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A B S T R A C T

Extended gravity is widely constrained in different astrophysical and astronomical systems. Since these different
systems are based on different scales it is not trivial to get a combined constraint that is based on different
phenomenology. Here, for the first time (to the best of our knowledge), we combine constraints for 𝑓 (𝑅)
gravity from late time Cosmology and the orbital motion of the stars around the galactic center. 𝑓 (𝑅) gravity
models give different potentials that are tested directly in the galactic center. The cosmological data set
includes the type Ia supernova and baryon acoustic oscillations. For the galactic star center data set we use the
published orbital measurements of the S2 star. The constraints on the universal parameter 𝛽 from the combined
system give: 𝛽𝐻𝑆 = 0.154 ± 0.109 for the Hu–Sawicki model, while 𝛽𝑆𝑡 = 0.309 ± 0.19 for the Starobinsky dark
energy model. These results improve on the cosmological results we obtain. The results show that combined
constraint from different systems yields a stronger constraint for different theories under consideration. Future
measurements from the galactic center and from cosmology will give better constraints on models with 𝑓 (𝑅)
gravity.
. Introduction

Cosmological measurements from the last few decades show that the
eneral theory of Relativity (GR) is not the complete solution for gravity
heories. The measurements from the Type Ia supernova [1], Baryon
coustic Oscillations (BAO) [2–5] and the Cosmic Microwave Back-
round (CMB) [6] give strong evidence at least for one modification
eyond GR, which is the Cosmological Constant 𝛬 [7–12]. However,
he question is whether GR+𝛬 is the fundamental theory of gravity
r a small part of a bigger theory remains an open question. Modified
heories of gravity are theoretically and observationally appealing, and
iven the ever increasing sensitivity and precision in upcoming surveys,
hich provides the exciting possibility of robustly testing them against
bservational data. Among these alternatives, extensions of GR, like
(𝑅) gravity, can be considered a straightforward and natural approach

o retain positive results of Einstein’s theory and eventually to extend
t at infrared and ultraviolet scales [13].

Besides cosmological systems, there are new constraints on alter-
ative theories of gravity from the strong gravity regime from the
alactic center. The relativistic, compact object in the galactic center is
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called 𝑆𝑔𝑟𝐴∗. The stars orbiting 𝑆𝑔𝑟𝐴∗ are called the S-stars [14–23]. A
large fraction of these stars have orbits with high eccentricities which
puts them under the effect of both extremes of gravity. Thus, they
reach high velocities at the pericenter and can be used for constraining
modified gravity [19,21,24–56]. This offers an ideal test bed on which
to examine the strong field behavior of modified gravity theories.

The late time cosmic acceleration may be due to exotic matter
components in the Universe. Another possibility is that this cosmic
speed-up might be caused within GR by the dark energy. The accel-
eration could be due to purely gravitational effects that emerge from
𝑓 (𝑅) gravity models. It may also be the case that GR produces the
observational consequences of dark energy through additions in the
matter section beyond a cosmological constant [57]. Alternatively, it
may be that the dynamics of dark energy is a result of the additional
dynamical behavior of modified theories of gravity, and in particular
𝑓 (𝑅) gravity models. The aim of our work is to combine data from these
different systems and to show that more robust constraints of modified
theories of gravity can be obtained from combined systems. Although
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these systems are from different scales, the combined constraint yields
a better bound on the parameters. Combining both the cosmological
scale tests and the strong field tests of astrophysical systems allows us to
obtain higher precision constraints on the free parameters of different
𝑓 (𝑅) gravity systems.

In Ref. [58] different astrophysical systems have been compared, fo-
cusing on their gravitational potential vs. their curvature (Kretschmann
scalar). Despite the fact that the two systems we compare and statis-
tically add have different curvatures (1034 cm−2 for S-stars orbits and
10−50 cm−2 for late time cosmology) we constrain a common parameter
of the theory that should give the same value for different curvatures.

The structure of the paper is the following: Section 2 formulates the
theory and the equation of motion. Section 3 derives the approximate
equations for the Hubble rate and for the modified orbits. Section 4
describes the dataset. Section 5 discusses the results. Finally, Section 6
summarizes the results and future prospects.

