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Abstract 
Computer-aided optimization algorithms in structural engineering have historically focused on the 
structural performance of generated forms, often resulting in the selection of a single ‘optimal’ solution. 
However, diversity of generated solutions is desirable when those solutions are shown to a human user 
to choose from. Quality-Diversity (QD) search is an emerging field of Evolutionary Computation which 
can automate the exploration of the solution space in engineering problems. QD algorithms, such as 
MAP-Elites, operate by maintaining and expanding an archive of diverse solutions, optimising for 
quality in local niches of a multidimensional design space. The generated archive of solutions can help 
engineers gain a better overview of the solution space, illuminating which designs are possible and their 
trade-offs. In this paper we apply Quality Diversity search to the problem of designing shell structures. 
Since the design of shell structures comes with physical constraints, we leverage a constrained 
optimization variant of the MAP-Elites algorithm, FI-MAP-Elites. We implement our proposed 
methodology within the Rhino/Grasshopper environment and use the Karamba Finite Element Analysis 
solver for all structural engineering calculations. We test our method on case studies of parametric 
models of shell structures that feature varying complexity. Our experiments investigate the algorithm’s 
ability to illuminate the solution space and generate feasible and high-quality solutions. 

Keywords: evolutionary algorithm, evolutionary computation, quality diversity, optimisation, multi objective 
optimisation, conceptual design, shell structures, spatial structures. 

1. Introduction 

A frequently encountered problem within the AEC industry is the design of efficient shell structures. 
Such structures–in which architectural form is inextricably linked to structural behaviour and 
performance–require a close collaboration between architect, structural engineer and other AEC 
consultants to find a shape that is acceptable to all parties and their separate demands. Historically, many 
of these shells were conceived as form-active structures, and thus their final shape was ascertained 
through form-finding techniques–first physically [1],[2], then digitally [3]. These digital simulations are 
remarkably flexible, and able to incorporate a range of physical input constraints, such as ensuring 
structural efficiency (e.g. axial loading only) or geometric rationalisation (e.g. avoiding panel warp). 
However, for a single set of inputs (materials, loading and support conditions) form-finding algorithms 
only generate a singular solution, rather than a range of potential solutions. As such, it can be difficult 
for the designer to evaluate potential trade-offs between the desired criteria and propose new weightings 
of them. 
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We see similar limitations in evolutionary computation (EC) algorithms, such as Divide-and-Conquer 
or Hill-Climbing. These algorithms are Single Objective Optimisation (SOO) approaches, and as such 
they too suffer from a difficulty in weighting and combining output values to achieve a well-balanced 
fitness evaluation for the variants. More sophisticated EC approaches include Multi Objective 
Optimisation (MOO) or Pareto optimisation algorithms, such as SPEA-2 and HypE. These MOO 
algorithms have been implemented in AEC digital design toolkits for several years now [4],[5], and 
allow substantially more detailed exploration of the solution space. 

Quality Diversity (QD) search is a family of EC algorithms that simultaneously maintain the quality and 
diversity of solutions [6] by rewarding divergence of the population according to some ad-hoc measure 
of difference between the actual artefacts rather than the genotypic information. Quality can be a 
secondary objective to this divergence [7], act as a constraint on minimal quality [8], or as a survival 
criterion between similar artefacts [9]. Algorithms such as MAP-Elites can illuminate the search space, 
maintaining and evolving in parallel different solutions in different behavioural niches (i.e. with similar 
design characteristics orthogonal to quality). MAP-Elites and its variants has been a popular algorithm 
for problems where the “optimal solution” is subjective, such as evolutionary art [10] and game content 
generation [11].  

This paper presents a constrained variant of the MAP-Elites algorithm for QD search and tests it in a set 
of shell structure optimization tasks ranging from simple to complex. While shell structure optimization 
has received attention in the past through evolutionary approaches [12], here we propose a QD method 
that explicitly produces a large archive of potential solutions and visualizes their trade-offs. The FI-
MAP-Elites algorithm, proposed here, leverages two archives evolving in parallel: one archive of 
solutions that fail a constraint on maximum allowed displacement, and another archive of solutions that 
satisfy this constraint and search for optimal elastic energy of the structure. The algorithm is integrated 
into Grasshopper and allows engineers to specify the structure of possible solutions and the dimensions 
towards which FI-MAP-Elites should explore. Comparisons against a baseline SOO algorithm available 
in Grasshopper show that the proposed constrained QD search algorithm produces far more diverse 
solutions, while SOO typically converges towards a single type of solution. This paper, therefore, argues 
that QD search algorithms that illuminate the solution space and show trade-offs between different 
designs will help engineers interface with the subjectivity of the AEC design process. 

