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Abstract The pursuit of understanding the mysteries sur-
rounding dark energy has sparked significant interest within
the field of cosmology. While conventional approaches,
such as the cosmological constant, have been extensively
explored, alternative theories incorporating scalar field-based
models and modified gravity have emerged as intriguing
avenues. Among these, teleparallel theories of gravity, specif-
ically the f (T, φ) formulation, have gained prominence as a
means to comprehend dark energy within the framework of
teleparallelism. In this study, we investigate two well-studied
models of teleparallel dark energy and examine the presence
of cosmological singularities within these scenarios. Using
the Goriely–Hyde procedure, we examine the dynamical sys-
tems governing the cosmological equations of these models.
Our analysis reveals that both models exhibit Type IV sin-
gularities, but only for a limited range of initial conditions.
These results could indicate a potential edge for teleparallel
cosmological models over their other modified gravity coun-
terparts, as the models we examine seem to be only allowing
for weak singularities that too under non general conditions.

1 Introduction

Observations of the late-time acceleration of the Universe
came as a surprise to the cosmological community [1]. Since
then, extensive efforts have been dedicated to explaining this
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expansion. Standard approaches, such as the Cosmological
constant [1–5], as well as more exotic scenarios like Modi-
fied gravity theories [6–8], and recent proposals for the direct
detection of dark energy [9], have been pursued. One fas-
cinating avenue for understanding dark energy is through
Quintessence, where a scalar field drives the late-time cos-
mic acceleration of the universe [10–20]. Quintessence is
particularly interesting as it represents the simplest scalar
field dark energy scenario that avoids issues like ghosts or
Laplacian instabilities. In quintessence models, the accelera-
tion of the universe is driven by a slowly varying scalar field
with a potential V (φ), similar to the mechanism of slow-
roll inflation. However, in this case, contributions from non-
relativistic matter, such as baryons and dark matter, cannot
be neglected.

It is worth noting that simple models of Quintessence have
been shown to be in conflict with the current H0 tension
[21–23], suggesting that simple Quintessence models may
perform worse than Λ-CDM models in light of the current
H0 data [24].This leads one to consider other more exotic
possibilities for scalar field dark energy models and one
such possibility is to consider models in Teleparallel grav-
ity.Teleparallel gravity, a theory based on torsion, provides an
alternative description of gravity [25–33], where gravitation
is mediated by torsion. In this approach, the Lagrangian den-
sity of teleparallel equivalent of general relativity (TEGR)
is proportional to the torsion scalar T . In TEGR, the tetrad
field and spin connection pair replace the metric tensor and
Levi–Civita connection, respectively, while the teleparallel
connection replaces the usual connection [30,31]. Conse-
quently, at the level of the dynamical equations, curvature-
based gravitational theories are equivalent to tensor-based

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12204-4&domain=pdf
mailto:oem.t@ahduni.edu.in
mailto:khlopov@apc.in2p3.fr
mailto:jackson.said@um.edu.mt
mailto:rafadcnunes@gmail.com


1017 Page 2 of 12 Eur. Phys. J. C (2023) 83 :1017

theories [30,34]. By introducing an arbitrary function f (T )

in place of the torsion scalar T , a generalization of TEGR
known as f (T ) gravity is obtained [35–41], leading to new
cosmological models. In this framework, the tetrad fields,
which form the orthogonal basis for the tangent space, serve
as the dynamical variables of teleparallel gravity. The tor-
sion tensor is constructed using the first derivative of the
tetrad product. The field equations are derived by varying
the action with respect to the tetrad fields, while the spin
connection preserves the local Lorentz invariance and con-
tributes to the equations of motion. For further exploration of
f (T ) gravity, refer to [42–48]. The investigation of scalar-
torsion theories with non-minimal coupling between the tor-
sion scalar and a scalar field was carried out in the context
of dark energy [49,50], including studies with arbitrary non-
minimal coupling functions and tachyon terms for the scalar
field [51,52]. Another extension of f (T ) gravity is the gen-
eralized scalar-torsion f (T, φ) gravity, where φ represents
the canonical scalar field, and the gravitational action incor-
porates a non-minimal coupling between the scalar field and
torsion scalar [53]. Additionally, within the covariant telepar-
allel framework, a new class of theories has been proposed,
where the action depends on the scalar field and an arbitrary
function of the torsion scalar [54].

