in its first two indices, while its totally sym-
metric part and any trace vanish

tαµν = tµαν , tαµν + tναµ+ tµνα = 0, tαµα = tα
αµ

= tµαα = 0. (5.7)

In terms of these one finds the scalar invariants14

Taxi := aµa
µ =

1
18

(2TσµνT
µσν −TσµνT

σµν) , (5.8a)

Tvec := vµv
µ = TσσµTρ

ρµ, (5.8b)

Tten := tσµν t
σµν =

1
2

(
TσµνT

σµν +TσµνT
µσν)− 1

2
TσσµTρ

ρµ.

(5.8c)

14 Note a sign mistake in the definition of Taxi in reference [46, equation (12)].

56



Rep. Prog. Phys. 86 (2023) 026901 Review

Another possibility is to start from a decomposition of the
torsion tensor in the form

Tµνρ =
axi
T µνρ+

vec
T µνρ+

vec
T µνρ, (5.9)

where the three components are given by

axi
T µνρ := ϵµνρσa

σ,
vec
T µνρ :=

1
3
(gµνvρ− gµρvν),

ten
T µνρ :=

2
3
(tµνρ− tµρν). (5.10)

These tensors vanish when mutually contracted with each
other due to the symmetries of the torsion tensor, and yield
the scalar invariants in the form

Taxi =−1
6

axi
T µνρ

axi
T µ

νρ, Tten =
3
4

ten
T µνρ

ten
T µ

νρ,

Tvec =
3
2

vec
T µνρ

vec
T µ

νρ. (5.11)

Hence, the different parametrizations are related by

Taxi =
1
18

(2T2 −T1), Tten =
1
2
(T1 +T2 −T3), Tvec = T3,

(5.12)

or conversely by

T1 =
2
3
Tvec +

4
3
Tten − 6Taxi, T2 =

1
3
Tvec +

2
3
Tten + 6Taxi,

T3 = Tvec. (5.13)

With these definitions in place, one generalizes the TEGR
action (4.164) to an arbitrary linear combination of the three
scalar invariants, hence

LNGR := c1T1 + c2T2 + c3T3 +Lm

= caxiTaxi + ctenTten + cvecTvec +Lm. (5.14)

The relation between the different constants follows from the
relations (5.12) and (5.13) to be

caxi := 6(c2 − c1), cten :=
4
3
c1 +

2
3
c2,

cvec :=
2
3
c1 +

1
3
c2 + c3, (5.15)

or equivalently

c1 :=
1
2
cten −

1
18
caxi, c2 :=

1
2
cten +

1
9
caxi,

c3 := cvec −
1
2
cten. (5.16)

Obviously, for the particular values

c1 =
1
4
, c2 =

1
2
, c3 =−1 ⇔ caxi =

3
2
, cten =

2
3
,

cvec =−2
3
, (5.17)

the Lagrangian (5.14) reduces to that of TEGR. It was recently
shown that the Lagrangian (5.14) can be renormalized at
one-loop order without introducing higher-order terms [224].
However, the theory with the three parameters contain ghosts.

The field equations are easily derived by variation of the
action (5.14) wrt the tetrad and read

κ2Θµν =
1
2
(c1T1 + c2T2 + c3T3)gµν

+ 2
◦
∇ρ (c1Tνµρ+ c2T[ρµ]ν + c3T

σ
σ[ρgµ]ν

)
+ c1T

ρσ
µ

(
Tνρσ − 2T[ρσ]ν

)
− 1

2
c3T

σ
σρ

(
Tρµν + 2T(µν)

ρ)
+

1
2
c2
[
Tµ

ρσ (2Tρσν − Tνρσ)+ Tρσµ
(
2T[ρσ]ν − Tνρσ

)]
,

(5.18)

in terms of the torsion tensor and the energy-momentum
tensor (1.10), and can equivalently be expressed through the
decomposition (5.6) as

κ2Θµν = caxi

(
1
2
aρa(ρgµν) −

4
9
ϵναβγa

αtµ
βγ − 2

9
ϵµνρσa

ρvσ

−1
3
ϵµνρσ

◦
∇ρaσ

)
+ cvec

(
1
2
vρv(ρgµν) +

4
3
tµ[ρν]v

ρ+ 2gµ[ν
◦
∇ρvρ]

−1
2
ϵµνρσa

ρvσ
)

+ cten

(
2
3
tα[βγ]t

αβγgµν −
4
3
tµ[ρσ]tν

ρσ+ 2
◦
∇ρtµ[νρ]

−2
3
tν[µρ]v

ρ+
1
2
ϵµαβγa

αtν
βγ

)
. (5.19)

The energy-momentum tensorΘµν is symmetric by assuming
a minimal, Lorentz invariant matter coupling as discussed in
section 3.5. The field equations are then decomposed into their
symmetric and antisymmetric parts, which are given by

κ2Θµν =
◦
∇ρ
[
(2c1 + c2)T(µν)ρ+ c3(T

σ
σρgµν −Tσσ(µgν)ρ)

]
+

1
2
(c1T1 + c2T2 + c3T3)gµν

+ c1
(
Tρσ(µTν)ρσ − 2T[ρσ]µT

ρσ
ν

)
+

1
2
c2
(
Tρσ(µTν)ρσ + 2T[ρσ]µT

ρσ
ν −Tµ

ρσTνρσ
)

− c3T
σ
σρT(µν)

ρ, (5.20)

and

0=
1
2
(2c2 + c3)

◦
∇ρTρµν − (2c1 − c2)

◦
∇ρT[µν]ρ

+
1
2
(2c1 − 3c2 − c3)T

ρσ
[µTν]ρσ, (5.21)

using the geometric identity

3
◦
∇[ρT

ρ
µν] +TρµνT

σ
σρ−Tρσ [µTν]ρσ = 0, (5.22)
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in the second equation. Recall that in the covariant formulation
of TG [43] we use here, in which an arbitrary, flat spin connec-
tion is assumed, the antisymmetric part (5.21) is equivalently
obtained by variation wrt the spin connection, and vanishes
identically if the parameter values satisfy

2c1 − c2 = 2c2 + c3 = 0 ⇔ cten + cvec = 9cten − 4caxi = 0,
(5.23)

and are hence a multiple of the TEGR values (5.17).
The theory based on general form of the Lagrangian (5.14)

discussed above is known as (the three-parameter class of)
NGR [34]. It can also be obtained from the premetric
approach [130]. However, as mentioned in the introduction of
this section, in the original work the nameNGR is used to refer
to the more restricted one-parameter class. This smaller class
is obtained by fixing cvec and cten to their TEGR values (5.17),
and allowing only caxi to deviate, so that the parameters take
the form

c1 =
1
4
− ϵ

18
, c2 =

1
2
+
ϵ

9
, c3 =−1 ⇔ caxi = ϵ+

3
2
,

cten =
2
3
, cvec =−2

3
, (5.24)

with a free parameter ε. This restricted class has the interesting
and distinguishing property that observational discriminators,
such as the parameterized post-Newtonian (PPN) limit, agree
with TEGR, and hence with GR [34, 225]. Its field equations
take the form

κ2Θµν =
◦
Gµν + ϵ

(
1
2
aρa(ρgµν) −

4
9
ϵναβγa

αtµ
βγ

−2
9
ϵµνρσa

ρvσ − 1
3
ϵµνρσ

◦
∇ρaσ

)
,

(5.25)

showing that they reduce to GR in the absence of axial torsion
aµ.

Note that the covariant, three-parameter approach to NGR
discussed above differs in two further aspects from the origin-
ally proposed theory [34]. In the latter, a non-covariant for-
mulation is adopted, in which the spin connection is assumed
to vanish identically, and the tetrad is the only dynamical
field. Further, a different matter coupling is assumed, in which
Dirac fields couple to the (vanishing) teleparallel spin connec-
tion instead of the Levi-Civita connection. As a consequence,
their energy-momentum tensor receives an antisymmetric con-
tribution, which acts as a nonvanishing source for the anti-
symmetric equation (5.21). Hence, in this original approach
is was assumed that the parameter values strictly differ from
the condition (5.23), since otherwise the theorywould not have
allowed for fermionic fields.

5.2.2. Hamiltonian analysis and DoF. An important ques-
tion which arises in the context of modifications of GR is
the appearance and nature of additional DoF. Of particular
importance is the question whether such new DoF are patho-
logical, such as to behave as ghosts or tachyons [226, 227],

whether their time evolution is uniquely defined, such that
the theory has a well-defined Cauchy problem, and whether
there is a mismatch between the linearized and the full, non-
linear theory [228]. Specifically, in [228] the authors found
that the gauge symmetry that appears in the quadratic Lag-
rangian, realized as a massless 2-from field, i.e. Kalb-Ramond
field, is necessarily broken at cubic order, signaling a strong
coupling problem around Minkowski spacetime. This means
that the Minkowski solution is very unstable against perturb-
ations and thus it will be impossible to be reached from an
aritrary point in phase space. For NGR in its most general
form this is still an open question. The most comprehensive
approach to answering this question is the Hamiltonian ana-
lysis (see [229] for a recent review).

Already, for the original one-parameter NGR [34], possible
issues concerning a non-unique time evolution, and hence
an ill-defined Cauchy problem, have been noted, with the
help of a simple example [230]. Consider the diagonal tet-
rad eAµ = diag(1,1,1,1) and nonvanishing spin connection
ωA

Bµdxµ =ΩA
B(t)dt, where the spatial components ΩI

J(t) =
0 vanish, with I,J= 1, . . . ,3. One finds that this spin connec-
tion is indeed flat,RA

Bµν = 0, while the only nonvanishing tor-
sion components are given by

T0
0I =−T0

I0 =Ω0
I. (5.26)

Note that, in particular, the axial torsion (5.6a) vanishes, due to
the contraction with the totally antisymmetric tensor. Further,
the metric gµν obtained from the diagonal tetrad eAµ is simply
the Minkowski metric, and so the curvature of the Levi-Civita
connection vanishes. Hence, this tetrad and spin connection
constitute a solution to the field equations (5.25). Since the
functions Ω0

I(t) can be chosen arbitrarily, it follows that their
time evolution, and hence also the time evolution of the non-
vanishing torsion components, is not determined by the field
equations and initial conditions. While this has no observable
consequences if the matter couples only to the metric, it does
lead to an undetermined influence on matter if one allows for a
direct coupling to the spin connection. Note that similar state-
ments can be made also about other TG theories, such as f (T)
gravity [231, 232].

In order to obtain a well-defined Cauchy problem also for
the torsion, different modifications of NGR have been sugges-
ted. The most straightforward extension is to consider the full
action (5.14), with three free parameters, where the deviation
from their TEGR values must be chosen sufficiently small
so their PPN limit is compatible with Solar System obser-
vations [230]. Other possibilities are given by adding higher
order terms [233] or parity-violating terms [234] to the action.
However, it has been pointed out that the non-unique time
evolution occurs only for particular solutions and is not gen-
eric [235], and that tetrads which are related by the remaining
partial Lorentz invariance which does not alter the axial tor-
sion may be regarded as physical equivalent [236].

In order to address the aforementioned issues, and assess
the consistency of NGR, various approaches toward a full
Hamiltonian description have been carried out. For the most
general, three-parameter class of NGR governed by the
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Lagrangian (5.14), the canonical momenta defined by the vari-
ation (4.134) are given by [147]

πA
i =

√
h
N

{
TB0jM

i
A
j
B+TBkl

[
Mi

A
k
BN

l+ 2Nhik

×(c2nBeA
l+ c3nAeB

l)
]}
, (5.27)

using the abbreviation

Mi
A
j
B =−2(2c1h

ijηAB− (c2 + c3)nAnBh
ij+ c2eA

jeB
i+ c3eA

ieB
j).

(5.28)

Note that eAi is not the inverse tetrad, but defined from the
tetrad by raising and lowering indices with the Minkowski and
induced metrics, ηAB and hij, so that

eA
i = ηABh

ijeBj 6= EA
i = eA

i+ nA
Ni

N
. (5.29)

Further, from the decomposition (4.130) of the torsion follows
that the velocities enter the momenta (5.27) only via the com-
ponent TA0i in the first term, while the remaining terms depend
only on the lapseN, shiftN i, spatial tetrad components eAi and
their spatial derivatives. Hence, in order to solve for the velo-
cities vAi = ∂0eAi in terms of the momenta, it is convenient to
isolate the term which is linear in the velocities on one side of
the equation, which then takes the form

Mi
A
j
Bv

B
j = SA

i, (5.30)

where the term SAi on the RHS is defined as

SA
i =

N√
h
πA

i+
[
∂k(Nn

B+NmeBm)−TBklN
l
]
Mi

A
k
B

− 2NTBklh
ik(c2nBeA

l+ c3nAeB
l), (5.31)

and does not contain any velocities. In order to solve the
equation (5.30) for the velocities vAi, it is necessary to invert
the object in equation (5.28), viewed as a matrix. This can
be achieved by applying the irreducible decomposition shown
in section 4.2.5 to both sides of the equation (5.30). On the
RHS, proceeding in analogy to the momentum decomposi-
tion (4.136) yields the decomposition

V
Si =

N√
h

V
πi− 2Nc3T

B
klh

ikeB
l+ 2(2c1 + c2 + c3)

×
[
∂k(Nn

B+NmeBm)−TBklN
l
]
nBh

ik, (5.32a)

A
Smp =

N√
h

A
πmp− 2Nc2h

lmhpkTBklnB− 2(2c1 − c2)

×
[
∂k(Nn

B+NseBs)−TBklN
l
]
eB

[mhp]k, (5.32b)

S
Smp =

N√
h

S
πmp− 2(2c1 + c2)

[
∂k(Nn

B+NseBs)−TBklN
l
]

×
(
eB

(mhp)k− 1
3
hpmeB

k

)
, (5.32c)

T
S =

N√
h

T
π − 2

3
(2c1 + c2 + 3c3)

[
∂k(Nn

BNmeBm)−TBklN
l
]
eB

k.

(5.32d)

Applying the same decomposition to the LHS of the velo-
city equation (5.30), and substituting the velocity compon-
ents (4.138), one finds that the matrix (5.28) greatly simplifies,
and the equation (5.30) decomposes into the components

V
Si =−2AV

T
v i,

A
Smp =−2AA

A
vmp,

S
Smp =−2AS

S
vmp,

T
S =−2AT

T
v , (5.33)

where the constants AV,A,S,T are given by

AV = 2c1 + c2 + c3, AA = 2c1 − c2, AS = 2c1 + c2,

AT = 2c1+ c2 + 3c3, (5.34)

or equivalently,

AV = cten + cvec, AA =
1
2
cten −

2
9
caxi, AS =

3
2
cten,

AT = 3cvec. (5.35)

If all of these constants are nonvanishing, one can solve all
velocity components for the corresponding momentum com-
ponents. In general, however, this is not the case, as certain
constants may vanish, depending on the values of the paramet-
ers c1,2,3, thereby leading to the appearance of primary con-
straints, which are given by

AV = 0 ⇒ 0≈
V
Ci =

V
πi√
h
− 2c3T

B
klh

ikeB
l, (5.36a)

AA = 0 ⇒ 0≈
A
Cmp =

A
πmp√
h
− 2c2h

lmhpkTBklnB, (5.36b)

AS = 0 ⇒ 0≈
S
Cmp =

S
πmp√
h
, (5.36c)

AT = 0 ⇒ 0≈
T
C=

T
π√
h
, (5.36d)

which defines the constraint expressions CAi in terms of their
irreducible decomposition. The different possible cases can
most easily be visualized by introducing normalized paramet-
ers c̃i and polar coordinates (α,β) using the definition

c̃i =
ci√

c21 + c22 + c23

, c̃1 = sinαcosβ, c̃2 = sinαsinβ,

c̃3 = cosα. (5.37)

These coordinates parametrize a sphere, one hemisphere of
which is shown in figure 9; the other hemisphere is obtained
by a point reflection at the origin. A different parametrization,
based on the axial-vector-tensor decomposition of the torsion,
is given in [237]. The same result is presented in the language
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Figure 9. Primary constraints of NGR, depending on the values of the parameters in the action. The radial axis shows 0⩽ α⩽ π
2 , while the

polar axis shows 0⩽ β ⩽ 2π, using the definition (5.37). The red line AV = 0, except for the two points where it meets the plot boundary
α= π

2 , constitutes the one-parameter class of NGR, with TEGR being marked by the dot at the intersection of the red and black lines,
AV = AA = 0. Reprinted figure with permission from [147], Copyright (2019) by the American Physical Society.

of differential forms in [149] and in the premetric approach in
[146].

Several particular subclasses of NGR have been studied,
which can be characterized by their primary constraints. The
most prominent example is TEGR given by the parameter val-
ues (5.17), which imply AV = AA = 0; this is discussed in
section 4.3.3. A toy model with c1 = 1/2,c2 = c3 = 0 with no
primary constraints has been studied in [141] in the language
of differential forms, in order to present the general formal-
ism of Hamiltonian analysis in TG. The one-parameter class
of NGR, with parameters (5.24), has been studied for ε 6= 0, so

that the only primary constraint
V
Ci ≈ 0 arises from AV = 0, in

[150]. Finally, also an extension of NGR by a parity-violating
term has been considered, whose Lagrangian is given by
[238]

L=
1
2

(
1− λ

2
− ν

)
T1 +

λ

2
T2 −T3 + 6σvµa

µ, (5.38)

which depends on the constants λ,ν,σ. Note the appearance
of a parity-violating term vµaµ, governed by the parameter σ.
In the absence of this term, choosing σ= 0, the theory reduces
to NGR with the parameters given by

c1 =
1
2

(
1− λ

2
− ν

)
, c2 =

λ

2
, c3 =−1, (5.39)

or equivalently,

caxi = 3

(
3
2
λ+ ν− 1

)
, cten =

2
3
(1− ν), cvec =

1
3
(ν− 2).

(5.40)

Further restricting to ν= 0, the theory reduces to the one-
parameter NGR values (5.24) with ϵ= 2(λ− 1)/9, and giv-
ing TEGR for λ= 1. This class of theories avoids the
undetermined evolution of the torsion mentioned above if the
parameters satisfy the inequality

ν(1− ν−λ)− 2σ 2 6= 0. (5.41)
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For pure NGR, where σ= 0, this condition reduces to ν 6= 0
and 1− ν−λ 6= 0. By comparison with the conditions for the
appearance of primary constraints, one finds that this corres-
ponds to AV 6= 0 and AA 6= 0, so that no vector and antisym-
metric constraints appear. Further, consistency of the PPN
limit with Solar System observations, |ν|⩽ 1 is required, so
that also AS 6= 0 and AT 6= 0. Hence, this corresponds to the
generic class of NGR theories, in which there are no primary
constraints.

Further studies in the Hamiltonian approach to NGR have
so far been restricted to such special cases. In the case that
none of the constants AV,A,S,T vanish, so that none of the
primary constraints (5.36) appear. In this case all velocities
can be expressed in terms of canonical momenta, and the full
Hamiltonian is identical to the kinematic Hamiltonian (4.135)
and reads [147]

H= N
√
h

 V
Ci

V
Ci

4AV
−

A
Cij

A
Cij

4AA
−

S
Cij

S
Cij

4AS
− 3

T
C2

4AT
− T̃− nA∇̃iπA

i

√
h


−Nk

(
TAjkπA

j+ eAk∇̃iπA
i
)
+ ∇̃i

[
πA

i
(
NnA+NjeAj

)]
,

(5.42)

where we used the abbreviation

T̃= c1ηABT
A
ijT

B
klh

ikh jl+ c2eA
ieB

jTAkjT
B
lih

kl

+ c3eA
ieB

jhklTAkiT
B
lj, (5.43)

while ∇̃i denotes the purely spatial Levi-Civita covariant
derivative of the induced metric hij, and eAi are the spatial
tetrad components (5.29). Note that in this case none of the
expressions CAi given by the RHS of the expressions (5.36)
are constraints, i.e. they are not imposed to vanish; they simply
turn out to be convenient for expressing the Hamiltonian. Fur-
thermore, note that all derivatives of the lapse N and shift N i

are gathered into a total divergence term, while they appear as
Lagrange multipliers in the remaining terms. Hence, one finds
that they lead to the further constraints

V
Ci

V
Ci

4AV
−

A
Cij

A
Cij

4AA
−

S
Cij

S
Cij

4AS
− 3

T
C2

4AT
− T̃− nA∇̃iπA

i

√
h

≈ 0, (5.44)

and

TAjkπA
j+ eAk∇̃iπA

i ≈ 0, (5.45)

which correspond to the Hamiltonian and momentum con-
straints in GR. Further, it follows that imposing these con-
straints leads to a vanishing Hamiltonian on the constraint sur-
face, up to a total divergence, as it is also the case in GR.

In the case that any of the constants AV,A,S,T vanishes, the
corresponding term in the Hamiltonian (5.42) would diverge,
and so it must be replaced, taking into account the arising
primary constraints. The most straightforward case in which
this can be seen is the non-trivial (ε 6= 0) one-parameter
NGR (5.24). In this case one has AV = 0, leading to the

constraint
V
Ci ≈ 0. It then follows that the kinematic Hamilto-

nian is given by [150]

H0 = N
√
h

{
9
8ϵ

[
π[ij]√
h
−
(
1− 2

9
ϵ

)
nAT

A
ij

]
×
[
π[ij]

√
h
−
(
1− 2

9
ϵ

)
nAT

Aij

]
− T̃− nA∇̃iπA

i

√
h

−
π(ij)π

(ij)

4h
+

(πA
ieAi)2

8h

}
−Nk(TAjkπA

j+ eAk∇̃iπA
i)+ ∇̃i[πA

i(NnA+NjeAj)],
(5.46)

to which a Lagrange multiplier term

H1 = Vi
(V
πi+ 2

√
hTBklh

ikeB
l
)
, (5.47)

must be added, in order to implement the primary constraint
V
Ci ≈ 0. In order to obtain the full Hamiltonian, further terms
must be added, which arise from the time evolution of the

constraint
V
Ci, given by its Poisson bracket with the kinematic

Hamiltonian [150].

5.3. f(T) gravity

A relatively recent modification of TEGR is the so-called f (T)

theory of gravity. In the same spirit as f(
◦
R) gravity, that is a

straightforward generalization of the Einstein–Hilbert action,
f (T) theory was proposed almost more than a decade ago as
a generalization to the TEGR action, by Ferraro and Fiorini
[38]. In this section, wewill study its action and field equations
together with its behavior under conformal and disformal
transformations.

5.3.1. Action and field equations. The action of f (T) theory
reads

Sf(T) :=
1

2κ2

ˆ
d4xe f(T)+Sm, (5.48)

where Sm is the action related to the matter sector defined as
in equation (1.9). Let us take a step back and consider the geo-
metric trinity of gravity discussed in section 2.3. There we saw
from equations (2.49) and (2.50), that the relation between the
Ricci, the torsion and the non-metricity scalars is

◦
R=−T+B=−

♢
Q−B♢

Q
, (5.49)

where we defined the two boundary terms, B and B♢
Q
as

B= 2
◦
∇µT

µ =
2
e
∂µ(eT

µ), (5.50a)

B♢
Q
=

◦
∇ν

♢
Qµ

µν −
◦
∇µ

♢
Qµνν . (5.50b)
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Figure 10. Equivalency between GR, TEGR and STEGR, but not equivalency between their modifications.

It is easy to conclude from equation (5.49) that since
the total derivatives, B and B♢

Q
will not contribute in the

action integral, the field equations, resulting from their vari-
ations, will be equivalent in all three theories, GR, TEGR and
STEGR, even though the geometric background is different in
each one of them. The same does not happen though when one
generalizes to arbitrary functions of these scalars [239] and
this is described in the figure 10. Recently, a different decom-
position of the curvature scalar has been utilized,

◦
R=

◦
G+

◦
B, (5.51)

where
◦
G= gµν

(◦
Γλνσ

◦
Γσλµ+

◦
Γσµν

◦
Γλλσ

)
and

◦
B =

∂ν (∂µ(ggµν)/
√
−g)/

√
−g, that are pseudo-scalars (in con-

trast with T and B) and a new generalized theory was proposed
[55] that has the form

S
f(

◦
G,

◦
B)

:=
1

2κ2

ˆ
d4x

√
−gf(

◦
G,

◦
B)+Sm, (5.52)

with f being an arbitrary function of
◦
G and

◦
B.

In greater detail, f(
◦
R) theories result in fourth order field

equations and that is because, the Ricci scalar consists of
second order derivatives of the metric. On the other hand, both
the torsion and the non-metricity scalar are built of only first
derivatives of the tetrad and the metric respectively, yielding
second order field equations. Actually, because of the simil-

arity of these two scalars, f(
♢
Q) and f (T) theories are indistin-

guishable at cosmological background level [239]; that is why
if one wants to look for differences between the two theories,
they have to study perturbations [240]. If one wants to imitate

f(
◦
R) theory in the teleparallel geometries, they would have to

consider the respective boundary term to be a variable of the

arbitrary function, meaning f(T,B) and f(
♢
Q,B♢

Q
) theories.

As already discussed in a previous section, modified tele-
parallel theories employ as their field variables both the tetrad
and the spin connection, meaning that both of them should be
described by respective field equations. These two variations
are closely connected, since the field equations of the spin con-
nection are the antisymmetric part of the field equations of the
tetrad.

Specifically, varying the action (5.48) wrt the tetrad eAµ we
get its field equations that read

− 1
e
fT∂ν (eSA

µν)− SA
µν∂ν fT+ fTT

B
νASB

νµ− fTω
B
AνSB

νµ

− 1
2
fEA

µ = κ2ΘA
µ, (5.53)

where f T is the first derivative of f wrt T, SAµν is
the superpotential, ωB

Aν the spin connection and ΘA
µ is

the energy-momentum tensor of the matter fields; details
regarding the variations can be found in the appendix A.
Moreover, varying the action (5.48) wrt the spin connection
[123, 125, 241] we get

δωSf(T) = S[AB]
ν∂ν fT = 0. (5.54)

It is worth noticing that the RHS vanishes, because the energy-
momentum tensor, ΘA

µ, has no antisymmetric part. This
occurs since we have assumed that matter is not coupled to
the spin connection. As has already been discussed in a gen-
eral framework in section 4.1.3, equations (5.53) and (5.54)
are related, in the sense that the second is the antisymmetric
part of the first. Let us see why: it is helpful to write down the
LHS of equation (5.53) as
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WAB :=−ηBCeCµ
(
1
e
fT∂ν (eSA

µν)+ SA
µν∂ν fT− fTT

D
νASD

νµ

+fTω
D
AνSD

νµ+
1
2
fEA

µ

)
(5.55a)

=−SABν∂ν fT− fT
◦
GAB−

1
2
ηAB( f−TfT), (5.55b)

where
◦
GAB is the symmetric Einstein tensor of the Levi-

Civita connection expressed with tetrads. Note that we used

equation (4.168) to obtain an Einstein term
◦
GAB. Since the last

term is symmetric as well, the only antisymmetric part of the
tetrad field equations is the first term,

W[AB] =−S[AB]ν∂ν fT, (5.56)

which coincides with equation (5.54). This is imposed by the
local Lorentz invariance and indicates the fact that the spin
connection is nothing more but a pure gauge DoF, and not a
Stückelberg field.

Apart from the local Lorentz invariance of f (T) theories,
there have been other controversial issues as well. These the-
ories apparently suffer from strong coupling problems, since
in some backgrounds, the kinetic term of some physical DoF
disappears at quadratic order, and thus perturbation theory, at
linear order, breaks down at these backgrounds.

Specifically, in [231] the authors perturb a trivial tetrad and
they find explicitly a new mode at fourth order in perturb-
ations, that goes beyond the Minkowski background. Apart
from that, cosmological perturbations up to second order [242,
243] show that no extra modes appear around a flat Fried-
mann background, signalling again a strong coupling prob-
lem. In [244] though, the authors performed perturbations in
non-flat cosmological backgrounds; it turns out that the tensor
and vector modes are well determined just like in the flat case.
Unlike the flat case though, the scalar perturbations are fully
determined by the perturbed equations at linear order. Unfor-
tunately, this does not mean that the strong coupling is not
present in non-flat backgrounds, since some of these scalar
modes are still non-propagating. It could be seen as progress
though, toward limiting the strongly coupled behavior in such
backgrounds.What’s more, it could mean that the theory is not
ill-behaved, but the way we approach the perturbation analysis
is not the ideal one, thus leading to strong coupling problems.

Up to now, there have been three different Hamiltonian ana-
lyses of f (T) gravity in the literature. There is indeed a con-
sensus that there are extra DoF, however, the number of them
is still under investigation. A recent review on these analyses
is [229], while in [245] the authors review the open problems
in f (T) gravity.

In the first paper that appeared almost immediately after the
introduction of f (T) theory, [246], the authors claim to find
three new dynamical modes, meaning that in total there are
five DoF in 3+ 1 dimensions. Nevertheless, it is claimed [154,
245] that, not only their arguments lack justification, but also
part of the results are incorrect. In particular, in many cases
it seems that all Lorentz constraints become second class,

which would mean breaking of the Lorentz symmetry. How-
ever, there are known backgrounds with no new DoF in linear
perturbations, thus rendering their results controversial.

Some years later, a new perspective was given to the field
[145, 247–249], by claiming that there exist only three DoF
in a four-dimensional spacetime, and thus making f (T) theor-

ies comparable to f(
◦
R) in this regard. However, it was shown

in [154], that the Poisson brackets of the Lorentz constraints
are incomplete, and as a consequence their main conclusion is
wrong.

Even though, the last study that came our recently, [154],
points out several ‘mistakes’ of the previous approaches, it
does not seem to lack problems itself. The authors claim,
among other things, that the total number of DoF in 4 dimen-
sions is five. Yet, the matrix of Poisson brackets of Lorentz
constraints does not seem to be non-degenerate, since it con-
tains a non-trivial term [245]. They claim that this non-trivial
term proves that the constraints are second class, however,
since the matrix could be degenerate, they could be a com-
bination of first and second class.

Last but not least, apart from pure f (T) theories, there
have been similar attempts to generalize TEGR as well, that
could be considered as special cases. One of them is the so-
called unimodular gravity, where one considers the determ-
inant of the tetrad to be constant. The Hamiltonian formula-
tion of unimodular TEGRwas studied in [140], reconstruction
of unimodular f (T) models was studied in [250], inflationary
cosmology was studied in [251] and holographic dark energy
models of f (T) were studied in [252].

5.3.2. Conformal and disformal transformations in f(T) gravity.
As discussed in section 3.7, if one wants to construct a quant-
ity, say a metric g̃µν from a given metric gµν and a scalar
field ϕ, they come across with the notion of conformal and dis-
formal transformations. The conformal transformation of the
metric is given by

g̃µν =Ω2(ϕ)gµν , g̃µν =Ω−2(ϕ)gµν , (5.57)

where Ω2 = A from section 3.7. Under the same conformal
transformation, the tetrad and its inverse must transform as
[253–255]

ẽAµ =Ω(ϕ)eAµ, ẼA
µ =Ω−1(ϕ)EA

µ. (5.58)

Respectively, the volume element e transforms as

ẽ=Ω4(ϕ)e. (5.59)

Having the above relations in mind, we can easily cal-
culate how the rest of the teleparallel quantities transform
under (5.58). Hence, the torsion tensor transforms as

T̃Aµν =ΩTAµν + 2∂[µΩe
A
ν], (5.60)

and the contortion tensor as

K̃ABµ = KABµ+ 2E[A
αEB]

βgβµ
Ω,ϕ
Ω

◦
∇αϕ. (5.61)
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The torsion scalar becomes

T̃=Ω−2T+ 4Ω−3gµνTµ(∂νΩ)− 6Ω−4gµν(∂µΩ)(∂νΩ),
(5.62)

from which we can derive the inverse transformation that
reads

T=Ω2T̃− 4Ωg̃µν T̃ν(∂µΩ)− 6g̃µν(∂µΩ)(∂νΩ). (5.63)

Furthermore, the boundary term transforms as

B=Ω2B̃− 4ΩT̃µ∂µΩ− 18∂̃µΩ+ 6Ω
◦̃
□Ω. (5.64)

After introducing how the teleparallel quantities behave
under conformal transformations, let us proceed by study-
ing what happens with f (T) gravity. If one introduces two
auxiliary fields χ and ϕ we can rewrite the gravitational part
of the action (5.48) as

Sf(T) =
1

2κ2

ˆ
d4xe f(T) =− 1

2κ2

ˆ
d4xe [χ(T−ϕ)− f(ϕ)] .

(5.65)

Varying this action wrt χ yields ϕ= T which shows that the
above action is equivalent to (5.48), unless f ′ ′(T)≡ fTT = 0; in
this case, the theory reduces to TEGR. Varying the action wrt
the other scalarϕ it yieldsχ=−f ′(ϕ). SettingF(ϕ) =−f ′(ϕ),
we can rewrite the above action as

Sf(T) =
1

2κ2

ˆ
d4xe [−F(ϕ)T−V(ϕ)] , (5.66)

with V(ϕ) = ϕf ′(ϕ)− f(ϕ). This formulation produces a
scalar-tensor type of theory without a kinetic term for the

scalar field, as is the case for f(
◦
R) gravity.

Applying the conformal transformation (5.58) in
equation (5.66) the action transforms into

Sf(T) =
1

2κ2

ˆ
d4xẽ

[
−F(ϕ)

(
Ω−2T̃− 4Ω−3g̃µν T̃ν(∂µΩ)

−6Ω−4g̃µν(∂µΩ)(∂νΩ)
)
−Ω−4V(ϕ)

]
.

(5.67)

Setting Ω2 = F(ϕ) the above action becomes

Sf(T) =
1

2κ2

ˆ
d4x ẽ

[
−T̃+ 2

F(ϕ)
g̃µν T̃ν∂µF(ϕ)

+
3F ′(ϕ)2

2F(ϕ)2
g̃µν(∂µϕ)(∂νϕ)−

V(ϕ)
F(ϕ)2

]
.

(5.68)

If we introduce a new scalar field ψ so that

dψ
dϕ

=
√
3
F ′(ϕ)

F(ϕ)
⇒ ψ =

√
3lnF(ϕ), (5.69)

the action (5.68) becomes

Sf(T) =
1

2κ2

ˆ
d4x ẽ

[
−T̃+ 2

F
T̃µ∂µF+

1
2
g̃µν

◦̃
∇µψ

◦̃
∇νψ−U(ψ)

]
,

(5.70)

where U(ψ) = V(ϕ)/F(ϕ)2. As can be seen from
equation (5.70), conformal transformations cannot lead to
the Einstein frame in f (T) gravity because of the fact that the
torsion tensor is not conformally invariant. Further manipula-
tion of the second term in equation (5.68) yields

1
F
∂µF= ∂µ(lnF), (5.71)

and by substituting it back and integrating by parts we get

Sf(T) =
1

2κ2

ˆ
d4x ẽ

[
−T̃− ψ√

3
B̃+

1
2
g̃µν

◦̃
∇µψ

◦̃
∇νψ−U(ψ)

]
,

(5.72)

because of equation (5.69).We thus see that a conformal trans-
formation of f (T) gravity leads to TEGR with a non-minimal
coupling of a phantom scalar field, meaning that its kinetic
term has the opposite sign, to the boundary term B̃. More
details on conformal transformations in f (T) gravity can be
found in [253, 256] and references therein.

Before we move to other theories, it is interesting to see
what happens if one allows the new tetrad in equation (5.58)
to depend on first derivatives of the scalar field as well. Can
we get rid of the above symmetry-breaking term? In this case,
the transformations are called disformal and have the form

ẽAµ = C(ϕ,X)eAµ+D(ϕ,X)gνρeAρ(∂µϕ)(∂νϕ). (5.73)

The inverse tetrad transforms as

ẼA
µ =

1
C

(
EA

µ− D

C− 2XD
gµνEA

ρ(∂νϕ)(∂ρϕ)

)
, (5.74)

and the volume element as

ẽ= C3 (C− 2XD)e. (5.75)

One can thus immediately obtain the transformation of the
metric, that reads

g̃µν = C2gµν + 2D(C−XD)(∂µϕ)(∂νϕ). (5.76)

The disformal transformations of the rest of the teleparallel
quantities are given in section 3.7.

Considering now the scalar-torsion representation of f (T)
gravity, given in equation (5.65) and setting (for simplicity)
ϕ= f ′(ϕ) the action is rewritten as

Sf(T) =− 1
2κ2

ˆ
d4xe(ϕT−V(ϕ)) , (5.77)

where V(ϕ) = f(T)−ϕT. Using the first of equation (5.49) to
replace T in the above action we can see, as previously, that the
term ϕB, integrated by parts, will become −2

´
d4xeTµ∂µϕ.

This term takes the following form under disformal transform-
ations
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T̃µ∂̃
µϕ=

1

(C− 2D)
2

[(
1− 2X

D

C

)
Tµ∂

µϕ+ 3
∂µC

C
∂µϕ

+
D

C

(
∂αϕ∂βϕ

◦
∇α∂βϕ+ 2X

◦
□ϕ
)]
.

(5.78)

Replacing this together with equation (5.75) into the action
we readily see that it is not possible to remove the symmetry-
breaking terms with disformal transformations. More details
on disformal transformations in f (T) gravity can be found in
[82, 83] and references therein.

5.4. f(T,B) gravity

Another very interesting and well-studied generalization of
TEGR is the so-called f(T,B) gravity, where apart from
the torsion scalar one considers the boundary term B,
equation (5.50a), that is the difference between the Ricci
scalar, computed from the Levi-Civita connection and the tor-
sion scalar, equation (5.49). The action of this theory reads

Sf(T,B) :=
1

2κ2

ˆ
d4xe f(T,B)+Sm. (5.79)

This theory was firstly proposed in [157] by Bahamonde
et al, and the motivation was, mostly, to fully incorporate the

dynamics of f(
◦
R) theory. However, as one could immediately

realize, f(
◦
R) is just a limiting case of equation (5.79) (only

when the specific combination −T+B appears as an argu-
ment to the function), and thus f(T,B) has offers much richer
phenomenology.

As in any teleparallel theory, since the torsion scalar
depends both on the frame field and the spin connection,
f(T,B) theorywill result non-trivial equations for both of them.
Thus, the antisymmetric part of the tetrad field equations, will
coincide with the field equations for the inertial connection.
This means that, if one chooses to work on the Weitzenböck
gauge, where the spin connection vanishes, the respective field
equations will be solely solved by the tetrad.

Let us go a step further, in order to examine quantitatively
the above picture. Varying the action (5.79) wrt the tetrad we
obtain its field equations that read

EA
µ

◦
□fB−EA

ν
◦
∇µ

◦
∇ν fB+

1
2
BfBEA

µ− (∂ν fB+ ∂ν fT)SA
µν

− 1
e
fT∂ν(eSA

µν)+ fTT
B
νASB

νµ− fTω
B
AνSB

νµ

− 1
2
fEA

µ = κ2ΘA
µ, (5.80)

where f B and f T are partial derivatives of f wrt the boundary
term and the torsion scalar. Details on the variations can be
found in the appendix A. As one would expect, by choosing
the form of the theory to be f(T,B) = f(−T+B), the above

equations coincide with the equations of motion in f(
◦
R) grav-

ity, expressed in the tetrad formulation. As already shown in

full generality in section 4.1.3 and also discussed in the previ-
ous section of f (T) gravity, the antisymmetric part of the tet-
rad’s field equations will coincide with the equations ofmotion
of the spin connection.

We will focus on specific applications of this theory, as
well as on constraints of its functional form in the following
sections. In particular, in section 6.2.3 we will study its cos-
mological solutions, in section 7.7.2 we will see the matter
density perturbation equation, its polarization modes will be
presented in section 8.3 and precision cosmology will be dis-
cussed in section 10.3.3. Conformal transformations of f(T,B)
gravity are studied in [256]; the authors show that generalized
non-minimally coupled ‘teleparallel dark energy models’ (see
section 5.8.1) are conformally equivalent to f(T,B) gravity.

One particular interesting case is when f(T,B) =−T+
F(B) since this theory is conformally equivalent to (5.114)
with the coupling function A(ϕ) = β 2(1+ ϕ

2β
√

3
)2. This the-

ory only has a non-minimally coupling between the torsion
scalar and the scalar field and the kinetic term has the correct
sign (canonical); this will be studied in detail in section 5.8.1.2.
The existence and the stability of specific relativistic solu-
tions, such as de Sitter and scaling solutions, are studied in
[257]; the authors claim that if one uses a Lagrange multiplier,
then f(T,B) gravity becomes equivalent to GR plus a minim-
ally coupled non-canonical scalar field. In [258] the authors
consider two specific models of the theory, one exponential
and one power-law, and they find solving the field equations
numerically, that both of them are capable of reproducing
the late-time acceleration of the Universe. In [259, 260] the
authors constrain the function form of f using energy con-
ditions. Thermodynamics is used in [261, 262], in order to
constrain and cosmologically reconstruct f(T,B) models. The
H0 tension was studied in [263], together with cosmologically
viable models; weak field limit tests were studied in [264, 265]
and stability analysis in [266]. Further, bouncing cosmolo-
gical solutions are considered in [267], Noether symmetries in
[268]. In [269] the minisuperspace quantization is considered
in cosmology. Last but not least, some other approaches of

the form f(T,
◦
R) have been considered in [270, 271], however,

they are considered controversial because of the mixed frame-
work they use, i.e. both curvature and torsion are non-zero. A
complete analysis about f(T,B) cosmology will be provided in
sections 6.2 and 10.3.3.

5.5. Extensions of NGR

Following section 5.2, NGR is described by the Lagrangian
density (5.14). There are actually two more quadratic scalars
that one can construct from the torsion tensor [46]

P1 := uµa
µ, P2 := ϵµνρσt

λµν tλ
ρσ, (5.81)

however, they are both parity violating. The interested reader
should read [234] where the authors argue that parity violat-
ing terms play a significant role in the wellposedness of the
Cauchy problem. It is not so clear thought that such terms can
play a fully consistent role in gravitational theories.
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Theories beyond NGR have been proposed as well. In [46],
Bahamonde et al consider the theory which assumes the Lag-
rangian density

L= f(Taxi,Tten,Tvec), (5.82)

i.e. an arbitrary function of the irreducible parts of the tor-
sion tensor. One can also use the alternative decomposition
of the torsion scalar, described by the equation (5.4), and thus
consider theories of the form f(T1,T2,T3). The equations of
motion for the above theory (5.82) in vacuum are given by

EA
µf+

δf
δeAµ

= 0, (5.83)

where

δf
δeAµ

=
δf
δeAµ

|axi +
δf
δeAµ

|ten +
δf
δeAµ

|vec, (5.84)

and each of the terms on the RHS are

δf
δeAµ

|axi =−2
3

[
ϵBC

DJfTaxia
B
(
ED

µTCAJ−EJ
µωCAD

)
+e−1∂ν

(
eϵBA

CDfTaxia
BEC

νED
µ
)]
, (5.85a)

δf
δeAµ

|vec = 2fTvec

(
vµωρAρ− vBωµAB−TµABv

B− vµvA
)

− 2e−1∂ν [e fTvec (v
µEA

ν − vνEA
µ)] , (5.85b)

δf
δeAµ

|ten = fTten

[
−2TBAσTB

µσ −TµρσT
ρ
A
σ −TBρAT

ρ
B
µ

+TµABv
B+ vµvA− vµωρAρ+ vBωµAB

+2TB
ρµ+TρB

µ−TµB
ρ
]

− e−1∂ν [e fTten (−2TA
µν +TµνA−TνµA

− vµEA
ν +vνEA

µ)] . (5.85c)

The theory expressed in the Lagrangian in equation (5.82)
is manifestly covariant and invariant under local Lorentz trans-
formations, since the spin connection is nonvanishing. Altern-
atively, one could work on those frames where the spin con-
nection vanishes (Weitzenböck gauge) but in that case they
should employ only with good tetrads [223, 272–274]; more
details can be found in section 5.3. In the same spirit, inclusion
of parity violating terms and the boundary term was proposed
[46], in theories of the form

L= f(Taxi,Tten,Tvec,B,P1,P2), (5.86)

as well as higher order contractions of the torsion tensor such
as

S1 := tλµνvλaµvν , S2 := tλµνaλvµaν . (5.87)

In principle, because of the nature of the torsion tensor and
the fact that it depends only on first derivatives of the tetrad (in
contrast with the Ricci scalar), one can construct infinite-order

contractions of the torsion tensor and still obtain second order
field equations. However, as we will discuss in section 5.8.2
we do not know how physical such theories would be.

In [275] the authors considered a generalization of NGR by
adding nine functions of the d’Alembertian operator, showing
that it can accommodate the ghost- and singularity-free struc-
ture that was realized in the metric theories [276–278]. Fur-
thermore, in [279] the authors study the extensions of NGR as
a reduction of the five-dimensional Kaluza–Klein theory and
in [280] the equivalence between NGR and a Weyl geometry
is presented.

5.6. Gauss–Bonnet theories

The Gauss–Bonnet invariant, depending only in higher order
curvature terms

◦
G =

◦
R2 − 4

◦
Rµν

◦
Rµν +

◦
Rαβµν

◦
Rαβµν , (5.88)

could be considered as a subclass of higher order theories. In
the teleparallel framework its form becomes

◦
G = TG+BG, (5.89)

where TG is the TEGB term and BG its boundary term, as
shown in section 3.8.

Theories that have been studied in the literature have the
form

Sf(T,TG) :=
1

2κ2

ˆ
d4xe f(T,TG)+Sm. (5.90)

The equations of motion in theWeitzenböck gauge are presen-
ted in [87] by Kofinas and Saridakis. In [281] cosmological
solutions using Noether symmetries were found. More gen-
eral theories such as f(T,B,TG,BG) were studied in [85]. In
curvature-based gravity, the Gauss–Bonnet term is intrinsic-
ally related to the Lovelock theorem which defines the condi-
tions by which an action for gravity can be written such that it
has field equation derivatives that are at most second order in
the metric. Naturally, the scalar is also related to the teleparal-
lel analogue of this theorem in TG. The Lovelock analogue in
TG as well as cosmological solutions are presented and stud-
ied in [282, 283]; while couplings with a scalar field and its
kinetic term are considered in [284]. Varying the action (5.90)
we get the following field equations

− 1
e
fT∂ν(eSA

µν)− SA
µν(∂ν fT)+ fTT

B
νASB

νµ

− 1
2
fEA

µ− fTGδ
MBCD
IJKL ED

µKIJMK
K
EB∂AK

EL
C

+
1
2e
∂β

(
ηAL(Y

B[LH] −YH[LB] +YL[BH])EH
βEB

µ
)

+
1
2e
TIABEH

µ(YB[IH] −YH[IB] +YI[BH])

= κ2ΘA
µ , (5.91)

where we introduced the following tensors

YBIJ := efTGX
B
IJ− 2δCABDELKJ ∂µ

(
efTGED

µKLC
EKIA

K
)
, (5.92)
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and

XAIJ := KJ
E
BK

K
FCK

FL
Dδ

ABCD
IEKL +KEIBK

K
FCK

FL
Dδ

BACD
EJKL

+KKECK
EF

BKJ
L
Dδ

CBAD
KFIL +KFEDK

EL
BK

K
ICδ

DBCA
FLKJ

+ 2KKEBK
EL

FK
F
CDδ

ABCD
IJKL + 2KKEBKJ

L
FK

F
CDδ

BACD
KEIL

+ 2KELFK
K
IBK

A
CDδ

FBCD
ELKJ + 2KFCDK

D
EBK

EL
IηMJδ

DBMA
FCKL

+ 2KKEBδ
ABCD
IJKL ∂DK

EL
C+ 2KKEBδ

BACD
KEIL ∂DKJ

L
C .

(5.93)

Details about the variations can be found in the appendix A.
Applications of this theory will be discussed in the following
sections.

5.7. Higher-order derivatives

Inspired mostly by the curvature case where theories
with higher order derivative terms were studied, such

as f(
◦
R,

◦
Rµν

◦
Rµν ,

◦
Rαβµν

◦
Rαβµν ,

◦
□

◦
R,(

◦
∇

◦
R)2, . . .) and more,

together with the fact that such terms arise naturally in dimen-
sional reductions of higher-dimensional theories, such as
Kaluza–Klein, and in general in quantum corrections [285],
the higher-order teleparallel theory described by the action

SHOT :=
1

2κ2

ˆ
d4xe f(T,(

◦
∇T)2,

◦
□T)+Sm, (5.94)

where

(
◦
∇T)2 ≡ gµν(

◦
∇µT)(

◦
∇νT) = ηABEA

µEB
ν(

◦
∇µT)(

◦
∇νT),

(5.95)

and

◦
□T≡ gµν

◦
∇µ

◦
∇νT= ηABEA

µEB
ν

◦
∇µ

◦
∇νT, (5.96)

was proposed by Otalora and Saridakis [286]. The field
equations in the Weitzenböck gauge for this theory become

− 1
e
fT∂ν (eSA

µν)− SA
µν(∂ν fT)+ fTT

B
νASB

νµ− 1
2
EA

µf

− 1
2

2∑
i=1

{
fXi

∂Xi
∂eAµ

− 1
e

[
∂α

(
efXi

∂Xi
∂(∂αeAµ)

)
− ∂α∂ν

(
efXi

∂Xi
∂(∂α∂νeAµ)

)]}
+

1
2e
∂σ∂α∂ν

(
efX2

∂X2

∂(∂σ∂α∂νeAµ)

)
− 1

2e
∂β∂σ∂α∂ν

(
efX2

∂X2

∂(∂β∂σ∂α∂νeAµ)

)
= κ2ΘA

µ,

(5.97)

where Xi = ((
◦
∇T)2,

◦
□T) and then fXi = ∂f/∂Xi. In principle,

such theories that contain higher order derivatives in the field
equations are vulnerable to Ostrogradsky ghosts. However, as
stated in [286] this is not necessarily the case here since the
theory is formulated on different foundations it may be an

indication of extra DoF rather than ghosts, as in f(
◦
R) gravity.

5.8. Scalar-tensor theories

Another very well motivated class of theories, capable of
describing the accelerating expansion of the Universe at
present and early times has been the scalar-tensor theories.
The first and probably the simplest scalar-tensor theory intro-
duced, was the Brans–Dicke theory [287] which describes a
linear non-minimal coupling of a scalar field to gravity that
introduces a new, scalar DoF to the theory and the gravita-
tional constant becomes dynamical. In that spirit, gravity is
described both by the dynamics of the metric and the scalar
field. In principle there are no restrictions in the number of
scalar fields introduced.

5.8.1. Scalar-tensor theories with couplings with T and B. In
the same spirit, instead of coupling the scalar field to the met-
ric and invariants constructed from the Levi-Civita connec-
tion, it is interesting to see what happens in the teleparallel
framework, meaning if we couple it to the tetrad and invari-
ants constructed from the teleparallel connection. These the-
ories have been known as scalar-torsion theories and in this
section we will present interesting and well-studied models,
their field equations as well as how they transform under con-
formal transformations.

5.8.1.1. Action and field equations. Before we study spe-
cific scalar-torsion models, we will start from a more general
action that includes an arbitrary function of the torsion scalar
T, the boundary term B, a scalar field ϕ and its kinetic term

X≡−(1/2)gµν∂µϕ∂νϕ=−(1/2)(
◦
∇ϕ)2. Its action reads

Sf(T,B,ϕ,X) :=
ˆ

d4xe

[
1

2κ2
f(T,B,ϕ,X)+Lm

]
. (5.98)

Variations of equation (5.98) wrt the tetrad yield the field
equations

δµβ
◦
□fB−

◦
∇µ

◦
∇β fB+

1
2
BfBδ

µ
β −

[
(∂ν fB)+ (∂ν fT)

]
Sβ
µν

− 1
e
fTe

A
β∂ν(eSA

µν)+ fTT
B
νβSB

νµ− fTω
B
βνSB

νµ− 1
2
fδµβ

− 1
2
fX∂

µϕ∂βϕ= κ2Θµβ , (5.99)

while the field equations of the spin connection will be the
antisymmetric part of equation (5.99),

W[µν] = 2
[
(∂ρfB)+ (∂ρfT)

]
S[µ

ρ
ν] = 3Tρ[µν∂ρ]( fT+ fB).

(5.100)

Additionally, the field equations for the scalar field read

∂µ

(
efXg

µν∂νϕ
)
+ efϕ = 0. (5.101)

Details about the variations can be found in the appendix A.
An important theory that can be constructed from the above
action is the following
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S =

ˆ
d4xe

[
1

2κ2
( f(T)+F1(ϕ)T+F2(ϕ)B)

−1
2
ω(ϕ)

◦
∇µϕ

◦
∇µϕ+V(ϕ)

]
+Sm, (5.102)

where there are non-minimal couplings between the torsion
scalar T and the boundary term B. For this specific theory, the
field equation (5.99) can be rewritten as

− (F1(ϕ)+ fT)
◦
G
µ
β + δµβ

◦
□F2(ϕ)−

◦
∇µ

◦
∇βF2(ϕ)

− ∂ν

(
fT+F1(ϕ)+F2(ϕ)

)
Sβ
µν − 1

2
δµβ ( f−TfT)

− fTe
A
βω

B
AνSB

νµ−κ2ω(ϕ)(∂µϕ)(∂βϕ)

+
1
2
κ2ω(ϕ)(∂νϕ)(∂

νϕ)δµβ −κ2V(ϕ) = κ2Θµβ , (5.103)

whereas the modified Klein–Gordon equation (5.101) is
reduced to

ω(ϕ)
◦
□ϕ+ω ′(ϕ)(∂αϕ)(∂

αϕ)+
dV
dϕ

+
1

2κ2

× (F ′
1(ϕ)T+F ′

2(ϕ)B) = 0. (5.104)

As already mentioned, the action (5.98) is a very general
one and incorporates a lot of interesting scalar-torsion mod-
els. One of them is the ‘Teleparallel dark energy’ model [288].
Motivated mainly by the quintessence model in GR [289–
291], its action reads

STel. DE :=

ˆ
d4xe

[
−
(

1
κ2 + ξϕ2

)
T
2
− 1

2
∂µϕ∂

µϕ+V(ϕ)

]
+Sm,

(5.105)

where we have set ω(ϕ) = 1, f(T) =−T and F1 = κ2ξϕ, F2 =
0 in equation (5.102). Some Teleparallel dark energy mod-
els were found to be invariant under the Gasperini–Veneziano
duality transformation [292, 293].

Obviously, when the coupling of the scalar field is min-
imal, the theory coincides with the known quintessence mod-
els; but once the non-minimal coupling is switched on, the
theory presents a much richer phenomenology. In particular,
one can obtain a dark energy sector that behaves not only as
quintessence, but also as phantom or phantom-divide crossing
during evolution. This means that phantom behavior appears
naturally without the need of ghost fields which come with
ambiguous quantum behavior. The theory (5.105) was further
extended to include other irreducible parts of the torsion scalar
as well [294]. A specific class of theories of equation (5.102)
with f(T) =−T was considered in [295, 296]

S =

ˆ
d4xe

[
−
(

1
κ2

+F(ϕ)

)
T
2
− 1

2
G(ϕ)B

−ω(ϕ)
2

∂µϕ∂
µϕ+V(ϕ)

]
+Sm. (5.106)

Another interesting class of theories are the so-called tachy-
onic teleparallel scalar-torsion theories, where a generalized
non-minimal coupling of the scalar field with the torsion scalar
and the boundary term is considered [297]. Their action reads

STTST :=

ˆ
d4xe

[
− T

2κ2
+

1
2
f(ϕ)T+

1
2
g(ϕ)B

+V(ϕ)

√
1− 2X

V(ϕ)
+Lm

]
, (5.107)

where V(ϕ) is the potential. As one can immediately see, con-
sidering f(ϕ) =−g(ϕ), a non-minimal coupling between the
scalar field and the Ricci scalar is recovered because of the first
relation in equation (5.49); further, the boundary term does not
play any role when g(ϕ) = constant and it can be shown that
such theories allow the crossing of the phantom divide line
[298, 299]. The coupling of the scalar field with the boundary
term emanates from the fact that without fine-tuning, the sys-
tem will evolve to a late-time accelerating attractor solution
[295, 296]. This theory is a sub-class of equation (5.98),
and thus the equations of motion will be exactly the same
with (5.99) and (5.101), if we set

f(T,B,ϕ,X) =−T+ 2κ2

[
1
2
f(ϕ)T+

1
2
g(ϕ)B+V(ϕ)

√
1− 2X

V(ϕ)

]
.

(5.108)

A dynamical systems analysis of this theory is presented in
[297] and it shown that the tachyonic field might be a good
candidate for the solution of the cosmic coincidence and the
dark energy problems.

In a series of papers [127, 132, 300, 301] the most general
teleparallel scalar-torsion theories of gravity in their covariant
formulation are discussed. The only two necessary restrictions
are invariance of the theory under diffeomorphisms and local
Lorentz invariance as well as no coupling between the matter
fields and the spin connection. The general formalism and the
relation between different classes of theories with conformal
transformations are discussed in [300]; a discussion on mul-
tiple scalar fields is also presented, as is also done in [132,
302]. In the second paper of the series [301] a Lorentz invariant
theory is presented that consists of the torsion scalar, a scalar
field, its kinetic term and a derivative coupling between the
torsion and the scalar field and its Lagrangian reads

Sf(T,Y,ϕ,X) :=
1

2κ2

ˆ
d4xe f(T,Y,ϕ,X)+ Sm, (5.109)

where X is the kinetic term of the scalar field ϕ and Y is the
coupling between the torsion and the derivative of the scalar
field

Y= gµνTρρµ∂νϕ. (5.110)

Part of this action, without the derivative coupling has been
studied in [303]. It is interesting to note that linear terms of Y in
the action, either minimally or non-minimally coupled, would
lead to a B−like contribution after an integration by parts;
however, non-linear terms that could be possibly be part of the
theory lead to more interesting phenomenology. Variations of
the action (5.109) wrt to the tetrad yield the field equations
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1
2

◦
∇µ
(
fY∂βϕ

)
− 1

2
δµβ

◦
∇ρ ( fY∂ρϕ)+

1
2
fY

×
(
gνµT(βν)

ρ∂ρϕ+
1
2
Tρβ

µ∂ρϕ+Tρρβ∂
µϕ

)
− (∂ν fT)Sβ

µν

− 1
e
fTe

A
β∂ν(eSA

µν)+ fTT
B
νβSB

νµ− fTω
B
βνSB

νµ

− 1
2
fδµβ − 1

2
fX∂

µϕ∂βϕ= κ2Θµβ . (5.111)

Further, variations of the action wrt to the spin connec-
tion coincide with the antisymmetric part of the tetrad
equation (5.111), meaning that only those pairs of tetrads and
spin connection that solve both field equations are considered
solutions of the theory. The spin connection equations read

3∂[ρfTT
ρ
µν] + ∂[µfY∂ν]ϕ−

3
2
fYT

ρ
[µν∂ρ]ϕ= 0. (5.112)

Finally, variations wrt the scalar field yields the Klein–Gordon
equation

gµν
◦
∇µ (fYT

ρ
ρν − fX∂νϕ)− fϕ = κ2Θ, (5.113)

where Θ is the trace of the energy-momentum tensor. Con-
formal transformations as well as relation of scalar-torsion
to scalar-tensor theories are discussed in [127, 301]. In addi-
tion, disformal transformations in scalar-torsion gravity are
discussed in [83] as well as in section 3.7.

5.8.1.2. Conformal transformations teleparallel dark energy.
Considering a teleparallel dark energy model of the form

STDE :=
1

2κ2

ˆ
d4xe

[
−A(ϕ)T− 1

2
∂µϕ∂

µϕ+V(ϕ)

]
+Sm,

(5.114)

and applying a conformal transformation of the form (5.58) in
an attempt to remove the kinetic term of the scalar field, we
end up with

STDE =
1

2κ2

ˆ
d4xẽ

[
−A(ϕ)

(
Ω2T̃− 4ΩT̃µ∂µΩ− 6g̃µν(∂µΩ)

×(∂νΩ))−
1
2
Ω2g̃µν∂µϕ∂νϕ+V(ϕ)

]
,

(5.115)

where we considered only the gravitational part of the
action (5.114). In order for the kinetic term of the scalar field
to vanish, we have to set

Ω= exp

(ˆ
1

2
√

3A(ϕ)
dϕ

)
, (5.116)

and expressing it in its inverse form, meaning ϕ= ϕ(Ω) we
can substitute it in equation (5.115) and get

STDE =
1

2κ2

ˆ
d4xẽ

[
−A(Ω)Ω−2T̃+ 4Ω−3A(Ω)T̃µ∂µΩ+U(Ω)

]
,

(5.117)

with U(Ω) = Ω−4V(ϕ). We can rewrite the second term in the
above action (5.117) introducing a function G(Ω) such that

Ω−3A(Ω)∂µΩ= ∂µG(Ω). (5.118)

Integrating equation (5.117) by parts we get

STDE =
1

2κ2

ˆ
d4xẽ

[
−A(Ω)Ω−2T̃− 2G(Ω)B̃+U(Ω)

]
.

(5.119)

We can see now that there is no kinetic term for the scalar
field Ω, meaning that it is just an auxiliary field. Varying the
action (5.119) and solving the respective equations for Ω, we
obtain a function of the formΩ= Ω(T̃, B̃). This means that the
integrand in equation (5.119) is just a function f(T̃, B̃), thus
making the teleparallel dark energy model (5.114) conform-
ally equivalent to f(T,B) gravity. A more general class of dis-
formally invariant theories can be found in [83].

5.8.2. Teleparallel Horndeski gravity—BDLS theory. The
motivation for Horndeski’s theory was to write down the most
general Lagrangian with a single scalar field, that leads to
second order field equations. Almost 30 years after its public-
ation, it was realized that this theory is completely equivalent
to generalized covariant galileons [304–306]. However, part
of it was severely constrained after the GW 170817 and GRB
170817A events, which was the motivation to study if the con-
straints persisted in the teleparallel framework as well.

Bahamonde–Dialektopoulos–Levi Said (BDLS) theory of
gravity is nothing but the teleparallel analogue of the known
Horndeski gravity, i.e. the most general scalar-tensor theory
with a single scalar field in four dimensions leading to second
order field equations, satisfying some necessary conditions to
retain a finite class of theories. The theory itself was formu-
lated in [307].

The necessary criteria for the theory to be formulated are
the following:

• The field equations both for the tetrad and for the scalar field
must be of second order,

• the scalar invariants should not be parity-violating,
• and contractions of the torsion tensor must be at most quad-

ratic.

The first condition appears in order to avoid ghost instabil-
ities while the second one refers to contractions of the scalar
field (through its derivatives) with the irreducible parts of the
torsion tensor. Those scalars should be invariant under parity
transformations. The last one is a particular feature of TG. In
GR and its extensions, thus in Horndeski gravity as well, Love-
lock’s theorem prohibits other terms to be part of these Lag-
rangians. In TG though, this is not the case; the torsion tensor
consists of first derivatives in the tetrad, in contrast with the
Riemann tensor that consists of second derivatives in the met-
ric. This means that, in principle, infinite contractions of the
torsion tensor could be considered and still the field equations
would be second order. However, it is unclear how physical
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such higher order contributions will be. For this reason, in
[307], it was demanded that, the contributing scalar invariants
of the theory be at most quadratic contractions of the torsion
tensor.

In order to form the most general Lagrangian that satisfies
the above criteria, we should formulate first the one in the tan-
gent space and then raise it to the general manifold through the
coupling prescription. The theory considers also the following
conditions for the scalar field [308]:

(a) The Lagrangian contains up to second order derivatives of
the scalar field,

(b) the Lagrangian is a polynomial in second order derivatives
of the scalar field,

(c) the corresponding field equations are at most second order
in derivatives of the scalar field (which coincides with the
first criterion above).

The Lagrangian for a scalar field ϕ with a kinetic term
X=− 1

2∂µϕ∂
µϕ, that is invariant under the Galilean trans-

formationϕ→ ϕ+ bµxµ+ c, in the tangent space has the form

L=
5∑
i=1

ciLi, (5.120)

where ci are arbitrary constants and the subscript refers to the
number of appearances of the scalar field in each component
of the Lagrangians which are

L1 = ϕ, (5.121a)

L2 = X, (5.121b)

L3 = X□̄ϕ, (5.121c)

L4 =−X(□̄ϕ)2 +(□̄ϕ)ϕ,µϕ,ν ϕ,µν

+Xϕ,µνϕ,µν−ϕ,µϕ,µνϕ,νρϕ,ρ, (5.121d)

L5 =−2X(□̄ϕ)3 − 3(□̄ϕ)2ϕ,µϕ,ν ϕ,µν + 6X□̄ϕϕ,µν ϕ,µν

+ 6□̄ϕϕ,µϕ,ρϕ,µνϕ,νρ−4Xϕ,µ
νϕ,ν

ρϕ,ρ
µ

+ 3ϕ,µν ϕ
,µνϕ,ρϕ,λϕ

,λρ− 6ϕ,µϕ
,µνϕ,νρϕ

,λρϕ,λ .
(5.121e)

The d’Alembertian is given by □̄= ∂µ∂
µ which changes

in any gravitational theory since it is a derivative operator,
comma ‘,’ denotes partial derivative and barred quantities refer
to Minkowski spacetime.

Covariantizing the action (5.120), i.e considering it in a
general non-flat manifold, we first need to replace the arbit-
rary constants ci to general functions of the form Gi(ϕ,X). In
this way, the Lagrangians (5.121a)–(5.121e) take the form

L2 := G2(ϕ,X), (5.122a)

L3 := G3(ϕ,X)
◦
□ϕ, (5.122b)

L4 := G4(ϕ,X)(−T+B)+G4,X(ϕ,X)

[( ◦
□ϕ
)2

−ϕ;µνϕ
;µν

]
,

(5.122c)

L5 := G5(ϕ,X)
◦
Gµνϕ

;µν − 1
6
G5,X(ϕ,X)

×
[( ◦

□ϕ
)3

+ 2ϕ ν
;µ ϕ α

;ν ϕ µ
;α − 3ϕ;µνϕ

;µν
( ◦
□ϕ
)]
,

(5.122d)

where Gi,X = ∂Gi/∂X and ϕ;µν =
◦
∇µ

◦
∇νϕ. In the L4 and L5

Lagrangians there are two new terms, G4(ϕ,X)(−T+B) and

G5(ϕ,X)
◦
Gµνϕ;µν , where

◦
Gµν is the Einstein tensor formulated

in teleparallel geometry, i.e. equation (4.168). That is because
the covariant derivatives do not commute, in order to com-
pensate for the higher order terms that would appear in the
field equations, we have to add these extra terms.

However, the theory is not complete yet. In the teleparal-
lel geometry there exist more terms that satisfy the aforemen-
tioned criteria. Specifically, if we consider up to quadratic con-
tractions of the torsion tensor, criterion (c), the most general
Lagrangian satisfying the conditions explained above of TG
(without a scalar field) is f(Taxi,Tvec,Tten) that was discussed in
section 5.5, which means that (at least) these invariants, i.e. the
irreducible decomposition of the torsion tensor should be part
of our theory.

Indeed, in TG there exists a set of scalars that should be
included in a new component of the Lagrangian, LTele, which
consist of the irreducible parts of the torsion tensor, contracted
with derivatives of the scalar field. Linear contractions of the
torsion tensor are

I1 := tµνσϕ;µϕ;νϕ;σ, I2 := vµϕ;µ, I3 := aµϕ;µ. (5.123)

This is the full set of scalar that can be constructed consid-
ering linear contractions of the torsion tensor because of the
symmetry of tµνσ in its first two indices and the fact that
tσµσ = tσσµ = tµσσ = 0. However, due to the the fact that
t(µνρ) = 0, it can be easily shown that I1 vanishes. Moreover,
conforming with the second criterion, I3 cannot be considered,
together with any scalar terms that contains an odd number
of the axial part of the torsion tensor, because it is not parity
invariant. Contracting the tensorial part of the torsion tensor
with second order derivatives of the scalar field would result
higher order derivatives in the field equations.

Following the third criterion mentioned above, the theory
includes also quadratic contractions of the torsion tensor with
derivatives of the scalar field. Those scalars that are not parity-
violating are

J1 := aµaνϕ;µϕ;ν , J2 := vµvνϕ;µϕ;ν , J3 := vσt
σµνϕ;µϕ;ν ,

J4 := vµt
σµνϕ;σϕ;ν , (5.124a)
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J5 := tσµν tσ
µ̄
νϕ;µϕ;µ̄, J6 := tσµν tσ

µ̄ν̄ϕ;µϕ;νϕ;µ̄ϕ;ν̄ ,

J7 := tσµν tσ̄µ̄σϕ;µϕ;νϕ;σ̄ϕ;µ̄, (5.124b)

J8 := tσµν tσµ
ν̄ϕ;νϕ;ν̄ , J9 := tσµν tσ̄µ̄ν̄ϕ;σϕ;µϕ;νϕ;σ̄ϕ;µ̄ϕ;ν̄ ,

J10 := ϵµνρσa
ν tαρσϕ;µϕ;α. (5.124c)

Nevertheless, these scalars are not all independent with
each other. In particular, one can notice that J2 = I22 , J3 = J4
and J7 =−2J6. In addition, as with I1, the vanishing of the
totally symmetric part of the tensor torsion makes J9 vanish.
In addition, contractions of quadratic order torsion tensor with
second order derivatives of the scalar field, lead to higher order
field equations. This means that the most general theory that
satisfies the above criteria ends up having seven independent
scalars in total and apart from the sum of (5.122a)–(5.122d) it
includes also an extra Lagrangian that has the form

LTele := GTele(ϕ,X,T,Taxi,Tvec, I2,J1,J3,J5,J6,J8,J10),
(5.125)

where, instead of choosing its tensorial decomposition, we
used the torsion scalar itself, which is possible due to the rela-
tionship in equation (5.4). Notice that instead of the three irre-
ducible parts of the torsion tensor, we considered the torsion
scalar with its axial and its vectorial parts. What is also inter-
esting to notice is that the boundary term B does not contribute
in equation (5.125). Even though B itself is second order in the
Lagrangian, it produces the fourth order elements of the the-
ory, thus not satisfying the first criterion15. This is similar to

the standard Horndeski theory case where f(
◦
R) does not appear

in the action since that term contains higher order derivatives.
Thus, the Lagrangian of BDLS theory, i.e. the teleparallel ana-
logue of Horndeski gravity is given by

SBDLS :=
1

2κ2

ˆ
d4xeLTele +

1
2κ2

5∑
i=2

ˆ
d4xeLi+Sm.

(5.126)

Once one sets LTele = 0, the action takes the standard
Horndeski form, formulated in the teleparallel geometry. Vari-
ations of the scalars and the arbitrary functions, together with
the equations of motion of the tetrad and the scalar field can
be found in the appendix A.

Before we move on, we would like to remark the motiva-
tion for BDLS theory. Apart from a competitive exercise and
an analytically interesting theory, that is why Horndeski for-
mulated his theory in the first place, it is an interesting ter-
rain to test the possible supremacy of teleparallel model over
their curvature-based counterparts. BDLS not only contains
the standard Horndeski theory, as well as most of the exten-
ded teleparallel theories of gravity (e.g. f (T), f(Taxi,Tvec,Tten),
teleparallel dark-energy models, Gauss–Bonnet theory in
the conformal frame and more) but it extends it just by
changing the background geometry. The figure 11 shows some

15 These contributions make f(
◦
R) theory have fourth order field equations.

important theories that are part of the BDLS theory along
with some important references. This results in richer phe-
nomenology because it contains new terms through the extra
Lagrangian LTele and because of this extra terms it revives
several Horndeski models that were severely constrained in
the curvature formulation after the GW 170817 and GRB
170817A events. More details can be found in [307, 309]
and also in section 7 were cosmological perturbations are dis-
cussed. Recently, it was found that themost general BDLS the-
ory propagates up to 7 DoF. In cosmology, it was also found
that this theory can generate a late-time, low energy de-Sitter
vacuum state by using the well-tempered method [310, 311].
Keeping with recent developments in cosmology, in [312]
Noether’s theorem was used to classify the many models that
can be produced in this new class of theories. We conclude
this section by mentioning a similar theory introduced in [313]
which considers a teleparallel vector-tensor theory construc-
ted as an analogue of the so-called generalized Proca the-
ory. This theory assumes a vector Aµ field coupled to gravity
which only propagates up to 3 DoF in order to avoid Ostro-
gradsky ghosts and comply also with the representation of
the massive spin 1 Lorentz group. This theory contains up
to second order derivatives in the field equations (for the tet-
rads and the vector) and only parity preserving scalars were
considered. The field equations of the theory are of second
order for both the tetrad and the vector field and only par-
ity preserving scalars were considered. One important differ-
ence wrt teleparallel Horndeski is the fact that the scalars con-
structed from the torsion tensor were considered to be only
linear.

5.9. Theories non-minimally coupled with matter

Another route that became popular in modified gravity is to
construct theories with non-minimally couplings between the
matter sector and gravity. The most popular of them is the

so-called f(
◦
R,Θ) where Θ := Θµµ is the trace of the energy-

momentum tensor and
◦
R the Ricci scalar [195]. Due to the

nature of these theories, the continuity equation may also be
modified leading to further generalizations and richer phe-
nomenology. In TG, a similar theory was introduced in [322,
323] by considering the following action

Sf(T,Θ) :=
1

2κ2

ˆ
d4xe f(T,Θ)+Sm, (5.127)

where T is the torsion scalar instead of the Ricci scalar. By
taking variations wrt the tetrads, we find the following field
equations

− (∂ν fT)Sβ
µν − 1

e
fTe

A
β∂ν(eSA

µν)+ fTT
B
νβSB

νµ

− fTω
B
βνSB

νµ− 1
2
fδµβ

= κ2Θµβ − fΘ
(
Θµβ + eAνg

αβ δΘαβ
δeAµ

)
, (5.128)
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Figure 11. Relationship between the Teleparallel Horndeski analogue and various theories.
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where fΘ = ∂f/∂Θ and the variation appearing on the RHS of
the equation can be expanded as

eAλg
µν δΘµν
δeAρ

=−2Θλ
ρ+ δλ

ρLm − 2gνρgαβ
∂ 2Lm

∂gλν∂gαβ
.

(5.129)

Here Lm is the density matter Lagrangian. It is common to
consider that the matter Lagrangian does not depend on the
derivatives of the metric (or equivalently derivatives of the tet-
rads), therefore, the last term in the above equation is usu-
ally neglected. If one assumes that the matter is described
by a perfect fluid with energy density ρ and pressure p, then
Θµν = (ρ+ p)uµuν − pgµν with uµ being the 4-velocity of the
fluid which is normalized as uµuµ =+1. For this particular
case, we can take Lm =−p and the above term becomes

eAλg
µν δΘµν
δeAρ

=−2Θλ
ρ− pδλ

ρ. (5.130)

This particular choice was assumed in [323] too in order to
analyze the cosmology of this theory filled with a standard
perfect fluid. It can be shown than in this theory, the standard
energy-momentum tensor is non conserved [324]

◦
∇µΘ

µν =
fΘ

κ2 − fΘ

[
(Θµν + gµνp)

◦
∇µ log fΘ

+gµν
◦
∇µ

(
p+

1
2
Θ

)]
, (5.131)

which can be interpreted as an additional force which is usu-
ally labelled as the fifth force [195]. One can further include
the boundary term B in the action. Further, for that extended
theory, the process of quantum fluctuations induced by matter-
gravity couplings were studied [325]. Further, it was found that
these fluctuations are compatible with cosmological observa-
tions [326].

Another route for constructing theories with couplings
between matter and the gravitational sector is by considering
actions with couplings between the Lagrangian density and the
teleparallel scalars. The first theory considering this was for-
mulated in [327] where the authors considered an action based
on f1(T)+ (1+λf2(T))Lm (without Sm) where λ is a constant.
This theory was further extended including the boundary term
in [328] with the action

Sf(T,B,Lm) :=
1

2κ2

ˆ
d4xe f(T,B,Lm). (5.132)

The above theory also contains the theory f(T,Lm) which was
firstly presented in [329]. These theories are the teleparal-
lel versions of other non-minimally matter-gravity coupled
theories constructed from a Riemannian case with the Ricci
scalar

◦
R being the quantity which is coupled with Lm [330,

331]. Furthermore, the f(
◦
R,Lm) case can be derived from

equation (5.132) by considering the case f(−T+B,Lm). The
variations of the above action wrt the tetrads yields

δµβ
◦
□fB−

◦
∇µ

◦
∇β fB+

1
2
BfBδ

µ
β − [(∂ν fB)+ (∂ν fT)]Sβ

µν

− 1
e
fTe

A
β∂ν(eSA

µν)+ fTT
B
νβSB

νµ− fTω
B
βνSB

νµ

− 1
2
fδµβ −

1
2
fLLmδ

µ
β =

1
2
fLΘ

µ
β , (5.133)

where fL = ∂f/∂Lm. The TEGR case is then recovered when
f=−T+Lm and further modifications can be made by other
forms of f. For this theory, one also finds that the energy-
momentum tensor is non-conserved. The process of induced
particle production was recently studied in [332] without
including the boundary term.

5.10. Non-local theories

One of the most well known proposals for a non-local modific-
ation in gravity, and specifically of the Einstein–Hilbert action,
was suggested in [197], where their action reads

SNL :=
1

2κ2

ˆ
d4x

√
−g

◦
R
(
1+ f(

◦
□−1 ◦R)

)
+Sm, (5.134)

where f is an arbitrary function that depends on the retarded
Green function evaluated at the Ricci scalar, i.e.

◦
□−1F(x)≡

ˆ
d4x ′e(x ′)F(x ′)G(x,x ′). (5.135)

Such corrections arise naturally when one considers quantum
loop effects, while they are considered as a possible solution
to the black hole information paradox [333, 334]. Since then,
non-locality theories have been studied in different contexts
and have given some interesting results in open problems of
cosmology, see more details in [335] and references therein.
Some interesting non-singular and ghost-free higher order the-
ories that include torsion are studied in [336, 337].