2. The theory

A natural approach to 𝑓 (𝑅) gravity theories is to replace the Ricci
scalar 𝑅 in the Einstein–Hilbert action with an arbitrary function of the
Ricci scalar [59–65]

𝑆 = 1
16𝜋𝐺 ∫ 𝑑4𝑥

√

−𝑔 𝑓 (𝑅) + 𝑆𝑚 , (1)

here 𝐺 is the Newtonian constant, and 𝑆𝑚 is the matter term in the
ction, and 𝑔 is the determinant of the metric. Any 𝑓 (𝑅) gravity model
hould fit the conventional standard cosmology as well as explain
he current cosmic acceleration issue and the growing cosmological
ensions crisis. Moreover, in order to be able to drive the late time
osmic acceleration, the effective dark energy should be 𝑤𝑑𝑒 = −1
symptotically. The cosmological dynamics in 𝑓 (𝑅) gravity is analyzed

in many works [57,66] across the various flavors of 𝑓 (𝑅) gravity. The
equivalent of the Einstein equation in 𝑓 (𝑅) gravity reads

𝑓 ′(𝑅)𝑅𝜇𝜈 −
1
2
𝑓 (𝑅)𝑔𝜇𝜈 −□𝜇𝜈𝑓

′(𝑅) = 8𝜋𝐺𝑇𝜇𝜈 , (2)

where □ is the usual notation for the covariant D’Alembert operator
≡ ∇𝛼∇𝛼 where we interpret the effect of different 𝑓 (𝑅) gravity

odels as an extra stress–energy contribution which is possible at
ackground level, and the operator □𝜇𝜈 =

(

∇𝜇∇𝜈 − 𝑔𝜇𝜈□
)

. Compared
o GR, 𝑓 (𝑅) gravity has one extra scalar degree of freedom, 𝑓 ′(𝑅). The
ynamics of this degree of freedom is determined by the trace of the
ield equations in Eq. (2), which gives

𝑓 ′ =
2𝑓 − 𝑓 ′𝑅

3
+ 8𝜋𝐺

3
𝑇 , (3)

where 𝑇 is the trace of the stress–energy tensor 𝑇𝜇𝜈 . It is possible to
educe the 𝑓 (𝑅) equation of motion Eq. (2) to

𝜇𝜈 = 8𝜋𝐺
(

𝑇𝜇𝜈 + 𝑇 (eff)
𝜇𝜈

)

, (4)

here

𝜋𝐺𝑇 (eff)
𝜇𝜈 =

𝑓 − 𝑓 ′𝑅
2

𝑔𝜇𝜈 −□𝜇𝜈𝑓
′ + (1 − 𝑓 ′)𝐺𝜇𝜈 . (5)

It is possible to see that when 𝑓 (𝑅) −𝑓 ′(𝑅) ≈ const, the 𝑓 (𝑅) equations
of motion reduce into GR. The known Hu–Sawicki (HS) model [67] is
a good example of 𝑓 (𝑅) gravity that remains interesting cosmologically
and continues to satisfy astrophysical tests. The action of this model is

𝑓 (𝑅) = 𝑅 − 𝑚2 𝑐1(𝑅∕𝑚2)𝑛

1 + 𝑐2(𝑅∕𝑚2)𝑛
, (6)

where 𝑐1, 𝑐2 are two free parameters, 𝑚2 ≃ 𝛺𝑚0𝐻2
0 is of the order of

the Ricci scalar 𝑅0, 𝐻0 is the Hubble constant, 𝛺𝑚0 is the dimensionless
matter density today; and 𝑚 and 𝑛 are positive constants with 𝑛 usually
aking positive integer values i.e., 𝑛 = 1, 2,…. In the rest of our paper,
2

𝑑

we assume 𝑛 = 1 for simplicity. Ref. [68] shows that after simple
algebraic manipulations Eq. (6) can also be written as

𝑓 (𝑅) = 𝑅 − 2𝛬
1 +

(

𝛽𝐻𝑆𝛬∕𝑅
)𝑛 , (7)

where 𝛬 = 𝑚2𝑐1∕2𝑐2 and 𝛽𝐻𝑆 = 2𝑐1−1∕𝑛2 ∕𝑐1. In this form, it is clear
that this model can be arbitrarily close to 𝛬CDM, depending on the
parameters 𝛽𝐻𝑆 and 𝑛. Moreover, for 𝑛 > 0 it has the limits [68]

lim
𝛽𝐻𝑆→0

𝑓 (𝑅) = 𝑅 − 2𝛬 , lim
𝛽𝐻𝑆→∞

𝑓 (𝑅) = 𝑅 . (8)

Since the HS model tends to 𝛬CDM for 𝛽𝐻𝑆 → 0, it can be considered
s a small perturbation around the 𝛬CDM model. Therefore, it should
ome as no surprise that the HS model can successfully pass the solar
ystem tests.