Recently, a significant amount of research has been ded-
icated to exploring the various types of cosmological sin-
gularities that may occur in the present and distant future
of the Universe [55–68]. However, it is often challenging
to classify and study cosmological singularities in highly
unconventional cosmologies influenced by considerations
of quantum gravity or phenomenology. Traditional methods
may not be applicable in these cases. Therefore, alternative
approaches are necessary to identify cosmological singu-
larities in exotic cosmologies. In this context, the Goriely–
Hyde procedure, a particular method in dynamical systems,
can be extremely useful [69]. Understanding the singular-
ity structure of dynamical systems is an intriguing aspect,
especially when these systems describe significant physical
phenomena. Although various approaches have been pro-
posed to investigate the singularity structure of autonomous
dynamical systems, the Goriely–Hyde procedure has proven
particularly valuable for cosmological studies due to the
abundance of interesting dynamical systems in cosmology
[70]. Previous applications of the Goriely–Hyde method have
explored finite and non-finite time singularities in specific
quintessence models [71–73]. However, a comprehensive
analysis of cosmological singularities teleparallel models of
dark energy using this approach is still lacking, and our
work aims to address this gap.The study of the cosmolog-
ical dynamics and stability of f (t, φ) dark energy was con-
ducted in [74], while an analysis of scalar perturbations was
performed in [75]. A recent full dynamical systems analysis
of f (t, φ) dark energy for two particular models was done

in [76] and we intend to use the dynamical systems approach
developed there to pursue our singularity analysis. In Sect. 2,
we provide a concise overview of Teleparallel gravity method
while in Sect. 3 we provide a brief review of the Goriely–
Hyde method. In Sect. 4 we apply the Goriely–Hyde method
to two particular models and demonstrate the diverse char-
acteristics of singularities in f (T, φ) models, including both
finite and infinite-time occurrences which can occur for both
f (t, φ) models considered in [76]. Subsequently, in Sect.
5, we consider two well-motivated ansatz for the Hubble
parameter and classify the types of cosmological singulari-
ties (Types I–IV) that can arise within these regimes. Finally,
we conclude our work in Sect. 6.

2 Teleparallel gravity

General relativity (GR) can account for most observed phe-
nomena with appropriate modifications considered in the
matter sector. In this context, the widely accepted concor-
dance model combines Λ-CDM cosmology with inflation.
However, the enigmatic nature of certain particle species
remains a puzzle despite significant progress in physics
beyond the standard model of particle physics. It is also plau-
sible that the standard model of particle physics might not
require substantial restructuring to address these observa-
tional challenges. Instead, it could be the gravitational sector
that requires further examination. This could involve exten-
sions of GR or modifications beyond GR as alternatives to its
original formulation. The scientific literature has witnessed
numerous proposals for new theories of gravity, motivated by
various phenomena, theoretical approaches, or even quantum
physics. One intriguing possibility that has garnered increas-
ing attention in recent decades is teleparallel gravity, where
torsion replaces curvature as the mechanism responsible for
generating gravitational fields. This theory replaces the tra-
ditional Levi–Civita connection, which is curvature-based,
with a teleparallel connection based on torsion. Numerous
publications on this topic have emerged in the literature.
Among the theories arising from torsion-based approaches
to gravity is the teleparallel equivalent of general relativity
(TEGR), which is dynamically equivalent to GR and thus
indistinguishable from it through classical experiments.

In teleparallel gravity (TG), one typically assumes an
action of the form:

STG := Sg[e, ω] + Sm[e, χ ], (1)

Here, the gravitational part Sg of the action depends on the
tetrad eAμ and the spin connection ωA

Bμ, while the matter
part depends on the tetrad eAμ and arbitrary matter fields χ I ,
but not on the spin connection [77,78]. This is because we
assume that the hypermomentum vanishes, thereby prevent-
ing this coupling. Introducing a dependence on spin would
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effectively introduce a second matter tensor, resulting from
the variation of the matter Lagrangian with respect to the spin
connection. The variation of the matter part of the action, after
integration by parts to eliminate derivatives acting on field
variations, can be expressed as follows:

δSm =
∫

d4xe(ΘA
μδeAμ + ΩI δχ

I ) (2)

Here, ΩI = 0 represents the matter field equations, and ΘA
μ

denotes the energy-momentum tensor. The corresponding
variation of the gravitational action takes the form:

δSg = −
∫

d4xe(WA
μδeAμ + YA

BμδωA
Bμ) (3)

The tensors WA
μ and YA

Bμ arise from the variation and inte-
gration by parts, with their specific form depending on the
particular theory under consideration. The explicit expres-
sion for WA

μ can be found for several theories in [79]. For
brevity, we omit YA

Bμ here, as it turns out to be redundant in
deriving the field equations, which can be entirely determined
from WA

μ alone. Furthermore, by varying with respect to the
tetrad, one can derive the field equations:

WA
μ = ΘA

μ. (4)

An alternative representation of the field equations, more
commonly used, is obtained by transforming the first index
into a spacetime index with the tetrad while lowering the
second index:

Wμν = eAμgρνWA
ρ, Θμν = eAμgρνΘA

ρ, (5)

This yields the field equations in the form:

Wμν = Θμν. (6)

However, deriving the field equations for the spin connection
is more complex, as it must satisfy the conditions of being
flat, Rα

βμν = 0, and metric-compatible, ∇αgμν = 0, by def-
inition. Various approaches exist to maintain these properties
during the variation procedure [80,81].