2. General Methodology for Constrained Quality Diversity Search 
Feasible-Infeasible Multidimensional Archives of Phenotypic Elites (FI-MAP-Elites) is a hybrid of the 
MAP-Elites [11] and the FI-2Pop GA [13] algorithms. Its main goal is to combine the illumination 
capabilities of the former with the constraint-solving capabilities of the latter. Its operation is controlled 
by the following hyperparameters that are problem-specific: (1) Representation: refers to how the 
algorithm stores the artefacts in a compact genotype [14]. (2) Initialization: refers to how the initial 
population is formed. In many cases initialization of the genotype is as simple as generating a random 
list of numbers. More complex representations, however, may require a more elaborate scripted 
initialization [15]. (3) Variation: refers to the genetic operators applied while evolution is carried out 
to produce offspring from selected individuals. While traditional EC operators include recombination 
and mutation [16], FI-MAP-Elites only uses mutation of one individual. (4) Infeasible fitness (Fi): 
measures how many constraints are failed by the solution and to which degree. The infeasible population 
aims to minimise the distance to feasibility; to convert this into a maximisation task, we consider that 
an infeasible fitness below a threshold (usually Fi < 1) means that the individual is infeasible (i.e. at 
least one constraint is not satisfied). Ad-hoc heuristics are designed per constraint and added together to 
form the infeasible fitness score. (5) Feasible fitness (Ff ): is a problem-specific measure of the desirable 
property of the final artefact. Feasible fitness is only calculated if the individual is feasible, as failed 
constraints in some problems render calculating the feasible fitness impossible [17]. (6) Behaviour 
characterizations (BCs): refer to quantifiable characteristics of the artefact. BCs are orthogonal to 
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quality and artefacts of both high and low BC scores should be desirable. These BCs define the 
dimensions of exploration and diversity and should be of interest to the designer. While most MAP-
Elites implementations use two BCs, the algorithm can operate with any number of BCs but this may 
impact the computational cost of evolutionary search. 

 
Figure 1. Functional diagram showcasing the operation of the FI-MAP-Elites algorithm, for two BCs. 

The FI-MAP-Elites [15] algorithm, visualised in Fig. 1, maintains two separate archives for feasible and 
infeasible solutions, organised in an n-dimensional grid based on the problem's BCs. Each grid cell 
contains a single elite with specific BC values. An initial population seeds the archives according to 
feasibility. The algorithm randomly selects an individual, mutates and evaluates it, and places it in the 
proper archive and cell based on feasibility and BCs. Offspring replace current elites if their fitness is 
higher. Through repeated iterations, the algorithm fills the archives with solutions that approach locally 
maximum fitness, providing a diverse set of fit and feasible solutions for users. 

3. Applied Methodology & Experiment Protocol 
To efficiently test FI-MAP-Elites in shell structure design tasks, a series of parametric shell models were 
defined in Rhino’s visual programming interface, Grasshopper, based on SubDivision (SubD) surfaces. 
SubD surfaces have the advantage of being derived from a low polygon control mesh that is easy to 
manipulate through adjustment of its vertices (control points). This gives them geometric flexibility and 
makes them suitable for representing a wide range of forms. Furthermore, the resulting surfaces are 
generated through iterative Catmull-Clark subdivisions [18] of the input mesh which guarantees a 
smooth, continuous curvature. SubD-based approaches have been successfully utilised by AKT II on a 
series of built and unrealised projects over the last decade [19],[20]. 
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3.1 Algorithmic Parameters 
Based on Section 2, there are several problem-specific hyperparameters to the algorithm. We elaborate 
the parameters for the shell use case here.  

● Representation: The parametric shell model is manually defined by the designer in 
Rhino/Grasshopper [21]. This includes a definition of a SubD surface, several constraints on its 
control points’ variability, as well as a number of control parameters that affect the points’ 
movement along specified vectors. Any point on the SubD control polygon selected as a support 
by the designer is defined as ‘creased’ to ensure that the point that is constrained exists on the 
smooth shape. The genetic algorithm only stores (and manipulates) the values of the control 
parameters. 