For the same reasons, the non-local TG (TNL) was pro-
posed in [338]. Its action has the form

STNL :=− 1
2κ2

ˆ
d4xeT+

1
2κ2

ˆ
d4xeTf

( ◦
□−1T

)
+Sm,

(5.136)

where the non-local operator, i.e. the retarded Green func-
tion is evaluated at the torsion scalar T. The authors show that
the theory is consistent with cosmological data from SNeIa +
BAO + CC + H0 observations. Varying this action wrt the
tetrad we get the field equations of the theory that read

−
[
SA
βµ∂µ+

1
e
∂µ(eSA

βµ)−TσµASσ
µβ − 1

2
TEA

β

]
×
[
f(

◦
□−1T)+

◦
□−1(Tf ′(

◦
□−1T))

]
+

◦
GA

β − 1
2
∂ρ

[ ◦
□−1(Tf ′(

◦
□−1T))

]
× ∂σT

(
gσρEA

β − 2gβ(ρEA
σ)
)
= κ2ΘA

β . (5.137)
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A generalization of equation (5.136) was proposed in
[335] where the authors introduced also the effect of the
d’Alembertian operator on the boundary term B. Specific-
ally, the action of the generalized teleparallel non-local theory
(GTNL) has the form

SGTNL :=− 1
2κ2

ˆ
d4xeT+

1
2κ2

ˆ
d4xe(ξT+χB)

× f
( ◦
□−1T,

◦
□−1B

)
+Sm. (5.138)

In the second term ξ and χ are two constant coupling terms.
It can be easily seen that by choosing ξ =−χ=−1 one can

obtain the Ricci scalar, since
◦
R=−T+B. From the definition

of the inverse d’Alembertian operator (5.135) we directly see
that

◦
□−1 ◦R=−

◦
□−1T+

◦
□−1B. (5.139)

Effectively, this means that in the case when f(
◦
□−1T,

◦
□−1B) =

f(−
◦
□−1T+

◦
□−1B) and simultaneously ξ =−χ=−1 we

recover the action (5.134). With the equations of motion being
too complicated to study the theory, it is less cumbersome
to study a localized version of equation (5.138), introducing
scalar fields in the form of Lagrange multipliers. This method
was also used for the theory (5.134) in [339].

Rewriting the action (5.138) in a more suitable way using
four scalar fields ϕ,ψ,θ,ζ, it takes the following form

SGTNL =
1

2κ2

ˆ
d4xe

[
−T+ (ξT+χB)f(ϕ,φ)+ θ(

◦
□ϕ−T)

+ζ(
◦
□φ−B)

]
+Sm (5.140a)

=
1

2κ2

ˆ
d4xe

[
−T+(ξT+χB)f(ϕ,φ)θT− (∂µζ)(∂

µφ)

− (∂µθ)(∂
µϕ)−−ζB

]
+Sm, (5.140b)

where the last two terms in the first line act as Lagrange mul-
tipliers. The mixed kinetic terms of the auxiliary fields intro-
duce ghost-like terms that cannot be gauge transformed away
[340]. This would in principle lead to non-viability of the the-
ory, however, one can choose the mass of these modes to be
larger than the cut-off of the theory. A ghost-free non-local
theory has also been presented in [341]. Varying this action wrt

θ and ζ we get ϕ=
◦
□−1T and φ=

◦
□−1B respectively, while

varying the action wrt ϕ and φ we get

◦
□θ =−(ξT+χB)

∂f(ϕ,φ)
∂ϕ

,
◦
□ζ =−(ξT+χB)

∂f(ϕ,φ)
∂φ

,

(5.141)

which are the field equations for the dynamical scalar fields.
The corresponding field equations for the tetrad in the
Weitzenböck gauge read

(1− ξf(ϕ,φ)+ θ)EA
β ◦
Gβ

µ+
1
2
(∂λθ)(∂λϕ)EA

β

− 1
2

(
∂βθ

)
(∂αϕ)EA

α− 1
2
(∂βϕ)(∂αθ)EA

α+
1
2
(∂λζ)(∂λψ)EA

β

− 1
2
(∂βζ)(∂αψ)EA

α− 1
2
(∂βψ)(∂αζ)EA

α+EA
ρSρ

µβ∂µ

×
[
(ξ+χ)f(ϕ,ψ)− θ− ζ

]
+
(
EA

µ ◦
∇µ

◦
∇β −EA

β ◦
□
)

× (ζ −χf(ϕ,φ)) = κ2ΘA
β . (5.142)

It would be interesting to study the behavior of the theory at
lower scales, e.g. in astrophysical systems, since cosmologic-
ally it seems very promising.

5.11. Other approaches

There are other teleparallel theories that are less popular in the
literature but it is worthwhile to mention them. For example,
there are some approaches to the so-called Kaluza–Klein the-
ory in the context of TG. The standard version of Kaluza–
Klein theory formulates a five-dimensional theory which uni-
fies electromagnetism with gravity with the Lagrangrian being
composed by a five-dimensional Einstein–Hilbert action. In
the teleparallel equivalent of Kaluza–Klein theory [342, 343],
only the internal (or tangent) space is five-dimensional but
the spacetime remains four-dimensional. This formulation
is achieved by considering a five-dimensional translational
gauge theory which turns out to unify gravity with electro-
magnetism. Later, it was found that the Kaluza–Klein theory
reduction of TEGR at low energies in the absence of elec-
tromagnetism introduces a non-minimally coupling between
a scalar field and the torsion tensor [344]. The Lagrangian of
this reduced theory becomes L= ϕT+ 2Tµ∂µϕ, which can be
integrated out to find that the scalar field is non-minimally
coupled to both the torsion scalar and the boundary term B.
This reduced theory was then generalized to the case of f (T)
gravity in the Kaluza–Klein reduced formulation.

Another approach that has been explored in TG is the so-
called mimetic gravity. The standard version of mimetic grav-
ity is a modified version of GRwhich respects conformal sym-
metries as an internal DoF. This is achieved by rewriting the
metric as gµν =−g̃µν g̃αβ∂α∂βϕ where g̃µν is an auxiliary
metric and ϕ is a scalar field [345, 346]. This parametriza-
tion is invariant under Weyl transformations. To be consist-
ent, one must impose that gµν∂µ∂νϕ=−1. These types of
theories are usually formulated using Lagrange multipliers.
For example, the simplest modification is constructed with

the Ricci scalar as L=
◦
R+λ(gµν∂µ∂νϕ+ 1). These theor-

ies have the interesting feature that they can unify dark matter
with dark energy. In [347], the authors formulated a teleparal-
lel version of mimetic gravity by considering the Lagrangian
L= f(T)+λ(gµν∂µ∂νϕ+ 1). This is achieved by considering
that the tetrads are unchanged and the conformal transforma-
tions are performed in the Minkowski metric.

Last but not least, an interesting theory has been proposed
in [348], which is a generalization of [349], where the authors
study a general teleparallel theory that is a linear combina-
tion of the five scalar invariants, quadratic in the torsion tensor.
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Two of these scalars have odd parity and thus they allow coup-
ling to pseudo-scalar fields, in order for the Lagrangian to be
even under parity. Then, one can formulate a TG theory which
is similar to the well-known Nieh–Yan parity-violating the-
ory [350]. In the same spirit as in gauge theories, these fields
are called teleparallel axions and they present some interest-
ing phenomenology at cosmological scales, especially in the
early Universe. Finally, a local Lorentz covariant version of
[349] was considered in [351] and non-flat universes were
also taken into account. It was recently reported that some TG
parity-violating models suffer from ghost instabilities but the
so-called modified TG Nieh–Yan is free of them [352].

5.12. Good tetrad spin connection examples

In general, finding a tetrad spin connection pair which sat-
isfy the antisymmetric field equations is a difficult task. In this
section, we will give an overview of different good tetrad-spin
connection pairs found in the literature for different space-
times satisfying different symmetries. As discussed above,
a good tetrad-spin connection pair depends on the theory,
therefore, some results provided below will be also theory
dependent.

5.12.1. Static spherically symmetric case. As a first glimpse
to understanding how important is to choose the correct tetrad-
spin connection pair, wewill perform a very simple calculation
to show that one needs to be very careful when one is consider-
ing teleparallel theories of gravity. Let us start by considering
a static spherically symmetric metric

ds2 =A(r)dt2 −B(r)dr2 −M(r)2(dθ 2 + sinθ 2 dφ2),
(5.143)

and choose a tetrad which is diagonal in the Weitzenböck
gauge:

eAµ = diag(
√
A(r),

√
B(r),M(r),M(r)sinϑ). (5.144)

Clearly, the above tetrad reproduces the metric (5.143) but the
teleparallel connection does not respect spherical symmetry
(if the spin connection vanishes) since (LXξ

Γ)µνρ 6= 0 (see
section 3.6 for more details). In principle, there is no a prob-
lem if the connection does not have the same symmetries as
the tetrad. However, in this case, is it correct to choose this
tetrad-spin connection pair? The answer is simple: the choice
of equation (5.144) is incompatible with a vanishing spin con-
nection. This can be easily seen in an example. If we use this

tetrad in f (T) gravity (5.53), we end up with a nonvanishing
antisymmetric field equation being equal to

fTT
d
dr
T= 0, (5.145)

which means that either fTT = 0 (which is f(T) =−T+Λ) or
T= const., which again has the same dynamics as TEGR plus
a cosmological constant. This small example shows that one
needs to be careful on how to choose the correct tetrad-spin
connection pair, otherwise the theory will be trivially GR. This
important result was totally omitted in many papers and due to
this, many incorrect results can be found in the literature.

The way to circumvent this issue is to always consider a
good tetrad-spin connection, which is related to the symmet-
ries of the problem and also to solve the antisymmetric field
equations of the studied theory. We will now derive the cor-
rect pair for spherical symmetry. Let us consider the most
general tetrad satisfying spherical symmetry in the Weitzen-
böck gauge where the spin connection is zero, which is given
by equation (3.133). In this section, we will further assume
stationarity. As a first step, we will just consider the case in
f(T,B,ϕ,X) gravity but then, one can conclude that the res-
ult can be easily extended this to other teleparallel theories.
For this theory, the antisymmetric field equation are given by
equation (5.100). For the static spherically symmetric tetrad,
there are only two nonvanishing equations

W[tr] ∝ C3C5( f
′
T+ f ′B) = 0, W[ϑφ] ∝ C1C6( f

′
T+ f ′B) = 0,

(5.146)

where primes are derivatives wrt the radial coordinate, and
the Ci functionals are first shown in equation (3.133). The
easiest way to solve the system is by taking ( fT+ fB) ′ = 0,

but this case is only true for either f(
◦
R) gravity (which trivi-

ally satisfies the antisymmetric field equations for any space-
time) or T,B constants (which is equivalent to TEGR plus a
cosmological constant). Since we are interested in the non-
trivial cases, we can assume ( fT+ fB) ′ 6= 0. Then, to solve the
system we notice that there are two possibles branches, (i)
C3 = 0; (ii) C3 6= 0. For the first branch, one uniquely solves
the system for C3 = C6 = 0, and then, due to the remaining
metric DoF, without loosing generality, we can eliminate
the cross terms by further setting C2 = 0 and also setting
A(r) =

√
C1(r), B(r) =

√
C4(r) and C5(r) = ξM(r), where

ξ =±1. Note that the sign of C5 does not affect the metric but
it affects the form of the tetrad. By taking all of these forms
of Ci = Ci(r) in equation (3.133), we find that the first branch
that solves the antisymmetric field equations in f(T,B,ϕ,X)
gravity in the Weitzenböck gauge reads

eAµ =


√
A(r) 0 0 0
0

√
B(r)sinϑcosφ ξM(r)cosϑcosφ −ξM(r)sinϑsinφ

0
√
B(r)sinϑsinφ ξM(r)cosϑsinφ ξM(r)sinϑcosφ

0
√
B(r)cosϑ −ξM(r)sinϑ 0

 , ξ =±1, (5.147)
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which reproduces the metric in the standard form

ds2 =A(r)dt2 −B(r)dr2 −M(r)2(dϑ2 + sin2φdφ2).
(5.148)

We can switch on the spin connection by performing the
following Lorentz transformation e ′Aµ = ΛA

BeBµ, with ΛA
B

being,

ΛA
B =


1 0 0 0
0 sinϑcosφ sinϑsinφ cosϑ
0 cosϑcosφ cosϑsinφ −sinϑ
0 −sinφ cosφ 0

 , (5.149)

which gives us another good tetrad-spin connection pair which
is equivalent to equation (5.147) with ωA

Bµ = 0 having a diag-
onal tetrad

e ′Aµ = diag(
√
A(r),

√
B(r), ξM(r), ξM(r)sinϑ), ξ =±1,

(5.150)

but now having a non-zero spin connection ωABµ with the fol-
lowing non-zero components

ω ′1
2ϑ =−ω ′2

1ϑ =−1, ω ′1
3φ =−ω ′3

1φ =−sinϑ,

ω ′2
3φ =−ω ′3

2φ =−cosϑ. (5.151)

One important remark is that the Lorentz transformation must
be carried out for both the tetrads and the spin connection. It is
interesting to note that the scalar-torsion T and the boundary
term B become

T=−
2
(
ξ
√
B−M ′

)(
MA ′ +A(M ′ − ξ

√
B)
)

ABM2
,

(5.152a)

B=
M ′ (4BMA ′ − 2A

(
MB ′ + 2ξB3/2

))
AB 2M2

−
BMA ′2 +A

(
−2BMA ′ ′ +MA ′B ′ + 4ξB3/2A ′)

2A2B 2M

+
4M ′ ′

BM
+

4M ′2

BM2
. (5.152b)

Since these quantities are related to gravitational effects,
one should expect that they should vanish in the Minkowski
limit. One notices that in the limit A,B → 1,M→ r, T=
B= 0 are zero for ξ= 1 but non-zero for ξ =−1. However,
after redefining

√
A= Ã,

√
B = B̃, one can have the possibil-

ity of obtaining theMinkowski metric for Ã, B̃ → −1,M→ r
and giving us the opposite result, which is that T= B= 0
for ξ =−1 and they are non-zero for ξ= 1. It is still not
clear in the literature what is the physical interpretation of
having these scalars different to zero in Minkowski. Some
authors argue that the teleparallel connection is not satisfying
the Minkowski symmetries and therefore, the torsion scalar
is non-zero even though one assumes the metric being the
Minkowski one. To avoid this issue, several studies [353–356]
assumed ξ= 1. However, there are other papers ignoring this
issue [357–360] and studied the ξ =−1 where both T,B do
not vanish in theMinkowski limit unless we take the limit with
the negative functions as we just discussed. Interestingly, the
sign of ξ drastically changes the form of the field equations
of f(T,B,ϕ,X) gravity in spherical symmetry. This will be
explored further in section 9.

Let us now explore the second non-trivial branch appear-
ing in equation (5.146) which is the one when C3 6= 0.
For this case, the system (5.146) is solved uniquely if
C1(r) = C5(r) = 0. For this branch, one needs to be care-
ful since the metric change its signature unless we assume that
the functions C2(r) = iB(r), C3(r) = iA(r) are imaginary.
Furthermore, one still has some freedom to choose C4 = 0
to eliminate the cross term in the metric. After doing this

eAµ =


0 iB(r) 0 0

iA(r)sinϑcosφ 0 −M(r)sinφ −M(r)sinϑcosϑcosφ
iA(r)sinϑsinφ 0 M(r)cosφ −M(r)sinϑcosϑsinφ
iA(r)cosϑ 0 0 M(r)sin2ϑ

 , (5.153)

where we have set C6 =M(r). It should be noted that this
tetrad is complex but the metric is real and its signature
remains unchanged, i.e.

ds2 =A(r)2dt2 −B(r)2dr2 −M(r)2dΩ2. (5.154)

For this tetrad the sign of M(r) does not play any role. Thus,
the complex tetrad in (5.153) also satisfy the antisymmet-
ric field equations. It is worth noticing that even though this

quantity is complex, both the torsion scalar and the boundary
term

T=
4A ′M ′

AB 2M
+

2M ′ 2

B 2M2
+

2
M2

, (5.155a)

B=
M ′ (8BA ′ − 4AB ′)

AB3M
+

2(BA ′ ′ −A ′B ′)

AB3
+

4M ′ ′

B 2M

+
4M ′ 2

B 2M2
, (5.155b)

76



Rep. Prog. Phys. 86 (2023) 026901 Review

are real, so that, the action will be well-defined under this tet-
rad. It is still unclear if other important physical quantities can
be complex for this tetrad. In the Minkowski limit, T,B 6= 0
unless we take the Minkowski limit for A,B =−1,M= r.

Similarly as we did above, one can perform the following
local Lorentz transformation

ΛA
B =


0 −isinϑcosφ −isinϑsinφ −icosϑ
−i 0 0 0
0 −sinφ cosφ 0
0 −cosϑcosφ −cosϑsinφ sinϑ

 ,
(5.156)

simultaneously for the tetrad and the spin connection, to gives
us a spin connection with the following non-zero components

ω ′0
2φ = ω ′2

0φ = isinϑ, ω ′0
3ϑ = ω ′3

0ϑ =−i,
ω ′2

3φ =−ω ′3
2φ =−cosϑ, (5.157)

and a diagonal tetrad in the form

eAµ = diag(A(r),B(r),M(r),M(r)sinϑ). (5.158)

The tetrad in (5.153) in the Weitzenböck gauge is equival-
ent as the pair (5.157) and (5.158). It is straightforward to
show that all the good tetrad-spin connection presented in this
section for f(T,B,ϕ,X) gravity, also satisfy the antisymmetric
field equations of more general teleparallel theories such as the
generalized NGR theory (see section 5.2), and also for TEGB
extensions such as the ones discussed in section 5.6.

5.12.2. Time-dependent spherically symmetric case. In this
section, we will perform a similar analysis as in the previous
section for f(T,B,ϕ,X) gravity but we will assume that ϕ=
ϕ(t), T= T(t), B= B(t). This means that we have d

dr ( fT+
fB) = 0 but d

dt ( fT+ fB) 6= 0. This case would be important
for cosmological scenarios, for example. Consider the FLRW
cosmological scenario, where the cosmological principle will
impose that these quantities must be time-dependent only.
Using the most general time-dependent spherically symmet-
ric tetrad (3.133), the antisymmetric field equation (5.100) for
this case is reduced to the following system

W[tr] ∝ (ḟT+ ḟB)(C4C5 −C ′
5C5 −C6C

′
6) = 0, (5.159a)

W[ϑφ] ∝ (ḟT+ ḟB)C2C6 = 0, (5.159b)

where dots and primes denote derivatives wrt time and
the radial coordinate, respectively. We have two possible
branches: (i) C6 6= 0; (ii) C6 = 0. Let us first explore the first
branch. For this case we need to impose (fB 6=−fT)

C4(t,r) =
1
C5

(
C5C

′
5 +C6C

′
6

)
, (5.160)

to solve equation (5.159a). We have further assumed C5 6=
0 since that branch is very restrictive and for FLRW, this
case only becomes the flat FLRW case. Moreover, due to the
remaining gauge freedom in the metric we can further set
C3 = 0 without loosing generality. Let us emphasise here that
T and B were assumed to depend only on t but after assum-
ing the above assumptions, this condition is not true yet. To
continue, we will focus on the non-flat FLRW case, where the
functions are

C1(t,r) = ξ1N(t), C5(t,r) = ξ2

√
r2a(t)2 −C6(t,r)2,

(5.161a)

C6(t,r) = ξ3
√
kr2a(t), ξ1 =±1, ξ2 =±1, ξ3 =±1.

(5.161b)

Then, for FLRW cosmology one can write down the fol-
lowing good tetrad in the Weitzenböck gauge in f(T,B,ϕ,X)
gravity

e0 = ξ1N(t)dt, (5.162a)

e1 =
a(t)cosφsinϑ√

1− kr2ξ2
dr+ ra(t)

×
(
−ξ3

√
krsinφ+ ξ2

√
1− kr2 cosϑcosφ

)
dϑ

− ra(t)sinϑ
(
ξ3
√
krcosϑcosφ+ ξ2

√
1− kr2 sinφ

)
dφ,

(5.162b)

e2 =
a(t)sinφsinϑ√

1− kr2
dr+ ra(t)

×
(
ξ3
√
krcosφ+ ξ2

√
1− kr2 cosϑsinφ

)
dϑ

+ ra(t)sinϑ
(
−ξ3

√
krcosϑsinφ+ ξ2

√
1− kr2 cosφ

)
dφ,

(5.162c)

e3 =
a(t)cosϑ√
1− kr2

dr− ξ2a(t)r
√

1− kr2 sinϑdϑ

+ ξ3
√
kr2a(t)sin2ϑdφ,

(5.162d)

where ξ1 =±1, ξ2 =±1 and ξ3 =±1. It should be noted that
this result is compatible with the one found in section 3.6.3
where it was shown that the same above good tetrad for non-
flat FLRW applies for any generic modified teleparallel theory.
Independently of the sign chosen for the tetrad, the scalars T
and B become

T=−6H2 +
6k
a2
, B=−18H2 − 6

Ḣ
N
, (5.163)

where we have introduced the Hubble parameter H(t) =
ȧ/(Ha). We can again perform a Lorentz transformation for
the tetrad-spin connection pair (5.162) and find that under the
Lorentz transformation,
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ΛA
B =


ξ−1
1 0 0 0
0 ξ−1

2 cosφsinϑ ξ−1
2 sinφsinϑ ξ−1

2 cosϑ
0 ξ2 cosϑcosφ

√
1− kr2 − ξ3

√
krsinφ ξ2 cosϑsinφ

√
1− kr2 + ξ3

√
krcosφ −ξ2

√
1− kr2 sinϑ

0 −ξ2 sinφ
√
1− kr2 − ξ3

√
krcosϑcosφ ξ2 cosφ

√
1− kr2 − ξ3

√
krcosϑsinφ ξ3

√
krsinϑ

 .
(5.164)

the tetrad (5.162) (independently of the sign) becomes
diagonal

e ′Aµ = diag

(
N(t),

a(t)√
1− kr2

,a(t)r,a(t)rsinϑ

)
, (5.165)

and the spin connection ω ′A
Bµ have the following non-zero

components,

ω ′1
2ϑ =−ω ′ 2

1ϑ =−
√

1− kr2,

ω ′1
3φ =−ω ′3

1φ =
√

1− kr2 sinϑ, (5.166a)

ω ′1
3ϑ =− ω ′3

1ϑ =
ξ3
ξ2

√
kr, ω ′2

± 1φ =−ω ′1
2φ = ξ2ξ3

√
krsinϑ,

(5.166b)

ω ′2
3r =−ω ′3

2r = ξ2ξ3

√
k√

1− kr2
, ω ′2

3φ =−ω ′3
2φ =−cosϑ.

(5.166c)

Note that we have used ξi = 1/ξi since ξi =±1. As we
have remarked before, the pair (5.162) with zero spin connec-
tion is identical to the pair (5.165) with non-zero spin con-
nection (5.166a), so both pairs are good tetrad-spin connec-
tion pair which solve the antisymmetric field equations for
f(T,B,ϕ,X) gravity while respecting the symmetries.

Let us now explore the second branch (ii) where C6 =
0. For this case, the first antisymmetric equation (5.159a)
will be zero if C4 = C ′

5. To further express the metric
in its diagonal form, we must take C1 = C3C ′

5/C2 with
C2 6= 0 (the case C2 = 0 is also more restrictive). Fur-
thermore, by taking the FLRW example, we need to set

C2(t,r) =
ξ3
√
kra(t)√

kr2 − 1
, C3(t,r) = ξ1

√
−krN(t),

C5 = ξ2ra(t), ξ1 =±, ξ2 =±1, ξ3 =±1. (5.167)

Thus, another good tetrad-spin connection for FLRW cosmo-
logy is given by

e0 =
ξ1ξ2
ξ3

N(t)
√

1− kr2 dt+ ξ3

√
−kra(t)√
1− kr2

dr, (5.168a)

e1 = ξ1N(t)
√
−krsinϑcosφdt+ ξ2a(t)sinϑcosφdr

+ ξ2ra(t)cosϑcosφdϑ− ξ2ra(t)sinϑsinφdφ,
(5.168b)

e2 = ξ1N(t)
√
−krsinϑsinφdt+ ξ2a(t)sinϑsinφdr

+ ξ2ra(t)cosϑsinφdϑ+ ξ2ra(t)sinϑcosφdφ,
(5.168c)

e3 = ξ1N(t)
√
−krcosϑdt+ ξ2a(t)cosϑdr− ξ2ra(t)sinϑdϑ,

(5.168d)

with a zero spin connection, which has the scalars given by

T=−6H2 + 12ξ1ξ2

√
−kH
a

+
6k
a2
,

B=−18H2 − 6Ḣ
N

+
12ξ1
ξ2

√
−kH
a

. (5.169)

This tetrad reproduces the standard non-flat FLRWmetric and
is real only for k=−1 or k= 0. For the k= 1 case, the scalars
become complex (as explained in 3.6.3.3). It is easy to see that
both tetrads (5.162) and (5.168) are equivalent for the flat case
k= 0. There is one important difference in this tetrad which
is that depending on the sign chosen of the tetrad (where
ξ1 =±1 and ξ2 =±1), one could have different T and B.
Finally, for the above tetrad in FLRW cosmology (5.168),
one can perform the following Lorentz transformation

ΛA
B =


ξ1ξ2
ξ3

√
1− kr2 −ξ1

√
−krsinϑcosφ −ξ1

√
−krsinϑsinφ −ξ1

√
−krcosϑ

−ξ3
√
−kr ξ2

√
1− kr2 sinϑcosφ ξ2

√
1− kr2 sinϑsinφ ξ2

√
1− kr2 cosϑ

0 ξ2 cosϑcosφ ξ2 cosϑsinφ −ξ2 sinϑ
0 −ξ2 sinφ ξ2 cosφ 0

 , (5.170)
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to get the same diagonal FLRW tetrad (5.165) with the follow-
ing non-zero components for the spin connection

ω ′0
± 1r = ω ′1

± 0r = ξ1ξ2

√
−k√

1− kr2
, ω ′0

± 2ϑ = ω ′2
± 0ϑ =

ξ1
ξ2

√
−kr,

ω ′0
± 3φ = ω ′3

± 0φ =
ξ1
ξ2

√
−krsinϑ, (5.171a)

ω ′1
± 2ϑ =−ω ′2

± 1ϑ =−
√

1− kr2,

ω ′1
± 3φ =−ω ′3

± 1φ =−
√

1− kr2 sinϑ,

ω ′2
± 3φ =−ω ′3

± 2φ =−cosϑ.

(5.171b)

Therefore, the above spin connection with the diagonal tet-
rad components (5.165) are also a good tetrad-spin connection
pair. Let us remark here that the scalars T and B (or any other
constructed from the torsion tensor) will have the same value
after making the Lorentz transformation since both the spin
connection and the tetrad compensates the transformation.

It is also important to mention that as we have pointed out
before, the good tetrad-spin connection pair is field equation
dependent. However, for the FLRW cosmological pair found
in this section, it has been proved in [74] that both (5.162)
and (5.168) with zero spin connection are good tetrad-spin
connection pairs valid for any modified teleparallel theory of
gravity. This is not the same for the static spherically symmet-
ric good tetrad-spin connection pair (5.147) which may not be
a good pair for some specific theories. Depending on the tele-
parallel theory, one must check if this pair is good or not.

5.12.3. Good tetrad-spin connection pair: axial symmetry.
The situation is very complicated in axial symmetry since it is
hard to find a good tetrad-spin connection pair in modified TG
due to the impact of the time dependence. This pair is really
essential in performing calculations in axial symmetry in mod-
ified TG. There are some works in TEGR such as in [361], but
they are trivial since in this case any choice would be a good
tetrad-spin connection pair (all would be identical to GR in the

end). As was discussed in section 3.6.1, there are two different
branches solving the symmetry condition which respects axial
symmetry, which we labelled as the regular branch and the
solely axially symmetric branch. In [362], the authors studied
the Kerr case in f (T) gravity and they found a good tetrad-spin
connection pair such that for this spacetime T = 0. This tet-
rad choice is also consistent with the fact that the Ricci scalar
is

◦
R= 0 for the Kerr geometry, and then solves the antisym-

metric and the symmetric field equations in f (T) gravity. This
tetrad is part of the solely axially symmetric branch, so that,
it cannot respect spherical symmetry in the teleparallel point
of view in any limit. This means that the metric can become
spherically symmetric (for the Schwarzschild limit) but the
teleparallel connection cannot become spherically symmet-
ric, meaning that LXζ

Γσµν 6= 0. The failure of this condition
for this tetrad is manifest in the nonvanishing component of
the torsion tensor Tφϑφ = cotϑ. Moreover, the tetrad found in
[362] is time-dependent whereas the Kerr geometry is known
to be static. Another point to remark about this work is that
T = 0 but the three scalars Tvec,Taxi or Tten are not vanishing.
Then, only in f(T,B) gravity, this tetrad will solve the anti-
symmetric field equations and this occurs in a trivial way since
T= B= 0 generates a theory which is equivalent to GR plus
a cosmological constant.

The first non-trivial known good tetrad-spin connection
pair for a more general axial symmetric case was derived in
[363] for f(T,ϕ) gravity, but it can be proved that this pair
is also a good pair for many TG theories (similarly as the
pair found before in spherical symmetry). This solution does
not contain any Plebański–Demiański spacetime as special
cases (except from Schwarzschild). Later, in [364] the authors
analyzed in detail the possibility of finding good tetrad-spin
connection pairs in axial symmetry for a very general theory
known as f(T,B,ϕ,X) gravity which includes the boundary
term and a scalar field with its kinetic term. They focused
mainly in the regular branch in order to obtain a smooth limit
from axial symmetry to spherical symmetry. First, they started
with the tetrad (3.126) in the Weitzenböck gauge satisfying
axial symmetry that can be also written in the following form

eAµ =


H00 H01 −H02 H03

H10 cosφ−H20 sinφ H11 cosφ−H21 sinφ H22 sinφ+H12 cosφ H13 cosφ−H23 sinφ
H10 sinφ+H20 cosφ H11 sinφ+H21 cosφ H12 sinφ−H22 cosφ H13 sinφ+H23 cosφ

H30 H31 −H32 H33

 , (5.172)

where CA
µ where replaced by Hij and they denote 16 differ-

ent functions which depend only on t,r,ϑ. The metric repro-
duced by the above tetrad contains all the possible cross terms
(dt, dr, dt, dφ, dt, dϑ, dr, dφ, dr, dϑ, dϑ, dφ). Then, there is
some gauge freedom related to the metric. For example, one
can choose a gauge such that only the dtdφ cross term differs
from zero. This choice is the standard one chosen for the Kerr

metric in Boyer-Lindquist coordinates. The authors in [364]
studied the stationary case and set

H01 =H02 =H20 =H33 =H30 =H10 =H21 =H22 =H13 = 0,

H31 =
H11H12

H32
, (5.173)
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giving the following metric

ds2 = H2
00dt

2 −H2
11

(
H2

12

H2
32

+ 1

)
dr2 − (H2

12 +H2
32)dϑ

2

− (H2
23 −H2

03)dφ
2 + 2H00H03dtdφ. (5.174)

This choice was inspired by the spherically symmetric good
tetrad in the Weitzenböck gauge (5.147) since the the tet-
rad (5.172) with (5.173) gives us

eAµ =


H00 0 0 H03

0 H11 cosφ H12 cosφ −H23 sinφ
0 H11 sinφ H12 sinφ H23 cosφ
0 H11H12/H32 −H32 0

 ,
(5.175)

which reproduces (5.147) in the limit

H00 =
√
A(r), H11 =

√
B(r)sinϑ, H12 =

√
C(r)cosϑ,

(5.176a)

H23 = H32 =
√
C(r)sinϑ, H03 = 0. (5.176b)

If we assume stationarity and replace (5.175) in the
f(T,B,ϕ,X) field equations, one notices that there is only one
nonvanishing antisymmetric equation, that reads

W[rϑ] =
1
2

[
( fT,ϑ+ fB,ϑ)Qϑ+( fT,r+ fB,r)Qr

]
= 0, (5.177)

where commas denote differentiation and

Qϑ =
H00,r

H00
− H11

H23
+
H23,r

H23
, Qr =

H12 −H23,ϑ

H23
− H00,ϑ

H00
.

(5.178)

The tetrad (5.175) contains one additional free function
compared to the metric (5.174). This extra free function
can be found by solving the remaining antisymmetric field
equation (5.177). Thus, in order to find a good tetrad in the
Weitzenböck gauge, one would need to solve equation (5.177)
for one of the six functionsHij. However, doing this in general
is a very complicated task since T and B become very cumber-
some in axial symmetry. In order to tackle this problem, the
authors in [364] studied four different particular cases where
they were able to find good tetrads. The most important good
tetrads in the Weitzenböck gauge found are:

(a) Case (Qr = Qϑ = 0): A good tetrad that does not contain
any Plebański–Demiański spacetime which is valid for
any form of f(T,B,ϕ,X), and also generalizes the tetrad
found in [363], which reads

eAµ =


H00 0 0 H03

0
(
H00,rH23

H00
+H23,r

)
cosφ

(
H00,ϑH23

H00
+H23,ϑ

)
cosφ −H23 sinφ

0
(
H00,rH23

H00
+H23,r

)
sinφ

(
H00,ϑH23

H00
+H23,ϑ

)
sinφ H23 cosφ

0 H−1
32

(
H00,ϑH23

H00
+H23,ϑ

)(
H00,rH23

H00
+H23,r

)
−H32 0

 . (5.179)

(b) Case (Qr = 0 and fT,ϑ + fB,ϑ = 0): A good tetrad behav-
ing as a family of Taub-NUT-like spacetimes which needs
ϕ= ϕ(r)

eAµ =


√
A(r) 0 0

√
A(r)(C2 +C1 cosϑ)

0
√
B(r)sinϑcosφ

√
C(r)cosϑcosφ −

√
C(r)sinϑsinφ

0
√
B(r)sinϑsinφ

√
C(r)cosϑsinφ

√
C(r)sinϑcosφ

0
√
B(r)cosϑ −

√
C(r)sinϑ 0

 , (5.180)

where C1 and C2 are constants. The corresponding metric
is then

ds2 =A(r)dt2 −B(r)dr2 −C(r)dϑ2

−
[
C(r)sin2ϑ−A(r)(C1 cosϑ+C2)

2
]
dφ2

+ 2A(r)(C1 cosϑ+C2)dt, (5.181)

so that, the Taub-NUT spacetime is recovered by setting

A(r) = 1/B(r) = (r− r+)(r− r−)
r2 + b2

, C(r) = r2 + b2,

D(r,ϑ) = 2bcosϑ, (5.182)

where r± =M±
√
M2 + b2 and b is the Taub-NUT para-

meter and M the mass. It should be noted that when C2 =
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C1 = 0, this tetrad exactly matches the spherically sym-
metric good tetrad (5.147).

(c) Case (Qϑ = 0 and fT,r + fB,r = 0): A good tetrad hav-
ing a metric which is always axially symmetric (unless a
trivial case is considered) needing that ϕ= ϕ(ϑ)

eAµ =


B(ϑ) 0 0 B(ϑ)
0 D1(ϑ)D ′

2(r)cosφ 0 −D1(ϑ)D2(r)sinφ
0 D1(ϑ)D ′

2(r)sinφ 0 D1(ϑ)D2(r)cosφ
0 0 −C(ϑ) 0

 . (5.183)

(d) Case ((fT,r + fB,r)Qr ̸= 0 and (fT,ϑ + fB,ϑ)Qϑ ̸= 0): A
good tetrad in f(T,B) gravity for a slowly rotating Kerr space-
time which is given by the tetrad (5.175) with

H00 =

√
1− 2Mr

Σ
, H11 =

H32√
∆
, H12 =

√
Σ−H2

32, (5.184a)

H23 =

√√√√sin2ϑ

(
2a2Mrsin2ϑ

Σ
+ a2 + r2

)
+H2

03, (5.184b)

H03 =− 2aMrsin2ϑ√
Σ(Σ− 2Mr)

, (5.184c)

H32(r,ϑ) = rsinϑ+ a2A(r,ϑ)+O(a4), (5.184d)

A(r,ϑ) =
sinϑcos2ϑ

(
4µ5 + 6µ2r3/2 + r5/2 + 4µr2 +µ4√r− 16µ3r

)
2µ2r3/2 (−µ2 − 4µ

√
r+ r)

, (5.184e)

where Σ= r2 + a2 cos2ϑ,∆= r2 − 2Mr+ a2, µ=√
r− 2M and a is the angular momentum (per unit

mass) which is assumed to be small (a� 1) . Note that
H00,H11,H23 and H03 need to be expanded up to second
order in a.

All the above tetrads were computed in the Weitzenböck
gauge but one can also perform a local Lorentz transforma-
tion and then one could have a non-zero spin connection. The
three first cases solve all the antisymmetric field equations
for f(T,B,ϕ,X) gravity whereas the last case is only valid for
f(T,B) gravity. These results can be used to further analyze
the symmetric field equations and explore axial symmetry in
modified TG. For example, as was done in [354] for Schwar-
zschild, the slowly rotating Kerr good tetrad can be used to
find perturbative teleparallel modifications of slowly rotating
axially symmetric solutions around Kerr.

5.12.4. Cylindrical and other symmetries. There are few
works in TG dealing with other symmetries such as cylindrical
or planar ones. There are no works dealing with the most

general form of the tetrad respecting these symmetries. In
[365], the authors found that for cylindrical symmetries (sta-
tionary case), it is convenient to work withWeyl-type coordin-
ates xµ = (t,r,φ,z) such that the metric can be written as

ds2 = e2u(r)dt2 − e2(k(r)−u(r))dr2 −w(r)2e−2u(r)dφ2

− e2(k(r)−u(r))dz2, (5.185)

where u(r),k(r) and w(r) are arbitrary functions depending
only on the radial coordinate. It can be shown that a good
tetrad-spin connection pair for f(T,B) gravity is the one in
which the spin connection vanishes and has the following diag-
onal tetrad

eAµ = diag
(
eu(r),ek(r)−u(r),w(r)e−u(r),ek(r)−u(r)

)
, (5.186)

which gives the following scalar-torsion and boundary term

T=
e2u−2k

w

(
2k ′w ′ − 2wu ′2) , (5.187a)

B=
2e2u−2k

w
(w(k ′ ′ − u ′ ′)+w ′ (k ′ − u ′)+w ′ ′) . (5.187b)

81



Rep. Prog. Phys. 86 (2023) 026901 Review

Here primes denotes derivatives wrt r. It can be shown that
the tetrad (5.186) satisfied the antisymmetric equations for
f(T,B) gravity and also for other more general theories. For
the GR case in vacuum (f=−T), one finds the following solu-
tions

w(r) = c0 + c1r, k(r) =
c2
c1

log(c0 + c1r),

u(r) =±
√
c2
c1

log(c0 + c1r), (5.188)

which after making some coordinate transformations, it can
be recast as the well known Levi-Civita cylindrical solu-
tion [366]. In [365], the authors found perturbed solutions for
torsion squared gravity behaving similarly as the abovemetric.
In [367], the authors used the Noether’s symmetry approach to
find solutions for f (T) gravity but they are just written impli-
citly and not in an exact form for the metric coefficients. In
[368, 369], the authors studied the collapse for cylindrical stars
but they unfortunately, used a dynamical cylindrical tetrad that
is not compatible with the choice of setting the spin connec-
tion to zero, and then, the antisymmetric equations presented
there are not satisfied.

Othermore exotic symmetries such as planar ones have also
been explored in the literature. In [370], these geometries was
studied in f (T) gravity. It can be shown that for the coordin-
ates xµ = (t,r,x,y), a diagonal tetrad of the form eAµ =
diag(A(r),B(r),C(r),C(r)) which reproduces a planar met-
ric ds2 =A(r)2dt2 −B(r)2dr2 −C(r)2(dx2 + dy2), is com-
patible with the choice of a zero spin connection, leading to the
conclusion that [370] correctly chose the tetrad ensuring that
the antisymmetric field equations in f (T) are satisfied. In this
paper, in the end, they only studied the case of GR since they
always chose either T = 0 or T= const. This is the reason why
they found the same exact solutions known in GR for these
geometries which are the Møller, Kattler-Wittaker and planar
de-Sitter solutions.

6. Cosmology in TG

The relatively recent observational discovery of the accelerat-
ing expansion of the Universe [19, 20] has led to an intense
few decades of theoretical and observational work to determ-
ine the origin and properties of the so-called dark energy (DE).
In terms of numerical analysis, the most consistent model that
fulfil these requirements is ΛCDMwhere CDM acts as a grav-
itational well in galaxies while a cosmological constant Λ
dominates on cosmological scales, and GR acts at all scales as
the fundamental theory of gravitation. However, theoretically
this has led to numerous problems [23] which may ultimately
be addressed by revisiting this approach to gravity. By invest-
igating possible cosmology beyond the concordance model,
we may design a better formulation of gravitation that requires
less physics beyond the standard model of particle physics in
the dark matter sector, as well as having a more nature emer-
gence of late-time acceleration in the Universe, and possibly
resolving some issues of the inflationary epoch and its origins.

Cosmology is dominated by the two assumptions of homo-
geneity and isotropy which are supported to a high degree by
unprecedented observational evidence [371, 372] resulting in
the widely accepted cosmological principle [373]. This has led
to the well known FLRW metric which is a universal solution
in cosmology. Considering its form in cosmic time t gives it
the four-dimensional representation

ds2 = N(t)2dt2 − a(t)2
[

dr2

1− kr2
+ r2(dϑ2 + sin2ϑdφ2)

]
,

(6.1)

where N(t) and a(t) represent the lapse function and scale
factor respectively. In many cases, the lapse function is found
to not be dynamical, to determine this feature the metric 6.1
has to be substituted into the dynamical equations to determ-
ine is the lapse function plays a role in the equations of motion
of the theory. In those cases where the lapse function is found
to be nondynamical, it can be absorbed into the definition of
cosmic time. Another important property to point out is that
this is being defined in spherical polar coordinates in which
the Lorentz frame is not represented by the Minkowski metric
which directly leads to a nonvanishing appearance of the spin
connection components, as explained in section 5.12. Finally,
the curvature parameter k corresponds to open (k=−1), flat
(k= 0), or closed (k=+1) cosmologies.

As we can notice from equation (6.1), the scale factor a(t)
is a function of time t, where a(t0) = a0 at the present time t0.
It is standard to use the redshift z≡ (a0/a)− 1 as a proxy for
the age or scale factor. The redshift can bemeasured for distant
sources; it is the fractional amount by which the wavelength of
a photon has been stretched by the expansion between the time
the photon is emitted and the time it is received. The expan-
sion rate H≡ ȧ/(Na) is a function of time, with the value H0

as the Hubble–Lemâıtre constant and where the dot denotes a
derivative wrt t. The cosmological deceleration parameter is
then q≡−(ä/a)/H2 = (1+ z)Ḣ/H− 1, where dots refer to
derivatives with cosmic time.

Once this is considered, a GR equation of motion (Fried-
mann and acceleration equations) for a(t) for a flat Universe
filled with fluids i (e.g. nonrelativistic matter, radiation, and
dark energy) of energy densities ρi can be written as

H2 =

(
ȧ
a

)2

=
8πG
3
ρ, (6.2a)

ä
a
=−4πG(ρ+ 3p). (6.2b)

In these equations ρ and p are the total density and pressure
and dots represent differentiationwrt cosmic time. Hence, they
can be written as sums of the contributions of the individual
components as ρ≡

∑
i ρi and p≡

∑
i pi. If the fluids have

pressures pi, then the change d(ρa3) in the total energy (ρ=∑
i ρi) per comoving volume is equal to the work −pd(a3),

where p=
∑

i pi, done by the fluid. If we define equation-
of-state parameters wi ≡ pi/ρi (e.g. wm = 0 for matter and
wr = 1/3 for radiation), then the second form of the Friedmann
equation can be written as q0 = (1+ 3wTot)/2, where wTot ≡
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∑
i pi/ρi is the total equation-of-state parameter. Thus, if GR is

correct, the observations require that the Universe has wTot <
−1/3. Thus, some DE, a negative-pressure fluid, is postulated
to account for cosmic acceleration. Another way to represent
this, and other, contributions is through the density parameter
which we define in terms of the critical density within the
ΛCDM Friedmann equations, namely ρc = 3H2/8πG (where
we retain SI units for convenience).We can then define density
parameters for each contribution ρi as Ωi := ρi/ρc.

An analogous description can be prescribed for certain TG
theories of gravity, those which FLRW equations can be recast
in a GR-like format, such as in f (T) and f(T,B) gravity. When
this formulation is permitted, the gravitational source acts as
an effective fluid (with energy density ρeff and pressure peff)
with EoS weff. Consequently, the Universe’s acceleration is
achieved when the total EoS wTot =

p+peff
ρ+ρeff

<−1/3.
Moreover, the overwhelming historical evidence has poin-

ted to a flat Universe [374–377] with further support from
inflationary theories [14, 15]. However, some recent observa-
tions have prompted a reexamination of the closed Universe
model [372, 378–380], which provides a substantial improve-
ment of the fit of early-time data, but is in disagreement with
external additional data sets as acoustic oscillations seen in
cosmic microwave background anisotropy data.

Saying that, a non-flat cosmology would require a radical
overhaul of our standard approaches to cosmology and the
interpretation of data and so should be taken with caution.
In the context of TG, the vast majority of works have been
based on a flat cosmological background while some works
have investigated the possibility of a non-flat cosmology, as
will be explored in this section.

Considering again the general metric in equation (6.1)
which describes a Universe that observes an isotropic and
homogeneous cosmology. The tetrads feature a branching
effect in which the positive curvature parameter (k=+1) can
be described by the good tetrad in equation (5.162) while the
negative curvature parameter (k=−1) branch are described
by equation (5.168) (otherwise one would have a complex tet-
rad). For the case of a flat FLRW cosmology, both good tet-
rads given in equations (5.162) and (5.168) coincide with each
other. It is important to say again that this is not the only choice
that describes the FLRW background but it is the only once in
which the spin connection is allowed to vanish while the tele-
parallel connection respects the cosmological symmetries.

Another important tetrad to highlight is used particularly
for flat cosmologies (k= 0), where the metric can be written
as

ds2 = N(t)2dt2 − a2(t)
(
dx2 + dy2 + dz2

)
, (6.3)

and the diagonal tetrad results in the tetrad

eAµ = diag(N(t), a(t), a(t), a(t)) , (6.4)

which turns out to be in the Weitzenböck gauge for the exten-
sions to TEGR explored here. An important remark here is that
the above tetrad (with vanishing spin connection) is the only
one that has the property that both the tetrad and the teleparal-
lel connection obey cosmological symmetries for flat FLRW.

One can also relax the condition that the teleparallel connec-
tion enjoys the symmetries of cosmology, but then, the corres-
ponding cosmological equations would not respect the sym-
metries of cosmology.

For the diagonal tetrad (6.4) with a vanishing spin con-
nection, one finds that by using the definitions of the torsion
scalar (1.6d) and the boundary term (4.156), they become

T=−6H2, B=−18H2 − 6Ḣ
N
. (6.5)

Here, we again used that H= ȧ/(aN). One naturally repro-
duces the standard Ricci scalar in this scenario

◦
R=−T+B=−12H2 − 6

Ḣ
N
. (6.6)

In the following sections, the different manifestations of
this cosmological setup are explored in the dynamics of the
various extensions beyond ΛCDM, which are investigated
together with their cosmological evolution, and properties.

In this section, we explore the predominant cosmological
constructions in TG. Given the enormity of the task, we first
describe the background on the different tools that have been
employed to explore the background cosmology of the dif-
ferent TG theories, and then delve into the specific theor-
ies themselves. In the supplementary annexes (supplement-
ary 1) we provide some basic cosmological methods that will
be used in the following sections such as the reconstruction
method, the Noether symmetry approach and dynamical sys-
tems in cosmology (see supplementary annexes (supplement-
ary 1)). Additionally, some definitions regarding bouncing
solutions are also explained in the supplementary annexes
(supplementary 1). Those definitions and methods will be
applied for several TG theories in the next sections for the
case of FLRW cosmology. A more advanced topic regarding
anisotropic cosmology is also presented in the supplementary
annexes (supplementary 1) as a complementary study for the
interested reader.

6.1. f(T) cosmology

In this section we will analyze f (T) cosmology in flat
FLRW using the techniques/methods explained in the previ-
ous sections. If we use the diagonal tetrad (6.4) in Cartesian
coordinates and replace it in the f (T) field equations (5.53),
we arrive at the modified FLRW equations described by

−6H2fT−
1
2
f= κ2ρ, (6.7a)

−2fT(3H
2 + Ḣ)− 2HḟT−

1
2
f=−κ2p, (6.7b)

where dots are derivatives wrt the time, so that ḟT = fTTṪ. It is
important to mention that the most general teleparallel theory
constructed from of up to quadratic contractions of torsion,
f(Taxi,Tten,Tvec,P1,P2) gravity (see section 5.5), is dynamic-
ally equivalent to f (T) gravity in flat FLRW since Tten = Taxi =
P1 = P2 = 0 and Tvec = 9H2, meaning that only one scalar is
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nonvanishing and due to (5.4), the theory can be always rep-
resented as a f (T) gravity theory. This conclusion is only valid
for flat FLRW at the background level. These equations will
be analyzed in detail in the following sections.

6.1.1. Reconstruction method. In the trivial extension of
f (T) gravity, the reconstruction procedure has been explored
extensively in the literature. One common approach involves
describing the matter sector as a manifestation of torsion usu-
ally by taking the ansatz f(T) =−T+F(T). The latter’s F(T)
role acts as the source for the matter sector as can be seen from
equation (6.7a)

3H2 = κ2ρ+
F(T)
2

−TFT, (6.8)

where we recall that T=−6H2. A torsional fluid ρeff can
therefore be defined which can be used to reconstruct the F(T)
function [381]

κ2ρeff =
F(T)
2

−TFT =⇒ F(T) = κ2
√
−T
ˆ

ρeff

(−T) 3
2

dT.

(6.9)

This approach has been applied for various fluids including
Ricci DE, HDE and (m, n) HDE, Tsallis HDE including its
power-law and logarithmic corrected variants, PlDE and (m, n)
PlDE [382–388]. However, in the aforementioned works, a
further assumption on the cosmological expansion behavior
leads to a disagreement with the Friedmann equations. Mean-
while, in [389], the reconstruction procedure can be applied in
the absence of fluids ρ= p= 0 through an effective EoS

weff =−1− 16TḢfTT
f

, (6.10)

provided the evolution of H(t) is set. Meanwhile, in [390], a
correspondence between HDE and f (T) gravity is produced
via a suitable identification of the IR cut-off length.

An alternative proposal is to make use of the matter com-
ponent in order to reconstruct the Lagrangian as opposed to an
a priori desired form for ρeff [391]. This leads to an alternative
relation

f(T) =−κ2
√
−T
ˆ

ρm

(−T) 3
2

dT. (6.11)

For the ΛCDM cosmology in the presence of dust matter, the
Lagrangian reduces to the standard ΛCDM Lagrangian [392,
393]. However, it can be generalized for arbitrary perfect fluids
with EoS w to give [394]

f(T) = T0Ωw0

(
− ΩΛ

Ωm0

)1+w [
2F1

(
−1

2
,−w; 1

2
;

T
T0ΩΛ

)
+

T
T0ΩΛ

2F1

(
1
2
,−w; 3

2
;

T
T0ΩΛ

)]
, (6.12)

where ΩΛ = 1−Ωm0, T0 represents the torsion scalar evalu-
ated at current times, and

2F1(a,b;c;z)≡
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)
Γ(c+ k)k!

zk (6.13)

represents Gauss’s hypergeometric function which is con-
vergent for |z|< 1 [395]. Naturally, the standard result is
recovered for w= 0. If the fluid is instead assumed to be com-
posed of a spinor field [391], the Lagrangian becomes a res-
caled version ΛCDM, i.e. TEGR with the addition of a con-
stant. In the case of HDE and QCD DE [396, 397], the recon-
structed solution does not satisfy the Friedmann equations and
hence are not reported.

An alternative proposal is to reconstruct through a specific-
ation of the deceleration parameter q(z). During periods where
the matter content is mostly composed of baryonic matter, the
reconstructed function is obtained from the relation [393]

f(z) =−6Ωm0H0
2e
´ z
0

1+q(̄z)
1+z̄ d̄z

ˆ z

0

(1+ z̄)2(1+ q(z̄))

e
´ z
0

1+q(̄z)
1+z̄ d̄z

dz̄.

(6.14)

This is derived from equation (6.11) by expressing it in terms
of redshift z and the deceleration parameter q(z) via the rela-

tions H(z) = H0e
´ z
0

1+q(̄z)
1+z̄ d̄z and T=−6H2. In particular, the

parametrization q(z) = q0 + q1X(z) [393] for constants q0,q1
and for two functional choices of X(z) which determines the
cosmological evolution was investigated.

The first two models X(z) = z(1+z)
1+z 2 [398] and X(z) =

ln(Ñ+z)
1+z − ln Ñ, Ñ> 1 [399] do not yield a viable cosmology.

On the other hand, the final model explores the effective fluid
EoS weff =− 1

1+α(1+z)n for some constants α,n [400], or equi-
valently in terms of q(z),

q(z) =−1+
3α(1+ z)n

2 [1+α(1+ z)n]
. (6.15)

The model describes an early matter domination and late de
Sitter phases. In particular, n= 3 yields the standard ΛCDM
cosmology, hence n is expected to deviate slightly from this
value. In this case, the reconstructed function is

f(z) =−9Ωm0H0
2 [1+α(1+ z)n]

3
2n

ˆ z

0

(1+ z̄)n+2

[1+α(1+ z̄)n]1+
3
2n

dz̄.

(6.16)

Here,Ωm ⩽ 1 providedα > αmin =
Ωm0

n
3

1−Ωm0
n
3
. Forα slightly lar-

ger than this minimum value leads to the following torsional
fluid behaviors:

(a) n≲ 3: Quintessence with weff ≳−1 at present;
(b) n≳ 3: Quintom (quintessence → phantom transition at

z∼ 4) with weff ≲−1 at present;
(c) n= 3: Quintessence with weff ∼−1 at present.
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Figure 12. The torsional fluid EoS behavior for the model
weff =− 1

1+α(1+z)n for different choices of n as presented in [393].

Here, Ωm0 = 0.297 and δα= 10−3. Reprinted figure with
permission from [393], Copyright (2019) by the American Physical
Society.

For all cases, weff → 0 at early-times and asymptotically
approaches DE in the future (see figure 12). Overall, this pro-
duces a viable cosmological model.

A similar reconstruction procedure uses the combination of
the equations (6.7a) and (6.7b) [394, 401],

f− 2TfT+
4Ḣ

1+w
[fT+ 2TfTT] = 0, (6.17)

and the specification of the perfect fluid’s EoS. Due to the pres-
ence of the Ḣ terms, solutions are obtained only in special lim-
ited scenarios such as specification of the evolutionary beha-
vior and setting w to take constant values. For instance, for
a power law cosmology a(t)∝ tn and w= 0, f(T)∝ (−T) 3n

2

which, however, does not host GR as a limit unless n= 2
3 .

In [401], the evolutionary behavior is specified through the
jerk parameter j(t)≡ ...

a/(aH3) where three models were con-
sidered (see the supplementary annexes (supplementary 1)):

(a) j= 1: A de Sitter accelerating behavior can be produced.
At early-times, the torsional fluid varies in nature (−1<
weff < 1) whereas it always approaches phantom behavior
at late-times.

(b) j= s 2

H 2 : late-time acceleration whenm� n provided s> 0.

A best-fit value µ∼ 0.39 where µ := s(1−p) 2

s(1−p) 2+4mn was
obtained using SNIa Union 2.1 luminosity distance data
[402]. Here, the nature of the matter fluid influences the
behavior of weff:
1. w= 0: weff > 0 at all times with weff → 0 at late-times;
2. w=± 1

2 : weff →± 1
2 at late-times;

3. w= 1: quintom behavior; weff ∼ 1 at early-times,
crosses the phantom-divide line and approaches weff →
−1 at late-times.

(c) j= 1− ϵf(a) with slowly varying function f(a) = 9
8ϵ +

ϵ0
a ,

ϵ,ϵ0 � 1: A decelerating Universe a(t)∼ t
4
5 results and

thus not explored in further detail.

As a final remark, for all the aforementioned jerk parameter
considerations, the models are asymptotically stable against
homogeneous perturbations.

The reconstruction procedure can also be applied to gen-
erate the spatially flat FLRW cosmology through non-flat
FLRW spacetimes [403]. Accounting for the spatial curvature
k, the Friedmann equations are obtained following the first
branch solution described in section 3.6.3.2 with tetrad
equation (3.154), leading to

κ2ρ=− f
2
− 6H2fT, (6.18a)

−κ2p=−2fT(3H
2 + Ḣ)+

2k
a2
fT− 2HḟT−

f
2
, (6.18b)

with T=−6H2 + 6k
a 2 as given in equation (3.159). In the

avenue that the second branch solution (section 3.6.3.3) is
used, the form of T changes to equation (3.167) which is com-
plex for k> 0. In the following works, the former descrip-
tion has been employed. Following [404, 405], an almost
flat Universe is constructed by eliminating the explicit spatial
curvature dependence in equation (6.18b) which leads to the
reconstructed f (T) function to be

f(t)∼
ˆ t

exp

×

[ˆ t̃ k2 +(3äa− 5ȧ2)k+ 2ä2a2 + 4ȧ4 − 7ȧ2äa+ ȧ
...
aa2

ȧa(äa− ȧ2 + k)
dt ′

]
d̃t.

(6.19)

Here, k reappears by virtue of the torsion scalar. The depend-
ence of k can be further suppressed by setting 3äa− 5ȧ2 = 0,

i.e. a(t)∝
[
1− 2H0

3 (t− t0)
]− 3

2 with t0 representing the cut-
off time and H0 := H(t0). Thus, the evolutionary behavior is
independent of k and therefore flat-like. In addition, it has
been shown to be consistent with early inflation. The associ-
ated reconstructed function for this flat-like scenario takes on
the series expansion f(T) =

∑∞
n=0αn(−T)−

n
2 for some coeffi-

cients αn.
Use of spatial curvature also appears in [406, 407] to gener-

ate an accelerating de Sitter cosmology. In the limit when the
matter content behavior approaches that of DE yields16 [406]

f(T)∼ exp

[
T
12

a2(äa− ȧ2 − k)
ȧ2(äa− ȧ2 + k)

]
, (6.20)

16 The reconstructed function obtained in [406] is not a solution. Substituting
equations (3.5) and (3.6) in (3.21) does not lead to equation (3.22); instead,
the equation identically reduces to zero.
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provided that a
2(äa−ȧ 2−k)
ȧ 2(äa−ȧ 2+k) is constant. If a vacuum is assumed,

f (T) then takes on the form f(T)∝ exp
(
− T+6H0

2

12H0
2

)
[407].

Contrary to the standard spatially flat cases, f (T) no longer
reduces to a cosmological constant, instead it becomes dynam-
ical which asymptotically approaches the latter behavior.

6.1.2. Noether’s symmetry approach. In the first trivial
extension of teleparallelism, f (T) gravity, Noether symmetry
has been studied in numerous works. Generally, the configura-
tion space is taken to beQ= {t,a,T} from which the Noether
condition is then solved (see the supplementary annexes (sup-
plementary 1)). Due to the simplicity of the Lagrangian, irre-
spective of whether the time symmetry generator is included
in the analysis, the Noether condition imposes the Lagrangian
constraint f(T)∝ (−T)n for some constant n [408–416]. This
generates a power-law expansion behavior, a(t)∼ t

3
2n , and

henceforth includes a number of cosmological solutions. How-
ever, according to [410], n can only take a singular value of
n= 3

2 .
This restriction arises once the Euler–Lagrange field

equations are solved in conjuctionwith the resulting conserved
charge arising from the Noether symmetry. Together, they
restrict n= 3

2 leading to a coasting cosmology. An analogous

restriction appears in f(
◦
R) theories where the model reduces to

f(
◦
R)∝

◦
R

3
2 [417, 418], a result which also holds true in the Pal-

atini formulation [419]. Despite this similarity, the resulting
cosmological behaviors are distinctively different from one
another due to the fundamental differences between the two
theories.

In [413], the Noether symmetry approach was further
extended to include velocities in the Noether symmetry vec-
tor. In the absence of these velocities, the model reduces
to the f(T)∝ (−T)n result. Otherwise, further solutions are
obtained, including f(T) =±

√
2c1T+ 2c2 for integration con-

stants c1,2. This leads to an entirely different cosmological
behavior where it now describes a cosmological turnaround
and acceleration/deceleration phases during CDM domina-
tion. Furthermore, the total EoS parameter does not cross the
phantom-divide line and is always non-phantom. Neverthe-
less, these models do not have a TEGR background, making
them less popular.

Meanwhile, in [414], the Noether condition is not gener-
ally solved but only after specific f (T) ansatz are considered.
Provided a symmetry exists for the considered ansatz, the
model is then constrained against SN+H(z)+BAO data. In
summary, only the f(T) = αT+βTn ansatz leads to mean-
ingful results as it can match with observations with n=
−1 being the best-fitting parameter. The f(T)∝ (−T)n,enT
or f(T)∼

∑
n(−T)n ansatz are insufficient to match with

observations.
Finally, [415, 416] investigate the correspondence with the

Wheeler–de Witt equation where the resulting classical Uni-
verse trajectories lead back to the power-law scale factor solu-
tion a∼ t

3
2n .

6.1.3. Dynamical system approach. The dynamical systems
approach has been extensively investigated in f (T) gravity
[420–426]. Given the simple nature of the field equations
FLRW equations (6.7a) and (6.7b) as they can be solely
expressed in terms of the Hubble parameter and its time deriv-
ative, allows for the straightforward construction of the one
dimensional autonomous system

Ḣ=−1+w
4

f− 2TfT
fT+ 2TfTT

= 3(1+w)
f(H)−HfH

fHH

=−3
2
(1+wTot)H

2 ≡F(H), (6.21)

where w represents the perfect fluid EoS and wTot is the total
EoS, and where fH and fHH represent first and second deriv-
atives of f (H) wrt H. Clearly, the critical points always cor-
respond to Minkowski or de Sitter points which stability is
identified by FH. This approach has been considered in [420,
423–426] for various choices of the f (T) Lagrangian.

In [420, 426], the model f(T) = αT+β
√
−T+ γ, where α,

β and γ are constants, was considered. However, this is simply
rescaled TEGR with a cosmological constant hence not lead-
ing to other new dynamics beyond the ΛCDM framework.

Meanwhile, [424] considers a dust matter fluid for different
f (T) model ansatz:

(a) −T+α(−T)b: Semi-stable Minkowski and accelerating
(decelerating) stable (unstable) de Sitter critical points. For
b� 1, the sequence Big Bang singularity → matter dom-
ination→ de Sitter acceleration is recovered. Similar con-
clusions are drawn in [425];

(b) −T+αT0(1− e−p
√
T/T0): Semi-stable Minkowski and

stable or unstable de Sitter critical points. A cosmological
turnaround can be realized while a correct matter era is
recovered for p> 0;

(c) −T+αT0
(
1− e−βT/T0

)
: Similar critical points to model

(ii). Cosmological evolution changes depending on p, but
a deceleration→ acceleration sequence can be realized for
p= 1/2. Larger values of p yield better agreements with
observations;

(d) TeβT0/T: The number of critical points depend on the para-
meter β.
1. β < 0: Only a semi-stable Minkowski solution arises.

A future Big Crunch singularity (H< 0) or decelera-
tion→ accelerationwhich ends at theMinkowski point
(H> 0) can be realized;

2. β > 0: Semi-stable Minkowski and accelerating
(decelerating) stable (unstable) de Sitter point. The
cosmological evolutionary behavior depends on the
magnitude of H. In particular, H>

√
2β|H0| appears

to realize a viable cosmological scenario.

For arbitrary f (T) functions, the complete dynamical nature
of the theory was obtained in [421] in the presence of dust and
radiation fluids. To account for the two-fluid system, a further
phase-space variable X= ρr

ρm+ρr
was defined, leading to a two-

dimensional system. This also modifies equation (6.21) to
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Table 1. Summary of the critical points (H= H⋆,X= X⋆) for an arbitrary f (T) model in the presence of dust and radiation fluids as found
in [421]. Here, W⋆ and W⋆H represent the function W(H) and its derivative evaluated at H= H⋆.

(H⋆,X⋆) Existence Stability Properties

P1 (H⋆ ̸= 0,0) W⋆ = 0 Attractor H⋆ > 0 de Sitter vacuum
Repeller for H⋆ < 0

P2 (H⋆ ̸= 0,1) W⋆ = 0 Saddle Same behavior as P1

P3 (0,X⋆) W⋆ > 0,W⋆H ̸= 0 Attractor W⋆H > 0 Non-empty
Repeller W⋆H < 0 Static Minkowski geometry

P4 (0,X⋆) W⋆ = 0 Not determined Minkowski vacuum solution
P5 (0,X⋆) W⋆ > 0,

W⋆H →±∞ Not determined Non-vacuum static universe

P6 (0,X⋆) W⋆ > 0, Not determined Type IV finite singularity
W⋆H = 0,
H/WH → 0

Figure 13. The dynamical behavior for the f(T) =−T+α(−T)b power-law model17 for different choices of b. Here, the gray (white)
region represents decelerated (accelerated) expansion with the dotted line representing the transition. Circles represent the critical points
with empty (filled) being repeller (attractor) and grey being semi-stable. Focusing on the H> 0 plane, a matter domination → late-time de
Sitter is achieved for b=− 1

3 . Reproduced from [424]. © 2018 IOP Publishing Ltd and Sissa Medialab srl.

Ḣ=−(X+ 3)H
W
WH

, (6.22)

where W(H) = f(H)−HfH. The critical points are listed in
table 1.

Evidently, the existence conditions depend on the behavior
of W and WH . Meanwhile, attractor solutions are P1 (vacuum
de Sitter) and P3 (non-empty static Minkowski geometry).

17 Tomatchwith the review convention, the TEGR term’s signature is reversed
compared to [424].

Therefore, a late-time acceleration can be recovered through
P1. Furthermore, for any f (T) model, no cyclic and oscil-
lating solutions are possible. Moreover, the sequence where
the Universe starts with an initial accelerating phase (infla-
tionary), become decelerating and finally evolves to an accel-
erating de Sitter phase cannot be realized. In the particular
case when f(T) =−T+α(−T)b, the critical points as found in
[424, 425] are recovered with the extra critical point P2 which
cannot appear in the aforementioned works due to the different
dynamical phase-space analysis. A simple dynamical repres-
entation for different choices of b are highlighted in figure 13.
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Table 2. Summary of the existence of matter and radiation domination epochs, the matter to DE domination and finally the existence of a
stable de Sitter cosmology, for various f (T) models as carried out in [428]. Here, m := TfTT

fT
and r :=− TfT

f .

F(T) Model m= 0, r=−1 mr >−1, r=−1 m=− 1
2 , r=− 1

2

F(T)
Ωm/Ωr

Domination Ωm → DE Domination Stable de Sitter

(−T)a Always a< 1 a= 1
2

(−T)aebT a= 1 a>−2 a= 1
8

(−T)ae
b
T a= 1 a> 0 a= 1

8

(−T)a [ln(γT)]b a= 11±6
√

3
13 a>−2 a= 11±6

√
3

13

For the remaining works [427–432], instead of a one-
dimensional system, a larger autonomous system is construc-
ted which allows for a more general investigation of non-de
Sitter critical points. Of note, two notable approaches were
employed. The first follows [427–431] which consider dust
and radiation fluids with density Ωm and Ωr, respectively, and
the phase-space variables18

x̃ :=
f(T)+ T

T
, ỹ :=−2( fT+ 1), z̃ := 2TfTT,

Ωm :=
κ2ρm
3H2

, Ωr :=
κ2ρr
3H2

. (6.23)

Following [428, 429], for arbitrary choices of the gravita-
tional Lagrangian, a stable de Sitter attractor, a stable or saddle
scaling solution with matter and a possibly unstable scaling
radiation solution were found whereas an inflationary solution
was not observed. For particular f (T) models, the cosmolo-
gical sequence starting with radiation domination → matter
domination → de Sitter acceleration was investigated.

As summarized in table 2, a viable model which realizes
the sequence is obtained either in the power-lawmodel Ta or in
the logarithmic model Ta [ln(γT)]b while the exponential mod-
els are able to realize the matter to DE domination sequence
leading to a stable de Sitter phase but do not host dust and
radiation domination epochs. Of further note, in the power-
law model, a stable de Sitter solution is realized for a= 1

2
which corresponds to the case where a

√
−T term appears

in the Lagrangian. As this term does not contribute to the
field equations, the stability of the solution is to be treated
lightly.

In [430], a DE dominated de Sitter sink is found which
suggests the resulting late-time behavior of the theory. In
addition, the critical points (x̃⋆,Ωm

⋆) = (0,0) and (0,1) are
found which correspond to radiation and matter dominated
epochs respectively, are also obtained for the models f(T) =
−T+α(−T)n and f(T) =−T+α(−T)β lnT, β = { 1

2 ,1}. In
the power-law and the β = 1

2 cases, the domination phases cor-
respond to their expected decelerating expansion rate. How-
ever, for the logarithmic β= 1 case, the rate of deceleration (or
possibly acceleration) depends on the magnitude of α, hereby

18 With the exception of [430]where the combination of phase-space variables
X̃= x+ y is considered.

Figure 14. The dynamical behavior for the logarithmic
f(T) =−T+α

√
−T lnT model with the critical points marked with

circles (blue—radiation, violet—matter, red—de Sitter). The orange
line (x= 2) represents a singularity present in the dynamical
system. In fact, the evolutionary behavior is distinct between x< 2
and x> 2. To match our conventions, x→ x̃, y→ Ωm and
f(T)→−T+ f(T). This figure first appeared in [430]. Reproduced
with permission from [430]. © World Scientific Publishing.

in agreement to the bifurcation observed in the dynamical ana-
lysis. Overall, a suitable radiation→matter→ de Sitter evolu-
tionary process can be realized for suitable parameter choices
(see figure 14 for the β = 1

2 logarithmic model phase-space
representation).

Following [427] and the improved results in [431], critical
points of the form (x̃⋆,Ωr

⋆)were obtained for arbitrary choices
of f (T), as summarized in table 3. Overall, the sequence start-
ing from an inflationary period all the way to a late-time accel-
eration can be realized provided the following conditions are
met: (i) x̃0 and x̃1 exist, (ii)−1< x̃0 ⩽ 0 and (iii) ỹx̃(x̃0)>−2.
These conditions were examined for a selected number of
f(T) =−T+F(T) models with F(T) being equal to:
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Table 3. The critical points along with their stability and cosmological description for an arbitrary f (T) model based on the analysis carried
out in [431]. Here, x̃0 is a solution to the equation ỹ(x̃)+ 2x̃= 0, x̃1 for ỹ(x̃)+ x̃= 1 and x2 when 1− 1

2 ỹ+ ỹx̃
(
x̃+ 1

2 ỹ
)
diverges.

(x̃⋆,Ωr
⋆) Stability Cosmological description

P1 (x̃0,1+ x̃0) Saddle or unstable Decelerating radiation or DE dominated solution
P2 (x̃0,0) Stable or saddle Decelerating matter or dark energy dominated solution
P3 (x̃1,0) Stable Dark energy dominated de Sitter accelerating phase
P4 (x̃2,0) Stable or saddle Inflationary phase (without graceful exit)

Figure 15. The dynamical behavior for the exponential f(T) =−T+ T0
(
1− e−p T

T0
)
model for (a) p= 1 and (b) p= 1.5. For this model,

x0 = 0 meaning the critical points P1 (0,1) (radiation) and P2 (0,0) (matter) appear in both plots. The critical point P3 (de Sitter) also
appears with (a) x1 =−4.59 while in (b) x1 = 1 and 5.04. Thus, for both p choices, the sequence radiation → matter → de Sitter can be
achieved. Note the identification x→ x̃ for this figure. Reproduced from [431]. © 2017 IOP Publishing Ltd and Sissa Medialab srl.

(a) Tn n< 1,

(b)

√
T
qT0

ln

(
qT0

T

)
q> 0,

(c) Tn tanh

(
T0

T

)
n< 1,

(d) T0

(
1− e

−p
√

T
T0

)
p⩾ 0.5,

(e) T0

(
1− e−p T

T0

)
0.203⩽ p⩽ 1.977,

p⩾ 6.110, p 6= 1.256,

which highlight the possibility of realizing the desired
sequence of cosmological behaviors (see, for instance, the
exponential model dynamical behavior in figure 15). However,
this appears to be in disagreement with the results obtained
in [421] where it is claimed that inflation → deceleration →
accelerating de Sitter phase cannot be realized for arbitrary
f (T) models.

Finally, in the second consideration examined in [432], the
phase-space variables

x̃=− f̈

Hḟ
, ỹ=

f

4H2 ḟ
, z̃=

3H2 + Ḣ
H2

, (6.24)

were chosen and two scenarios were considered: (i) absence
of matter fluids and (ii) presence of dust and radiation com-
ponents. Furthermore, the case when the parameter m=− Ḧ

H3

takes on constant values m= 0 (quasi-de Sitter evolution) and
m=− 9

2 (matter dominated evolution) was explored.
Starting with the vacuum case, an asymptotic stable de Sit-

ter late-time cosmology can be reached while the matter dom-
ination is necessarily an unstable point. On the other hand, in
the presence of matter, dust dominated unstable critical points
and an asymptotic DE dominated de Sitter critical point are
obtained. However, it is unclear whether a radiation domina-
tion epoch can be generated.
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Another interesting work which uses dynamical system
is [433] where the authors studied the cosmology of D-
dimensional f (T) gravity. They focused on eleven dimen-
sions (with seven dimensions being compactified) and found
that in this case it is possible to find an early inflationary
epoch without introducing any extra matter source. In another
work [434], the compactification of extra dimensions in flat
FLRWcosmology for f (T) was further studied obtaining a cor-
rect tetrad in six and seven dimensions which can be used as
the starting point to compactify the extra dimensions.

6.2. f(T,B) cosmology

If we use the FLRW diagonal tetrad in equation (6.4) in the
f(T,B) gravity equations (5.80), we arrive at the following
modified Friedmann equations [257, 260, 261]

3HḟB− 3H2(3fB+ 2fT)− 3fBḢ− 1
2
f(T,B) = κ2ρ, (6.25a)

−(3H2 + Ḣ)(2fT+ 3fB)− 2HḟT+ f̈B−
1
2
f(T,B) =−κ2p.

(6.25b)

The equations can be recast into a TEGR-like form when
the TEGR contribution is maintained, i.e. f(T,B) =−T+
F(T,B), where the gravitational component F(T,B) acts as a
gravitational fluid with associated energy density ρeff and pres-
sure peff. In other words, equations (6.25a) and (6.25b) are
rewritten as

3H2 = κ2 (ρ+ ρeff) , (6.26a)

3H2 + 2Ḣ=−κ2 (p+ peff) , (6.26b)

with the gravitational fluid defined as

κ2ρeff = 3H2 (3FB+ 2FT)− 3HḞB+ 3ḢFB+
F(T,B)

2
,

(6.27a)

κ2peff =−F(T,B)
2

− (3H2 + Ḣ)(3FB+ 2FT)− 2HḞT+ F̈B.

(6.27b)

Consequently, the effective EoS is [263, 435, 436]

weff :=
peff
ρeff

=−1+
F̈B− 3HḞB− 2ḢFT− 2HḞT

3H2 (3FB+ 2FT)− 3HḞB+ 3ḢFB+ 1
2F
.

(6.28)

Under the assumption that thematter fluids do not interact with
the gravitational fluid, the latter satisfies the standard fluid con-
servation equation

ρ̇eff + 3H(ρeff + peff) = 0. (6.29)

As discussed in section 3.6.3, for the non-flat FLRW case there
are two branches. Interestingly, in the first branch (3.154), the
boundary term does not depend on k (see equation (3.159)).

This means that for this branch the Friedman equations
become

3HḟB− 3H2(3fB+ 2fT)− 3fBḢ− 1
2
f(T,B) = κ2ρ, (6.30a)

−(3H2 + Ḣ)(2fT+ 3fB)− 2HḟT+ f̈B+
2kfT
a2 − 1

2
f(T,B) =−κ2p.

(6.30b)

Recently, this branch was studied using dynamical sys-
tems finding that Milne, Milne-like and de-Sitter solu-
tions exist [437]. It is worth mentioning that the second
branch (3.161) can only be used for k⩽ 0 (since T,B become
complex) has not been used in the literature yet.

Following the same idea as we did in the previous section,
we will analyze these equations further in the next sections.

6.2.1. Reconstruction method. One notices from the f(T,B)
cosmological equations (6.25a) and (6.25b) that reconstruct-
ing for a general f(T,B) function is not generally possible; thus,
the ansatz choices f(T,B) = f1(T)+ f2(B) and its sub-case with
f1(T) =−T were considered, for the (i) power-law a(t)∝
th,h> 0, (ii) de Sitter, (iii) ΛCDM, and (iv) phantom dom-
inated, cosmological behaviors [257, 260, 261]. The respect-
ive solutions are summarized in the supplementary annexes
(supplementary 1). A noticeable feature appears for ΛCDM
where the sub-case scenario offers a much simpler Lagrangian
compared to the separable ansatz as it negates the existence of
Gauss’s hypergeometric function.