For considering cosmological scenarios in teleparallel the-
ories, it is helpful to consider an FLRW metric of the form
[79]

ds2 =N (t)2dt2−a(t)2
[

dr2

1−kr2 + r2(dϑ2+sin2 ϑdϕ2)

]
,

(7)

where N (t) and a(t) represent the lapse function and scale
factor respectively. In the case of flat universes (k = 0) one
can write

ds2 = N (t)2dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (8)

and this results in the diagonal tetrad

eAμ = diag (N (t), a(t), a(t), a(t)) , (9)

which turns out to be in the Weitzenbock gauge for the exten-
sions to TEGR. An important remark here is that the above
tetrad (with vanishing spin connection) is the only one that
has the property that both the tetrad and the teleparallel con-
nection obey cosmological symmetries for flat FLRW. One
can also relax the condition that the teleparallel connection
enjoys the symmetries of cosmology, but then, the corre-
sponding cosmological equations would not respect the sym-
metries of cosmology. If we use the diagonal tetrad (9) in
Cartesian coordinates one can, for example, find the modi-
fied FLRW equations for f (T ) gravity as

−6H2 fT − 1

2
f = κ2ρ , (10a)

−2 fT (3H2 + Ḣ) − 2H ḟT − 1

2
f = −κ2 p , (10b)

where dots are derivatives with respect to time, so that ḟT =
fT T Ṫ . One can further obtain modified FLRW equations for
other teleparallel approaches, like f (T, B) gravity being

3H ḟB − 3H2(3 fB + 2 fT )

− 3 fB Ḣ − 1

2
f (T, B) = κ2ρ , (11a)

− (3H2 + Ḣ)(2 fT + 3 fB)

− 2H ḟT + f̈ B − 1

2
f (T, B) = −κ2 p . (11b)

Or for the Teleparallel Gauss–Bonet models being (fixing the
gauge such that N = 1)

−6 fT H
2 − 12H3 ḟTG + 12 fTG H

2
(
Ḣ + H2

)

−1

2
f (T, TG) = κ2ρ (12a)

−2H ḟT − 2 fT
(
Ḣ + 3H2

)
+ 12 fTG H

2
(
Ḣ + H2

)

−8H ḟTG

(
Ḣ + H2

)
−4H2 f̈TG − 1

2
f (T, TG)=−κ2 p

(12b)

where fTG = ∂ f
∂TG

TG . It is worth mentioning that BG = 0 in
flat FLRW and then the standard Gauss–Bonnet term is just
G = TG .

While there are a multitude of approaches of dealing with
such exotic cosmological systems like reconstruction meth-
ods or Noether-symmetries approaches, dynamical systems
methods are also an efficient way to understand the dynamics
of the models. Dynamical systems allow for the extraction
of key features of the cosmology without solving the evo-
lution equations directly (in an exact form). Thus, it then
becomes possible to describe the overall nature of the gravi-
tational theory and henceforth determine whether the model
can generate a viable cosmological evolution. This therefore
serves as a very useful tool especially in models where it is
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difficult to extract any cosmological solutions from directly
solving the field equations such as in f(R) gravity. In the cases
we have considered so far, one can for example write the Eq.
(10) as an autonomous dynamical system using the variables

x̃ = − f̈

H ḟ
, ỹ = f

4H2 ḟ
, z̃ = 3H2 + Ḣ

H2 , (13)

These variables were considered in [82] and the authors con-
sidered the following scenarios: (i) absence of matter fluids
and (ii) presence of dust and radiation components. Further-
more, the case when the parameter m = − Ḧ

H3 takes on con-

stant values m = 0 (quasi-de Sitter evolution) and m = − 9
2

(matter dominated evolution) was explored. One can also
write (11) in the dynamical systems method using the phase
space variables

x̃ := φ̇√
1 + H2

, ỹ := V (φ)

6H2 , (14)

z̃ := (−T )n

1 + H2 , η := H√
1 + H2

. (15)

The cosmological dynamics of f (T, TG) gravity was inves-
tigated in [83]. In particular, the model f (T, TG) = −T +
α1

√
T 2 + α2TG , where α1,2 �= 0 are constants, was studied.