● Initialization: When initialising the population for evolution, control parameters are assigned 
a random value within a designer-specified value range. 

● Variation: Variation occurs solely through the mutation operator that iterates over all the 
control parameters defined in the model and changes their values according to two parameters: 
Max Step Size (i.e. the maximum distortion allowed per mutation step) and Mutation Rate (i.e. 
the probability that this control parameter will be changed). 

● Infeasible fitness: The only constraint in this use case is an upper limit on displacement (d), 
i.e. the distance between the point in the original model and the deformed model. The upper 
limit on displacement is specified by the designer (Cd ). Equation (1) calculates the infeasible 
fitness for this problem (Fi ), which is bound in the value range of [0,1] and feasible individuals 
always have Fi = 1. 

 
● Feasible fitness: For feasible individuals, quality is ascertained based on the total elastic energy 

(U) of the structure. The value for U measures how much energy is stored in the structure based 
on its elastic deformation. The feasible fitness (Ff ), as shown in shown in Equation (2), is bound 
in the value range of [0,1] with higher values being preferred (lower elastic energy). FI-MAP-
Elites calculates Ff  only for individuals that satisfy the constraints (d≤Cd ); the score of Ff =0 
for infeasible individuals is calculated only for the baseline single-objective algorithm in the 
experiments of this paper. 

 
● Behaviour characterizations (BCs): Two formulas based on control point coordinates are 

explored as BCs in this work: (1) Edge Point Coordinate Average, as the average coordinate 
value of a set of parametric points on a series of edges in the SubD geometry (either X, Y, or Z, 
determined by the user); (2) Edge Point Coordinates Deviation, calculated as the difference 
between the average value and the coordinate (X, Y, or Z, determined by the user) of each point 
on a series of edges in the SubD geometry, divided by the number of points. 

3.2 Rhino Implementation 
In order to apply FI-MAP-Elites to structural engineering problems, we exploit the parametric design 
capabilities of the Rhino/Grasshopper design environment. Within this environment, we developed a set 
of components which allow the structural engineer to (1) define the structural parametric model, (2) 
select the algorithmic parameters and (3) run the FI-MAP-Elites algorithm and generate an optimised 
(in terms of quality and diversity) set of variations of the parametric model. 
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Figure 2. Grasshopper toolbars for the FI-MAP-Elites implementation of shell design. 

 
Customization of the algorithm is done through parameters (on the point constraints, its variation range, 
and parameters of the SubD model) and through details on the physics model and BC characterizations 
(see Fig. 2 for a summary of the components available). The solver toolbars provide the settings and 
components to run the process, along with tools to retrieve results. The components can be combined to 
produce a pipeline to initialise and evaluate solutions. 

As soon as the algorithm’s operation is over, a Grasshopper component outputs the data of all elites in 
both archives, as well as their positions on the archive’s grid (based on their BCs). Each one of the 
generated variations includes various meta-information, including: (1) its Karamba [22] model, (2) its 
Rhino geometry, (3) its genome (parameter values), (4) its elastic energy and (5) its BC scores. Based 
on these outputs, the archive’s contents can be visualised in Rhino’s viewport, in a customised manner. 
Fig. 6. illustrates an example of such a visualisation of the feasible archive, which includes a visual (by 
vertex colours) indication of the parametric model’s fitness. 

3.3 Hyperparameters and Baseline Algorithms 
For all experiments with FI-MAP-Elites in this paper, we use an initial population of 100 random 
individuals, a mutation rate of 50% and mutation step of 20%, a grid of elites of 16 by 16 (BC1 by BC2) 
for both feasible and infeasible archives, and results are collected after 50,000 evaluations.  

As a baseline to test the performance of FI-MAP-Elites, we use a single-objective optimizer (SOO) of 
the Galapagos library within Grasshopper. This simple algorithm aims to maximise a single-objective 
fitness (Fb) computed as the average of the infeasible and feasible fitness; see Eq. (3). Therefore, it 
overlooks diversity dimensions but tackles constrained optimization. 