Beyond the reconstruction procedure, the solutions were
then tested against the validity of the generalized second law
of thermodynamics as well as their stability against homogen-
eous perturbations. In the former, each model is able to satisfy
the constraint. In the latter, only the power-law and de Sitter
behaviors were explored where both are able to exhibit stabil-
ity. More importantly, however, is the fact that the power-law
cosmology is only stable for h> 1, i.e. an expanding behavior.

6.2.2. Noether’s symmetry approach. Following [268, 438],
various f(T,B) ansatz have been considered to examine the
Noether symmetries, namely

(i) b0B
k+ t0(−T)m, (ii) Bl(−T)n, (iii) −T+F(B),

(iv) Bn,

where b0, t0,k,m, l and n are constants and F(B) is some
arbitrary function not linear in B. Of note, the first model
ansatz only satisfies the Noether condition provided k= 1
reducing the model to the power-law f (T) model investigated
in section 6.1.2. For the remaining models, further restrictions
and cosmological implications are summarized in table 4. It is
noted that for the−T+F(B) ansatz, a similar F(B) functional
form appears in [257, 261].

For the f(
◦
R,T) gravity sub-case, the Noether symmetry

has been explored in [439]. As the Noether condition yields
an intractable system of equations to solve generally, two
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Table 4. A summary of the existence of symmetries and the cosmological implications of the f(T,TB) ansatz considered in [268, 438]. Here,
α0, . . . ,α5 and β are integration constants.

f(T,TB) Symmetry and cosmological implications

Bl(−T)n Condition enforces m= 1−l
2 . Depending on the symmetry, power-law a(t)∝ t

1+l
3 or exponential a(t) =

[
α0e

βt√
6 +α1

] 1
3

behaviors can be recovered.
−T+F(B) F(B) constrained to be F(B) =− B

3 lnB.

When dust is considered, a(t) =
[
α2e

α3t+α4t+α5
]1/3

.
In the case of dark energy, the solution is identical except α4 = 0.

Bn Symmetries exist for dust and w= 1
2n−1 . However, no cosmology has been reported.

f(
◦
R,T) ansatz were considered which reduce to: (i) f(

◦
R,T) =

g0
◦
R+ h0T and (ii) f(

◦
R,T) = f0

◦
Rn(−T)1−n where f0,g0,h0 and

n are arbitrary integration constants. As the first model is a
TEGR rescaling, the second model offers a richer cosmo-

logy provided that n 6= 1 and is absent in both f(
◦
R) and f (T)

formulations.

6.2.3. Dynamical system approach. The dynamics of the
specific class f(T,B) =−T+F(B), for some unknown func-
tion F(B), has been investigated via its scalar-tensor equival-
ent form by introducing an auxiliary scalar field ϕ= FB with
an associated potential V(ϕ) = BFB−F(B) [257]. This scalar
field (or equivalently the F(B) contribution) is assumed to act
as the source for DE. In particular, the case when DE is absent
during certain phases of evolution was studied, which leads to
matter dominated phases. Here, the matter fluids are assumed
to have an EoS wm ∈ [0,1).

One avenue is to set the DE energy density and pressure

to be vanishing which leads to V(ϕ)∝ ϕ
2−γ
2+γ (or equivalently,

F(B)∝ B− 2−γ
2γ ). However, according to dynamical analysis,

the cosmology is unable to evolve past the matter domination
phase. Instead, DE was then considered with non-vanishing
energy density and pressure while still beingmagnitudes smal-
ler than that of matter. In this case, the scalar field evolution
equation becomes19

ϕ̈+
V
2
+

(1− γ)

3γ 2t2
(
4− 3γ 2κ2ρm0

)
= 0, (6.31)

where γ = 1+ωm is the barotropic index. Naturally, during
matter domination, the bracketed term is vanishing reducing
the system to the previous scenario. In this case, a solution
exists for the power-law potential V(ϕ) = V0ϕ

µ with µ 6= 1
without the necessary constraint that µ= 2−γ

2+γ . Additionally,
pϕ ' 0 for this potential meaning that the scalar fluid behaves
as dust at leading order. The dynamical systems analysis
reveals the existence of three critical points for µ 6=−1 with
deviation from matter domination occurring only for µ> 1.

An extension of the above approach is presented in [440]
where the dynamical system procedure was applied with a
different set of phase-space variables which permit a more

19 The matter contribution equation (74) in [257] was not expressed correctly.

general description of the resulting cosmology. In order to
conform with the signature notation used in the Review, the
auxiliary scalar field ϕ relations are modified to ϕ=−FB and
V(ϕ) = F(B)−BFB. Thus, the chosen phase-space variables
are

x̃ :=
ϕ̇

H
, ỹ :=

V(ϕ)
6H2

, λ :=− Vϕ
V(ϕ)

. (6.32)

Here, the choice of λ determines the nature of the potential
(and hence, the choice of F(B)). In particular, two scenarios
were explored: (a) λ = constant leading to V(ϕ)∝ e−λϕ, and
(b) λ 6= 0, i.e. a general potential. As the critical points of (a)
are contained in the general case (b), we highlight the latter
results. For the above phase-space variables, five critical points
are obtained which nature and existence are summarized in
table 5.

Evidently, the model hosts stiff fluid behaviors (P1,P5) and
two possible stable de Sitter behaviors (P2,P4). Meanwhile,
the matter domination epoch is achieved via P2. In the instance
when λ= constant, only the first critical points P1–P3 remain.
For constant λ, matter domination → late-time acceleration
can be achieved through P2 → P3 whereas for the general
model, a similar behavior is achieved through P2 → P3/P4.

Recently, the scalar-tensor approach has also been explored
for the f(T,B) = F1(T)+F2(B) model ansatz where F1(T) =
−T+ f0(−T)n and F2(B) = B lnB

λ where f0,λ and n are
constants [441]. In particular, the F2(B) function leads to a
scalar potential V(ϕ)∝ e−λϕ. Thus, this model serves as an
extension of the previous λ = constant scenario where a tor-
sion power-law contribution has now been included. For this
choice, in the absence of matter fluids, the chosen phase-space
variables are

x̃ :=
ϕ̇√

1+H2
, ỹ :=

V(ϕ)
6H2 , z̃ :=

(−T)n

1+H2 , η :=
H√

1+H2
.

(6.33)

Since ỹ is constrained by the Friedmann constraint (6.25a) and
z̃= z̃(η) by virtue of T=−6H2, the system’s dimensionality
reduces to a two-dimensional one. This leads to six finite crit-
ical points (x̃,η) being:

(a) two unstable critical points where the effective fluid
behaves as stiff matter. Only the kinetic term of the auxil-
iary field contributes to the fluid’s behavior;
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Table 5. The critical points for f(T,B) =−T+F(B) together with their existence conditions viewed from the introduction of an auxiliary

scalar field ϕ=−FB [440]. Here, λ0 is an arbitrary value, Γ̄(λ)≡ Vϕϕ

Vϕ 2 − 1, λ±
0 ≡ 3

2λ0
(1±w) and λ̃≡ 3

2 (3+w).

(x̃⋆, ỹ⋆,λ⋆) Existence Stability Properties

P1 (1,0,λ0) Γ̄(λ0) = 0 Unstable Matter fluid absent; effective fluid
behaves as a stiff fluid (weff = 1)

P2 (2λ+
0 , λ

−
0 ,λ0) λ0 ⩾ λ̃, Γ̄(λ0) = 0 λ0 > λ̃ Effective fluid behaves as dust (weff = 0)

P3 (− 6
λ0

+ 2, 6
λ0

− 1,λ0) Γ̄(λ0) = 0 λ0 < λ̃,(−3+λ0)Γ̄λ(λ0)> 0 Matter fluid absent; effective fluid EoS
weff =

2λ0−9
3 (accelerating for λ0 <

9
2

and de Sitter for λ= 3)
P4 (0,1,3) Always ℜ(Γ̄(3))> 0 Matter fluid absent; de Sitter behavior

(effective fluid behaves as DE)
P5 (1,0,0) Always Unstable Same as P1

(b) two critical points where the effective fluid behaves either
as a perfect fluid with weff =

2λ
3 − 3 for λ 6= 3 or as a cos-

mological constant for λ= 3. These points are attractors
for λ< 3 and n< 1, otherwise, they act as sources/saddle
points;

(c) a de Sitter critical point which can serve as a late-time
attractor;

(d) a Minkowskian spacetime in which stability can be
determined through center manifold theory. Nonetheless,
for the considered numerical analysis, it is observed to be
unstable.

Meanwhile, the critical points lying at the infinite boundary
cannot be attractors. Thus, a viable cosmology can be real-
ized for suitable parameter choices. However, to confirm the
existence of matter and radiation dominated phases, the con-
tribution frommatter fluids still needs to be incorporated in the
analysis.

Scenarios where the contributions of DE without a scalar
field are assumed to be the source has not been studied widely
yet. In [266] a dynamical analysis was presented where, con-
trary to the previous approach, the cosmic acceleration effect is
analyzed without the introduction of an auxiliary scalar field.
In the following, an f(T,B) DE which is fluid-like is used to
obtain a richer population of stability points that can be con-
strained by observational surveys [442]. The models can also
be tested against thermodynamics and cosmological stability
[261, 262] as well as energy conditions [260].

Taking the ansatz f(T,B) =−T+F(T,B), in order to con-
struct the dynamical system, the FLRW equations (6.25a)
and (6.25b) are first rewritten as

Ω+Ωeff = 1, (6.34a)

3+ 2

(
H ′

H

)
=

F
2H2

+ 9FB+ 6FT+

(
H ′

H

)
(3FB+ 2FT−F ′

B)

+ 2F ′
T−F ′ ′

B − κ2p
H2

, (6.34b)

Ωeff ≡ 3FB+ 2FT−F ′
B+

F
6H2

+

(
H ′

H

)
FB, (6.34c)

which each i denotes the component density parameter Ωi =
κ2ρi/(3H2). The prime ( ′) denotes derivatives wrt Nf = lna,
with a chain rule given by d/dt= H(d/dNf). These set of
equations impose a condition over the form of the derivative
f ′(T,B). Taking the derivative wrt Nf in equation (6.34a) and
making use of the FLRW equations, the relation

6

(
H ′

H

)
FB+ 2

(
H ′

H

)
FT+

(
H ′2

H2
+
H ′ ′

H

)
FB+

F ′

6H2
= 0,

(6.35)

is obtained which can be used to impose a condition, at least
at a background level, over the form of the derivative F ′(T,B).
Naturally, further constraints can be obtained once cosmolo-
gical perturbations are considered (see section 7).

Following equations (6.34a) and (6.34b), a set of conveni-
ently specified dimensionless variables are chosen to construct
the autonomous system [431, 443]. First, the parameter [444]

λ=
Ḧ
H3

=
H ′2

H2
+
H ′ ′

H
, (6.36)

is introduced. For cases where λ = constant, some cosmo-
logical solutions can be recovered including de Sitter/quasi-
de Sitter (λ= 0) and matter domination (λ= 9/2). This
ansatz, which shall be assumed in the following, shows cos-
mological viable scenarios as analogous to models with baro-
tropic fluids with EoS w. However, this choice restricts the
number of critical points which in turn leaves an incomplete
picture of the whole cosmological evolution for the chosen
F(T,B) model. To remove this imposition, either a different
dynamical system approach or suitable choice of the F(T,B)
function must be adopted. In fact, the latter case is discussed
in [445] for the mixed power-law model F(T,B)∝ BkTm for
constants k,m. Following this, the dynamical phase-space
variables

x̃ := FB, ỹ := F ′
B, z̃ :=

H ′

H
=

Ḣ
H2

, g :=
F

6H2
(6.37)

are introduced. The energy constriction, equation (6.34a), in
terms of the above variables becomes

Ω+ 3x̃+ 2FT− ỹ+ g+ z̃x̃= 1, (6.38)
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where Ω= κ2ρ/(3H2) depends on the other dynamical vari-
ables. We can write the autonomous system for this theory
using (6.34a) as [266, 445]

x̃ ′ = ỹ, (6.39a)

ỹ ′ = 3g+(9+ 3z̃)x̃+FT(6+ 2z̃)+ 2F ′
T− z̃ỹ− 3− 2z̃− κ2p

H2 ,

(6.39b)

z̃ ′ = λ− 2z̃2, (6.39c)

g ′ =−6z̃x̃− 2z̃FT−λx̃− 2z̃g̃. (6.39d)

To follow the constraint of the system in equations (6.38)–
(6.39d), we need to write FT either as a dynamical variable or
expressed in terms of the described variables. The latter can
be done by considering a specific form of F(T,B). Finally, we
can rewrite the EoS (6.28) as

weff =
H2z̃(2z̃+ 3)−κ2pz̃

3H2 [g ′ + z̃(g− x̃z̃+ 3x̃+ ỹ)+λx]
. (6.40)

From equations (6.39a) and (6.39c), we notice that there is not
an explicit dependency of F(T,B); therefore, for the critical
points, we require that

z̃=±
√
λ

2
, ỹ= 0. (6.41)

As z̃= Ḣ/H2, this variable becomes an important determin-
ing factor for the stability and cosmological nature (power-law
z̃ 6= 0 or de Sitter z̃= 0) of the critical points. To achieve this,
we are going to consider three cosmologically viable models,
determine the critical points (by determining the remaining
critical values x̃ and g), then consider the eigenvalues of the
stability matrix and the constriction equation equation (6.38).
In the following, the results reported from [266] are for the
case when the perfect fluid is sourced by dust w= 0.

(a) General Taylor Expansion model—The form for this
model was presented in [446], given by

F(T,B) = F(T0,B0)+FT(T0,B0)(T−T0)

+FB(T0,B0)(B−B0)+
1
2!
FTT(T0,B0)(T−T0)

2

+
1
2!
FBB(T0,B0)(B−B0)

2

+FTB(T0,B0)(T−T0)(B−B0)+O(T3,B3),
(6.42)

which gives the general Taylor expansion of the f(T,B)
Lagrangian about its Minkowski values for the torsion
scalar T and boundary term B. The Minkowski space is
chosen as the background for this model since all mod-
els should contain this spacetime in some limit. We notice
from here that we need to take into account beyond linear
approximations since B is a boundary term at linear order.
Where locally spacetime appears to beMinkowski, we can

consider T0 = B0 = 0. Labeling the constant coefficients
as Ai, the Lagrangian can be rewritten as

F(T,B)' A0 +A1T+A2T
2 +A3B

2 +A4TB, (6.43)

where the linear boundary term does not contribute so we
have omitted it. We notice from this specific form that the
first term can be seen as A0 ≈ Λ, therefore we are dealing
with a cosmic acceleration as a consequence of theF(T,B).
Thus, the form of this model can be written in terms of the
dynamical variables as

FT =−(3+ z̃)x̃− 2g−A1, (6.44)

at linear order in torsion and with A0 = 0, i.e. we are
switching-off the cosmological constant. This can be done
since an explicitly time-dependent factor appears and then
a different approach has to be taken. The critical points for
this model are

g=−A1, x̃=
A1 − 1

3±
√

λ
2

, (6.45)

where the case 3±
√

λ
2 6= 0 was not explored. The con-

striction evolution equation (6.38) sets Ω= 0 hereby
denoting contributions only related to F(T,B) gravity
which imply that the constriction evolution equation in
equation (6.38) is nowΩ= 0which denotes only contribu-
tions related to F(T,B) gravity. According to these points,
the following eigenvalues result

ω1 =−3∓
√
λ

2
, ω2 =−3∓ 2

√
λ

2
,

ω3 =∓4

√
λ

2
, ω4 =±2

√
λ

2
. (6.46)

Considering values λ 6= 0, we get that Re(ω3) =
−Re(ω4) 6= 0 implying that, for this system, all the crit-
ical points are saddle-like. The solutions for this case are
in agreement with the cosmological constraints found in
[263]. According to these results, the critical points behave
as Ai < Ai+1 (with A0 = 0, A1 = 1), show a decelerating
behavior with 0⩽ weff < 1 when B dominates at redshift
z≈ 1 followed by a ΛCDM behavior.

(b) Power Law model—Considering a Lagrangian of separ-
ated power law style models for the torsion and boundary
scalars, we can write a model like [268]

F(T,B) = b0B
k+ t0(−T)m, (6.47)

for constants b0 and t0. This is an interesting model since it
was already been shown in [389] that for m< 0, the Fried-
mann equations will be effected mostly in the accelerat-
ing late-time Universe while for m> 0, this impact will
take place for the early Universe, assuming no input from
the boundary contribution. By incorporating the boundary
term, this analysis will reveal an effect of B on the com-
bined evolution within f(T,B) cosmology. The form for
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this model can be written in terms of the dynamical vari-
ables as

FT =−mg− m
k
(3+ z̃)x̃. (6.48)

The critical points for this scenario are

g=
k−m

m(1− k)
, x̃=− k

m

(
m− 1
k− 1

)
1

3±
√

λ
2

, (6.49)

where, once more, the case 3±
√

λ
2 6= 0 was not explored.

In this scenario, we find attractors or saddle points for the
positive branch whereas repellent or saddle points for the
negative branch. Additionally, for the former case, keep-
ing b0, t0 > 0, ΛCDM and late cosmic acceleration can be
recovered.

(c) Mixed Power Law model—In order to reproduce several
important power law scale factors relevant for several cos-
mological epochs, in [268] a form of F(T,B) given by

F(T,B) = f0B
k(−T)m, (6.50)

was presented, where the second and fourth order contri-
butions will now be mixed, and f0,k,m are arbitrary con-
stants.We can recoverΛCDMwhen the index powers van-
ish, i.e. when k= m= 0. For this case, the model can be
written in terms of the dynamical variables through

FT =−mg. (6.51)

In comparison to the latter F(T,B) scenarios, this case
implies

x̃= FB = kf0B
k−1(−T)m =

k
B
F=− k

6(3H2 + Ḣ)

F=− F
6H2

k

3+ Ḣ
H 2

=− gk
3+ z̃

, (6.52)

from which we can notice that x̃ is not an independent
variable of the dynamical system. In the same way, as
ỹ= x̃ ′, we directly obtain that ỹ= ỹ(g, z̃). With these con-
ditions, the autonomous system can be reduced to a two-
dimensional dynamical phase-space

z̃ ′=λ− 2z̃2, g ′=g

[
6z̃(k+m−1)+λk+2z̃2(m− 1)

3+z̃

]
,

(6.53)

with critical points

z̃=±
√
λ

2
, and g= 0. (6.54)

Under these values, the constriction of the system is given
by Ω= 1. Once more, z̃ turns out to be the determin-
ing factor in the behavior of the dynamics of the system.
On the other hand, the system turns out to be relatively
straightforward to analyze with clear cut results which
tally with the general results of the power law model.

However, the more general approach in [445], which
includes both radiation ρr and a perfect fluid with EoS
w, ρw, leads to a different conclusion. Most notably, λ is
no longer constrained to be constant as it is expressed in
terms of the dynamical variables. This alters the former
matter dominated critical point to a late-time de Sitter one
withΩr =Ωw = 0,Ωeff = 1which can be stable under suit-
able parameter conditions. Investigation of the cosmolo-
gical evolution close to the critical point was then used to
best-fit H0 using H(z) observations. The obtained values
can match with both early (Ωr 6= 0) and late-time (Ωr = 0)
observations. SuchH0 values can be derived for three cos-
mological scenarios which links their behavior together
with the error propagation on the free variables of the sys-
tem. A full description of this matter can be seen in figure 3
in [445].

The above results can be linked in a more straightfor-
ward manner if we consider directly the form for the EoS
equation (6.28). At the critical point, for the first two cases
(Taylor and Power law model),

weff =−1∓ 2
3

√
λ

2
. (6.55)

Meanwhile, for the Mixed Power Law model

[266] λ= constant: weff =−1∓ 2
3
(k+m)

√
λ

2
,

[445]non-constant λ : weff =−1. (6.56)

Notice that we recover ΛCDM in the GR limit. In both
EoS scenarios, we recover a ΛCDM model when λ van-
ishes as z̃= 0. Notice that we can rewrite the z̃-variable
from equation (6.37) using the definition of the second cos-
mographic parameter, the deceleration parameter q, as z̃
=−(q+ 1). Thus, λ= 0 leads to q=−1. We can also rewrite
the ansatz for λ given in equation (6.36) in terms of the

third cosmographic parameter, the jerk, as j= λ∓ 3
√

λ
2 + 1.

Notice that when λ= 0, we recover the standard value j= 1.
Notice that an important feature of this analysis (as sum-

marized in figure 16) is the role of couplings between the
torsion tensor T and the boundary term B. These represent
the second order and fourth order contributions to the field
equations respectively, and in a particular combination, form-

ing f(
◦
R) = f(−T+B) gravity. In f(

◦
R) gravity, these couplings

do appear but in a very prescribed format.

6.3. Teleparallel Gauss–Bonnet cosmology

In the case of f(T,TG) gravity, since the tensorial field
equations are very involved, it is easier to use the minisuper-
space for flat FLRW cosmology. To do this, we require the
torsion scalar and the teleparallel Gauss–Bonnet scalar in the
minisuperspace, which are given by

TG =
24H2

N
Ḣ+ 24H4, T=−6H2, (6.57)
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Figure 16. Dynamical behavior for f(T,B) =−T+F(B) models and their results.

and then the Friedmann equations for f(T,TG) gravity can be
directly found by using the minisuperspace analysis and then
fixing the gauge such that N= 1, giving us

−6fTH
2 − 12H3 ḟTG + 12fTGH

2
(
Ḣ+H2

)
− 1

2
f(T,TG) = κ2ρ,

(6.58a)

− 2HḟT− 2fT
(
Ḣ+ 3H2

)
+ 12fTGH

2
(
Ḣ+H2

)
− 8HḟTG

(
Ḣ+H2

)
− 4H 2̈fTG −

1
2
f(T,TG) =−κ2p,

(6.58b)

where fTG = ∂f/∂TG. It is worth mentioning that BG = 0 in
flat FLRW and then the standard Gauss–Bonnet term is
just

◦
G = TG. It is worth mentioning that the scalars TG1 =

TG2 = 0 and TG3 = 24H4,TG4 = 24H2Ḣ/N in flat FLRW (see
equations (3.201a)–(3.201d) for their definitions), then, TG =∑4

i=1TGi is reproduced as expected.

6.3.1. Reconstruction method. The TEGB extension has
been investigated in [86, 90] for various late-time behaviors.
Due to the introduction of the TEGB scalar, a number of model
ansatz were considered

(i) f(T,TG) = g(T)+ h(TG),

(ii) f(T,TG) = Tg(TG),

(iii) f(T,TG) = TGg(T).

(iv) f(T,TG) =−T+TGg(T),

(v) f(T,TG) =−T+µ(−T)βTGγ .

Of note, models (iii) and (iv) are distinct despite their apparent
similarity. Nonetheless, the resulting reconstructed solutions
are related via:

Model (iv) f(T,TG)=−T+ 3TG
4T

+Solution of model (iii).

(6.59)

As such, only the results of model (iii) are summarized.
Although a majority of the ansatz and cosmological behaviors
considered do yield an analytical solution (see supplementary
annexes (supplementary 1)), some scenarios do not host a solu-
tion. Note that for the power-law cosmology a(t)∼ tα recon-
structed solutions, the coasting cosmology (α= 1) has been
investigated separately as TG = 0 in this case.

Certain reconstructed solutions constitute relatively more
complicated forms including a lack of a closed form or are
expressed in terms of Gauss’s hypergeometric function. Des-
pite this apparent complexity, the nature of the perfect fluid
may yield simpler results. For instance, the ΛCDM cosmo-
logy with w= 0 reduces to the standard ΛCDM Lagrangian
for model (i). However, non-trivial models are also obtained,
such as

f(T,TG) =
3TG(ΩΛT0 − 2T)

8T2
, (6.60)

by virtue of model (iii). This could be resourceful in other sec-
tors such as cosmological perturbations as a different choice
of Lagrangian may lead to different conclusions even though
the background evolution is still that of ΛCDM.

The reconstructed models were then examined and checked
if they are able to host vacuum solutions i.e. whether f(0,0) =
0. The reconstructed ΛCDM. model behavior cannot host
vacuum solutions (see Supplementary annexes (Supplement-
ary 1)). As shown in Table 6, the reconstructed ΛCDM model

95



Rep. Prog. Phys. 86 (2023) 026901 Review

Table 6. The conditions for the reconstructed models found in
[86, 90] to obey the vacuum condition f(0,0) = 0 for the ΛCDM
and power-law cosmology subject that all individual contributions
are maintained. In the latter cosmology, the distinction between
α= 1 and α ̸= 1 is necessary due to branching solutions.

Ansatz ΛCDM Power-law

(i) 8 α ̸= 1: w<−1, α < 0 or
w>−1, 0< α< 1
α= 1: w>−1 or vacuum, and depending
on h(TG)

(ii) Unknown α ̸= 1: 3α(1+w)> 1,−3< α< 7
α= 1: g(0) is finite

(iii) 8 4+ 3α(1+w)> 0
(iv) 8 Vacuum or 4+ 3α(1+w)> 0
(v) 8 Always

behavior cannot host vacuum solutions. On the contrary, the
power-law can satisfy the vacuum constraint subject to con-
ditions. While the de Sitter scenario is not listed, the vacuum
condition can be satisfied by suitable Lagrangian choices.

On a different framework, the reconstruction procedure has
been applied to generate models yielding PlDE with the IR
cutoff length taken as the future event horizon in [447] and
Hubble horizon in [448]. While analytical solutions for the
power-law and de Sitter cosmologies were obtained alongwith
numerical solutions for bouncing cosmologies and the unific-
ation of matter-accelerated cosmological phases, no solution
behaves as PlDE throughout the cosmic phase. Primarily, only
the power-law cosmology leads to the desired phantom beha-
vior at late times.

6.3.2. Noether’s symmetry approach. Following [281, 416,
438], the following f(T,TG)model ansatz were chosen to sim-
plify the Noether condition system of equations, being

(i) g0TG
k+ t0(−T)m, (ii) TG

l(−T)m, (iii) TG
n,

where g0, t0,k,m, l and n are constants. Model (i) imposes the
constraint k= 1 reducing the Lagrangian to the f (T) power-law
case. For the remaining cases, symmetries can be found along
with their associated cosmological behaviors, a summary of
which is provided in table 7. The TGl(−T)m ansatz leads to
interesting phenomenology as besides the standard power-law
cosmology, trigonometric and hypergeometric behaviors can
also be recovered. Additionally, the power-law behavior is
recovered as a classical trajectory following the Wheeler–de
Witt formulation [416]. Meanwhile, there is no clear evolu-
tionary behavior for model (iii) although a power-law behavior
is observed if a1,2 = 0.

For the extended generalized teleparallel class
f(T,B,TG,BG) gravity [438], since for the FLRW cosmology
BG = 0, the theory reduces to that of f(T,B,TG) gravity. Des-
pite this simplification, given its general complexity, specific
ansatz choices were considered for the Noether symmetry
approach

(i) f0(−T)m+ f1B
n+ f2TG

q, (ii) f0(−T)mBnTGq,

Table 7. Summary of conditions and cosmological behaviors
obtained for the model f(T,TG) ansatz considered and analyzed in
[281, 416, 438]. Here, a0,1,2 are integration constants.

f(T,TG) Symmetry and cosmological implications

TGl(−T)m Noether condition constrains m= 1−l
2 . Depending

on the symmetry considered, power-law,
trigonometric a(t)∼ tan t or hypergeometric
a(t)∼ tanh t behaviors are achieved.

TGn Symmetries exist for dust and w= 1
4n−1 . A partial

analytical solution is obtained for n ̸= 1, 14 , being

[4(n− 1)]
n−1
4n−5
´ [

(4n− 5)a0a4 − a1
] n−1

4n−5

da= t+ a2.

where f0,1,2,m,n and q are constants. The Noether condition
reveals that the first model imposes the constraint n= q= 1
reducing it to the f (T) power-lawmodel (section 6.1.2). Mean-
while, the second model contains two Noether symmetries but
its general cosmological behavior was not explored.

6.3.3. Dynamical system approach. The cosmological
dynamics of f(T,TG) gravity was investigated in [449]. In
particular, the model f(T,TG) =−T+α1

√
T2 +α2TG, where

α1,2 6= 0 are constants, was studied. In this case, the presence
of a perfect dust fluid was assumed and the following dimen-
sionless phase-space parameters were defined

x̃=

√
1+

2α2

3

(
1+

Ḣ
H2

)
, Ωm =

κ2ρm
3H2

. (6.61)

As the phase-space (x̃,Ωm) is noncompact, the boundary can
be studied with Poincaré’s projection method. Two new phase-
space variables, (r,θ), having domain r ∈ [0,1) and θ ∈ [0, π2 ],
are introduced to determine any critical points lying on the
boundary. These are related to the original parameters via

x̃ :=
r

1− r
cosθ, Ωm :=

r
1− r

sinθ. (6.62)

In this way, the boundary is reached by taking r→ 1−. The
critical points can therefore be determined, and are summar-
ized in table 8.

Immediately, one notes that the critical points Q2,Q3 are
unlikely to be physically viable as Ωm > 1. Focusing on the
remaining points, a realistic cosmology can only be obtained
if a transition from P1 (akin to a matter dominated solution)
to P2/P3 is realized provided that the latter points describe
an accelerating cosmology. Meanwhile, the critical points P4

and Q1 are saddle or unstable points which could represent
intermediary phases. Additionally, [449] also investigate the
behavior for certain parameter choices which are illustrated in
figure 17. For α1 =−

√
33 and α2 = 4, a late-time de Sitter

attractor (P2) without formation of any singularities results.
On the other hand, late-time phantom (P2) for α1 =−α2 =
1
2 and quintessence (P3) for α1 = 2α2 = 3 behaviors can be
recovered.
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Table 8. The critical points for the f(T,TG) =−T+α1
√
T 2 +α2TG, α1,α2 ̸= 0, model as obtained in [449], together with their stability

nature and cosmological description. The variables Ωm1 := 1− α1(6−5α2)
√

9−3α2

6(α2−3) , x± :=
3±
√

3α1
2(4α2−3)+9
3α1

have been defined for simplicity.

(x̃⋆,Ω⋆m) Stability Cosmological description

P1
(√

1− α2
3 , Ωm1

)
Stable/saddle Decelerating scaling solution a(t)∝ t2/3

P2 (x−,0) Stable node, unstable
node or saddle

Dark energy dominated universe, fluid can behave as phantom, cosmological
constant, quintessence or non-phantom depending on parameter constraints

P3 (x+,0) Stable node, unstable
node or saddle

Same behavior as the critical point P2

P4 (0,0) Unstable node or
saddle

Dark energy dominated universe, decelerating for α2 > 0 and accelerating
for α2 < 0. Fluid can be phantom, a cosmological constant or quintessence

Q1 (∞,0) Saddle Super-accelerated phantom solution (α2 > 0) or an an asymptotically
decelerating universe (α2 < 0)

Q2 (∞,∞) Unstable or stable Future singularity for α2 < 0, past singularity for α2 > 0
Q3 (0,∞) Undetermined Future, past or intermediate singularity

Figure 17. Pioncarè phase-space representations of the f(T,TG) =−T+α1
√
T2 +α2TG model for different choices of α1 and α2.

Depending on the latter’s magnitudes, certain critical points appear. Observe that in (b) (and (c)), the Universe can evolve toward a future
singularity Q2 (Q3) as opposed to the phantom P2 (quintessence P3) behavior. Reproduced from [449]. © IOP Publishing Ltd. All rights
reserved.

On the other hand, [450] focuses attention on the sta-
bility of the Minkowski solution by examining the de Sit-
ter space behavior (similar approaches appear in [451, 452]).
Here, the phase-space variables are taken to be (H, Ḣ) which
results in an autonomous system yielding critical points of
the form (H⋆,0), namely de Sitter behavior. Thus, the mat-
ter density component approaches a constant value, Λ. In this
way, a Minkowski solution can be investigated in the limit
when H⋆,Λ→ 0. Additionally, however, a true Minkowski
vacuum exists provided the conditions f(0,0) = 0, fT(0,0)< 0
are also satisfied. For the previous model f(T,TG) =−T+
α1

√
T2 +α2TG, a stable Minkowski solution is obtained

when20

20 The stability conditions are significantly different from [450]. This is due
to evaluation of the derivatives FH,FD of the function F(H,D) (equation (12))
at the critical point, where the expressions equations (17) and (18) have not
been recovered.

α1 < 0, 0< α2 <
3
α1

2

[
1+α1

2 + 3
√

1+ 3α1
2
]
. (6.63)

Combined with the results in [449], the existence of a
Minkowski solution together with a viable cosmological
sequence can be achieved. For instance, the choice α1 =
−
√
33 and α2 = 4 hosts a stable Minkowski solution and a

saddle matter domination behavior which later evolves toward
a stable de Sitter behavior.

6.4. Teleparallel cosmology with non-minimal couplings to
matter

Different theories with non-minimally couplings between
the matter sector and gravity have been considered (see
section 5.9). One popular one is described by the trace
of the energy-momentum tensor Θ := Θµµ. For this the-
ory, considering a perfect fluid, and that the density Lag-
rangian does not depend on derivatives of the tetrads, the
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field equations (5.128) in flat FLRW cosmology are reduced
to

−6fTH
2 − (ρ+ p)fΘ − 1

2
f(T,Θ) = κ2ρ, (6.64a)

−2HḟT− 2fT(Ḣ+ 3H2)− 1
2
f(T,Θ) =−κ2p, (6.64b)

where fΘ = ∂f/∂Θ. Along with this theory, f(T,B,Lm)
gravity has been studied in cosmology. Using the field
equation (5.133) for flat FLRW and a perfect fluid, we arrive
at

3HḟB− 3H2(3fB+ 2fT)− 3fBḢ− 1
2
f(T,B,Lm) = 0, (6.65a)

− (3H2 + Ḣ)(2fT+ 3fB)− 2HḟT+ f̈B−
1
2
f(T,B,Lm)

=−fL(ρ+ p), (6.65b)

where fL = ∂f/∂Lm. In the following, we will mainly concen-
trate on analyzing these two set of FLRW equations.

6.4.1. Reconstruction method. In [453], the authors recon-
struct the f(T,Θ) Lagrangian for a diverse number of scenarios
(see the supplementary annexes (supplementary 1)). Overall,
a reconstructed solution is obtained with some cases contain-
ing exceptions and further extensions. In the case of HDE and
PlDE [454, 455], the reconstructed f(T,Θ) solutions do not
satisfy the Friedmann equations and thus are not reported. It
is remarked that a ΛCDM reconstructed solution appears in
[456] although the result is incorrect as the spatial compon-
ents of ∇µΘ

µν are identically zero as opposed to constituting
a condition for f(T,Θ).

In [457], the reconstruction procedure in the presence of
a perfect fluid and the ansatz choice f(T,Θ) = f1(T)+ f2(Θ)
was explored via the equivalent scalar-tensor formulation by
introducing an auxiliary scalar field Φ and proper functions
P1,2,Q satisfying

f(T,Θ) = P1(Φ)T+P2(Φ)Θ+Q(Φ), (6.66a)

f1(T) = P1T+Q1(Φ), f2(Θ) = P2Θ+Q2(Φ),

Q= Q1 +Q2. (6.66b)

The crucial relation for this approach is

8HṖ1 + 4ḢP1 =−ρ(1+w)(1+ 2P2). (6.67)

For simplicity, [457] apply the method of separation of vari-
ables by setting the above equal to some constant λ whose
magnitude alters the form of the solutions:

(a) λ= 0: This leads to f(T,Θ) = 2k̃(−T) 3
4 − wΘ

1−3w for some

integration constant k̃, a solution which contrasts with that
reported in [457]. By virtue of the Friedmann equations,
the power-law cosmology a(t)∼ t

1
2−2w results.

(b) λ 6= 0: Here, a reconstructed solution is obtained provided
the cosmological behavior is specified. The authors
explore the unification of matter and DE domination
eras and matter-DE transition phase which reconstruc-
ted solutions are listed in the supplementary annexes
(supplementary 1).

6.4.2. Dynamical system approach. In [328, 458], the
dynamics of the general torsion-matter coupling model
f(T,B,Lm) (see section 5.9)) was investigated. Given the com-
plexity of the field equations, particular functional ansatz were
chosen for the dynamical analysis, namely:

(a) f(T,B,Lm) = f(
◦
R,Lm)which is the curvature-matter coup-

ling scenario previously explored in various works [459–
462];

(b) f(T,B,Lm) = f(T,Lm);
1. f(T,Lm) = f1(T)+ 2κ2f2(T)Lm: [458] investigates

six model ansatz of which three (i) f1 =−T+
α1T2 + 2Λ, f2 =−1+β1T, (ii) f1 =−T+ 2Λ, f2 =
−1+β2T+β3T2, (iii) f1 ∝ eα2T

2
, f2 ∝ e−T host a

repeller or saddle power-law behavior (such as matter
domination) critical points which evolves toward a
DE dominated de Sitter attractor. Thus, an appropriate
late-time cosmology can be realized;

2. f(T,Lm) =−Λexp

[
− 1
Λ
(T+Lm)

]
, Λ> 0 and

f(T,Lm) =M−ϵ (T+Lm)
1+ϵ, ϵ,M are constants. Here,

contrary to their curvature analogues investigated in
[331, 462], require no dynamical system analysis since
the scale factor can be directly solved;

(c) f(T,B,Lm) = c1T+ c2Bs+(c3 + c4B r)Lm with c4 6= 0, r
and s are constants. Here, the critical points cannot be
determined for arbitrary choices of the parameters. To
this end, the following three scenarios were considered
[328]: (a) r= 1, (b) c2 = 0 and (c) r= 1− s, c2 6= 0, s=
{−2,−1,2,3,4,5}. While all sub-cases yield stable crit-
ical points (for sub-case (c), it is only for s=−2) and is
able to describe an accelerating Universe (with sub-case
(a) describing a de Sitter cosmology), it is unclear whether
they are able to host the desired sequence of cosmological
epochs.

6.5. Teleparallel scalar-tensor cosmology

This section will be devoted to studying cosmology for differ-
ent scalar-tensor teleparallel theories (see section 5.8 for more
details). One particular class of theory that has been studied in
cosmology is the one described by the action (5.98) which is
constructed from the torsion scalar and the boundary term. For
this theory, the field equation (5.99) in flat FLRW becomes

−1
2
f(T,B)+ 3HḟB− 3H2(3fB+ 2fT)− 3fBḢ− 1

2
fXϕ̇

2 = κ2ρ,

(6.68a)

−(3H2 + Ḣ)(2fT+ 3fB)− 2HḟT+ f̈B−
1
2
f(T,B) =−κ2p,

(6.68b)
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whereas the modified Klein–Gordon equation (5.101) yields

ḟXϕ̇+ 3fXHϕ̇+ fXϕ̈+ fϕ = 0, (6.69)

where fX = ∂f/∂X and fϕ = ∂f/∂ϕ. A particular case which
has been extensively used in the literature for cosmology is
the one described by (5.102) where the kinetic term appears
linearly and the scalar field is non-minimally coupled to both
T and B. For this theory, the flat FLRW are

− 6fTH
2 − 1

2
f(T)− 3H2F1(ϕ)+ 3HḞ2(ϕ)

= κ2
(
ρ+

1
2
ω(ϕ)ϕ̇2 +V(ϕ)

)
, (6.70a)

− 2HḟT− 2fT(Ḣ+ 3H2)− 1
2
f(T)−F1(ϕ)(3H

2 + 2Ḣ)

− 2HḞ1(ϕ)+ F̈2(ϕ) =−κ2
(
p+

1
2
ω(ϕ)ϕ̇2 −V(ϕ)

)
,

(6.70b)

whereas the modified Klein–Gordon equation becomes

− 3
κ2

(
H2(F ′

1(ϕ)+ 3F ′
2(ϕ))+ ḢF ′

2(ϕ)
)

+ 3Hω(ϕ)ϕ̇+ω(ϕ)ϕ̈+
1
2
ϕ̇2ω ′(ϕ)+V ′(ϕ) = 0, (6.71)

where primes denote differentiation wrt the scalar field. On
the other hand, a further extension of the f(T,B,X,ϕ) action is
the quintom model investigated in [302] where two canonical
scalar fields ϕ and σ are introduced, both being non-minimally
coupled with the torsion T and boundary B scalars. The grav-
itational Lagrangian is thus generalized to

L=− 1
2κ2

[T+( f1(ϕ)+ f2(σ))T+(g1(ϕ)+ g2(σ))B]

− ξ

2
∂µϕ∂

µϕ− χ

2
∂µσ∂

µσ+V(ϕ,σ), (6.72)

where ξ and χ are constants and V(ϕ,σ) represents the com-
bined potential of both scalar fields. For this model, the flat
FLRW equations are

3H2(1+ f1(ϕ)+ f2(σ)) = κ2

[
ρ+V(ϕ,σ)+

ξ

2
ϕ̇2 +

χ

2
σ̇ 2

+3H(ġ1(ϕ)+ ġ2(σ))

]
, (6.73a)

(3H2 + 2Ḣ)(1+ f1(ϕ)+ f2(σ))

=−κ2

[
p−V(ϕ,σ)+

ξ

2
ϕ̇2 +

χ

2
σ̇ 2 + 2H(ḟ1(ϕ)+ ḟ2(σ))

−g̈1(ϕ)− g̈2(σ)

]
, (6.73b)

whereas the modified Klein–Gordon equations for both scalar
fields are

ξ(ϕ̈+ 3Hϕ̇)+
3H2

κ2
f ′1(ϕ)+

3
κ2
g ′
1(ϕ)(3H

2 + Ḣ)+Vϕ = 0,

(6.74a)

χ(σ̈+ 3Hσ̇)+
3H2

κ2
f ′2(ϕ)+

3
κ2
g ′
2(ϕ)(3H

2 + Ḣ)+Vσ = 0,

(6.74b)

where Vϕ = ∂V/∂ϕ and Vσ = ∂V/∂σ. In the following, we
will mainly concentrate on these kind of theories.

6.5.1. Reconstruction method. In [463], the reconstruc-
tion procedure was applied for the minimal coupling scen-
ario F1(ϕ) = F2(ϕ) = 0 where the matter component is solely
described by the scalar field with kinetic coupling ω(ϕ) = 1

and potential V(ϕ) = ϕn+1

n+1 , where n 6=−3,±1,0 is a constant.
In particular, the authors explore the case when the Klein–
Gordon equation, generally expressed in Euler’s form [464]

ϕ̈+ f1(t)ϕ̇+ f2(t)ϕ+ f3(t)ϕ
n = 0, (6.75)

for time-dependent functions f1,2,3(t) satisfy the relation [465]

1
n+ 3

f̈3
f3
− n+ 4

(n+ 3)2

(
ḟ3
f3

)2

+
n− 1

(n+ 3)2
f1 ḟ3
f3

+
2ḟ1
n+ 3

+
2(n+ 1)f1

2

(n+ 3)2
= f2. (6.76)

This condition guarantees an analytical solution for ϕ(t). As
f1 = 3H, f2 = 0 and f3 = 1 for this particular case, the above

relation leads to a(t)∝ t
n+3

3(n+1) leading to ϕ(t)∝ t
2(1+3n)

1−n 2 . Thus,
the reconstructed form of f (T) is obtained via the Friedmann
equation (6.70a) to be

f(T)∼ (−T)n
2−1 +(−T)

2(1+3n)
n−1 . (6.77)

Other scalar potentials were also investigated, namely power
law (mixed and Higgs), exponential and logarithmic. Except
for the exponential case, which leads to a rescaled TEGR solu-
tion, no solutions were obtained for the remaining cases.

In [254], the conformal f (T) theorywas studied having non-

minimal couplings F1(ϕ) =
Cϕ 2

2 , F2(ϕ) =
Dϕ 2

2 , kinetic coup-

ling ω(ϕ) = 2κ2 and potential V(ϕ) = 2κ2V0ϕ
m+1

m+1 , where C, D,
V0 and m are constants. To ensure conformal invariance, C=
1
6 ,D= 1

3 and m= 3 which is assumed in the reported results.
For simplicity, only simple cosmological scenarios were con-
sidered for reconstruction.

Starting with a power-law cosmology a(t)∝ tα for some
constant α, in the absence of the potential V(ϕ), f (T) takes the
form

f(T) =−
y−2α

(
c14 + 2(α− 1)2c2 2

)
4(4α− 1)

− c13c2y
1−5α

2

2− 5α

+
c1 2c2 2y1−3α

2α− 1
+
c1c23y

3−7α
2

7α− 4
− c24y2−4α

4(5− 8α)

+
2κ2ρ0y−

3
2α(1+w)

3α(1+w)− 1
, y≡−6α2

T
, (6.78)
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where c1,2 are integration constants originating from the modi-
fiedKlein–Gordon equation. It is remarked that the reconstruc-
ted solution is invalid for certain choices of α and w, such as
radiation domination (α= 1

2 ).
For a de Sitter cosmology, f− 2TfT becomes constant in

time (see section 6.1.1)making the scalar field act as the source
for the accelerated behavior. The latter’s evolution, obtained
from the Klein–Gordon equation (6.71), is dependent on the
choice of potential. For the power-law potential, ϕ approaches

a constant value21 ϕ=±
√

−2H 2

V0
whereas in its absence (V0 =

0), the scalar field decays with time as ϕ(t)∝ e−Ht.
Finally, for aΛCDMcosmology in the absence of the scalar

potential, f (T) reduces to the standardΛCDMLagrangianwith
ϕ= e−

´
Hdt making the evolution independent of the scalar

field’s behavior.
In view of the above observations, the scalar field can be

made to act only as a source for the late-time acceleration by
constructing a potential which is predominantly absent during
earlier phases (such as matter domination) but becomes dom-
inant as the Universe transitions to accelerated phases (such as
de Sitter).

6.5.2. Noether’s symmetry approach. In the following, the
Noether symmetry approach has also been explored within
teleparallel scalar-tensor theories. Generally, the symmetries
also constrain the form of the scalar-tensor coupling as well as
the scalar potentials. For simplicity, the minimally and non-
minimally coupled cases shall be discussed separately.

6.5.2.1. Minimally coupled scalar fields. In [466], the
authors investigate the teleparallel analogue of Saez–Ballester
theory [467], which has been extensively explored in
curvature-based models [468–472]. Following the action
given in equation (5.102), the theory is recovered when
F1(ϕ) = F2(ϕ) = 0. For this case, the theory exhibits one
Noether symmetry together with the functional constraints

f(T) = t0T
2 +C, ω(ϕ)∝ ϕ−4, V(ϕ) = V0ϕ

−4 +C,
(6.79)

where C, t0 and V0 are integration constants. Aslam et al [466]
then fixes the latter parameters to investigate the resulting cos-
mology. In particular, a ΛCDM-like behavior is observed with
a scalar field which is phantom in nature and approaches DE
at late-times. Despite this, it has been noted that the C term
disappears from the Lagrangian and hence has no physical
consequences. However, its contribution still appeared in the
cosmological equations which may lead to a different cosmo-
logical behavior.

A further extension is explored in [473] which includes the
contribution of dust matter for the particular choice ω(ϕ) = ϵ,
where ϵ=+1,−1 correspond to a quintessence or phantom
field respectively. In this case, the Noether condition imposes
the following functional constraints

21 An extra factor of 4 appears in [254].

f(T) =
4
3
c1(−T)3/4 + c3, V(ϕ) = c4 + c5 (c1ϕ+ c2)

2
,

(6.80)

where c1, . . . ,c5 are integration constants. For c1 = 3
4 , c2 =

c4 = 0 and c5 = 1, the following distinct evolutionary beha-
viors were obtained:

(a) Quintessence—The scalar field grows with time while its
EoS becomes close to the phantom-divide line. The num-
ber of e-foldings increases exponentially with time;

(b) Phantom—The scalar field decays in an oscillatory fash-
ion with its EoS rapidly decreasing into the phantom
regime. The number of e-foldings becomes asymptotically
flat.

Finally, the minimal coupling case consisting of TEGR, a
scalar field with ω(ϕ) = 1 coupled with an electromagnetic
tensor scalar field coupling was explored in [474]. Namely,
this introduces the contribution 1

4 f(ϕ)
2FµνFµν to the gravita-

tional action, i.e.

L=− T
2κ2

− 1
2
ϕ;µϕ

;µ+V(ϕ)+
1
4
f(ϕ)2FµνF

µν , (6.81)

where f(ϕ) represents the coupling strength, to the gravit-
ational action which role is to explain inflationary phases
[475] as well as to generate late-time acceleration [476].
Since TEGR is considered, the field equations are identical
to its curvature analogue meaning the Noether symmetries
match with those obtained, for instance, in [476]. However,
there appear to be differences in the Noether equations. For
instance, neglecting time symmetries for simplicity, the con-
dition 2αa = 0 appearing in [474] should be α+ 2aαa = 0 as
correctly reported in [476]22.

6.5.2.2. Non-minimally coupled scalar fields. Non-minimal
scalar field couplings with the torsion and boundary term
scalars have been explored in [416, 477, 478] with f(T) = 0,
ω(ϕ) = 123. Starting with [477, 478], in order to simplify the
Noether symmetry analysis, the following models were con-
sidered:

Model I [477] F2(ϕ) = 0, V(ϕ) = λϕ
6

2n+3 where n 6=−3/2,

Model II [478] F2(ϕ) 6= 0, V(ϕ) = λϕ2,

with λ⩾ 0. The first model describes the absence of the
boundary term coupling while a general power-law potential
is considered whereas the second model maintains both coup-
lings while the potential is taken to be quadratic.

Through Noether symmetry, both F1(ϕ) and F2(ϕ) coup-
ling functions turn out to be constrained, as summarized in
table 9. Evidently, both coupling terms generally take on
a power-law form and each consist of a quadratic coupling
which is reminiscent of teleparallel DE [288].

22 The typo in [474] did not effect the main results which are in a different
convention to other works.
23 The Lagrangians between [477, 478] differ by a factor of 2. The necessary
factors have been included for sake of consistency.
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Table 9. The resulting functional constraints imposed by Noether
symmetry for the two models considered in [477, 478]. The
integration constants c1,2 and k̃ arise from the Noether constraint.
Observe that in Model II, when k̃= 0 and c1 =− 1

2 , F2(ϕ) = 0,
which matches the Model I result when n= 0 as expected.

Model F1(ϕ) and F2(ϕ)

I F1(ϕ) =− (2n+3) 2

24 ϕ2, F2(ϕ) = 0
II

(a) k̃ ̸=−3 F1(ϕ) =
3
8ϕ

2 + 3c1
2 ϕ

2(̃k+3)
3 ,

F2(ϕ) =−ϕ 2

4 − 3c1
2(k̃+3)

ϕ
2(̃k+3)

3

(b) k̃=−3 F1(ϕ) =
3
8ϕ

2 − 3c2
ϕ 2 +

3c1
2 ,

F2(ϕ) =−ϕ 2

4 − c1 lnϕ

Prior to examining the resulting cosmological behaviors,
the coordinates were first transformed to a new set of coordin-
ates (u, z) with z being a cyclic coordinate24. Thus, this yields
a constant of motion I0 which influences the nature of the cos-
mology as shown in table 10.

Starting with I0 = 0, the potential becomes zero in both
models. Depending on the choice of integration constants,
both models can contain static (z1 6= 0,z2 = 0) and power-
law (z1 = 0,z2,n 6= 0) behaviors while Model I can also host
(anti)-de Sitter (z2 6= 0,n= 0) behavior. Transition periods
may be realized for more general parameter considerations.

Moving on to the I0 6= 0 case, each model exhibits distinct
behaviors. In Model I, n 6= 0,−3,−6 leads to a power-law
behavior which can result into an ever-accelerating phantom
or quintessence cosmology. For n= 0, the scale factor yields
an evolution which can be associated with a multi-fluid scen-
ario. Furthermore, a late-time de Sitter phase is achieved since
the scalar field component approaches DE behavior. Lastly,
for n=−3, the scalar field component can behave as a non-
phantom fluid which approaches a DE state at late-times. Sim-
ilar to the n= 0 case, this Universe becomes accelerating and
approaches a de Sitter-like state.

For Model II, for k̃ 6=−3,−6, various cosmological beha-
viors can be obtained. For instance, this Universe may exper-
ience accelerating and decelerating phases whereas the scalar
field fluid can behave as either a phantom or a non-phantom
fluid. Therefore, this solution can be used to explain transition-
ing periods. In particular, a late-time de Sitter-like behavior
can be achieved for small k̃ values. Finally, k̃=−3 can host
a de Sitter solution which is expanding provided I0

c1α1
< 0 and

leads to a growing potential which serves as the main driving
force for the expansion.

In the absence of the boundary term coupling (F2(ϕ) = 0),
four Noether symmetries are obtained which constrain F1(ϕ)
and V(ϕ) to be [416]:

24 The Model II point-like Lagrangian in terms of these new coordinates is

L=− u̇ 2

2
+ 2c1α1u

2̃k+3
3 u̇ż+λu 2 + 4c2α1

2 ż 2

u 2 with the c2 contribution being

absent for k̃ ̸=−3, andα1 is an integration constant. This is different from that
reported in [478], hereby affecting the nature of the cosmological solutions.
As c2 only appears for the case when k̃=−3, the presented solutions shall
hold true only for c2 = 0.

(I) F1(ϕ) =− (2n+ 3)2

24
ϕ2, V(ϕ)∝ ϕ

6
2n+3 ,

(II) F1(ϕ)∝ ϕ2, V(ϕ)∝ ϕ2,

(III) F1(ϕ) = constant, V(ϕ)∝ eαϕ,

(IV) F1(ϕ)∝ c1 + c2ϕ+ c3ϕ
2,

V(ϕ)∝ (c1 + c2ϕ+ c3ϕ
2)2,

for constants n and α. Observe that the first two models are
precisely the cases described previously in [477, 478] whereas
the third and fourth model are new symmetries which could
not be derived in the previous analysis. While these scenarios
were not explored in further detail, the quantum cosmological
description using the Wheeler–de Witt equation and Hartle’s
criterion was applied for the second model. In this case, the
Universe’s wave function satisfies Hartle’s criterion and thus
the classical trajectories reduce to the cosmological behaviors
as obtained in [477, 478].

In the case of generalized couplings, the results obtained
in [479, 480] are reviewed. Tajahmad [479] considers the
f(T,ϕ,X) sub-class

L= f(ϕ)T−U(ϕ,X)g(T)− ω(ϕ)

2
ϕ,µϕ

,µ+V(ϕ), (6.82)

where U(ϕ,X) is a coupling function chosen be U= h(ϕ)ϕ̇.
Applying the Noether condition leads to the following func-
tional constraints

f(ϕ)∝ ϕ2, g(T)∝
√
−T, h(ϕ)∝ ϕ,

V(ϕ) = V0ϕ
2, ω(ϕ)is constant, (6.83)

where V0 is an integration constant. The corresponding cos-
mological behavior was investigated for the particular choices
f(ϕ) = 3

32ϕ
2 and ω(ϕ) = 1, leading to the scale factor

a(t) = (c1t+ c2)
2/3 exp

(
8
3
V0t

2 +

[
c3 −

16
3
V0c2
c1

]
t+ c4

)
,

(6.84)

with c1, . . . ,c4 representing integration constants. However, as
both f(ϕ),ω(ϕ)> 0, this may lead to a non-canonical scalar
field, depending on the form of the second term in the Lag-
rangian (6.82).

On the other hand, [480–482] consider a fermionic coup-
ling in the form

L= h(u)f(T)− i
2

[
ψ̄ΓµDµψ−

(
D̄µψ̄

)
Γµψ

]
+V(u), (6.85)

where ψ is the fermion function, Γµ = E µ
A γ A with γa repres-

enting the Dirac matrices, and u= ψψ̄. Overbars represent the
respective adjoint operators. The TEGR coupling case f(T) =
T has been explored in 3+ 1 [481] and 2+ 1 [482] spacetimes.
Starting with the former, the Noether condition imposes the
constraint on the coupling functions h(u)∝ u

2n+1
3 and V(u)∝

u, where n is some constant which greatly influences the nature
of the cosmology. This can be summarized as follows:
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Table 10. The corresponding cosmological behaviors for each Noether symmetry depending on the constant of motion I0 as obtained in
[477, 478]. Here, b := I0(n+3)

α0(2n+3) , ℓ :=− I0(n+3)
3α0c1

and u1, . . . ,u4, z1, . . . ,z6 are integration constants. It is remarked that the cases n=−6 and

k̃=−6 were not studied.

Model Scale Factor

Case I: I0 = 0

Model I a∝

{
(z1 + z2t)

− 1
2n , for n ̸= 0

e−
2α0
3

(z1+z2t), for n= 0

Model II a∝ (z1 + z2t)
− 1

k̃

Case II: I0 ̸= 0

Model I

(a) n ̸= 0,−3,−6 a∝ (bt+ c1)
− 3

n(n+3)

(b) n= 0 a= (α0u1 + I0t)
1
6 e

2
3

(
−α0z3+

2α0u1λt
I0

+λt 2
)

(c) n=−3 a∝ e−
I0 t

6α0

(
c2 +

2α0λu2
3

I0 2 e−
I0 t
α0

) 1
6

Model II

(a) k̃ ̸=−3,−6 a∝
[(

3λα1c1(u3+ℓt)
2

I0 2(k̃+6)
− 3

8α1c1 k̃

)
(u3 + ℓt)

− k̃
k̃+3 + z4

]− 1
k̃

(b) k̃=−3 a∝
[
z5u4

2e−
I0 t

c1α1 + z6
] 1

3

(a) n=− 1
2 yields a(t)∼ t

2
3 with the fermionic field behaving

as dust;
(b) n= 1 gives de Sitter and hence can describe inflationary

epochs. Here, the fermionic field behaves as a cosmolo-
gical constant;

(c) n 6= 1,− 1
2 leads to a(t)∼ t

1
1−n . For 0< n< 1, the fermi-

onic field has phantom behavior while n> 1 leads to quint-
essence behavior.

In 2 + 1 spacetime, the functional constraints take on vari-
ous forms depending on whether the gauge term g(t,qi) in the
Noether symmetry condition is maintained (see the supple-
mentary annexes (supplementary 1)).When neglected (g= 0),
the resulting cosmology becomes identical to the 3+1 scen-
ario, else we find h(u)∝ u

2k
k+1 and V(u)∝ u

2
k+1 for some con-

stant k, which magnitude alters the cosmological behavior,
namely:

(a) k 6= 1: a(t)∼ t
k+1

2(1−k) which can be decelerating (−1< k<
1
3 ), coasting (k= 1

3 ) or otherwise accelerating. Mean-
while, the fermionic field can behave as a quintessence
field ( 12 < k< 1) or a phantom field (k<−1or k> 1);

(b) k= 1: de Sitter with fermionic field behaving as a cosmo-
logical constant.

Finally, for the general case [480], the Noether condition
imposes the constraints f(T)∝ T

m−1
n , V(u)∝ u and h(u)∝ um,

leading to a power-law cosmology a∼ t
3n
2 . Interestingly, the

parameter m does not affect the evolution. As only a power-
law behavior is obtained, the model appears to be insufficient
to describe the whole Universe’s history but it may be viable
for specific epochs.

6.5.3. Dynamical system approach. Similar to the Noether
symmetry approach, the dynamical system approach is
explored for a number of teleparallel scalar-tensor theor-
ies, categorised under minimally and non-minimal couplings.
These shall be discussed separately with a comparisonmade in
cases where the non-minimal dynamics reduce to the minimal
ones.

6.5.3.1. Minimally coupled scalar fields. In [423, 483], the
f (T) gravityminimal couplingmodel havingF1(ϕ) = F2(ϕ) =
0 and ω(ϕ) = 1 was studied. In [483], an interaction between
a dust fluid and the DE scalar fluid was considered for the
model f(T) =−T+α

√
−T. As this reduces to standard min-

imally coupled TEGR with a scalar field, the results are not
explored further.

Instead, the deviation fromTEGR is explored in [423] in the
absence of matter fluids with the scalar (inflaton) field obeying
the constant-roll approximation ϕ̈= βHϕ̇, where β represents
the constant-roll parameter. This, in turn, leads to the assump-
tion that the Hubble parameter takes on the form

H(ϕ) =Mcos

(
κ

√
β

2
ϕ

)
, (6.86)

with M⩽ κ−1. For this model, the f (T) dynamical system
approach discussed in section 6.1.3 can be directly applied by
using equation (6.21) with the inflaton’s EoS

wϕ =
1
2 ϕ̇

2 −V(ϕ)
1
2 ϕ̇

2 +V(ϕ)
, (6.87)

in conjunction with the FLRW equations (6.70a) and (6.70b).
This leads to the one-dimensional autonomous relation
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Ḣ=
6
fHH

[
f−HfH+ 2κ2V(ϕ)

]
. (6.88)

The f (T) function can be reconstructed by combining the
FLRW equations (6.70a) and (6.70b) whereas the potential
is obtained from the modified Klein–Gordon equation (6.71).
The resulting functions take on the forms

f(Φ) = 3M2 cos(2Φ)+ c1 [Φcos(Φ)− sin(Φ)]+ c2, (6.89a)

V(Φ) =
M2[(β+ 3)cos(2Φ)−β+ 6]

2κ2
+

(β+ 3)c1 sin(Φ)
6κ2

− βc1 2

144κ2M2
− c2

2κ2
, (6.89b)

where Φ := κ
√

β
2 ϕ, c1 and c2 being integration constants. It

is remarked that the f (T) solution can be expressed in terms of
the torsion scalar by inverting the relation T=−6M2 cos2(Φ).
Substituting back into the autonomous relation equation (6.88)
leads to

Ḣ= β
(
H2 −M2

)
+
βc1
12M

√
M2 −H2, (6.90)

which is different than the one given in [423]. This leads to a
different set of critical points and hence, a possible different
dynamical behavior. Nonetheless, we highlight the reported
results.

For c1 < 0, the Universe interpolates between a Type IV
initial singularity (which replaces the initial Big Bang sin-
gularity) and a late-time de Sitter cosmology. Throughout
the cosmic evolution, the Universe experiences a decelerated
expansion and a late-time behavior compatible with ΛCDM
especially for small c1 values. Meanwhile, for c1 > 0, a cyc-
lic Universe is obtained, one which interpolates between two
Type II singularities.

6.5.3.2. Non-minimally coupled scalar fields. The dynam-
ical system analysis for the non-minimally coupled scalar field
case has been extensively studied in numerous works. Here,
we review [295, 302, 484–489].

Starting with the T-coupling cases (F2(ϕ) = 0) with f(T) =
−T, in [487], the coupling F1(ϕ) = ξϕ2 with kinetic coupling
ω(ϕ) = 1 and potential V(ϕ)∝ e−λϕ was explored using the
dimensionless phase-space variables

x̃2 :=
κ2ϕ̇2

6H2
, ỹ2 :=

κ2V(ϕ)
3H2

, z̃ :=
√

|ξ|ϕ, Ωm :=
κ2ρm
3H2

(6.91)

in the presence of dust. Solving the autonomous system and
use of Poincaré’s projection method yields a number of critical
points as summarized in table 11.

The critical points D, E, F, J can be dynamically stable,
corresponding to a quintessence Universe (D), decelerating
matter dominated Universe with DE behaving as matter (E),
and DE dominated de Sitter accelerating universes (F, J).

Furthermore, the critical points (B–E) only appear if the scalar
field is minimally coupled (ξ = 0). Meanwhile, the boundary
critical pointsQ1,2 are unstable and leave an arbitrary DE fluid
behavior meaning that these points could describe transition,
inflationary or de Sitter phases. For minimally coupled scen-
arios, a viable cosmology can be realized following the tra-
jectory A → D while for non-minimally coupled cases A →
F/G/J provided that the relevant existence and stability criteria
are satisfied. A finite phase-space representation of the latter
for both minimally and non-minimally coupled cases is illus-
trated in figure 18.

An extension of the previous model, explored in [485],
takes into account the interaction between the scalar field and
the matter content via an interaction term Q for a number of
interactions and potentials, namely (i) Q= 0, (ii) Q∝ ρmϕ̇,
(iii)Q∝ Hρ, (iv)Q∝ Hρm, and (A) V(ϕ)∝ e−λϕ, (B) V(ϕ)∝
ϕn. Here, λ and n are constants. Interestingly, the interaction
models (iii) and (iv) yield no critical points. Meanwhile, only
a few selected models can realize a viable cosmology.A(i) can
realize a matter → de Sitter sequence whereas only the late-
time de Sitter phase is apparent in B(i). On the other hand,
A(ii) and B(ii) yield a scaling solution to de Sitter.

Meanwhile, the special non-interacting case Q= 0 in the
presence of a dust fluid was investigated in [489] but for a
linear V(ϕ)∝ ϕ and exponential V(ϕ)∝ e−ϕ potentials. The
critical points therefore reduce to the ones given in [485] by
setting n= λ= 1. In this case, the exponential model is still
able to generate a viable cosmology from matter domination
→ de Sitter.

In [486], the T-coupling is investigated for the generalized
power-law form F1(ϕ) = ξϕÑ for some Ñ> 0 and power-law
potential V(ϕ) = V0ϕ

n with V0 > 0 and n is some constant.
Here, the dynamics have been explored in vacuum using a new
set of dimensionless phase-space variables

m :=
ϕ̇

Hϕ
, A :=

ÑϕÑ

1− ξϕÑ
. (6.92)

Depending on whether Ñ= 2 or Ñ 6= 2, different critical points
are obtained. In the latter, only a de Sitter behavior appears.
On the other hand, for Ñ= 2, the choice of ξ determines the
cosmological behavior:

(a) ξ > 0: no stable points and therefore unable to describe any
late-time behavior;

(b) ξ < 0: this Universe can evolve from de Sitter → power-
law provided n 6= 2 and n is odd. To maintain a late-time
accelerating behavior, (n2 − 4)ξ < 2.

Finally, [488] considers f(T) = αT+ c1
√
−T+ c2,F1(ϕ)∝

ϕ2, ω(ϕ) =±1 and potential V(ϕ)∝ eβϕ where c1,2,α
and β > 0 are constants. For the phase-space variables
equation (6.91) leads to two unstable critical points which their
physical description was not explored. Nonetheless, through
numerical analysis, a late-time phantom behavior was found.

Moving on to the case which explores theB-coupling, [295]
is reviewed which investigates the model F1(ϕ) = 0, F2(ϕ) =
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Table 11. Summary of the critical points investigated in [487] for the non-minimal torsion scalar coupling model. A–J represent the finite
boundary critical points whereas Qi are the critical points found at the boundary derived using Poincaré’s projection method. Here, the
Poincarè variables are x̃r = ρcosθ sinψ, ỹr = ρcosψ, z̃r = ρsinθ sinψ where ρ= r√

1−r 2
with r=

√
x̃2 + ỹ2 + z̃2, θ ∈ [0,2π] and

ψ ∈ [−π
2 ,

π
2 ].

(x̃⋆, ỹ⋆, z̃⋆) Existence Stability Properties

A (0,0,0) Always Saddle Matter dominated decelerating
universe

B(+)/C(−) (±1,0,0) ξ= 0 Unstable (λ(+) <
√
6,

λ(−) > 6), saddle otherwise
DE dominated dec. universe behaving
as a stiff fluid

D
(
λ√
6
,
√

1− λ 2

6 ,0
)

ξ= 0, λ2 ⩽ 6 Stable node (λ2 < 3),
saddle otherwise

DE (quintessence) dominated universe

with a(t)∝ t
2

λ 2

E

(√
3
2

1
λ
,
√

3
2

1
λ
,0

)
ξ= 0, λ2 ⩾ 3 Stable node (3< λ2 < 24

7 ),
stable spiral (λ2 > 24

7 )

Decelerating matter dominated phase
with DE behaving as dust

F(−)/G(+)
(
0,

√
2(ξ±

√
ξ(ξ−λ 2))

λ 2 ,

(ξ−
√
ξ(ξ−λ 2))

√
|ξ|

λξ

) 0< λ2 ⩽ ξ,
or ξ < 0 (G)

F: Stable node (λ2 < ξ); G:
Saddle

Accelerating de Sitter DE domination

J (0,1,0) ξ ̸= 0, λ= 0 Stable spiral ( 3
8 < ξ), stable

node (0< ξ < 3
8 ), saddle

otherwise

Accelerating de Sitter DE domination

(x̃⋆r , ỹ
⋆
r , z̃

⋆
r ) Existence Stability Properties

Q1,±

(
∓ 1√

2
,0,± 1√

2

)
ξ > 0 Unstable (0< ξ < 3

8 ),
saddle otherwise

Accelerating (ξ > 1
6 ) with phantom

behavior (ξ > 3
8 ). Arbitrary DE EoS

Q2,±

(
± 1√

2
,0,± 1√

2

)
ξ > 0 Saddle Non-accelerating universe. Arbitrary

DE EoS

Figure 18. Projection of the finite phase-space on the x-y plane for the T-coupling (a) minimal and (b) non-minimal scalar field cases. In the
former, the evolution approaches the late-time quintessence dominated behavior (D). Once the non-minimal coupling is introduced, the
behavior changes considerably. While the critical points B–E no longer exist, the cosmology can remain for a long finite time near E. Then,
the system evolves to the matter dominated state A followed by the de Sitter critical point G. However, as this point is saddle, it does not
represent the final evolutionary state. Here, x→ x̃ and y→ ỹ to match our conventions. Reproduced from [487]. © IOP Publishing Ltd. All
rights reserved.
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Table 12. Summary of the critical points for the boundary-scalar coupling model considered in [295]. The stability and cosmological
implications only reflect the dust matter case.

(x̃⋆, ỹ⋆, z̃⋆) Existence Stability Properties

O (0,0,0) Always Saddle Matter dominated decelerating
universe

A± (±1,0,0) χ= 0 P2,+ : Unstable (λ <
√
6),

saddle otherwise;
P2,− : Unstable (λ >

√
6),

saddle otherwise

DE dominated dec. universe behaving
as a stiff fluid

B
(√

3
2
1+w
λ
,
√

3
2

√
1−w 2

λ
,0
)

χ= 0, λ2 ⩾ 3(1+w) Stable node (3< λ2 < 24
7 ),

stable spiral (λ2 > 24
7 )

Scaling solution

C

(
λ√
6
,
√

1− λ 2

6 ,0

)
χ= 0, λ2 < 6 Stable node (λ2 < 3),

saddle otherwisea
Quintessence DE domination with
a(t)∝ t

2
λ 2

D

(
0,1,

√
2
3λ

)
Always Stable spiral (48χ > λ2 + 6),

stable node (0< 48χ < λ2 + 6),
saddle otherwise

Accelerating de Sitter DE domination

E (0,1,0) χ ̸= 0, λ= 0 Stable spiral ( 1
8 < χ),

stable node (0< χ < 1
8 ),

saddle otherwise

Accelerating de Sitter DE domination

a A parameter β appears in [295], however no source for its significance was found. Nonetheless, the point corresponds to the same behavior found in [487].

χϕ2, ω(ϕ) = 1 and V(ϕ)∝ e−λϕ. In this case, the phase-space
variables are

x̃2 :=
κ2ϕ̇2

6H2
, ỹ2 :=

κ2V(ϕ)
3H2

, z̃ := 2
√
6χϕ, Ωm :=

κ2ρm
3H2

.

(6.93)

To maintain physical solutions, the following additional con-
ditions were imposed: x̃2 + ỹ2 + x̃z̃⩽ 1 (ensuring that the mat-
ter density is positive) and y> 0 (the potential is assumed to
be positive). Similar to [487], Poincaré’s projection method is
necessary to complete the analysis. However, as the bound-
ary critical points turn out to be non-physical, only the finite
critical points shall be discussed which are summarized in
table 12. It is remarked that the stability and physical beha-
vior has been carried out only for the dust matter case (w= 0)
but can be easily extended for more general fluids. In addi-
tion, the special case χ= 0 leads to the identical critical points
obtained in [487] for the ξ= 0model as they lead to to the same
gravitational Lagrangian, the only difference being the gener-
alization to an arbitrary fluid constant EoS. When χ 6= 0, only
the critical points O (decelerating matter domination) and D,
E (accelerating de Sitter) remain which can constitute a viable
cosmological evolution (see figure 19).

Lastly, the generalized quintom case model which con-
siders both T and B-couplings is discussed in [302]. In partic-
ular, the following non-minimal couplings and potentials have
been considered

f1(ϕ)=c1ϕ
2, f2(σ)=c2σ

2, g1(ϕ)=c3ϕ
2, g2(σ)=c4σ

2,
(6.94a)

V(ϕ,σ) = Ṽ(ϕ)+ V̄(σ) = V1e
−λ1ϕ+V2e

−λ2σ, (6.94b)

Figure 19. Dynamical behavior of the B-non-minimal coupling
scenario described via the projection onto the x-y phase-space plane.
Clearly, the evolution evolves toward a late-time de Sitter attractor
(D). Note the identification x→ x̃ and y→ ỹ to match the review
convention. Reprinted figure with permission from [295], Copyright
(2015) by the American Physical Society.

where c1, . . . ,c4, V1,V2 and λ1,λ2 are constants. To build the
dynamical autonomous system, the following dimensionless
variables were defined

Ωm =
κ2ρm
3H2

, x̃2 =
κ2ϕ̇2

6H2
, ỹ2 =

κ2V1(ϕ)

3H2
, z̃= 2

√
6ξϕ,

(6.95a)

ũ2 =
κ2σ̇ 2

6H2
, ṽ2 =

κ2V2(σ)

3H2
, w̃= 2

√
6χσ, (6.95b)

where the dynamical variable s can be determined via the
Friedmann equation (6.73a) hereby reducing the dimension-
ality of the autonomous system. Here, the matter content is
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assumed to behave as a perfect fluid with EoS w ∈ [−1,1]
whereas the constraints ỹ, ṽ⩾ 0 (to ensure non-negative poten-
tials as in standard quintessence theories) and Ωm > 0 (to
ensure a positive matter energy density) were considered.
Solving the autonomous systems yields 13 critical points
characterizing a matter dominated phase and DE dominated
phases, the latter of which consists of:

(a) one of the scalar fields being absent with the other frozen
in time with either zero or non-zero potential energy;

(b) both scalar fields frozen in time while the Universe accel-
erates in a de Sitter phase.

Based on their dynamical stability, a matter → DE evol-
utionary sequence can be achieved under suitable parameter
choices.

6.6. Other theories

In the following, we explore other theories investigated in
the context of cosmology. These approaches have not yet
been extensively explored as the previous TG models espe-
cially under the approaches considered in this section. For this
reason, a brief summary of the results is provided together with
associated FLRW equations where applicable.

6.6.1. Non-local theories. The FLRW for non-local given
by (5.138) are

κ2ρ= 3H2(θ+ 1− ξf(ϕ,φ))+ 3χHḟ− ζ̇(3H+
1
2
φ̇)− 1

2
θ̇ϕ̇,

(6.96a)

−κ2p= (2Ḣ+ 3H2)(1+ θ− ξf(ϕ,φ))+
1
2
ϕ̇(θ̇− 4ξHfϕ)

− 2ξHφ̇fφ+ 2Hθ̇− ζ̈ +
1
2
ζ̇φ̇+ χ̈f, (6.96b)

while the scalar field equations are

0=−6χḢfϕ− 6H2(ξ+ 3χ)fϕ+ 3Hθ̇+ θ̈, (6.97a)

0=−6χḢfφ− 6H2(ξ+ 3χ)fφ+ 3Hζ̇ + ζ̈, (6.97b)

0= 3Hϕ̇+ 6H2 + ϕ̈, 0= Ḣ+ 3Hφ̇+ 18H2 + φ̈. (6.97c)

In the above, ϕ=
◦
□−1T, φ=

◦
□−1B,

◦
□θ =−(ξT+

χB)∂f(ϕ,φ)∂ϕ and
◦
□ζ =−(ξT+χB)∂f(ϕ,φ)∂φ .

6.6.1.1. Noether’s symmetry approach. The study of
Noether symmetries in GTNL gravity has been investig-
ated in [335, 490] using its scalar-tensor equivalent form
equation (5.140b). Taking the configuration space Q=
(t,a,ϕ,φ,θ,ζ) yields 7 distinct symmetries which stem from
the generalized Noether vector

Table 13. A summary of the distinct Noether symmetries Si
together with the associated constrained f(ϕ,ψ) function derived in
[335, 490]. Here, c1, . . . ,c11 are integration constants,
c12 ≡ c5c6 − c4c7 + c5c9, while F(x),G(x),H(x) and I(x) are
arbitrary functions.

Symmetry f(ϕ,ψ)

S1 c10 = 0, c3,7 ̸= 0,
c4c7 ̸= c5(c6 + c9)

1
ξ
+ c11c12

c3
exp

[
c3
c12

(c5φ− c7ϕ)
]

S2 c3,10 = 0, c7 ̸= 0,
c4c7 = c5(c6 + c9)

c11 +F(−c7ϕ+ c5φ)

S3 c7,10 = 0, c3,5 ≠ 0,
c5 ̸=−c6

c3−c10
ξc3

+ c11 exp
(

c3
c6c9

φ
)

S4 c3,7,10 = 0, c5 ≠ 0,
c5 =−c6 = c9

c11 +G(φ)

S5 c5,7,10 = 0, c3,4 ̸= 0 c3−c10
ξc3

+H
(
− c6+c9

c4
ϕ+φ

)
ec3ϕ/c4

S6 c3,4,5,7 = 0, c6 ̸=−c7 c10ψ
(c6+c9)ξ

+ I(ϕ)

S7 c3,4,5,7,10 = 0,
c6 =−c7 =−c9

Arbitrary

X=

(
c1t+ c2,

1
3
(c1 − c3)a,c4 + c5 (6lna+ψ) ,c6

+ c7 (6lna+φ)+ c9,c10 + c3θ,(c3 − c7)ζ − c5θ+ c8

)
,

(6.98)

with c1, . . . ,c10 being integration constants and ψ ≡ φ−ϕ.25

Each symmetry constraints the form of f(ϕ,ψ) (and ultimately
the non-local theory) as summarized in table 13 and, cor-
respondingly, the cosmological behavior. The obtained res-

ults match with the non-local f (T) (χ= φ= ζ = 0) and f(
◦
R)

(ξ =−χ=−1, θ =−ζ and f(ϕ,φ) = f(ψ)) gravity limiting
cases [335, 490].