The Starobinsky dark energy model [69], henceforth referred to as
he Starobinsky model, is also an interesting model of this class of 𝑓 (𝑅)
ravity in that it has an impact both in inflation as well as at later times
f cosmic evolution. This model is defined as

(𝑅) = 𝑅 − 𝑐1 𝑚2
[

1 −
(

1 + 𝑅2∕𝑚4)−𝑛
]

. (9)

where 𝑐1, 𝑚, 𝑛 are free parameters. This can equivalently be represented
as

𝑓 (𝑅) = 𝑅 − 2𝛬

(

1 +
(

𝑅
𝛽𝑆𝑡𝛬

)2
)−𝑛

(10)

where 𝛬 = 𝑐1𝑚2∕2 and 𝛽𝑆𝑡 = 2∕𝑐1, and where we obtain identical
limits as in Eq. (8) for the 𝛽𝑆𝑡 parameter. Indeed, this representation is
dvantageous because the limit to standard cosmology is more clearly
een.

. Solution for different systems

In this section, we describe the phenomenological predictions for
oth the cosmological and astrophysical scales of observations under
onsideration. We do this to ultimately combine the data outputs for
oth regimes of observational measurements.

.1. Cosmology

For a flat Friedmann–Lemaître–Robertson–Walker (FLRW) back-
round cosmology, we can take the metric to be described by

𝑠2 = 𝑑𝑡2 + 𝑎(𝑡)2
[

𝑑𝑟2 + 𝑟2
(

𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] , (11)

where 𝑎(𝑡) is the scale factor, and which leads to the Ricci scalar

𝑅 = 6𝐻2 + 12�̇� , (12)

where 𝐻 = �̇�∕𝑎 is the Hubble parameter. Based on the equations of mo-
tion for the 𝑓 (𝑅) model, Refs. [15,68,70,71] show that for small values
of the parameter 𝑏, one is always able to find an analytic approximation
to the Hubble parameter that works to a level of precision to the level of
10−7 for small values of 𝛽. The model approximation gives a Friedmann
equation
𝐻(𝑧)2

𝐻2
0

= 1 −𝛺𝑚 + (1 + 𝑧)3𝛺𝑚 + 𝛽�̃�(𝑧) + 𝛽2𝛽(𝑧) , (13)

ith the expansion of 𝐻(𝑧) defined in [15,70] from which the coef-
icients 𝛼 and 𝛽 can be obtained. In the above expressions, we take
𝑟 = 0 to simplify the equations, since we use the late time data
f the Universe, where the radiation density parameter is negligible.
he corresponding expression fits for 𝛬CDM when 𝛽 → 0. The cosmo-

ogical likelihood for the so defined EOS, 𝜒2
𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑦, can be found in

he Appendix.

.2. Orbital motion

In order to solve the orbital motion one has to consider a general
pherically symmetric metric [72]
𝑠2 = [1 +𝛷(𝑟)]𝑑𝑡2 − [1 −𝛷(𝑟)]𝑑𝑟2 − 𝑟2𝑑𝛺2 . (14)
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where 𝛷(𝑟) represents potentials and 𝑑𝛺2 is the metric of a 2-sphere.
For the low energy limit, the potential can be written as

𝛷(𝑟) = −𝐺𝑀
𝑟

1 + 𝛿𝑒−𝑚𝑌 𝑟

1 + 𝛿
, (15)

where 𝑀 is the mass of the source of the gravitational field and 𝛿 and
are two parameters representing the strength and the scale length of

he Yukawa-like modification of the gravitational potential [73]. Both
arameters are also related to the 𝑓 (𝑅) Lagrangian as [74–85]

𝛿 = 𝑓 ′
0 − 1, 𝑚2

𝑌 = −
𝑓 ′
0

6𝑓 ′′
0

, (16)

where the derivatives of 𝑓 (𝑅) are on a certain curvature 𝑅0, where
we assume that the S2 star experience on average the same curvature
with small variance. Since we test the curvature of the S2 star we
approximate it to be zero. Relativistic equations of motion for massive
particles can be obtained from the geodesic equations for time-like
geodesics of the metric in Eq. (14) given by [86]