 
The evolutionary solver of the Galapagos optimizer within Grasshopper is used for this baseline, with 
the following settings: a population of 256 individuals, an initial boost of 1 (the initial population size 
is 256), an elitism of 5% (the 13 fittest individuals are retained across generations) and an inbreeding 
rate of 50% (slightly favours the selection of similar parents during crossover). The population evolves 
for a number of generations resulting in a comparable number of evaluations as FI-MAP-Elites. We 
collect solutions from the final population on the last generation to derive SOO performance metrics. 

3.4 Hypothesis and Performance Metrics 
Our hypotheses in the experiments described in Chapter 5 can be summarised as follows: 

● The two-population approach of FI-MAP Elites will discover more feasible solutions faster. 
● Evolution will focus on the feasible population earlier and lead to higher quality solutions in FI-

MAP-Elites compared to single-population approaches. 
● As a QD algorithm the variety of solutions (in terms of the chosen BCs) will be higher.  
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● It is expected that more high-quality solutions that are structurally different will emerge from 
the QD search process that favours local competition within the same behavioural niche. 

Following the literature in QD search [9], we evaluate the following metrics: (1) maximum 
performance, as the lowest elastic energy (Umin ) score and lowest displacement (dmin ) among feasible 
individuals of the SOO population or the feasible archive, (b) coverage, as the ratio of all cells in the 
feature map occupied by feasible solutions1, (3) QD score, as the sum of feasible fitness scores among 
all elites in the feasible archive (of feasible individuals in the SOO population). The maximum 
performance assesses whether at least one solution is well-performing, while coverage assesses whether 
a large behavioural variety of solutions is found. Finally, the QD score assesses a combination of the 
above, with higher scores achieved when the algorithm produces many behaviourally diverse 
individuals of high quality. In addition, we measure the fitness deviation (σU and σd ) as the standard 
deviation in terms of the elastic energy and displacement (respectively) of all feasible solutions. This 
measure captures the uniformity of designs when exploring along different BCs. 

Moreover, we assess constraint satisfaction and constraint optimization performance through the 
following metrics: (1) feasible ratio, as the ratio of solutions that satisfy all constraints against all 
solutions in the final population(s); (2) infeasible coverage, as the ratio of all possible cells in the feature 
map that are occupied by infeasible solutions (i.e. the infeasible archive for FI-MAP-Elites). 

4. Results 
To evaluate the proposed algorithm’s performance, we use three different test cases: two variants of a 
simple test case, and a complex test case comparable to real-world engineering problems. 

4.1 Simple Test Case 
Fig. 3 shows the parametric surface model of the simple test case, based on a square SubD surface 
subdivided into 9 patches and 16 points. The algorithm varies the height of each point in order to 
optimise the shape. Each point is given a variability in Z-direction from 0 to 5, which is represented by 
the green arrows at each control point. 

 
Figure 3: The simple test case with the square base, with the height variability range (left), and the BCs calculated 
based on the average height of the centre points (blue dots in right image) and height difference between arches 
(red dots in right image). 

Diversity dimensions (BCs) focus on two target areas, namely the central region and the arches (blue 
and red dots, respectively in Fig. 3). BC1 is taken as the average Z coordinate of the edges of the central 
face, to capture the height at the middle of the shell. BC2 is the Z coordinate deviation between the 
midpoints of the side arches, in order to capture asymmetric aspects of an otherwise symmetrical 
problem. High performing solutions for this form are largely known beforehand, so these two case 
                                                      
1 For the SOO baseline, all solutions are processed and only feasible ones are placed on the feasible feature map 
along the two BCs of FI-MAP-Elites (with only the fittest solution retained in each cell). 
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studies act as benchmarks to ensure that the solutions provided by the QD algorithm are as expected. 
Based on preliminary experiments, the value ranges for each BC were specified by the structural 
engineers at BC1∈[0,1.3] and BC2∈[0.5,3.5], forming the design space that QD should illuminate. 

Experiments conducted with this structure assume a base of 16m by 16m, made of grade C16/20 
concrete, and a thickness of 7cm, a mesh resolution of 2 subdivisions, and applied loads of 2kN/m2. For 
the FI-MAP-Elites hyperparameters, we use an initial population of 100 random individuals, a mutation 
rate of 50% and mutation step of 20%, a grid of elites of 16 by 16 (BC1 by BC2) for both feasible and 
infeasible archives, and a total of 50,000 iterations of parent selection. The upper threshold for 
displacement (Cd ) is set to 5cm.  