Interestingly, some forms of f(ϕ,ψ) host exponential con-
tributions which are known to make the theory renormalizable

(at least in the non-local f(
◦
R) cases) [491–493]. In fact, a sim-

ilar observation is found in the study of Noether symmetries

in non-local f(
◦
R) gravity [494].

Only the cosmological expansion behavior of S1 has been
investigated in detail where it hosts both de Sitter and power-
law behaviors [335]. Nonetheless, it is claimed that these beha-
viors also appear in the remaining symmetries. For the non-
local f (T) gravity sub-case, the de Sitter behavior appears as
a solution to the field equations [490]. As the general analytic
scale factor behavior is not obtained, use of statefinder para-
meters showed the cosmological sequence consisting of decel-
eration → acceleration → asymptotically de Sitter with peri-
ods where this Universe lies in a phantom domination epoch
which may suggest quintom behavior. However, the decelera-
tion phase may persist for a sufficiently long time leading to a
fine tuning problem of the initial conditions [490].

25 Following [335], some integration constants do not appear for particular
symmetries (for example, c10 in S1). However, as these constants do not appear
in both the Noether vector and the function f(ϕ,ψ), they are taken to be zero.
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6.6.1.2. Dynamical system approach. The cosmological

dynamics of the non-local f(T) = T(A
◦
□−1T+B− 1) grav-

ity model, where A,B are constants, has been investigated in
[495]. Here, the presence of interacting dust (matter), radi-
ation, DE and scalar field fluids are considered. This interac-
tion is described through the interaction coefficients Γa∑

a

Γa = 0, Γa = 3H3
∑
b

αabΩb, (6.99)

where − 1
3αmΛ = αΛΛ = αrΛ = αϕΛ = 2β for some constant

β. The phase-space variables are taken to be the density para-
meters Ωa, leading to a four-dimensional autonomous system.
However, careful re-examination illustrates the following key
observation.

The Friedmann equations yield the constraint
∑

aΩa =
1− 2B which, in principle, allows for an elimination of one
of the dynamical phase-space variables reducing the dimen-
sionality of the system. Solving the four-dimensional system
instead fixes the value of B. More importantly, a realistic
critical point is obtained provided all the density paramet-
ers are non-negative. This ultimately leaves the critical point
(Ω⋆m,Ω

⋆
Λ,Ω

⋆
r ,Ω

⋆
ϕ) = (0,0,0,0) (Point C) as the only viable

point as the remaining critical points do not appear for the fol-
lowing reasons:

(a) Point A becomes non-physical as the matter density
becomes negative;

(b) Points B, D and E reduce to the critical point C.

This critical point represents an empty static Universe
which is either stable or saddle. Thus, it is not suited to
describe the late-time behavior.

Finally, the stability of a de Sitter solution for the spe-
cial case when A=−1 and B = 0 was investigated. In the
absence of matter fluids, the de Sitter cosmology turns out to
be unstable, while inclusion of matter fluids yields an asymp-
totically stable static Universe critical point. Thus, the model
does not appear to be a viable alternative in describing a late-
time, de Sitter behavior.

6.6.2. Higher-order derivative TG. The higher-order deriv-
ative theory described in section 5.7 adds two scalars that con-
tain depend on the torsion scalar. These scalars for flat FLRW
become

(
◦
∇T)2 =

144H2

N2
Ḣ2, (6.100a)

◦
□T=−12Ḣ2

N2
− 12HḦ

N2
− 12HḢ

N3

(
3HN2 − Ṅ

)
, (6.100b)

and then, by performing variations wrt the lapse and the scale
factor (and then setting N= 1), we arrive at the modified
FLRW given by

κ2ρ=−1
2
f(T,X1,X2)− 6H 2̈fX2 + 6HḟX2(Ḣ− 3H2)

− 6fX2(HḦ+ 3H2Ḣ+ Ḣ2)− 144H3 ḟX1Ḣ

− 144fX1H
3(Ḧ+ 3HḢ)− 6fTH

2, (6.101a)

−κ2p=−1
2
f(T,X1,X2)− 2

...
f X2

H− 2̈fX2(Ḣ+ 6H2)

− 18HḟX2(Ḣ+H2)− 6fX2(HḦ+ 3H2Ḣ+ Ḣ2)

− 48H 2̈fX1 Ḣ− 48HḟX1(2HḦ+ 6H2Ḣ+ 3Ḣ2)

− 48fX1

(
6H3Ḧ+ 9H4Ḣ+ Ḣ3 +H2(

...
H+ 12Ḣ2)+ 4HḢḦ

)
− 2HḟT− 2fT(Ḣ+ 3H2), (6.101b)

where fX1 = ∂f/∂(
◦
∇T)2 and fX2 = ∂f/∂

◦
□T. It should be noted

that the second FLRW (6.101b) is not the same as the one
reported in [286]. This means that the study performed in that
reference could contain some mistakes.

6.6.2.1. Noether’s symmetry approach. In [416], the

Noether symmetry approach for the f(T,
◦
□T) sub-class has

been investigated for the configuration space Q= (a,T,
◦
□T).

However, the derived FLRW equations do not match with the
ones given previously. It appears that the issue stems from the
determination of the Lagrange multipliers λ1,λ2. Considering
the minisuperspace higher-order theory Lagrangian

L= a3f(T,
◦
□T)−λ1(T+ 6H2)−λ2

( ◦
□T− T̈− 3HṪ

)
(6.102)

and taking variations wrt T yields

∂L
∂T

− d
dt

(
∂L
∂Ṫ

)
+

d2

dt2

(
∂L
∂T̈

)
= 0

=⇒ a3fT−λ1 + 3Ḣλ2 + 3Hλ̇2 + λ̈2 = 0. (6.103)

Contrary to that reported, it does not constrain λ1 directly
due to the terms emerging from the Ṫ and T̈ contributions.
Re-expressing the minisuperspace Lagrangian in terms of the
scale factor a(t) instead would resolve this issue leading to the
correct set of field equations. Thus, the Noether symmetry res-
ults may no longer hold and thus are not reported.

6.6.2.2. Dynamical system approach. For the general
higher-order theory theory, the dynamical system approach
has been explored in [286]. Generally, an autonomous sys-
tem can be easily constructed following the definition of the
dynamical variables

Z1 := H, Z2 :=
Ḣ
H2

, . . . , Zl+1 :=

l
H
Hl+1

, (6.104)

where overhead indices represent the number of time derivat-
ives. Any critical point of the system would then be classified
under two distinct cases:
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(a) Z1
⋆ > 0,Z2, ..., l+2

⋆ = 0: de Sitter cosmology;
(b) Z1

⋆ =,Zl+2
⋆ = l!(l+ 2)Z2

⋆(l+1): power law evolution

a(t)∝ t−
1

Z2
⋆ .

Although the general dynamical behavior of the theory was
not explored, two ansatz forms were considered:

(i)−T− α1(
◦
∇T)2

T2
−α2e

δ(
◦
∇T) 2

T 4 ,

(ii)−T− β1
◦
□T
T

− β2(
◦
□T)2
T3

−β3e
σ

◦
∇T
T3 , (6.105)

where α1,2, β1,2,3 with β2 =
7β1
34 , δ and σ are constants. For

simplicity, the dynamics have been investigated in the pres-
ence of a perfect matter fluid having constant EoS. However,
as equation (6.101b) does not match with the one reported
in [286], the resulting dynamical behaviors may be differ-
ent from those reported. Here, we summarize the results for
completeness.

The first model contains quintessence dominated and de
Sitter phases as late-time attractors. Furthermore, the cosmo-
logical sequence radiation → matter → DE can be realized
for suitable choices of α1,α2 and δ. In the second model,
only a stable de Sitter critical point appears while intermediary
phases are not well realized making the model not viable.

6.6.3. Mimetic and unimodular teleparallel cosmology. In
the unimodular formulation [250, 251], the f (T) Lagrangian
has been reconstructed for the power law cosmology a(t)∝ tq

in the presence of a perfect fluid with constant EoS, leading
to26

f(T) = Λ+
(3q− 1)κ2ρm0

1− 3q(2+w)

(
T
T0

)− 3q(1+w)
2(3q−1)

,

λ= Λ− 2κ2ρm0

(
T
T0

)− 3q(1+w)
2(3q−1)

, (6.106)

where λ represents the Lagrange multiplier which imposes the
unimodularity constraint and Λ is an integration constant. For
the case of HDE, the Lagrangian reduces to rescaled TEGR
[252].

Meanwhile, the cosmological dynamical behavior of
mimetic f (T) gravity has been investigated in [347] in the pres-
ence of dust, radiation and dark matter fluids. Generally, the
model hosts both decelerating and accelerating DE dominated
phases, radiation and matter dominated periods, and an early
inflationary epoch. In particular, for the power-law model
f(T) =−T+α(−T)b with b< 1, the cosmological sequence

radiation → matter → (decelerating) dark matter

→ (accelerating) dark energy

26 The torsion scalar equation (40) in [250] is incorrect. Correcting yields the
solution found in [251].

is achieved. However, the inflationary phase cannot be
realized.

6.6.4. Teleparallel axions. The background cosmological
dynamics of teleparallel axion theory has been investigated in
[348, 349, 351]. In particular, the particular sub-case where
the vector, axial and tensor quadratic contributions give rise to
the TEGR contribution is considered, namely the gravitational
action

L=− 1
2κ2

(
T+ bϕP1 + b̃ϕP2

)
− ω(ϕ)

2κ2
gµν∂µϕ∂νϕ+V(ϕ),

(6.107)

where P1 = uµaµ and P2 = ϵµνρσtλµν tλρσ are the odd-parity
quadratic torsion contributions (see section 5.5), ϕ is a pseudo-
scalar field, b and b̃ are constants. For the FLRW geometry
in the presence of spatial curvature k, there are two distinct
tetrad branches which lead to the same metric as discussed in
section 5.12.2. Due to the presence of the odd-parity terms, the
chosen branch affects the forms of the FLRW equations:

3H2 +
3k
a2

= κ2

(
ρ+

ω(ϕ)

2κ2
ϕ̇2 +V(ϕ)

)
, (6.108a)

2Ḣ+ 3H2 +
k
a2

=−κ2p− ω(ϕ)

2
ϕ̇2 +κ2V(ϕ)

+

{
buϕ̇
a , for the first (axial) branch,

0, for the second (vector) branch,
(6.108b)

where u=±
√
k. Observe that in both cases, the contribution

from P2 is absent since tλµν = 0 for both branches. Mean-
while, the P1 contribution is absent in the vector branch as
aµ = 0 reducing the model to a minimally coupled scenario
whereas in the axial branch, the contribution is retained lead-
ing to a non-minimal coupling. Furthermore, the axion coup-
ling does not influence the late-time dynamics due to the u/a
dependence but it will affect the pre-inflation cosmology. It is
also convenient to define the effective axion field energy dens-
ity ρϕ and pressure pϕ:

ρϕ =
ω(ϕ)

2κ2
ϕ̇2 +V(ϕ), pϕ =

ω(ϕ)

2κ2
ϕ̇2 −V(ϕ)

−

{
buϕ̇
κ2a , for the axial branch,

0, for the vector branch.
(6.109)

In view of the above, [348] focus their attention to explore
the cosmological dynamics of the axial scenario in vacuum
(p= ρ= 0) by introducing the phase-space variables (α,β)
satisfying the relations

ϕ̇=

√
2κ2V(ϕ)
ω(ϕ)

α√
1−α2

, H=

√
κ2V(ϕ)

3(1−α2)
cosβ,

a= u

(√
κ2V(ϕ)

3(1−α2)
sinβ

)−1

, (6.110)

108



Rep. Prog. Phys. 86 (2023) 026901 Review

Figure 20. Dynamical behavior for the teleparallel axion model in vacuum for two choices of b illustrated in the α-β phase-space. Here,
filled (open) circles denote stable, expanding (unstable, contracting) de Sitter critical points whereas filled (empty) diamonds denote Big
Crunch (Big Bang) critical points. Stars denote the saddle transition points. Shades from dark to white indicate phantom behavior
weff <−1, acceleration −1< weff <−1/3 and deceleration weff >−1/3, where weff = pϕ/ρϕ, respectively. It can be noted that no
phantom behavior arises for b= 0 but appears for b=

√
8/3. In both cases, the late-time attractor is either de Sitter or Big Crunch.

Reproduced from [348]. CC BY 4.0.

which are constrained by −1< α < 1 and signu= signsinβ.
As pre-inflationary epochs were considered, the constant
roll approximation was assumed with ω(ϕ) = 1 and con-
stant potential V(ϕ). In turn, critical points describing a Big
Bang/Big Crunch singularity (α=±1), an infinitely expand-
ing or contracting de Sitter Universe (α= 0,β/π ∈ Z) and a
saddle transition phase between acceleration and deceleration
(α± = b±

√
b 2+8

2
√

6
, βπ − 1

2 ∈ Z) were obtained. A representation
of the dynamical behavior is given in figure 20.

6.7. Inflation

Cosmic inflation was proposed to solve the horizon, flatness
and cosmic magnetic-monopole problems [14, 15] which had
plagued theories of early Universe cosmology for a long time.
The number of inflationary scenario proposals [26, 496, 497]
has since drastically increased where various slow- and fast-
roll possible decay mechanisms for the inflationary scalar
field(s) have been put forward. Despite all this, direct observa-
tional evidence of an inflationary era in the cosmic history of
the Universe continues to evademeasurement keeping the pos-
sibility of other exotic solutions to the early Universe puzzles
as a possibility.

ΛCDM contains no natural mechanism to produce an infla-
tionary scenario on its own. This may of course be resolved

by some exotic particle physics beyond the standard model in
the matter sector. One of the interesting properties of gravity
beyond GR is that it allows for designer models to naturally
induce an inflationary mechanism in the very early Universe
which may give a more natural source to such a scenario.

In this section, we explore some of the possible telepar-
allel inflationary scenarios proposed in the literature. While
interesting, there are still many possible realizations of cos-
mic inflation that are yet to be explored, as well as more pre-
cise predictions that these models may produce. On the other
hand, there are already interesting possible scenarios in which
inflation is either induced naturally or in the same way of as in
ΛCDM.

6.7.1. Born–Infeld inspired inflation. The pioneering work by
Born and Infeld [498, 499] assumes a finiteness for physical
quantities at all times in order to avoid the divergences that
were emerging in physics at the time. Their initial work con-
cerned the self-energy of point-like particles [500], but has
since been expanded as the root inspiration into several dif-
ferent branches. In gravity theory, there have been numer-
ous manifestations of Born–Infeld inspire gravity theories
starting with [501] where the first proposal turned out to be
plagued by ghosts [502]. Since this time, Born–Infeld theories
have been incorporated into metric-affine formalisms [503],
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Eddington-inspired Born–Infeld gravity [504], and many oth-
ers. These have been used to eliminate a range of singularities
from black holes to the big bang singularity.

Given the status of black hole physics in TG (as explained
further in section 9), the corework in the TG literature has been
in the realm of early Universe cosmology. In this background,
[38, 274, 505] explore a TGmodel à la Born–Infeld within the
context of an f (T) gravity Lagrangian in the spirit of the action
in equation (5.48) 27 in which

LBI−1 = λBI

√1+
2(T+ 2Λ)

λBI
− 1

 , (6.111)

where λBI is a scaling parameter which recovered ΛCDM in
the limit where λBI →∞. For a flat FLRW Universe, for very
early-times (a→ 0), the scale factor and Hubble parameter are
given, respectively, as

a(t)∼ exp

[√
λBI

12

(
1+

4Λ
λBI

)
t

]
,

H(t)∼

√
λBI

12

(
1+

4Λ
λBI

)
, (6.112)

which regularizes the divergence of TEGR at very early-
times. This naturally induces an inflationary era from geo-
metry without the need of an inflaton field. The redshift rela-
tion z= 1/a(t)− 1 implies that z tends to a constant for the
early Universe which produces a divergence in the particle
horizon

η =

ˆ 1

0

da
aȧ

→∞, (6.113)

giving a Universe that is entirely causally connected, in agree-
ment with the isotropic part of the cosmological principle and
the CMB. It is important to point out that despite these proper-
ties at early-times in the Universe, this model tends to regular
ΛCDM for late-times (provided that λBI � Λ) which leads to
a cosmic history that is extremely similar to that of ΛCDM up
to some very fine differences. In this way, the scaling para-
meter λBI acts takes on the role of an effective initial vacuum
energy driver for the inflationary stage. In [506], very prelim-
inary results are shown where the λBI is constrained using SN
data from [507]. Here, it is found that λBI ≲ 10−11Mpc−2.

In [508, 509], a slightly more generalized scenario is con-
sidered in which

LBI−2 = λBI

[√
det

(
gµν +

2Fµν
λBI

)
−
√

detgµν

]
, (6.114)

where Fµν contains only first derivatives of the tetrad and is
chosen to be

Fµν := α1S
ρσ
µ Tνρσ +α2S

σ
ρµ Tρνσ +α3gµνT, (6.115)

27 Note that the convention of the torsion scalar in this Review is twice the
torsion scalar in the above references.

where αi are dimensionless constants. The only meaningful
condition on Fµν (and thus its constants) is that it must limit
to GR in the low energy limit (F � λBI), which in this set-
ting means Tr(F ν

µ ) = T. For the case where α1 = 0= α2, the
Lagrangian in equation (6.114) becomes again an f (T) model,
but is distinct to f (T) in all other cases.

In a flat FLRW setting and a perfect fluid source term ρ,
[508] finds the Friedmann equation√

1−A2H2
√
1−A1H2

(
1+ 2A2H

2 − 3A1A2H
4
)
− 1=

2κ2ρ

λBI
, (6.116)

where A1 = 6(α2 + 2α3)/λBI and A2 = 2(2α1 +α2 + 6α3)/λBI.
The study also finds that the fluid conservation equation is
observed at all scales. The authors study an intriguing form of
the Ai parameter, namely the case where A2 = 0 which implies
that A1 = 12/λBI. For the flat FLRW case they find again that
in this limit

a(t)∼ exp

[√
λBI

12
t

]
, (6.117)

for the very early Universe, giving H∼
√
λBI/12 which is a

maximum in this regime and which drives the early Universe
to a de Sitter phase. The work also goes on to the study the
evolution in nonflat scenarios but the tetrad that is adopted is
not compatible with the Weitzenböck gauge tetrad we derive
in equations (5.162) and (5.168) (for the k=+1 and k=−1
choices, respectively). While the results in this case are inter-
esting, the antisymmetric field equations (see section 5.1) will
render an incompatibility with this gauge choice.

Finally, in [510] another more exotic branch of these para-
meter settings is explored, namely where A1 = A2 which
reduces the Friedmann equation to

6H2

(
1− 9H2

2λBI

)
= 2κ2ρ, (6.118)

which produces two disconnected solutions for H2 with the
positive sign being ignored since it is detached from GR. To
retain strong enough resemblance toGR, theλBI must be posit-
ive, in which case, the scale factor near the very early Universe
gives

a4(t) =
ρ0

6κ2λBI (1± 4λBIt)
+O(λBIt

2), (6.119)

and a Hubble parameter H(t) =∓λBI/(1± 4λBIt)+
O(λBIt2), where ρ0 is the energy density at present time for
the perfect fluid. This produces a minimum for the scale factor
at t= 0 where

a4Min =
ρ0

6κ2λBI
, (6.120)

and where HMin = λBI. This is called a brusque bounce, and
represents a spacetime in which finite objects do not crash into
zero volume.
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6.7.2. Power spectra in LQC f(T) gravity. Loop quantum cos-
mology within the FLRW framework hosts the matter bounce
scenario [511], described by the Friedmann equation

H2 =
ρ

3

(
1− ρ

ρcr

)
, (6.121)

where ρ is the matter fluid energy density and ρcr = 3
λ 2γ 2 is a

critical density originating from quantum considerations with

λ=

√√
3

2 γ and γ≈ 0.2375 the Barbero–Immirzi parameter.
Assuming a dust perfect isotropic fluid, the scale factor and
Hubble parameter take on the forms

a(t) =

(
3
4
ρcrt

2 + 1

) 1
3

, H(t) =
2ρcrt

4+ 3ρcrt2
. (6.122)

Clearly, the bounce occurs at t= 0.
In contrast to curvature-based theories, the teleparallel for-

mulation allows for a direct reformulation of the LQC Lag-
rangian purely in terms of the torsion scalar by virtue of the
direct correspondence between T and H, namely T=−6H2.
In this way, the LQC Lagrangian can be recast in terms of f (T)
gravity [512–514]

f(T) =− 3
λγ

√
−T

6
arcsin

(
2λγ

√
−T

6

)

+
3

γ 2λ2
sin2

[
1
2
arcsin

(
2λγ

√
−T

6

)]
. (6.123)

Alternatively, the Lagrangian can be obtained via reconstruc-
tion of the Friedmann equations [267, 514]. An extension to
the standard LQC formulation is considered in [515] where
the critical density is instead parametrised as ρcr = 12

α 2 where
α is a constant whichmeasures the deviation from TEGR. This
modifies the teleparallel Lagrangian to be recast in the follow-
ing form

f(T) =− 12
α2

[
1−

√
1+

α2T
6

−α

√
−T

6
arcsin

(
α

√
−T

6

)]
,

(6.124)

which recovers TEGR f(T) =−T in the limit |α| → 0.
Despite this apparent equivalence, there are crucial differ-

ences between the LQC and teleparallel formulations. Most
notably, the critical density is quantum mechanically derived
in LQC but becomes a free parameter in the teleparallel formu-
lation. This has important consequences when matching with
spectra observations as the freedom in ρcr may be sufficient
to reconcile different data sets. Meanwhile, equivalence only
holds at a background level with deviations appearing at per-
turbative regimes.

In this setting, the matter sector is sourced by some scalar
field ϕ having an associated potential V(ϕ). The latter’s nature
is crucial for the matter bounce cosmology as it affects both
spectral indices and power spectra. A simple choice for such
scalar field is one which effective fluid acts as dust with
ρ= ϕ̇ 2

2 +V(ϕ) and p= ϕ̇ 2

2 −V(ϕ) = 0. However, this leads

to a perfectly scalar-invariant spectrum (ns = 1), contradict-
ing CMB observations ns = 0.9649± 0.0042 [516]. Addition-
ally, this does not lead to a reheating phase. As such, the scalar
potential must provide [517–519]:

(a) Matching with spectral indices and power spectra obser-
vations;

(b) Account for reheating processes;
(c) Stability against small perturbations.

Some works also include a late-time accelerating expan-
sion as a criterion but this is not necessarily the case. Many
such scalar fields cannot achieve both goals of an early-time
inflationary epoch coupled with late-time accelerating expan-
sion. For instance, a quadratic potential does not meet both
this extra criterion. However, it may be modified to include a
small cosmological constant provided instant preheating and
matter dominated fields are obtained at low and large ϕ val-
ues respectively. Similar considerations can be achieved via
quintessence type potentials.

Another possibility focuses on the quasi-matter contraction
scenario which focuses on the matter fluid’s EoS to be ω� 1
as opposed to being identically zero. In this case, the potential

V(ϕ)∝ e−
√

3(1+ω)ϕ and the scalar spectral index changes to
ns = 1+ 12ω allowing for a non-invariant spectrum. A further
generalization considers V(ϕ)∝ e

√
3ϕ(1+f(ϕ)) with | f(ϕ)| � 1

and |ϕfϕ| � 1. Despite such models do not allow for a trans-
ition between the contraction and expansion phases in GR, this
does not appear in the f (T) formulation [520].

We now turn our attention to the scalar and tensor power
spectra. To investigate the scalar power spectrum, the lon-
gitudinal gauge is considered with Bardeen potentials Φ and

Ψ. Perturbing the scalar field about a background value
0
ϕ as

ϕ=
0
ϕ+δϕ, for the potentials considered, no anisotropic con-

tributions arise. From the perturbed f (T) field equations, the
Φ and Ψ modes are equal according to [521] and in follow up
works [517–520, 522, 523]. However, this is not the case as a
proper account of the perturbed tetrad was not considered.

The perturbed tetrad introduces a further DoFwhich has not
been accounted for in the aforementioned works. As this miss-
ing term appears in the anisotropic parts of the field equations,
the Φ and Ψ potentials are no longer equal despite being of
the same order at least within sub-horizon length scales. Even
if the latter scales are considered, only one of the antisym-
metric f (T) field equations has been accounted for despite the
existence of a second antisymmetric field equation. Neglect
of this secondary equation in conjunction with having equal
potentials leads to having a greater number of field equations
than DoF which is only reconciled once the extra scalar DoF
is taken into account.

On the other hand, the tensor power spectrum is obtained
by exploring the tensor perturbations which yields the relation
(expressed in Fourier space, details provided in section 7.4)

ḧλ+

(
3H+

ḟT
fT

)
ḣλ+

k2

a2
hλ = 0, (6.125)
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which is a subset of the general equation (7.40), and where λ
denotes the two polarization states of the tensor perturbations.
Introducing theMukhanov-Sasaki variables zt = a

√
fT and v=

hzt recasts the equation in the form

v ′ ′ − k2v− z ′ ′

z
v= 0, (6.126)

where primes denote derivatives wrt conformal time (defined
through dη = dt/a [524]). This leads to the computation of the
tensor power spectrum

PT :=
k3

2π 2

∣∣∣∣v(η)z(η)

∣∣∣∣2 = ρcr
2

ρ
RT

2 =
16ρcr
3ρ

Si2
(π
2

)
,

RT :=
ˆ ∞

−∞

dη
zt 2
, (6.127)

where Si(x) is the sine integral function.
Under the assumption that the scalar power spectrum result

is correct, the tensor-scalar ratio r≈ 6.7187, considerably lar-
ger than currently observed bounds r< 0.056 [516]. However,
the magnitude of this ratio together with the magnitudes of the
power spectra changes depending on the choice of potential
[517] as well as the magnitude of the background scalar field
ϕ̄ at the bounce [517, 522]. Another important point to high-
light is that this results depends on a particular solution of the
scalar field equation of motion where a vanishing pressure for
matter is assumed, which may not be the case. [517] goes on
to find numerical solutions which do satisfy current bounds on
the tensor-scalar ratio.

6.7.3. Higgs inflation. In the standardmodel of particle phys-
ics all the matter fields couple minimally with the gravitational
section except for the case of a Higgs field where no suppres-
sion needs to take place [525]. Thus, the Higgs field is an inter-
esting avenue in which to explore differences between GR,
TEGR, and STEGR. In GR, Higgs inflation then emerges as
quantum corrections between the Einstein–Hilbert action and
the Higgs coupling field [526]. By considering direct coup-
lings with TG quantities like the torsion scalar instead of the
Ricci scalar, we can probe possible differences in these differ-
ent inflationary scenarios.

Taking a generic scalar that can then be non-minimally
coupled to the scalar torsion through [527–529]

SHiggs =− 1
2κ2

ˆ
d4e
[
F(ϕ)T+ 2G(ϕ)

◦
∇αT

α+K(ϕ)gαβ

× ∂αϕ∂βϕ+V(ϕ)
]
+Sm

(
ϕ,Ψ,eAµ,

◦
ωABµ

)
,

(6.128)

where all other matter fields Ψ are minimally coupled to the
torsion scalar, and K and V are kinetic and potential func-
tions, and which is a particular form of the action introduced in
equation (5.109). In [527], this model is investigated for Higgs
inflation in which the potential is given by

V=
λ

4

(
ϕ2 − v2

)2
, (6.129)

where λ and v are constants, and where

K= K0, F= F0
(
1+ ζϕ2

)
, G= G1ϕ

2, (6.130)

whereK0, F0 andG1 are constants. In this work, the tetrad pos-
tulate of TG is used to expand the particular terms in the action.
This is done so that the problematic term in section 5.3.2
(namely, the vector torsion coupling term) can be isolated
and set to zero for one branch of possible function settings.
This study is, however, not purely contained to TG, and also
includes a broader contribution from non-metricity. Despite
this, for the branch where an Einstein frame exists, regular
Higgs inflation (ζϕ� 1) produces a very high tensor-to-scalar
ratio which is well constrained by observations [372]. In the
other branch, in which an Einstein frame is not recovered by a
conformal (or disformal) transformation, a working inflation-
arymodel is not recovered due to linear perturbations not being
dominant. This is conducted using an FLRW metric in con-
formal time.

Thus, in [527], Higgs inflation appears problematic. How-
ever, the particular prescription being explored is very specific
and may yield more realistic results. Moreover, other scalar
field coupling terms may also produce more practical infla-
tionary scenarios such as those explored in [530–533].

The question of the naturalness of inflation in TG remains
an open question and poorly tackled in the literature. An inter-
esting recent work on the topic is [534] where inflation is
explored through a nonminimally coupled scalar field in f (T)
gravity [535] (see section 5.8) in the same way that previ-

ous works have approach the same setting in f(
◦
R) gravity

[22, 24]. They find the slow-roll conditions for a near scale
invariant power spectrum in this general setup and explore
the dynamical systems for quadratic and quartic potentials. In
both cases, inflation is very difficult or impossible to produce
in the scalar-torsion approach. However, there are many other
possible options for the scalar field potential which may pro-
duce an inflationary epoch that is more consistent with cosmic
evolution in the early Universe. Other works also consider the
impact of a coupled scalar field in generalized f(T,ϕ) gravity
such as [536, 537] where power spectra for scalar and tensor
modes are calculated (which have led to determinations of the
spectral index and scalar-to-tensor ratio). In [538], a power-
lawmodel of f (T) gravity was probed for its possible inflation-
ary scenarios where the spectral index and power spectrum is
again calculated but where the model was not totally related
to possible late-time accelerated expansion, for consistency.
Finally, [539] explores possible tachyonic inflationary scen-
arios which has some interesting explanations for recent obser-
vational measurements.

6.8. Essential conditions for viability in cosmological models

[Jackson: In this section a number of prominent modified the-
ories within TG have been explored through the works that
appear in the literature in the cosmological setting at back-
ground level. However, cosmology can also yield theoret-
ical limits on models in the context of their behavior against
various kinds of instabilities such as ghosts and other forms
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of instability. Ghost instabilities represent unstable propagat-
ing DoF where a wrong sign in the propagator gives rise to
unbounded states in the phase space of the theory [168, 540,
541]. This became a notable feature due to the popularity in
fourth-order gravitational theories in recent decades but is also
a property that can arise in second-order gravitational theories.
The issue can also be expressed through amodel exhibiting the
correct sign in its kinetic term which can be used to put limits
on potential models that can be realized within such classes of
theories [542, 543]. There has been recent work on producing
stable models for theories that feature a ghost [544] but this
has not yet been realized in a TG setting.]

[Jackson: Another possible problematic property in modi-
fied gravitational theories is gradient or Laplacian instabilities
[545, 546] where even small wavelength perturbations grow
are potentially exponential rates unless otherwise tamed. The
instability arises out of an imaginary propagation velocity
in one of the perturbation sectors, and is only avoided by
demanding positive propagation speeds at all scales. Similarly,
if a massive field is admitted, tachyonic instabilities can appear
for regions of negative effective mass [547]. These instabilit-
ies can cause problems at background level which are related
to instabilities in the vacuum. A special case of this instabil-
ity is the scenario where a negative effective mass appears but
which grows slower than the Hubble rate. This issue appears
inΛCDM [548] and may not gives grounds to discard a partic-
ular theory. However, it is something that must be accounted
for and studied for potential problematic features.]

A healthy theoretical model or class of models must be
exorcised of any such instabilities which may produce unnat-
ural expressions of a theory that are incompatible with the
real Universe. Another crucial condition on which to assess
whether a theoretical framework is healthy or not is the pos-
sibility of strongly coupled solutions. This was introduced
in sections 3.6.3, 5.2.2 and will be discussed further in the
remainder of the Review. In essence, strong coupling occurs
for specific solutions where the DoF do not all appear in the
linearization of the theory. This means that, for those solu-
tions, that possibly unbounded modes may coupling different
order perturbations in an irregular way. Moreover, given that
solutions are approximations to real systems such as in cos-
mology but also for astrophysical solutions, it means that such
spacetimes may not approximate well these setups since even
minor perturbations away from background assumptions may
have a large impact at background level. This will pollute the
background solution since perturbations will no longer be con-
tained to perturbative order level. Hence, it is crucial that any
theoretical setup not exhibit strong coupling for the most phys-
ical solutions such as those that express the cosmological prin-
ciple, i.e. the FLRW spacetime. A viable theory should first be
based on a healthy theoretical framework in which instabilities
are adequately addressed and that physically realistic space-
times are not strongly coupled.

6.9. Perspectives of teleparallel cosmology

The reconstruction procedure is a viable alternative approach
as a means to explore the gravitational teleparallel action

at least from a background cosmological viewpoint. Briefly,
f (T) gravity is the simplest class of models to reconstruct
and can provide solutions which match with observations
as well as reproduce non-flat spacetime cosmologies purely
from a gravitational standpoint. However, no f (T) Lagrangian
can perfectly reproduce the ΛCDM cosmology unless it is
ΛCDM Lagrangian. This is not the case for other teleparal-
lel extensions such as f(T,B) and f(T,TG) gravity. For these
theories, the Lagrangian reproduces the background ΛCDM
cosmology with the possibility of generating differing behavi-
ors at perturbative regimes. The ΛCDM cosmology can also
be produced via a conformal scalar theory by requiring the
scalar field to be the driving field to cause late-time accel-
eration. Introducing the trace of the stress-energy tensor Θ
increases the complexity of the solutions which may make
them less appealing for broader use. Nonetheless, this for-
mulation provides an interesting alternative to the Einstein
static Universe as the closed spacetime geometry require-
ment is lifted. Additionally, unification and transitional eras
can be purely described from this torsional-matter coupling
viewpoint.

The dynamical system approach serves as an interesting
alternative to explore the Universe’s cosmological dynamics
prescribed by a gravitational model. Through critical points
and their stability, the corresponding cosmological sequence
can be determined, although, differing phase-space variables
choices influence the ensuing analysis especially in f (T) grav-
ity. Overall, the models under review here together with asso-
ciated tables and figures of the relevant dynamical analysis are
summarized in figures 21 and 22.

As the dynamical analysis can provide a general over-
view of the cosmology, a selection criterion to distinguish
between suitable models has been adopted, one which hosts
the cosmological sequence described by an unstable inflation-
ary period → saddle radiation/matter domination epochs →
(stable) late-time accelerated expansion. In hindsight, the tele-
parallel description offers a vast selection of models whose
evolutionary sequence are summarized in figures 23 and 24.
However, only a few choices of TG models appear to host the
complete cosmological sequence while the majority of mod-
els start from matter domination. Even so, such TG models
may indeed host the full cosmological sequence needed to
describe the Universe. The absence of such behavior is also
imparted by the choice of the dynamical phase-space vari-
ables which greatly influence the number of critical points,
and hence the evolutionary behavior, of the theory. Of note,
a late-time accelerating attractor is present in practically all
TG theories. Additionally, other behaviors including bouncing
scenarios, phantom and quintessence regimes can be realized.
In some cases, such as in f (T) gravity, absence of cosmolo-
gical sequences or epochs including cyclic or oscillatory solu-
tions can also be determined through this approach. Moreover,
only the dynamical behavior of f (T) gravity has been explored
for arbitrary functional choices, making the study on other TG
extensions to be of further interest.

Focusing our attention to the topic of inflation, the differ-
ent approaches revealed the potential existence of an inflation-
ary period in TG, namely in scalar-tensor formulations and
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Figure 21. Breakdown summary of the reviewed works involving the use of the dynamical system approach in the absence of scalar fields.

Figure 22. Breakdown summary where the dynamical system approach has been applied in the presence of scalar fields.

from cosmological dynamics. In the latter, a viable cosmolo-
gical sequence can be realised for f (T) gravity and its mimetic
equivalent. Other models mainly the TG equivalents of Born–
Infeld, LQC and Higgs inflation have focussed their attention
in the realization of this inflationary epoch. For instance, in
the Born–Infeld formulation, having λBI ≲ 1× 10−11Mpc−2

ensures casual connectedness, and realization of an inflation-
ary epoch with ΛCDM-like behavior at late times. However,
the main issue outlined in the reviewed works lies in the cos-
mological perturbative regime. In the TG LQC and Higgs for-
mulations, they both suffer from large tensor-scalar ratios,
marking it an important viability requirement for TG models.

In view of the above, it must still be emphasized that gen-
erating the background cosmology is insufficient to confirm
the viability of the model. For instance, the model could also
ensure the generation of the desired cosmological sequence
through dynamical systems but unable to conform with local
or cosmological observations. Ensuring existence of vacuum
solutions is another important criterion, a property which has
in fact helped to greatly reduce the number of models in the
reconstructed solutions obtained in f(T,B) and f(T,TG) grav-
ity. Ultimately, all these different approaches help in provid-
ing a set of necessary criteria to build a viable model. The next
step is the exploration of the perturbative regime which holds

114



Rep. Prog. Phys. 86 (2023) 026901 Review

Figure 23. Representation of how f (T) gravity realizes different cosmological sequences based on the investigated model. The choice of
Lagrangian also invokes the existence of certain phases and development toward future phases. Some model examples have been included.

Figure 24. Representation of how other teleparallel gravitational models (including possible Lagrangian choices) realize different
cosmological sequences.

another realm of important observations and conditions crucial
to ensure the validity of the model.

7. Cosmological perturbations in TG

The background geometry of the Universe, as also discussed
in depth in section 6, has been considered as being spatially
flat FLRW geometry. The general class of FLRW geomet-
ries is generated by assuming that the Universe is homo-
geneous and isotropic (cosmic principle [373]). Observations
related to the distribution of structure formation at large scales,
due to the isotropic nature of CMB render such spatially
flat cosmological geometries well motivated and founded
[371, 374–377]. This is the case even if a few percent non-
zero spatial curvature cannot be ruled out at high precision
[372, 378–380].

Dropping the weak field approximation of Minkowski
spacetime, and considering full perturbation theory in more
general backgrounds (such as the FLRW background solu-
tion), these deviations from the cosmic principle can be tackled

in a more direct way. This is the origin of cosmological per-
turbation theory and was first introduced by Lifshitz in 1946
[551]. See [552] for a modern exposition of the theory of
cosmological perturbations. In this framework, we attribute
the inhomogeneous and anisotropic structure to the perturba-
tions of the flat FLRW metric. These perturbations turn out to
describe the observed CMB anisotropy and large scale struc-
ture very well. Although, one needs to be very careful with the
perturbative framework since it is onlymeaningful in very spe-
cific limits [553]. For example, at late-times the matter over-
densities become significantly more dominant to higher per-
turbative levels than the linear one.

In the perturbative framework, up to linear order, the metric
assumes the expansion [552]

gµν =
0
gµν + δgµν , (7.1)

where
0
gµν is the background value of the metric and δgµν

are the small inhomogeneous and anisotropic correction to
the background spacetime, which satisfies |δgµν | � 1. As the

115



Rep. Prog. Phys. 86 (2023) 026901 Review

background evolution is exhaustively reviewed in section 6,
our main focus in this section will be to study the perturbation
of the metric. In a very similar manner one can formulate the
perturbation of the tetrad as

eAµ =
0
eAµ+ δeAµ, (7.2)

where
0
eAµ denotes the background value of the tetrad while

δeAµ is the first order perturbation of the tetrad obeying
|δeAµ| � 1.

In general, in order to have proper perturbative analysis
the background solution of any variable under consideration

(
0
eAµ or

0
gµν) must not lead to trivialization of the Hamilto-

nian constraints. This would mean that some of the fields may
assume anomalous propagation or completely lose their kin-
etic term thus signaling potentially fatal problems in the ana-
lysis. The most common issue of this sort is the so called
strong coupling issue as discussed also in section 5.2.2, where
some constraint in the Hamiltonian analysis is trivialized due
to specific (bad) background solution thus stripping away con-
straints some DoF loses its dynamics. Studies in the direc-
tion for the Minkowski background in f (T) theory has been
carried out in [231, 554]. Furthermore, in cosmological back-

grounds where a background tetrad solution
0
eAµ was such that

fT ≡ fT(t), it was shown in [154] to be linked with a strong
coupling issue. Whether or not this is the case, the overall
nature of the strong coupling problem is traced back to the
non-linearity of the constraints in the velocities which is intro-
duced by modifying the theory T→ f(T) [555–557]. Still we
need more studies in other TG theories such as −T+F(B)
gravity (or other extensions) to understand if this situation also
appears in other theories.

We alsomention, that there is a class of perturbations which
are called homogeneous [558–560]. In this class of perturba-
tions, one directly perturbs the background quantities and field
equations. For instance one perturbs the scale factor a(t) as

a(t) =
0
a(t)+ δa(t) and then one can find the field equations

of δa(t) by perturbing the background Friedman equations
of the theory. In this approach one could perturb the matter
density and pressure to determine the behavior of the effect-
ive EoS at perturbative level. We can also use this approach
to find the deceleration parameter and how it behaves under
specific choices of the perturbation variables along with par-
ticular parameters arising from choosing specificmodels. Con-
sidering the effective EoS and the deceleration parameter, one
is able to obtain stability conditions, as it was done for f (T)
in [392, 561] and for f(T,B) in [261]. This method of per-
turbations in completely different than the standard one, for
example outlined in [552], since we perturb already back-
ground evaluated quantities as indicated with the scale factor.
This only affects the backgroundDoFwhich for a metric in flat
FLRW background are just 2 whereas in the general perturb-
ative scheme they are 10. One of the main uses of the homo-
geneous perturbations is to probe the background stability of
a theory in contrast to the general perturbations which probe
the stability of the perturbed background.

7.1. 3+ 1 split in cosmology

We start by reviewing the geometry of the FLRWspacetime, as
presented in [562] and in section 4.2.1, in order to facilitate the
introduction of perturbations, and to lay out the notation to be
used. Assuming that the spacetime is modeled after a globally
hyperbolicmanifoldM, which is diffeomorphic to the product
manifold R×Σ, where Σ is a maximally symmetric, three-
dimensional manifold [563, 564]. We will denote by i : R×
Σ→M the diffeomorphism relating these manifolds and we
define the time coordinate t on M as the projection t= pr1 ◦
i−1 :M→ R. In addition, we equip Σ with local coordinates
(xi), thus inducing the coordinate system (xµ) = (t,xi) forM.
For the details regarding the conventions, see section 1.3.

The space manifold Σ is taken to be maximally symmetric,
which means that it is equipped with a metric

γ = γijdx
i⊗ dxj, (7.3)

where ⊗ denotes the usual tensor product, admitting the max-
imal number of Killing vector fields. Hence the metric can be
split as

gµν = nµnν − ḡµν , (7.4)

into the hypersurface (co-)normal

nµ∂µ = N−1∂t, nµdx
µ = Ndt, (7.5)

and the spatial metric

ḡµνdx
µ⊗ dxν = a2γijdx

i⊗ dxj, (7.6)

where N= N(t) is the lapse and a= a(t) the scale factor.
They satisfy the normalization nµnµ = 1 and orthogonality
nµḡµν = 0. The metric is thus given by

g= gµνdx
µ⊗ dxν = N2dt⊗ dt− a2γijdx

i⊗ dxj. (7.7)

This metric expressed in spherical coordinates was previously
introduced in equation (6.1). In case one chooses Cartesian
coordinates, and a flat FLRW geometry for the metric (7.7),
we obtain the form of equation (6.3). Both of these cases were
discussed in detail in section 6. Further, we denote by ϵµνρσ the
totally antisymmetric tensor defined by the spacetime metric
gµν . Its spatial part is denoted as εµνρ and defined by

εµνρ = nσϵσµνρ, ϵµνρσ = 4ε[µνρnσ]. (7.8)

We note that by construction, nµεµνρ = 0 and we remark that
εµνρ is related to the totally antisymmetric tensor υijk of the
metric γij via

εµνρdx
µ⊗ dxν ⊗ dxρ = a3υijkdx

i⊗ dxj⊗ dxk. (7.9)

We will make use of these relations in the following sections.
We split the arbitrary tensors into spatial and temporal com-

ponents by first introducing the spatial tensor fields

Πc
µ∂c⊗ dxµ = aδcb ∂c⊗ dxb, Πµc ∂µ⊗ dxc = a−1δbc ∂b⊗ dxc.

(7.10)
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It follows that they are related to the unit (co-)normal nµ and
induced spatial metric ḡµν by

nµΠ
µ
i = 0, nµΠi

µ = 0, ḡµνΠ
µ
i Π

ν
j = γij,

γijΠ
i
µΠ

j
ν = ḡµν . (7.11)

Consequently, we can write the temporal and spatial projectors
in the form

δµν = nµnν − ḡµν = nµnν −Πµj Π
j
ν , Πi

µΠ
µ
j = δij . (7.12)

For a vector field X= Xµ∂µ, we then introduce the notation
for the temporal and spatial components:

X= N−1X̂0∂t+ a−1X̂a∂a, X̂0 = nµX
µ = NX0,

X̂b =−Πb
µX

µ =−aXb. (7.13)

Conversely, for a covector field Ξ = Ξµdxµ we write

Ξ = NΞ̂0 dt+ aΞ̂b dx
b, Ξ̂0 = nµΞµ = N−1Ξ0,

Ξ̂b =ΠµbΞµ = a−1Ξb. (7.14)

Hence we see that the temporal and spatial components are
related by

X̂0 = X̂0, X̂a =−γabX̂b, (7.15)

and analogously for Ξ. Hence, the decomposed tensor fields
indices are raised and lowered with the background metric
ds2 = g= dt⊗ dt− γijdxi⊗ dxj. Note that the components of
the latter are independent of the time coordinate t, in contrast
to the components of the spacetime metric gµν .

We now make use of the tensor decomposition introduced
above to decompose the covariant derivative of the Levi-Civita

connection
◦
∇ (as defined in sections 1.3, 2 and 4.2). By con-

sidering Xµ and Yµ as spatial, we have that nµXµ = nµYµ = 0,
and then, the covariant derivative

◦
∇XY= (Xµ

◦
∇µY

ν)∂ν , (7.16)

is not necessarily spatial. Its decomposition

◦
∇XY=

◦
DXY+ nK(X,Y), (7.17)

where n := nα∂α is the unit normal vector, defines the spatial
covariant derivative

◦
DXY= (Xµ

◦
DµY

ν)∂ν = (Xµ
◦
∇µY

ν)ḡρν∂ρ, (7.18)

as well as the extrinsic curvature

K(X,Y) = KµνX
µYν =−nνXµ

◦
∇µY

ν , (7.19)

which acts as a measure geometric deformation wrt a
hypersurface [73], and where equation (7.4) was used. The lat-
ter is related to the acceleration [565] vector field Aµ by

Kµν =
◦
∇µnν + nµAν , Aµ = nν

◦
∇νnµ. (7.20)

In order to relate the introduced decomposition of covariant
derivatives on model spacetimes M to those projected on the
spatial manifold Σ, we denote by di the Levi-Civita derivative
of the metric γij, which acts on vector fields ξi on Σ as

diξ
j = ∂iξ

j+ Γ̄jkiξ
k, (7.21)

with the spatial Christoffel symbols of the spatial metric γij

Γ̄ijk =
1
2
γil(∂jγlk+ ∂kγjl− ∂lγjk). (7.22)

In the case of the FLRW metric, the acceleration and extrinsic
curvature are given by

Aµ = 0, Kµν = Hḡµν , H=
1
N
∂a
a
, (7.23)

where the dot denotes differentiation wrt time and H is
usual Hubble function already introduced in various places as
sections 1.3 and 6. This just signifies the geometrical origin of
the Hubble function as derived from a fully geometrical point
of view. Having laid out explicitly the underlying geometrical
framework, we will introduce the cosmological perturbation
scheme in detail in the next sections.

7.2. Irreducible scalar-vector-tensor decomposition

Expanding on the form of the perturbations, the general first
order expansion of the perturbed metric of equation (7.1) can
be explicitly determined in specific backgrounds. Fixing the
background to be spatially flat FLRW, the perturbation of the
metric δgµν can be parametrized in a irreducible form as

δgµν

:=

[
−2φ a(∂iB+Bi)

a(∂iB+Bi) 2a2
(
−ψδij+ ∂i∂jh+ 2∂(ihj) +

1
2hij
) ] .
(7.24)

The constituent fields that have an index are all divergence-
less, i.e, ∂ihij = 0 and also for any of the vectors ∂iXi = 0.
In addition hij is symmetric and traceless hijδij = 0. Since the
metric is a symmetric (0,2) tensor in general, it assumes 10
DoF which are distributed as 4 scalars {φ,B,ψ,h} (account
for 1 DoF each), 2 vectors {Bi,hj} (account for 2 DoF each)
and 1 tensor hij (accounts for 2 DoF). This is the most general
form of the perturbation of the metric in a flat FLRW back-
ground and it was first introduced by Lifshitz [66, 552, 553,
566, 567]. On the other hand, the tetrad can be represented as
a generic 4 by 4 matrix with no symmetries which means that
it enjoys the full set of 16 DoF contrary to the metric which
can be also represented as symmetric matrix assuming only
10 DoF. Hence we distribute these 16 DoF of the perturbation
of the tetrad δeIµ as follows
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δeIµ :=

[
−φ −a(∂iβ+βi)

δIi
(
∂ib+ bi

)
aδIi
(
−ψδij+ ∂i∂jh+ 2∂(ihj) +

1
2hij+ ϵijk

(
∂kσ+σk

)) ] , (7.25)

where the capital Latin letters indicate three-dimensional spa-
tial Minkowski indices (see section 1.3). Here, again all the
vectors are solinoidal ∂iXi = 0 and to be compatible with
the metric B ≡ b−β, Bi ≡ bi−βi. In this case, the 16 DoF
are split as follows: 6 scalars {φ,b,β,ψ,h,σ}, 4 vectors
{bi,βi,hi,σi} and 1 tensor hij. The counting is again the same
as the in case of themetric. Themain differences schematically
are the introduction of a pseudo-scalar σ and a pseudo-vector
σi which gives us B → {b,β}, Bi →{bi,βi}. The extra 6 DoF

are due to the Lorentz group which the metric is already invari-
ant under. The antisymmetric part, that introduces the terms
∂kσ and σk, was elusive at first by some early works like [568]
and were later correctly included in [242, 569, 570].

We note also that one can introduce the spacetime indexed
tetrad

τµν := ηAB
0
eAµδe

B
ν , (7.26)

which calculated explicitly for equation (7.25) reads as

τµν =

[
−φ −a(∂iβ+βi)

a(∂ib+ bi) a2
(
−ψδij+ ∂i∂jh+ 2∂(ihj) +

1
2hij+ ϵijk

(
∂kσ+σk

)) ] , (7.27)

and turns out to be more suitable for calculations since the
Lorentz indices can be dropped in the process. Just as the
inverse metric perturbation, the inverse tetrad perturbation can
be calculated using the relations eAµEAν = δνµ and gµαgαν =
δνµ which were introduced in sections 1.3 and 2.2.1.

The following convention for the perturbation of the
energy-momentum tensor of a perfect fluid will be employed

δΘµ
ν :=

[
δρ (ρ+ p)(vi+ ∂iv)

−a2(ρ+ p)(vi+ ∂iv) −δpδij

]
,

(7.28)

where ρ is the matter density, p denotes the pressure, and v,vi

denote the scalar and vector parts of the perturbation of the
velocity field. In general, the spatial part δΘi

j can include an
anisotropic stress piece Πi

j which can be further split into a
scalar-vector-tensor (SVT) decomposition as

Πij =ΠS
ij+ΠV

ij +ΠT
ij, (7.29a)

ΠS
ij := ∂i∂jΠ

S, (7.29b)

ΠV
ij :=−1

2
(∂jΠ

V
i + ∂iΠ

V
j ), (7.29c)

ΠT
ij is the tensor part, (7.29d)

where ∂iΠV
i ≡ 0≡ ∂iΠT

ij, Π
T
ij ≡ΠT

(ij) and δ
ijΠT

ij ≡ 0.
We close off by introducing our convention for the Fourier

transform of a perturbation X as

X(t,x) =
ˆ

dω

(2π)1/2

ˆ
d3k

(2π)3/2

×
[
X(ω,kj)e

−iωt+ikjx
j

+X†(ω,kj)e
iωt−ikjx

j
]
, (7.30)

where ω is the time component and kj is the spatial wave
covector of the Fourier transform, and X† is the conjugate of
X. We also raise and lower the indices as X0 = X0, Xj =−Xj
and use the conventions□ := ∂µ∂

µ = ∂2
0 − ∂2, where the spa-

tial Laplacian is defined as ∂2 :=−ηij∂j∂i = δij∂i∂j. Along
these lines, the norm of the wave covector ki is defined as
k2 :=−ηijkikj = δijkikj. In the supplementary annexes (supple-
mentary 2), we provide some useful expressions for the SVT
decomposition for different important tensors in TG.

7.3. Gauge transformations

We will utilize the active approach of [571, 572] in setting up
the gauge transformations of tensor fields. In this approach the
perturbation of a tensor field Z along the direction of a vector
field Y at any order is given by

Z̃= eLYZ, (7.31)

where Z̃ is the transformed tensor field and LY is the Lie deriv-
ative along Y. The vector field Y that generates the transforma-
tion and the tensor field Z can be further expanded up to second
order as

Y= Y1 +
1
2
Y2, (7.32a)

Z= Z1 +
1
2
Z2 +O((LY)

3
), (7.32b)
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and the exponential map can be expanded up to second order
as

eLY = 1+LY1 +
1
2
(LY1)

2
+

1
2
(LY2)

2
+O((LY)

3
). (7.33)

Combining the equations above, we finally arrive at

Z̃0 = Z0, (7.34a)

Z̃1 = Z1 +LY1Z0, (7.34b)

Z̃2 = Z2 +LY2Z0 +(LY1)
2Z0 + 2LY1Z1, (7.34c)

where in general, for a scalar field ϕ, a vector field Xµ and a
(0,2) tensor tµν we have

LYϕ= Yλϕ,λ, (7.35a)

LYXµ = Xµ,αY
α+XλY

λ
,µ, (7.35b)

LYtµν = tµν,λY
λ+ tµλY

λ
,ν + tλνY

λ
,µ. (7.35c)

Without digressing, let us state that the passive approach,
counterpart to the active we just presented is just stating that an
infinitesimal change of coordinates along the vector field Yµ is
described by x̃µ = xµ+Yµ1 which is usually further split as t̃=
t+Y0

1 and x̃i = xi+Y i1. This is the usual first order approach
followed for example in [553, 566, 573], but that method is
rather cumbersome if one needs to consider higher orders.

Next, we will calculate the gauge transformation of the
components of the perturbed tetrad. In what follows we will
only determine the first order perturbations so that, we drop the
subscripts Yµ1 → Yµ. The transformed perturbed tetrad accord-
ing to the active approach is

δ̃e
A
µ = δeAµ+LYe

A
µ. (7.36)

We further split Yµ as Yµ =
{
Y0, ζ(Y i+ δij∂jY)

}
where ζ ∈

{1, 1a}, which incorporates both conventions (in terms of how
Yµ can be split in the 3+ 1 decomposition), ∂iY i = 0 and Y
the scalar part coming from splitting Y i

φ̃= φ− ξ̇0, ψ̃ = ψ+Hξ0, β̃ = β− 1
a
ξ0 − ξ0, β̃i = βi,

(7.37a)

b̃= b− a
(
ζ̇ξ+ ζξ̇

)
, b̃i = bi+ a

(
ζ̇ξi+ ζξ̇i

)
,

σ̃ = σ, σ̃i = σi− 1
2
ϵijk∂

jξk, (7.37b)

h̃= h− ζξ, h̃i = hi+
1
2
ζξi, h̃ij = hij. (7.37c)

These transformations suggest the grouping {φ,ψ,β},
{b,h} and {bi,hi,σi} for the fields. This grouping is gener-
ated by gathering all fields that transform similarly. In this
way, we can set to zero only one element from each group
due to the similarity in their transformation. For example we

Table 14. Common gauge choices for the metric and corresponding
tetrad.

Gauge Metric Tetrad

Flat ψ = 0,h= 0 ψ = 0,h= 0
Unitary δΦ= 0,h= 0 δΦ= 0,h= 0
Newtonian B = 0,h= 0 b= β,h= 0
Synchronous φ= 0,B = 0 φ= 0,b= β

can always set the pseudo-vector σi to zero but not the pseudo-
scalar σ since it is gauge invariant. Using the transformations
from equation (7.37) and the grouping of the fields in order to
gather a few popular gauge fixing choices in table 14.

For completeness we introduce a generic scalar field Φ and
a commonly used scalar called the shear potential χ := a(β−
b+ aĖ) which transform as

χ̃= χ+Y0, (7.38a)

δ̃Φ= δΦ+ Φ̇Y0. (7.38b)

From all the scalar DoF we can construct the following
gauge invariant variables found in the literature but adapted
to the perturbed tetrad,

ΦB =
d
dt

(a(b−β))− d
dt
(a2ḣ), (7.39a)

ΨB =−ψ+ a(−β+ b)H− a2Hḣ, (7.39b)

δΦf = δΦ+
Φ̇

H
ψ, (7.39c)

δΦN = δΦ+ a(−β+ b)Φ̇− a2Φ̇ḣ, (7.39d)

where ΦB,ΨB are the usual Bardeen potentials [573], δΦf is
called the Mukhanov-Sasaki variable and δΦN is a Bardeen
type variable built from a scalar field and the metric/tetrad
DoF. Finally, it should be noted that in [562] there is an extens-
ive and quite general perturbative framework for TG that one
could follow. This framework was also applied to TEGR using
gauge invariant variables.

7.4. Tensor perturbations

Starting with the most important and simple perturbations (the
tensor ones), one finds that the most general case of GW
propagation equation for this sector yields [574]

ḧij+(3+αM)Hḣij+

(
(1+αT)

k2

a2
+m2

)
hij =ΠT

ij, (7.40)

where αT := c2T− 1 is the tensor speed excess with cT :=
cg/c (here revert to SI units for clarity’s sake). This quant-
ity describes the modification in the GW propagation speed.
In addition, the Planck-mass run rate αM enters as a friction
term and it is related to the cosmological strength of gravityM2

∗

(the kinetic term of tensor perturbations) by αM :=
d log(M2

∗)
d loga ,

m denotes the effective graviton mass and ΠT
ij is the tensor
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part of the anisotropic stress (7.29d). For the case of GR,
equation (7.40) is reproduced by setting αM = αT = m= 0.
For the rest of the analysis, only cases where ΠT

ij = 0 are con-
sidered. The detection of the GW event GW170817 and the γ-
ray burst GRB 17 0817A place a strong constraint on the speed
at which GW propagate, leading to the following constrain
[575]

−3× 10−15 <
∣∣∣cg
c
− 1
∣∣∣< 7× 10−16. (7.41)

In addition, observations for the mass of the graviton set
an upper bound of mg < 1.2× 10−22 eV/c2 from [576]. There
is also a stronger constraint coming directly from Solar Sys-
tem tests from which we have the stronger upper bound mg <
10−23 eV/c2 [577, 578]. Hence suggesting that our current
understanding of the graviton regarding its mass was not really
changed from the GW170817 event [579].

In what follows we will present the results of two major
classes of TG theories, namely f(T,B) (see section 5.4)
and BDLS (Teleparallel analogue of Horndeski) gravity (see
section 5.8.2) since these are the only results currently repor-
ted in the literature. In order to consider the tensor perturba-
tions we only need the tensor part of the perturbed tetrad in
equation (7.25) which is

δeIj =
a
2
δIihij. (7.42)

Starting with the f(T,B) case, by inserting the above perturb-
ation into the second order action in Fourier space (7.30),
one can derive directly the GW propagation equation which
is just equation (7.40) by setting αT = 0 and m2 = 0. From
this equation, the stability condition fT < 0 is implied28. The
Planck mass run rate, representing a frictional term [574, 580,
581] turns out to be in this case

αM =
1
H
ḟT
fT
. (7.43)

It should be noted here that ḟT = fTTṪ+ fTBḂ. AS in GR, the
propagation of the tensor waves in f(T,B) gravity is also the
speed of light [582]

c2T = 1, (7.44)

and it is in agreement with [575].
In this context, f(T,B) gravity is not that strongly con-

strained by present observations related to equation (7.41).
However a full stability analysis of the perturbations needs to
be performed, i.e. also including the scalar sector.

Let us point out that exactly the same results hold true
for the class of f (T) theories and hence one can deduce that
the boundary term only influences the functional form of

28 The stability condition fT < 0 comes from the fact that the equation (7.40)
with αT = 0 and m2 = 0 can also be generated from an action analogous to

the form
´

d3k
(2π)3/2

dt(−a3fT)
[
ḣijḣij + k2

a2
hijhij

]
. This type of action in order to

be healthy (−a3fT)> 0 ⇒ fT < 0 needs to be imposed.

the results only through the time derivative ḟT = fTTṪ+ fTBḂ.
Another very famous theory that enjoys the same functional

picture in the sense of f (T), is f(
◦
R) gravity [42] since the GWs

propagation at the speed of light and the the Planck mass run
rate is given as αM = ḟR/(HfR). These similarities were to be

expected to some degree since both f (T) and f(
◦
R) are sub-

classes of f(T,B).
The next major class of theories we consider is the BDLS

theory, which encapsulates all possible theories constructed
with up to second order derivatives of the tetrad and a scalar
field (see section 5.8.2). Following the same procedure, one
can find the gravitational propagation equation for the tensor
perturbations as equation (7.40) by setting m2 = 0, then

αT =
2X
M2

∗

(
2G4,X− 2G5,ϕ−G5,X(ϕ̈− ϕ̇H)

−2GTele,J8 −
1
2
GTele,J5

)
, (7.45)

and the effective Planck mass is given by

M2
∗ = 2

(
G4 − 2XG4,X+XG5,φ− ϕ̇XHG5,X+ 2XGTele,J8

+
1
2
XGTele,J5 −GTele,T

)
. (7.46)

Let us stress that at this point the only nonvanishing con-
tributing background scalars to the GTele term are T=−6H2,
Tvec =−9H2, and I2 = 3Hϕ̇, while all the other scalars vanish
up to first order.

The fact that the GTele terms enter equations (7.45)
and (7.46) means that in contrast to the standard Horndeski
theory there is the potential of revised speed of waves instead
of trivialization of most interesting classes of models. Hence
one can still find a wide variety of modes that respect the light
of speed propagation constraint by solving αT = 0. For the
case of GTele = 0 we directly recover the standard results for
the GW propagation equation [318].

Both of the above major classes correctly reproduce the
most trivial result of TEGR and f (T) theories which corres-
ponds to αM = αT = 0, i.e,

ḧij+ 3Hḣij+
k2

a2
hij = 0, (7.47)

which is also identical to the result of GR. For other theories
like the ones containing the teleparallel Gauss–Bonnet terms
(see section 5.6), it is expected that cT 6= 1 as it was found for
similar theories as in the case of the modified Gauss–Bonnet
one [583]. This study has not been analyzed yet. Recently, two
TG parity-violating models have found that some of those the-
ories can produce a GW birefringence and dispersion meaning
that the dispersion relation could depend on the wave number
and their polarization [584, 585].
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7.5. Vector perturbations

In order to study the vector perturbations at linear order, the
tetrad perturbation of equation (7.25) reduces to

[
δeAµ

]
=

[
0 aβi
δIibi aδIiϵijkσk

]
. (7.48)

In the literature, so far, there have not been reported explicitly
any theories with dynamical vector perturbations in flat FLRW.
It is instructive to go through the result [158] of f(T,B) gravity

which also includes GR, f (T) and also f(
◦
R) as sub-cases. For

that calculation the gauge can been fixed by setting hi ≡ 0 (see
section 7.3 for details). Perturbing the field equations which
we now denote as Wµν and for ḟB+ ḟT 6= 0 (which is a theory

different to f(
◦
R)) we get that βi = 0 and σi = 0. Hence one

eventually arrives at

Wij(i 6= j) : 0= ḃj+ bj

(
2H+

ḟT
fT

)
. (7.49)

The above equation is just a constraint equation since only first
order derivatives on time appear and hence the vector perturb-
ations are not propagating. One can also read off the same sta-
bility condition fT < 0 as in the tensor case. It so happens that
f (T) gravity [243] is again portrayed by the same functional
picture as f(T,B).

In the case of ḟB+ ḟT ≡ 0whichmeans fT =−fB =−fR or in
other words, f(T,B)→ f(

◦
R), all antisymmetric field equations

are trivialized (W[µν] ≡ 0). By further introducing Yi := bi−
βi, we end up with

Wij(i 6= j) : 0= Ẏj+Yj

(
2H+

ḟR
fR

)
, (7.50)

which is a well known result for f(
◦
R) theories [42]. Notice

again that this result has the exactly the same functional form
as the one for f(T,B) above.

Lastly, for the simplest case of TEGR one recovers the con-
straint equation

Wij(i 6= j) : 0= ḃj+ 2Hbj, (7.51)

and thus there are no propagating vectorial DoF which agrees
with the literature.

7.6. Scalar perturbations

Focusing on the scalar sector which is the most involved, the
analysis will be confined to the scalar part of equation (7.25)
that reads[

δeAµ
]
=

[
φ a∂iβ

δIi∂
ib aδIi

(
−ψδij+ ∂i∂jh+ ϵijk∂

kσ
) ] ,

(7.52)

in which the Newtonian gauge (b= β and h= 0) will be
adopted. In the following, the field equations for f(T,B) and

f(T,Θ) gravity theories are reported since they are quite gen-
eral including a wide range of theories. One can find more
details about the derivations in the supplementary annexes
(supplementary 2).

7.6.1. f(T,B) gravity. The linearized field equations of the
scalar perturbations for f(T,B) are given by

W00 : κ
2δρ= 3HδḟB+

( k2
a2

+
B
2

)
δfB− 6H2δfT

− 1
2
fTδT−

2Hk2fT
a

b+ ψ̇(12HfT− 3ḟB)

+
2k2fT
a2

ψ+ 6Hφ(2HfT− ḟB), (7.53a)

Wij(i 6= j) : ψ−φ=
1
fT
(a(ḟT+ ḟB)b− δfB), (7.53b)

Wi
i :−κ2δp= δ̈fB+ δfB

(
2k2

3a2
+
B
2

)
− 2(3H2 + Ḣ)δfT

− 2k2

3a
(ḟB+ 3HfT+ ḟT)b− 2HδḟT−

1
2
fTδT

+
2k2fT
3a2

ψ+ 2fTψ̈+ 2ψ̇(6HfT+ ḟT)+ φ̇(2HfT− ḟB)

+φ

(
4fT

(
−2k2fT

3a2
+ 3H2 + Ḣ− 2̈fB

)
+ 4HḟT

)
,

(7.53c)

W0i : κ
2av(p+ ρ) = δḟB− 3HδfB+ 2fTψ̇

− 2HδfT+(2fTH− ḟB)φ, (7.53d)

Wi0 : κ
2av(p+ ρ) = δḟB−HδfB+ 2fTψ̇

+ 2(ḟT+ ḟB)ψ+(2fTH− ḟB)φ, (7.53e)

where δfT = fTTδT+ fTBδB and δfB = fBTδT+ fBBδB, while the
antisymmetric part of the field equations reads as

Wi0 −W0i : 0= H(δfT+ δfB)+ψ(ḟT+ ḟB), (7.54)

and the energy-momentum conservation in the case of dust (for
the general case, see the supplementary annexes (supplement-
ary 2) is given by

◦
∇µΘ0

µ : δρ̇+ 3Hδρ=
ρ

a
k2v+ 3ψ̇ρ, (7.55a)

◦
∇µΘi

µ : av̇+ aHv=−φ. (7.55b)

Notice that σ completely drops out from the field equations,
just like in f (T) gravity. On top of this, also the antisymet-
ric part of the field equations is not trivialized (7.54), just
like in f (T) [242, 243, 569]. In the limit of f(T,B)→ f(−T+
B) = f(

◦
R) where (fT →−fR, fB → fR), one can recover after a

few trivial substitutions the usual equations reported in [42].
In addition, in this limit the antisymmetric part of the field
equations in equation (7.54) is trivialized and the scalar field
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b completely drops off from the field equations29. This is to

be expected since for f(
◦
R) there are no antisymmetric field

equations and there should be only 4 scalar fields in the
equations [42].

7.6.2. f(T,Θ) gravity. For the case of f(T,Θ) gravity, as also
introduced in section 5.9, we use the model ansatz f(T,Θ) =
−T−F(T,Θ) for some arbitrary function F(T,Θ) which is
formulated as TEGR plus a modification. The analysis follows
from [586] where the field equations are first presented in the
flat FLRW background (see equations (6.64a) and (6.64b))

κ2

2
ρ= (1+FT)3H

2 +
T+F

4
+
FΘ

2
(ρ+ p) , (7.56a)

−κ
2 −FΘ

2
(p+ ρ) = (1+FT) Ḣ− 12H2ḢFTT

+H(ρ̇− 3ṗ)FTΘ, (7.56b)

where we have used Θ= ρ− 3p and ḟT = ḞT = FTTṪ+
FTΘΘ̇ =−12HḢFTT+(ρ̇− 3ṗ)FTΘ. Combining these
equations (or using equation (5.131)) yields the modified
continuity equation(
κ2 −FΘ

)
[ρ̇+ 3H(ρ+ p)] =

FΘ
2

(
ρ̇− ṗ

)
+(ρ+ p)

×
[
−12HḢFTΘ +(ρ̇− 3ṗ)FΘΘ

]
.

(7.57)

Special care is needed in the presence of the trace of the
energy momentum-tensor since it modifies the continuity
equation, which leads to the non-conservation of the stress-
energy tensor. Nevertheless we impose the conservation as a
constraint in order to limit the possible functional form. This
constraints reads as

0= FΘ (ṗ− ρ̇)+ 6(ρ+ p)

[
4HḢFTΘ +

(
ṗ− ρ̇

3

)
FΘΘ

]
.

(7.58)

On the other hand, the perturbed field equations of
equation (5.53), in the Newtonian gauge, read a.s.

W00 :
κ2

2
δρ= (1+FT)

[
a−2∂2ψ− 3Hψ̇− 3H2φ

]
+ 3H2

[
FTTδT+FTΘδΘ

]
+
FΘ

4

(
3δρ− δp− ∂2ΠS

)
+
ρ+ p
2

[
FTΘδT+FΘΘδΘ

]
, (7.59a)

Wij(i 6= j) :
(
κ2 −FΘ

)
∂j∂

iΠS = a−1∂j∂
iβ
[
−12HḢFTT

+(ρ̇− 3ṗ)FTΘ]

+ a−2 (1+ fT)∂j∂
i (ψ−φ) ,

(7.59b)

29 After expanding δT, δB, δfT and δfB as prescribed in supplementary
annexes (supplementary 2).

Wi
i :

κ2

2

(
δp+

∂2ΠS

3

)
= (1+FT)

[
Hϕ̇+ 3H2ϕ+ 3Hψ̇

+2Ḣφ+ ψ̈− 1
3
a−2∂2 (ψ−φ)

]
−FTT

(
3H2δT+ 2ḢδT

+HδṪ+ 12H2Ḣφ
)
+FTΘ

[
−
(
3H2 + Ḣ

)
δΘ−HδΘ̇

+(ρ̇−3ṗ)

(
δT
12H

+Hϕ

)]
+12H2Ḣ(FTTTδT+FTTΘδΘ)

−H(ρ̇−3ṗ) [FTTΘδT+FTΘΘδΘ]−FΘ

4

(
δΘ− 2

3
∂2πS

)
,

(7.59c)

W0i :
a2

2
(ρ+ p)

(
κ2 −FΘ

)
∂iv= (1+FT)∂i

(
ψ̇+Hφ

)
−H(FTT∂iδT+FTΘ∂iδΘ) ,

(7.59d)

Wi0 : −
a2

2
(ρ+ p)

(
κ2 −FΘ

)
∂iv

=−(1+FT)∂i
(
ψ̇+Hφ

)
− ∂iψ

[
−12HḢFTT+(ρ̇− 3ṗ)FTΘ

]
, (7.59e)

and the antisymmetric part

Wi0 +W0i : H(FTT∂iδT+FTΘ∂iδΘ)

=−∂iψ
[
−12HḢFTT+(ρ̇− 3ṗ)FTΘ

]
, (7.60)

where WA
ρ denotes the linearized field equations, δT can

be found in the supplementary annexes (supplementary 2)
and δΘ= δρ− 3(p+ δp)− ∂2ΠS. These equations properly
reproduce the results reported in [323, 569]. Furthermore, the
scalar perturbation σ does not appear in the field equations,
leaving its effect to be negligible [243, 569].

In addition to the field equations, we also need to perturb the
conservation laws for the stress-energy tensor and the velocity
perturbation. Thus, the perturbed continuity equation is

◦
∇µΘ0

µ :
(
κ2 −FΘ

)[
δρ̇+ 3H

(
δρ+ δp+

∂2πS

3

)
− 3(ρ+ p) ψ̇+(ρ+ p)∂2v

]
=
FΘ

2

(
δρ̇− δṗ− ∂2π̇S

)
+FTΘ

[
−2a−2∂2ψ (ρ̇− 3ṗ)+ (ρ+ p)

(
3HδT+ δṪ

)
−12HḢ(δρ+δp)+6H

(
Hφ+ψ̇

)
(ρ̇−3ṗ)+(ρ̇+ṗ)δT

]
+FΘΘ

[
(ρ+ p)

(
3HδΘ+Θ̇

)
+

1
2

(
3δρ− δp− ∂2πS)

×(ρ̇− 3ṗ)+ (ρ̇+ ṗ)δΘ]− 12HḢ(ρ+ p)(FTTΘδT

+FTΘΘδΘ)+ (ρ+ p)(ρ̇− 3ṗ)(FTΘΘδT+FΘΘΘδΘ) .

(7.61)

and the linearized conservation of momentum equation
equation
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◦
∇µΘi

µ :−1
2
FΘ

[
a2 (ρ̇− ṗ)∂iv+ ∂i

(
δρ− δp− ∂2πS

)]
=
(
κ2 −FΘ

){
(ρ+ p)

[
a2∂iv̇+ 2a2H∂iv+ ∂iφ

]
+a2ṗ∂iv+ ∂iδp+ ∂i∂

2πS
}
. (7.62)

The scalar field σ completely drops out from the field
equations and in addition a non-trivial antisymmetric part of
the field equations is obtained (7.60). This is also case in
f(T,B) gravity (7.6.1). In this instance the scalar perturbations
are coupled with the perturbations of the energy-momentum
components and so this is not enough information to determ-
ine the impact of these cosmological perturbations on obser-
vational parameters.

7.7. Growth index and the fσ8 parameter

A viable way to carefully explore the phenomenology of pro-
posed models is to compare with observations. To achieve this
goal, we need to find tools that can help efficiently in discrim-
inating between different classes of models. The growth index
γ (see equation (7.69)), which describes a way of parameter-
izing the growth of density perturbations in a nonrelativistic
matter component is a good example of such a tool. In recent
years, the parameter γ has been used to discriminate spatially
open from spatially flat universes. As an extension, γ has been
used in the context of DE in order to study deviations from
standard GRmodels. The reason why this parameter is import-
ant is due the fact that it has a clear quasi-constant signature at
very low redshifts. At this point, it is important to study (the-
oretically) in which models the growth index γ can be exactly
constant, γ ≈ 3(w− 1)/(6w− 5)which is GR plus DE fluid or
γ ≈ 6/11 in the case of ΛCDM. Also some indirect values for
modified gravity are reported in [587]. Hence, the value of γ
offers a way to distinguish between modified gravity models.

Let us start by considering the evolution of linear scalar per-
turbations δm as

δm :=
δρ

ρ
+ 3HV, (7.63)

in the matter component in the Universe with DE components
(we neglect radiation at the matter and DE dominated stages).
Inside the Hubble radius dynamics of δm is given by

δ̈m + 2Hδ̇m − 4πGρδm = 0. (7.64)

In the absence of spatial curvature, the evolution of the H as a
function of the redshift z= a0

a − 1 at z� zeq reads

h2(z)=Ωm0 (1+z)
3+(1−Ωm0) exp

[
3
ˆ z

0
dz ′

1+wDE(z ′)
1+ z ′

]
,

(7.65)

with h(z) := H
H0

and wDE(z) := pDE(z)/ρDE(z). This equation
will hold for all FLRWmodels inside GR. Now, if we consider
that the relative density of matter component in terms of the

critical one Ωm =Ωm0

(
a3

a30
h2
)−1

, we can write the effective

DE EoS as

wDE =− 1
3(1−Ωm)

dlnΩm

dln(1+ z)
. (7.66)

In this representation, the effective Newton’s parameter Geff

can be parametrized as

Geff = GQ, where Q=
2+ 4Ω2

m

3+ 3Ω2
m
, (7.67)

which allows the matter perturbation equation (7.64) to retain
it formwhile absorbingmodified terms into this effective para-
meter. While we can work with δm, it is convenient to use the
growth function f := d lnδm

d lna and the DE EoS (7.66) in order to
arrive at the non-linear equation

df
dlna

+ f 2 +
1
2

(
1− dlnΩm

dlna

)
f=

3
2
Ωm, (7.68)

where we can recover δm from f. Notice that f= f0 (with f 0
constant) if δm ∝ a f0 . In particular, f → 1 for the ΛCDM case
and for large z, while for f = 1 we obtain the Einstein-de Sitter
Universe. As is standard, we can derive the growth of perturba-
tions by parameterizing f in terms of the DE related quantities
as

f=Ωm(z)
γ(z). (7.69)

We note that in this case it is important to study whether γ
can be exactly constant or not. In such cases, the the mod-
ified evolution of matter perturbations assumes the form of
equation (7.76) which is

δ̈m + 2Hδ̇m − 4πρGeffδm = 0, (7.70)

where Geff, as the effective gravitational constant which
depends on the choice of the theory. As an example, for effect-
ively massless scalar-tensor models Geff varies wrt t.