In this case, the presence of a perfect dust fluid was assumed
and the following dimensionless phase-space parameters
were defined

x̃ =
√

1 + 2α2

3

(
1 + Ḣ

H2

)
, Ωm = κ2ρm

3H2 . (16)

While we have briefly discussed several approaches to
teleparallel gravity and their status quo in cosmology, what
we are most interested in this work are the f (T, φ) models
and we shall now discuss them in more detail.The action of
TEGR (teleparallel equivalent of general relativity) can be
generalized to f (T ) gravity by introducing a scalar field φ.
The action, including matter and radiation, can be expressed
as [75,76]:

S =
∫

d4x e[ f (T, φ) + P(φ)X ] + Sm + Sr . (17)

Here, e = det[eAμ ] = √−g represents the determinant of
the tetrad field. The tetrad field, eAμ , A = 0, 1, 2, 3, is related
to the metric tensor gμν and the Minkowski tangent space
metric ηAB as gμν = ηABeAμe

B
ν , where ηAB = (−1, 1, 1, 1).

The tetrad satisfies the orthogonality condition eμ
Ae

B
μ = δBA ,

and the spin connection is denoted by ωA
Bμ. The function

f (T, φ) represents an arbitrary function of the scalar field φ

and the torsion scalar T , while X = −∂μφ∂μφ/2 represents
the kinetic term of the field. This general action includes
non-minimally coupled scalar-torsion gravity models with

the coupling function f (T, φ), f (T ) gravity, and minimally
coupled scalar field.

For a flat FLRW space-time background, the field equa-
tions derived from the action are [76]:

f (T, φ) − P(φ)X − 2T f,T = ρm + ρr

(18)

f (T, φ) + P(φ)X − 2T f,T − 4Ḣ f,T − 4H ḟ,T = −pr

(19)

−P,φX − 3P(φ)H φ̇ − P(φ)φ̈ + f,φ = 0. (20)

In these equations, the Hubble parameter is denoted as
H ≡ ȧ

a , where an overdot represents a derivative with respect
to cosmic time t . The energy density for matter and radiation
are denoted as ρm and ρr respectively, and the pressure at the
radiation era is pr . The torsion scalar T is given by T = 6H2.
The non-minimal coupling function f (T, φ) is defined as
[54]:

f (T, φ) = − T

2κ2 − G(T ) − V (φ), (21)

where V (φ) is the scalar potential and G(T ) is an arbitrary
function of the torsion scalar.

In the matter-dominated era, ωm = pm
ρm

= 0, and in the

radiation era, ωr = pr
ρr

= 1/3. In this case, Eqs. (18)–(20)
reduce to:

3

κ2 H
2 = P(φ)X + V (φ) − 2TG,T + G(T ) + ρm + ρr ,

(22)

− 2

κ2 Ḣ = 2P(φ)X + 4Ḣ(GT + 2TG,T T ) + ρm + 4

3
ρr ,

(23)

P(φ)φ̈ + P,φ(φ)X + 3P(φ)H φ̇ + V,φ(φ) = 0. (24)

The modified Friedmann equations, taking into account
dark energy, become:

3

κ2 H
2 = ρm + ρr + ρde, (25)

− 2

κ2 Ḣ = ρm + 4

3
ρr + ρde + pde. (26)

Comparing Eq. (22) with Eq. (25), and Eq. (23) with
Eq. (26), we can extract the energy density (ρde) and pressure
(pde) for the dark energy sector:

ρde = P(φ)X + V (φ) − 2TG,T + G(T ) , (27)

pde = P(φ)X − V (φ) + 2TG,T

− G(T ) + 4Ḣ(G,T + 2TG,T T ) . (28)

For simplicity we set P(φ) = 1 and consider the well studied
exponential potential,V (φ) = V0e−λφ , whereλ is a constant.
In order to proceed further and really carry out the analysis
we want to, we need a form for G(T ) and here we will be
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considering two forms which were studied in [76] and will
be carrying out the Goriely-Hyde analysis on both of these
models.1

3 The Goriely–Hyde procedure

The Goriely–Hyde technique [69] offers an elegant method
for identifying finite-time singularities in dynamical systems.
The procedure can be summarized as follows:

– We begin by considering a dynamical system governed
by n differential equations given by:

ẋ i = f i(x), (29)

where i = 1, 2, . . . , n. Here, t represents time, but in
quintessence models, it can be better represented as the
number of e-foldings, denoted by N . We identify the parts
of the equation fi that become significant as the sys-
tem approaches the singularity. These significant parts
are referred to as “dominant parts” [69]. Each dominant
part represents a mathematically consistent truncation of
the system, denoted as f̂ i . Consequently, the system can
be expressed as:

ẋ i = f̂i (x). (30)

– Without loss of generality, the variables xi near the sin-
gularity can be represented as:

xi = aiτ
pi , (31)

where τ = t − tc, and tc is an integration constant. By
substituting Eq. (4) into Eq. (3) and equating the expo-
nents, we can determine the values of pi for different i ,
which collectively form the vector p = (p1, p2, . . . , pn).
Similarly, we calculate the values of ai to form the vec-
tor a = (a1, a2, . . . , an). It is worth noting that if a com-
prises solely real entries, it corresponds to finite-time sin-
gularities. On the other hand, if a contains at least one
complex entry, it may lead to non-finite-time singulari-
ties. Each (ai , pi ) set is referred to as a dominant balance
of the system.