𝑑2𝑥𝜇

𝑑𝑠2
+ 𝛤 𝜇

𝜈𝜌
𝑑𝑥𝜈

𝑑𝑠
𝑑𝑥𝜌

𝑑𝑠
= 0 . (17)

or this astrophysical system, the HS model gives parameters

= −2∕𝛽𝐻𝑆 , 𝑚2
𝐻𝑆 =

(2 − 𝛽𝐻𝑆 )
24

𝛽𝐻𝑆𝛬 . (18)

For the Starobinsky model, we find the corresponding

= −
4𝑅0

𝛽2𝑆𝑡𝛬
(

𝑅2
0

𝛽2𝑆𝑡𝛬
2 + 1

)2
, 𝑚2

𝑆𝑡 ≈
𝛽2𝑆𝑡𝛬
384

(1 + 𝛿) . (19)

These simplified equations allow us to integrate the system by taking
𝛽, 𝛬 and 𝛿 (when applicable) as free parameters. From them, one can
see that we can avoid using 𝛿 as a free parameter in the HS case,
ecause it is directly connected to 𝛽. In the Starobinsky case, however,

it is not possible to relate these two quantities since 𝛿 depends on
the Ricci scalar 𝑅0. For this reason for the HS case, we use as free
parameters only 𝛽 and 𝛬, while for the Starobinsky case, we use 𝛽, 𝛬
and 𝛿.

An additional consideration is the value of 𝛬, which is particularly
important in the Starobinsky case due to its strong coupling to 𝛽. From
Eqs. (13) and (17) it is clear that 𝛬 ∼ 𝑚2 and 𝑚 ∼ 1∕𝑟, so it has the
units of length. The characteristic scale of the S2 system is that of its
radius, so it is about 2000 AU. This means that the meaningful prior
for 𝛬 is about [0, 10−3].

We start the first iteration using a sampling of the initial position
𝑥0, 𝑦0) and velocity (�̇�0, �̇�0) of the corresponding star in the orbital
lane at the epoch at 1995. The true positions (𝑥𝑖, 𝑦𝑖) and veloci-

ties (�̇�𝑖, �̇�𝑖) at all successive observed epochs are then calculated by
numerical integration of equations of motion and projected into the
corresponding positions (𝑥𝑐𝑖 , 𝑦

𝑐
𝑖 ) in the observed plane (apparent orbit).

here are three angles that we take into account: 𝛺 is longitude of the
ascending node, 𝜔 is longitude of pericenter and 𝑖 is the inclination.
The transformation from the reference frame to our frame is via the
rotation matrix

(

(𝑙1, 𝑙2), (𝑚1, 𝑚2)
)

where the expressions for 𝑙1, 𝑙2, 𝑚1 and
𝑚2 depend on three orbital elements:

𝑙1 = cos𝛺 cos𝜔 − sin𝛺 sin𝜔 cos 𝑖 ,
𝑙2 = −cos𝛺 sin𝜔 − sin𝛺 cos𝜔 cos 𝑖 ,
𝑚1 = sin𝛺 cos𝜔 + cos𝛺 sin𝜔 cos 𝑖 ,
𝑚2 = − sin𝛺 sin𝜔 + cos𝛺 cos𝜔 cos 𝑖 .

(20)

The S2 likelihood we use is:

𝜒2
𝑆2 = (((𝑥𝑖 − 𝑥𝑜𝑏𝑠𝑖 )∕𝜎𝑥)2 + ((𝑦𝑖 − 𝑦𝑜𝑏𝑠𝑖 )∕𝜎𝑦)2)2, (21)

where 𝑥𝑖, 𝑦𝑖 are the predicted orbital positions, 𝑥𝑜𝑏𝑠𝑖 , 𝑦𝑜𝑏𝑠𝑖 are the ob-
served positions, and 𝜎𝑥 and 𝜎𝑦 are the respective errors in the posi-
tions. We take the angles as Gaussian priors since they are already well
constrained in the literature. The only uniform priors that we run on
the orbital motions are on the initial positions and velocities.
3

c

3.3. Combined constraint

These two different systems have different energy scales. However,
if the 𝑓 (𝑅) is a fundamental model and not an approximate one, the
additional parameter 𝛽 should be universal. Therefore, we consider the
combined likelihood 𝜒2, as

𝜒2
𝑇 𝑜𝑡 = 𝜒2

𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑦 + 𝜒2
𝑆2 , (22)

here the cosmological 𝜒2
𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑦 include the expansion rate data and

2
𝑆2 includes the orbital data. The quantity we need to minimize is
he separate or the combined 𝜒2. For both datasets, the parameter 𝛽
ppears directly and therefore we study the constraint from the partial
nd the combined systems on this parameter.