We test two versions of this simple test case (Case 1 and Case 2). In both cases an identical input 
geometry is used, but they are given two different support constraints. Case 1 has all translations (X, Y, 
Z) constrained at the four corner points, while Case 2 has the X direction free. This means that Case 1 
can transfer horizontal forces in two directions to the supports, while Case 2 can only transfer the 
horizontal forces in one direction. This should force the same patch into two different structural 
behaviours, thereby rendering different resulting shapes in the two maps. 

Table 1. Simple Test Case: Comparing the final archive of QD with the final population of SOO, for Case 1 and 
Case 2. Results are averaged across 10 experiment repetitions. Error signifies a confidence interval of 95%. 

 Case 1 Case 2 
 FI-MAP-Elites SOO FI-MAP-Elites SOO 
Feasible Coverage 94.3% ± 2.1% 0.6% ± 0.3% 88.9% ± 0.6% 0.7% ± 0.1% 
Feasible QD-Score 110.37 ± 1.20 1.12 ± 0.51 75.32 ± 0.91 0.44 ± 0.11 
Feasible Umin 0.38 ± 0.00 0. ma34 ± 0.01 0.72 ± 0.02 3.01 ± 0.74 
Feasible σU 1.16 ± 0.08 0.00 ± 0.00 1.82 ± 0.04 0.02 ± 0.01 
Feasible dmin 0.37 ± 0.04 0.13 ± 0.02 0.44 ± 0.06 2.08 ± 0.35 
Feasible σd 0.62 ± 0.03 0.03 ± 0.01 0.76 ± 0.02 0.03 ± 0.01 
Feasible Ratio 48.5% ± 0.6% 100.0% ± 0.0% 47.1% ± 0.2% 100.0% ± 0.0% 
Infeasible Coverage 100.0% ± 0.0% 0.0% ± 0.0% 99.8% ± 0.3% 0.0% ± 0.0% 
 

Table 1 shows the different performance metrics (see Section 3.4) for both Case 1 and Case 2. Results 
are averaged from 10 independent runs of both FI-MAP-Elites and SOO per case. A first observation 
for both cases is that the final SOO population contains exclusively feasible individuals, and those 
individuals have almost identical scores in elastic energy among them (very low σU). Moreover, based 
on the very low coverage when these solutions are mapped in the FI-MAP-Elites feature map, the 
solutions are geometrically very similar. Unsurprisingly, FI-MAP-Elites is designed to explore the BCs 
specified by the designer and reaches very high scores in both feasible and infeasible coverage. Case 2 
seems to be more challenging for EC to optimise, as evidenced by the much higher elastic energy in the 
best solution for both SOO and FI-MAP-Elites. While for Case 1 the SOO manages to converge towards 
a solution with a U score lower than the best U score found in FI-MAP-Elites, this is not true in Case 2.  
We presume that SOO converges early to a local optimum and does not explore the search space enough 
in order to find a better solution. The QD algorithm unsurprisingly does explore along the BCs and thus 
finds (many) better solutions. However, both the lower coverage and lower QD-score of FI-MAP-Elites 
in Case 2 compared to Case 1 shows that the freedom of changing the corner points’ coordinates makes 
the problem more difficult.  

Fig. 4 shows how the feature map of some indicative runs of FI-MAP-Elites differ between Case 1 and 
Case 2. It is evident that better solutions (with lower elastic energy) can be found in different parts of 
the design space (for these BCs), thus indicating different trade-offs between geometric designs. It can 
be seen that the change in support conditions leads to different solutions for each location in the map, 
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as the shapes with the lowest fitness go from two-directional compression shells in Case 1 to single-
span shell topologies in Case 2. This can be seen as the fittest individuals in Case 1 are the ones with a 
high middle height, regardless of symmetry, whereas in Case 2 the fittest solutions have moved to the 
spots with high single-axis symmetry (barrel vault forms) and two-axis symmetric solutions are not 
observed. Moreover, in Case 2 we also see a different class of fit individuals in the middle of the map 
as the lower middle height of these shells allows them to develop some synclastic curvature, which 
further increases stiffness. 