The galaxies and quasars observed in spectroscopic obser-
vations are biased tracers of such structure formation, leading
to degeneracy between the amplitude of matter fluctuations
and biasing parameters. This issue could be a consequence of
the complicated calculation of the growth function from the
isotropic power spectrum derived from clustering of cosmic
sources. However, spectroscopic observations contain extra
information about the velocity field arising from gravitational
collapse by separately measuring the power spectrum along
and perpendicular to the line-of-sight. Measurements of the
velocity field can help to differentiate between the effect of DE
andmodified gravity as the source of the accelerating Universe
through measurements of Redshift-Space Distortions (RSD)
[588]. These distortions emerge due to the gravitational pull
of matter over-densities which causes velocity deviations from
the smooth Hubble flow. These peculiar velocities are imprin-
ted in galaxy redshift surveys in which recessional velocity is
used as the line-of-sight coordinate for galaxy positions. This
in turn leads us to an apparent compression of radial clustering.
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The resulting anisotropy in the clustering of galaxies is cor-
related with the speed at which structure grows; deviations
from GR which cause slower or faster growth result in smaller
or larger anisotropic distortions in the observed RS clustering.
The rate of change of the amplitude of the clustering is given
by fσ8(a) = dσ8(a)/dlna, where a= 1/(1+ z) and f≡ f(a)
has been defined in equation (7.69). Because RSD measure-
ments are sensitive to the product of the growth rate and the
amplitude of matter fluctuations, a wide range in redshift cov-
erage is important to constrain the evolution in clustering amp-
litude and directly probe GR. On the other hand, if one were to
assume a ΛCDM model where GR properly explains gravita-
tional collapse, the growth rate can be predicted to high preci-
sion and RSD results can be used to constrain σ8(a), thereby
provide insight into other fundamental physics such as neut-
rino masses.

7.7.1. f(T) gravity. In [568], an analysis of the scalar cosmolo-
gical perturbations in f (T) gravity was presented. In particular,
they chose to investigate a power-law model scenario where it
is possible to find constraints on the growth matter factor in
sub-horizon scales around O(100 Mpc). This is illustrated by
the field equation for the perturbation of the additional scalar
field of the theory, δϕ read as at first order perturbations when
f (T) is fixed to a constant. In [381], in comparison to [568],
a reconstruction of f (T) was considered as a quintessence
model, where it was noticed that strong deviation of the matter
over density evolution at small scales and weak otherwise. In
this direction, it was shown that at linear perturbative order it
is possible to break the degeneracy between a family of f (T)
models. As an extension of the aforementioned work on f (T),
this quintessence analysis showed some deviations for large
scales. According to equation (7.69), it is possible to analyze
cases where the growth index γ can be parameterized. In such
cases, as in [589], a parameterization was given in the form
γ(z) = γ0 + γ1

z
1+z in order to study if a power law model can

be constrained using observations.
Including a new scalar field, αm in the linear equations,

as in [590], could contribute further to the anisotropic effects
between the gravitational potentials ψ and φ. This new scalar
degree of freedom vanishes in the sub-horizon scales of f (T)
gravity and it is constrained with observations related to the
flux power spectrum of the Lyman-alpha forest in quasar
absorption spectra. According to this analysis it was found that
there is a faster growth rate if the tracker solution is followed
by the usual quintessence-like evolution.While proposing f (T)
power law models can help avoiding degeneracies at linear
order, in [591], it was found that an asymptotic form of this
particular f (T) model can be given by γ ≈ 6

11−6b . This served a
generalization to the described analyses in the regime where γ
can vary with redshift. This allows for an accurate determina-
tion of b and also the ability of testing it in the range of validity
of the observations. Furthermore, in [592], the evolution of the
weighted growth rate, denoted by fσ8(a), was investigated for
several different values of the parameter n in the power law
model. The results were based in observations derived from

redshifts distortions reported by Planck 2015 Collaboration in
a sample detailed in [593].

Using machine learning techniques, as will be further intro-
duced in section 10.4.2 and detailed in [594] the role of the
growth data was studied by reconstructing observations from
RSD fσ8 data together with the Hubble data that comes from
cosmic chronometer and SN type Ia data. The advantage of
this reconstruction, is that it acquires more simulated data
points in order to constrain modified gravity models with bet-
ter precision. In addition, in [595, 596] a f (T) power lawmodel
was constrained using the CMB temperature power spectrum
from early-time estimations that includes baryonic acoustic
oscillations and also, local Hubble constant measurements. By
including this analysis, it was possible to set a playground
where the evolution of tensor modes in f (T) gravity could
influence the power spectrum and the B-modes polarization.

In [595, 596], the power model was further constrained
by considering GWmulti-messenger astronomy, especially on
the effects of primordial GW on the CMB anisotropies and the
BB spectrum. It was shown that only an amplitude modifica-
tion could be compared with the standard ΛCDM cosmology,
i.e themore the parameter n in themodel deviates fromGR, the
larger the GW amplitude decay is compared to the canonical
ΛCDM. Additionally, one can constrain the growth factor by
including detections from neutron stars mergers that include
an EM counterpart.

7.7.2. f(T,B) gravity. Considering dust for the perfect fluid,
and following [42, 597], the variable V := av is introduced and
along with the gauge invariant variable dubbed density con-
trast δm as in equation (7.63). In order to determine the time
derivative of this parameter, we need to utilize the continu-
ity equation to obtain the density parameter time derivative,
which is

δρ̇+ 3Hδρ=
k2ρV
a2

+ 3ρψ̇. (7.71)

The time derivative of the density contrast parameter can then
be written as

δ̇m =−
◦
∇2V
a2

+ 3ψ̇+ 3
d
dt
(HV), (7.72a)

V̇=−φ, (7.72b)

where the time derivative of V is also presented. By combining
both derivatives, we obtain

δ̈m + 2Hδ̇m =

◦
∇2φ

a2
+ 3ψ̈+ 3

d2

dt2
(HV)+ 6Hψ̇+ 6H

d
dt
(HV).

(7.73)

In the sub-horizon approximation k� aH, k being well
inside the Hubble radius, the dominant terms are k and δρ.
Now that we have all the prerequisites we need to proceed, let
us first summarize the dominant terms in this limit

124



Rep. Prog. Phys. 86 (2023) 026901 Review

Table 15. Summarizing the cases of all the subclasses of f(T,B) in the sub-horizon approximation (recalling that definitions for
A2, A6,∆4,∆10 are in appendix B). For more details see [158].

Class Conditions Models Geff Σ

1 {Π ̸= 0,Υ ̸= 0}
1a Ξ ̸= 0 General f(T,B) −G 4Υ

36H2( fBBfTT+2Ξ)+3ΥfT
− Υ

ΥfT+12H2( fBBfTT+2Ξ)

1b Ξ = 0 Includes f (T) G A2
A6

∆4
∆10

=− A2
A6

2 {Π ̸= 0,Υ ≡ 0}
2a Ξ ̸= 0 Less general f(T,B) −G 4

3( fT+12H2fTB)
− 1

fT+12H2fTB

2b Ξ = 0 Only f(
◦
R) G

(
4
3fR

+ 1

3(−fR+3 k2

a2
fRR)

)
Σ∼ 1

fR

{
k2

a2
|φ|, k

2

a2
|ψ|, k

2

a2
|β|, k

2

a2
|δfT|,

k2

a2
|δfB|

}
�
{
H2|φ|,H2|ψ|,H2|β|,H2|δfT|,H2|δfB|

}
, (7.74)

and

˙|X|≲ |HX| where X ∈
{
φ,ψ,β,δfT, δfB, φ̇, ψ̇, β̇, δḟT, δ ˙fB

}
.

(7.75)

Thus, it follows directly that in Fourier space (7.30) of the sub-
horizon limit of equation (7.73) that it reduces to (7.70) as

δ̈m + 2Hδ̇m '−k2φ
a2

= 4πρGeffδm =
κ2

2
ρGeffδm, (7.76)

from which it follows that the only contributing scalar is φ.
Along a similar vein, Σdef is a parameter sensitive to weak
lensing which appears when we write the lensing potential
−(φ+ψ) in terms of the matter density contrast δm, so Σdef

plays a similar role to Geff but between the lensing potential
and δm specifically. This parameter is defined as

Σ :=
1
2
Geff

G

(
1+

ψ

φ

)
, (7.77)

which is calculated in along with Geff in the sub-horizon
approximation. Due to the nature of the f(T,B) there is branch-
ing in various sectors by solving the field equations (7.53a)–
(7.54). By introducing the useful notation

Π := fB+ fT, (7.78a)

Υ := fBB+ 2fTB+ fTT =ΠT+ΠB, (7.78b)

Ξ := f2TB− fTTfBB =−ΠTΠB+ fTBΥ, (7.78c)

induced branches are classified as:

1. {Π 6= const,Υ 6= 0}
Which can further be classified using Ξ =−ΠTΠB+ fTBΥ
1.a {Π 6= const,Υ 6= 0,Ξ 6= 0}most general case of f(T,B)
1.b {Π 6= const,Υ 6= 0,Ξ = 0} includes f (T)

2. {Π 6= const,Υ≡ 0}
Which can further be classified using Υ≡ 0⇒ΠB ≡−ΠT

into equation (7.78c) as Ξ = Π2
T =Π2

B

2.a {Π 6= const,Υ= 0,Ξ 6= 0}
2.b {Π= const,Υ= 0,Ξ = 0} the unique f(

◦
R) case

These branches may also be indicators of variable DoF,

since we know for sure that f(
◦
R) has 3 DoF and f (T) has

either 3 or 5 DoF [145, 154, 246, 556] as also discussed in
section 5.3. The classification induced by these branches is
illustrated in table 15 and the relevant coefficients are included
in the appendix B.

7.7.3. f(T,Θ) gravity. Investigating the growth formation for
epochs well within the matter domination periods, we set the
pressure components p= δp= 0 along with the absence of
anisotropic stress. In addition, models that obey the conser-
vation of the stress-energy tensor will be assumed. Even when
the models do not obey the conservation law, the result repor-
ted in [586] is still obtained. Also, the conclusions regarding
the resulting growth evolution remain the same.

Following the procedure of section 7.7.2, and combining
equations (7.59e) and (7.59d), the relation

FTT
(
12Hψ̇+12H2ϕ−12Ḣψ−4a−2k2ξ

)
=−FTΘ (δρ−3ρψ) ,

(7.79)

is obtained where we define ξ := aHβ. Here, we have elimin-
ated φ using equation (7.59b), where we have obtained

φ= ψ− 3ξ
1+FT

(
4ḢFTT+ ρFTΘ

)
, (7.80)

which, then combined with equation (7.79) results in

4ξFTT

=
ρFTΘ

(
δm − 3Ha2v− 3ψ

)
+FTT

[
12Hψ̇+ 12ψ

(
H2 − Ḣ

)]
k2
a2 +

9H2

1+FT

(
4ḢFTT+ ρFTΘ

) ,

(7.81)

which in the in the sub-horizon approximation assumes the
form

4ξFTT ≈
a2

k2

{
ρFTΘ

(
δm − 3Ha2v− 3ψ

)
+FTT

[
12Hψ̇+ 12ψ

(
H2 − Ḣ

)]}
. (7.82)
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Approximating by leading order, we obtain

ξ ∼ a2H2

k2
(
δm − a2Hv+ψ

)
, (7.83)

which can be further reduced using equation equation (7.62)
as (

v̇+ 2Hv+
φ

a2

)
(κ2 −FΘ) =−FΘ

2a2
δm, (7.84)

and from equation (7.80)

ξ ∼ a2H2

k2
(φ+ψ)� ψ. (7.85)

Hence, we find that φ' ψ. We note that in this analysis we
implicitly imposedFΘ, FTΘ, FTT 6= 0 but nevertheless the con-
clusion φ' ψ remains the same for the two gravitational
potentials. This is important since these potentials play a dom-
inant role in the calculation of the deflection parameter (7.77).

Using the sub-horizon limit approximation, one can then
proceed to derive the evolution equation for the gauge-
invariant fractional overdensity δm. Using equations (7.59a),
(7.59d) and the definition of δm in equation (7.63)(
κ2

2
− 3FΘ

4
− ρFΘΘ

2

)
δm

= (1+FT)
k2ψ
a2ρ

+
1
2

{
FTΘ

[
12H

(
ψ̇+Hφ

)
− 4a−1Hk2w

]
+3Ha2vρFΘΘ

}
+

3FΘ

4
a2Hv, (7.86)

which in conjunction with ψ ' φ and k2ψ
a2H2 � ψ reduces to

Aδm = (1+FT)
k2ψ
a2ρ

+
3Ha2v

2
ρFΘΘ +

3FΘ

4
a2Hv, (7.87)

where A := κ2

2 − 3
4FΘ − 1

2FΘΘρ. In addition, From
equation (7.59e), in the sub-horizon limit, we obtain the rela-
tion Hφ∼ ρa2v which can be further used to simplify (7.87)
as

Aδm = (1+FT)
k2ψ
a2ρ

, (7.88)

from which one generates the generalized matter density
equation as

δ ′ ′
m (a)+

1
aAH

[
aAH ′ + 2A ′aH+ 3AH

− 3AH
κ2 −FΘ

(
4H ′aHFTΘ + ρFΘΘ

)]
δ ′
m(a)

+
1

Aa2H2

[
a2H2A ′ ′ + 3A ′aH2 +A ′a2HH ′ − 3A ′aH2

κ2 −FΘ

×
(
4H ′aHFTΘ + ρFΘΘ

)
− κ2 −FΘ

2(1+ fT)
Aρ− k2FΘ

4a2

]
δm(a) = 0.

(7.89)

It is straightforward to check that the limits A= κ2

2 and
F(T,Θ) = 0 are recovered as expected. Usually, at this stage,
one can read off some Geff but this is rather not the case since
we have a modified continuity equation as can be seen from
equations (7.61) and (7.62). Regarding its solubility, this sys-
tem of equations would yield two different solutions for δm
dubbed the growing and decaying modes. However, in most
cases the interest lies in the formation of structure and thus
only the growing solution is probed. A very similar model
from the curvature-based gravity framework with very similar

behavior is f(
◦
R,Θ) [598].

Henceforth, for the above reasons, extra caution while
using first order perturbations is needed. The use of the correct
perturbed tetrad is quite straightforward at this stage. How-
ever, in general one should carry out a full Hamiltonian ana-
lysis to fully understand if strong coupling appears in a the-
ory. Then try to probe a specific background in order to extract
information about linear perturbations and their dynamics.

7.7.4. Closing remarks. As closing remarks we would like to
point out that in most of these works, and in general, one needs
to be very careful considering (the scalar) perturbations. There
are actually two three major reasons for that, namely:

(a) Acorrect choice of perturbed tetrad—Inmost of the ref-
erences discussed in section 7.7 a wrong perturbed tetrad
was used that only assumed 13 DoF. The missing DoF is
traced back to the antisymmetric part of the perturbation
of the tetrad which is described by the scalar field field σ
and the vector field σi. The tetrad is neither symmetric,
like the metric tensor, nor antisymmetric and thus it must
assume 16 DoF in general, thus not including the anti-
symmetric contributions one is left with 3 DoF less. This
is illustrated in a more clear way via the full spacetime
indexed perturbation of the tetrad dubbed as τµν defined
in equation (7.27). Having said that, it was proven in [158,
242], that the pseudo-scalar field σ is not dynamical for
neither f (T) nor f(T,B) in a flat FLRW background. Once
one extends these theories, by adding more scalar fields
or more contributions to the actions, then a full analysis
using the correct perturbed tetrad equation (7.25) must be
performed.

(b) Overfixing the gauge—One needs to be very careful first
to use the correct perturbed tetrad assuming the correct
number of DoF as discussed in (a) and then fix the gauge
properly as discussed in section 7.3. In some instances but
not properly understanding the gauge transformation of
the fields one can be mislead in overfixing the gauge thus
artificially removing DoF which lead to a false result in
principle.

(c) The strong coupling issue—The next andmaybe themost
important reason is related to the strong coupling issue in
modified theories like f (T) seem to be haunted from, as
also discussed in section 5.3.1. This phenomenon is dir-
ectly linked with the existence of some (scalar) DoF which
in general is propagating but in specific (highly symmet-
ric) backgrounds becomes non-dynamical, at least it seems
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that way in first order perturbations. If one goes beyond
first order perturbations then eventually one will find these
missing DoF in higher perturbative orders. Hence if there
are hidden DoF in higher perturbative orders, the linear
order perturbations might not be dominant anymore and
a full analysis of all orders until the missing DoF is loc-
ated will be needed. This is directly linked to the fact that
linear perturbations are not sensitive to non-linear velocity
constraints in general. Finally, we stress that, specifically
for f (T) this is a problem of choosing a proper background
solution, not a problem of the actual theory [154]. Further,
we do not know if this problem will also appear in other
modified TG different to f (T) gravity.

Henceforth, for the above reasons, extra caution while
using first order perturbations is needed. The use of the cor-
rect perturbed tetrad and avoid over-fixing the gauge is quite
straightforward at this stage. Regarding the strong coupling
issue, it would be wise to first make sure that a proper Hamilto-
nian analysis of the action has been carried out and the number
of DoF is known. Then try to probe a specific background solu-
tion and its perturbations. Although it is expected that f (T) is
strongly coupled for the available background solutions used
so far, it should be stressed that this is purely due to the non-
linearity f (T) introduces. In the case of −T+Λ for example
there is no such issue since the dependence on T is linear.

8. Polarization of GWs in TG

In this section, the polarization status of some major classes
of TG theories will be reviewed. The NGR will be the start-
ing point for calculating the polarizations by utilizing the
Newman–Penrose formalism. In this case it will be evident
that the polarizations depend heavily on the parameters of
NGR. Subsequently, the case of f(T,B) gravity will be illus-
trated where the polarizations are calculated with a more tradi-
tional method using the geodesic deviation equation. This case
differs significantly from NGR since there is a massive scalar
on top of the tensor modes. Finally, the polarization modes of
the BDLS theory, the most general scalar-tensor theory built
on TG, will be exhibited. For this case there is yet another dis-
tinct method, of calculating the polarization modes, used by
employing the SVT decomposition. First the number of DoF
are calculated and then the various results are applied for the
calculation of polarizations.

8.1. Polarization modes in metric theories of gravity

In metric theories of gravity, due to the nature of the Riemann
tensor, only six GW polarizations are allowed [6, 599, 600].
These six polarizations can be also classified in terms of their
helicity content as two tensor (helicity ±2) modes plus (+)
and cross (×), two vector (helicity ±1) modes called x and y
and two scalar (helicity 0) modes named breathing and longit-
udinal modes. This classification is illustrated in figure 25. In
general, we can explore the polarizations of the GWs by meas-
uring their amplitudes with GW detectors [174, 601–603].

For a GW incident toward the Earth, the polarization con-
tent of the GW determines the relative amplitudes that are
measured at different detector locations on the Earth’s sur-
face, modulated also by each detectors’ antenna pattern [174].
The current ground-based advanced interferometer network—
comprising LIGO Hanford, LIGO Livingston and Virgo—is
therefore not yet sufficient to fully reconstruct all the GW
polarization of detected signals [602]. However, the existing
three-detector network can already be used to compare the
evidence for some specific subsets of all the possible polar-
ization combinations [604].

In [605–607], the LIGO and Virgo collaborations carried
out a Bayesian model comparison between some extreme
alternative hypotheses—specifically, comparing full tensor
with full vector or full scalar—for the polarization content
of the GW signals detected from three events in the second
LIGO-Virgo Observing Run: GW170814, GW170817 and
GW170818. The first and third events were binary black hole
mergers while GW170817 was a binary neutron star merger
with an explicitly identified electromagnetic counterpart in its
host galaxy NGC4993. Consequently the constraints obtained
from these analyses were strongest for GW170817, which
favored the full tensor hypothesis over both full vector and
full scalar—in each case with a log Bayes factor greater than
20. For the two binary black hole mergers also, however, the
full tensor hypothesis was also modestly favored. To further
clarify, therefore, this means GWs are highly more like to
have only tensor polarization modes compared to only vec-
tor or only scalar ones. However, we do not yet have any
information about amixture of polarizations such as tensor and
scalar modes or vector and scalar modes etc. Hence we cannot
yet exclude theories that predict such mixtures of polarization
pairs.

More recently, the LIGO andVirgo collaborations have car-
ried out a further Bayesian analysis that again compares full
tensor with full vector and full scalar hypotheses, but without
assuming a specific waveform model. (The analyses carried
out in [605–607] had adopted GR template waveforms). This
analysis was applied in [607] to a subset of the GW detec-
tions reported in the GWTC-2 catalog, which included events
observed during the first part of the 3rd LIGO-VirgoObserving
Run, denoted O3a [608]. Again, none of the mergers studied
showed significant evidence favoring a non-GR hypothesis.

Notwithstanding the limitations of the current three
detector global network, the near-future prospects for con-
ducting high-precision polarization tests of general metric
theories of gravity are very good. By the late 2020s, the
Advanced LIGO detectors will have undergone significant
further improvements, enhancing their sensitivity to the so-
called ‘A+’ configuration: a mid-scale, incremental upgrade
to Advanced LIGO that is scheduled to happen between 2026–
2028 [609]. This should increase their reach by a factor of
several. Similar enhancements to the Advanced Virgo detector
[610] are anticipated on the same timescale, and more import-
antly by that time the KAGRA [611] and LIGO India [612]
detectors will also have joined the global network, with LIGO
India planned to begin operations at the ‘A+’ configuration.
Hencewe can expect that by the end of this decade an extended
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Figure 25. All possible polarizations of GW travelling in z-direction, starting with the scalar modes breathing, longitudinal, the vector
modes x,y, and the tensor modes +,×. The GW deforms a sphere of freely falling test particles. The symbols → and ⊙ denote propagation
parallel and perpendicular to the paper plane accordingly.

‘Big Five’ global network of advanced interferometers will
be fully operational, with significantly higher event rates and
improved sky localization capability [613]. Data from these
five detectors will be able to fully characterize the polarization
content of GW sources, significantly reducing or eliminating
degeneracies, and hence will provide an excellent means for
testing the predictions of teleparallel theories of gravity.

The six aforementioned polarizations are directly linked
with the symmetries of the electric components of the

Riemann tensor denoted as
◦
Ri0j0, which assumes strictly only 6

independent components due to its symmetry. These compon-
ents are responsible for the evolution of the geodesic deviation
equation [66]

ẍi =−
◦
Ri0j0x

j, (8.1)

where dots represent coordinate time derivatives, (t,x,y,z) =
(0,1,2,3), i= {1,2,3} and xj = (x,y,z). Since in TG we
mostly assume that matter is coupled to the metric (and
the Levi-Civita connection), the force-like equation which
describes the motion of particles in TG coincides with the
geodesic equation (see section 3.2). This means that the
information related to the polarizations would be only encoded
in the Riemann tensor (as in GR). The tetrad contains more
DoF than the metric, but the extra ones cannot be directly
measured due to the matter coupling prescription adopted. On
the other hand, the extra information that could carry the tet-
rad could be found by indirect GWobservations. Restricting to
massless GWs there is the E(2) classification [174, 599, 600],
that utilizes the Newman–Penrose variables in order to facilit-
ate the calculation of the polarizations in a given gravitational
theory. Within this framework the six components of the elec-
tric Riemann tensor can be represented as

◦
R0i0j =


1
2 (<Ψ4 +Φ22)

1
2=Ψ4 −2<Ψ3

1
2=Ψ4 − 1

2 (<Ψ4 −Φ22) 2=Ψ3

−2<Ψ3 2=Ψ3 −6Ψ2

 .
(8.2)

where Φ22,Ψ2,Ψ3,Ψ4 are Newman–Penrose variables, <
represents the real part and = the imaginary one. These

Newman–Penrose variables can also be classified wrt their
helicity states through

Ψ2 : s= 0, Φ22 : s= 0,

Ψ3 : s=−1, Ψ3 : s= 1,

Ψ4 : s=−2, Ψ4 : s= 2,

(8.3)

where the overbar denotes complex conjugation. From
equation (8.3) we can deduce that Φ22,Ψ2 are related to scalar
DoF, Ψ3 is related to vectorial DoF and Ψ4 is related to
tensorial DoF. Finally, we can visualize this parametrization
of equation (8.2) in figure 25.

We will use the notation of [614] and denote the basis vec-
tors by lµ,nµ,mµ, m̄µ as

l= ∂0 + ∂3, n=
1
2
(∂0 − ∂3), m=

1√
2
(∂1 + i∂2),

m̄=
1√
2
(∂1 − i∂2), (8.4)

and we consider a plane wave propagating in the positive x3

direction, which corresponds to a single Fourier mode (7.30).
The wave covector then takes the form kµ =−ωlµ, where ω
characterizes the norm of the wave covector, and any generic
perturbation pµν will be expanded as

pµν = Pµνe
iωu, (8.5)

where we introduced the retarded time u= x0 − x3 and the
wave amplitude is denoted Pµν . As shown in [600], the
Riemann tensor of a null plane wave is determined completely
by the six so-called electric components. For the wave in
equation (8.5), these can be written in the Newman–Penrose
basis as

Ψ2 =−1
6

◦
Rnlnl =

1
12
ḧll,

Ψ3 =−1
2

◦
Rnlnm̄ =−1

2

◦
Rnlnm =

1
4
ḧlm̄ =

1
4
ḧlm, (8.6a)

Ψ4 =−
◦
Rnm̄nm̄ =−

◦
Rnmnm =

1
2
ḧm̄m̄ =

1
2
ḧmm,

Φ22 =−
◦
Rnmnm̄ =

1
2
ḧmm̄, (8.6b)
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Table 16. E(2) classes as labeled by the Petrov type of its nonvanishing Weyl tensor and the maximum number of nonvanishing amplitudes
as seen by any observer. These classes are independent of observer [614].

Class Conditions Description

II6 Ψ2 ̸= 0 All standard observers measure the same value for Ψ2, but
disagree on the presence or absence of all other modes.

III5 Ψ2 = 0, Ψ3 ̸= 0 All standard observers agree on the absence of Ψ2 and on the
presence of Ψ3, but disagree on the presence or absence of
Ψ4 and Φ22.

N3 Ψ2 = 0, Ψ3 = 0, Φ22 ̸= 0, Ψ4 ̸= 0 Presence or absence of all modes is observer-independent.
N2 Ψ2 = 0, Ψ3 = 0, Φ22 = 0, Ψ4 ̸= 0 Independent of observer.
O1 Ψ2 = 0, Ψ3 = 0, Φ22 ̸= 0, Ψ4 = 0 Independent of observer.
O0 Ψ2 =Ψ3 =Φ22 =Ψ4 = 0 Independent of observer: no wave.

where dots denote derivatives wrt the retarded time u.
This representation of Newman–Penrose variables serves as
the standard way of calculating the polarization content of
massless GW.

However, note the amplitudes in equation (8.3) are not
observer-independent quantities. For example, if in one frame
Ψ4 6= 0 butΨ2 6= 0, then there exists a frame in whichΨ4 = 0.
Hence, the absence or presence of the components of various
helicities depends upon the frame chosen. Nonetheless, there
are still some frame invariant statements for the amplitudes
which include a set of quasi-Lorentz invariant classes of GW.
Each class is labeled by the Petrov type of its nonvanishing
Weyl tensor and the maximum number of nonvanishing amp-
litudes as seen by any observer. These labels observer inde-
pendent quantities. These classes are illustrated in table 16.

This is exactly the so called E(2) classification for GWs and
each of these classes of a particular metric theory is defined to
be the class of its most general wave. More details also includ-
ing almost null waves can be found in [614].

We present yet another way to probe the polarizations via
the use of the SVT decomposition as introduced in section 7.2.
The idea is to use the SVT decomposition of the tetrad (and
consequently the metric) on Minkowski spacetime and then
calculate the electric components of the Riemann tensor [615],
◦
R0i0j which reads as

◦
R0i0j

=

 ψ̈− 1
2 ḧ+ − 1

2 ḧ× − 1
2 ik(β̇1 +Λ̇1)

− 1
2 ḧ× ψ̈+ 1

2 ḧ+ − 1
2 ik(β̇2 +Λ̇2)

− 1
2 ik(β̇1 +Λ̇1) − 1

2 ik(β̇2 +Λ̇2) ψ̈− k2(χ̇+Φ)

 ,
(8.7)

where we introduced the gauge invariant variables

χ := b− ḣ, (8.8a)

Φ := φ− β̇, (8.8b)

Σj := hjk
2 + iεjlpk

lσp, (8.8c)

Ξj := ik2bj− 2εjlpk
lσ̇p, (8.8d)

Λj :=−bj+ 2ḣj. (8.8e)

The representation of the electric components of the
Riemann tensor in equation (8.7) actually holds for any case,
irrespectively if the GW is massless or massive and hence is
more flexible.

8.2. Polarization modes in NGR

We review the analysis of polarizations of GW in NGR, intro-
duced in section 5.2, as developed in [616, 617]. The Lag-
rangian of NGR [34] reads as

L= e
(
c1T

ρ
µνTρ

µν + c2T
ρ
µνT

νµ
ρ+ c3T

ρ
µρT

σµ
σ

)
= eGαβ

µνρσTαµνT
β
ρσ, (8.9)

where the three real parameters c1,c2 and c3 define different
NGR theories and the supermetric [144] or constitutive tensor
[125, 130]

Gαβ
µνρσ = c1gαβg

ρ[µgν]σ − c2δ
[µ
β g

ν][ρδσ]α − c3δ
[µ
α g

ν][ρδ
σ]
β ,

(8.10)

which serves in compactifying the calculations later on.

8.2.1. Linearized regime and field equations. We start by
linearizing the field equations by introducing the perturbations
of the tetrad, inverse tetrad and the Lorentz transformation
defining the spin connection

eAµ = δ Aµ + ϵ uAµ, (8.11a)

EA
µ = δµA + ϵ vA

µ, (8.11b)

ΛA
B = δ AB + ϵ wA

B, (8.11c)

where ϵ� 1 acts as the perturbation parameter. One can eas-
ily show, at first order in ε, from eAµEAν = δνµ that vAµδ Bµ =

−uBνδνA and from ηABΛ
A
CΛ

B
D = ηCD implies that wAB =

−wBA. We consider a tetrad êAµ that is related to the original
tetrad eAµ, by a local Lorentz transformation Λ̃A

B, i.e. êAµ =

Λ̃A
BeBµ. Consequently, the torsion tensors of the respective
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tetrads will be T̂A = Λ̃A
BTB, and the connections are given in

terms of two further Lorentz transformations Λ̂ and Λ by

ω̂A
B = Λ̂A

Cd(Λ̂
−1)CB, ω

A
B = (Λ̃−1)ACΛ̂

C
Dd(Λ̃

E
B(Λ̂

−1)DE)

= ΛA
Dd(Λ

−1)DB. (8.12)

In the case when Λ̃ = Λ̂ the spin connection of the tet-
rad vanishes, ωA

B = 0, meaning we choose the Weitzenböck
gauge. Do not confuse the ˆ symbol used here to denote the
transformed tetrad, with thêone used in sections 2–5 and
denotes the quantities calculated with the symmetric telepar-
allel connection.

The gauge transformations regarding the perturbations in
this framework are

êA = Λ̃A
BeB ⇒ ûAµ = w̃Aµ+ uAµ, (8.13a)

ΛA
D = (Λ̃−1)ACΛ̂

C
D ⇒ ŵAB = w̃AB+wAB. (8.13b)

We change indices using δ Aµ and δµA while raising/lowering
any kind of index is done with the Minkowski metrics ηAB and
ηµν or its inverse.

The torsion tensor up to first order reads

TAµν = 2∂[µe
A
ν] + 2ωA

B[µe
B
ν]

= 2ϵ
(
∂[µu

A
ν] − ∂[µw

A
ν]

)
+O(ϵ2). (8.14)

This perturbative expansion of the torsion tensor does not
have a zeroth-order contribution since we assumed that the
background is described by the Minkowski metric with the
diagonal background tetrad δ Aµ which indeed ensures that the
teleparallel connection and the metric respect maximally sym-
metric spacetimes (see section 3.6.4). For further conveni-
ence we will transform all the indices of the torsion tensor
into Greek indices, up to first order, as Tλµν = EAλTAµν . We
expand the NGR Lagrangian (8.9) up to the first non-trivial
order

L(2) = ϵ2Gαβ
µνρσ

(
∂µu

α
ν − ∂µw

α
ν

)
×
(
∂ρu

β
σ − ∂ρw

β
σ

)
+O(ϵ3), (8.15)

and note that the determinant e and Gαβµνρσ contribute only
their zeroth order since the quadratic torsion terms are already
second order. From this Lagrangian we can derive the field
equations wrt the variables u and w as

0= ∂λ
∂L(2)

∂∂λuτ κ
⇔ 0 = Gτβ

λκρσ∂λ
(
∂ρu

β
σ − ∂ρw

β
σ

)
,

(8.16a)

0= ∂λ
∂L(2)

∂∂λwτ κ
⇔ 0 = (Gτβ

λκρσ − ηγτη
ξκGξβ

λγρσ)

× ∂λ
(
∂ρu

β
σ − ∂ρw

β
σ

)
. (8.16b)

It is clear that u and w are not independent variables of
the theory thus we introduce the new gauge invariant with
equation (8.13b) variable xβσ = uβσ −wβσ gives us

Wτκ := Gτβλκρσ∂λ∂ρxβσ = 0. (8.17)

We can further split xβσ as xβσ = sβσ + aβσ (sβσ being the
symmetric part and aβσ being the anti-symmetric part) and
thus replacing it back into equation (8.17) we get

Wτκ = ∂ρ [(2c1 − c2)∂
ρaτκ− (2c1 − c2)∂

κaτρ+(2c2 + c3)

× ∂ τaρκ] + ∂ρ [(2c1 + c2)∂
ρsτκ− (2c1 + c2)∂

κsτρ

+c3
(
η τκ(∂ρsββ − ∂βs

ρβ)− η τρ(∂κsββ − ∂βs
κβ)
)]
.

(8.18)

In the same manner we split also the field equationsWτκ into
symmetric and antisymmetric parts thus arriving atW(τκ) and
W[τκ] as

W(τκ) = ∂ρ
[
− (2c1 + c2 + c3)∂

(τaκ)ρ
]
+ ∂ρ [(2c1 + c2)∂

ρsτκ

−(2c1 + c2 + c3)∂
(τ sκ)ρ+ c3

(
η τκ(∂ρsββ − ∂λs

ρλ)

−ηρ(τ∂κ)sββ
)]
, (8.19a)

W[τκ] = ∂ρ
[
(2c1 − c2)∂

ρaτκ+(2c1 − 3c2 − c3)∂
[τaκ]ρ

]
+ ∂ρ

[
(2c1 + c2 + c3)∂

[τ sκ]ρ)
)]
. (8.19b)

A few remarks on the structure of these fields equations:

(a) It is possible to fully decouple W(τκ) and W[τκ] by
demanding (2c1 + c2 + c3) = 0.

(b) If one demands that equation (8.19b) vanishes identically,
in addition to the decoupling conditions (2c1 + c2 + c3) =
0, (2c1 − c2) = 0 also (2c1 − 3c2 − c3) = 0 has to be satis-
fied, which implies c1 =− 1

4c3 and c2 =− 1
2c3. It turns out

that the family of Lagrangians satisfying these conditions
are multiples of TEGR. In TEGR the antisymmetric part
of the field equations is satisfied trivially because the spin
connection enters only as a boundary term in the action
(see section 5 for an extended discussion) up to a bound-
ary term [222].

(c) The weak field limit of TEGR has already been studied in
[618] and the fully general case, albeit in a different rep-
resentation, in [227, 617].

In the next step, the principal polynomial will be used in
order to investigate the propagation properties of the GW.
After that the polarizations of the GW will be obtained.

8.2.2. Principal symbol approach. The principal polyno-
mial is a tool that helps us understand the propagation prop-
erties of a field from its equation of motion. More specifically
the principal polynomial is defined as the determinant of the
principal symbol [619, 620]. The vanishing of the principal
polynomial defines the wave covectors kµ of the propagating
DoF of the theory. If these covectors are known then one can
calculate the speed of propagation and the mass (if not mass-
less) of the fields under examination.

The principal symbol is defined as the highest derivative
operator of the partial differential equation in Fourier space
equation (7.30). In order to derive the principal polynomial
we need to rewrite the field equation (8.17) as

Ŵτκ = Gτβλκρσkλkρx̂βσ = Pτβκσ(k)x̂βσ, (8.20)
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where x̂βσ is the Fourier transformation of our original field
variable xβσ (and not the hat accent that was used in the pre-
vious section) and

Pτβκσ(k) =
c1
2
η τβ(Kηκσ − kκkσ)− c2

4

(
kβkκηστ − kβkτηκσ

+kσkτηβκ−Kηβκηστ
)
− c3

4

(
kτkκησβ−kβkτηκσ

+kσkβη τκ−Kη τκησβ ), (8.21)

where K= η(k,k) = ηµνkµkν is the norm of the wave cov-
ector. The principal polynomial P(k) is given by the determ-
inant of the principal symbol, which is interpreted as a metric
on the space of fields yτκ = Pτβκσ(k)x̂βσ .

From the anti-symmetry of the field equations in the indices
λκ and ρσ, it is immediately clear that the principal symbol is
degenerate, since fields of the form x̂βσ = kσVβ(k) solve the
field equations trivially. The principal symbol being degener-
ate indicates that there are gauge DoF in the theory. Thus we
need to derive a non-degenerate version of the principal sym-
bol by restricting the field equations to the subspace of fields,
on which they are non-degenerate30. In order to do that we just
perform the following split

x̂βσ = kβkσU+Vβkσ + kβXσ +Qβσ, (8.22)

where the scalarU, the 1-form components Vα and Xα and the
(0,2)-tensor Qβσ satisfy the constraints

kαV
α = 0, kαX

α = 0, kαQ
α
β = 0, kαQβ

α = 0.
(8.23)

The 4 DoF from U and Vα cannot be dynamical since they
identically solve the field equations and so do not propag-
ate. The remaining 12 DoF are divided with 4− 1= 3 in Xα
and 16− 7= 9 in Qαβ , which span the subspace V . Expand-
ing Qτκ further into its symmetric traceless and antisymmet-
ric part as well as its trace by writing Qτκ = Sτκ+Aτκ+
1
3 (η

τκ− kτ kκ

K )Qσσ, and using equation (8.10), the Fourier
space (7.30) field equations become

Ŵτκ = (2c1 + c2 + c3)Kk
τXκ+(2c1 + c2)KS

τκ

+(2c1 − c2)KA
τκ+

1
3
QσσK

(
2c1 + c2 + 3c3

)
×
(
ηκτ − 1

K
kτkκ

)
. (8.24)

To analyze them further we observe that they decompose into
their contractions with k, their trace, their symmetric traceless
and antisymmetric part as follows

Ŵτκkτkκ = 0, (8.25a)

Ŵτκkκ = 0, (8.25b)

30 This feature is common in field theories with gauge DoF and appears also
in general premetric theories of electrodynamics [621] for example.

Ŵτκkτ = (2c1 + c2 + c3)K
2Wκ = 0, (8.25c)

Ŵτ
τ = (2c1 + c2 + 3c3)KQ

τ
τ = 0, (8.25d)

Ŵ[τκ] − 1
K
k[τ Ŵ|σ|κ]kσ = (2c1 − c2)KA

τκ = 0, (8.25e)

Ŵ(τκ) − k(τ Ŵ|σ|κ)kσ − 1
3

(
η τκ− 1

K
kτkκ

)
Ŵσ

σ = (2c1 + c2)KS
τκ = 0. (8.25f )

The first two equations are satisfied trivially for any choice
of parameters c1,c2 and c3. The remaining four non-trivial
field equations can be represented by a block diagonal matrix
acting on a field space vector which is an element of V


K(2c1 + c2 + 3c3) 0 0 0

0 K2(2c1 + c2 + c3)I3 0 0

0 0 K(2c1 − c2)I2 0

0 0 0 K(2c1 + c2)I2



×


Qτ

τ

Xκ

Âτκ

Ŝτκ

 =


0

0

0

0

 , (8.26)

where we condensed the matrices corresponding to Xκ(3
DoF), Âτκ(2 DoF) and Ŝτκ(2 DoF) by writing them in terms
of the identity matrix In where n stands for the dimension. For
example

K(2c1 − c2)I2 = K(2c1 − c2)

(
1 0
0 1

)
=

(
K(2c1 − c2) 0

0 K(2c1 − c2)

)
. (8.27)

Due to their simple nature the principal polynomial is now eas-
ily obtained as determinant of the above matrix

P(k) = (2c1 + c2 + c3)
3(2c1 + c2 + 3c3)(2c1 − c2)

3

× (2c1 + c2)
5K15. (8.28)

In order to solve the field equation (8.28) in a non-trivial way, a
dispersion relation needs to be found from P(k) = 0 such that
P(k) is non-degenerate. This solution is K= 0 which means
that the fields Xκ,Qτ τ ,Sτκ and Aτκ travel at the speed of
light and they are massless. Hence we find that for NGR theor-
ies of gravity, perturbations propagate with the speed of light.
On the other hand, for K 6= 0 the only solution of the field
equations is that the fields themselves vanish identically, that
is, no combination of coefficients can consistently solve each
field equation expressed in equations (8.25a)–(8.25f ) simul-
taneously. Note that For the Wκ mode a double pole in its
propagator was found, which is consistent with [226, 227].
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Table 17. Summarizing the cases appearing in figure 26.

Conditions Class Figure 26

2c1 + c2 = c3 = 0 II6 (6 polarizations)
2c1(c2 + c3)+ c22 = 0 and 2c1 + c2 + c3 ̸= 0 III5 (5 polarizations)
2c1(c2 + c3)+ c22 ̸= 0 and 2c1 + c2 + c3 ̸= 0 N3 (3 polarizations)
2c1 + c2 + c3 = 0 and c3 ̸= 0 N2 (2 polarizations)

8.2.3. Newman–Penrose formalism and polarizations. We
can now study the polarizations of NGR. The whole prepara-
tion we need in the previous sections was performed to show
whether the norm of the wave covector K is zero or not. As a
matter of fact,K= 0 for our system and thus GWs aremassless
and travel at the speed of light independently of the parameters
of the theory c1,c2,c3. This directly allows us to make use of
the well known Newman–Penrose formalism which was intro-
duced in section 8.1 in order to link directly the linearized field
equations to particular polarizations. Afterwards we will see
which polarizations are acceptable by using the classification
scheme detailed in [599, 600].

Recall that we consider minimal coupling between grav-
ity and matter, i.e. coupling only through the metric seen as
function of the tetrad, but not through the flat spin connection.
As also discussed in section 4.1.2, this is the most straight-
forward way of making the energy-momentum tensor local
Lorentz covariant. This is the usual coupling prescription for
non-spinning matter, which we will henceforth assume. It fol-
lows from this choice of the matter coupling that test particles
follow the geodesics of the metric, and hence the autoparal-
lel curves of its Levi-Civita connection. The effect of a GW
on an ensemble of test particles, or any other type of GW
detector, such as the mirrors of an interferometer, is therefore
described by the corresponding geodesic deviation equation.
The observed GW signal hence depends only on the Riemann
tensor derived from the Levi-Civita connection.

The metric perturbation components δgµν are derived from
the perturbation ansatz in equation (8.11) which takes the form

gµν =
0
gµν + δgµν = ηµν + ϵ(ηµρu

ρ
ν + ηνρu

ρ
µ)

= ηµν + 2ϵsµν . (8.29)

Note that they depend only on the symmetric perturbation of
the tetrad, so that these are the only components whose pres-
ence or absence we must determine. We now examine which
of the components (8.6b) may occur for GW satisfying the lin-
earized field equations (8.18).

Inserting the wave ansatz equation (8.5) and project-
ing the field equation tensor Wµν in the Newman–Penrose
basis equation (8.4), we find the only non trivially satisfied
equations are

0=Wµνn
µnν = Wnn = (2c1 + c2 + c3)s̈nl+ 2c3s̈mm̄

+(2c1 + c2 + c3)änl, (8.30a)

0=Wµνm
µnν= Wmn = Wm̄n=(2c1 + c2)s̈ml+(2c1 − c2)äml,

(8.30b)

0=Wµνn
µmν = Wnm = Wnm̄ =−c3s̈ml+(2c2 + c3)äml,

(8.30c)

0=Wµνm
µm̄ν = Wmm̄ = Wm̄m =−c3s̈ll, (8.30d)

0=Wµν l
µnν = Wln = (2c1 + c2)s̈ll, (8.30e)

where the dots denote derivatives wrt retarded time (8.5). In
order for the system of equations (8.30) to be satisfied the con-
ditions in table 17 must be met. Specifically, by setting

c1 = Csinθ cosϕ c2 = Csinθ sinϕ c3 = Ccosθ, (8.31)

with C= (c21 + c22 + c23 )
1/2 being non-zero, we can plot the

above classes in polar coordinates as in figure 26. The zenith
angle θ (in polar coordinates) is shown by the radial axis, while
the azimuth angle ϕ is shown by the polar axis.

This concludes our discussion of GW polarizations in
NGR. More details regarding the construction details of the
figure 26 can be found in [616, 617]. We have seen that
depending on the parameters c1,c2,c3 we obtain the E2 class
II6, III5, N3 or N2, with N3 filling most of the parameter space.
We have also seen that there exists a family of theories besides
TEGR which is of class N2 and thus exhibits the same two
tensor modes as in GR. Theories in this class therefore can-
not be distinguished from GR by observing the polarizations
of GW alone.

Finally let us state that, the exact same results hold true for
the case of generalized NGR described by the LagrangianL=
f(T1,T2,T3) as introduced in equation (5.82). The only differ-
ence is that now the constants ci are generated from the func-
tion f as c1 → f1 := (∂f/∂T1)|T1=0, c2 → f2 := (∂f/∂T2)|T2=0
and c3 → f3 := (∂f/∂T3)|T3=0. Thus at the level of polariza-
tions in a Minkowski background NGR and generalized NGR
cannot be distinguished.

8.3. Polarization modes in f(T,B) gravity

The polarization content of f(T,B) gravity closely resembles

that of f(
◦
R) gravity [41, 622–625]. This is due to the fact that

both theories in first order perturbations in Minkowski, pre-
dict one massive dynamical scalar field on top of the usual
tensor perturbations. The exposition closely follows [446] in
what follows. Since the theory does predict a massive GW the
E(2) classification cannot really be used as it is only valid for
small masses. On the other hand, some promising recent pro-
gress has been made in using the Newman–Penrose approach
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Figure 26. Visualization of the parameter space. Reproduced with permission from [616]. Reprinted figure with permission from [617],
Copyright (2018) by the American Physical Society.

for massive particles [626]. Thus, this can be properly studied
by using the traditional approach where the geodesic deviation
equation (8.1) is directly used, which holds for any case. A
similar calculation was carried out in [627]. The Weitzenböck
gauge is employed both in the background and all perturbat-
ive orders. The first order perturbation of the torsion scalar is
found to be

T(1) = 0. (8.32)

The torsion scalar assumes no first order perturbation which
as a consequence has

◦
R(1) = B(1) = ηµν∂ρ∂νh

ρ
µ−

◦
□h, (8.33)

where h := hµµ and
◦
□ := ∂µ∂

µ. We expand the f(T,B) func-
tion in Taylor series assuming it is expandable around the
background values values T0 and B0, namely

f(T,B) = f(T0,B0)+ fT(T0,B0)(T−T0)+ fB(T0,B0)(B−B0)

+
1
2!
fTT(T0,B0)(T−T0)

2 +
1
2!
fBB(T0,B0)(B−B0)

2

+ fTB(T0,B0)(T−T0)(B−B0)+O(T3,B3).
(8.34)

Inserting all the above into the field equations of f(T,B) grav-
ity, namely equation (5.80), order by order we obtain

0= ηµν f(0,0), (8.35a)

0=−fT(0,0)
◦
G(1)
µν + fBB(0,0)

(
ηµν

◦
□− ∂µ∂ν

) ◦
R(1), (8.35b)

where we have used the fact that
◦
R(1) = B(1), and that

f(0,0) = 0 from the zeroth order condition. The latter con-
dition is another statement for the fact that the arbit-
rary Lagrangian function does not include a cosmological
constant.

We proceed following [628] and we define an effective
mass by considering the trace of the first-order equation. This

is also similar to the f(
◦
R) gravity case. However, our effect-

ive mass is different to that of [628]. Indeed, by taking the
trace

fT(0,0)
◦
R(1) + 3fBB(0,0)

◦
□

◦
R(1) = 0, (8.36)
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we identify the effective mass m by bringing the equation in

the form (
◦
□−m2)δ

◦
R(1) = 0, which turns out to be [446] 31

m2 :=− fT(0,0)
3fBB(0,0)

. (8.37)

We remark that in the |m2| →∞ limit (for instance when
fBB(0,0) = 0 and fT(0,0) 6= 0), the equation reduces to that of
GR. Since it is known that f (T) gravity yields no further GW
modes [629], this special condition leads to a broader class of
theories in which at first order yield the GW solutions. In the

case where fBB(0,0) 6= 0 we can follow the procedure of f(
◦
R)

gravity [41, 622–625] since f(
◦
R) acts as a particular subclass

of f(T,B) gravity, namely f(−T+B) gravity. Firstly, we intro-
duce the tensor h̄µν to be

hµν = h̄µν −
1
2
h̄ηµν +

fBB(0,0)
fT(0,0)

ηµν
◦
R(1), (8.38)

where h̄ represents the trace of h̄µν . Similarly to the previous
section we consider the non-trivial case of fT(0,0) 6= 0 (oth-
erwise GR cannot be obtained at any limit). This simplifies
equation (8.35b) to

∂ρ∂ν h̄ρµ+ ∂ρ∂µh̄νρ− ηµν∂
ρ∂αh̄ρα−

◦
□h̄µν = 0. (8.39)

As shown in [622], it is possible to consider the Lorenz gauge
condition ∂µh̄µν = 0, which simplifies the wave equation to

◦
□h̄µν = 0, (8.40)

as well as the traceless condition h̄= 0. This allows for the
solution

h̄µν = Aµν exp(ikρx
ρ) , (8.41)

where kρ is the four-wavevector, Aµν are constant coefficients,
kρkρ = 0, kµAµν = 0 and Aµµ = 0. The last conditions are the
Lorenz gauge and traceless conditions respectively. On the
other hand, the solution for equation (8.36) is

◦
R(1) = Fexp(ipµx

µ) , (8.42)

where F is a constant and pµ is another four-wavevector such
that pµpµ =−m2. Hence, the full solution for hµν is construc-
ted as

hµν = Aµν exp(ikρx
ρ)+

fBB(0,0)
fT(0,0)

ηµνFexp(ipµx
µ) . (8.43)

Note that from equations (8.35b) and (8.36), the Ricci tensor
is found to be

◦
R(1)

µν =
1
6
ηµν

◦
R(1) − fBB(0,0)

fT(0,0)
∂µ∂ν

◦
R(1), (8.44)

31 This is slightly different to the effective mass that appears in [628] where a
typo appears which was corrected in [446].

from which the solution of the Ricci scalar (8.42) simplifies to

◦
R(1)

µν =

(
1
6
ηµν −

1
3m2

pµpν

)
◦
R(1). (8.45)

Hence, it is trivial to verify that taking the trace part of the
above equation, it yields a consistent relation for the Ricci
scalar, as expected.

We proceed by analyzing the polarization states of the
GW by using the geodesic deviation equation (8.1). Assuming
propagation in the z direction we find the linearized compon-
ents of the Riemann tensor as

◦
Ri0j0 =

1
2
k20h̄ij−

1
6m2

[
ηijp

2
0

◦
R(1) + pipj

◦
R(1)

]
. (8.46)

Therefore, the geodesic deviation becomes

ẍ=

[
1
2
k20h̄+ +

1
6m2

p20
◦
R(1)

]
x+

1
2
k20h̄×y, (8.47a)

ÿ=

[
−1

2
k20h̄+ +

1
6m2

p20
◦
R(1)

]
y+

1
2
k20h̄×x, (8.47b)

z̈=
1

6m2

(
p20 − p23

) ◦
R(1)z=−1

6

◦
R(1)z, (8.47c)

where in the last equation we have used that pµpµ =−m2.
Additionally, since the wave propagates in the z-direction, we
have used and defined h̄11 =−h̄22 ≡ h̄+ and h̄12 = h̄21 ≡ h̄×,
which represent the massless + and × polarizations.

As we observe, in the TEGR and f (T) limit, namely at
|m2| →∞, the remaining modes are the+ and× polarizations
as expected. However, in the case |m2|<∞ we find the pres-
ence of the longitudinal and breathing modes in the geodesic
deviation equations. The fact that we find a combination of
scalar polarizations is due to the fact the scalar component is
massive field. Thus f(T,B) gravity includes more polarization
modes than f (T) gravity. The reason for this behavior is dir-
ectly attributed to the boundary term that is not trivialised at
first order B(1) 6= 0.

8.4. Polarization modes in the teleparallel analogue of
Horndeski gravity

We thoroughly review the calculation of the polarization states
in BDLS theory as presented in [615]. This is the most com-
plex and inclusive case since it contains the most general
scalar-tensor form on top of any teleparallel theory that can be
build from scalars quadratic to torsion coupled to a scalar field
that leads to second order field equations (see section 5.8.2).
The layout will contain two parts, in the first one we will find
the DoF and how the overall theory branches. In the second
part we will adapt the polarization analysis using the first as a
guide.

The starting point is considering the linearized field
equations for the BDLS theory, which were calculated
by expanding the action in equations (5.122a)–(5.122d)
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and (5.125) up to second order in the perturbation of the tet-
rad δeAµ and the perturbation of scalar field δϕ. We then
perform a change of variables for the tetrad as indicated in
equation (7.26) in order to simplify the notation and facilitate
the calculation process. Thus our new perturbative variables
are τµν , δϕ for which we vary the second order action to obtain
their field equations as

Wµν =−2GTele,Tvec

(
∂λ∂µτλν − ∂µ∂ντ − ∂λ∂στ

λσηµν +□τ ηµν
)

+(−2GTele,T+ 2G4)
(
□τ(µν) − ∂λ∂µτ(νλ) − ∂λ∂ντ(µλ)

+∂µ∂ντ + ∂λ∂στ
λσηµν −□τ ηµν

)
+

4
9
GTele,Tax

(
□τ[µν] − ∂λ∂ντ[µλ] + ∂λ∂µτ[νλ]

)
+(−GTele,I2 + 2G4,ϕ)(∂µ∂νδϕ− ηµν□δϕ) , (8.48a)

Ŵ= (GTele,I2 − 2G4,ϕ)
(
□τ − ∂λ∂στ

λσ
)
+(GTele,ϕϕ+G2,ϕϕ) δϕ

+(GTele,X+G2,X− 2G3,ϕ)□δϕ, (8.48b)

where we have already applied the background field equations

0= GTele +G2, 0= GTele,ϕ+G2,ϕ. (8.49)

In the next step we perform a SVT decomposition of the field
equations (8.48a) and (8.48b) by inserting equation (7.27)
and splitting them into 3+ 1, transforming into Fourier space
equation (7.30) and using the gauge invariants variables
equations (8.8a)–(8.8e) we arrive at

W00 = k2 ((GTele,I2 − 2G4,ϕ)δϕ+ 2GTele,TvecΦ

−4(G4 −GTele,T+GTele,Tvec)ψ) , (8.50a)

kjWj0 = ik2
(
(GTele,I2 − 2G4,ϕ)δϕ̇+ 2GTele,Tvecχk

2

−2(2(G4 −GTele,T)+ 3GTele,Tvec)ψ̇
)
, (8.50b)

ηjlW
jl = 3(GTele,I2 − 2G4,ϕ)δϕ̈

+ 2k2
(
(2(G4 −GTele,T)+ 3GTele,Tvec)χ̇

+(GTele,I2 − 2G4,ϕ)δϕ+ 2(G4 −GTele,T+GTele,Tvec)Φ

− 2(G4 −GTele,T+ 2GTele,Tvec)ψ
)

− 6
(
2(G4 −GTele,T)+ 3GTele,Tvec

)
ψ̈, (8.50c)

klϵ
ljkWjk =−8

3
iGTele,Taxk

2
(
σ̈+ k2σ

)
, (8.50d)

Ŵ= (GTele,X+G2,X− 2G3,ϕ)δϕ̈

+ δϕ
(
GTele,ϕϕ+G2,ϕϕ+(GTele,X+G2,X− 2G3,ϕ)k

2
)

+(GTele,I2 − 2G4,ϕ)
(
−k2(χ̇+Φ− 2ψ)+ 3ψ̈

)
. (8.50e)

On the other hand, the vector part consists of three lin-
early independent equations for the gauge invariant variables
(βi,Σi,Λi)

W0j =
1
9

{
18GTele,Tvec β̈j+ k2

[(
2GTele,Tax − 9(G4 −GTele,T)

)
Λj

−
(
9(G4 −GTele,T)+ 2GTele,Tax

)
βj

]
− 2
(
9GTele,Tvec + 2GTele,Tax

)
Σ̇j

}
, (8.51a)

Wj0 =
1
9

{
k2
[(

2GTele,Tax − 9(G4 −GTele,T)
)
βj

−
(
9(G4 −GTele,T)+ 2GTele,Tax

)
Λj

]
+ 4GTele,TaxΣ̇j

}
,

(8.51b)

klWlj =−1
9
i
{
k2
[(

9(G4 −GTele,T)+ 2(9GTele,Tvec +GTele,Tax)
)
β̇j

+
(
9(G4 −GTele,T)− 2GTele,Tax

)
Λ̇j− 18GTele,TvecΣj

]
+ 4GTele,TaxΣ̈j

}
, (8.51c)

while the tensor field is described by one equation

Wij = (G4 −GTele,T)(ḧij+ k2hij). (8.52)

In order to study the system as a whole, we can combine all
the SVT sectors into one master matrix as done in [615]. The
determinant of this master matrix, which is also the principal
polynomial P(k) is the most important quantity and it reads as

P(k) =−2143−5(G4 −GTele,T)
5GTele,Tvec

3GTele,Tax

3k12
(
ω2 − k2

)8
×
(
c̃1 + c̃2

(
ω2 − k2

))
, (8.53)

where

c̃1 = 2(GTele,ϕϕ+G2,ϕϕ)(2(G4 −GTele,T)+ 3GTele,Tvec),
(8.54a)

c̃2 =−3(GTele,I2 − 2G4,ϕ)
2 − 2(GTele,X+G2,X− 2G3,ϕ)

× (2(G4 −GTele,T)+ 3GTele,Tvec). (8.54b)

c̃3 =−GTele,ϕϕ−G2,ϕϕ, (8.54c)

c̃4 = GTele,X+G2,X− 2G3,ϕ, (8.54d)

Z1 =− (G4 −GTele,T)G2,ϕϕ

−3G4,ϕ
2 +(G4 −GTele,T)(2G3,ϕ−G2,X)

, (8.54e)
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Table 18. All branches of the BDLS theory represented according to their PDoF (propagating degree of freedom). To each of the scalar,
vector and tensor components correspond 1,2 and 2 DoF respectively. The quantities c̃i are defined in (8.54a)–(8.54d) while Z1 and Z2 are
defined in equations (8.54e) and (8.54f )) respectively.

Sectors

Massless
(
ω2 = k2

)
Massive

(
ω2 − k2 = m2)

Cases Conditions Scalar Vector Tensor Scalar m2 PDoF

— G4 −GTele,T ̸= 0 — — 1 — — 2
0 GTele,Tvec = 0, GTele,Tax = 0,

GTele,I2 = 0,GTele,X = 0,GTele,ϕϕ = 0

0.I G2,ϕϕ ̸= 0 and −3G4,ϕ
2 +(G4 −GTele,T)

(2G3,ϕ−G2,X) ̸= 0
— — 1 1 Z1 3

0.II G2,ϕϕ = 0 and −3G4,ϕ
2 +(G4 −GTele,T)

(2G3,ϕ−G2,X) = 0
— — 1 — — 2

1 GTele,Tvec ̸= 0, GTele,Tax ̸= 0 c̃1 ̸= 0, c̃2 ̸= 0 2 1 1 1 −c̃1/c̃2 7

2 GTele,Tvec ̸= 0, GTele,Tax ̸= 0, c̃1 = 0, c̃2 = 0

2.I GTele,Tax ̸= 0

2.I.a c̃3 ̸= 0, c̃4 ̸= 0 1 1 1 1 −c̃3/c̃4 6

2.I.b c̃3 = 0, c̃4 = 0 1 1 1 — — 5

2.II G3,ϕ = Z2, G2,ϕϕ =−GTele,ϕϕ

2.II.a GTele,I2 − 2G4,ϕ ̸= 0 2 1 1 — — 6

2.II.b GTele,I2 − 2G4,ϕ = 0 1 1 1 — — 5

3 GTele,Tvec ̸= 0, GTele,Tax = 0, c̃1 ̸= 0, c̃2 ≠ 0 1 — 1 1 −c̃1/c̃2 4

4 GTele,Tvec ̸= 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0

4.I GTele,Tvec =− 2
3 (G4 −GTele,T),

G4,ϕ = 1
2GTele,I2

4.I.a c̃3 ̸= 0, c̃4 ̸= 0 — — 1 1 −c̃3/c̃4 3

4.I.b c̃3 = 0, c̃4 = 0 — — 1 — — 2

4.II G3,ϕ = Z2, G2,ϕϕ =−GTele,ϕϕ

4.II.a GTele,I2 − 2G4,ϕ ̸= 0 1 — 1 — — 3

4.II.b GTele,I2 − 2G4,ϕ = 0 — — 1 — — 2

5 GTele,Tvec = 0, GTele,Tax ̸= 0, c̃1 ̸= 0, c̃2 ≠ 0 1 — 1 1 −c̃1/c̃2 4

6 GTele,Tvec = 0,GTele,Tax ̸= 0, c̃1 = 0, c̃2 = 0 1 — 1 — — 3

7 GTele,Tvec = 0, GTele,Tax = 0, c̃1 ̸= 0, c̃2 ̸= 0 — — 1 1 −c̃1/c̃2 3

8 GTele,Tvec = 0, GTele,Tax = 0, c̃1 = 0, c̃2 = 0 — — 1 — — 2

Z2 =

(
3(GTele,I2 − 2G4,ϕ)

2 + 2(2(G4 −GTele,T)+ 3(GTele,Tvec))(GTele,X+G2,X)
)

4(2(G4 −GTele,T)+ 3(GTele,Tvec))
. (8.54f )

In order to properly solve the system we need to find all the
cases where P(k) in equation (8.53) is non-degenerate. This
was performed in a exhaustive manner in [615] and all the res-
ults are gathered in the table 18.

In the Case 0, the standard Horndeski gravity was explicitly
studied which also matches the results reported in [630, 631]
but a new branch that only entails a massless sector was fur-
ther discovered. In this sector the only propagating DoF are the

tensorial ones. For the Case 1, which is the most general ver-
sion of BDLS, 7 propagating DoF where found which can be
though of as just two extra massless scalars and one massless
vector on top of the standard Horndeski DoF.

The rest of the cases are simpler versions of Case 1 and
include various combinations from just tensor modes to com-
binations of scalar,vector and tensor modes. In table 19 there is
a link between well known theories of the scalar-tensor form
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Table 19. Common models in the literature (see section 5) shown against the analysis presented in table 18.

Theory Case PDoF Lagrangian DensityLi
(
Si = 1

2κ2

´
d4xeLi

)
GR (or TEGR) or f (T) (section 5.3) — 2

◦
R or f (T)

Horndeski (section 5.8.2) 0.I 3 Equations (5.122a)–(5.122d)
GTele (section 5.8.2) 1 7 GTele (ϕ,X,T,Tax,Tvec, I2,J1,J3,J5,J6,J8,J10)
Extented NGR (section 5.5) 2.I.b 5 f(T,Tax,Tvec)

Generalized teleparallel dark energy (section 5.8.1.2) 7 3 −A(ϕ)T− 1
2∂µϕ∂

µϕ−V(ϕ)
Generalized teleparallel scalar-tensor (section 5.8.1) 7 3 F(ϕ)T+P(ϕ,X)−G3(ϕ,X)□ϕ
Tachyonic teleparallel gravity (section 5.8.1) 7 3 f(T,X,ϕ)

and the full analysis included in table 18. Hence, in general
there is a plethora of sub branches including most combina-
tions of SVT propagating DoF.

Using the results regarding the DoF detailed in table 18
and using the representation of the electric components of the
Riemann tensor (8.7), the polarizations of the respective cases
were exhaustively studied. The resulting cases [615] ofGR and
f (T) gravity are first shown as the straightforward instances
of the analysis. Next, there is the standard Horndeski Case 0.I
which assumes tensor polarizations for the massless sector and
and both the scalar polarizations for the massive sector. For
Case 0.II, the new branch of Horndeski gravity, only tensor
polarizations where found as expected, since only tensorial
DoF were found as shown in table 18.

In Case 1 (the full BDLS theory), there were found the
breathing mode along tensor modes for the massless sector
and both scalar modes for the massive sector. One could com-
pare this to standard Horndeski (Case 0.I) as having an extra
breathing mode in the massless sector. This exact polariza-
tion imprint is, also, only shared with Case 3 despite the fact
that the DoF in these two cases are different. Regarding Cases
2.I.a, 2.I.b, 2.II.b, 5 and 6 in general, although there is a mass-
less scalar DoF, it does not leave a polarization imprint. This
also happens for Cases 2.I.a and 4.I.a where instead, there is a
massive scalar. There is also a similar behavior vectorial DoF
for the Cases 1, 2.I.a, 2.I.b, 2.II.a and 2.II.b where although
there is a vectorial DoF it is invisible to the detectors. This
phenomenon is directly linked to the fact that these DoF are
not purely metrical or that they do not couple strong enough
with the metric.

Hence we see that even in the full BDLS theory Case
1, there are all sorts of scalar-vectorial-tensorial DoF found,
only the scalar and tensorial leave a polarization imprint in
end. Obviously there is a plethora of possible combinations
described by the various subclasses of how this happens but
nevertheless this is a very interesting illustration of how met-
rical and non-metrical DoF behave within this system.

9. Astrophysical systems

This section will be devoted to studying the most important
results and problems in astrophysics in TG. We will focus
on Solar System tests and review the most important res-
ults regarding compact objects such as stars, black holes and
wormholes. Since this is an active field of research, there are

many important issues that have not been addressed yet. Some
of them will be listed at the end of this section.

9.1. Spherical symmetry and solutions

There are several studies aiming to find spherically symmetric
exact or perturbed solutions in different TG. There are no good
tetrad-spin connection pairs in TG for the most general time-
dependent spherically symmetric metric ds2 =A(r, t)dt2 −
B(r, t)dr2 −M(r, t)dΩ2 reported in the literature. At a first
ingredient at this, one needs to consider a good tetrad-spin
connection pair in spherical symmetry (see section 5.12) and
since this pair depends on the theory, one should be careful in
checking if equation (5.147) is still a good tetrad-spin connec-
tion pair in the studied theory at hand.

The first paper studying spherical symmetry inmodified TG
was [632] where the authors found an exact solution in f (T)
gravity which behaves as the standard Schwarzschild solution.
The problem of this solution is that the torsion scalar becomes
zero (T = 0), therefore, it is trivial since f (T) becomes TEGR.
There are other vacuum exact solutions in f (T) in the liter-
ature having a similar property with T= const. [633] or also
with T = 0 [634], which again are trivial since those solutions
become TEGR plus a cosmological constant (or just TEGR).
In [635], the authors found different solutions with T 6= const.,
but the analysis was not complete since they did not consider
one of the field equations. It is also important to mention that
there are other several incorrect works in the literature that also
did not consider a good tetrad-spin connection pair, and then,
they ignored the appearance of a nonvanishing antisymmet-
ric field equation [636–640]. As discussed in section 5.12, one
cannot use any arbitrary spin connection-tetrad pair since they
must solve the antisymmetric field equations of the theory. In
several earlier works, different authors found exact solutions
in f (T) gravity but they used the incorrect tetrad in theWeitzen-
böck gauge (not a good tetrad) which in the end is manifes-
ted in a non-zero antisymmetric field equation of the form of
fTTT ′ = 0 which is only satisfied for the GR case.

The first non-trivial vacuum exact spherically symmetric
solutions in TG (different to just GR+Λ) was derived in
[355]. In this paper, several solutions were found in f(T,B)
gravity using the Noether’s symmetry approach. The prob-
lem of these solutions is that all of them have a metric with
a power-like form A(r)∝ rm with B(r) = const. Hence, all
of these solutions might not be so physically interesting since
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they cannot describe black holes nor standard astrophysical
systems. Two recent papers found the first non-trivial exact
black hole solutions in f(T,B) gravity and also in teleparallel
scalar-tensor theories [641, 642]. These solutions are based on
the complex tetrad in equation (5.153). Still, these solutions
have not been analyzed in detail to know if they might provide
realistic black hole solutions. From these works, one can then
state that for a generic f(T,B) theory, the Birkhoff’s theorem
is not satisfied.

Since it is hard to find exact solutions, it is also helpful
to use perturbation techniques to find perturbed solutions in
TG. The main idea behind this is to use GR in the back-
ground and add small perturbations related to the modification
of TEGR. Regarding perturbed spherically symmetric solu-
tions, the first study in TG was done in [357]. The authors
used the tetrad in equation (5.147) with ξ =−1 and found per-
turbed solutions around Minkowski. It is important to recall
here that for this tetrad, T does not become zero forMinkowski
unless one assumes a non-trivial limit in the metric functions.

This means that even though the metric is Minkowski, the
connection (teleparallel one) is non-trivial. This idea was then
further explored for ξ= 1 in [643], where the authors found
perturbed solutions around Schwarzschild in −T− ϵ(α/2)Tp

with p= 2. This study was then generalized in [355] for dif-
ferent p> 1 with p ∈ Z. Later, in [354, 641] the authors found
more perturbed solutions in f(T,B) gravity for the two cases
and also for the complex tetrad. We will now provide some of
the most important results for the case ξ= 1 since this study
does not have the issue of T and B being nonvanishing in the
Minkowski limit.

The f(T,B) gravitational field equations (5.80) in spherical
symmetry with the good tetrad-spin connection pair given by
the tetrad (5.147) with ξ= 1 and M(r) = r, which gives the
metric

ds2 =A(r)dt2 −B(r)dr2 − r2(dϑ2 + sin2φdφ2), (9.1)

and with a zero spin connection become

κ2ρ=−1
2
f− rB(

√
B− 1)A ′ +A(rB ′ + 2B3/2 − 2B)

r2AB 2
fT+

rB ′f ′B− 4B3/2
(
f ′B+ f ′T

)
+ 4Bf ′T

2rB 2

−
r2BA ′2 + rA

[
rA ′B ′ + 4B3/2A ′ − 2B(rA ′ ′ + 4A ′)

]
+ 4A2(rB ′ + 2B3/2 − 2B)

4r2A2B 2
fB−

f ′ ′B
B
, (9.2a)

−κ2pr =−1
2
f− rA ′ + 4A

2rAB
f ′B−

r(
√
B− 2)A ′ + 2A(

√
B− 1)

r2AB
fT

+
−r2BA ′2 + rA

[
−rA ′B ′ − 4B3/2A ′ + 2B(rA ′ ′ + 4A ′)

]
− 4A2

(
rB ′ + 2B3/2 − 2B

)
4r2A2B 2

fB, (9.2b)

−κ2pl =−1
2
f+

rA ′ − 2A(
√
B− 1)

2rAB
f ′T+

rB ′ − 2B3/2

2rB 2
f ′B−

f ′ ′B
B

+
−r2BA ′2 + rA

[
−rA ′B ′ − 4B3/2A ′ + 2B(rA ′ ′ + 3A ′)

]
+A2(−2rB ′ − 8B3/2 + 4B 2 + 4B)

4r2A2B 2
fT

+
−r2BA ′2 + rA

[
−rA ′B ′ − 4B3/2A ′ + 2B(rA ′ ′ + 4A ′)

]
− 4A2(rB ′ + 2B3/2 − 2B)

4r2A2B 2
fB, (9.2c)

where we have assumed an anisotropic fluid with energy dens-
ity ρ and lateral and radial pressures given by pl and pr
respectively. Here, primes denote differentiation wrt the radial

coordinate, i.e. f ′T = fTTT ′ + fTBB ′ and the scalar-torsion and
boundary term yield

T=−
2
(√

B− 1
)(

rA ′ −A
√
B+A

)
r2AB

, (9.3a)

B=
−r2BA ′2 + rA

(
−rA ′B ′ − 4B3/2A ′ + 2B (rA ′ ′ + 4A ′)

)
− 4A2

(
rB ′ + 2B3/2 − 2B

)
2r2A2B 2

. (9.3b)
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These two quantities are zero for the Minkowski case A=
B = 1. As discussed above, there are non-trivial vacuum exact
solutions but all of them have B = const. One example is the
following vacuum exact solution [355]

A(r)2 =

(
r
r0

) 4n(n−1)(2n−3)

4n 2−8n+5

,

B(r)2 = const=
(2n− 1)(4n− 5)
4n2 − 8n+ 5

, f(T,B) = f0T
n. (9.4)

It is important to mention that the standard conservation
equation for the fluid holds. This can be seen by differenti-
ating equation (9.2b) wrt r and then using equations (9.2a)–
(9.2c) accordingly, finding the standard conservation equation

p ′
r =−(ρ+ pr)

A ′

2A
+

2
r
(pl− pr), (9.5)

which is the standard conservation equation obtained in GR.
This equation follows from the the fact that the theory is for-
mulated within the standard teleparallel description of gravity
which is diffeomorphism invariant (see section 4.1.5). Thus,
one finds that the energy-momentum tensor satisfies the stand-

ard conservation equation
◦
∇µΘµν = 0.

Let us emphasise here that the system (9.2a)–(9.2c) only
has two independent equations for the vacuum case. In [644,
645], the authors noticed that for fT 6= 0 and r(B− 2)A ′ +
A(B− 1) 6= 0, these equations can be rewritten in the case of
vacuum f (T) gravity as

0=−r2A ′2 − r2A
(
A ′B ′ − (B− 1)A ′ ′)+A2(B− 1)2(B+ 1),

(9.6a)

0=−1
2
f− r(

√
B− 2)A ′ + 2A(

√
B− 1)

r2AB
fT, (9.6b)

where the first equation does not depend on the form of f.
This can be achieved by solving equations (9.2a)–(9.2b) for
f ′T and f T and then by replacing them in equation (9.2c). By
doing this, one can eliminate all the f dependence and then
one finds that for any generic form of f, the metric functions
must satisfy (9.6a). This equation is not easily solvable for A
or B unless one assumes something for those functions. One
interesting result that one finds is that when we assume the
ansatz B = 1/A, which is the form of many well known black
hole solutions (like Schwarzschild), one gets that the unique
solution of equation (9.6a) is a Schwarzschild de-Sitter met-
ric A= 1− 2M/r+Λr2. Plugging this result into the second
equation (9.6b), we find that f(T) = c1T− 6Λ. This means that
the unique solution in f (T) gravity which behaves as B = 1/A
is a trivial one when the theory becomes TEGR plus a cosmo-
logical constant. This statement was shown for the two pos-
sible tetrads (the real and complex ones) in [641]. In other
words, this means that any solution in f (T) gravity beyond GR
must have B 6= 1/A.

Let us now find perturbed solutions by assuming a
Schwarzschild background

A(r) = 1− 2M
r

+ ϵa(r), (9.7a)

B(r) =
(
1− 2M

r

)−1
+ ϵb(r), (9.7b)

whereM is the Schwarzschild mass that can be arbitrary large
and ϵ� 1 is a small tracking parameter. Up to first order in ε,
there are not solutions around Minkowski (M= 0). Moreover,
to get solutions aroundMinkowski, one would need to go bey-
ond first order in ε. It can be proved that for power-law f (T)
gravity, there is only contributions in a(r) and b(r) if onemakes
perturbations up to fourth order in ε. On the contrary, when
one uses the other choice of the tetrad (5.147) (with ξ =−1)
and also the complex tetrad (5.153) which have nonvanishing
torsion scalars at Minkowski, one finds non-trivial perturbed
solutions around Minkowski (see section 9.5 to see the real
case for ξ =−1).

For the M 6= 0 one can get perturbed solutions around
Schwarzschild by only considering perturbations up to first
order in ε for the following form of f(T,B) as

f(T,B) =−T− 1
2
ϵ(αTq+βBm+ γBsTw+ ζ(ξT+χB)u) .

(9.8)

Different solutions were found in [354] depending on the para-
meters chosen. As an example, for the case q= m= 2, ζ = 0
and w=−s+ 1, one gets the following perturbed solution

A(r) = µ2 + ϵ

[
C2 −

1
r2(µ2 − 1)2

(
3βµ7 − 1

2
(α+ 13β)µ6

− 4βµ5 +
1
2
µ4(15α+ 43β+ 2C1r)

− 2
3
µ3(32α+ 35β)− 1

2
µ2(31α+ 51β+ 4C1r)

+ 4βµ+
1
2
(17α+ 21β+ 2C1r)

−β
µ
+ 2(α+β)

(
3µ2 − 1

)
logµ

)]
, (9.9a)

B(r) = µ−2 + ϵ

[
C1

rµ4
+
C2
(
µ2 − 1

)
µ4

+
1

r2(µ2 − 1)

×
(
1
2
(25α+ 37β)− 4(α+ 2β)µ

− 2(16α+ 13β)
3µ

− 2(α+ 3β)
µ2

+
4(α+β)

µ3

+
−21α− 25β

2µ4
+

2β
µ5

+
2(α+β)

µ4
logµ

)]
,

(9.9b)

where µ2 = 1− 2M/r and Ci are integration constants. One
important remark is that Ci can be set by imposing different
physical situations. One can see this by expanding the above
solutions up to 1/r, yielding

a(r)∼
(
C2 +

16(α+β)

3M2

)
−
(
C1 +

16(α+β)

M

)
1
r

+O
(

1
r2

)
, (9.10a)
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b(r)∼
(
C1 − 2C2M+

16(α+β)

3M
M

)
1
r
+O

(
1
r2

)
.