. Observational data

In order to set constraints on the parameters of the model we shall
onsider various combinations of cosmological observations as well as
ata coming from the galactic center. The cosmological dataset include:

• BAO – We use a combination of BAO points including various
angular measurements and points from the most recent to date
eBOSS data release (DR16), which come as angular (DM) and
radial (DH) measurements and their covariance. A description of
the dataset can be found in Ref. [87]. This choice of points allows
us to integrate out the dependence on 𝐻0𝑟𝑑 which allows us not
to calibrate our cosmology with the early or the late Universe.
The description of our analytical marginalization approach can
also be found in [87].

• Pantheon – Type Ia Supernovae (SNeIa) distance moduli mea-
surements from the Pantheon sample (SN) consisting of 1048
SNeIa in the range 0.01 < 𝑧 < 2.3 [88] divided into 40 bins.
These measurements constrain the uncalibrated luminosity dis-
tance 𝐻0𝑑𝐿, or in other words the slope of the late-time expansion
rate. In this dataset, we marginalize analytically over 𝑀𝐵 and
𝐻0. This is done again to avoid having these quantities as free
parameters.1

• The orbital motion of the S2 star - From the galactic center,
our analysis uses publicly available astrometric and spectroscopic
data that have been collected during the past thirty years. We
use 145 astrometric positions spanning a period from 1992.225 to
2016.38 from [89]. The data come from speckle camera SHARP
at the ESO New Technology Telescope [90], measurements were
made using the Very Large Telescope (VLT) Adaptive Optics
(AO). The data include the location and velocities but also the
precession rate of the S2 star. We perform a Bayesian statistical
analysis to constrain the additional parameter from the 𝑓 (𝑅)
gravity model.

We use an affine-invariant nested sampler [91] for the minimization
f our likelihoods via the implementation of the open-source package
olychord [92]. We also use the GetDist package [93] for the analysis
nd illustration of our results. Based on Ref. [94], the Polychord esti-
ates the evidence and the posterior simultaneously, by drawing 350

in our case) live points uniformly from the prior and updating them
o find the peak of the posterior. We use modified precision criterion
10−5) to increase the convergence.

For simplicity, we use the angles reported by the Gravity collabora-
ion [15,17,18] as a Gaussian prior. For the rest, we assume a uniform
rior of the initial location and velocities. The priors on the parameters
e use, thus are: 𝛽 ∈ [0, 1], 𝑥0 ∈ [1000, 1500], 𝑦0 ∈ [1300, 1700],

1 During the work, a newer compilation was released called PantheonPlus
hich is available here. We do not expect this new data set to appreciably

hange the results here.

https://github.com/PantheonPlusSH0ES/DataRelease
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Fig. 1. The posterior distributions for the additional parameter from the 𝑓 (𝑅) gravity
odel: Upper: the Hu–Sawicki model, Lower: the Starobinski model.

Table 1
The posterior distribution of different gravity theories with late time cosmology (noted
as C) and the orbital motion of the S2 star (noted as S2 star).

System 𝛽 𝛬 (𝐴𝑈−2) 𝛿
(

10−3
)

𝛺𝑚

HS

C 0.176 ± 0.11 – – 0.291 ± 0.014
C+S2 0.154 ± 0.109 0.456 ± 0.299 – 0.292 ± 0.014

Starobinsky

C 0.353 ± 0.219 – – 0.302 ± 0.012
C+S2 0.309 ± 0.190 0.459 ± 0.281 0.62 ± 57 0.302 ± 0.011

𝑣𝑥0 ∈ [0, 90], 𝑣𝑦0 ∈ [−150, −50], and 𝛺𝑚 ∈ [0.1, 0.5]. Furthermore,
we use the following Gaussian priors: 𝑀𝑆𝑔𝑟∗ = (4.261 ± 0.012)106𝑀⊙,
𝑑 = 8.2467 ± 0.0093kpc, 𝛺 = 228.171 ± 0.031, 𝜔 = 66.263 ± 0.031,
= 134.567 ± 0.033 The priors on 𝛬 and 𝛿 are discussed in the next

ection.