1 It is worth discussing any effects of the separation of T from φ here in
the action (21). If one, for example, considers actions like those in [50]
where terms like Tφ2 come into play then one could potentially expect
that results on singularities could be affected in some ways, as one
would not be wrong to think that such a coupling between the torsion
scalar and field terms could have some significant outcomes. Although
a definitive answer on this aspect would need one to do a proper analysis
similar to the one we have done for the models considered in our paper,
we do feel very interesting results may await an endeavour like this.

– Next, we compute the Kovalevskaya matrix defined as:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

. .
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. .
∂ f2
∂xn

. . . . .

. . . . .
∂ fn
∂x1

∂ fn
∂x2

. .
∂ fn
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

p1 0 . . 0
0 p2 . . 0
. . . . .

. . . . .

0 0 . . pn

⎞
⎟⎟⎟⎟⎠ . (32)

After obtaining the Kovalevskaya matrix, we evaluate it for
different dominant balances and determine the eigenvalues.
If the eigenvalues take the form (−1, r2, r3, . . . , rn), where
r2, r3, . . . > 0, then the singularity is regarded as general and
will occur regardless of the initial conditions of the system.
Conversely, if any of the eigenvalues r2, r3, . . . are negative,
the singularity is considered local and will only occur for
certain sets of initial conditions.

4 Goriely–Hyde analysis of f (T, φ) models

4.1 Model I

In the first model, we consider a specific form for G(T ) as
given in [76,84]:

G(T ) = βT ln

(
T

T0

)
, (33)

where β is a constant and T0 represents the value of T at
the initial epoch. This model, which has been investigated in
[84], exhibits physically favorable critical points and offers
an interesting approach for modeling the evolution of the Uni-
verse. By substituting this expression into Eqs. (27)–(28), the
effective dark energy density and pressure terms are reduced
to:

ρde = φ̇2

2
+ V (φ) − 6βH2 ln

(
6H2

T0

)
− 12H2β, (34)

pde = φ̇2

2
− V (φ) + 6βH2 ln

(
6H2

T0

)
+ 12H2β

+4Ḣ

(
β ln

(
6H2

T0

)
+ 3β

)
. (35)

In order to analyze the dynamics of the scalar-torsion f (T, φ)

gravity model, [76] introduced a set of dimensionless phase
space variables to represent the system in an autonomous
form. These variables are defined as2 follows:

x = κφ̇√
6H

, y = κ
√
V√

3H
,

2 Note that it is not necessary that the variables will be defined in this
same way for all cosmological paradigms, as we shall see later in the
paper too. In fact, one can use different variables for the same paradigm
too if required or wished for. See, for example, [85–87] for extended
discussions on the same.
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z = −4βκ2, u = −2β ln

(
T

T0

)
κ2

ρ = κ
√

ρr√
3H

, λ = −V,φ(φ)

κV (φ)
, Θ = V (φ), V,φφ

V,φ(φ)2 . (36)

These dimensionless variables allow for a simplified repre-
sentation of the system’s dynamics and facilitate the analysis
of the scalar-torsion f (T, φ) gravity model. Using these vari-
ables, one can finally write the cosmological equations of this
model as a dynamical system as follows:

dx

dN
= − xρ2 − 3x

(
u−x2+y2 + z − 1

)
2u + 3z − 2

−3x+
√

3

2
λy2 ,

dy

dN
= −yρ2 + 3y

(
u − x2 + y2 + z − 1

)
2u + 3z − 2

−
√

3

2
λyx ,

du

dN
= zρ2 − 3z

(
u − x2 + y2 + z − 1

)
2u + 3z − 2

,

dρ

dN
= −ρ

(
ρ2 + u + 3x2 − 3y2 + 3z − 1

)
2u + 3z − 2

,

dz

dN
= 0 ,

dλ

dN
= −√

6(Θ − 1)xλ2 .