(9.10b)

In [354], they chose the constants as

C1 =−16α+β

M
, C2 =−16α+β

3M2
(9.11)

to recover the Schwarzschild metric at infinity. Since these
constants are related to the boundary conditions of the system,
one can also choose them in other ways. The above solution
is also a generalization of the solution found in [643] where a
power-law f (T) gravity was considered with β= 0. For more
details about the specific form of a(r) and b(r) for other solu-
tions, see [354]. Taking a similar approach, another spherically

symmetric solution around Schwarzschild was found [353] in
a theory concerning the five scalars that one can construct from
contractions of torsion, which is an extension of new GR (see
section 5.5).

Let us here finish this section by mentioning two recent
papers where exact solutions were found for the complex tet-
rad (5.153). The first interesting solution presented in [641]
reads

ds2 =

(
1− 2M

r
+
Q
r2

)
dt2 −

(
2Mr−Q− r2

2Q− r2

)−1

dr2 − r2dΩ2,

(9.12)

with

f(T) = 4f0

(
2±

√
Q2T2 − 2QT+ 4

)
(
QT+ 2±

√
Q2T2 − 2QT+ 4

)√
8− 2QT± 4

√
Q2T2 − 2QT+ 4

. (9.13)

This exact solution is similar to Reissner–Nordström one
but with grr 6=−1/gtt and hence, it describes a black
hole with two event horizons. A second interesting black
hole solution was found for the Born–Infeld f (T) gravity

f(T) = λ
(√

1+ 2T
λ − 1

)
and is given by

ds2 =
a2
1

r

[
√
λ(a0λ+ r)− 2tan−1

(√
λr
2

)]
dt2

− λ5/2r5

(4+ r2λ)2

[
√
λ(a0λ+ r)− 2tan−1

(√
λr
2

)]−1

× dr2 − r2dΩ2, (9.14)

where a0,a1 are integration constants. By fixing the con-
stants accordingly, this spacetime is asymptotically flat and
it describes a black hole with one horizon. Another recent
paper [642] found that for the teleparallel scalar-tensor the-
ory presented in section 5.102, it is possible to find exact
scalarized black hole solutions. One example of them are
the so-called Bocharova–Bronnikov–Melnikov–Bekenstein
(BBMB) provided by a theory with a coupling between the
scalar field and the torsion scalar. For more details about other
solutions, we refer the reader to see [642]. Further new ana-
lysis are needed to understand the nature of these solutions as
long as if they are healthy or not since they were constructed
from the complex tetrad.

9.2. Generalized Birkhoff’s theorem

The Birkhoff’s theorem states that in GR (in vacuum), the
spherically symmetric spacetimemust be static and its solution
is described by the Schwarzschild metric. Since we know that

f(T,B) gravity has exact spherically symmetric solutions that
differs from Schwarzschild (see for example equation (9.4)),
then we know that the generalized Birkhoff’s theorem will not
hold for all forms of f. It is obvious to mention that if T,B are
constants, then the dynamics of f(T,B) will be just TEGR plus
a cosmological constant. Then, for any f, the unique vacuum
spherically symmetric solution is Schwarzschild de-Sitter with
Λ being related to the constants T0 and B0. Then, when T0 =
B0 = 0, we will recover the standard Schwarzschild solution
and the generalized Birkhoff’s theorem will hold. This state-
ment will also be valid for more general teleparallel theories
having other scalars. However, this case is not so interesting
since it is just GR plus Λ. For example, in f (T) gravity, if
T= T0 (constant), the field equation (5.55b) contracted with
two tetrads becomes

◦
Gαβ −

1
2
1
fT
( f−T0fT)gαβ = κ2 1

fT
Θαβ , (9.15)

where we have used ∂ν fT = 0 and we have divided by f T . Now,
since T= T0, all the functions evaluated at T0 will be just con-
stants, meaning that one define 1

fT
( f−T0fT) = const. := Λeff.

Thus, the f (T) field equations with T constant yields

◦
Gαβ −

1
2
Λeffgαβ = κ2 1

fT
Θαβ =: κ̃2Θαβ , (9.16)

which clearly is the Einstein field equations with an extra
effective cosmological constant.

In the following, we will ask the following question:
can one have time-dependent vacuum spherical symmetry
in a general modified teleparallel theory? To explore this,
let us first take the most general time-dependent spheric-
ally symmetric tetrad given by equation (3.133) and consider
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f(T,B,ϕ,X) gravity. The antisymmetric field equation of this
theory reads

0= ∂[µ(fT+ fB)T
µ
λν]

=
1
3

(
Tλ∂ν( fT+ fB)−Tν∂λ( fT+ fB)+ Tµλν∂µ( fT+ fB)

)
.

(9.17)

In general, this equation depends on the form of f and also on
the form of the tetrad that can give a dependency on r and t
in T,B and ϕ. Let us study this equation without assuming an
explicit form of the function f. This strategy of course does
not consider all the possible models constructed from f since
it could be that for some models, the equation is solved by just
replacing the form of f and also T and B in the above antisym-
metric field equation.

Further, let us assume that fT+ fB depends on both t and
r, meaning that the torsion scalar, the boundary term and the
scalar field T= T(r,ϑ) B= B(r,ϑ), ϕ= ϕ(r,ϑ) (or at least
one of them depend on the two variables), then the only way
to solve the antisymmetric field equation without choosing f
would be to constrain some components of the torsion tensor
and also the torsion vector. For the most general spherically
symmetric tetrad satisfying spherical symmetry in teleparallel
geometries in the Weitzenböck gauge (3.133), one finds out
that for this case, we must have

Tt =−T rtr, Tr =−T trt, T tϕθ = Trϕθ = 0 (9.18)

to solve the antisymmetric equation (9.17). These equations

0= 2C3C5 − 2Ċ5C5 − 2C6Ċ6, (9.19a)

0= 2C4C5 − 2C ′
5C5 − 2C6C

′
6, (9.19b)

0= C2C6, 0= C1C6, (9.19c)

where primes and dots are derivatives wrt r and t, respectively.
One notices that the only way to solve these equations is by
imposing

C6 = 0, C3 = Ċ5, C4 = C ′
5. (9.20)

The first condition is always needed to solve equation (9.19c)
since the inverse of the tetrad divergeswhenC2 = C1 = 0. This
solution observes that T = 0 (which can be seen by calculating
the torsion scalar using the tetrad in (3.133) and the torsion
components in (3.143)) but the boundary term B= B(r,ϑ),

meaning that the Ricci scalar
◦
R= B and then f(T,B,ϕ,X) grav-

ity becomes f(
◦
R,ϕ,X) gravity. One can then conclude that

if fT+ fB depends on both t and r (and we do not choose
or replace f ), the only solution of the antisymmetric field
equations is the one which matches with the curvature-based

theory f(
◦
R,ϕ,X) gravity by having the metric

ds2 = (C2
1 − Ċ2

5 )dt
2 + 2(C1C2 −C ′

5Ċ5)dtdr

− (C ′
5
2 −C2

2 )dr
2 −C5dΩ

2. (9.21)

Without loss of generality, due to the remaining gauge free-
dom in the metric, we can choose C5 = C5(r) = r2 and also
set C2 = 0 to convert our metric into its diagonal form. After
doing all of this, one finds that the above metric is highly
constrained since grr =−1. Then, for this particular case, the
Birkhoff theorem does not hold but the spacetime is static.

Let us finish this discussion by emphasizing that the above
computation is only valid in the theory f(T,B,ϕ,X) and in the
specific case when one does not know the specific form of f
and assumes that all the scalars depend on the two coordinates
t,r, which means that the only way to solve the antisymmet-
ric equation (9.17) is by imposing that the terms multiplying
ḟT+ ḟB and f ′T+ f ′B vanish which is achieved if equation (9.18)
is true. Still the question about the generalized Birkhoff’s
theorem can be thought off as being open the context of
modified TG.

9.3. Solar system tests

Many Solar System observations have been performed, and
they have confirmed that GR can explain these effects in a
good agreement with observations [174]. Thus, any mean-
ingful modified gravity must pass the so-called Solar Sys-
tem tests. In this section we will explore two main routes
to constrain theories of gravity: either using solutions of
the studied theory and then analyze them by performing the
standard particle phenomenology of geodesics using observ-
ables (i.e. the classical tests); or to use the so-called para-
metrized post-Newtonian formalism, that basically uses post-
Newtonian expansions and express the possible deviations
from GR in different parameters.

9.3.1. Solar system tests using particle motion observables.
One interesting route for testing teleparallel theories in astro-
physical systems is to find exact or perturbed solutions and
then constrain them using particle phenomenology, by which
we mean both classical astrophysical tests of gravity as well
as more recent ones such as gravitomagnetic effects. The first
paper doing this for Solar System in f (T) gravity was [359,
360], which was performed using a perturbed solution around
Minkowski found in [357]. These results are correct but they
assumed a tetrad having a nonvanishing torsion scalar in the
absence of gravity (see equation (5.147) with ξ =−1). Later
in [646], the authors analyzed the tetrad (5.147) with ξ= 1
(which has the correct limit in the scalars) and they found
the corrections to the perihelion shift predicted by a power-
law f(T) =−T− (α/2)Tn gravity with n= 2. This work was
extended for n= 2,3, . . . ,10 in [356] and also finding the
photon sphere and perihelion shift of the perturbed solutions
around Schwarzschild to then constrain the models accord-
ingly with the perihelion of Mercury. Then, in [354] stud-
ied f(T,B) gravity, finding new perturbed solutions around
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Figure 27. The Sun causes gravitational effects to be exhibited by a
test mass in orbit. The solar orbit is characterized by a closest point
perihelion and a furthest point aphelion.

Schwarzschild (equations (9.9a) and (9.9b) is one solution)
and then computing different observables such as the perihe-
lion shift, deflection of light and the Shapiro delay. After find-
ing them, they also constrained the parameters of the models
using Solar System observations. Using a similar approach, in
[264] the authors also studied f(T,B) gravity in a weak field
limit and found the geodetic and Lense-Thirring effects pre-
dicted by this theory, noticing that the modifications play an
important role and then, these effects may be also use to con-
strain models.

Let us here compute the most important observables that
are usually used to constrain models for the real tetrad and
ξ =+1. In general, the observables that we will derive are
also valid for any physical situation when we have a test body
orbiting a massive compact object. This happens in the Solar
System (where the Sun is the massive compact object) as
depicted in figure 27, but also can be used in other astrophys-
ical scenarios such as modeling the movements of the stars
around the supermassive black hole Sgr A* in our galaxy.
When the masses of the system have the same order of mag-
nitude, then, the geodesic equation cannot be used and one
needs to use themachinery of the two-body problem. It is inter-
esting to mention that it turns out that for some observables,
the final result coincides with the one that it will be presen-
ted here for the geodesic motion by just replacing the mass
of the central massive compact to the sum of the two bodies
(M→M1 +M2).

Let us here consider the case of geodesics of test particles
orbiting a certain compact object. The worldline q(τ) =
(t(τ),r(τ),θ(τ),ϕ(τ)) of a test particle, with τ being an affine
parameter, can be expressed as

2L= gµν q̇
µq̇ν =A ṫ2 −B ṙ2 − r2ϑ̇2 − r2 sin2ϑφ̇2, (9.22)

where dots are derivatives wrt τ . Due to spherical symmetry,
we can consider the motion of the test particle at the equat-
orial plane ϑ= π/2, without loss of generality. The energy k
and angular momentum h are the conserved quantities that are
given by

k=
∂L
∂ ṫ

=Aṫ, h=−∂L
∂φ̇

= r2φ̇. (9.23)

Particles must obey the normalization condition so that by set-
ting if 2L= σ, then massive (massless) particles would be
described by σ= 1 (σ= 0). σ is a constant that characterizes
the massive or massless behavior of the type of particle being
investigated. By using this normalization in equation (9.22),
we arrive at the following expression

ṙ2 = B−1

(
k2

A
− h2

r2
−σ

)
, (9.24)

that can be further rewritten in term of an effective potential
giving us

ṙ2 =−2V(r), (9.25)

where we have defined the potential as

V(r) =−1
2
B−1

(
k2

A
− h2

r2
−σ

)
. (9.26)

Up to this point, we have not assumed any form of the met-
ric. Then, equation (9.25) is valid for any spacetime and any
test particle. As discussed in section 9.1, there are not many
exact spherically symmetric solutions in modified teleparallel
theories of gravity. However, there are some perturbed solu-
tions around Schwarzschild, for example, the ones expressed
in equation (9.9) for f(T,B) gravity. If we then assume that
our metric functions can be expressed as in equations (9.7a)
and (9.7b), the potential can be expanded up to first order of ε,
yielding

V(r) =−1
2
k2 +

1
2

(
1− 2M

r

)(
h2

r2
+σ

)
+
ϵ

2

[
k2
(

a(r)

1− 2M
r

+ b(r)

(
1− 2M

r

))

−b(r)
(
σ+

h2

r2

)(
1− 2M

r

)2
]
. (9.27)

Now, we have all the ingredients to compute some interesting
observables. For their more detailed derivation and schematic
representations, see [73]. For the perihelion shift, which meas-
ures how much the perihelion is shifted after an orbit, we need
to assume massive objects and a nearly circular orbit such that

perihelion shift: σ = 1, and V(r) = V ′(r) = 0, (9.28)

where now r= r(φ) = rc+ rφ(φ), giving us that the potential
equation (9.25) can be rewritten in the following form(

drφ
dφ

)2

=−2
(rc+ rφ)4

h2
V(rc+ rφ). (9.29)

Now, if we assume a nearly circular orbit, we can expand rφ/rc
up to second order to approximate the above equation as(

drφ
dφ

)2

=− r4c
h2
V ′ ′(rc)r

2
φ+O

(
r3φ
r30

)
, (9.30)
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where V(rc) = 0 and V ′(rc) = 0 were used. The above
equation for rϕ is in the form of an oscillator with a wave num-

berK=

√
r4c
h 2V ′ ′(rc), giving us that the final expression for the

perihelion shift becomes

∆φ= 2π
( 1
K
− 1
)
= 2π

(
h

r2c
√
V ′ ′(rc)

− 1

)
. (9.31)

For any perturbed solution around Schwarzschild, we find that
the perihelion shift is

∆φ=∆φGR + ϵ∆φϵ (9.32a)

= 6πq+ 27πq2 + 135πq3 +O(q4)+ ϵ∆φϵ, (9.32b)

where q=M/rc and ∆φϵ denotes the first order correction
from the perturbed solution (a(r) and b(r) in equations (9.7a)
and (9.7b)). In [353, 354, 356, 646], the authors derived the
first order correction of different observables such as the
photon sphere and the perihelion shift for different perturbed
solutions found in f (T), f(T,B) and f(Tax,Tvec,Tten,P1,P2)
gravity, respectively. Then, they used Solar System observa-
tions to constrain the corresponding free parameters of their
model. For example, for a squared-power law f (T) model

f(T) =−T− 1
2
ϵαT2, (9.33)

the first order correction to the perihelion shift is ∆φϵ =
8παq2/r2c , respectively [356, 646]. It is important to emphas-
ize again here that these corrections are different depending on
how one sets the integration constants Ci in (9.9a) and (9.9b)
(with β= 0).

In the Solar System, one can use the observations
for the perihelion shift of Mercury which is 42,98±
0.040 ′ ′/cen [174]. This means that any deviations in the peri-
helion shift predicted by the modifications of TEGR should
have the following maximum value for Mercury

∆φϵ,max

∣∣∣
Mercury

≈ 0.18 ′ ′/cen. (9.34)

For the model (9.33), the maximum value that the constant
should take is αmax ∼ 1020 km2 to match the Mercury obser-
vations. Furthermore, there are other astrophysical systems
where perihelion shift has been measured. For instance, the
perihelion shift produced in the system composed by the
supermassive black hole in the center of our galaxy, namely
Sagittarius A* (Sgr A*), and the S stars which are orbiting
it [647]. One can also use these observations to constrain tele-
parallel theories, but this has not been reported in the literature
yet.

Another interesting observable is the deflection of light∆φ
which is the angle characterizing the difference between the
light trajectory at infinity (with or without the presence of a

gravitating central mass). This quantity can be easily found by
taking equation (9.25) and rewriting it as

dφ
dr

=
φ̇

ṙ
=

h√
−2V(r)r2

, (9.35)

then integrating this equation from r0 (minimal distance) to
infinity. It should be noted that the deflection of light for non-
asymptotically flat spacetimes (such as in Schwarzschild de-
Sitter) cannot be obtained by using the above formula since it
goes beyond the event horizon. Instead, one needs to use the
method used in [648, 649]. Besides these cases, by integrating
the above equation and using ṙ(r0) = 0 (V(r0) = 0), we get

∆φ=±2
ˆ ∞

r0

dr̄
B(r̄)1/2

r̄2

(
A(r0)

r20A(r̄)
− 1
r̄2

)−1/2

−π, (9.36)

where r20 =
(
h
k

)2
A(r0) was used and one can choose the +

sign when further evaluating. Similarly as we did before, one
can find the deflection of light predicted by GR (the Schwar-
zschild contribution) plus a new contribution coming from
the perturbed solution. After considering the approximation
r�M, one finds

∆φ≈ φGR + ϵφϵ =
4M
r0

+
M2

r20

(
15π
4

− 4

)
+
M3

r30

(
244− 45π

6

)
+ ϵφϵ. (9.37)

This observable was explicitly found for different theories
in [353, 354, 356]. As an example, for the theory (9.33),
the first order correction of the deflection of light is φϵ =
64αM3/(45r50). One can use observations from the Very Long
Baseline Interferometry (VLBI), which uses radio-telescopes
on Earth [650], to constrain the teleparallel corrections. In this
case, GR predicts that the deflection of light (see the above
equation) produced by the Sun is ϑGR ≈ 1.756 ′ ′. Then, the
observed value over the GR predicted value is [174, 651]

ϑobs

ϑGR
≈ 1.0001± 0.0001, (9.38)

which tells us that for the model (9.33), the maximum value
that α can take is αmax ∼ 1019 km2.

Another interesting experiment that can be used to put
bounds in modified theories is the Cassini–Huygens experi-
ment which is an experiment composed by a system of Earth-
spacecraft-Earth. In this experiment, the fractional frequency
shift y of a ray of light after passing this system is meas-
ured [652], and its definition is

y= 2
vCassini–HuygenslEarth + vEarthlCassini–Huygens

lEarth + lCassini–Huygens
∆φ, (9.39)

where ∆φ is the deflection of light (equation (9.37)), vEarth
and vCassini–Huygens are the transverse velocities of the Earth
and the Cassini–Huygens spacecraft, respectively, and lEarth
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Figure 28. The Shapiro delay setup is shown in the context of the
calculation that is performed. Here, the central mass is shown as the
Sun, the mirror is shown as the planet and the emission point is
taken to be from Earth.

and lCassini–Huygens are the distances from the Earth to the Sun
and from the Cassini–Huygens spacecraft to the Sun, respect-
ively. After assuming that the distance Cassini–Huygens–Sun
is much larger than the distance Earth–Sun (lCassini–Huygens �
lEarth), we get

y= yGR + ϵyϵ ≈
8M
r0
vEarth + ϵyϵ. (9.40)

For the power-law model (9.33), the first order frac-
tional frequency shift was found to be equal to yϵ =
128M3α/(15r50) [354]. In this experiment, it has been
measured that yobs ∼ 10−10 ± 10−14 [652] and since
the GR predicted value (see above equation) is around
yGR ≈ 1.690× 10−9, the parameter α in (9.33) cannot exceed
αmax ∼ 1023 km2.

Another quantity that can be used to constrain models is
the Shapiro delay or the retardation of light. By integrating
equation (9.25), we find that the time required for a signal to
be emitted from r0 to r is (σ= 0)

t(r,r0) =

rˆ

r0

dr̄

[(
1− r20A(r̄)

r̄2A(r0)

)
A(r̄)
B(r̄)

]−1/2

, (9.41)

where r20 =
(
h
k

)2
A(r0) was used. The Shapiro delay is

defined as the time required for a signal to propagate from a
radius re to a point of closest encounter to the central mass
r0, and then from there to a mirror at radius rm where it gets
reflected and returns on the same path to the emitter, as shown
in figure 28 for a specific example case. This quantity is then
defined as

∆tShapiro(re,rm,r0)

=
1
2

(
t(re,r0)+ t(rm,r0)−

√
r2e − r20 −

√
r2m − r20

)
.

(9.42)

By assuming a small central object r�M, we arrive at the
following expression for the Shapiro delay

∆tShapiro(r,r,r0) = ∆tShapiro,GR(r,r,r0)+ ϵ∆tShapiro,ϵ(r,r,r0)
(9.43a)

≈
M
√
r2 − r20

r+ r0
+ 2M log


√
r2 − r20 + r

r0


+ ϵ∆tShapiro,ϵ(r,r,r0). (9.43b)

For the theory (9.33), the first order correction becomes

∆tShapiro,ϵ(r,r,r0) =
4αM3

√
r2 − r20

30(r+ r0)

×
[

7
r3r0

+
7

r2r20
+

17

rr30
+

20
r40

]
. (9.44)

One example of an experiment that has measured the Shapiro
delay is the Viking mission on Mars [653], which essentially
observed the time travel of a signal measured on the Earth
after performing the trajectory Earth-Mars-Sun-Earth. It has
been found that ∆tobs

∆tGR
= 1.000± 0.001 where∆tGR ≈ 2.664×

10−4 s. Thus, for the power-law form in equation (9.33), one
finds that the maximum constant αmax ∼ 1020 km2. There are
other measurements regarding the Shapiro delay outside the
Solar System that can be used to constrain the corrections of
GR. For instance, there is an important effort in the field of
pulsars to measure these effects (see for example [654, 655]).
These constrains have not been used in the context of TG yet.

The gravitational redshift can be also used to constrain
models, for example by using experiments with a hydrogen-
maser clock on a rocket. For a light ray propagating from alti-
tudes r1 and r2 (with r1 < r2), the gravitational redshift can be
expressed as

z≡ ν2
ν1

− 1=

√
A(r2)
A(r1)

− 1, (9.45)

where ν i are the frequencies measured at ri. Then, the frac-
tional frequency between these two points becomes(

ν2
ν1

)
≈
(
ν2
ν1

)
GR

+ ϵ

(
ν2
ν1

)
ϵ

= 1+M(r−1
1 − r−1

2 )+ ϵ

(
ν2
ν1

)
ϵ

, (9.46)

where we have assumed that ri �M. The leading order con-
tribution for the power-law case (9.33) is found to be equal

to
(
ν2
ν1

)
ϵ
= 2

5M
3α
(
r−5
1 − r−5

2

)
. There are several experiments

performed on the Earth which measures this effect. The most
common one is the one which uses hydrogen-maser clock on a
rocket launched to an altitude of about 107 m [656], that found
that ∆νobs

∆νGR
= 1.000± 0.0002, which effectively constrain the

parameter α in (9.33) to have the maximum value of the order
of αmax ∼ 1022 km2.
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Another important effect that has been measured is the so-
called geodetic effect, which appears when a central body (a
source) is rotating and one has a gyroscope which is orbiting it.
In this situation, the gyroscope starts to precess. To obtain this
effect, one can follow the procedure as it is explained in [657].
By starting from a spherically symmetric metric, we can con-
sider that the system is rotating with an angular frequency ω,
such that the angular coordinate φ→ φ̃−ω t. By sitting the
gyroscope in the circular polar point ϑ= π/2, one finds that
the metric becomes

ds2 = e2Ψ(r)(dt− e−2Ψ(r)ωr2dφ̃)2 −A(r)r2e−2Ψ(r)dφ̃2.
(9.47)

Here, e2Ψ(r) =A(r)− r2ω 2. One can further find that the
angular frequency of the gyroscope would be given by [657]

Ω=
eΨ

2
√
2

[
kikkjl(ωi,j−ωj,i)(ωk,l−ωl,k)

]1/2
, (9.48)

where ωi = e−2Ψωr2δ3i and k
ij is the spatial 3-metric. By using

several identities, one finds that the precession over one orbit
(per year) becomes

ΩdS =

√
A ′

2r

[
1−

√
1
B

(
1− rA ′

2A

)]
, (9.49)

whereB is the grr component of themetric. The geodetic effect
has been measured by the Gravity Probe B experiment which
was a satellite that orbited the Earth with a gyroscope precess-
ing due to the rotation of the Earth. It was found a geodetic pre-
cession of −6601.8± 18.3 mas yr−1 at around 642 km from
the Earth. In [264], the authors calculated this effect for the
power-law (9.33) finding that αmax ∼ 1032 km2.

The last observable that we will show here is the Lense-
Thirring effect which measures a relativistic precession of a
rotating body (e.g. a gyroscope) near a massive compact body.
This effect can be found by analyzing the geodesic equation
of a freely falling gyroscope which is initially at rest and
has a spin characterized by the spin vector Sµ. By using the
force-like equation (3.73) which is equivalent as the geodesic
equation (3.71), we arrive at

dSµ

dτ
+ΓµσρS

σuρ = KµσρS
σuρ. (9.50)

Here we have assumed that uµ is the gyroscope’s velocity
measured when it is at rest, i.e. uµSµ = 0. If we again assume
that the metric can be expressed as gµν = ηµν + δgµν and
|hµν | � 1 (as in equation (7.1)), which is a weak field approx-
imation, the above equation can be written as

dSi
dτ

= ϵiklΩ
kSl, (9.51)

where Ωk ≡− 1
2ϵ

kmn∂mh0n. Physically speaking, the quantity
Ωk represents the angular velocity precession vector of the
gyroscope. In [264], it was found that the Lense-Thirring effect
for f(T,B) gravity in the weak field regime is the same as

the one predicted by GR. There is only a Newtonian rescal-
ing for this theory, therefore, one cannot constrain this theory
by using weak field approximations. It would be interesting
to extend this study by not assuming the weak field limit and
study some specific models of f(T,B) with its respective per-
turbed solutions.

An important comment that should be taken into account is
that the value of all of these observables depend on the choice
of the integration constants in the perturbed solutions. In [658],
the authors used other boundary conditions (to obtain a black
hole) as the ones considered in the results provided above, and
then they found that the maximum value that the parameters of
the theory can reach, have a different order of magnitude. Fur-
thermore, the expressions presented above assumed the real
tetrad with ξ =+1. When one chooses ξ =−1 or the com-
plex tetrad, these observables are different. It was found that
they lead to corrections to GR at lower order than the the real
tetrad with ξ =+1 [641].

Let us stress again that all of these observables can be
used in a direct way with any solution (exact or perturbed) to
constrain gravitational theories by using, for example, Solar
System observations or any other astrophysical system where
these effects occur. There are also other ways to contrast Solar
System observations with modified gravitational models. One
very important method is the so-called PPN analysis, that we
will explain in the next section.

9.3.2. Parametrized post-Newtoninan formalism. One of
the most useful analytical tools to test modified theories of
gravity on smaller scales is by the so-called ‘Parametrized
Post-Newtoninan’ (PPN) formalism [174] which essentially is
encoded in ten parameters. These parameters have been tested
with high precision (for example in the Solar System) and
essentially they are obtained by considering the lowest orders
deviations from the PPN expansion of a given gravitational
theory (weak field limit). The standard formalism has been
developed in curvature-based theories containing a metric as
a fundamental field. Since the fundamental variable in TG is
the tetrads, the formalism needs to be adapted by assuming
perturbations in the tetrad. This study was first performed in
[225] and we will review its most important results here.

One key ingredients to the PPN formalism is assuming that
the matter acting as a source of a gravitational field is given
by a perfect fluid whose velocity is small compared with the
velocity of light in a specific frame. Then, one can expand in
orders of velocity. The energy-momentum tensor is then

Θµν = (ρ+ ρΠ+ p)uµuν − pgµν , (9.52)

where uν is the 4-velocity and is normalized by uµuµ =+1
and ρ,p and Π are the energy density, pressure and specific
internal energy, respectively. To proceed, we need to expand
all the important fields in orders of velocity O(n)∝ |⃗v|n. For
the tetrads, the expansion can be written as

eAµ =
0
eAµ+

1
eAµ+

2
eAµ+

3
eAµ+

4
eAµ+O(5), (9.53)

145



Rep. Prog. Phys. 86 (2023) 026901 Review

where we have assumed that the expansion is taken around

a flat diagonal background tetrad
0
eAµ = diag(1,1,1,1). Here,

overscripts denote the velocity order considered, i.e.
n
eAµ ∼

O(n). We will only consider expansions up to the fourth order
in the velocity. It is useful to lower the Lorentz index, and this
can be done by contracting the above perturbation with the
Minkowski metric, yielding

eµν =
0
eAµηABe

B
ν ,

n
eµν =

0
eAµηAB

n
eBν . (9.54)

One important remark is that after doing the expansions one
finds that not all the tetrad perturbation components are rel-
evant. If we assume the Newtonian energy conservation and
a time reversal symmetry, one finds that the only non-trivial
components are

2
e00,

2
eij,

3
e0i,

3
ei0,

4
e00. (9.55)

Since the tetrads are the fundamental variables of all teleparal-
lel theories (we assume the Weitzenböck gauge), we can then
use the above perturbation in a specific theory and expand all
the geometrical objects in the underlying theory in the velo-
city orders. If in our studied theory we have a scalar field ϕ
(for example in teleparallel Horndeski, see section 5.8.2), we
also need to expand it in velocity orders, namely,

ϕ=Φ+ψ =Φ+
1
ψ+

2
ψ+

3
ψ+

4
ψ+O(5). (9.56)

Moreover, if one has arbitrary functions of a geometrical vari-
able, as in the teleparallel analogue of Horndeski gravity, one
would need to expand the corresponding Lagrangian function.
For example for this theory, this can be done by taking the
following Taylor series expansion

Gi(ϕ,X) = Gi(Φ,0)+Gi,ϕ(Φ,0)ψ+Gi,X(Φ,0)X

+
1
2
Gi,ϕϕ(Φ,0)ψ

2 +Gi,ϕX(Φ,0)ψX

+
1
2
Gi,XX(Φ,0)X

2 + . . . (9.57a)

=Gi+Gi,ϕψ+Gi,XX+
1
2
Gi,ϕϕψ

2 +Gi,ϕXψX

+
1
2
Gi,XXX

2 + . . . , (9.57b)

where Φ=
0
ϕ, bold letters denote the constant Taylor coeffi-

cients at the background level and Gi are the functions related
to teleparallel Horndeski (see equations (5.122a)–(5.122d)).
This is just an example where the Lagrangian involves a func-
tion of an arbitrary scalar, but the expansion should be in the
same way for other theories different to the one written above.

These are all the ingredients needed to start the computa-
tions. Now, one needs to insert all of these expansions in the
field equations, expand each quantity accordingly in the PPN
approximation and then solve the equations order by order. To
do this easily, one introduces some suitable potential ansatz

consisting of PPN potentials and some constant coefficients.
One can take the following ansatz for the tetrad at each velo-
city order:

2
e00 = a1U,

2
eij = a2Uδij+ a3Uij, (9.58a)

3
ei0 = b1Vi+ b2Wi,

3
e0i = b3Vi+ b4Wi, (9.58b)

4
e00 = c1Φ1 + c2Φ2 + c3Φ3 + c4Φ4 + c5U

2 + c6ΦW+ c7A,
(9.58c)

with the potentials satisfying [174, 614]

∇2U=−4πρ, ∇2χ=−2U, Uij = χ,ij+Uδij,
(9.59a)

∇2Vi =−4πρvi, ∇2Wi =−4πρvi+ 2U,0i, (9.59b)

∇2Φ1 =−4πρv2, ∇2Φ2 =−4πρU,

∇2Φ3 =−4πρΠ, ∇2Φ4 =−4πp, (9.59c)

where∇2 = δij∂i∂j. Using these ansatz, the tetrad can be iden-
tified with the standard PPN parameters as follows [659]

2
e00 = U, (9.60a)

2
e(ij) = γUδij, (9.60b)

3
e(0i) =−1

4
(3+ 4γ+α1 −α2 + ζ1 − 2ξ)Vi

− 1
4
(1+α2 − ζ1 + 2ξ)Wi, (9.60c)

4
e00 =

1
2
(1− 2β)U2 +

1
2
(2+ 2γ+α3 + ζ1 − 2ξ)Φ1

+(1+ 3γ− 2β+ ζ2 + ξ)Φ2 +(1+ ζ3)Φ3

+(3γ+ 3ζ4 − 2ξ)Φ4 − ξΦW− 1
2
(ζ1 − 2ξ)A. (9.60d)

where

ΦW =

ˆ ˆ
ρ ′ρ ′ ′

x⃗− x⃗ ′

|⃗x− x⃗ ′|3
·
[
x⃗ ′ − x⃗ ′ ′

|⃗x− x⃗ ′ ′| −
x⃗− x⃗ ′ ′

|⃗x ′ − x⃗ ′ ′|

]
d3x ′d3x ′ ′,

(9.61a)

A=

ˆ
d3x ′

ρ(t, x⃗ ′) [vi(t, x⃗ ′)(xi− x ′i )]
2

|⃗x− x⃗ ′|3
. (9.61b)

For more details regarding these potentials, see
section 4.2.1 in [614]. The so-called PPN parameters are the
ten parameters appearing in the above equation

γ,β,α1,α2,α3, ζ1, ζ2, ζ3, ζ4, ξ. (9.62)
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Table 20. Summary of PPN parameters for different teleparallel theories reported in the literature. In all of these theories, all the other PPN
parameters are zero (the same as GR). The terms Hi and β̃ are written in the appendix C.

Theory β− 1 γ− 1

f (T)/GR [225] 0 0
f(T1,T2,T3) [225] − 2f,1+f,2+f,3

4(2f,1+f,2+2f,3)
−2 2f,1+f,2+f,3

2f,1+f,2+2f,3

f(T,ϕ,X,Y) [664] f Y
8(4fTfX−3f 2Y)( f 2Y−fTfX)

2

[
fTfXf 2Y (16fTϕ− 7fY)+ 3f 4Y ( fY− 2fTϕ)

f 2Y
2fTf X−2f 2Y

−8fT 2f 2X fTϕ+ 2fT 2fY
(
2f 2X + fYfXϕ− 2fXfYϕ

)]
Teleparallel Horndeski [666] − β̃

8(H,1H,5+H 2
,3) 2(3H 2

,3−2H,1(H,4−2H,5))
− 2H,1H,4+H 2

,3

2(H,1H,5+H 2
,3)

The parameter ξ measures preferred-location effects, αi is
related to preferred-frame effects while ζ i measure possible
violations of the conservation of the total momentum. Finally,
the parameters γ and β are related to how much spacetime
curvature is produced (by unit rest mass) and the amount of
non-linearity in the gravitational model, respectively. For GR
(or equivalently TEGR), we have

αi = ζi = ξ = 0, γ = β = 1. (9.63)

The strongest observations bounds for γ and β are set by
the Cassini–Huygens tracking experiment [652] and measure-
ments provided by the perihelion precession ofMercury [174],
which are

γ− 1= 4(β− 1)⩽ (2.1± 2.3) · 10−5. (9.64)

GR works very well at Solar System scales, so using these
bounds one can set constrains on modified theories of grav-
ity on smaller scales. Some scalar-tensor theories can have
screening mechanisms which allow us to have a non-trivial
density profile for the scalar field and then, modifications of
gravity become negligible at smaller scales and only become
important on other scales such as at cosmological scales [660].
Still, the screening mechanisms for teleparallel theories have
not been studied in the literature.

There are few studies in teleparallel concerning the PPN
analysis explained above. The first study doing preliminary
analysis under these directions was done in [661] for tele-
parallel DE (see section 5.8). The authors concluded that all
the PPN parameters of this theory are the same as GR. The
same result in a slightly more general teleparallel scalar-tensor
theory was obtained in [662]. Later, the case of a teleparallel
scalar-tensor theory with a scalar field non-minimally coupled
to both the boundary term B and the torsion scalar T was stud-
ied, finding some deviations for γ and β [663]. Some years
later Ualikhanova and Hohmann presented a formal and gen-
eral way to construct the PPN formalism in TG in a more
rigorous way [225], which is the one presented above. They
specifically studied a teleparallel theory constructed from an
arbitrary function f(T1,T2,T3), where T i are the 3 non-parity
violating scalars that can be constructed from the torsion
tensor (see section 5.5). They found that only γ and β are dif-
ferent to the GR value and for the specific case of f (T) gravity,
the PPN parameters are identical to the GR ones. Therefore,
f (T) gravity has the same predictions as GR at smaller scales

such as at Solar Systems. Later in [664, 665], the authors stud-
ied a more general teleparallel scalar-tensor theory composed
of f(T,X,Y,ϕ) where Y= gµνTρρµϕ,ν (see section 5.8). This
theory can be understood as a generalization of themodel stud-
ied in [663]. They also found that only γ and β differ from
their GR value. Finally, recently this study was further gen-
eralized to the teleparallel Horndeski case, again finding that
only γ and β differ from GR [666]. One interesting remark is
the fact that there are some classes of theories in teleparallel
Horndeski having γ = β = 1, and then, all of those model will
have the same predictions as GR at smaller scales. Two recent
papers [667, 668] found that for a TG parity violating model
which is similar to a Nieh–Yan model and also for a higher-
order derivative TG (see section 5.7), all the PPN parameters
are the same as GR. All of the most important results are sum-
marized in table 20.

Let us finish here by mentioning that a viable modified the-
ory of gravity must pass all the Solar System tests, and one
possible route that has not been explored in teleparallel theor-
ies are by considering some screening mechanisms [660].

9.4. Astrophysical compact objects

Soon after the development of f (T) gravity, different papers
studied different compact objects in TG. The main conclusion
of the first works is that the majority of them suffered from
the lack of understanding the covariant formulation of TG,
leading some authors to totally ignore the fact that they were
choosing the incorrect good-tetrad spin connection pair. This
created an enormous number of papers with mistakes since
many authors ignored the fact that their choice contained some
non-trivial antisymmetric field equation. The standard mistake
was to consider a diagonal tetrad eAµ = (A,B,r,rsinϑ)with a
vanishing spin-connection. As was explained in section 5.12,
this choice is not correct since it constrain theories to be just
GR. Thus, any paper using that diagonal tetrad in spherical
coordinates with a vanishing spin connection would be incor-
rect. Taking this into account, in the following we will review
some references which applied correctly the covariant formu-
lation, without forgetting the role of the spin-connection (and
the antisymmetric equations).

9.4.1. Stars. The majority of the works related to stars in
modified TG have been carried out in f (T) gravity. The first
paper where these astrophysical systemswere studied properly
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Figure 29. Particle number–to–stellar radius curves for f(T) =−T− (a/2)T2 gravity with a polytropic index equal to Γ = 2. The dashed
line a= 0 corresponds to GR. Reprinted figure with permission from [670], Copyright (2018) by the American Physical Society.

was done in [669] for relativistic spherically symmetric stars in
f (T) gravity. Essentially, they used the tetrad-spin connection
pair given by equation (5.147) for f (T) gravity. The equations
for this case are written in equations (9.2a)–(9.2c) if one sets
f(T,B) = f(T). Then, the set of equations (9.2a)–(9.2c) and the
conservation equation (9.5) describe the internal structure of
self-gravitating fluids in f(T,B) gravity. As happens in GR, we
need to choose an EoS to close the system. Later in [670], the
authors studied compact stars in f(T) =−T− (a/2)T2 grav-
ity for an isotropic fluid (pr = pl = p) with a polytropic EoS
given by

ρ= Kp1/Γ +
p

Γ− 1
= K2n+

K1nΓ

Γ− 1
, (9.65)

with the adiabatic exponent being Γ = 2, K1 and K2 are con-
stants and we have introduced the particle number density
n. Then, the star would be sourced similarly as it is usually
described by GR since its source will be a fluid with a poly-
tropic EoS. However, since the field equations of the f (T)
(or other modifications) are different to GR, the structure of
the star could be different (for example its mass and radius). As
has been discussed in the review in [671], the definition of the
mass of the star in modified gravity has been vastly debated. In
GR, this mass coincides with the ADM mass of the spacetime
defined as

M := 4π
ˆ
ρr2dr, (9.66)

but in a more general gravitational theory, this equation is
not known to be true. Therefore, in [670], the authors used
a more general way to understand the matter contained in a

stellar system which is related with particle number density
defined as

n :=
dN
dV
, (9.67)

whereN is the total particle number enclosed in the differential
volume dV= 4πr2

√
Bdr. Then, we can integrate this equation

from its center r= 0 to its radius R, yielding that the particle
number is

N= 4π
ˆ
n(r)

√
Br2dr. (9.68)

This equation must be used with p= knΓ, (9.65) and the field
equations (9.2a)–(9.2c) to describe the internal structure of
the star. From these equations, one can also derive a mod-
ified version of the standard Tolman–Oppenheimer–Volkoff
(TOV) equation that helps us describing compact stars in an
easier way. The numerical procedure used in [670] works as
follows: there are three field equations in spherical symmetry
for f (T) gravity and four variables (two metric functions A,B
and the energy density ρ and pressure p for the fluid). To close
the system one must assume an EoS for the fluid, that as we
pointed out above, one can assume to be a polytropic one.
Then, some normalized variables are introduced in order to
have all functions and constants dimensionless. To have a real-
istic star, one must impose the correct boundary conditions. At
the center of the star, one can impose that the pressure satisfies
p(r= 0) = p0 where p0 is a constant and the metric functions
B(r= 0) = 1 and (A ′/(2A))‖r=0 = 0. At the radius of the
star, one imposes that p(r= R) = 0. Having all of that, one can
numerically solve the equations. Figure 29 shows numerical
solutions for the system which are the particle-to-stellar radius
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curves for different values of the modifications of GR coming
from−(a/2)T2. This graphwould be the analogous of the well
knownmass–radius plot usually displayed in GR and its exten-
sions. Then, it can be seen from this figure that it is possible to
construct compact stars in squared-f (T) gravity having differ-
ent properties as GR. One can notice that if a> 0(a< 0), then
the amount of matter supported against gravity is less(more)
than in GR.

Moreover, in [670] they also claimed that the energy density
of the star over the central region is roughly constant (n incom-
pressible core) for positive values of a. It can be also con-
clude that for large positive values of a, there is a phase trans-
ition where the energy density and pressure change its sign
within the interior of the star. Recently, this study was further
generalized for boson stars [672] by adding a non-interacting
complex scalar field. They found that the mass of the boson
stars increases when a is negative and large enough in absolute
value. This means that in f (T) gravity, the mass is no longer
bounded as in GR and then, the situation is quite different to
GR since the boson stars will not be necessarily a mini boson
star. A similar study related to boson stars was done in [673]
in a theory where the torsion scalar is non-minimally coupled
to a complex scalar field. In this case, the authors found that
for a sufficiently large coupling constant, the energy density
increases outwardly, surrounded by a thick shell, following an
abrupt decrease in its profile ending in the so-called asymp-
totic tail. It is interesting to mention that this feature does not
occur in a theory where one has the Ricci scalar non-minimally
(or minimally) coupled to a complex scalar field. Later, the
same authors [674] generalized this study by adding a U(1)
gauge field, leading to an increase in the maximal mass and
the particle number. Recently, in a series of papers [675, 676],
a similar result for f (T)-power law gravity was found.

In [677], with the Raychaudhuri equation, collapsing stel-
lar distributions were analyzed in f (T) gravity. The authors
considered a star with an interior behaving as a FLRW metric.
They found a critical condition for f (T), which tells us that
depending on its form, one could model collapsing stars or
not.

Regarding other modified teleparallel theories, some stud-
ies have been performed with stars in f(T,Θ) where Θ is the
trace of the energy-momentum tensor. In [678], the authors
used a perturbative approach and derived the TOV equation for
this model and later, in [679], the same authors analyzed the
case of quark stars finding the corresponding mass-radius and
mass-central density relations. More studies regarding neutron
stars are needed. Using pulsars observations, it was recently
reported in [680] that in power-law f (T) gravity one can con-
struct realistic neutron stars by considering certain bounds for
the parameter of the theory.

Other works that are important to mention are related to
junction conditions which are needed to have a correct match-
ing of different regions of spacetime. These conditions are
important to construct a viable collapsing star model. In [681],
they analyzed the junction conditions for f (T) gravity by using
the ADMdecomposition and the thin shell formulation finding
that one requires more junction conditions than in GR. In this

formulation, one imposes conditions in such a way to remove
delta-like distributions in the field equations. The extra con-
ditions in f (T) gravity are related to the tetrads and also with
the continuity in the torsion scalar. This study was then gen-
eralized in [682] in a more general approach by considering
the variational principle for a covariant version of f (T) grav-
ity. The conclusion of this work states that for highly sym-
metric spacetimes such as in spherical symmetry, one has the
same standard junction conditions as in GR but for more gen-
eral situations, one obtains different junction conditions that
are the same as the ones obtained in [681] in a specific limit.
Recently, in [683] it was shown that the remnant group of local
Lorentz transformations for teleparallel theories play a crucial
role to match tetrads in order to ensure that scalars constructed
from teleparallel quantities are continuous.

As a final remark, it is interesting to mention that there are
no works related to the thermodynamics or Hayashi tracks of
stars [684] in modified teleparallel theories or in any other the-
ory different to f (T). Further, the complex tetrad (5.153) has
not been studied to construct stars. This could lead to some
new phenomenology that could be important to study in the
future.

9.4.2. Black holes. The study of black holes in teleparallel
theories is an on-going research stream in the literature. Sev-
eral studies like [685–687] have analyzed different types of
black holes but in TEGR which in the end, is equivalent to
GR. Different attempts have been made in order to find exact
black hole solutions in modifications of TEGR, like Noether’s
symmetry approach [355, 633], or directly by assuming differ-
ent forms of the function for f (T) [688], but none of them are
neither correct nor were able to find exact black hole solutions
for the real tetrad. Recall that this tetrad provides a smooth
limit to Minkowski for the scalars when we switch off grav-
ity. Unfortunately, only perturbed methods (as the one men-
tioned in section 9.1) or numerical approaches have been used
to study the real tetrad. For example, in [689], the authors stud-
ied the evolution of primordial black holes in f (T) gravity by
assuming a Chaplygin gas. They studied different properties of
such black holes like its accretion mass by using a numerical
approach. In [690], the authors studied the matter conditions
for regular black holes in f (T) gravity. To do this, they used
a power-law form of f and study the equations of motion of
the interior of the black hole by determining the structure of
matter in the vicinity of a possible singular point. Basically,
the authors used perturbed approaches to determine the condi-
tions for which it is possible to find non-singular black holes.
Later, in [691], the authors studied a Born-infield like form of
f(T) = λ(

√
1+ 2T/λ− 1) and find the existence of a regular

black hole interior which has a new length scale related to the
Born–Infeld parameter λ. Due to this new length scale, they
showed that the central curvature singularity is replaced by an
infinitely long cosmic string (with constant curvature invari-
ants). This means that the interior of the black hole is free from
singularities. They used numerical and dynamical system tech-
niques to show this, and then they used perturbation techniques
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to obtain an analytical perturbed solution for the interior of the
black hole. Later on, the same authors noticed that this per-
turbed solution is of the form of a non-rotating BTZ black
hole [692]. Using numerical techniques it was found that a
squared power law f (T) gravity case does for the real tetrad
with ξ =+1 does not contain asymptotically flat black hole
solutions beyond TEGR [693]. Also in [694] the study for
Schwarzschild in TEGRwas reanalyzed to understand the role
of the spin connection.

As we discussed in section 9.1, perturbation theory allows
us to obtain spherically symmetric solutions such as for
example the ones expressed in equations (9.9a) and (9.9b).
Since this solution contains a logarithmic term, it is not so
easy to check if this solution can represent a black hole solu-
tion since we need A(rh) = B−1(rh) = 0 and detgµν |r=rh 6= 0,
with rh being the event horizon, to describe a black hole per-
turbed solution. A recent paper [658] showed that when the Ci
are given by equation (9.11) and β= 0, the solution is not a
black hole. However, one can also set Ci in a different way,
which is

C2 =
α

3µ2
h

(
− 6+ 12µh − 21µ2

h − 108µ3
h + 66µ4

h

+ 20µ5
h − 39µ6

h + 12µ7
h + 12µ2

h ln(µh)
)
+ ζ1, (9.69a)

C1 = 2MC2 −
32
3
α, (9.69b)

ζ1 =−µh − 1
3µ2

h

(6− 6µh − 49µ2
h + 59µ3

h − 7µ4
h − 27µ5

h + 12µ6
h )

− 4ln(µh), (9.69c)

where µh = (1− 2M/rh)1/2, to have a black hole solution.
After showing that by choosing the above constants one has
a perturbed black hole solution, Pfeifer and Schuster [658]
analyzed several observables such as perihelion shift, Shapiro
delay or light deflection finding that the influence of the per-
turbed solution is much smaller than the one derived from the
solution with the constants (9.11). Then, they analyzed several
thermodynamics quantities such as the surface gravity and the
sparsity finding corrections of the Hawking effect.

An important remark about black holes in f (T) gravity is
that it is not possible to have any solution beyond TEGR plus
a cosmological constant with the metric functions satisfying
A(r) = 1

B(r) . In other words, the only solution with A(r) =
1

B(r) in f (T) gravity is the Reissner–Nordström solution and the
form of f is always constrain to be−T+Λ. This conclusion is
valid for any of the two tetrads.

One interesting feature that black holes produce is the so-
called photon sphere, which is the radius that defines a region
where photons are forced to travel in orbits, that can be derived
by taking circular photon orbits, which is obtained by setting

photon sphere: σ = 0, and V(r= rc) = V ′(r= rc) = 0,
(9.70)

where rc is the radial circular orbit. For the solution
equations (9.7a) and (9.7b), we can find the photon sphere
predicted by f(T,B) gravity. To do this, we need to expand
rc = r0 + ϵr1 and solve V(r= rc) = V ′(r= rc) = 0 order by
order. By doing this, we get that the zeroth-order which is
related to the Schwarzschild contribution, gives the stand-
ard photon sphere result r0 = 3M and the momentum h0± =
±3

√
3k0M. This observable is related to the shadow of the

black hole. Then, the first order correction of the photon sphere
will depend on the perturbed solution found for the specific
teleparallel model. It is interesting to mention that the predic-
tion of the photon sphere is equivalent for the integration con-
stants (9.69a) and (9.69b) than for (9.11) for f (T) gravity, and
it becomes rph ≈ (1.5+ 0.282675β) 2Mr .

Another point that is worth mentioning is that black hole
singularities in TG might have a different description as it
is usually described in theories like GR. To analyze this,
one usually uses the Hawking–Penrose singularities theor-
ems which essentially defines singularities as being the point-
s/paths where the geodesic is incomplete for moving particles.
In TG the so-called Raychaudhuri’s equation might be differ-
ent, so that, it is still unclear if the evolution equations for the
congruence of curves would be the same. Moreover, a use-
ful way to realize if one has a coordinate singularity is by
constructing several scalars such as the Kretschmann scalar.
It is also unclear which teleparallel scalars would give a hint
whether one has a coordinate singularity.

As pointed out in section 9.1, if one allows the torsion scalar
to be nonzero for the Minkowski limit, one can take the res-
ults of the complex tetrad (5.153) as being the first attempts
to construct black hole configurations in modified TG. The
recent solutions found in [641, 642] might help us to under-
stand more about black holes in these theories as well as the
role of the torsion scalar being nonzero for the Minkowski
limit. One remarkable aspect of the complex tetrad is that it is
that it is much simpler to obtain exact spherically symmetric
black hole solutions. Further, there is a much richer family of
exact scalarized asymptotically flat black hole solutions in TG
than in the standard Riemannian case. Let us finish this section
by emphasizing that we are still very far away of understand-
ing how black holes will be in modified teleparallel theories.

9.4.3. Wormholes. A wormhole is usually described by the
well known Morris–Thorne metric which is given by [695]

ds2 = e2Φ(r)dt2 − 1

1− b(r)
r

dr2 − r2(dϑ2 + sin2ϑdφ2), (9.71)

where Φ(r) and b(r) are the redshift and shape function,
respectively. One then needs to have different properties for
these functions to be able to describe a wormhole, like the
non-monotonically decrease of b(r) from infinity to a minimal
value r0 at the throat (b(r0) = r0), and the so-called flaring-
out condition stating that (b− b ′r)/b2 > 0 at the throat. For a
more detailed description about wormholes, see [696–698].

In order to study wormholes in TG, one needs to use a good
tetrad-spin connection pair. Since they are usually described
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as spherically symmetric (as the metric above), one can then
choose a zero spin connection but a tetrad being of the form

eAµ =



eΦ(r) 0 0 0

0
(
1− b(r)

r

)−1/2
sinϑcosφ rcosϑcosφ −rsinϑsinφ

0
(
1− b(r)

r

)−1/2
sinϑsinφ rcosϑsinφ rsinϑcosφ

0
(
1− b(r)

r

)−1/2
cosϑ −rsinϑ 0

 , (9.72)

which is the same tetrad (5.147) with the specific metric coef-
ficients chosen accordingly to reproduce the Morris–Thorne
metric.

The great majority of studies related to wormholes in tele-
parallel theories have been done in f (T) gravity. The first paper
studying this using a good tetrad-spin connection pair found
that spherically symmetric wormholes can be supported in
f (T) gravity by matter satisfying the standard energy condi-
tions [699]. This conclusion cannot be made in GR since in
this case, one requires exotic matter to maintain the form of the
throat of the wormhole. The main point here is that the modi-
fication of gravity, which in this case is related to the form of
f (T), can create a repulsive gravitational effect to then leads
to the possibility of having wormholes supported by standard
matter without violating the energy conditions. This result is
not unique in modifications of TG, since in many modified
theories of gravity one can achieve this situation [700, 701].
In [699], they assumed a squared power-law form of f (T), and
later, other authors assumed other models to studying worm-
holes. For example in [702] they used exponential and logar-
ithmic forms of f finding that for the first case, the null energy
condition must be violated to construct wormholes and for the
later, one can get wormholes satisfying all the energy condi-
tions. Similar studies like in [703–706] also found similar res-
ults but in a non-commutative background by setting a specific
form of the energy density. In these different papers, different
authors found that it is possible to construct stable wormholes
exhibiting a conformal motion.

Concerning other teleparallel theories different to f (T),
there is only one paper where the authors studied a scalar field
model non-minimally coupled with the scalar-torsion and the
boundary term [707]. In this paper, they found exact wormhole
solutions using the Noether’s symmetry approach.

The main conclusion that one could point out then is that in
modified TG, it is possible to construct wormholes satisfying
the standard matter energy conditions.

9.5. Galaxy rotation curves

Besides the problem of explaining the late-time acceleration
of the Universe in a theoretically satisfactory way, GR also
suffers from the problem in explaining galaxy rotation curves.
The only way to cure this in GR is to introduce dark matter,

which is a type of matter that has not been detected yet.
Modified gravity also has tried to tackle this issue with the aim
of not introducing dark matter but to fully describe the motion
of galaxies using the new corrections appearing in the under-
lying theory. We here distinguish between the astrophysical
dark matter responsible for galactic dynamics and the cosmo-
logical dark matter which is related to the stability of struc-
ture formation in the early Universe and the impact that has
on the energy budget of the Universe in the CMB. In this con-
text, we can attempt to explain astrophysical dark matter in
galactic systems but leave open the problem of cosmological
dark matter [524] which we tackle in section 10.

In f (T) gravity, this can be achieved in a satisfactory way
as it was explored in [358]. In this paper, the authors used a
spherically symmetric perturbed solution around Minkowski
for power-law f(T) =−T−αTn gravity by assuming the tet-
rad (5.147) with ξ =−1, which is the branch where T does
not vanish in the Minkowski limit, which may be theoretic-
ally problematic. This does not happen for the ξ= 1 branch
which is defined in equation (5.147), and may be an interest-
ing analysis to perform and compare. In this case, the solution
is explicitly given by the metric (9.1) with

A(r) = 1− ϵ

(
2M
r

+α
r2−2n

2n− 3
23n−1

)
, (9.73a)

B(r) = 1+ ϵ

(
2M
r

+α(1− 3n+ 2n2)
r2−2n

2n− 3
23n−1

)
,

(9.73b)

with n 6= 3/2 and ϵ� 1 being the tracking parameter. In
essence, this solution behaves as a weakly Schwarzschild plus
an additional small correction coming from α. To determine
the rotational curve profile, one can consider a test particle
following orbits around the galactic core, which is described
by the effective potential (9.27). In this work, the authors
used the perturbed solution around a Minkowski background
in equation (9.27) which would mean setting M to being a
small parameter, and choosing a(r) and b(r) described by the
perturbations around this background, and with the corres-
ponding integration constant related to a small mass. Further-
more, they assumed h= 0, which effectively means that there
are no meaningful angular momentum contributions from the
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Figure 30. Best fit for a power-law f(T) =−T−αTn with the constants n= 1.00001 and α=−4.50573152405× 10−34 km2n kg−1 s−2,
bulge surface mass density of 5.94× 106 kg km−2 and disk mass 4.08× 1010M⊙ (these are the best fit parameter presented in [358]).
Reproduced from [358]. CC BY 4.0.

galactic system model. Note that the definition used in [358]
differs from ours. In our definitions, we absorbed the energy
contribution in the potential whereas in this work the poten-
tial does not have the energy. Let us consider their form of the
potential (equation (23) in [358])

Veff =
1
2
− ϵ

(
M
r
+α

r2−2n

2n− 3
23n−2

)
. (9.74)

Next, we need to find the velocity profile that can be obtained
by considering the following centripetal and gravitational
acceleration

ac =
v2

r
, ag =−dVeff

dr
, (9.75)

which gives us

v2eff =−rdVeff

dr
. (9.76)

The simplestmodel of a galaxy is composed by two regions,
namely, the disk and the bulge and each of them must be taken
in a separated way. The standard approach for the disk is to use
a velocity profile composed by the sum of the combined poten-
tial of the individual sources within the galaxy as described in
[708]. For the bulk, one assumes that this region is described as
a spherical mass with a Vaucouleurs profile [709]. Following
this analysis, the authors in [358] used data from the Milky
way and three other galaxies to fit the parameters α and n
finding different sets of constants in such a way to describe
the motion of the galaxy rotation curves in a satisfactory way
without introducing any dark matter component. The main
constraint that they found is that one requires n to be small

to fit the observations. Figure 30 shows the best-fit model for
the α parameter for the rotation profile for the Milky way for
a power-law f(T) =−T−αTn where one can notice that the
profile fits the data with a good accuracy.

As a final remark, let us again mention that the authors used
a tetrad with T 6= 0 for Minkowski, which may be problematic
foundationally. If one uses the same tetrad in equation (5.147)
with ξ= 1, one avoids this issue but there are no perturbations
around Minkowski for f (T) for this tetrad. Thus, to analyze
the behavior of galaxy rotation curves in the case ξ= 1, one
would need to use the perturbed solutions around Schwarz-
schild (see equations (9.9a) and (9.9b)) and assume M� 1
which is a valid approximation in this astrophysical scenario.

9.6. Overview and future work

As was stressed through this entire section, there are many
unsolved and unexplored problems in modified teleparallel
theories of gravity in the context of astrophysics. Some import-
ant open problems are listed below:

(a) Exact or numerical black hole solutions—As was poin-
ted out in section 9.4.2, for the real tetrad, there are only
perturbed solutions or numerical solutions, but there are no
analytical exact solutions describing black holes. Further-
more, numerical black holes solutions have not been ana-
lyzed in detail yet for theories that differ from f (T) grav-
ity. It would be interesting to analyze the solutions for the
complex tetrad in more depth.

(b) Quasi-normal modes—One interesting characteristic of
the waveform of a merger of black holes is its final stage
which is known as its ringdown phase. In this phase, the
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system is radiating GW in the form of quasi-normal radi-
ation. A recent paper [710] studied the case of TEGR for
Schwarzschild which can help as a tool to extend it for
modified TG.

(c) Time-dependent spherically symmetric good tetrad-
spin connection pair—Thus far, it has been quite hard to
perform a similar approach as in section 5.12 for a generic
time-dependent spherically symmetric spacetime beyond
TEGR. This result could be very important for describing
collapse of stars or if there is a way of finding theories bey-
ond GR satisfying the Birkhoff’s theorem. Furthermore,
one could also study time-dependent spacetimes such as
cosmological wormholes.

(d) Most general axially symmetric good tetrad-spin con-
nection pair—As discussed in section 5.12.3, only some
specific caseswere derived. For example, a Taub-NUT-like
form or a slowly rotating Kerr case has been found but,
what is missing is a general axially symmetric good tetrad
spin-connection pair which can include non-slowly rotat-
ing Kerr as a special case. If one has this, one could study
axial symmetry in a generic way for any astrophysical
system.

(e) Galaxy rotation curves—As discussed in the previous
section, in [358], the authors investigated how galactic
rotation curves are described in f (T) gravity. They con-
sidered two different characteristics of galaxies: disk
and the bulge. It would be interesting to re-analyze
this problem by using other perturbed solutions (see
equations (9.9a) and (9.9b)) for f(T,B) gravity (and other
theories or models) and then use Milky way data to fit the
model with the observations which will add to the con-
sistency of theory. More ambitiously, it would be ideal to
constrain these models again a number of galactic rotation
curve data sets.

(f) White dwarfs and neutron stars—As discussed in
section 9.4.1, there are some studies regarding compact
stars in TG but the majority of them are only focused
on solving the TOV equations numerically to then find
the mass-radius plot. There are no studies regarding other
aspects of compact stars such as their early evolution that
can gives us information about other characteristics of
stars as their effective temperature, luminosity, radiative
core or how stars appear in the Hayashi tracks [684]. In
addition, all the works in TG have been only focused on
regular stars and then, more studies regarding neutron stars
or white dwarfs are needed. Further, the complex tetrad
have not been used to study such configurations.

(g) Exotic objects and GW echos—As we discussed in
section 9.4.3, there are some studies about wormholes in
TG. Nevertheless, there are no studies about other exotic
objects such as quark stars, gravastars or boson stars. Fur-
ther, the GW echos of exotic objects are important obser-
vational features (see [711]) that have not been computed
in TG.

(h) Black hole singularities—As discussed in section 9.4.2,
the Raychaudhuri’s equation in TG might have a different
behavior as the standard one. This might lead to a different

interpretation of singularities in TG. Further, coordinate-
like singularities are usually understood by constructing
several scalars such as the Kretschmann scalars. In TG,
one would need to construct other scalars to understand
these types of singularities.

(i) 3+ 1 numerical simulations for GW observations—
The 3+ 1 split formalism helps us to write down the Ein-
stein’s field equations in a particular form (Gauss-like
equations) which is useful for numerical studies [712].
We know that TEGR has the same field equations as
GR. However, as we have seen in section 4.1.1, they are
expressed in terms of teleparallel quantities. What can
happen if one uses the 3+ 1 formalism for the TEGR
field equations? could it be that this formalism leads to
an easier numerical description of the Einstein’s field
equations? A first attempt toward understanding these
questions were addressed in [713] and further followups
studied are needed.

(j) Weak lensing for galaxy distribution—There are no
studies performing analyzes of weak lensing for galaxy
distributions. This might gives us some hints toward
understanding dark matter in a more satisfactory way and
to understand better the physics of galaxies.

The above open problems are just some possible examples that
have not been addressed in the literature. To fully describe
astrophysical objects in TG beyond TEGR, one would need
to start solving some of them.

10. Observational and precision cosmology in TG

This section explored the pivotal regime of observational
and precision cosmology of TG and the various models that
emerge from the earlier analyses. Here, we review the pleth-
ora of works in the literature on the topic, and explain how
future works may open new possibilities for the most prom-
ising teleparallel models being explored in this Review.

More than using data to constrain the cosmological para-
meters inherent in these theories, when we discuss about
precision cosmology, more than a qualitative (and statistics)
endeavor, this is about a deeper understanding of the phys-
ics behind these theories of gravity (i.e. we want to go toward
the inverse cosmology problem, that is to say, we want to
know if the observations at hand can give us information about
the nature of gravity). The ΛCDM model has been extremely
successful in meeting most of the observational data up to
now. Assuming only GR and the well-understood linear per-
turbations about a homogeneous and isotropic background
cosmological model, with just six parameters, this model
accounts for all cosmological observations on a wide range
of scales. To achieve this we require the cosmological con-
stant Λ, a constant usually associated with the vacuum energy,
and dark matter, yet-undetected particle (or particles) which
are predicted [714], for example, by supersymmetric exten-
sions of the standard model of particle physics [715]. While
the theoretical backbone for both the cosmological constant
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and dark matter may be justly questioned, the ΛCDM model
has, hard-headed, maintained its hegemony; this is due to its
performance in reproducing the observational data along with
its numerical simplicity.

However, since the first release of the CMB observations by
the Planck Collaboration in 2013 in [716], the determination
of the Hubble constant H0 based on the concordance model
of cosmology started to be in tension with the cosmology-
independent determination of this constant, e.g. via local
Supernovae Ia (SN) calibrated by the Hubble Space telescope
in 2011 in [717]. The initial tension of 2.4σ has been exacer-
bated over the years. On the one hand, systematic uncertainties
have become better understood and CMB data has accumu-
lated. On the other hand, the survey of local SN has increased
and the anchors used to calibrate them significantly improved.
The current status is that the two inferences of the Hubble–
Lemâıtre constant, one by the Planck Collaboration in 2018
[372] assuming theΛCDMmodel, and the other by the SH0ES
Collaboration in 2019 [718], are in tension at the 4.4σ level.
Furthermore, using complementary sources of Cepheid calib-
ration [719] we now reach a 4.2σ difference with the predic-
tion from Planck and recently, a 5σ using observations from
HST of Cepheids [720].

Many articles have been written trying to understand the
implications of this tension: so far, it is the most severe
problem confronting the standard model. The effect of local
structure—the so-called cosmic variance on H0—has been
thoroughly analyzed, along with thorough inspections of the
error budget. Furthermore, physics beyond the concordance
model has been investigated, with the aim that this tension
could reveal alternatives to the highly tuned cosmological con-
stant and the yet-undetected dark matter. So far, there is no
well-posed panorama beyond the standard model that could
solve this issue [721]. Moreover, the ΛCDM model success-
fully describes a range of observations from several epochs of
the Universe: from primordial nucleosynthesis to the acceler-
ating late-time cosmic expansion. As the standard cosmolo-
gical parameters of this model are being inferred with increas-
ing precision, there is no guarantee that the same model will
fit more precise surveys from different cosmic epochs.

The current cosmological field set on the ΛCDM model is
supported by observational evidence as a description of the
cosmic evolution on all cosmological scales [2, 22], which is
achieved by considering matter, the so-called dark matter, bey-
ond the standard model of particle physics. Modeling itself
this way, dark matter plays an important role in galactic struc-
tures [722, 723] and is manifest as CDM particle(s), while
DE in its simplest description is denoted by the cosmological
constant [316, 724] capable of producing the late-time cosmic
accelerated expansion [19, 20]. However, despite great efforts,
some consistency problems persist with this constant [21], as
well as a strong lack of direct observations of dark matter
particle(s) [725, 726].

Furthermore, this standard cosmological model was
designed to describe the Hubble flow, but the so-called H0

tension problem now casts a shadow over this—given that the

observational discrepancy between cosmology-independent
measurements [718, 727–734] and predicted ones [372, 376,
735, 736] from the early-time Universe (assuming the ΛCDM
model) seems to be growing. While measurements based on,
for example, the tip of the red giant branch [737] (TRGB,
Carnegie–Chicago Hubble Program) or strong lensing meas-
urements TDCOSMO+SLACS [738] have a relatively small
mean value of H0, their much larger error bars mean that they
are currently unable to distinguish between the two faces of
the tension. This issue could be resolved by future observa-
tions which involve new measuring techniques such as the
use of GW sources [739, 740] observed with ground-based
detectors (such as the Einstein Telescope [741]) or by the
LISA mission [742, 743].

Let us consider first two questions for the early-time Uni-
verse probes: (i) what kind of smoking-gun signature can be
used to identify unknown systematic errors that could affect
the predictions forH0 for the late Universe that is independent
of the model of cosmology? (ii) does there exist any indic-
ation of tension in the early-time data that could reveal sys-
tematic errors of the standard six-parameter ΛCDM model
that is exhibited purely in the early Universe? Aside from the
well known small difference between the inference ofH0 from
low and high angular resolution Planck data, all of the early-
time data seem to be consistently predicting a low value of
H0. Experiments like ACT and SPT, which use CMB data to
calibrate the sound horizon and baryonic acoustic oscillations
(BAO), are in agreement with Planck. These methods lead
to low H0 values of ∼67–68.5 km s−1 Mpc−1. Another inde-
pendent, consistent value of H0 can also be obtained by using
light element abundances to calibrate the sound horizon, BAOs
and lower redshift probes. A compilation of the H0 estimates
up to 2019 is detailed in figure 31.

Our second question concerns anomalies with signific-
ant tension among high-redshift probes [744]. Some of them
appear as a departure from unity, at ∼2.8σ, of the inferred
parameter Alens, a phenomenological parameter firstly intro-
duced in [745], which is the amplitude of the gravitational
lensing in the angular power spectra and can be used to res-
cale the lensing effect in the CMB 2-point correlation func-
tion. If this deviation is confirmed, it will be clear evidence
that something is not well understood in the relation between
CMB anisotropies and the growth of structure.

Up to now, we also have other 3σ tensions: (i) the ten-
sion between the σ8-Ωm0 contours inferred from the CMB
in a ΛCDM scenario and those inferred by cosmic shear
data [746–751]; (ii) the tension between the cosmological
parameters from the BAO signal in galaxies at z< 1 and
those of Lyα at higher redshift [752] and (iii) time deriv-
ative of the cosmological parameters with the CMB fluctu-
ation scale used to determine it [753]. A compilation of the
S8 := σ8

√
Ωm0/0.3, discussed in section 7.7 and estimates up

to 2020 is detailed in figure 32. The statistical errors of the
above methods are expected to decrease in the next few years,
and will reveal whether the tension is a statistical accident that
we can expect when considering of order dozens of nuisance
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Figure 31. Hubble Constant estimates according to the publication year. The CMB-based, early Universe mean value for H0 is
67 km sMpc−1. The Cepheid-based, late Universe mean value is 74 km sMpc−1. A new alternative to Cepheids, i.e red giant stars that flare
with a known intrinsic brightness, has only complicated the tension. They indicate a H0 mean value of about 70 km sMpc−1, a value that is
midway between the other two, but in agreement with both the measurements within 2σ. Other measurements, e.g. ACTPol 2020 (with
H0 = 67.9± 1.5 km sMpc−1) [376], ACT DR4 + Planck 2018 (with H0 = 67.53± 0.56 km sMpc−1) [760], HST photometry + Gaia
EDR3 (with H0 = 73.2± 1.3 km sMpc−1) [719] have also been considered. Reproduced from [761]. CC BY 4.0.

Figure 32. S8 estimates according to the publication year from four different sources: WL, x-ray clusters, Sunyaev-Zel’dovich (SZ) clusters
and CMB surveys. The error bars denote 1σ CL and the year of publication for each analysis is denoted below the estimate, respectively:
[372, 376, 762–772]. The orange bars denote constraints from DES Y1 2018 with Planck, BAO from SDSS, 6dF, and BOSS and JLA SNIa
up to 2σ [749]. The dashed lines denote the 2σ limit of KiDS-1000 [765]. Notice that for the case S8 = 0.759+0.024

−0.021 from KiDS-1000
according to [748], while the quoted number in reference [765] is a combination with BOSS.

parameters, or whether it is hinting at yet to be discovered
new physics. For example, the latest DES-y3 release [750, 754,
755] is in agreement with the Planck ΛCDM predictions, but
it is showing an inconsistency of the amplitudes of the galaxy
clustering with the galaxy–galaxy lensing. Even so, many have
questioned if a solution to the late versus early-times discrep-
ancy could be more credible if it also relaxed one or more of
these additional tensions [744, 756–759].

10.1. State-of-the-art

Over the last two years, TG has started to take advantage of
its analytical and physical description to gravity in order to
provide a solution to the H0 and S8 tension problems (see
[721, 757, 758, 773, 774] for an overview of the tensions)
and describe the observed and well-tested late-time dynam-
ics with current cosmological data [775, 776]. As we have
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discussed, in these kind of theories the curvature description is
torsion-based one by the replacement of the Levi-Civita con-
nection with a curvatureless connection labeled as the tele-
parallel connection [777]. It turns out, as discussed in detail
in section 2.3, at the level of the action GR and TEGR dif-
fer just by a boundary term which renders their field equations
identical. There are several ways tomodify the TEGRproposal
(see section 5 for a review of them). With this methodology,
we can generalize the Lagrangian to arbitrary functions of the
torsion scalar in order to produce f (T) gravity [38, 39, 568],

which follows the same idea as f(
◦
R) gravity. However, unlike

f(
◦
R) theory, f (T) gravity produces generally second-order field

equations, which makes them more easily open to test with
observations.

Furthermore, given the importance of the boundary term
in relating GR and TEGR, f(T,B) gravity has also been
well-studied in [157, 263, 446] as a possible extension to
TEGR. This theory has been studied throughout this Review
to describe FLRW cosmology at the background level and at
the perturbation level (see sections 6.2 and 7).

Moreover, applying consistency tests with current cosmo-
logical data allows one to identify a viable gravity theory and
deal at the same time with systematic effects in the data or
any problems with the underlying cosmological model. Some
data samples are sensitive to the theory and the dynamics of the
Universe and some other samples are sensitive to the growth of
large-scale structure [778], e.g. in the early-time route of the
distance ladder, BBN allows a technique to measure precise
abundances of hydrogen, helium, lithium and deuterium, and
hence to test the cosmological model through being extremely
sensitive at early-times [779]. In these cases, these two sets of
observations must be consistent with one another in order to
solve the cosmological tension inside a viable theory of grav-
ity. At late-times, any deviations between different theories
can be measured through an effective EoS (mimicking a DE
component) close to the standardΛCDMEoS value (w=−1).
Although the ΛCDM model is very successful in explaining
almost all observations [372, 376, 762–766, 768–770, 772],
it has some theoretical issues within its backbone structure.
These include the mysterious physical origin of the two largest
contributions to the energy content of the late-time Universe:
CDMand the cosmological constant, together with the too var-
ied forms of inflation in the literature and their as yet unob-
served nature.

Furthermore, through their mapping of the distance-
redshift relation up to a redshift of z∼ 1, SNIa measurements
have been a sensitive probe of the late-time cosmic acceler-
ation. Another very powerful probe are GW, e.g. those emit-
ted from merging binary black holes and neutron stars, since
the propagation of gravitons and photons can change at a fun-
damental level [780]. To achieve this, GW observations are
sometimes coupled with a multimessenger signal through an
electromagentic (EM) counterpart. These kind of sources are
treated as standard sirens (gravitational analogues of standard
candles such as SN) in the sense that the GWs emitted by a
compact binary contains information about theGW luminosity
of the binary system, and thus its luminosity distance [781]. On

the other hand, massive binary black holes as standard sirens
have the disadvantage that the redshift is difficult to measure
without an independently EM signal of the event. However,
recently some progress has been made in determining the red-
shift from GW observations alone [782]. If we identify the
host galaxy then it should be possible to determine with joint
events whether long-wavelength GW and short-wavelength
EM radiation undergo the same number of spacetime dimen-
sions [783]. In section 8 we gave an overview of GW in tele-
parallel theories. In this setting, another interesting feature of
GW astronomy is its potential in probing higher dimensional
theories where spacetime leaks into the extra dimensions, lead-
ing to the effect that cosmologically distant sources appear
dimmer than they truly are, resulting in a systematic error in
the inferred distance to the GW source [784]. Also, there have
been studies considering the propagation from the inspiraling
of compact binary systems within the context of TG theories
in [596, 785], meanwhile it is important to mention that these
studies are in the context of a scenario where the GR cosmolo-
gical model is considered as an effective fluid in the standard
perturbations equations. These studies lead open the idea of
explaining these effects using non-standard extensions of GR,
as it is in TG theories.

Moreover, unless higher precision probes of the Hubble
flow H0 and the growth of structure S8 will be available
without tension issues, these theories cannot be discriminated.
The issue about the theoretical playground suggests that an
approach to the problem of cosmic acceleration should rely on
as fewmodel-dependent quantities as possible. Since the num-
ber of viable gravitational theories at hand is large, on both
astrophysical and cosmological scales, as well as in strong-
gravity regimes, some of them could be good tools to compare
theoretical predictions with survey observations, extracted
from the CMB, cosmological expansion, large-scale struc-
tures, astrophysical configurations and GW signals. Moreover,
these comparisons suffer from the so-called degeneracy prob-
lem, which means that several gravitational theories are cap-
able of describing certain observationswith the same statistical
confidence. A standard way of relaxing this issue consists of
combining several observational measurements to reduce the
phase space of free parameters. The search for viable priors
may result in numerical issues, where a possible solution could
be to consider a cosmography approach rather than determ-
ining model-specific solutions from Friedmann equations and
confronting them with observations. In this approach, cosmo-
graphic solutions are expressed, in the standard way, as deriv-
atives of the scale factor, introducing the so-called cosmo-
graphic parameters which makes possible to fit the observa-
tions to the distance-redshift relation without prior theoretical
assumptions.