. Results

The results can be seen in Fig. 1, which shows the posterior distri-
ution for the parameter 𝛽 in both cases. The numerical values can be
ound in Table 1. Due to the different parameters in the S2 case in the
u–Sawicki and the Starobinsky model, we do not compare directly

he S2 results. Instead, we present here the cosmology results, which
re comparable since both depend only on the parameter 𝛽 and the
‘S2+Cosmology’’ results, which depend on 𝛽 and 𝛬 in the HS case, and
n 𝛽, 𝛬 and 𝛿 in the Starobinsky case.

Numerically, the Starobinsky case presents a problem, since for big
4

or 𝛿, the integration hits a numerical singularity. For this reason, we
eed to set either 𝛬 or 𝛿 small. The advantage of having 𝛬 small is that
t corresponds to our expectations that it will be proportional to the
haracteristic units of length of the system. The disadvantage is that
ince it is coupled to 𝛽 in the S2 case, choosing a small prior for it will
orce 𝛽 to be less constrained. Since the posterior in this case do not
mprove on the cosmological result, we do not show it here.

On the other hand, choosing a small 𝛿 does not bring such problems.
oreover, the parameter 𝛿 is expected to be small in order to recover
R. For this reason, on Fig. 1, we use as priors 𝛽 ∈ [0, 1], 𝛬 ∈ [0, 1]
nd 𝛿 ∈ [−0.1, 0, 1]. In this case, the MCMC is able to better constrain
n 𝛽 in both cases and we see that for them, the addition of the S2
ata improves the posterior on 𝛽 making it closer to GR. Note that in
he Cosmology case, the prior on 𝛽 is rather large (𝛽 ∈ (0, 10)), yet the

MCMC is able to constrain it very well from the data, well smaller than
the prior interval. For the S2 and the combined case, such a large prior
is not possible due to the mentioned singularity in the integration. The
parameters 𝛬 and 𝛿 are not well constrained, because they cannot be
it solely based on the S2 equations and data, and they do not enter the
ssociated cosmological models.

One can compare these results with the ones presented in Ref. [68].
here, the model 𝑓1CDM corresponds to our HS, and the model 𝑓2CDM
orresponds to Starobinsky. We see from Table III that indeed the
tarobinsky model constraints come with a much larger error: 0.111 ±
.140 for 𝑓1CDM compared to 0.292±0.647 for 𝑓2CDM. We also observe

this in our results: for cosmology we have 0.176 ± 0.11 vs 0.353 ± 0.219
for Hu–Sawicki and Starobinsky respectively, and in the combined case
we have 0.154±0.109 vs 0.309±0.191. Note that in that article, they use
numerous astrophysical datasets: SN, CMB, BAO and the growth rate
data provided by the various galaxy surveys. In our work, we use only
the marginalized BAO and SN datasets, thus some precision may be lost
due to the lack of priors on 𝐻0 and 𝑟𝑑 . We see, however, that the matter
density is very well constrained, as expected from the marginalized
approach.

The other parameters 𝛬 and 𝛿 as mentioned cannot be constrained
efficiently from this approach. We study the effect of different choices
of prior in the 𝑆2 system where the numerical singularities are more
manageable. If one keeps the other priors fixed and changes just the
prior on 𝛬 we see that a smaller prior leads to worse constrained
posterior for 𝛽 in both models. This is due to 𝛬 being coupled to 𝛽
in both models and thus making it smaller immediately affects 𝛽. With
respect to 𝛿, we find that if we keep the other parameters priors fixed,
a decrease in the prior on 𝛿 leads to mild increase in the error of 𝛽.
In this sense its effect on the system is much milder. The priors that
we tested vary between 𝛬 ∈ [0, 1] and 𝛬 ∈ [0, 0.001] and 𝛿 ∈ [0, 1] and
𝛿 ∈ [0, 0.001]. We find also that the sign of 𝛿 do not change the posterior
on 𝛽.

6. Discussion

In this paper we have suggested a new combined approach, in which
𝑓 (𝑅) gravity models screen different potentials that are tested directly
in the galactic center. We have presented the bounds on 𝛽 from our
combined astrophysics and cosmology system. We do not discuss 𝑓 ′(𝑅)
and 𝑓 ′′(𝑅) because in both systems, it depends on different quantities
— for the cosmology it depends on 𝛽 while in S2, it depends on 𝛽 and
𝛿.