 
Figure 4: Indicative archives of feasible solutions from a single run of FI-MAP-Elites for Test Case 1 (left) and 

Test Case 2 (right), collected after 50,000 evaluations. Yellow shapes have higher feasible fitness. 

4.2 Complex Test Case 
The complex case study focuses on a more detailed four-arch vault shell which is initially mirror 
symmetrical in the XZ and YZ planes (as seen in Fig. 5). This form comprises 16 patches, and has 29 
control points adjusted by the optimisation algorithms. The shell has a base boundary of 20m by 10m, 
is formed in grade C16/20 concrete with a thickness of 10cm, a mesh resolution of 3 subdivisions, and 
only self-weight (no applied loads). The upper threshold for displacement (Cd ) is set to 6cm.  

 
Figure 5: Inputs for complex case study: control mesh and control point variation vectors (left, vectors in green), 

and resulting smoothed mesh that is structurally analysed (right). 

Diversity is defined using two Edge Point Coordinates Deviation BCs: BC1 is the Z coordinate 
deviation between midpoints of the four external arches, BC2 is the Z coordinate deviation between 
midpoints of the four axial iso-curves that meet at the centre of the vault. The problem-specific value 
ranges for the BCs in this case are found through trial and error at BC1∈[0,1.0] and BC2∈[0,1.15]. 

Table 3 shows the performance metrics on the complex test case, averaged from 8 independent runs. 
The increased complexity of this test case impacts the feasible coverage of the FI-MAP-Elites approach. 
However, more than half of the examined domain has been covered with feasible solutions in this 
approach (64%). On the other hand, the SOO’s feasible coverage remains at a very low value, suggesting 
that solutions discovered in SOO are very similar to each other in every run. Furthermore, the feasible 
population discovered by the QD approach exhibited better performance in terms of both elastic energy 
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and displacement, in comparison to SOO. This observation is aligned with the general notion that 
diversification in evolutionary approaches is a means of achieving better fitness. 

Table 3. Complex Test Case: Comparing the final archive of QD with the last population of SOO. Error 
signifies a confidence interval of 95%. Displacement (d) is reported in centimetres.  

  FI-MAP-Elites SOO  
 Feasible Coverage 66.9% ± 1.5% 0.8% ± 0.3%  
 Feasible QD-Score 110.66 ± 2.18 1.46 ± 0.56  
 Feasible Umin 0.34 ± 0.01 0.45 ± 0.02  
 Feasible σU 0.21 ± 0.02 0.01 ± 0.00  
 Feasible dmin 0.15 ± 0.01 0.27 ± 0.02  
 Feasible σd 0.11 ± 0.01 0.01 ± 0.00  
 Feasible Ratio 49.5% ± 0.4% 100.0% ± 0.0%  
 Infeasible Coverage 68.3% ± 1.7% 0.0% ± 0.0%  

 

Figure 6: Visualisation of all feasible solutions found in a single run of the FI-MAP-Elites algorithm on the 
Complex Test Case. Meshes in yellow have a higher fitness (i.e. lower elastic energy). All feasible designs are 
found in the first 13 by 14 cells (BC1 by BC2) of the feature map; empty cells beyond this range are omitted. 

As seen in Fig. 6, the fittest solutions are concentrated in regions of low deviation for both sets of control 
points. Furthermore, we observe a clear gradient that starts from this point and diminishes the further 
away we move from it. This observation is aligned with an engineering intuition that more symmetric 
solutions will exhibit better structural properties. Despite this fact, it is worth noting that all presented 
solutions are feasible and locally optimised, rendering them potential candidates for further 
investigation. 

Finally, Fig. 7 visualises the best individual solutions found by FI-MAP-Elites and SOO approaches, 
for a detailed examination. In these examples the QD algorithm found a lower deformation solution than 
the SOO. The QD optimal solution has sharper curvature at the two supports [20] in the short-span axis 
but achieves a shallower angle into the two long-axis supports. As these results suggest, the best range 
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of solutions for high-dimensional problems like this can often not be easily intuited by the engineer, 
unlike the simple test cases. 

 

Figure 7: Best solution found by the SOO (left) and by FI-MAP-Elites (middle), with blue regions representing 
high displacement. Both solutions overlaid (right) with blue colour for FI-MAP-Elites and red colour for SOO, 

to highlight their difference. 