In the standard approach to cosmography, we start with the
FLRW metric and extend its parameters beyond the value of
H0, which evokes, at least, a fifth order Taylor expansion of the
a(t) in order to obtain a reliable approximation of the distance-
redshift relation [786–789]. This is neededwhen one is dealing
with certain theories containing higher-order derivatives in the
Hubble parameter.
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A similar issue was tackled in [790], where the cosmo-
graphic equations can be written down in an inverted version
to study the dynamics through kinematics. In this approach, a
homogeneous SN observational sample was used to perform
the statistical analysis of specific DE parameterizations, to dir-
ectly obtain the kinematics of the cosmographic parameters.
This approach relies on the fact that it is possible to set con-
straints over the cosmographic parameter values using statist-
ical analyzes of the dynamics imposed in DE. In the literature,
there are many studies that attempt to use these SN observa-
tional samples to constrain the cosmography of models bey-
ond ΛCDM. However, due to the low redshift nature of the
data sets in question, it may be misleading to consider such
cases since it is unlikely to reveal any new dynamics without
higher corrective terms.

A study in that direction was developed in [791], where an
improved version of the standard cosmography approach was
shown to be a viable solution to these issues. However, the
approach is plagued with several shortcomings which limit its
applicability in certain circumstances, and even more in exten-
ded theories of gravity. The main problems concern the inab-
ility of the proposed polynomials to be constrained with the
currently available cosmological data so as to fix the kinematic
expansion of the Universe, especially at early-times. Also, the
arbitrary order of truncation of polynomials might comprom-
ise the predictive power of cosmography. The impossibility
to measure them separately but only their sum, leads to dif-
ferent results depending on the probability distribution associ-
ated with each coefficient. To relax these issues, in [790, 792]
a mathematical expression to derive the EoS for a specific
dynamical model was proposed. This expression allows us to
obtain the cosmographic parameters without directly assum-
ing a cosmography-dependent polynomial series over them
and avoid dealing with the aforementioned problems.

To apply these ideas to extended theories of gravity, a first
step was performed in [793], where a novel computational tool
based on machine learning for SN, called Recurrent-Bayesian
Neural Networks, was proposed to deal with different kinds
of modified gravity models. A deep learning architecture can
develop a trained homogeneous SN sample, where the result-
ing dynamics of DE could lead to the necessity of another cos-
mological model different from ΛCDM. In this scenario, the
inverse cosmography approach can fit statistically very well
since it is not necessary to consider higher-order corrections
of the cosmography series to obtain a convergent best-fit in
comparison to the standard DE EoS.

Over the last few years an avalanche of observations and
numerical techniques have been bringing new ways to test
extended theories of gravity [794–796]. Our purpose in this
section is to set the optimal conditions and recipes to treat them
at the same level as the cosmological viable models derived
from GR.

10.2. Viability of teleparallel cosmology

In order to handle the analyses related to specific TG models
we require a strict recipe of the tools, theoretical and numer-
ical, to study the cosmology derived from these models. To

achieve this goal in the following sections (including inform-
ation on standard statistical cosmology in the supplementary
annexes (supplementary 3 and 4), we present several discus-
sions on how to adapt TG models at numerical level and study
their cosmological constraints. We can enlist these tools as
follows:

• Numerical codes and gravity model algorithms—In the
supplementary annexes (supplementary 3) we present three
general algorithms to explain in detail how to implement
some important TG models using the standard numerical
codes rewritten to analyze background and perturbative cos-
mology. Furthermore, we describe how to proceed with the
Boltzmann code in order to adapt TG models.

• Surveys and cosmological data—In the supplementary
annexes (supplementary 4) we describe the current obser-
vational compilations available in the literature and how
to handle the statistical analyses using χ2 methods and
Bayesian inference. We will use these compilations in the
description and computation of the best-fit cosmological
parameters for several TG scenarios.

• Cosmological compendium of Teleparallel scenarios—
Using the information described in the supplementary
annexes (supplementary 3–4) we are ready to present in
section 10.3 the cosmologically viable TG scenarios in order
to study the current cosmic issues as described in the previ-
ous section. In table 21 we present the most important exten-
ded theories where observational cosmology was studied,
along with their references. As an extension, in tables 22
and 23 we describe in detail the motivation, viability, matur-
ity and late/early tests related to each theory under consid-
eration.

• Precision cosmology for f (T) and f(T,B) gravity theor-
ies—Using the viable models described in the compendium,
we present complete analyses for both theories using the
respective modified version of Boltzmann codes and late-
time data in section 10.3.1. We further analyze the possibil-
ity of relaxing the H0 tension at the background level.

• Cosmography for TG—This approach can be considered
as a possible model-independent approach to tackle exten-
sions and modifications of GR in view of the current
observational constraints, while breaking the degeneracy
among models. In section 10.3.4 we will revise the pro-
posals already available in the literature and confront them
with precision cosmology tools, to present an update of the
results.

• Beyond data-driven analysis for TG—Reconstruction
techniques that are model independent have since become
more robust and better understood in terms of cosmological
data sets. These nonparametric approaches, as they are com-
monly called in the literature, allow us to extract from the
data the best cosmological model. Using this nonparamet-
ric view, and as a perspective for future TG scenarios ana-
lysis, in section 10.4 we describe two current approaches
on that path: (i) Reconstruction of data using Gaussian pro-
cesses (GP) that can offer an avenue by which gravitational
theories can be reconstructed, guided by observational data
without imposing stringent physical model assumptions. In
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Table 21. Compilation of cosmological models from TG theories. The cosmological models labeled at the second column correspond to the
ones discussed in the references indicated at the first column. All these models involve statistical tests and constraining cosmological
parameters analyses with observations. The type of observables and cosmological behaviors are detailed specifically in tables 22 and 23.

Theory Cosmological models constrained by observations

f (T) [359, 401, 422, 489, 803–811] (1) Exponential Law: −T+ 1− e−T

(2) Power Law Tα

(3) Linear-Power: −T+β(−T)n
(4) Logarithmic: −T+ γ log(δT)
(5) Hybrid: −T+ eϵT(−T)α

(6) Linder: 1− e
√
T/ζ

(7) Trigonometric: −T+(−T)n tanh
(
T0
T

)
(8) Model independent: ηT+(T− T0)cosh(T− T0)+ sinh(T− T0)

(9) Specific w-EoS (Hypergeometric):α×
[
β 2F1

(
1
2 ,−

−T
6

)
+ γ 2F1

(
1
2 ,−

−T
6

)]
f(T,B) [263, 627, 812] (1) Power Law: −T+αBn+β(−T)m

(2) Mixed Power Law: −T+αBn(−T)m
(3) Logarithmic: −T+α logB
(4) Taylor polynomial: f(0)+ fT(0)T+ fB(0)B+ fTB(0)TB+ fTT(0)T 2 + fBB(0)B2 +O(TB,T 2,B2)

f(T,ϕ) [38, 536, 813–815] Mixed Power Law: −T−G(T)G(ϕ)−V(ϕ), with G(T) = Ts, F(ϕ) = ξϕc and V(ϕ) = λϕd

f(T,Θ) [45, 323] (1) Power Law: −T+α(−T)nΘ+Λ

(2) Power Law (second order): −T+αΘ+ γT 2

f(T,(
◦
∇T)2,

◦
□T) [286] Model I: T+ α1(

◦
∇T) 2

T 2 +α2e
δ(

◦
∇T) 2

T 4

Model 2: T+ β1
◦
□T
T + β2(

◦
□T) 2

T3 +β3e
σ
◦
□T
T3

Tf(
◦
□−1T,

◦
□−1B) [335, 495] Model I: f=−1−

◦
□−1T

Model II: f=−1−
◦
□−1T+

◦
□−1B

modified TG, this method has been applied to f (T) models
using compilations of galaxy ages and observations of BAO
calibrated with Hubble data. (ii) Machine learning tools for
TG through deep learning techniques, which is a field of
machine learning that uses several layers of non-linear pro-
cessing neurons to obtain and transform at each success-
ive layer an output from the previous layer. A new deep
learning method to classify f (T) models is presented in this
section.

10.3. Compendium of teleparallel cosmologies

In order to confront different cosmological models with obser-
vations, and in view of the diversity of cosmological models
to be confronted with observations, in this section we present
a theoretical and observational state-of-art of the current TG
scenarios.

An overview of different cosmological models considered
in the literature for different TG theories is presented in
table 21. This includes a compilation of constrained cosmolo-
gical models discussed in the references indicated at the first
column. The second column denotes the cosmological mod-
els already constrained by observations in the references men-
tioned. All these studies involve statistical tests on the family
of models labeled and analytically detailed there. Notice that
these equations were rewritten in comparison to the expres-
sions in the reconstruction tables in the supplementary annexes
(supplementary 1), in order to reduce the free parameter phase-
space to be constrained. This is to ensure the convergence

of the statistical test over the cosmological parameters of
relevance and related directly with observable, e.g. the modu-
lus distance luminosity for supernovae.

Together with the analysis of the cosmological models
described, table 22 is detailed the following 2 different char-
acteristics for each theory:

• Cosmological behaviors—These involve theories that can
reproduce scenarios as early/late accelerated expansion, the
dark sector and phantom/quintessence.

• Maturity—Models that are already constrained by obser-
vations. It is indicated also which of them are not analyzed
with observations yet.

All the models described in each theory are cosmological
viable since they can reproduce several epoch of the Universe:
from non-accelerating, matter dominated and late-time expan-
sion era.

To complete the description of both tables 21 and 22, in
table 23 we included the observations used to constraint the
models described. Notice that the analyses were made with
late-time samples and early-time samples. For this we include
the following catalogues described in detail in the supplement-
ary annexes (supplementary 4):

• SNeIa—Pantheon compilation. Also, JLA 2015 from [797]
and Union 2 (2010) compilation from [798].

• BAO—Sample calibrated as inverse distance ladder. Also,
it includes: SDSS from [799], BOSS from [800], the 2dF
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Table 22. A table of cosmological behavior, which is a base for further observational constraints, and maturity, that indicates whether the
particular theory can describe both early- and late-time behaviors in principle for the models reported in table 21. To that end, we list:
(i) Early/Late accel. means that the theory models can explain early inflation and late-time accelerated expansion; (ii) Dark sector refers to
the ability of this theory to explain both the cosmological dark matter and dark energy sector in terms of an effective dark energy;
(iii) Phantom/Quintessence indicates whether the models can produce EoS values above and below −1; (iv) Perturbations (scalar/tensor)
means that it produces reasonable scalar perturbations and tensor perturbations that predict GW propagation speeds equal or very close to
that of light; (v/vi) Early/Late constraints indicates whether these models have been constrained against late-time data sets (e.g. SN, BAO or
H(z)) and early-time data sets (e.g. CMB, BBN, BAO or WL) (see table 23 for further details).

Cosmological behaviors Maturity

Theories
Early/

Late accel. Dark sector Phantom/Quintessence Perturbations (scalar/tensor) Early constraints Late constraints

f (T) 3 3 3 3 3 3

f(T,B) 3 3 3 3 3 3

f(T,ϕ) 3 3 3 3 3 3

f(T,Θ) 3 3 3 3 3 3

f(T,
◦
∇T,

◦
□T) 3 8 3 8 8 8

Tf(
◦
□−1T) 3 8 3 8 8 8

Table 23. A table of early- and late-time constraints in the literature for the models reported in table 21. Here, NAY means not analyzed yet
in the literature which is different to the indication provided by the theoretical work highlighted in table 22. The asterisk indicates that the
theories are constrained using CMB at background level which refers to whether the corrected Boltzmann equations have been used to
analyze observational data in the literature.

Observables

Late-time Early-time

Theories SN BAO H(z) CMB BBN BAO WL

f (T) 3 [Pantheon] 3 3 [CC-2018] 3∗ 3 3 3

f(T,B) 3 [Pantheon] 3 3 [CC-2018] 3∗ NAY NAY NAY
f(T,ϕ) 3 [Union 2] 3 NAY 3∗ NAY NAY NAY
f(T,Θ) NAY NAY NAY NAY NAY NAY NAY

f(T,
◦
∇T,

◦
□T) NAY NAY NAY NAY NAY NAY NAY

Tf(
◦
□−1T) 3 [JLA] 3 3 [CC-2016] NAY NAY NAY NAY

Galaxy Redshift Survey from [588] and BOSS, CMASS,
Lyman-α [801].

• H(z)-CC—This includes the samples described in the sup-
plementary annexes (supplementary 4) and also other one
from [802].

• CMB—From Planck legacy 2018.
• WL—Optical and infrarred samples from KiDS 450+Vik-

ing (see figure 32).

Also we noted which of the theories are not tested with
these observations yet. While there are reported constraints
of these theories using early-time measurements, it is relev-
ant to mention that all of them are performed by assuming
the cosmological model derived from TG as an effective dark
energy fluid. Therefore, for future precision cosmology ana-
lyses of them it should be consider also the modified per-
turbed version of Boltzmann in the supplementary annexes
(supplementary 3).

One important remark to note here is that the results
reviewed in table 23 depend on the cosmological perturba-
tions of the TG theory. As it was pointed out in section 7,
there is a strong coupling problem in f (T) gravity that makes
the conclusions regarding perturbations unclear or incomplete.

Therefore, one needs to take these results with caution. How-
ever, for more general TG theories, this issue has not been
reported or studied in the literature since the Hamiltonian ana-
lysis has not been performed for them.

10.3.1. Precision cosmology for teleparallel scenarios.
There are numerous alternative models to ΛCDM, as there
are numerous problems with which they tend to struggle
with. Some models are plagued by theoretical instabilities
and others require at least some degree of fine-tuning of the
model parameters in order to meet observational constraints.
However, numerical analyses have their own limitations in
practice. A major drawback is their lack of efficiency, as is
evident in the effort poured into making existing numerical
codes faster to cope with the ever increasing demand for num-
bers of independent realizations, volume and resolution. This
is performed in order to match the characteristics of current
and future observational surveys. Unlike the standard cosmo-
logical model, which is unique and is widely accepted as a
concordance model, there are many modified theories, which
makes it more difficult to allocate much effort to forecasting
for individual models or performing a continuous parameter
search. Furthermore, simulations are often used as a black
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box, making the underlying physics untreatable, which does
not help in developing reliable theoretical templates used in
model constraints. Although a simulation can predict structure
formation at very small scales, this information is not entirely
trustworthy due to the uncertainties in modeling baryonic
physics. In such cases we need accurate model predictions
to further analyze the non-linear regime and when the phys-
ics governing the structure formation needs to considered.
However, if approximation methods can be developed for
the gravity models, and demonstrated to be valid in certain
regimes, then it would be realistic to use observations in those
regimes to determine model constraints muchmore efficiently.
On this path, in this Review we will devoted to possible TG
models that can offers a possibility to solve (or alleviate) the
cosmological problems described.

To proceed with the implementation of a specific TGmodel
in the numerical cosmological codes, we start by describing
the required cosmological evolution equations. In f (T) and
f(T,B) theories it was found in section 6 that the EoS can be
our starting equation to employ in constriction analyses. These
EoS equations for each theory are linked to a specific form of
f (T) and f(T,B), whose can be related to specific cosmological
models in order to investigate the effects of a late-time cosmic
accelerated expansion without the influence of an exotic DE
or extra fields.

With the background evolution and EoS equations, we can
proceed with their implementation in the numerical code for
each specific theory. The architecture structures to achieve this
task are detailed in the supplementary annexes (supplement-
ary 3), where for the background analysis we need to modify
a Markov Chain Monte Carlo (MCMC) code and the inform-
ation detailed in the supplementary annexes (supplementary
3–5).

10.3.2. Precision cosmology for f(T). Observing the form of
the first Friedmann equations (6.7a), we deduce that in f (T)
cosmology we acquire an effective DE sector of gravitational
origin. In particular, we can define the effective DE density
as [45, 817]

ρDE ≡
3
κ2

[
− f

6
+
TFT
3

]
. (10.1)

Now, we are ready to analyze a set of viable f (T) cosmolo-
gical models. According to tables 22 and 23, there are several
f (T) models proposed to explain the present accelerating cos-
mic expansion. In this Review, we consider specific forms of
f (T) and confront them with BAO, CMB, SNeIa, and Hubble
expansion data by using the publicly available MCMC code
CosmoMC32 [818, 819] which is interfaced with the Boltzmann
integrator CAMB33 [820]. For the analyses considered in this
section, the Planck 2015 CMB distance priors [821] are
adopted, while the H(z) data consists of 38 data points from

32 Cosmological montecarlo documentation (available at:
https://cosmologist.info/cosmomc/)
33 Code for anisotropies in the microwave background documentation (avail-
able at: https://camb.info)

[822] and the SNeIa data corresponds to the SNLS-SDSS
JLA [799]. This information is managed using the concepts
described in the supplementary annexes (supplementary 4 and
5). The results described in the following sections are based
on [816], were an adopted H0 prior corresponds to HR16

0 =
73.24± 1.74kms−1Mpc−1 [823]. It is important to mention
that such results, tighter to a prior, could have a larger sig-
nificance which can derive in a worse constrain on the para-
meters in the f (T) models. However, we should also point out
that the methodology described here will allow a better con-
trol on the flat prior in future analysis on this matter. On the
issue of priors in the MCMC analysis, there are strong con-
cerns about the statistical coherence of such analyses since
they may put undue bias toward such values. This is especially
poignant when putting priors on the Hubble constant. Putting
prior values on in these analysis may spoil the posterior out-
puts and thus the estimates on the model parameters [824]. On
the other hand, there have been numerous studies in the literat-
ure that assume a prior on the Hubble constant. These analyses
may prove useful in understanding viable parameter values.
However, caution should be exercised when interpreting these
studies.

In the standard f (T) literature we deal with the following
models:

(a) Power law model. We consider the power law model [273]
( f1(T)) as the first f (T) model, specified by

f1(T) =−T+α1 (−T)b, (10.2)

where α1 and b are constant model parameters, such

that α1 =
(
6H2

0

)1−b Ωm0−1
2b−1 (this is found by evaluating

the Friedmann equation at current times). We depict the
inferred confidence regions for the power law model in
figure 33 and the corresponding model parameter con-
straints in table 24. It is clear that the ΛCDM model is
within the 1σ confidence level (CL) when the CMB data
sets are not considered, while the f1(T) model becomes
consistent with the concordance model of cosmology at
2σ when including the CMB data.

(b) Square–root–exponential model. The second f (T) model
(labeled as ( f2(T))) is the square–root–exponential model
given by [39]

f2(T) =−T+α2T0

(
1− e−p

√
T/T0

)
, (10.3)

with model parametersα2 and p, whileα2 =− 1−Ωm0
1−(1+p)e−p .

From the left panel of figure 34 as well ad from the inferred
model parameter constraints of table 25, the Base data set
was not able to constrain the model parameter p. However,
the inclusion of the other data sets led to a constraint on p,
with the tightest constraint being derived when consider-
ing the CMB data set.

(c) Exponential model. We now consider the exponential

model [39] ( f3(T)), which is also motivated by f(
◦
R) grav-

ity [825], and is specified by

f3(T) =−T+α3T0

(
1− e−qT/T0

)
, (10.4)
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Figure 33. Left: CL plots of H0 and Ωm0 in the ΛCDM. Base denotes the combination of the JLA SNeIa and the local value of the Hubble
constant. Right: Confidence regions of H0, Ωm0 and p≡ b in the f1(T) model. Base denotes the combination of the JLA SNeIa and the local
value of the Hubble constant. Reproduced from [816]. © IOP Publishing Ltd. 2018. The American Astronomical Society.

Table 24. The mean value and the corresponding 68% limits [816]
of the model parameters of the f1(T) model. Base refers to the JLA
SNeIa data and H0 prior.

Data set H0 (km sMpc−1) Ωm0 b

Base 73.2± 1.8 0.284+0.100
−0.077 −0.02+0.64

−0.37

Base+BAO 73.3± 1.7 0.269+0.040
−0.030 0.13+0.30

−0.24

Base+BAO+H(z) 70.0± 1.1 0.255+0.020
−0.016 0.10+0.19

−0.17

Base+BAO+CMB 69.4± 0.9 0.298± 0.007 −0.11+0.10
−0.08

Base+BAO+
H(z)+CMB

69.4± 0.8 0.298± 0.007 −0.10+0.09
−0.07

with α3 =
1−Ωm0

−1+(1+2q)e−q , and q is the remaining model
parameter. Similar to the previously considered model.
The derived model parameter constraints are reported in
table 26, where the model parameter p≡ 1/q has always
been constrained by the data sets being considered. The
corresponding confidence regions are illustrated in the
right panel of figure 34.

There have been other studies of a similar nature in the
literature such as [827]. Upcoming constraints on the model
parameters of f (T) gravity are expected to be improved, for
instance, [826] explores the confrontation of f (T) with forth-
coming redshift drift data via the Sandage–Loeb test. It is
expected that the thirty–nine metre European Extremely Large
Telescope (E-ELT) will be equipped with a high–resolution
spectrograph called CODEX (COsmic Dynamics EXperi-
ment), which is designed to collect such Sandage–Loeb test
signals. It was found that the redshift drift data alone cannot

tightly constrain DE models because of the lack of low red-
shift data. However, it has been repeatedly shown that when
the forthcoming redshift drift data is jointly combined with
any other existing cosmological data set, this enhances the cur-
rent model parameter constraints and leads to fewer parameter
degeneracies.

In [826], the authors first constrain the power law and
exponential f (T) models using a combination of current data
sets from SNeIa, CMB, BAO, and a direct measurement of
the Hubble constant H0, and then choose the best-fit models
as fiducial models by producing 30 mock redshift drift data
points, which are then used to jointly constrain the f (T) mod-
els with this simulated data. The inferred constraints are illus-
trated in the panels of figure 35 for the power law f (T) and
exponential f (T) models.

Furthermore, advances related to the current scenario have
been done using early-time data. In [828, 829] it has been
reported that perturbed exponential infrared f (T) produces a
CMB spectrum identical to ΛCDM.

10.3.3. Precision cosmology for f(T,B) gravity. The generic
EoS provided in equation (6.28) which we now consider for
four possible models in an f(T,B) gravity setting. Our goal is
to study the effects of dynamical DE for each models.

(a) General Taylor expansion model. Taking the general
Taylor model that is introduced in equation (6.43), the
EoS for the (background) effective fluid component
can be determined through equation (6.28) giving34:

34 We represented here a(4) = d4t/dt4.
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Figure 34. Left: CL plots of H0, Ωm0 and p in the square–root–exponential f2(T) model. Right: Confidence regions of H0, Ωm0 and p≡ 1/q
in the f3(T) model. Base denotes the combination of the JLA SNeIa and the local value of the Hubble constant. Reproduced from [816].
© IOP Publishing Ltd. 2018. The American Astronomical Society.

Table 25. The mean value and the corresponding 68% limits [816] of the model parameters of the f2(T) model. Base refers to the JLA
SNeIa data and H0 prior.

Data set H0 (km sMpc−1) Ωm0 p

Base 73.2± 1.7 0.278+0.056
−0.070 <0.23

Base+BAO 73.4± 1.7 0.279± 0.025 −0.39+0.67
−0.80

Base+BAO+H(z) 70.0± 1.1 0.260± 0.015 −0.26+0.49
−0.57

Base+BAO+CMB 69.5± 0.9 0.298± 0.007 0.44± 0.32
Base+BAO+H(z)+CMB 69.5± 0.8 0.297± 0.007 0.41± 0.31

w(a) =
−24A3 + 6(H ′ +H2)+ 24H3wx1 − 6wx2 − 24H5wx7 +wx9

−6(H ′ +H2)+ 72H3wx4 +wx5 +wx6
(10.5a)

=
−24wx7 ȧ(t)

5 + 6a(t)4
[
ä(t)− 4A3a(4)(t)

]
+ 24a(t)ȧ(t)3wx1 − 6a(t)3wx2 +wx9

−6a(t)4ä(t)+wx5 + 72a(t)ȧ(t)3wx4 +wx6
, (10.5b)

where the wxi definitions can be found in appendix D.
To perform the numerical analysis, we rewrite the above
expression in terms of redshift z= a0/a− 1, where z= 0
corresponds to the present time. The EoS in this setting
can be expressed

w(z)

=
w1(z)+ 6 [w2(z)−w6(z)]+ 24 [w3(z)−w4(z)−w5(z)]

−w1(z)− 6w7(z)+ 72 [w8(z)−w9(z)−w10(z)]− 12
(z+1)7

,

(10.6)

where eachwi(z) function is also defined in appendixD. To
solve this equation we analyze the behavior of the (10.6)
EoS associated with the fluid representation of f(T,B)
denoted by w considering four kind of cases (cf figure 37).
The specific cases that we can consider in order to develop
a constraint analysis in the redshift range of observations
include aspects when the contribution from T is larger that
B (T� B), and vice versa (T� B):

• Case 1.1: Domination of the boundary term over the tor-
sion scalar.
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Table 26. The mean value and the corresponding 68% limits [816] of the model parameters of the f3(T) model. Base refers to the JLA
SNeIa data and H0 prior.

Data set H0 (km sMpc−1) Ωm0 p

Base 73.3± 1.7 0.295+0.084
−0.070 0.10+0.22

−0.51

Base+BAO 73.3± 1.8 0.285+0.022
−0.025 −0.03+0.11

−0.21

Base+BAO+H(z) 70.2± 1.1 0.263± 0.014 −0.01+0.09
−0.14

Base+BAO+CMB 69.6± 0.9 0.296± 0.008 0.15+0.08
−0.11

Base+BAO+H(z)+CMB 69.6± 0.9 0.296± 0.007 0.13+0.09
−0.11

Figure 35. Constraints in the Ωm0 −H0 plane and in the Ωm0 − n/p plane for power law f (T) (left) and exponential f (T) (right) models with
current only and current + Sandage–Loeb 30–year data. Reproduced from [826], with permission from Springer Nature.

Figure 36. General Taylor expansion model contours plots for Cases 1.1 (orange color) and 1.2 (blue color) using CC+Pantheon+BAO
samplers. Reproduced from [263]. © IOP Publishing Ltd. All rights reserved.

• Case 1.2: Domination of the torsion scalar over the
boundary term.

• Case 2.1: Domination of the boundary term over the tor-
sion scalar.

• Case 2.2: Domination of the torsion scalar over the
boundary term.

For equation (10.6), we perform the fitting using the
completed compilation of the observations described. In
figure 36, we see that the model has a preference for a

phantom solution in agreement with Planck data for the
density of matter.

(b) Power lawmodel. Nowwe consider a Lagrangian of separ-
ated power law style models for the torsion and boundary
scalars such that

f(T,B) = b0B
k+ t0(−T)m. (10.7)

Since we are interested in understanding whether this
power law model can reproduce a DE-like behavior, we
compute the EoS for the model in equation (10.7) and
obtain
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w(a) =−1+

6kb0(2H
2+H ′+H 2)k(k−1)kwx1
(2H 2+H ′+H 2)3 − 22+m3m(H2)m+1(m− 1)mt0wx2

3(−Bkb0 + 6H ′ −Tmt0 +wx4 +wx5)
, (10.8a)

=−1+

b06
k(k−1)k

[
a(t)̈a(t)+2ȧ(t) 2

a(t) 2

]k
wx1

[a(t)ä(t)+2ȧ(t) 2]3
−

t02
m+23m(m−1)ma(t)

[
ȧ(t) 2

a(t) 2

]m+1

wx2

ȧ(t)5

3
{

6[a(t)ä(t)−ȧ(t) 2]
a(t) 2 +wx4 +wx5 − b0Bk− t0Tm

} , (10.8b)

where the functions wxi are given in appendix D. To per-
form the numerical analysis, we rewrite the above expres-
sion in terms of the redshift z= a0/a− 1, where z= 0

corresponds to the present time. The power law model
EoS can be expressed as

w(z) =−1+
b03k8k−2(k− 1)k(z+ 1)12

[
1

(z+1) 2

]k
w(z)1w(z)4

3

{
−b0Bk− (z+ 1)3w(z)3 − b023k−13k(k− 1)k

[
1

(z+1) 2

]k
− t0Tm+ 6

(z+1) 2

} , (10.9)

where the functions w(z)i are given in appendix D.
Notice that equation (10.9) reduces to the standard

ΛCDM model w=−1 when k, m are zero, as expected.
As a first strategy, we are going to analyze the behavior
of the EoS in equation (10.9) which is associated with the
fluid representation of f(T,B) considering seven cases (cf
figure 37) as:

• Case 1.1: Domination of the boundary term over the tor-
sion scalar.

• Case 1.2: Domination of the torsion scalar over the
boundary term.

• Case 2.1: m and k as free parameters with the condition
that m> k.

• Case 2.2: m and k as free parameters with the condition
that k>m.

• Case 3.1: b0 and t0 as free parameters with the condition
that b0 < t0.

• Case 3.2: b0 and t0 as free parameters with the condition
that b0 > t0.

• Case 4: t0 and m as free parameters and negative values.

Cases 1.1 and 1.2 (cf with figure 37(top left)) at z< 2 show
an accelerating cosmic solution. Case 1.1 decelerate at
z= 3, while Case 1.2 preserves this acceleration with EoS
w<−1/3. It is important to point that that since the two
scalars, namely the torsion scalar and boundary term, can
interchange dominance over the evolution of the Universe,
these cases will turn out to be mutually exclusive in most
models. Cases 2.1 and 2.2 (cf with figure 37(top right))
have an EoS with w<−1/3, but shows an asymptotic

behavior to ΛCDM between z= 2 and z= 4. Afterwards
starts to grow asymptotically to the first model at large
z. Cases 3.1 and 3.2 cross the phantom divided-line, and
below z= 2 they are similar. Below z= 2.5 both models
can start with an EoS with w<−1/3, where both have an
asymptotic behavior at large z, which can mimic a matter
phase with w= 0 (cf with figure 37(bottom left)). This is
a case of an oscillating fluid representation of f(T,B) EoS
below z= 6. Case 4 (cf with figure 37(bottom right)) has
an oscillating particularity, but it experiences a divergence
point due to the corresponding energy-density becoming
zero. Thus, the possible cases of the different phases of the
cosmic evolution are shown individually with all possible
dominance terms being shown.
The confidence regions of this model are shown in
figure 38, where we can infer the constraints on the the-
ory against (CC+Pantheon+BAO) observational data for
free model parameters. The precise values are shown in
table 27. the very large value of these parameters may be
problematic for other sectors of phenomenology.

10.3.4. Cosmography for TG gravity. Observations from
SNeIa and gamma ray bursts are optimal tools in precision cos-
mology since with them it is possible to reconstruct the Hubble
flow. Moreover, due to the degeneracy of model parameteriz-
ations, a viable path to overcome these issues is by using cos-
mography. To achieve this goal we expand the scale factor in
Taylor series wrt the cosmic time. Such an expansion leads to
a distance-redshift relation which only relies on the assump-
tion of the FLRW metric being model-independent since it
does not depend on the specific form of the solution of the
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Figure 37. Evolution of Power Law EoS (10.9). Top left: Case 1: solving T and B, with T≪ B (solid line) and T≫ B (dashed line). Top
right: Case 2: m and k as free parameters, with m< k (solid line) and m> k (dashed line). Bottom left: Case 3: b0 and t0 as free parameters,
with b0 negative and f 0 positive (solid line) and vice versa (dashed line). Bottom right: Case 4: t0 and m as free parameters and with negative
values. The values considered are: m= 78.93, k= 49.62, b0, t0 ≈ 1015. Reproduced from [263]. © IOP Publishing Ltd. All rights reserved.

Figure 38. One-dimensional marginalized distribution, and two-dimensional contours with 68% and 95% confidence level for the free
parameters of the Power Law model using the constrained solutions for T and B scalars and CC+Pantheon+BAO total sampler.
Reproduced from [263]. © IOP Publishing Ltd. All rights reserved.

cosmic equations. It is convenient to introduce the following
definitions

H=
1
a
da
dt
, q=−1

a
d2a
dt2

H−2, j=
1
a
d3a
dt3

H−3,

s=
1
a
d4a
dt4

H−4, l=
1
a
d5a
dt5

H−5, (10.10)

which denotes the Hubble, deceleration, jerk, snap and lerk
parameters, respectively. Their present day values (denoted
with a subscript 0) can be used to characterize the cosmic evol-
ution, e.g. if q0 < 0, this denotes an accelerated expansion,
while j0 allows to discriminate among different accelerating
models.

Using these definitions straightforward we can obtain the
following equations [791, 830]
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Table 27. Parameters and mean values for the Power law model.

Parameter Best-fit Mean ±σ 95% lower 95% upper

H0 (km sMpc−1) 67.74 67.74+1.1
−1.1 65.54 69.89

m 78.93 79.19+4
−6.1 70.17 88.64

k 49.62 49.81+0.73
−1 47.82 51.73

b0 8.16× 10+15 1.099× 10+16+7×10+14

−1.1×10+16 9.981× 10+11 1.640× 10+15

c0 8.949× 10+15 7.974× 10+15+2.8×10+15

−6.3×10+15 1.169× 10+16 1.074× 10+16

Ḣ=−H2(1+ q), (10.11a)

Ḧ= H3( j+ 3q+ 2), (10.11b)
...
H = H4[s− 4j− 3q(q+ 4)− 6], (10.11c)

H(4) = H5[l− 5s+ 10(q+ 2)j+ 30(q+ 2)q+ 24],
(10.11d)

where a dot denotes derivative wrt the cosmic time t and
H(4) = d4H/dt4. Equations (10.11a)–(10.11d) make it pos-
sible to relate the derivative of the Hubble parameter to the
other cosmographic parameters.

Instead of choosing a parameterized form for a f (T)
model and then numerically solving the modified version of
Friedmann equations for given values of the boundary con-
ditions, it is possible to relate the present day values (z= 0)
of its derivatives to the cosmographic parameters (q0, j0,s0, l0)
in order to constraint them in a model-independent way and
obtain a form of f (T) that can be able to fit with the observa-
tional data at hand.

As a preliminary step, it is worth considering again that
T=−6H2. Differentiating wrt t, we get the following expres-
sions

Ṫ=−12HḢ, (10.12a)

T̈=−12(Ḣ2 +HḦ), (10.12b)
...
T =−12(3ḢḦ+H

...
H), (10.12c)

T(4) =−12(3Ḧ2 + 4Ḣ
...
H+HH(4)). (10.12d)

The modified Friedmann given by equations (6.7a)
and (6.7b) can be rewritten for the pressureless case
p= 0 as

H2 =− 1
12fT

[−TΩm+ f(T)], (10.13a)

Ḣ=
1
4fT

[−TΩm− 4HṪfTT]. (10.13b)

Once with this quantities, we can derive up to fourth order
in H to derive our cosmographic parameters as

Ḧ=
Ωm

4HfT
[HṪ+T(3H2 + 2Ḣ)]

− 1
fT
[(2ḢṪ+HT̈)fTT+HṪ2fTTT], (10.14a)

...
H =

Ωm

4H2fT

[
−T
(
9H4 + 6H2Ḣ+ 4Ḣ2

)
−HṪ

(
3Ḣ+ 6H2

)
+H

(
HT̈− 2ḦT

)]
− 1
HfT

[
ḢḦfT+

(
2Ḣ2Ṫ+ 3HḦṪ+ 4HḢT̈+H2...T

)
fTT

+H2Ṫ3fTTTT+HṪ
(
4ḢṪ+ 3HT̈

)
fTTT
]
,
(10.14b)

H(4) =
Ωm

4H3fT

[
−T

(
10HḢḦ+ 12H3Ḧ− 27H6 − 12H2Ḣ2 − 8Ḣ3

−2H2...
H
)
+H3...

T +H2Ṫ
(
9HḢ+ 27H3 − 5Ḧ

)
−3H2T̈

(
3H2 + Ḣ

)
+ 7HḢ2Ṫ

]
− 1
H2fT

[(
3HḢ

...
H+ Ḣ2Ḧ+HḦ2

)
fT+H2Ṫ2 (7ḢṪ+ 6HT̈

)
× fTTTT+

(
4H2...

HṪ+ 2Ḣ3Ṫ+ 7H2Ḣ
...
T

+10HḢ2T̈+ 7H2ḦT̈+ 11HḢḦṪ+H3T(4)
)
fTT

+H
(
10Ḣ2Ṫ2 + 7HḦṪ2 + 21HḢṪT̈

+3H2T̈2 + 4H2Ṫ
...
T
)
fTTT+H3Ṫ4fTTTT

]
,

(10.14c)

where the fourth and fifth derivative are denoted by the quant-
ities f(4)(T) = d4f(T)/dT4 and f(v)(T) = d5f(T)/dT5, respect-
ively. At this level, it is possible to derive a generic cosmo-
graphy, moreover, the restriction of a specific f (T) is still
present. In [831], an f (T) Taylor series model was studied
up to fifth order to investigate a priori a given f (T) the-
ory by simply comparing the theoretically predicted ( f2, f3)
models with the observed ones. Unfortunately, this analysis
was unable to predict the observationally values of ( f2, f3)
models due the degeneracy over the cosmographic paramet-
ers and the difficulties concurrently constraining with cur-
rent surveys. Furthermore, [791] explored cosmographic con-
straints following the same methodology of exotic polyno-
mials, e.g. Padé polynomial. Moreover, the current state-
of-the-art suggests that it is not yet possible to falsify the
ΛCDM model by robust statements adopting only this kind of
cosmography.

At present day (z= 0) values of f (T) and its derivatives up
to the fifth order. After some algebra, we have
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f(T0)

6H2
0

=Ωm0 − 2, fT(T0) = 1,

fTT(T0)

(6H2
0 )

−1
=− 3Ωm0

4(1+ q0)
+

1
2
, (10.15a)

fTTT(T0)

(6H2
0 )

−2
=

−3Ωm0(3q2
0 + 6q0 + j0 + 2)

8(1+ q0)3
+

3
4
, (10.15b)

fTTTT(T0)

(6H2
0 )

−3
=− 3Ωm0

16(1+ q0)5

× [−s0(1+ q0)+ j0(6q
2
0 + 17q0 + 3j0 + 5)

+ 3q0(5q
3
0 + 20q2

0 + 29q0 + 16)+ 9] +
15
8
,

(10.15c)

fTTTT(T0)

(6H2
0 )

−4
=− 3Ωm0

32(1+ q0)7

× [l0(1+ q0)
2 + s0(10q

3
0 + 43q2

0 + 46q0 + 13)

− 10j0s0(1+ q0)+ 5j20 (6q
2
0 + 22q0 + 3j0 + 7)

+ j0(45q
4
0 + 225q30 + 412q2

0 + 219q0 + 32)

+ 3q0(35q
5
0 + 210q40 + 518q30

+ 666q2
0 + 448q0 + 150)+ 60] +

105
16

.

(10.15d)

As we can notice from the latter equations, there is still a
dependency of the model directly of the f (T) form, which lead
us to a model-dependent cosmography related to the Taylor
f (T) series form. As a perspective in this direction, the con-
sideration of f (T) models can help to understand the conver-
gence of the series imposed by cosmography, even thought
some of these models should be aligned to a particular form
of Taylor series or extension of them. Due to the excessive
number of free parameters in the equations of motion, [791] a
degeneracy creeks into the system and so it becomes difficult
to find a unique best-fit curve for these parameters. As a result,
the order of the expansion does not have statistical relevance,
which is a consequence of the low density of data points used
to get this conclusion. Moreover, increasing the order of the
expansion shows a deviation from the standard cosmological
values.

10.3.5. Probing f(T) gravity with the induced variation of fun-
damental constants. Another cosmological probe of TG
involves measurements on the variation of the fine–structure
constant α, denoted by ∆α/α. It predominantly consists of
an archival astrophysical data set of quasar absorption lines
observed at the Keck observatory [832] and with the VLT (V)
[833], along with a set of 21 dedicated new measurements
(N) [834–842], and the constraint from the Oklo (O) natural
nuclear reactor at an effective redshift of z= 0.14 [843]. The
measurements contained in the N data set were reported from
the ESO Ultraviolet and Visual Echelle Spectrograph (UVES)
Large Program which was specifically developed for such
measurements. For simplicity, we will henceforth be denoting
the joint data set of K+V+N+O by KVNO.

It is well–known that a non-minimal coupling between a
scalar field and matter fields would break the Einstein equival-
ence principle, and would further lead to the variation of fun-
damental constants of Nature [844–846]. For instance, a scalar
field couplingwith the electromagnetic Lagrangianwould lead
to a variation of the fine–structure constant, or Sommerfeld’s
constant, which characterizes the strength of the electromag-
netic field and appears as a coupling constant in the electro-
magnetic action. A variation in the fundamental constants of
Nature [847], which could be conservatively defined as those
theoretical free parameters that could not be calculated with
our present knowledge of physics, has been a long–established
intriguing question [848, 849] with pertinent consequences for
fundamental physics and cosmology (see, for instance, [840,
844, 845]). Interestingly, when Dirac’s numerological prin-
ciple [848, 849] was encapsulated in a field–theoretical frame-
work, this led to the birth of the Jordan–Fierz–Brans–Dicke
scalar–tensor theory of gravitation [287, 850, 851].

A number of theoretical models have been proposed in
order to explore the possibility of a dynamical fine–structure
constant α≡ e2/ℏc. These models have been primarily for-
mulated as Lagrangian theories with explicit variation of the
velocity of light c (varying speed of light theories) [852],
or of the charge on the electron e (varying electric charge
theories) [853, 854]. These models have been first formu-
lated by Bekenstein [853] from a generalization of Maxwell’s
equations, that led to the construction of the cosmological
varying–e Bekenstein–Sandvik–Barrow–Magueijo theory of
varying α [855–860]. Other frameworks include, for instance,
a runaway dilaton [861, 862], supersymmetric generalization
of Bekenstein’s model [863] and a disformally coupled elec-
tromagnetic sector [864]. Each theoretical framework has its
own cosmological signatures, and we should remark that the
spacetime dependence of fundamental constants has also been
linked [865] with the currently reported Hubble tension via
the inferred effects in the ionization history and profile of
CMB anisotropies. For example, in f (T) gravity, the form of
this fine–structure constant dependence can be obtained by
a conformal transformation (refer to section 5.3.2 for further
details) of the tetrad where ẽAµ =ΩeAµ, and Ẽ

µ
A =Ω−1E µ

A ,
which results in the regular conformal transformation g̃µν =
Ω2gµν , as expanded upon in [256], where Ω2 =−fT = |fT|
(note that since in our conventions T > 0 and fT < 0, we
have replaced −fT by |fT|), and that tilde denotes conform-
ally transformed quantities. It is well known that f (T) grav-
ity cannot be written in the Einstein frame through conformal
transformations, which implies that it will induce a depend-
ence in its associated fine–structure constant [866] (as will
be shown later in equation (10.17)) . In fact, this produces an
extra 2Ω−2∂̃µ

(
Ω2
)
T̃ννµ term which cannot be removed (see

equation (5.70)). The remainder of the scalar field becomes a
phantom field with the choice of ϕ=

√
3ln fT [256], which is

partially favored by the 2018 Planck data [372].
The result of a conformal transformation is the introduc-

tion of a new DoF, ϕ, that arises from the transformation
Aaµ → ẽAµ, where ẽAµ represents the Einstein frame tetrad.
This then induces an electromagnetic coupling which takes on
the form
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SEM =
1
4

ˆ
d4xeBF (ϕ)FµνF

µν , (10.16)

where Fµν = Aν,µ−Aµ,ν is the standard Faraday tensor, and
BF (ϕ) represents the nonvanishing ϕ−coupling. The con-
sequence of this induced coupling is that the fine–structure
constant and the luminosity distance will be altered compar-
ing to GR [2, 867]. As in [290, 863, 866, 868], this can be
expanded about ϕ(t= t0), which is suitably small, to give

BF (ϕ)' 1+βFκ
2ϕ, (10.17)

where βF =O(1) is a constant (βFϕ� κ−2). Given an ini-
tially uncoupled Jordan–frame electromagnetic action, the
fine–structure constant turns out to be given by [863]

αE(ϕ) =
αJ(ϕ)

BF(ϕ)
, (10.18)

where αE and αJ are the fine–structure constants in the Ein-
stein and Jordan frames respectively.

Given that Ω2 = |fT|, this would imply that the ∂̃µ
(
Ω2
)

would be very small rendering the additional term negligible.
Wewill revisit this reasoning against the results of the analysis.
With this approximation to the Einstein frame, the variation of
the fine–structure constant takes the form

∆α

α
=
κ−2 +

√
3βF[ln |fT(T0)|]

κ−2 +
√
3βF[ln |fT|]

− 1, (10.19)

which vanishes for the ΛCDM case of f(T) =−T+Λ, as
expected. Equation (10.19) embodies the redshift dependence
of the fine–structure constant in TG, since the torsion scalar
depends on redshift. Another consequence of a nonvanishing
scalar field coupling to the electromagnetic action is that the
luminosity distance will be altered [846]. By considering the
standard derivation of luminosity distance [2] with this new
action, [867] shows that this leads to

dL = c(1+ z)

√
BF0

BF

ˆ z

0

dz ′

H(z ′)
(10.20a)

= c(1+ z)

√
κ−2 +

√
3βF[ln |fT(T0)|]

κ−2 +
√
3βF[ln |fT|]

ˆ z

0

dz ′

H(z ′)
, (10.20b)

as the luminosity distance for f (T) gravity, which limits to the
GR formula for BF = 1.

We now consider the following f (T) models, in which we
primarily focus on the respective induced variation in the elec-
tromagnetic coupling and the inferred cosmological parameter
constraints. These models were confronted with the KVNO
varying fine–structure constant data set, along with the SNeIa
Pantheon compilation [870] and a CC data set [802, 871–875].
Occasionally, a prior on the Hubble constant is assumed in
the following analyses, which is specified by HR

0 = 74.03±
1.42kms−1Mpc−1 [718].

(a) Power lawmodel. The derived constraint on the power law
model [273] ( f1(T)) parameter b of (a) was found to be
b=−0.16+0.24

−0.49 [869] when adopting the SN + CC + HR
0

joint data set, which is consistent with ΛCDM and in line
with the findings in previous studies [816, 876–878]. As
illustrated in the left panel of figure 39, the SN + CC +
KVNO and SN + CC + KVNO + HR

0 joint data sets also
improve the constraints on the model parameter b, which
was found to be consistent with zero. Similar constraints
have been reported in [868], although the presented con-
straints are tighter. The reported constraints of table 28,
also show that βF is compatible with zero. Consequently,
there is a negligible deviation from the f (T) distance–
duality relation in this model.

(b) Square–root–exponential model. In the square–root–
exponential model [39] ( f2(T)) of (b), the derived con-
straints on 1/p from the SN + CC + HR

0 and SN + CC +
KVNO + HR

0 data sets were found to be consistent with
zero at around 1σ [869]. This model was also found to be
in agreement with the ΛCDM model at around 2σ when
the SN + CC + KVNO data set was adopted (see, for
instance, [816, 868, 876–879] for similar conclusions).
The marginalized confidence contours are depicted in the
right panel of figure 39, while the list of all the derived
parameter constraints is reported in the second panel of
table 28.

(c) Exponential model. Similar to the previously considered
model, in the f3(T) [39] model we observe that the ΛCDM
model is recovered when q→+∞, or equivalently 1/q→
0+. The derived parameter constraints [869] are repor-
ted in the third panel of table 28, whereas the marginal-
ized confidence contours are depicted in top-left panel of
figure 40. Similar to the previous exponential f (T) model,
the model parameter 1/q is found to be consistent with the
ΛCDM limit at around 1σ, where such a result is compat-
ible with the results of [816, 876, 878, 879]. Furthermore,
this exponential f (T) model was found to be characterized
by a null variation in the fine–structure constant, since βF
was always found to be consistent with zero.

10.4. Beyond data-driven analysis for TG cosmologies

We have been discussing several proposals that can be cosmo-
logically viable and well constrained by the current observa-
tional data. However, due the avalanche of these observational
catalogues from different species, we require the implement-
ation of new numerical technique to perform reconstruction
that can be model independent in order to solve the inverse
cosmology problem, i.e. going from the data to the best (or
optimal) theory/model. These nonparametric approaches, as
they are commonly called in the literature can be seen as a
perspective for future TG scenarios analysis, one of the can
lies in the classification of reconstruction of data using Gaus-
sian processes (GP), and the second one as machine learn-
ing tools for TG through deep learning techniques [880]. This
section is devoted to explain how we can implement TG scen-
arios in these ambiance. While the methodology behind each
approach is wide, we present in the supplementary annexes
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Figure 39. Marginalized two-dimensional likelihood constraints on the parameters of the f1(T) (left) and f2(T) (right) models of
equation (10.2) and equation (10.3), respectively. Reproduced from [869]. © 2020 IOP Publishing Ltd and Sissa Medialab srl.

Table 28. The mean value and the corresponding 68% limits [869] of the model parameters of three fi(T) models (i ∈ {1,2,3}), as
described in section 10.3.5. We also report the minimum χ2 value.

f1(T) Model

Parameter SN + CC+ HR
0 SN + CC + KVNO SN + CC + KVNO + HR

0

b −0.16+0.24
−0.49 0.003+0.053

−0.059 −0.001+0.050
−0.048

Ωm0 0.281+0.036
−0.035 0.300+0.026

−0.024 0.283+0.023
−0.021

H0 (km sMpc−1) 72.8+1.4
−1.3 68.9+2.0

−1.9 72.2+1.2
−1.2

βF 0.28+0.32
−0.32 −0.003+0.063

−0.056 −0.003+0.074
−0.067

χ2
min 1042.578 1365.427 1370.014

f2(T) Model

Parameter SN + CC+ HR
0 SN + CC + KVNO SN + CC + KVNO + HR

0

1/p 0.093+0.171
−0.079

(
10.8+35.9

−4.9

)
× 10−3

(
41.7+9.3

−30.8

)
× 10−3

Ωm0 0.279+0.025
−0.031 0.300+0.021

−0.020 0.283+0.020
−0.019

H0 (km sMpc−1) 72.2+1.3
−1.2 69.0+1.8

−1.9 72.2+1.3
−1.2

βF −0.10+0.49
−0.56 −0.01+0.45

−0.75 −0.07+0.58
−0.55

χ2
min 1045.741 1366.626 1371.221

f3(T) Model

Parameter SN + CC+ HR
0 SN + CC + KVNO SN + CC + KVNO + HR

0

1/q 0.065+0.088
−0.045

(
15.7+28.7

−9.5

)
× 10−3 0.029+0.018

−0.020

Ωm0 0.279+0.021
−0.020 0.302+0.022

−0.023 0.283+0.019
−0.019

H0 (km sMpc−1) 72.2+1.3
−1.2 69.0+2.0

−1.9 72.2+1.2
−1.3

βF −0.22+0.76
−0.40 −0.05+0.61

−0.53 0.00+0.61
−0.52

χ2
min 1046.074 1366.661 1371.241
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Figure 40. Marginalized two-dimensional likelihood constraints on
the parameters of the f3(T) model of equation (10.4). Reproduced
from [869]. © 2020 IOP Publishing Ltd and Sissa Medialab srl.

(supplementary 6 and 7) the main ideas behind the numerical
architecture.

10.4.1. Gaussian processes and the reconstruction of f(T)
gravity. The discussed GP approach in the supplementary
annexes (supplementary 6) can be applied to a number of dif-
ferent H(z) data sources, from which it is possible to recon-
struct H0. In the considered analyses, three sources of H(z)
data have been considered, namely CC, SNeIA and BAO.
From the presented H(z) data in the supplementary annexes
(supplementary 4), only the CC data as reported in [802] are
adopted in the following analyses [776]. Regarding the SNeIa
data which was introduced in the supplementary annexes (sup-
plementary 4), the combination of the compressed Pantheon
compilation is used [870] together with the CANDELS and
CLASHMulti-cycle Treasury data [881]. For this data set, the
Hubble rate parameter measurements of E(z) = H(z)/H0 were
added along with the corresponding correlation matrix, such
that only five of the reported six data points could be taken
into consideration, since the z= 1.5 data point is not Gaussian–
distributed. Moreover, a set of eight BAO data points from the
SDSS (Data Release 12 and 14) [882–884] along with the cor-
responding correlation matrices were adopted in the following
GP analyses. We refer the reader to [776] for further details on
the inclusion of the BAO data set and SNeIa measurements via
an iterative technique.

The GP approach is now applied to the various sources of
Hubble data together with the priors described. The results per-
taining to the value of H0 are presented in table 29 which con-
tains the principal results for the square exponential kernel.We
here present the GP inferred value of H0 for the case of taking
no prior, and the HR

0 , H
TRGB
0 and HHW

0 priors. In every case, it

can be determined the distance (in units of σ) between the GP
determined value against the literature priors discussed above,
so that this distance is defined as follows

d(H0,i,H0,j) =
H0,i−H0,j√
σ 2
i +σ 2

j

, (10.21)

where H0,i and H0,j are two respective values of the present
value of the Hubble parameter together with their respective
1σ uncertainties σi and σj.

The derived results are presented in figure 41. The GP
approach is used for each set of priors for H0 as shown in the
sub-figures.Moreover, for everyGP reconstruction, the 1σ and
2σ regions are illustrated. As a reference point, it is present the
ΛCDM behavior in all instances.

There also exist diagnostic tools to assess preferences in
the reconstructions toward deviations fromΛCDM [885, 886].
Considering the GR first Friedmann equation for a cosmos
filled with a dark fluid EoS w(z)

E2(z) :=
H2(z)

H2
0

=Ωm0 (1+ z)3 +Ωk0 (1+ z)2

+ΩΛ0 exp

[
3
ˆ z

0

1+w(z ′)
1+ z ′

dz ′
]
, (10.22)

where E(z) is the reduced Hubble parameter, and which can be
rearranged to reconstruct the EoS of the dark fluid via

w(z) =
2(1+ z)E(z)E ′(z)− 3E2(z)
3 [E2(z)−Ωm0(1+ z)3]

, (10.23)

where it has been assumed that the Universe observes spa-
tial flatness. The GP reconstructions of w(z) are reported in
figure 42, where it is clear that w=−1 is not excluded by
the currently available data. However, notice that this recon-
struction is dependent on the matter density parameter, which
restricts us from constructing physical models.

On the other hand, one could test the flat ΛCDM model by
considering the following diagnostic redshift function [869]

O(1)
m (z) :=

E2(z)− 1
z(3+ 3z+ z2)

, (10.24)

which reduces toO(1)
m (z) = Ωm0 in theΛCDM scenario. Thus,

this diagnostic can measure how close a data set is to GR.
We should remark that O(1)

m (z) is not so much dependent on
ΛCDM but a characteristic parameter that can test how con-
sistent a data set is with this model. As reported in figure 43,
one could clearly notice that the considered data sets are in
a very good agreement with the ΛCDM predictions, although
the H0 prior has a significant effect on the reconstruction and
hence the viability of the concordance model of cosmology.

Complementary to the O(1)
m (z), its derivative can also offer

a useful way to quantify deviations from ΛCDM, defined
through

L(1)(z) = 3(1−E2(z))(1+ z)2 + 2z(3+ 3z+ z2)E(z)E ′(z).
(10.25)
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Table 29. Different GP reconstructions of H0 [869] with the square exponential kernel function expressed in the supplementary annexes
(supplementary 6). The reconstructed values of H0 are complemented by their distance (in units of σ) from literature priors.

Data set(s) H0 (km sMpc−1) d(H0,H
R
0 ) d(H0,H

TRGB
0 ) d(H0,H

HW
0 ) d(H0,H

P18
0 )

CC 67.539± 4.7720 −1.3037 −0.4408 −1.1334 0.0290
CC+SN 67.001± 1.6531 −3.2253 −1.1183 −2.6165 −0.2309
CC+SN+BAO 66.197± 1.4639 −3.8407 −1.5127 −3.1132 −0.7776
CC+HR

0 73.782± 1.3743 −0.12556 1.7106 0.2166 4.3640
CC+SN+HR

0 72.022± 1.0756 −1.1271 1.0265 −0.6220 3.8969
CC+SN+BAO+HR

0 71.180± 1.0245 −1.6279 0.6447 −1.0457 3.3155
CC+HTRGB

0 69.604± 1.7557 −1.9599 −0.0760 −1.4908 1.2076
CC+SN+HTRGB

0 68.468± 1.2212 −2.9695 −0.5942 −2.2641 0.8096
CC+SN+BAO+HTRGB

0 67.811± 1.1470 −3.4070 −0.9036 −2.6233 0.3284
CC+HHW

0 72.966± 1.6636 −0.4863 1.2617 −0.1382 3.2043
CC+SN+HHW

0 70.850± 1.1991 −1.7111 0.4710 −1.1550 2.6555
CC+SN+BAO+HHW

0 69.911± 1.1276 −2.2717 0.0506 −1.6280 2.0355

Figure 41. GP reconstructions of H(z) with the squared exponential kernel function expressed in the supplementary annexes
(supplementary 6). The data sets along with the different H0 priors are indicated in each respective panel. Reproduced from [776]. © IOP
Publishing Ltd. All rights reserved.

Any deviation from L(1)(z) = 0 represents a deviation
from ΛCDM, which makes L(1)(z) a good diagnostic over
which to assess the behavior of the concordance model. The
L(1)(z) diagnostic is presented in figure 44. In figure 41, the
square exponential kernel GP reconstructions are shown for

the redshift range of the full data set. In all cases, the BAO data
reduce the 1σ and 2σ uncertainties at higher redshifts since the
other data sets do not feature points in that regime. In fact, in
the cases of CC andCC+SN, theΛCDM theoretical prediction
only deviates into the 2σ uncertainty region for these high
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Figure 42. GP reconstructions of w(z) with the squared exponential kernel functions, along with the ΛCDM prediction. Reproduced from
[776]. © IOP Publishing Ltd. All rights reserved.

values of redshift, and only outside of both when the BAO data
are included. The BAO data are dependent on the concordance
model of cosmology, and so one would expect it to produce
issues of this kind since the other two data sets are independent
of cosmological models. The remainder of the reconstruction
regions remain in close range of the ΛCDM prediction. This
is further exposed by the diagnostic consistency test shown in
figure 44 where a number of regions mark slight deviations
from ΛCDM. However, it is the BAO data set that exposes
this deviation at high redshifts. Another interesting feature of
these diagnostic tests is that as with the H0 reconstructions
in table 29, the HR

0 prior brings about the largest deviation of
the reconstructions. One could also infer the GP reconstructed
deceleration parameter, given by

q(z) = (1+ z)
H ′(z)
H(z)

− 1. (10.26)

We illustrate the GP reconstruction of q(z) in figure 45.
We finally discuss and present the application of the

above cosmologically model-independent data for the GP
reconstruction of a general f (T) function without assuming a

specific form of the Lagrangian. We start by expressing the
Friedmann equation in terms of redshift dependence alone.We
therefore convert the Lagrangian derivative term so that

fT =
df/dz
dT/dz

=
f ′(z)
T ′(z)

, (10.27)

where f ′(z) = df/dz and T ′(z) =−12HH ′ are redshift derivat-
ives. The immediate follow up becomes the issue of handling
f ′(z) in the analysis which is tackled in this analysis through
the central difference method as

f ′(zi)' lim
∆z→0

f(zi+1)− f(zi−1)

zi+1 − zi−1
, (10.28)

since this will produce smaller uncertainties O(∆z2) rather
thanO(∆z) which occur for the forward and backward differ-
ence methods, where ∆z= zi+1 − zi−1. By substituting into
the Friedmann equation (6.7a) (taking the mapping f(z)→
−T+ f(z), as in [869, 887]) and simplifying, this method pro-
duces a numerical propagation equation for f (z) given by
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Figure 43. GP reconstructions of O(1)
m (z) with the squared exponential kernel function, along with the ΛCDM prediction. Reproduced from

[776]. © IOP Publishing Ltd. All rights reserved.

f(zi+1) = f(zi−1)+ 2(zi+1 − zi−1)
H ′(zi)
H(zi)

×
(
3H2(zi)+

f(zi)
2

− 3H2
0Ωm0 (1+ zi)

3
)
,

(10.29)

where the propagation equation parameters H0 and Ωm0 are
selected from the corresponding GP reconstruction within the
P18 and H0 priors, respectively. While superior in terms of
having lower associated uncertainties, the central differencing
requires two initial conditions to be employed which we form
as follows:

(a) Friedmann equation boundary condition: Evaluating the
Friedmann equations (6.7a) and (6.7b) at z= 0 gives

f(z= 0)'−16πGρ0m+ 6H2
0 =−6H2

0 (Ωm0 − 1) ,
(10.30)

where we have imposed that ΛCDM dominates at present
times, i.e. fT(z= 0)' 0. This again relies on the same
parameters as the propagation equation itself;

(b) The second boundary condition can be obtained by using
the forward differencing method through

f ′(zi)' lim
∆z→0

f(zi+1)− f(zi)
zi+1 − zi

, (10.31)

that leads to the equation

f(zi+1) = f(zi)+ 2(zi+1 − zi)
H ′(zi)
H(zi)

×
[
3H2(zi)+

f(zi)
2

− 3H2
0Ωm0 (1+ zi)

3
]
,

(10.32)

which straightforwardly leads to the necessary second
boundary condition.

The propagation of the f (T) function is complemented by
its associated MCMC error propagation which produces the
1σ and 2σ uncertainties.

Together the propagation equation in equation (10.29)
along with the boundary conditions in (i) and (ii) can
express the redshift dependent Lagrangian f (z) in terms of
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Figure 44. GP reconstructions of L(1)(z)/(1+ z)6 with the squared exponential kernel function expressed in the supplementary annexes
(supplementary 6). The data sets along with the different H0 priors are indicated in each respective panel. Reproduced from [776]. © IOP
Publishing Ltd. All rights reserved.

z in a (cosmological) model-independent way. Similarly, the
corresponding torsion scalar can be associated with each of
the redshift values in question through the Hubble parameter
relation in equation (6.5). In this way, the Lagrangian function
f (T) can be plotted as a function of the torsion scalar T.

The f (T) reconstructions against the torsion scalar are illus-
trated35 in figure 46 where the 1σ and 2σ regions are shown in
every case. We mention that theΛCDM paradigm appears as a
constant in these plots with a value of f(T)→−6H2

0 (Ωm0 − 1),
which is denoted by horizontal lines in figure 46. One could
easily observe that the ΛCDM scenario lies inside each and
every reconstructed region. Nevertheless, the GP reconstruc-
tion procedure shows a slight tendency of f T to negative val-
ues, i.e. to f (T) forms that are slightly decreasing functions of
T. This is the main result of this section since the aforemen-
tioned feature needs to be taken into account in the f (T) model
building.

In the case where no prior is used for the GP reconstruction,
the f (T) evolution remains within the 2σ confidence region of

35 We here reproduce the same figure as reported in [869], therefore f(T)< 0
in this figure.

ΛCDM for the breadth of the evolution interval, and mostly
within the 1σ region for the data set combinations. The fur-
thest propagated line to the ΛCDM is the Hubble parameter
reconstructed from the combined data that includes the BAO
data set. On the other hand, once the priors are included the
situation changes drastically, with the HR

0 prior favoring a
slight deviation from ΛCDM over a portion of the cosmic
evolution for all data sets. The same situation, but to a lesser
extent, occurs for the HHW

0 prior, with the HTRGB
0 prior being

the only one to not affect this propagation in a significant way.
These f (T) propagations show that the data sets alone favor an
f (T) that only slightly deviates from ΛCDM within the red-
shift region being probed, while the propagations that do con-
tain literature priors prefer a stronger deviation from ΛCDM,
however the latter is inside the allowed regions.

10.4.2. Machine learning for teleparallel cosmology. In
order to use machine learning in a specific deep learning
neural network, we need to classify TG cosmological mod-
els using the surveys described in section 6. To perfom these
analyses we require the architecture described in the supple-
mentary annexes (supplementary 7). Following this, we begin
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Figure 45. GP reconstructions of q(z) with the squared exponential kernel functions, along with the ΛCDM prediction. Reproduced from
[776]. © IOP Publishing Ltd. All rights reserved.

by training several neural networks with different data and dif-
ferent activation functions. Next, we will generate new data
with the trained networks and merge this data in a single
data frame. Once we have all our new data in a single data
frame, we split it in a training set and a test set. By eval-
uating the model with the test data, we can decide whether
the neural network architecture is appropriate for this task
or not.

For the first training we use a small data set of CC, which
has information about the redshift (z) and the Hubble para-
meter (H(z)). In this coding we use Tensorflow V2 36 and
Keras37. The data consists of two columns and 17 rows. Due
the small size of this data set, it is standard to not split them in
test and train sets. First, we extract the data and normalize the
values of H(z). This is done because it is easier for the train-
ing to work with small numbers. The architecture of our first
network consists in a sequential model with a single layer of
just one neuron. This is because we want the output to be a
single number for each prediction. We compile this sequential

36 www.tensorflow.org/?hl=es-419.
37 https://keras.io.

model with the optimizer RMSprop38 with a standard value of
learning rate of 0.003 for this type of algorithm.

According to the natural language processing on Adam
optimiser, and the loss is the mean squared error. The train-
ing of this data can be done with a small number of epochs,
say 100. To generate non-linear data we must use a differ-
ent architecture. By including layers with a certain activation
function we can train non-linear models. The architecture for
the following networks consists of two hidden layers, one with
20 neurons and the other with 12. Each of them have the same
activation function, and an output layer with a single neuron.
This kind of architecture with several hidden layers is also
known as Deep Neural Networks.

The first non-linear model that we train uses the rectified
linear unit (ReLU) as activation function. This function is
defined as f(x) =max(0,x). Due to the nature of our data we
do not expect very different predictions compared to the lin-
ear model. For the rest of the neural networks we will use the
Adam optimizer39 with a learning rate of 0.003 and the mean
squared error as loss. We train the network for 300 epochs and

38 https://keras.io/api/optimizers/rmsprop/.
39 https://keras.io/api/optimizers/.
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Figure 46. GP reconstructions of f (T) with the squared exponential kernel function expressed in the supplementary annexes
(supplementary 6). The data sets along with the different H0 priors are indicated in each respective panel. Reproduced from [776]. © IOP
Publishing Ltd. All rights reserved.

again make store predictions for values up to 5 to avoid miss-
ing less obvious behaviors such as appear in partial time-series
problems. We repeat the previous process for different activa-
tion functions. We decided to use the hyperbolic tangent, the
Scaled Exponential Linear Unit and the sigmoid function as
our activation functions. The predictions made in each case
could be different for each training because we are predict-
ing for values of z far from the highest value used for training.
The predictions for all the trained neural networks are shown
in figure 47.

Building on this base, we can introduce our cosmological
models and analyze them through the lens of the deep neural
network that has since been constructed. To do this, we con-
sider another deep neural network consisting of two hidden
layers each with 32 neurons using the ReLU activation func-
tion, together with an output layer with the softmax activa-
tion function and 5 neurons. This architecture is widely used
for nonbinary classification problems such as the current one
where we want to measure the degree to which a model is
approximated. Between the last hidden layer and the output
layer we include a dropout of 0.2, in order to reduce the over
fitting for regularization. This is important since overfitting

Figure 47. Deep learning training for CC compilation up to z= 5.
The observations from the sample are denote by ‘+’.

can become a serious issue otherwise.We use theAdamoptim-
izer with a learning rate of 0.003 and for the loss the sparse cat-
egorical cross entropy. For this example we use the accuracy
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Figure 48. Example of classifications of f (T) models described in
the compendium table 21 using CC data.

as metrics. We train our model with a batch size of 80 and a
validation split of 0.2 to evaluate if we are over-fitting. The fit-
ting is done for 500 epochs. The result of this process is shown
in figure 48 where the classification output is more clearly
shown.

The lower value of the loss for the validation set and the
higher accuracy is a good signal that we are not over fitting
the data. To test the classifier we use a confusion matrix. The
rows of the matrix are the true labels and the columns are
the predicted labels. The closer the confusion matrix is to the
identity, the better the classifier is. We make predictions with
all the values from the initial data-set and insert the results in
the confusion matrix. This matrix that we study contains five
different f (T) models. In figure 49 we show the percentage
between the predicted and true model. We notice that Linder
model (see table 21) seems to be better identify and preferred
by CC observations forecasted up to z= 5, in comparison to
the other four models.

10.5. Perspectives in observational cosmology

Over the last few years, we have witnessed great advances
in precision cosmology in terms of our understanding of the
Universe. In addition to known forms of matter, GR and an
ansatz for the space-time metric as FLRW spacetime, two con-
tributions remain a mystery and need to be added accounted
for in observations, namely: the CDM to explain the formation
of cosmic structures, and a cosmological constant to account
for the late-time cosmic acceleration. The drastically increas-
ing precision and wealth of observations and the surprising
findings may call for a revision of the cosmological model
hypothesis. On this matter, addressing the dynamics of the cos-
mic acceleration can be achieved by postulating modifications
of GR acting only on the largest cosmological scales. Com-
paring these modified models against surveys does not only
provide potential hints to test new physics: it is itself a way
to validate the assumptions on which the standard paradigm
is formulated. Model dependent supposition are usually made
in the analysis of raw data, and certain curtailment which
might be compatible with the usual supposition might not
be fulfilled in modified scenarios. The study of the different

modified theories helps to identify these flaws and make the
method of comparison between theory and observations as
model independent as much as possible. Studying the predic-
tions of different cosmological models and constraining them
with observations provides a way to validate the foundations
of the ΛCDM model and quantify deviations from the con-
stituent suppositions. The analysis of self-consistent models
allows the examination of a given physical set-up within com-
putational restrictions. This supposition will become import-
ant as the cosmological and astrophysical wealth and quality
of data increase.

In the near future, there will be next-generation experi-
ments, space-missions and facilities on Earth, that will be of
key importance to confirm or to falsify models beyond the
standard one proposed at present and in the past years [744].
Between these models, the TG theories are starting to gain
ground because they can easily address theH0 and S8 tensions
and simultaneously explain the acceleration of the Universe
due to the DE. Unfortunately, at the moment, these theories
have only been used for cosmology at the background level
and very poorly explored with the current available data and,
for example, a complete full analysis, taking into account the
effect of the perturbations, is completely missing. The topic
of the TG models is therefore a ‘work in progress’ field, that
is quickly growing and trying to fill the gap with the other
beyond-the-standard-model scenarios extensively studied and
compared to the data, we have in the literature. Many works
appeared in the last few years going in this direction (see
table 21), and we expect many more coming out in the near
future. For this reason it is important to list here which are
the experiments expected in the next few years that could have
a big impact in the DE/DM field, improving significantly the
sensitivity we have on the current cosmological parameters,
and helping us shaping plans for the kind of work we need to
do in the future to make this TG field more robust and suppor-
ted by the data.

For example, a 50% improvement on the current Hubble
constant measurements is expected by the local distance lad-
der observations, that will reach a precision of 1% [888].
A better H0 measurement is predicted also for the gravita-
tional time delays experiments, expected to achieve a ∼1.5%
precision [889], and for the standard sirens (GWSS) [781,
890–893], the GW analogue of astronomical standard candles,
that will reach a 2% precision.

New improved CMB data will be possibly released by
the ground-based experiments like CMB-S4 [894, 895] and
Simons Observatory [896], and satellite experiments like Lite-
BIRD [897], CORE [898], PIXIE [899], PRISM [900], and
PICO [901]. Of great importance will be the Euclid space-
based survey mission [902], that will be able to release an
important variety of cosmological probes, starting from the
gravitational lensing, to the BAO, to the galaxy clustering, and
the multi-purpose radio-interferometer SKA40, making meas-
urements of the 21 cm line in neutral hydrogen (HI).

40 www.skatelescope.org.
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Figure 49. Metrics of the trained classifier for CC compilation up to z= 5.

Moreover, starting in 2022 it is planned the galaxy
survey Rubin Observatory Legacy Survey of Space and
Time (LSST [903]), and in 2025 the powerful heir of the
HST, i.e. the Roman Space Telescope (formerly known as
WFIRST [904]). Future BAO data are expected also from
galaxy spectroscopic surveys such as DESI [905], or radio
telescopes such as BINGO [906].

All these experiments combined together are expected to
shed light on the current cosmological tensions, giving us the
possibility of ruling out large portions of the parameters space,
and therefore, of the scenarios beyond-the-standard-model,
that now compete for fitting the data.

11. Conclusion

In this Review of TG, we have discussed the foundations of
this approach to constructing gravitational theories, together
with the observational and precision cosmology consequences
of some of the most popular forms of teleparallel theories. We
started with a survey of the historical context in which TG was
born (into from the early work by Einstein, Weitzenböck and
others). In section 1, we also point out new results that are first
being reported here together with corrections to the literature
where incorrect results may have appeared. This section also
contains our review convention which would be advantageous
to use in future works since we have made a significant effort
to represent all theories and the vast majority of their results
in this convention.

We begin the technical details of the formulation of telepar-
allel geometry through the position of metric-affine geometry
in section 2 which was formulated in the later years after Ein-
stein’s original work. In this part of the Review, we see how
TG forms part of a much larger trinity of gravity that involves
curvature but also non-metricity. Together, these three geo-
metries, through their respective connections, can fully utilize
the components of a general gravitational connection. We then
focus our attention solely on the teleparallel geometry mani-
festation of this trinity in section 3 where we delve into the
details of how TG can be sourced through a gauge theory of
translations. We also go into how the minimal coupling pre-
scription is needed to couple matter to this geometry, as well

as the symmetries and transformations within the formulation.
We close this section with a new discussion on the relationship
of teleparallel geometries to other branches of physics such as
continuum mechanics where we lay out the way in which this
has been used to describe crystal structures.

After laying out the geometric foundations to TG and its
relationship to the broader class of metric-affine theories, we
apply these concepts to the teleparallel equivalent of GR in
section 4 also, similar to GR, holds a special place in telepar-
allel theories as the best behaved gravitational model in TG.
Indeed, we also discuss some aspects related to attempts to
quantize TEGR and their relationship to similar approaches in
GR. On the other hand, there have been a plethora of propos-
als to modify TEGR which we examine in section 5 where we
present the best studied and most promising teleparallel theor-
ies of gravity.We here tackle a number of issues related to fully
describing the ideas behind good tetrad-spin connection pair
which is crucial for determining the correct field equations of
a theory. We also point out progress in some of these modi-
fications and extensions to TEGR in terms of their spin con-
nection contribution. In particular, we flesh out the impact of
the antisymmetric field equations which are related to the local
Lorentz transformation DoF within these theories. Finally, we
expand on the scalar-tensor sector of the landscape of telepar-
allel theories and focus our attention on the new and interest-
ing BDLS theory (teleparallel analogue of Horndeski gravity)
which have been gaining popularity as a way to revive stand-
ard Horndeski gravity, which has become severely constrained
due to its prediction on the speed of propagation of GWs (in
many of its models).

Taking these theories, we explore possible cosmologies in
their backgrounds through various approaches in section 6. By
and large, we explore flat homogeneous and isotropic back-
grounds but are not limited to this. Moreover, we also focus on
f (T) cosmology since this is the most studied in the literature,
but again we also analyze other scenarios. It is worth noting
that the majority of works in the literature in TG have been
associated with works in this regime, namely background cos-
mology. In this context, we first explore possible reconstruc-
tion methods, which have shown promise in many works in
the literature (even outside of TG). This is a convenient way
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of designing models in the various classes of gravity theor-
ies which can then be probed against other phenomena. We
also explore the wide range of works that make use of Noether
symmetries as an approach to again design particular mod-
els of gravity that adhere to particular symmetry setups. At a
higher level, we present dynamical systems and its approach in
determining important generic behaviors of particular classes
of cosmology models and whether they are consistent with our
Universe. In this section, we apply these approaches to some of
the theories of gravity being surveyed in section 5. The level
to which we probe these regimes of theories depends on the
amount of work in the literature on these branches of theories
with TG.

TG poses new challenges in the perturbative sector as well
since the tetrad and spin connection approach means that we
cannot utilize the traditional mechanics of perturbation theory
in the metrical formulation of gravity theories. In section 7 we
discuss these crucial points by opening on the traditional 3+1
decomposition of the metric and how this can be translated
to teleparallel geometry. Together with a discussion about the
SVT decomposition, we then explore how this can be applied
within this framework.We also discuss the idea of gauge trans-
formations which are important for relating results between
gauge setups. While we use this pathway to cosmological per-
turbation theory in a number of theoretical setups, the analysis
is much more general and lays out the general approach one
should take to this kind of study. Indeed, in section 8, we use
this approach to probe the polarization structure of GW in the
various scenarios that it has been studied in the literature. Here,
we find a rich structure of polarizations which manifest some
of the propagating DoF of each theory, and their subclasses.

In the final part of our Review on TG, we explore the obser-
vational sector of the theory. Firstly, in section 9 we ana-
lyze works related to astrophysics and how the theories from
section 5 can impact those physical process and observational
measurements. Indeed, to probe this regime of physics we first
need to understand very well how the tetrad spin connection
pair can be formulated in a good way to best describe the phys-
ical systems that we know from metrical approaches to grav-
ity. We open with long discussion on these technical details
together with an explanation of the problem of how a gen-
eralized Birkhoff theorem may be conceptualized in TG. On
the observational side of things, we work out both the classic
Solar System tests and their extension to the so-called gravito-
magnetic effect, as well as some details of the PPN analysis as
applied to TG. We then move to the idea of compact objects in
TG which is poorly understood. By this, we mean that the lit-
erature contains some analyses on the topic but which could be
better expanded to explore other regime more related to astro-
physical measurements. Moreover, due to the good tetrad-spin
connection pair paradigm, some early works may need cor-
recting, as we explain in this section. In addition, we discuss
the open problems related to this topic such as the issue about
interpreting black holes singularities and the issue of worm-
holes. The section also contains a discussion of the impact of
some gravitational models in galactic rotation curve analyses
which are important to understanding well the issue of astro-
physical dark matter.