The discrepancy between the values of the Hubble constant 𝐻0, the
current expansion rate of the Universe, inferred from early-Universe
measurements such as Planck CMB data [6] and late-Universe measure-
ments, such as the SH0ES collaboration [1], has reached 5𝜎 confidence.
It was also suggested that the most promising method to accomplish
this goal is by introducing new physics [95]. 𝑓 (𝑅) gravity models
change with redshift and can lead to an 𝐻0 estimate from CMB larger
than that obtained from late-time probes. To solve the 𝐻0 tension
instead of modifying the matter content, the gravitational sector is mod-
ified in a manner that current cosmic dynamics is derived. 𝑓 (𝑅) gravity



Physics of the Dark Universe 42 (2023) 101344D. Benisty et al.

w

𝑓

a
a

𝜇

𝜇

w
t

𝜒

w
𝐷
i
i

f

w

𝐴

𝐵

w

𝐷

t
l
𝐶
𝐶

w
w

r

could be a candidate for that. However, as we have shown in this work,
a serious confrontation to the problem of cosmic tensions through 𝑓 (𝑅)
gravity must also incorporate astrophysical phenomenology, that is,
any model must not only address the issue of tensions in cosmology but
also retain the well-behaved evolution of stronger field systems such as
S-type star orbits.

Many models within 𝑓 (𝑅) gravity theories satisfy solar systems con-
straints whereas 𝑓 (𝑅) models which evade the solar system constraints
are equipped with a chameleon screening mechanism [84,85,96]. In
this paper we suggest a novel method also to test these theories in
comparison to 𝛬CDM, by adding the combined 𝜒2 of both astrophysical
and cosmological phenomenology.

Constraints on 𝑓 (𝑅) gravity can be found in the literature [96].
In the notations we use, they vary from log10

[

𝑓 ′(𝑅0) − 1
]

< −4.79 in
galaxy clusters [97], to log10

[

𝑓 ′(𝑅0) − 1
]

< −3 from GW 170817 [98]
and 𝑓 ′(𝑅0) − 1 < 3.7 ⋅ 10−6 from the CMB [99] and 10−7 < 𝑓 ′(𝑅0) <
10−4 from the fast predictions of the non-linear matter power spec-
trum [100]. While we cannot impose the strongest constraints on 𝑓 ′(𝑅)
or even on 𝛽 due to the fact we choose a marginalized likelihood for
cosmology, for the first time we find the constraints on the universal
parameter 𝛽 from combined astronomical and cosmological dynamics.
Since we compare two different systems, the curvature is different
and the translation from the universal parameter 𝛽 to 𝑓 ′(𝑅0) is not
trivial. From the lower bound on 𝛽 we obtain that 𝐺𝑅+𝛬 is recovered.
Therefore, our combined approach could be useful to test alternative
theories in a novel way. It will be interesting in the future to extend
tests in the strong-field regime to include black hole shadows, as was
done in [101] in a wide range of theories of modified gravity.
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Appendix. Review on the marginalization process

The cosmological measurements we use are outlined in [87]. The
BAO measurements have two projections: the radial projection 𝐷𝐻 (𝑧) =
𝑐∕𝐻(𝑧) given by:
𝐷𝐻 = 𝑐 1 , (A.1)
5

𝑟𝑑 𝐻0𝑟𝑑 𝐸(𝑧)
and the tangential projection:
𝐷𝐴
𝑟𝑑

= 𝑐
𝐻0𝑟𝑑

𝑓 (𝑧), (A.2)

here:

(𝑧) = 1
(1 + 𝑧)

√

|𝛺𝐾 |
sinn

[

|𝛺𝐾 |
1∕2𝛤 (𝑧)

]

. (A.3)

nd sinn(𝑥) ≡ sin(𝑥), 𝑥, sinh(𝑥) for 𝛺𝐾 < 0, 𝛺𝐾 = 0, 𝛺𝐾 > 0 respectively
nd 𝛤 (𝑧) = ∫ 𝑑𝑧′

𝐸(𝑧′) . The angular diameter distance, 𝐷A, is related to the
comoving angular diameter distance trough 𝐷𝑀 = 𝐷𝐴(1 + 𝑧).

The SNIa measurements are described by the luminosity distance
𝑑𝐿(𝑧) (related to 𝐷𝐴 by 𝐷𝐴 = 𝑑𝐿(𝑧)∕(1 + 𝑧)2) and its distance modulus
(𝑧) through:

𝐵(𝑧) −𝑀𝐵 = 5 log10
[

𝑑𝐿(𝑧)
]

+ 25 , (A.4)

here 𝑑𝐿 is measured in units of Mpc, and 𝑀𝐵 is the absolute magni-
ude.