For our analysis, we would be considering λ to be a con-
stant which is not equal to zero (which would again mean
that we are considering an exponential potential form as we
remarked earlier). Furthermore, we consider that 2u >>

3z − 2 (which can be justified considering the forms of z
and u we have described earlier). This would allow us to
write the dynamical equations as

dx

dN
= − xρ2 − 3x(u − x2 + y2 + z − 1)

2u
− 3x +

√
3

2
λy2

(37)

dy

dN
= −yρ2 + 3y(u − x2 + y2 + z − 1)

2u
−

√
3

2
λyx (38)

du

dN
= zρ2 − 3z(u − x2 + y2 + z − 1)

2u
(39)

dρ

dN
= −ρ(ρ2 + u + 3x2 − 3y2 + 3z − 1)

2u
(40)

dz

dN
= 0 (41)

dλ

dN
= 0 (42)

Now we are in the right position to start off our singularity
analysis. The first truncation that we consider is given by

f̂ =

⎛
⎜⎜⎜⎝

√
3
2λy2

3y3/2u
3z/2u
ρ3/2u

⎞
⎟⎟⎟⎠ (43)

Using the ansatz of the Goriely–Hyde method, we get the
exponents to be p = (1/2,−1/4, 1/2,−1/4) from which
we can get the dominant balances to be

a1 =
(

− λz√
2
,

i 4
√
z√

2 4
√

3
,
√

3z,
4
√

3 4
√
z√

2

)

a2 =
(

− λz√
2
,− i 4

√
z√

2 4
√

3
,
√

3z,
4
√

3 4
√
z√

2

)

a3 =
(

− λz√
2
,

i 4
√
z√

2 4
√

3
,−√

3z,
4
√

3 4
√
z√

2

)

a4 =
(

− λz√
2
,

i 4
√
z√

2 4
√

3
,
√

3z,−
4
√

3 4
√
z√

2

)

a5 =
(

− λz√
2
,

i 4
√
z√

2 4
√

3
,−√

3z,−
4
√

3 4
√
z√

2

)

a6 =
(

− λz√
2
,− i 4

√
z√

2 4
√

3
,−√

3z,
4
√

3 4
√
z√

2

)

a7 =
(

− λz√
2
,− i 4

√
z√

2 4
√

3
,
√

3z,−
4
√

3 4
√
z√

2

)

a8 =
(

− λz√
2
,− i 4

√
z√

2 4
√

3
,−√

3z,−
4
√

3 4
√
z√

2

)

(44)

We can now write the Kovalevskaya matrix to be

.R =

⎛
⎜⎜⎜⎜⎝

− 1
2

√
6λy 0 0

0 9y2

2u + 1
4 − 3y3

2u2 0

0 0 − 3z
2u2 − 1

2 0

0 0 ρ3

2u2
1
4 − 3ρ2

2u

⎞
⎟⎟⎟⎟⎠ (45)

Using the dominant balances we introduced in (44), we
can now plug them into the Kovalevskaya matrix (45) to get
the eigenvalues to be

r = (−1,−1/2,−1/2,−1/2) (46)

We note that all the other eigenvalues besides the initial -1
are also negative, which means that according to the Goriely–
Hyde method the singularities of this system with regards to
this truncation can occur only for a limited set of initial con-
ditions. Coupled with the fact that the dominant balances (44)
have complex entries, this would mean that this truncation
tells us that the singularities for this system may occur in
non-finite time.

The second truncation that we consider is given by

f̂ =

⎛
⎜⎜⎜⎜⎝

3x3/2u

−
√

3
2λxy

ρ2z/2u

3ρy2/2u

⎞
⎟⎟⎟⎟⎠ (47)

123



Eur. Phys. J. C (2023) 83 :1017 Page 7 of 12 1017

Using the ansatz of the Goriely–Hyde method, we get the
exponents to be p = (−1,−1,−1,−3/2) from which we
can get the dominant balances to be

a1 =
⎛
⎝

√
2
3

λ
,

1

λ
,− 1

λ2 ,
i
√

2
z

λ2

⎞
⎠

a2 =
⎛
⎝−

√
2
3

λ
,

1

λ
,− 1

λ2 ,
i
√

2
z

λ2

⎞
⎠

a3 =
⎛
⎝

√
2
3

λ
,−1

λ
,− 1

λ2 ,
i
√

2
z

λ2

⎞
⎠

a4 =
⎛
⎝

√
2
3

λ
,

1

λ
,− 1

λ2 ,−
i
√

2
z

λ2

⎞
⎠

a5 =
⎛
⎝−

√
2
3

λ
,−1

λ
,− 1

λ2 ,
i
√

2
z

λ2

⎞
⎠

a6 =
⎛
⎝−

√
2
3

λ
,

1

λ
,− 1

λ2 ,−
i
√

2
z

λ2

⎞
⎠

a7 =
⎛
⎝

√
2
3

λ
,−1

λ
,− 1

λ2 ,−
i
√

2
z

λ2

⎞
⎠

a8 =
⎛
⎝−

√
2
3

λ
,−1

λ
,− 1

λ2 ,−
i
√

2
z

λ2

⎞
⎠ .