Finally, we explore the all important topic of observational
cosmology together with the results and general investigation
of precision cosmology in section 10. We do this by discuss-
ing firstly the state-of-the-art of cosmology and the growing
issues being posed by cosmological tensions. We also discuss
the state-of-the-art in terms of cosmography. Interestingly, we
have one of the few surveys that details the way in which
community codes need to be used to correctly explore mod-
ified gravity theories (rather than interpreting modified grav-
ity as an effective fluid in a dynamical DE fashion). In this
background, we then collect the most promising models being
introduced in the theories in section 5 and then promoted in
the background and perturbative sections that ensue in a com-
pendium survey for convenience. We explore the literature
for these models both in terms of observational constraints
and also their restrictions coming from precision cosmology
in the community codes we discussed earlier. This section
also entails a significant discussion on possible applications
of machine learning in modified gravity in general, and TG
in particular, such as in the use of Gaussian processes to find
confidence regions for cosmological proposals for f (T) gravity
models.

In this work, we have expanded on proposed solutions to
the problems related to finding good tetrad-spin connection
pairs that allow us to probe modified TG.We have also correc-
ted a number of small mistakes in the literature, and discussed
places where the literature has been incorrect in more signific-
ant ways. We explain a lot of this in section 1.1, and through
the remainder of the Review. Below, we also point out open
problems and issues in the teleparallel community that need
further attention for future work.

• Strong coupling in f (T) Gravity—Strong coupling is a
pathology of the disparity between DoF that appear in a
full Hamiltonian analysis and the DoF that appear at lin-
ear perturbative level for particular spacetimes. These patho-
logies may cause perturbations that are strongly coupled
to potentially arbitrarily higher order perturbations which
is problematic for making finite calculations. We describe
the issue further in section 5.3.1 as well as in other places
throughout the f (T) gravity analysis. It is not clear without
a full Hamiltonian analysis of other theories whether this
issue pervades other formulations of TG for these specific
spacetimes. However, we know that certain more nuanced
setups which can, with certainty, escape this issue such as

f(T,B) = f(−T+B) = f(
◦
R) gravity. It is important to high-

light that strong coupling is not a problem of a theory or
the model that populate it but of the solutions that can be
probed using traditional perturbation theory. It may be the
case, that the issue of strong coupling points to the need for
a new approach to perturbation theory. TG is a real alternat-
ive to the curvature-based geometry of GR, and thus it is not
totally surprising that certain approaches breakdown such as
the way that the linearized equations are derived. Thus, new
approaches to taking perturbations in f (T) should be invest-
igated for potential curing of the strong coupling problem,
particularly in the case of cosmological perturbations.
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• Good tetrad-spin connection pairs—In this Review, we
have made an active effort to fully immerse readers into the
covariant formulation of TG. To this end, we introduce the
spin connection and its integral importance in sections 2,
3, and 5.1. Here, we also describe how the antisymmetric
field equations are related to the spin connection compon-
ents. Thus, in TGwe find additional six equations from these
antisymmetric equations of motion which are related to the
Local Lorentz DoF.We give examples of this in section 5.12
but more work needs to be done in order to better under-
stand other examples in the plethora of TG theories, as well
as to ground a more routine procedure to finding these good
tetrad-spin connection components.

• Quantum gravity—The quantization of GR and other grav-
itational theories has been a long-standing programme in
gravitational research. As is well known in the community,
there are many attempts at constructing a quantum comple-
tion of GR, which had had various successes. In section 4.4,
we detail some possible insights that TEGR may have in
resolving the problems of quantizing GR. However, many
details remain to be worked out and a fully fledged quantum
completion of TEGR remains unknown in the literature.
Moreover, attempts at using themechanisms of modified TG
to construct teleparallel quantum theories of gravity remain
poorly studied and would be an interesting problem to have
tackled. In this vein, loop quantum gravity also uses very
similar analytical tools as TG to approach the quantum grav-
ity problem. It would be interesting to use similar routes in
TG and to explore the differences that may emerge between
the two approaches.

• Black holes—Black holes are a fundamental part of astro-
physics research from individual black hole systems to
understanding the dynamics of galaxies. In section 9.4.2, we
discuss the foundational concepts behind black hole phys-
ics in TG from their definition to their impact on the photon
spherewhich has become a detectable phenomenon in recent
years. However, a fully fleshed out description continues to
remain an open problem. It is crucial that a fully fledged
route is opened to black hole physics for the theory to con-
tinue to progress beyond toy model solutions and into more
complicated and physical scenarios.

• Compact stars—Another important aspect to astrophysics
is that of compact stars which are ubiquitous throughout
astronomy and have a huge impact on observational astro-
nomy such as in the measurements of pulsars. Better explor-
ing the inner mechanics of these stars in TG, both in terms
of foundations and in the context of simulations, is crucial to
having a competitive description of these all important stars
in TG.

• Galactic simulations—GR necessitates CDM to accurately
describe the dynamics of galaxies and clusters of galaxies.
In section 9.5, we detail how the galactic dynamics may
be explained using a particular form of f (T) gravity. It is
not clear if this can also be achieved in other f (T) models
or other TG theories. It would be interesting to pursue this
problem further and to also expand the analysis to include
simulations for clusters of galaxies.

• Teleparallel cosmology codes—Many cosmological sur-
veys interpret extended theories of gravity as an effect-
ive fluid in the cosmological context. This is accurate at
background level and can help in many implementations of
modified gravity in community codes related to cosmology.
However, the perturbations that one determines from the
gravitational section, for these terms, and that determined
by the code through the fluid interpretation do not equate
to each other. While interesting a dynamical dark energy
approach, a full implementation of perturbations from TG in
these codes in terms of modified Boltzmann equations and
perturbation modules would be extremely advantageous to
moving the framework forward in the observational sector,
and particularly for the precision cosmology approach. We
explain this prospect further in section 10.

In this Review, we have attempted to give a snapshot of the
current state-of-the-art of TG together with possible future dir-
ections which are necessary for the topic to progress forward
both in terms of its foundations as well as in terms of obser-
vational predictions. TG is a very novel approach to modified
gravity which naturally produces problems that require novel
solutions. It will be interesting to see how the community
advances over the next decade of research.
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Appendix A. Variations in TG

In this section we will briefly collect the variations of some
basic and some more complicated quantities of teleparallel
theory, in order for the reader to familiarize themselves with
the notation. Apart from that we will calculate the gauge cur-
rent and finally we will discuss the variations of specific the-
ories, i.e. the f(T,B,ϕ,X), f(T,B,TG,BG) and the teleparallel
analogue of Horndeski gravity (BDLS).

A.1. Basic teleparallel quantities

Let us start by showing some necessary and useful identities

∂eBν
∂eAµ

= δ BA δ
µ
ν , (A.1a)

∂EBν

∂eAµ
=−EBµEAν , (A.1b)

∂e
∂eAµ

= eEA
µ, (A.1c)

∂gαβ

∂eAµ
=−gµβEAα− gµαEA

β . (A.1d)

Using the above identities, one can easily obtain the vari-
ations of basic quantities with respect to the tetrad, δe, such
the inverse tetrad, EAµ, the determinant of the tetrad, e, a gen-
eral metric and its inverse, (gµν ,gµν), as well as the torsion
tensor, Tαµν and the torsion vector, Tµ. All of the above vary
as follows

δeEA
µ =−EBµEAνδeBν , (A.2a)

δee= δdet(eAµ) = eEA
µδeAµ, (A.2b)

δegµν = ηAB
(
eAµδe

B
ν + eAνδe

B
µ

)
, (A.2c)

δeg
µν =−(gµαEA

ν + gναEA
µ)δeAα, (A.2d)

δeT
α
αµν =−EAαTβµνδeAβ + 2EA

αδeΓ
A
[νµ] (A.2e)

=−EAαTβµνδeAβ +EA
α

×
[
∂µδe

A
ν − ∂νδe

A
µ+ωA

Bµδe
B
ν −ωA

Bνδe
B
µ

]
, (A.2f )

δeT
µ =−

(
EA

µTλ+ gµλTA+ TλA
µ
)
δeAλ

+ gµνEA
λ
(
∂λδe

A
ν − ∂νδe

A
λ+ω A

Bλδe
B
ν −ω A

Bνδe
B
λ

)
.

(A.2g)

In what follows, we consider these variations familiar, in
order to move to more complicated expressions. It is crucial
to see how the torsion scalar varies with respect to the tetrad.
Thus, using the above quantities, we have

δeT=
1
4
δ(TµναTµνα)+

1
2
δ(TµναTνµα)− δ(TµTµ), (A.3)

where

δ(TµναTµνα) = 4Tµ
ναEA

µ(∂νδe
A
α+ωA

Bνδe
B
α)

− 4TµναTµνβEA
βδeAα, (A.4a)

δ(TµναTνµα) = 2(Tβνµ−Tµνβ)TνµαEA
αδeAβ

+ 2(Tµν
β −Tβν

µ)EA
ν(∂µδe

A
β +ωA

Bµδe
B
β),

(A.4b)

δ(TµTµ) =−2(−TβTαβµ+TαTµ)EA
µδeAα

− 2(TµEA
β −TβEA

µ)(∂µδe
A
β +ωA

Bµδe
B
β).

(A.4c)

By replacing equations (A.4a)–(A.4c) in equation (A.3),
integrating by parts and neglecting the boundary terms,
we get

eδeT= 2e

(
1
e
∂µ(eSA

λµ)−TσµASσ
µλ+ ωB

AνSB
νλ

)
δeAλ.

(A.5)

Similarly, the variation of the torsion tensor with respect to
the spin connection ωA

Bµ reads from equation (1.6a)

δωT
α
µν = δω(EA

αTAµν) = EA
αδωT

A
µν

= EA
αeBνδω

A
Bµ−EA

αeBµδω
A
Bν , (A.6)

and thus, the torsion vector becomes

δωTµ = δωT
α
αµ = EA

αeBνδω
A
Bα− δωB

Bν . (A.7)

It is worth noticing that the spin connection has to be
purely inertial, since if one varies the teleparallel action with
respect to arbitrary spin connection coefficients, the associated
equations of motion will lead to the vanishing of the torsion
tensor [123]. However, if one assumes a spin connection in
the inertial class only, ωA

Bµ = ΛA
C∂µ(Λ

−1)CB, effectively it
means that there exists a frame in which ω= 0 (Weitzenböck
gauge), but simultaneously one is allowed to perform a local
Lorentz transformation ΛA

B that belongs to the Lorentz group
and which produces the above connection.
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A.2. Calculation of the gauge current

By definition, the gauge current can be written as

JAµ =−1
e
∂ (eT)

∂eAµ
=−TE µ

A − ∂T

∂eAµ
, (A.8)

where equation (A.1c) was used for the tetrad determinant
derivative. Now, using equation (1.6d), this can be expanded
to

JAµ =−TE µ
A − 1

4
∂TBσµ̄
∂eAµ

T σµ̄
B − 1

4
∂T σµ̄

B

∂eAµ
TBσµ̄−

1
2
∂TBσρ
∂eAµ

TρσB

− 1
2
TBσρ

∂TρσB
∂eAµ

+
∂Tρσρ
∂eAµ

T µ
µσ + Tρσρ

∂T µ̄
µ̄σ

∂eAµ
, (A.9)

where the torsion tensor expression in equation (3.28) means
that the derivatives in the second and fourth terms can be
determined by

∂TBσµ̄
∂eAµ

= ωBAσδ
µ
µ̄ −ωBAµ̄δ

µ
σ , (A.10)

while the derivatives in the third, fifth, sixth and seventh term
turn out to respectively be represented by

∂T σµ̄
B

∂eAµ
=

∂

∂eAµ

(
ηBB̄T

B̄
σ̄λg

σσ̄gµ̄λ
)

=−T µµ̄
B E σ

A −T µ̄
BA gµσ −T σµ

B E µ̄
A −T σ

B Ag
µµ̄

+ ηBB̄ω
B̄
Aσ̄g

σσ̄gµµ̄− ηBB̄ω
B̄
Aλg

σµgµλ, (A.11a)

∂TρσB
∂eAµ

=
∂

∂eAµ

(
E µ̄
B gσσ̄E ρ

B̄ TB̄σ̄µ̄

)
=−TρσAE

µ
B −TµσBE

ρ
A −TρµBE

σ
A −TρABg

µσ

+E ρ
B̄

(
E µ
B gσσ̄ωB̄Aσ̄ −E µ̄

B gσµωB̄Aµ̄

)
, (A.11b)

∂Tρσρ
∂eAµ

=
∂

∂eAµ

(
E ρ
B gσσ̄TBσ̄ρ

)
=−TµσA−TρµρE

σ
A −TρAρg

µσ +E µ
B gσσ̄ωBAσ̄

−E ρ
B gσµωBAρ, (A.11c)

∂T µ̄
µ̄σ

∂eAµ
=

∂

∂eAµ

(
gσσ̄T

µ̄σ̄
µ̄

)
=−TµσA+E µ

B ωBAσ − δµσE
ρ
B ω

B
Aρ, (A.11d)

where the derivatives in equations (A.1a), (A.1b) and (A.1d)
were used throughout. By combining these derivative contri-
butions in equation (A.9)

J µ
A =−TE µ

A + 2ωBAσS
µσ
B + 2TBσAS

σµ
B , (A.12)

where a long but straightforward series of simplifications were
taken together with the expressions for the contortion tensor in
equation (4.149) and superpotential in equation (4.163).

A.3. Example teleparallel theories

Here we will give the variations of teleparallel quantities
that appear in three well-known modifications of TG; the
f(T,B,ϕ,X), the f(T,B,TG,BG) theory presented in section 5.6
and the BDLS theory in section 5.8.2.

A.3.1. f(T,B,ϕ,X). Apart from the bare quantities that we dis-
cussed so far, one can encounter those in arbitrary functions,
such as f(T), f(T,B) and so on. For this reason, we thought
it would be useful to consider a general function of the form
f(T,B,ϕ,X) in order to discuss its variations. Thus, varying the
Lagrangian

L= ef(T,B,ϕ,X), (A.13)

with respect to the tetrad we get

δe(ef(T,B,ϕ,X)) = f(T,B,ϕ,X)δee+ efTδeT+ efBδeB+ efXδeX,
(A.14)

where f i with i= T,B,X is the partial derivative of f with
respect to i. The first term is easily obtained by equation (A.2c)
and the second one by

efTδT=−2
[
e(∂µfT)SA

µβ + ∂µ
(
eSA

µβ
)
fT− efTT

σ
µASσ

βµ
]
δeAβ .

(A.15)

For the third term we have B= 2∂µ(eTµ)/e and thus

efBδeB=− [BfB+ 2Tµ∂µfB]δee− 2e(∂µfB)δeT
µ. (A.16)

The first term of the right-hand side is trivial; the second term
gives

−2e(∂µfB)δeT
µ =

[
2e(∂µfB)

(
TAg

µβ +TβEA
µ+TβA

µ

+ωβA
µ−ωσAσg

µβ
)
+ 2∂µ

(
eEA

µ(∂β fB)
)

− 2∂ν
(
eEA

β(∂ν fB)
)]
δeAβ . (A.17)

Thus, equation (A.16) will be

e fBδeB= e
[
(∂µfB)

(
SA
µβ +KµβA+EC

βEA
σgλµ∂σe

C
λ

−EC
σEA

λgµβ∂λe
C
σ

)
+EA

µ
◦
∇µ

◦
∇β fB−EA

β
◦
□fB−BfBEA

β
]
δeAβ ,

(A.18)

where the relation e
◦
∇µYµ = ∂µ(eYµ) and the definitions of

the superpotential and the contortion were used. Using several
identities, it is possible to show that all the terms appearing in
the first line of the above equation is 2(∂µfB)SAλµ (see [157]
for further details). Thus, the variations of the boundary term
contribution are

e fBδeB= 2e
(
EA

ν
◦
∇λ

◦
∇µfB−EA

λ
◦
□fB−

1
2
BfBEA

λ

+(∂µfB)SA
λµ
)
δeAλ. (A.19)
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Finally, the kinetic term in equation (A.14) will give

efXδeX=−1
2
efX(∂µϕ)(∂νϕ)δeg

µν

= efX(∂µϕ)(∂νϕ)g
µβEA

νδeAβ . (A.20)

A.3.2. f(T,B,TG,BG) theory. The action of the theory is given
by

Sf(T,B,TG,BG) =
1

2κ2

ˆ
d4xe f(T,B,TG,BG)+Sm, (A.21)

and its variation will be

δSf(T,B,TG,BG) =
1

2κ2

ˆ
d4x [fδe+ efTδT+ efBδB

+efTGδTG+ efBGδBG] + δSm, (A.22)

where

fδe= efEA
βδeAβ , (A.23a)

efTδT=−2
[
e(∂µfT)SA

µβ + ∂µ
(
eSA

µβ
)
fT− efTT

σ
µASσ

βµ
]
δeAβ ,

(A.23b)

efBδB=
[
2eEA

ν
◦
∇β

◦
∇µfB− 2eEA

β
◦
□fB−BefBEA

β

−2e(∂µfB)SA
µβ
]
δeAβ , (A.23c)

efTGδTG =
[
∂µ

(
EH

µEB
β(YBA

H−YHA
B+YA

[BH])
)

+TIABEH
β
(
YBI

H−YHI
B+YI

[BH]
)

− 2efTGδ
MBCD
IJKL ED

βKJM
IKEB

K∂A(K
L
C
E)
]
δeAβ ,

(A.23d)

efBGδBG =−
[
∂µ

(
(PBA

H−PHA
B+PA

[BH])EH
µEB

β
)

+TIABEH
β
(
PBI

H−PHI
B+PI

[BH]
)

− δMBCDIJKL eED
β(∂MfBG)K

J
B
I(∂AK

L
C
K)

+ e(∂µfBG)(EA
βBµG−EA

µBβG)+ efBGBGEA
β
]
δeAβ .

(A.23e)

In the above, we have defined

XA
IJ =

∂TG
∂KAIJ

, YBIJ = efTGX
B
IJ− 2δCABDELKJ ∂µ

×
(
efTGED

µKLC
EKIA

K
)
, (A.24)

as well as

BA
G = ϵIJKLϵ

BCDA

(
1
2
KJB

IRKLCD+KJB
IKFC

KKLD
F

)
= δABCDIJKL KJB

I
(
(KLC

K),D+KCD
MKLM

K
)

(A.25)

and

PB
IJ = eEM

µ(∂µfBG)
[(

(KLC
K),D+KCD

PKLP
Q
)
δMBCDIJKL

+ ηPJδ
MDPB
QCKL K

C
D
QKLI

K+ δMPCDKLIJ KLP
KKCD

B
]

− δACBDKLIJ ∂σ
(
eED

σEA
µ(∂µfBG)K

L
C
K
)
. (A.26)

The equations of motion are given in section 5.6
equation (5.91).

A.3.3. Teleparallel analogue of Horndeski theory. By vary-
ing the action (5.126) with respect to the tetrads, we find that

δeSBDLS = eLTeleEA
µδeAµ+ eδeLTele + e

5∑
i=2

LiEA
µδeAµ

+ eδe

5∑
i=2

Li+ 2κ2eΘA
µδeAµ = 0. (A.27)

The variations of δe
∑5

i=2Li give the standard Horndeski field
equations whereas the variations δeLTele are related to the extra
terms coming from TG. After doing several computations, one
finds that the field equations can be written as

2(∂λGTele,T)SA
µλ+ 2e−1∂λ(eSA

µλ)GTele,T

− 2GTele,TT
σ
λASσ

λµ+ 2GTele,Tω
B
AνSB

µν

−ϕ;A

[
GTele,Xϕ

;µ−GTele,I2v
µ− 2GTele,J1a

µaJϕ
;J

+GTele,J3vItK
µIϕ;K− 2GTele,J5 t

IµKtIJKϕ
;J

+ 2GTele,J6 tILKt
µ
M
Iϕ;Kϕ;Lϕ;M− 2GTele,J8 tIJKt

IJµϕ;K

−GTele,J10a
Jϕ;I
(
ϵµJCDtI

CD+ ϵIJCDt
µCD
)]

+
1
3

[
MI(ϵIB

CDEC
µTBAD− ϵIB

CDED
µωB

AC)

+ e−1∂ν

(
eMIϵIA

CDEC
νED

µ
)]

−NI(EI
µωρAρ−ωµAI−TµAI− vAEI

µ)

+ e−1∂ν

(
eNI(EA

νEI
µ−EA

µEI
ν)
)

−OIJKHIJKA
µ+ e−1∂ν

(
eOIJKLIJKA

µν
)
−LTeleEA

µ

+ 2EA
νgµα

5∑
i=2

G(i)
αν = 2κ2ΘA

µ, (A.28)

where we have defined

MI = 2GTele,Taxa
I+ 2GTele,J1ϕ

;Iϕ;JaJ

+GTele,J10ϵA
I
CDϕ

;Aϕ;JtJ
CD, (A.29a)

NI = 2GTele,Tvecv
I+GTele,I2ϕ

;I+ 2GTele,J2ϕ
;Iϕ;JvJ

+GTele,J3ϕ
;Kϕ;JT iKJ, (A.29b)
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OIJK = GTele,J3ϕ
;Jϕ;KvI+ 2GTele,J5ϕ

;Lϕ;JT iL
K

+ 2GTele,J6ϕ
;Jϕ;Kϕ;Lϕ;MT iLM

+ 2GTele,J8ϕ
;Lϕ;KtIJL+GTele,J10ϵAB

JKϕ;Aϕ;Bϕ;I,
(A.29c)

HIJKA
µ =

∂tIJK
∂eAµ

, (A.29d)

LIJKA
µν =

∂tIJK
∂eAµ,ν

. (A.29e)

In addition, the variation of the scalars appearing in LTele is
given by

eGTele,TaxδeTax = 2eGTele,Taxa
IδeaI, (A.30a)

eGTele,TvecδeTvec = 2eGTele,Tvecv
IδevI, (A.30b)

eGTele,I2δeI2 = eGTele,I2ϕ
;IδevI− eGTele,I2v

µϕ;Aδee
A
µ,

(A.30c)

eGTele,J1δeJ1 = 2eGTele,J1ϕ
;Iϕ;JaJδeaI− 2eGTele,J1aJa

µϕ;Jϕ;Aδee
A
µ,

(A.30d)

eGTele,J3δeJ3 = eGTele,J3ϕ
;Kϕ;JT iKJδevI+ eGTele,J3ϕ

;Jϕ;KvIδetIJK

+ eGTele,J3vItK
µIϕ;Kϕ;Aδee

A
µ, (A.30e)

eGTele,J5δeJ5 = 2eGTele,J5ϕ
;Lϕ;JT iL

KδetIJK

− 2eGTele,J5 t
IµKtIJKϕ

;Jϕ;Aδee
A
µ, (A.30f )

eGTele,J6δeJ6 = 2eGTele,J6ϕ
;Jϕ;Kϕ;Lϕ;MT iLMδetIJK

+ 2eGTele,J6 tILKt
µ
M
Iϕ;Kϕ;Lϕ;Mϕ;Aδee

A
µ,

(A.30g)

eGTele,J8δeJ8 = 2eGTele,J8ϕ
;Lϕ;KtIJLδetIJK

− 2eGTele,J8 tIJKt
IJµϕ;Kϕ;Aδee

A
µ, (A.30h)

GTele,J10δeJ10 = eGTele,J10ϵA
I
CDϕ

;Aϕ;JtJ
CDδeaI

+ eGTele,J10ϵAB
JKABϕ;Aϕ;IδetIJK

− eGTele,J10a
Jϕ;Iϕ;A

(
ϵµJCDtI

CD+ ϵIJCDt
µCD

)
δee

A
µ.

(A.30i)

By varying the action (5.126) with respect to the scalar field
we obtain the modified Klein Gordon equation

◦
∇µ

(
Jµ−Tele +

5∑
i=2

Jiµ

)
= Pϕ−Tele +

5∑
i=2

Piϕ, (A.31)

where Jµ−Tele and Pϕ−Tele are defined as

Jµ−Tele =−GTele,X(
◦
∇µϕ)+GTele,I2vµ+ 2GTele,J1aµa

ν ◦
∇νϕ

−GTele,J3vαtµ
να(

◦
∇νϕ)− 2GTele,J5 t

βναtβµα(
◦
∇νϕ)

+ 2GTele,J8 t
αν
µtαν

β(
◦
∇βϕ)

− 2GTele,J6 t
ναβ tµ

σ
ν(

◦
∇αϕ)(

◦
∇βϕ)(

◦
∇σϕ),

−GTele,J10a
ν(

◦
∇αϕ)(ϵµνρσtαρσ + ϵανρσt

µρσ),

(A.32a)

Pϕ−Tele = GTele,ϕ. (A.32b)

For more details about the derivation of these equations, see

[666]. Using
◦
R=−T+B, one finds that Piϕ is given by [305]

P2
ϕ = G2,ϕ, (A.33a)

P3
ϕ =

◦
∇µG3,ϕ

◦
∇µϕ, (A.33b)

P4
ϕ = G4,ϕ(−T+B)+G4,ϕX

[
(
◦
□ϕ)2 − (

◦
∇µ

◦
∇νϕ)

2
]
,

(A.33c)

P5
ϕ =−

◦
∇µG5,ϕ

◦
Gµν

◦
∇νϕ−

1
6
G5,ϕX

×
[
(□ϕ)3 − 3□ϕ(

◦
∇µ

◦
∇νϕ)

2 + 2(
◦
∇µ

◦
∇νϕ)

3
]
,

(A.33d)

and Jiµ is defined as [305]

J2µ =−L2,X
◦
∇µϕ, (A.34a)

J3µ =−L3,X
◦
∇µϕ+G3,X

◦
∇µX+ 2G3,ϕ

◦
∇µϕ, (A.34b)

J4µ =−L4,X
◦
∇µϕ+ 2G4,X

◦
Rµν

◦
∇νϕ

− 2G4,XX

( ◦
□ϕ

◦
∇µX−

◦
∇νX

◦
∇µ

◦
∇νϕ

)
− 2G4,ϕX(

◦
□ϕ

◦
∇µϕ+

◦
∇µX), (A.34c)

J5µ =−L5,X
◦
∇µϕ− 2G5,ϕ

◦
Gµν

◦
∇νϕ

−G5,X

[ ◦
Gµν

◦
∇νX+

◦
Rµν□ϕ

◦
∇νϕ−

◦
Rνλ

◦
∇νϕ

◦
∇λ

◦
∇µϕ

−
◦
Rαµβν

◦
∇νϕ

◦
∇α

◦
∇βϕ

]
+G5,XX

{1
2

◦
∇µX

[
(
◦
□ϕ)2 − (

◦
∇α

◦
∇βϕ)

2
]

−
◦
∇νX

( ◦
□ϕ

◦
∇µ

◦
∇νϕ−

◦
∇α

◦
∇µϕ

◦
∇α

◦
∇νϕ

)}
+G5,ϕX

{1
2

◦
∇µϕ

[
(
◦
□ϕ)2 − (

◦
∇α

◦
∇βϕ)

2
]

+
◦
□ϕ

◦
∇µX−

◦
∇νX

◦
∇ν

◦
∇µϕ

}
. (A.34d)
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It is easy to see that the equations of motion of well-studied
theories can be recovered by choosing the form of the Gi

functions; e.g. Brans–Dicke theory can be obtained by setting
GTele = 0, G2 =

ω
ϕX, G3 = 0, G4 = ϕ, and G5 = 0.

Appendix B. Geff calculation in f(T,B) gravity

Here we present all the coefficients appearing in section 7.7.2
regarding the effective Newton’s constant in f(T,B) gravity
and subcases (for more details see [158])

A1 =−a4ΥΠ̇(Π̇+ 12H3fTT), (B.1a)

A2 =−4a2HΥ(2ΠBΠ̇− 12H3fBBfTB−HΥfT), (B.1b)

A3 =−16H2ΞΥ, (B.1c)

A4 =−3a6Π̇(ΠB+ΠT)

[
Π ′
(
6Ḣ2(ΠB− fTB)

+ 6H2Ḣ(3fTB−ΠB)+ 18H4(ΠT− fTB)−H2fT−HḟT
)

+ 6H2
(
Ḣ(−24H3( fTB−ΠB)( fTB−ΠT)+ΠB ḟT)+HΠ̇2

− 12HḢ2( fTB(ΠB− fTB)+Ξ)

+H2(2HfT+ ḟT)( fTB−ΠT)
)]
, (B.1d)

A5 = 3a4
(
−4H4fT

2(ΠB+ΠT)
2 + 48H4fTB

3
(
−12H2(5ΠB+ 4ΠT)Ḣ+ 24(ΠB+ΠT)Ḣ

2 +HΠ̇
)
+ 24H3fTB

2

×
(
24H3

(
2Ξ+ (4ΠB+ΠT)(ΠB+ 2ΠT)

)
Ḣ− 12H

(
3Ξ+ 2

(
ΠB

2 + 4ΠBΠT+ΠT
2
))
Ḣ2

−H2
(
2(ΠB+ 2ΠT)Π̇+ (ΠB+ΠT)ḟT

)
− Ḣ

(
(11ΠB+ 10ΠT)Π̇+ (ΠB+ΠT)ḟT

))

+ 2HfT

(
−24H3fTB

2(ΠB+ΠT)(3H
2 − 8Ḣ)+ (ΠB+ΠT)

(
−H2ΠT+ΠB(7H

2 − 3Ḣ)
)
Π̇+ 4H2fTB

×
(
6H3

(
−ΠB

2 + 3ΠBΠT+ 2
(
Ξ+ΠT

2
))

− 12H
(
4Ξ+ 2ΠB

2 + 5ΠBΠT−ΠT
2
)
Ḣ+(ΠB+ΠT)Π̇

)

+ 3H
(
16H4ΠB

(
−Ξ+ΠT

2
)
+ 16H2ΠB

(
4Ξ+ 3ΠBΠT−ΠT

2
)
Ḣ− 4Ξ(ΠB+ΠT)Ḣ

2 −H(ΠB+ΠT)
2 ḟT
))

+ 3ΠB

(
192H6

(
ΞΠB+

(
Ξ+ΠB

2
)
ΠT

)
Ḣ− 96H4ΠT(3Ξ+ 2ΠBΠT)Ḣ

2 +(ΠB+ΠT)ḢΠ̇
2

+ 3H2(ΠB+ΠT)Π̇(−Π̇+ ḟT)− 8H5
((

−2Ξ+ 3ΠT(ΠB+ΠT)
)
Π̇+ 2(Ξ+ΠBΠT)ḟT

)
− 4H3Ḣ

((
29Ξ+ 20ΠBΠT− 7ΠT

2
)
Π̇+ 2

(
Ξ−ΠT

2
)
ḟT
))

+ fTB

(
−12H3

(
H2
(
4Ξ− 8ΠB

2 − 6ΠBΠT− 6ΠT
2
)

−
(
29Ξ+ 11ΠB

2 + 33ΠBΠT− 7ΠT
2
)
Ḣ
)
Π̇+ (ΠB+ΠT)(4H

2 − 3Ḣ)Π̇2

+ 24H3

(
12H(ΠB+ΠT)(3Ξ+ 4ΠBΠT)Ḣ

2 +H2
(
2Ξ+ΠB

2 + 3ΠBΠT
)
ḟT

+ Ḣ

(
−24H3

(
ΠB

3 +ΞΠT+ 4ΠB
2ΠT+ΠB

(
3Ξ+ 2ΠT

2
))

+
(
Ξ−ΠT

2
)
ḟT

))))
, (B.1e)
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A6 = a2
(
−4H2fT

2(ΠB+ΠT)
2 + 864H6( fTB)

3(3ΠB+ 2ΠT)

+ 24H3ΠB(7Ξ+ 6ΠBΠT)Π̇−ΠB(ΠB+ΠT)Π̇
2

+ 4HfT

(
−6H3( fTB−ΠB)

(
2Ξ+ (ΠB−ΠT)ΠT

)
− 9H

(
( fTB)

2(ΠB+ΠT)+ΠB
(
Ξ−ΠT

2
)

+ fTB
(
−Ξ+ΠT

2
))
Ḣ+ΠB(ΠB+ΠT)Π̇

)
− 12H3fTB

2
(
72H3ΠB(4ΠB+ 5ΠT)+ 60HΞḢ

− (7ΠB+ 5ΠT)Π̇
)
+ fTB

(
864H6

(
3ΞΠB+ΠB

3 −ΞΠT

+ 4ΠB
2ΠT

)
+ 720H4Ξ(ΠB+ΠT)Ḣ

− 12H3
(
10Ξ+ 7ΠB

2 + 17ΠBΠT
)
Π̇+ (ΠB+ΠT)Π̇

2
)

+ 12H3

(
−72H3ΠB

(
ΞΠB+

(
Ξ+ΠB

2
)
ΠT

)
− 60HΞ(2Ξ+ΠBΠT)Ḣ+ 5Ξ(ΠB+ΠT)ḟT

))
, (B.1f )

A7 = 12H2Ξ(12H2( fBB fTT+ 2Ξ)+ΥfT), (B.1g)

∆1 =−a4A1Π̇(12HΠBḢ− Π̇), (B.1h)

∆2 = a2
(
−2HΠBΠ̇(6a2A2Ḣ− 5A1)+ a2A2Π̇

2

+8A1H
2(−ΥfT− 6ΞḢ)

)
, (B.1i)

∆3 = a4A3Π̇
2 − 2a2HΠBΠ̇(6a

2A3Ḣ− 5A2)

+ 8H2
(
a2A2(−ΥfT− 6ΞḢ)+ 3A1Ξ

)
, (B.1j)

∆4 = 2H
(
4H
(
a2A3(−ΥfT− 6ΞḢ)+ 3A2Ξ

)
+ 5a2A3ΠBΠ̇

)
,

(B.1k)

∆5 = 24A3H
2Ξ, (B.1l)

∆6 = 2a4A4Π̇(Π̇+ 12H3fTT), (B.1m)

∆7 = 2a2
(
Π̇
(
a2A5(Π̇+ 12H3fTT)+ 8A4HΠB

))
+ 96A4H

4( fBB fTT+Ξ)+ 48A4H
4fTB( fTT−Υ)

− 4A4H
2ΥfT, (B.1n)

∆8 =−2a4A6Π̇(−Π̇− 12H3fTT)+ 8a2A5H

+
(
−(HΥfT− 2ΠBΠ̇)+ 24H3( fBB fTT+Ξ)

+12H3fTB( fTT−Υ)
)
+ 32A4H

2Ξ, (B.1o)

∆9 = 2a4A7 − Π̇(−Π̇− 12H3fTT)+ 32A5H
2Ξ

+ 8a2A6H
(
−(HΥfT− 2ΠBΠ̇)

+24H3( fBBfTT+Ξ)+ 12H3fTB( fTT−Υ)
)
, (B.1p)

∆10 = 8H
(
a2A7

(
−(HΥfT− 2ΠBΠ̇)+ 24H3( fBB fTT+Ξ)

+12H3fTB( fTT−Υ)
)
+ 4A6HΞ

)
, (B.1q)

∆11 = 32A7H
2Ξ. (B.1r)

Appendix C. PPN parameters for teleparallel
analogue of Horndeski

The terms appearing in table 20 are

H,1 =G2,X− 2G3,ϕ+GTele,X, (C.1a)

H,2 =GTele,ϕT, (C.1b)

H,3 =GTele,I2 − 2G4,ϕ, (C.1c)

H,4 =GTele,Tvec , (C.1d)

H,5 = 2GTele,Tvec −GTele,T+G4, (C.1e)

H,6 = 2
(
G2,X− 2G3,ϕ+GTele,X

)(
(GTele,ϕT−GTele,ϕTvec)

× (G2,X− 2G3,ϕ+GTele,X)+ (GTele,I2 − 2G4,ϕ)

× (2G4,ϕϕ−GTele,ϕI2)
)
+(GTele,I2 − 2G4,ϕ)

2

× (G2,ϕX− 2G3,ϕϕ+GTele,ϕX) , (C.1f )

and

β̃ = 4H2
,1H,3

(
H,2
(
4H,4H,5 − 2H2

,4 − 3H2
,5

)
+H,3

(
3H,4H,5 −H2

,4 +H2
,5

))
− 4H3

,1H,4H,5
(
H,4 − 2H,5

)
+H,1H

3
,3

(
8H,2

(
H,4 − 2H,5

)
+H,3

(
4H,4 + 7H,5

))
+H,3

(
−6H,2H

4
,3 + 3H5

,3 + 2H,6
(
H,5 − 2H,4

) 2
)

+G4,ϕ

(
− 8H,1H

3
,3
(
H,4 − 2H,5

)
+ 8H2

,1H,3
(
H2
,5 −H2

,4

)
+ 6H5

,3

)
. (C.2)

Here, Gi and GTele denote the constant Taylor coefficients at
the background level forGi andGTele (see equations (5.122a)–
(5.122d) and (5.125)).
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Appendix D. EoS terms for f(T,B) gravity

We include some definitions that are used in the derivation of
f(T,B) cosmology in section 10.3.3 which originated in [263].
General Taylor expansion model:

wx1 = [(4A2 + 27A3 + 11A4) ä(t)− (4A2 + 12A3 + 7A4) ȧ(t)] ,
(D.1)

wx2 =
[
4(3A3 +A4) ä(t)

2 + ȧ(t)2 + 4a(3)(t)(2A3ȧ(t)−A4ä(t))
]
,

(D.2)

wx3 =
[
(9A3 + 2A4)a

(3)(t)ȧ(t)+ ä(t)((4A2 + 3A4) ä(t)

+2(2A2 + 9A3 + 4A4) ȧ(t))] , (D.3)

wx4 =− [(4A2 + 9A3 + 6A4) ä(t)+ (4A3 +A4) ȧ(t)] , (D.4)

wx5 = 72(4A2 + 12A3 + 7A4) ȧ(t)
5 + 6a(t)3ȧ(t)

×
(
12A3a

(3)(t)+ ȧ(t)
)
, (D.5)

wx6 = 72(3A3 +A4)a(t)
2ȧ(t)2

[
ä(t)− a(3)(t)

]
+ a(t)5

[
A3B

2 +T(A4B+A2T+A1)+A0
]
, (D.6)

wx7 = 8A2 + 36A3 + 17A4, (D.7)

wx8 = a(t)5
[
−
(
A3B

2 +T(A4B+A2T+A1)+A0
)]
, (D.8)

w(z)1 =−A3B2 +T(A4B+A2T+A1)+A0

(z+ 1)5
, (D.9)

w(z)2 =
2

(z+1)3 −
96A3

(z+1)5

(z+ 1)4
, (D.10)

w(z)3 =
(8A2 + 36A3 + 17A4)

(z+ 1)10
, (D.11)

w(z)4 =

2(4A2+27A3+11A4)
(z+1)3 + 4A2+12A3+7A4

(z+1) 2

(z+ 1)7
, (D.12)

w(z)5 =

6(9A3+2A4)
(z+1) 6 +

2

(
2(4A2+3A4)

(z+1)3
− 2(2A2+9A3+4A4)

(z+1) 2

)
(z+1)3

(z+ 1)4
, (D.13)

w(z)6 =

16(3A3+A4)
(z+1) 6 −

24
(
− 2A3

(z+1) 2 −
2A4

(z+1)3

)
(z+1)4 + 1

(z+1)4

(z+ 1)3
, (D.14)

w(z)7 =−
72A3

(z+1)4 +
1

(z+1) 2

(z+ 1)5
, (D.15)

w(z)8 =
(3A3 +A4)

[
2

(z+1)3 +
6

(z+1)4

]
(z+ 1)6

, (D.16)

w(z)9 =
4A2 + 12A3 + 7A4

(z+ 1)10
, (D.17)

w(z)10 =
4A3+A4
(z+1) 2 − 2(4A2+9A3+6A4)

(z+1)3

(z+ 1)7
. (D.18)

Power law model:

wx1 =
{
(k− 1)a(t)5

...
a (t)+ 48ȧ(t)6 − 30a(t)ȧ(t)4ä(t)

+ a(t)4ä(t)
[....
a (t)+ 3(k− 1)ȧ(t)

]
− a(t)2ȧ(t)2

[
21ä(t)2 + 2

...
a (t)ȧ(t)

]
+ a(t)3

[
3ä(t)3 + ȧ(t)

(
2ȧ(t)

(....
a (t)− 2(k− 1)ȧ(t)

)
−...
a (t)ä(t))]} , (D.19)

wx2 =
[
ȧ(t)2 − a(t)ä(t)

]{
ȧ(t)2 − a(t) [ä(t)+ ȧ(t)]

}
, (D.20)

wx3 = b03
k+1(k− 1)kȧ(t)3

[
a(t)2

...
a (t)− 4ȧ(t)3 + 3a(t)ȧ(t)ä(t)

]
×
[
2a(t)ä(t)+ 4ȧ(t)2

a(t)2

]k
, (D.21)

wx4 =
t02m+23m(m− 1)m

[
ȧ(t) 2

a(t) 2

]m [
a(t)ä(t)− ȧ(t)2

]
+

wx3
[a(t)ä(t)+2ȧ(t) 2] 2

a(t)ȧ(t)
, (D.22)

wx5 =
b06k(k− 1)kȧ(t)

[
−a(t)2...a (t)+ 4ȧ(t)3 − 3a(t)ȧ(t)ä(t)

][ a(t)ä(t)+2ȧ(t) 2

a(t) 2

]k
[a(t)ä(t)+ 2ȧ(t)2]2

. (D.23)
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w(z)1 =

−6(k− 1)
(z+ 1)9

+
2
[

24
(z+1)5

− 3(k−1)
(z+1) 2

]
(z+ 1)7

+

24
(z+1)9 −

12
(z+1)7

−
2

[
2(k−1)

(z+1) 2 + 24
(z+1)5

]
(z+1) 2

(z+1) 2

(z+ 1)3
− 108

(z+ 1)12

 ,
(D.24)

w(z)2 =

[
1

(z+ 1)4
−

2
(z+1)3 −

1
(z+1) 2

z+ 1

]
, (D.25)

w(z)3 =


b023k−13k+1(k− 1)k

[
1

(z+1) 2

]k
(z+ 1)4

+
t02m+23m(m− 1)m

[
1

(z+1) 2

]m
(z+ 1)4

 . (D.26)
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[153] Mitrić P 2019 Canonical structure of the teleparallel
equivalent of general relativity (arXiv:1910.02810 [gr-qc])
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[241] Křšsák M 2017 Variational problem and bigravity nature of
modified teleparallel theories (arXiv:1705.01072 [gr-qc])

[242] Izumi K and Ong Y C 2013 Cosmological perturbation in
f (T) gravity revisited J. Cosmol. Astropart. Phys.
JCAP06(2013)029

[243] Golovnev A and Koivisto T 2018 Cosmological perturbations
in modified teleparallel gravity models J. Cosmol.
Astropart. Phys. JCAP11(2018)012

[244] Bahamonde S, Dialektopoulos K F, Hohmann M, Said J L,
Pfeifer C and Saridakis E N 2022 Perturbations in non-flat
cosmology for f (T) gravity (arXiv:2203.00619 [gr-qc])

[245] Golovnev A and Guzmán M-J 2020 Foundational issues in
f (T) gravity theory Int. J. Geom. Methods Mod. Phys.
0 2140007

[246] Li M, Miao R-X and Miao Y-G 2011 Degrees of freedom of
f (T) gravity J. High Energy Phys. JHEP07(2011)108

[247] Ferraro R and Guzmán M J 2018 Quest for the extra degree
of freedom in f (T) gravity Phys. Rev. D 98 124037

[248] Guzmán M J and Ferraro R 2019 Degrees of freedom and
local Lorentz invariance in f (T) gravity 15th Marcel
Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity,
Astrophysics and Relativistic Field Theories vol
3 (arXiv:1903.06774 [gr-qc])

[249] Ferraro R and Guzmán M J 2020 Pseudo-invariance and the
extra degree of freedom in f (T) gravity Phys. Rev. D
101 084017

[250] Nassur S B, Ainamon C, Houndjo M J S and Tossa J 2016
Unimodular f (T) gravity Eur. Phys. J. Plus 131 420

[251] Bamba K, Odintsov S D and Saridakis E N 2017 Inflationary
cosmology in unimodular F(T) gravity Mod. Phys. Lett. A
32 1750114

[252] Godonou A E, Houndjo M J S and Tossa J 2018 Holographic
dark energy model in unimodular f (T) gravity Int. J.
Geom. Methods Mod. Phys. 16 1950003

[253] Yang R-J 2011 Conformal transformation in f (T) theories
Europhys. Lett. 93 60001

[254] Bamba K, Odintsov S D and Sáez-Gómez D 2013 Conformal
symmetry and accelerating cosmology in teleparallel
gravity Phys. Rev. D 88 084042

[255] Obukhov Y N 1982 Conformal invariance and space-time
torsion Phys. Lett. A 90 13–16

[256] Wright M 2016 Conformal transformations in modified
teleparallel theories of gravity revisited Phys. Rev. D
93 103002

[257] Paliathanasis A 2017 de Sitter and Scaling solutions in a
higher-order modified teleparallel theory J. Cosmol.
Astropart. Phys. JCAP08(2017)027

[258] Sahlu S, Ntahompagaze J, Abebe A and Mota D F 2019
Accelerating universe in modified teleparallel gravity
theory IAU Symp. 356 397–9

[259] Bhattacharjee S 2021 Constraining f(T,B) teleparallel gravity
from energy conditions New Astron. 83 101495

[260] Zubair M, Waheed S, Atif Fayyaz M and Ahmad I 2018
Energy constraints and the phenomenon of cosmic

evolution in the f(T,B) framework Eur. Phys. J. Plus
133 452

[261] Bahamonde S, Zubair M and Abbas G 2018
Thermodynamics and cosmological reconstruction in
f(T,B) gravity Phys. Dark Universe 19 78–90

[262] Pourbagher A and Amani A 2019 Thermodynamics and
stability of f(T,B) gravity with viscous fluid by
observational constraints Astrophys. Space Sci.
364 140

[263] Escamilla-Rivera C and Levi Said J 2020 Cosmological
viable models in f(T,B) theory as solutions to the H0

tension Class. Quantum Grav. 37 165002
[264] Farrugia G, Levi Said J and Finch A 2020

Gravitoelectromagnetism, solar system test and weak-field
solutions in f(T,B) gravity with observational constraints
Universe 6 34

[265] Capozziello S, Capriolo M and Caso L 2020 Gravitational
waves in higher order teleparallel gravity Class. Quantum
Grav. 37 235013

[266] Franco G A R, Escamilla-Rivera C and Levi Said J 2020
Stability analysis for cosmological models in f(T,B)
gravity Eur. Phys. J. C 80 677

[267] Caruana M, Farrugia G and Levi Said J 2020 Cosmological
bouncing solutions in f(T,B) gravity Eur. Phys. J. C
80 640

[268] Bahamonde S and Capozziello S 2017 Noether symmetry
approach in f(T,B) teleparallel cosmology Eur. Phys. J. C
77 107

[269] Paliathanasis A 2021 Minisuperspace quantization of f(T,B)
cosmology Universe 7 150

[270] Myrzakulov R 2012 FRW cosmology in F(R,T) gravity Eur.
Phys. J. C 72 2203

[271] Salti M, Korunur M, Acikgoz I, Pirinccioglu N and Binbay F
2018 f(T,R) theory of gravity Int. J. Mod. Phys. D
27 1850062

[272] Ferraro R and Fiorini F 2011 Non trivial frames for f (T)
theories of gravity and beyond Phys. Lett. B 702 75–80

[273] Bengochea G R and Ferraro R 2009 Dark torsion as the
cosmic speed-up Phys. Rev. D 79 124019

[274] Ferraro R and Fiorini F 2008 On Born–Infeld gravity in
Weitzenböck spacetime Phys. Rev. D 78 124019

[275] Koivisto T and Tsimperis G 2019 The spectrum of
teleparallel gravity Universe 5 80

[276] Conroy A and Koivisto T 2018 The spectrum of symmetric
teleparallel gravity Eur. Phys. J. C 78 923

[277] Heisenberg L 2019 A systematic approach to generalisations
of general relativity and their cosmological implications
Phys. Rep. 796 1–113

[278] Biswas T, Gerwick E, Koivisto T and Mazumdar A 2012
Towards singularity and ghost free theories of gravity
Phys. Rev. Lett. 108 031101

[279] Geng C-Q and Luo L-W 2017 Teleparallel conformal
invariant models induced by Kaluza–Klein reduction
Class. Quantum Grav. 34 115012

[280] Formiga J 2014 Equivalence between an extension of
teleparallelism to a Weyl geometry and general relativity
Int. J. Theor. Phys. 53 1971–7

[281] Capozziello S, De Laurentis M and Dialektopoulos K F 2016
Noether symmetries in Gauss–Bonnet-teleparallel
cosmology Eur. Phys. J. C 76 629

[282] Gonzalez P and Vásquez Y 2015 Teleparallel equivalent of
Lovelock gravity Phys. Rev. D 92 124023

[283] González P, Reyes S and Vásquez Y 2019 Teleparallel
equivalent of Lovelock gravity, generalizations and
cosmological applications J. Cosmol. Astropart. Phys.
JCAP07(2019)040

[284] Bahamonde S, Marciu M, Odintsov S D and Rudra P 2021
String-inspired Teleparallel cosmology Nucl. Phys. B
962 115238

193

https://arxiv.org/abs/1905.11919
https://doi.org/10.1103/PhysRevD.97.124025
https://doi.org/10.1103/PhysRevD.97.124025
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1103/PhysRevD.101.103507
https://arxiv.org/abs/1705.01072
https://doi.org/10.1088/1475-7516/2013/06/029
https://doi.org/10.1088/1475-7516/2018/11/012
https://arxiv.org/abs/2203.00619
https://doi.org/10.1142/S0219887821400077
https://doi.org/10.1142/S0219887821400077
https://doi.org/10.1007/JHEP07(2011)108
https://doi.org/10.1103/PhysRevD.98.124037
https://doi.org/10.1103/PhysRevD.98.124037
https://arxiv.org/abs/1903.06774
https://doi.org/10.1103/PhysRevD.101.084017
https://doi.org/10.1103/PhysRevD.101.084017
https://doi.org/10.1140/epjp/i2016-16420-0
https://doi.org/10.1140/epjp/i2016-16420-0
https://doi.org/10.1142/S0217732317501140
https://doi.org/10.1142/S0217732317501140
https://doi.org/10.1142/S0219887819500038
https://doi.org/10.1142/S0219887819500038
https://doi.org/10.1209/0295-5075/93/60001
https://doi.org/10.1209/0295-5075/93/60001
https://doi.org/10.1103/PhysRevD.88.084042
https://doi.org/10.1103/PhysRevD.88.084042
https://doi.org/10.1016/0375-9601(82)90037-8
https://doi.org/10.1016/0375-9601(82)90037-8
https://doi.org/10.1103/PhysRevD.93.103002
https://doi.org/10.1103/PhysRevD.93.103002
https://doi.org/10.1088/1475-7516/2017/08/027
https://doi.org/10.1017/S1743921320003567
https://doi.org/10.1017/S1743921320003567
https://doi.org/10.1016/j.newast.2020.101495
https://doi.org/10.1016/j.newast.2020.101495
https://doi.org/10.1140/epjp/i2018-12252-2
https://doi.org/10.1140/epjp/i2018-12252-2
https://doi.org/10.1016/j.dark.2017.12.005
https://doi.org/10.1016/j.dark.2017.12.005
https://doi.org/10.1007/s10509-019-3631-z
https://doi.org/10.1007/s10509-019-3631-z
https://doi.org/10.1088/1361-6382/ab939c
https://doi.org/10.1088/1361-6382/ab939c
https://doi.org/10.3390/universe6020034
https://doi.org/10.3390/universe6020034
https://doi.org/10.1088/1361-6382/abbe71
https://doi.org/10.1088/1361-6382/abbe71
https://doi.org/10.1140/epjc/s10052-020-8253-7
https://doi.org/10.1140/epjc/s10052-020-8253-7
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-020-8204-3
https://doi.org/10.1140/epjc/s10052-017-4677-0
https://doi.org/10.1140/epjc/s10052-017-4677-0
https://doi.org/10.3390/ universe7050150
https://doi.org/10.3390/ universe7050150
https://doi.org/10.1140/epjc/s10052-012-2203-y
https://doi.org/10.1140/epjc/s10052-012-2203-y
https://doi.org/10.1142/S0218271818500621
https://doi.org/10.1142/S0218271818500621
https://doi.org/10.1016/j.physletb.2011.06.049
https://doi.org/10.1016/j.physletb.2011.06.049
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.78.124019
https://doi.org/10.1103/PhysRevD.78.124019
https://doi.org/10.3390/universe5030080
https://doi.org/10.3390/universe5030080
https://doi.org/10.1140/epjc/s10052-018-6410-z
https://doi.org/10.1140/epjc/s10052-018-6410-z
https://doi.org/10.1016/j.physrep.2018.11.006
https://doi.org/10.1016/j.physrep.2018.11.006
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1088/1361-6382/aa6ca1
https://doi.org/10.1088/1361-6382/aa6ca1
https://doi.org/10.1007/s10773-014-2003-2
https://doi.org/10.1007/s10773-014-2003-2
https://doi.org/10.1140/epjc/s10052-016-4491-0
https://doi.org/10.1140/epjc/s10052-016-4491-0
https://doi.org/10.1103/PhysRevD.92.124023
https://doi.org/10.1103/PhysRevD.92.124023
https://doi.org/10.1088/1475-7516/2019/07/040
https://doi.org/10.1016/j.nuclphysb.2020.115238
https://doi.org/10.1016/j.nuclphysb.2020.115238


Rep. Prog. Phys. 86 (2023) 026901 Review

[285] Addazi A et al 2021 Quantum gravity phenomenology
at the dawn of the multi-messenger era—a review
(arXiv:2111.05659 [hep-ph])

[286] Otalora G and Saridakis E N 2016 Modified teleparallel
gravity with higher-derivative torsion terms Phys. Rev. D
94 084021

[287] Brans C and Dicke R H 1961 Mach’s principle and a
relativistic theory of gravitation Phys. Rev. 124 925–35

[288] Geng C-Q, Lee C-C, Saridakis E N and Wu Y-P 2011
“Teleparallel” dark energy Phys. Lett. B 704 384–7

[289] Capozziello S, Cardone V F, Carloni S and Troisi A 2003
Curvature quintessence matched with observational data
Int. J. Mod. Phys. D 12 1969–82

[290] Copeland E J, Nunes N J and Pospelov M 2004 Models of
quintessence coupled to the electromagnetic field and the
cosmological evolution of alpha Phys. Rev. D 69 023501

[291] Capozziello S 2002 Curvature quintessence Int. J. Mod.
Phys. D 11 483–92

[292] Paliathanasis A 2021 O(d,d) symmetry in teleparallel dark
energy Eur. Phys. J. Plus 136 674

[293] Paliathanasis A 2021 Dynamics in interacting scalar-torsion
cosmology Universe 7 244

[294] Otalora G 2015 A novel teleparallel dark energy model Int. J.
Mod. Phys. D 25 1650025

[295] Bahamonde S and Wright M 2015 Teleparallel quintessence
with a nonminimal coupling to a boundary term Phys. Rev.
D 92 084034

Bahamonde S and Wright M 2016 Phys. Rev. D 93 109901
(erratum)

[296] Zubair M, Bahamonde S and Jamil M 2017 Generalized
second law of thermodynamic in modified teleparallel
theory Eur. Phys. J. C 77 472

[297] Bahamonde S, Marciu M and Said J L 2019 Generalized
tachyonic teleparallel cosmology Eur. Phys. J. C 79 324

[298] Banijamali A and Fazlpour B 2012 Tachyonic teleparallel
dark energy Astrophys. Space Sci. 342 229–35

[299] Fazlpour B and Banijamali A 2015 Non-minimally coupled
tachyon field in teleparallel gravity J. Cosmol. Astropart.
Phys. JCAP04(2015)030

[300] Hohmann M, Järv L and Ualikhanova U 2018 Covariant
formulation of scalar-torsion gravity Phys. Rev. D
97 104011

[301] Hohmann M and Pfeifer C 2018 Scalar-torsion theories of
gravity II: L(T,X,Y,ϕ) theory Phys. Rev. D 98 064003

[302] Bahamonde S, Marciu M and Rudra P 2018 Generalised
teleparallel quintom dark energy non-minimally coupled
with the scalar torsion and a boundary term J. Cosmol.
Astropart. Phys. JCAP04(2018)056

[303] Abedi H, Capozziello S, D’Agostino R and Luongo O 2018
Effective gravitational coupling in modified teleparallel
theories Phys. Rev. D 97 084008

[304] Deffayet C, Esposito-Farese G and Vikman A 2009
Covariant Galileon Phys. Rev. D 79 084003

[305] Capozziello S, Dialektopoulos K F and Sushkov S V 2018
Classification of the Horndeski cosmologies via Noether
symmetries Eur. Phys. J. C 78 447

[306] Bhattacharya S, Dialektopoulos K F and Tomaras T N 2016
Large scale structures and the cubic galileon model J.
Cosmol. Astropart. Phys. JCAP05(2016)036

[307] Bahamonde S, Dialektopoulos K F and Levi Said J 2019 Can
Horndeski theory be recast using teleparallel gravity?
Phys. Rev. D 100 064018

[308] Deffayet C, Gao X, Steer D and Zahariade G 2011 From
k-essence to generalised Galileons Phys. Rev. D 84 064039

[309] Bahamonde S, Dialektopoulos K F, Gakis V and Levi Said J
2020 Reviving Horndeski theory using teleparallel gravity
after GW170817 Phys. Rev. D 101 084060

[310] Bernardo R C, Said J L, Caruana M and Appleby S 2021
Well-tempered teleparallel Horndeski cosmology: a

teleparallel variation to the cosmological constant problem
J. Cosmol. Astropart. Phys. JCAP10(2021)078

[311] Bernardo R C, Said J L, Caruana M and Appleby S 2022
Well-tempered Minkowski solutions in teleparallel
Horndeski theory Class. Quantum Grav. 39 015013

[312] Dialektopoulos K F, Said J L and Oikonomopoulou Z 2022
Classification of teleparallel Horndeski cosmology via
Noether symmetries Eur. Phys. J. C 82 259

[313] Nicosia G-P, Levi Said J and Gakis V 2021 Generalised
Proca theories in teleparallel gravity Eur. Phys. J. Plus
136 191

[314] Deffayet C, Pujolas O, Sawicki I and Vikman A 2010
Imperfect dark energy from kinetic gravity braiding J.
Cosmol. Astropart. Phys. JCAP10(2010)026

[315] Perrotta F, Baccigalupi C and Matarrese S 1999 Extended
quintessence Phys. Rev. D 61 023507

[316] Copeland E J, Sami M and Tsujikawa S 2006 Dynamics of
dark energy Int. J. Mod. Phys. D 15 1753–936

[317] Horndeski G W 1974 Second-order scalar-tensor field
equations in a four-dimensional space Int. J. Theor. Phys.
10 363–84

[318] Kobayashi T, Yamaguchi M and Yokoyama J 2011
Generalized G-inflation: inflation with the most general
second-order field equations Prog. Theor. Phys.
126 511–29

[319] Gonzalez-Espinoza M, Otalora G, Videla N and Saavedra J
2019 Slow-roll inflation in generalized scalar-torsion
gravity J. Cosmol. Astropart. Phys. JCAP08(2019)029

[320] Maluf J W and Faria F F 2012 Conformally invariant
teleparallel theories of gravity Phys. Rev. D 85 027502

[321] Abedi H and Salti M 2015 Multiple field modified gravity
and localized energy in teleparallel framework Gen.
Relativ. Gravit. 47 93

[322] Kiani F and Nozari K 2014 Energy conditions in F(T,Θ)
gravity and compatibility with a stable de Sitter solution
Phys. Lett. B 728 554–61

[323] Harko T, Lobo F S N, Otalora G and Saridakis E N 2014
f(T,T ) gravity and cosmology J. Cosmol. Astropart. Phys.
JCAP12(2014)021

[324] Saez-Gomez D, Carvalho C S, Lobo F S N and Tereno I 2016
Constraining f(T,T ) gravity models using type Ia
supernovae Phys. Rev. D 94 024034

[325] Chen C-Y and Kung Y-H 2022 Modified teleparallel gravity
induced by quantum fluctuations Phys. Dark Universe
35 100956

[326] Bernardo R C, Chen C-Y, Said J L and Kung Y-H 2021
Confronting quantum-corrected teleparallel cosmology
with observations (arXiv:2111.11761 [gr-qc])

[327] Harko T, Lobo F S N, Otalora G and Saridakis E N 2014
Nonminimal torsion-matter coupling extension of f (T)
gravity Phys. Rev. D 89 124036

[328] Bahamonde S 2018 Generalised nonminimally
gravity-matter coupled theory Eur. Phys. J. C
78 326

[329] Feng C-J, Ge F-F, Li X-Z, Lin R-H and Zhai X-H 2015
Towards realistic f (T) models with nonminimal
torsion-matter coupling extension Phys. Rev. D
92 104038

[330] Bertolami O, Böhmer C G, Harko T and Lobo F S N 2007
Extra force in f (R) modified theories of gravity Phys. Rev.
D 75 104016

[331] Harko T and Lobo F S 2010 f(R,Lm) gravity Eur. Phys. J. C
70 373–9

[332] Harko T, Lobo F S N and Saridakis E N 2021 Gravitationally
induced particle production through a nonminimal
torsion–matter coupling Universe 7 227

[333] Amadei L and Perez A 2019 Hawking’s information puzzle:
a solution realized in loop quantum cosmology
(arXiv:1911.00306 [gr-qc])

194

https://arxiv.org/abs/2111.05659
https://doi.org/10.1103/PhysRevD.94.084021
https://doi.org/10.1103/PhysRevD.94.084021
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1142/S0218271803004407
https://doi.org/10.1142/S0218271803004407
https://doi.org/10.1103/PhysRevD.69.023501
https://doi.org/10.1103/PhysRevD.69.023501
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1142/S0218271802002025
https://doi.org/10.1140/epjp/s13360-021-01666-8
https://doi.org/10.1140/epjp/s13360-021-01666-8
https://doi.org/10.3390/universe7070244
https://doi.org/10.3390/universe7070244
https://doi.org/10.1142/S0218271816500255
https://doi.org/10.1142/S0218271816500255
https://doi.org/10.1103/PhysRevD.92.084034
https://doi.org/10.1103/PhysRevD.92.084034
https://doi.org/10.1103/PhysRevD.93.109901
https://doi.org/10.1103/PhysRevD.93.109901
https://doi.org/10.1140/epjc/s10052-017-5043-y
https://doi.org/10.1140/epjc/s10052-017-5043-y
https://doi.org/10.1140/epjc/s10052-019-6833-1
https://doi.org/10.1140/epjc/s10052-019-6833-1
https://doi.org/10.1007/s10509-012-1140-4
https://doi.org/10.1007/s10509-012-1140-4
https://doi.org/10.1088/1475-7516/2015/04/030
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.98.064003
https://doi.org/10.1103/PhysRevD.98.064003
https://doi.org/10.1088/1475-7516/2018/04/056
https://doi.org/10.1103/PhysRevD.97.084008
https://doi.org/10.1103/PhysRevD.97.084008
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1140/epjc/s10052-018-5939-1
https://doi.org/10.1140/epjc/s10052-018-5939-1
https://doi.org/10.1088/1475-7516/2016/05/036
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.101.084060
https://doi.org/10.1103/PhysRevD.101.084060
https://doi.org/10.1088/1475-7516/2021/10/078
https://doi.org/10.1088/1361-6382/ac36e4
https://doi.org/10.1088/1361-6382/ac36e4
https://doi.org/10.1140/epjc/s10052-022-10201-7
https://doi.org/10.1140/epjc/s10052-022-10201-7
https://doi.org/10.1140/epjp/s13360-021-01133-4
https://doi.org/10.1140/epjp/s13360-021-01133-4
https://doi.org/10.1088/1475-7516/2010/10/026
https://doi.org/10.1103/PhysRevD.61.023507
https://doi.org/10.1103/PhysRevD.61.023507
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1088/1475-7516/2019/08/029
https://doi.org/10.1103/PhysRevD.85.027502
https://doi.org/10.1103/PhysRevD.85.027502
https://doi.org/10.1007/s10714-015-1935-z
https://doi.org/10.1007/s10714-015-1935-z
https://doi.org/10.1016/j.physletb.2013.12.036
https://doi.org/10.1016/j.physletb.2013.12.036
https://doi.org/10.1088/1475-7516/2014/12/021
https://doi.org/10.1103/PhysRevD.94.024034
https://doi.org/10.1103/PhysRevD.94.024034
https://doi.org/10.1016/j.dark.2022.100956
https://doi.org/10.1016/j.dark.2022.100956
https://arxiv.org/abs/2111.11761
https://doi.org/10.1103/PhysRevD.89.124036
https://doi.org/10.1103/PhysRevD.89.124036
https://doi.org/10.1140/epjc/s10052-018-5793-1
https://doi.org/10.1140/epjc/s10052-018-5793-1
https://doi.org/10.1103/PhysRevD.92.104038
https://doi.org/10.1103/PhysRevD.92.104038
https://doi.org/10.1103/PhysRevD.75.104016
https://doi.org/10.1103/PhysRevD.75.104016
https://doi.org/10.1140/epjc/s10052-010-1467-3
https://doi.org/10.1140/epjc/s10052-010-1467-3
https://doi.org/10.3390/universe7070227
https://doi.org/10.3390/universe7070227
https://arxiv.org/abs/1911.00306


Rep. Prog. Phys. 86 (2023) 026901 Review

[334] Stoica O C 2018 Revisiting the black hole entropy and the
information paradox Adv. High Energy Phys.
2018 4130417

[335] Bahamonde S, Capozziello S and Dialektopoulos K F 2017
Constraining generalized non-local cosmology from
Noether symmetries Eur. Phys. J. C 77 722

[336] de la Cruz-Dombriz A, Maldonado Torralba F J and
Mazumdar A 2019 Nonsingular and ghost-free infinite
derivative gravity with torsion Phys. Rev. D
99 104021

[337] de la Cruz-Dombriz A, Maldonado Torralba F J and
Mazumdar A 2021 Ghost-free higher-order theories of
gravity with torsion Eur. Phys. J. C 81 240

[338] Bahamonde S, Capozziello S, Faizal M and Nunes R C 2017
Nonlocal teleparallel cosmology Eur. Phys. J. C 77 628

[339] Nojiri S and Odintsov S D 2008 Modified non-local-F(R)
gravity as the key for the inflation and dark energy Phys.
Lett. B 659 821–6

[340] De Felice A and Sasaki M 2015 Ghosts in classes of
non-local gravity Phys. Lett. B 743 189–97

[341] Nojiri S, Odintsov S D and Oikonomou V K 2020 Ghost-free
non-local F(R) Gravity Cosmology Phys. Dark Universe
28 100541

[342] de Andrade V, Guillen L and Pereira J 2000 Teleparallel
equivalent of Kaluza–Klein Phys. Rev. D 61 084031

[343] Barbosa A, Guillen L and Pereira J 2002 Teleparallel
equivalent of nonAbelian Kaluza–Klein theory Phys. Rev.
D 66 064028

[344] Geng C-Q, Lai C, Luo L-W and Tseng H-H 2014
Kaluza–Klein theory for teleparallel gravity Phys. Lett. B
737 248–50

[345] Sebastiani L, Vagnozzi S and Myrzakulov R 2017 Mimetic
gravity: a review of recent developments and applications
to cosmology and astrophysics Adv. High Energy Phys.
2017 3156915

[346] Chamseddine A H and Mukhanov V 2013 Mimetic dark
matter J. High Energy Phys. JHEP11(2013)135

[347] Mirza B and Oboudiat F 2019 Mimetic f (T) teleparallel
gravity and cosmology Gen. Relativ. Gravit. 51 96

[348] Hohmann M and Pfeifer C 2020 Teleparallel axions and
cosmology Eur. Phys. J. C 81 376

[349] Li M, Rao H and Zhao D 2020 A simple parity violating
gravity model without ghost instability J. Cosmol.
Astropart. Phys. JCAP11(2020)023

[350] Nieh H T and Yan M L 1982 An identity in Riemann–Cartan
geometry J. Math. Phys. 23 373

[351] Li M, Rao H and Tong Y 2021 Revisiting a parity violating
gravity model without ghost instability: local Lorentz
covariance Phys. Rev. D 104 084077

[352] Li M, Li Z and Rao H 2022 Ghost instability in the
teleparallel gravity model with parity violations
(arXiv:2201.02357 [gr-qc])

[353] Bahamonde S and Pfeifer C 2020 General teleparallel
modifications of Schwarzschild geometry
(arXiv:2010.02161 [gr-qc])

[354] Bahamonde S, Levi Said J and Zubair M 2020 Solar system
tests in modified teleparallel gravity J. Cosmol. Astropart.
Phys. JCAP10(2020)024

[355] Bahamonde S and Camci U 2019 Exact spherically
symmetric solutions in modified teleparallel gravity
Symmetry 11 1462

[356] Bahamonde S, Flathmann K and Pfeifer C 2019 Photon
sphere and perihelion shift in weak f (T) gravity Phys. Rev.
D 100 084064

[357] Ruggiero M L and Radicella N 2015 Weak-field spherically
symmetric solutions in f (T) gravity Phys. Rev. D
91 104014

[358] Finch A and Levi Said J 2018 Galactic rotation dynamics in
f (T) gravity Eur. Phys. J. C 78 560

[359] Farrugia G, Said J L and Ruggiero M L 2016 Solar system
tests in f (T) gravity Phys. Rev. D 93 104034

[360] Iorio L, Radicella N and Ruggiero M L 2015 Constraining
f (T) gravity in the solar system J. Cosmol. Astropart.
Phys. JCAP1508(2015)021

[361] Gonzalez P A, Saridakis E N and Vásquez Y 2012 Circularly
symmetric solutions in three-dimensional teleparallel, f (T)
and Maxwell-f (T) gravity J. High Energy Phys.
JHEP07(2012)053

[362] Bejarano C, Ferraro R and Guzmán M J 2015 Kerr geometry
in f (T) gravity Eur. Phys. J. C 75 77
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[617] Hohmann M, Křšsák M, Pfeifer C and Ualikhanova U 2018
Propagation of gravitational waves in teleparallel gravity
theories Phys. Rev. D 98 124004

200

https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/1361-6382/aad13c
https://doi.org/10.1088/1361-6382/aad13c
https://doi.org/10.1103/PhysRevLett.120.191101
https://doi.org/10.1103/PhysRevLett.120.191101
https://doi.org/10.1103/RevModPhys.89.025004
https://doi.org/10.1103/RevModPhys.89.025004
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevD.62.083506
https://doi.org/10.1103/PhysRevD.62.083506
https://doi.org/10.1103/PhysRevLett.122.061301
https://doi.org/10.1103/PhysRevLett.122.061301
https://doi.org/10.1103/PhysRevD.82.063526
https://doi.org/10.1103/PhysRevD.82.063526
https://arxiv.org/abs/2203.01856
https://doi.org/10.1103/PhysRevD.105.024035
https://doi.org/10.1103/PhysRevD.105.024035
https://doi.org/10.1103/PhysRevD.94.124004
https://doi.org/10.1103/PhysRevD.94.124004
https://doi.org/10.1111/j.1365-2966.2012.21168.x
https://doi.org/10.1111/j.1365-2966.2012.21168.x
https://arxiv.org/abs/astro-ph/0306581
https://doi.org/10.1142/S0218271811019372
https://doi.org/10.1142/S0218271811019372
https://doi.org/10.1088/1475-7516/2013/04/033
https://doi.org/10.1103/PhysRevD.93.083007
https://doi.org/10.1103/PhysRevD.93.083007
https://doi.org/10.1140/epjc/s10052-018-6286-y
https://doi.org/10.1140/epjc/s10052-018-6286-y
https://doi.org/10.1103/PhysRevD.97.103503
https://doi.org/10.1103/PhysRevD.97.103503
https://arxiv.org/abs/2103.05021
https://doi.org/10.1088/1475-7516/2018/05/052
https://doi.org/10.1103/PhysRevD.98.104055
https://doi.org/10.1103/PhysRevD.98.104055
https://doi.org/10.1103/PhysRevD.76.023514
https://doi.org/10.1103/PhysRevD.76.023514
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.103526
https://doi.org/10.1103/PhysRevD.87.129905
https://doi.org/10.1103/PhysRevD.87.129905
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.63.082001
https://doi.org/10.1103/PhysRevD.63.082001
https://doi.org/10.1103/PhysRevD.103.064037
https://doi.org/10.1103/PhysRevD.103.064037
https://doi.org/10.1103/PhysRevD.59.102002
https://doi.org/10.1103/PhysRevD.59.102002
https://arxiv.org/abs/2112.06861
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevLett.123.011102
https://arxiv.org/abs/2010.14529
https://arxiv.org/abs/2010.14527
https://doi.org/10.1103/PhysRevD.91.062005
https://doi.org/10.1103/PhysRevD.91.062005
https://arxiv.org/abs/2105.09247
https://doi.org/10.1103/PhysRevD.102.022008
https://doi.org/10.1103/PhysRevD.102.022008
https://doi.org/10.1142/S0218271813410101
https://doi.org/10.1142/S0218271813410101
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1007/s41114-020-00026-9
https://arxiv.org/abs/2105.13243
https://doi.org/10.1134/S1063772918120235
https://doi.org/10.1134/S1063772918120235
https://doi.org/10.1103/PhysRevD.98.124004
https://doi.org/10.1103/PhysRevD.98.124004


Rep. Prog. Phys. 86 (2023) 026901 Review

[618] Obukhov Y N and Pereira J G 2003 Teleparallel origin of the
Fierz picture for spin-2 particle Phys. Rev. D 67 044008

[619] Hörmander L 2015 The Analysis of Linear Partial
Differential Operators I: Distribution Theory and Fourier
Analysis (Classics in Mathematics) (Berlin: Springer)

[620] Hörmander L 2007 The Analysis of Linear Partial
Differential Operators III: Pseudo-Differential Operators
(Classics in Mathematics) (Berlin: Springer)

[621] Pfeifer C and Siemssen D 2016 Electromagnetic potential in
pre-metric electrodynamics: causal structure, propagators
and quantization Phys. Rev. D 93 105046

[622] Liang D, Gong Y, Hou S and Liu Y 2017 Polarizations of
gravitational waves in f (R) gravity Phys. Rev. D 95 104034

[623] Yang L, Lee C-C and Geng C-Q 2011 Gravitational waves in
viable f (R) models J. Cosmol. Astropart. Phys.
JCAP08(2011)029

[624] Capozziello S, Corda C and De Laurentis M F 2008 Massive
gravitational waves from f (R) theories of gravity: potential
detection with LISA Phys. Lett. B 669 255–9

[625] Berry C P and Gair J R 2011 Linearized f (R) gravity:
gravitational radiation and solar system tests Phys. Rev. D
83 104022

Berry C P and Gair J R 2012 Phys. Rev. D 85 089906
(erratum)

[626] Hyun Y-H, Kim Y and Lee S 2019 Exact amplitudes of six
polarization modes for gravitational waves Phys. Rev. D
99 124002

[627] Capozziello S, Capriolo M and Caso L 2020 Weak field limit
and gravitational waves in f(T,B) teleparallel gravity Eur.
Phys. J. C 80 156

[628] Abedi H and Capozziello S 2018 Gravitational waves in
modified teleparallel theories of gravity Eur. Phys. J. C
78 474

[629] Bamba K, Capozziello S, De Laurentis M, Nojiri S and
Sáez-Gómez D 2013 No further gravitational wave modes
in F(T) gravity Phys. Lett. B 727 194–8

[630] Hou S, Gong Y and Liu Y 2018 Polarizations of gravitational
waves in Horndeski theory Eur. Phys. J. C 78 378

[631] Gong Y and Hou S 2018 The polarizations of gravitational
waves Universe 4 85

[632] Ferraro R and Fiorini F 2011 Spherically symmetric static
spacetimes in vacuum f (T) gravity Phys. Rev. D 84 083518

[633] Paliathanasis A, Basilakos S, Saridakis E N, Capozziello S,
Atazadeh K, Darabi F and Tsamparlis M 2014 New
Schwarzschild-like solutions in f (T) gravity through
Noether symmetries Phys. Rev. D 89 104042

[634] Bejarano C, Ferraro R and Guzmán M J 2017 McVittie
solution in f (T) gravity Eur. Phys. J. C 77 825

[635] Daouda M H, Rodrigues M E and Houndjo M J S 2012
Anisotropic fluid for a set of non-diagonal tetrads in f (T)
gravity Phys. Lett. B 715 241–5

[636] Hamani Daouda M, Rodrigues M E and Houndjo M 2011
New static solutions in f (T) theory Eur. Phys. J. C 71 1817

[637] Meng X-H and Wang Y-B 2011 Birkhoff’s theorem in the
f (T) gravity Eur. Phys. J. C 71 1755

[638] Capozziello S, Gonzalez P A, Saridakis E N and Vásquez Y
2013 Exact charged black-hole solutions in D-dimensional
f (T) gravity: torsion vs curvature analysis J. High Energy
Phys. JHEP02(2013)039

[639] Houndjo M, Momeni D, Myrzakulov R and Rodrigues M
2015 Evaporation phenomena in f (T) gravity Can. J. Phys.
93 377–83

[640] Kofinas G, Papantonopoulos E and Saridakis E N 2015
Self-gravitating spherically symmetric solutions in
scalar-torsion theories Phys. Rev. D 91 104034

[641] Bahamonde S, Golovnev A, Guzmán M-J, Said J L and
Pfeifer C 2022 Black holes in f(T,B) gravity: exact and
perturbed solutions J. Cosmol. Astropart. Phys.
JCAP01(2022)037

[642] Bahamonde S, Ducobu L and Pfeifer C 2022 Scalarized black
holes in teleparallel gravity (arXiv:2201.11445 [gr-qc])

[643] DeBenedictis A and Ilijić S 2018 Regular solutions in
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