The 𝜒2 for a DE model can be defined as:
2 =

∑

𝑖

[

𝑣𝑜𝑏𝑠 − 𝑣𝑚𝑜𝑑𝑒𝑙
]𝑇 𝐶−1

𝑖𝑗
[

𝑣𝑜𝑏𝑠 − 𝑣𝑚𝑜𝑑𝑒𝑙
]

, (A.5)

here 𝑣𝑜𝑏𝑠 is a vector of the observed points at each 𝑧 (i.e., 𝐷𝑀∕𝑟𝑑 ,
𝐻∕𝑟𝑑 , 𝐷𝐴∕𝑟𝑑), 𝑣𝑚𝑜𝑑𝑒𝑙 is the theoretical prediction of the model and 𝐶𝑖𝑗

s the covariance matrix. For uncorrelated points the covariance matrix
s a diagonal matrix, and its elements are the inverse errors 𝜎−2𝑖 .

For BAO, it is possible to rewrite the vector as the dimensionless
unction 𝑓 (𝑧) multiplied by the 𝑐

𝐻0𝑟𝑑
parameter and thus to eliminate

the dependence of the result on 𝐻0, 𝑟𝑑 . Following the approach in [102–
105], we integrate over 𝐻0𝑟𝑑 to get the final form of the marginalized
𝜒2:

𝜒2 = 𝐶 − 𝐵2

𝐴
+ log

( 𝐴
2𝜋

)

. (A.6)

here:

= 𝑓 𝑗 (𝑧𝑖)𝐶𝑖𝑗𝑓
𝑖(𝑧𝑖), (A.7a)

=
𝑓 𝑗 (𝑧𝑖)𝐶𝑖𝑗𝑣𝑖𝑚𝑜𝑑𝑒𝑙(𝑧𝑖) + 𝑣𝑗𝑚𝑜𝑑𝑒𝑙(𝑧𝑖)𝐶𝑖𝑗𝑓 𝑖(𝑧𝑖)

2
, (A.7b)

𝐶 = 𝑣𝑚𝑜𝑑𝑒𝑙𝑗 𝐶𝑖𝑗𝑣
𝑚𝑜𝑑𝑒𝑙
𝑖 . (A.7c)

For the Supernova data, following the approach in [102,106–108],
we marginalize over 𝑀𝐵 and 𝐻0, so that the integrated 𝜒2 becomes:

𝜒2
𝑆𝑁 = 𝐷 − 𝐸2

𝐹
+ ln 𝐹

2𝜋
, (A.8)

here:

=
∑

𝑖

(

𝛥𝜇 𝐶−1
𝑐𝑜𝑣 𝛥𝜇

𝑇 )2 ,

𝐸 =
∑

𝑖

(

𝛥𝜇 𝐶−1
𝑐𝑜𝑣 𝐸

)

,

𝐹 =
∑

𝑖
𝐶−1
𝑐𝑜𝑣. (A.9)

where 𝛥𝜇 = 𝜇𝑖 − 5 log10
[

𝑑𝐿(𝑧𝑖)
)

, 𝐸 is the unit matrix, and 𝐶−1
𝑐𝑜𝑣 is

he inverse covariance matrix of the dataset. Here 𝜇𝑖 is the observed
uminosity, 𝜎𝑖 is its error. The total covariance matrix is given by
𝑐𝑜𝑣 = 𝐷𝑠𝑡𝑎𝑡 + 𝐶𝑠𝑦𝑠, where 𝐷𝑠𝑡𝑎𝑡 = 𝜎2𝑖 comes from the measurement and
𝑠𝑦𝑠 is provided separately [109].

There is a difference between 𝜒2
𝐵𝐴𝑂 and 𝜒2

𝑆𝑁 because for the BAO
e removed the dependence of 𝑐∕𝐻0𝑟𝑑 , which is multiplied to the 𝑓 (𝑧),
hile for SN, the parameter, �̄�𝐵 is added to the value of 𝜇.

Thus the combined likelihood for cosmology becomes:

𝜒2
𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑦 = 𝜒2

𝐵𝐴𝑂 + 𝜒2
𝑆𝑁 . (A.10)

For it, the values of 𝐻0𝑟𝑑 and 𝑀𝐵 and 𝐻0 for the BAO and the SN
espectively do not change the marginalized 𝜒2 .
𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑦
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