(48)

We again see that the balances have complex entries3 while
the the Kovalevskaya matrix can be written as

R =

⎛
⎜⎜⎜⎜⎜⎝

9x2

2u + 1 0 − 3x3

2u2 0

−
√

3
2λy 1 −

√
3
2λx 0 0

0 0 1 − ρ2z
2u2

ρz
u

0 3ρy
u − 3ρy2

2u2
3y2

2u + 3
2

⎞
⎟⎟⎟⎟⎟⎠

. (49)

Using the dominant balances we introduced in (48), we
can now plug them into the Kovalevskaya matrix (49) to get
the eigenvalues to be

r ∼ (−1, 1.27,−1.5, 1.27). (50)

3 At this point we would like to highlight that complex entries in â
observed for the previous truncation and this one (and which will be
observed for Model II as well for a few truncations) are completely
consistent with the fact that the system consists of expansion normal-
ized variables which are real. As mentioned in Sect. 2, complex entries
for various a suggest that the singularities will be non-finite time in
nature and hence these quantities taking up complex values is consis-
tent with the analysis as shown in [69]. Similar case has been for various
cosmological systems (for example, see [71,72]).

We note that as one of the other eigenvalues (−1.5) besides
the initial −1 is also negative, according to the Goriely–Hyde
method the singularities of this system with regards to this
truncation can occur only for a limited set of initial condi-
tions. Coupled with the fact that the dominant balances (48)
have complex entries, this would mean that this truncation
tells us that the singularities for this system may occur in
non-finite time.

The third truncation that we consider is given by

f̂ =

⎛
⎜⎜⎝

−ρ2x/2u
−ρ2y/2u
3x2z/2u
−3ρz/2u

⎞
⎟⎟⎠ . (51)

Using the ansatz of the Goriely–Hyde method, we get the
exponents to be p = (1/2, 1/2, 1, 1/4) from which we can
get the dominant balances to be

a1 =
(

2
√

6z, 2
√

6z,−6z, 2
√

3z
)

a2 =
(
−2

√
6z, 2

√
6z,−6z, 2

√
3z

)

a3 =
(

2
√

6z,−2
√

6z,−6z, 2
√

3z
)

a4 =
(

2
√

6z, 2
√

6z,−6z,−2
√

3z
)

a5 =
(
−2

√
6z,−2

√
6z,−6z, 2

√
3z

)

a6 =
(
−2

√
6z, 2

√
6z,−6z,−2

√
3z

)

a7 =
(

2
√

6z,−2
√

6z,−6z,−2
√

3z
)

a8 =
(
−2

√
6z,−2

√
6z,−6z,−2

√
3z

)
.

(52)

We can now write the Kovalevskaya matrix to be

R =

⎛
⎜⎜⎜⎜⎜⎝

−ρ2

2u − 1
2 0 ρ2x

2u2 −ρx
u

0 −ρ2

2u − 1
2

ρ2 y
2u2 −ρy

u
3xz
u 0 − 3x2z

2u2 − 1 0

0 0 3ρz
2u2 − 3z

2u − 1
4

⎞
⎟⎟⎟⎟⎟⎠

. (53)

Using the dominant balances we introduced in (52), we
can now plug them into the Kovalevskaya matrix (53) to get
the eigenvalues to be

r ∼ (−1, 1/2,−0.1,−0.1). (54)

We note that as two of the other eigenvalues besides the
initial −1 are also negative, according to the Goriely–Hyde
method the singularities of this system with regards to this
truncation can occur only for a limited set of initial condi-
tions. But in this case we see something which we did not in
the previous two truncations; the dominant balances (52) do
not have complex entries. This means that this truncation tells
us that it is definitely possible to have singularities occurring
in finite-time for this particular model. While we can go on
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and evaluate more truncations, we find that in no other trun-
cation would we see something which we have not observed
already in these three truncations. Namely that there is no
truncation for this system for which the eigenvalues besides
−1 are all positive and so it does seem like for this model
the singularities will not be general and can only happen for
a limited set of initial conditions.