5. Discussion 
This paper introduces a constrained Quality-Diversity evolutionary approach in structural engineering 
and tests it on the problem of designing shell surfaces. Unlike traditional evolutionary optimization, 
which converges towards similar solutions, our method produces many diverse solutions and improves 
them throughout evolution. It uses a two-population approach to explore the design space efficiently 
and discover feasible solutions. It produces many individuals, with a high coverage of the design space 
of geometric properties specified by the designer. The produced visualisation of all possible layouts can 
provide important feedback to engineers and inspire future iterations. As shown in some use-case 
example shell structures, this approach can offer many good alternatives for an engineer to choose from, 
compared to the single design produced by single-objective evolution. 

The experiment setup included three test cases: two variants of a simple problem and a more complex 
problem closer to the real-world structural engineering problems encountered by AKT II [19],[20]. We 
compared the output of FI-MAP-Elites against designs collected from a traditional single-objective 
optimization (SOO) method available to all engineers through the Galapagos optimizer (in 
Rhino/Grasshopper). While the objective function included both the design goal and the constraints, 
through a form of fitness penalty typical in constrained optimization [17], other evolutionary approaches 
may perform differently. For instance, a two-population approach such as FI-2pop GA is expected to 
find feasible individuals even in the complex case study, where SOO struggled. Moreover, traditional 
genetic diversity preservation mechanisms such as the Fitness Uniform Selection Strategy [23] could 
also lead to more diverse results. Finally, a multi-objective approach [24] where the BCs are used as 
objectives alongside the SOO objective function (Fb) may lead to a more diverse population. On the 
other hand, since the best solutions were found at specific BC coordinates, sometimes with low BC 
scores, optimising towards high BCs may not lead to any improvements at a higher computation cost. 
Such more complex baselines will be explored in future work, where more complex structural 
engineering problems will be tested with FI-MAP-Elites.  

Results of FI-MAP-Elites as a method of illuminating the design space and generating many good 
alternatives is promising for the structural engineering test cases, including the complex one which is 
close to real-world problems faced by professionals. However, there are many other problems within 
the AEC domain that could benefit from FI-MAP-Elites and could be explored in future work. 
Preliminary studies in illuminating the space of stick models for structural engineers with FI-MAP-
Elites [25] have shown that the method is valuable for simple test cases but does not scale for more 
complex problems due to the additional burden on designers to define the entire range of allowed 
designs. FI-MAP-Elites has also been tested for MEP engineering towards designing ventilation shafts 
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[25], operating under strict design spaces provided by the designers; this allows designers to ensure that 
solutions satisfy their ad-hoc constraints but limits the potential of QD search to provide truly surprising 
solutions to the designers. Beyond testing FI-MAP-Elites in other engineering tasks, a more ambitious 
avenue for future work is testing the output of the algorithm (e.g. the feature maps of Fig. 4) in real-
world, everyday workflows of a professional setting and their applicability as inspiration for engineers, 
for communicating between disciplines (e.g. showing a feature map of alternatives to other AEC 
stakeholders, such as architects), and for communicating with clients. This ambitious direction of 
inquiry would shed more light on the potential of Quality-Diversity search and the improvements needed 
to the algorithm, visualisation, explainability [26], and tools (e.g. Rhino plugin). 

6. Conclusions 
This paper presented a novel approach to structural engineering, testing a new algorithm that takes 
advantage of recent advances in constrained optimization and quality-diversity (QD) evolutionary 
search. The method shows promise in both simple and complex test cases and can produce a range of 
geometrically diverse high-quality solutions, which can be beneficial during conceptualization stages 
and when exploring alternatives with different stakeholders. The algorithm is integrated into the 
Grasshopper visual programming environment within Rhino, which makes it both easily accessible and 
customizable by engineers, and also provides tools to intuitively visualise and inspect all generated 
solutions. Compared to a traditional single-objective optimization method currently available in Rhino, 
our constrained QD approach can find feasible solutions more easily and produce far more viable 
alternatives, compared with a single optimum that the single-objective approach converges to. Future 
work will explore converting FI-MAP-Elites into a plugin available for everyone via online repositories 
(e.g. food4rhino.com) and assessing its applicability further in everyday structural engineering 
workflows. 
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