4.2 Model II

In this scenario, we consider the function G(T ) to be of the
form G(T ) = T +αT 2, where α is a constant [88]. This rep-
resents a slight extension beyond the teleparallel equivalent
of general relativity (TEGR), as α = 0 corresponds to the
TEGR model. For this particular G(T ), Eqs. (36)–(37) can
be expressed as follows:

ρde = φ̇2

2
+ V (φ) − T (1 + 3Tα), (55)

pde = φ̇2

2
− V (φ) + T (1 + 3Tα) + 4Ḣ(1 + 6Tα). (56)

To establish an independent dynamical system, we intro-
duce dimensionless variables defined as:

x = κφ̇√
6H

, y = κ
√
V√

3H

z = −2κ2, u = −36H2ακ2

ρ = κ
√

ρr√
3H

, λ = −V,φ(φ)

κV (φ)
, Θ = V (φ)V,φφ

V,φ(φ)2 (57)

Consequently, the corresponding dynamical system can
be obtained as,

dx

dN
= − x

(
ρ2 − 3

(
u−x2+y2+z − 1

))
2(2u + z − 1)

−3x+
√

3

2
λy2 ,

dy

dN
= −1

2
y

(
ρ2 − 3

(
u − x2 + y2 + z − 1

)
2u + z − 1

+ √
6λx

)
,

du

dN
= u

(
ρ2 − 3

(
u − x2 + y2 + z − 1

))
2(2u + z − 1)

,

dρ

dN
= −ρ

(
ρ2 + 5u + 3x2 − 3y2 + z − 1

)
2(2u + z − 1)

,

dz

dN
= 0 ,

dλ

dN
= −√

6(Θ − 1)xλ2.

We again consider λ to be a constant here, which would
mean that we are interested in exponential potentials. Fur-
thermore, we assume that 2u >> z − 1 which is again not
hard to justify considering the definitions of these quanti-
ties in (57). By taking these considerations into account, the

dynamical system takes the form

dx

dN
= − x

(
ρ2 − 3

(
u−x2+y2 +z−1

))
4u

−3x +
√

3

2
λy2 ,

(58)

dy

dN
= −1

2
y

(
ρ2 − 3

(
u − x2 + y2 + z − 1

)
2u

+ √
6λx

)
,

(59)

du

dN
= u

(
ρ2 − 3

(
u − x2 + y2 + z − 1

))
4u

, (60)

dρ

dN
= −ρ

(
ρ2 + 5u + 3x2 − 3y2 + z − 1

)
4u

, (61)

dz

dN
= 0 , (62)

dλ

dN
= 0. (63)

We can now start with the Goriely–Hyde analysis of this
system, with the first truncation that we consider being

f̂ =

⎛
⎜⎜⎜⎝

√
3
2λy2

−yρ2/4u
3y2

−3ρx2/4u

⎞
⎟⎟⎟⎠ . (64)

Using the ansatz of the Goriely–Hyde method, we get the
exponents to be p = (−1,−1,−1,−1) from which we can
get the dominant balances to be

a1 =
(

1

λ

√
2

3
,

1

λ

√
2

3
,

1

2λ2 ,

√
2

λ

)

a2 =
(

−1

λ

√
2

3
,

1

λ

√
2

3
,

1

2λ2 ,

√
2

λ

)

a3 =
(

1

λ

√
2

3
,−1

λ

√
2

3
,

1

2λ2 ,

√
2

λ

)

a4 =
(

1

λ

√
2

3
,

1

λ

√
2

3
,

1

2λ2 ,−
√

2

λ

)

a5 =
(

−1

λ

√
2

3
,−1

λ

√
2

3
,

1

2λ2 ,

√
2

λ

)

a6 =
(

−1

λ

√
2

3
,

1

λ

√
2

3
,

1

2λ2 ,−
√

2

λ

)

a7 =
(

1

λ

√
2

3
,−1

λ

√
2

3
,

1

2λ2 ,−
√

2

λ

)

a8 =
(

−1

λ

√
2

3
,−1

λ

√
2

3
,

1

2λ2 ,−
√

2

λ

)
.

(65)
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We can now write the Kovalevskaya matrix to be

R =

⎛
⎜⎜⎜⎝

1
√

6λy 0 0

0 1 − ρ2

4u
ρ2 y
4u2 −ρy

2u
0 6y 1 0

− 3ρx
2u 0 3ρx2

4u2 1 − 3x2

4u

⎞
⎟⎟⎟⎠ . (66)

Using the dominant balances we introduced in (65), we
can now plug them into the Kovalevskaya matrix (66) to get
the eigenvalues to be

r ∼ (−1, 1,−2
√

2, 2
√

2). (67)

As we have one of the eigenvalues besides −1 also being
negative, this truncation tells us that the singularities that
could appear for this model would also only be occuring for a
limited set of initial conditions for the variables. Furthermore
given that the dominant balances (65) all have real entries
then this would mean that the singularities only appear in
finite time.

The second truncation that we would be considering is
given by

f̂ =

⎛
⎜⎜⎜⎝

√
3
2λy2

−yρ2/4u
3y2

−3ρx2/4u

⎞
⎟⎟⎟⎠ . (68)

Using the ansatz of the Goriely–Hyde method, we get the
exponents to be p = (−1,−1,−1,−1) from which we can
get the dominant balances to be

a1 =
(

1

λ

√
2

3
,

√
2i

λ
,− 1

2λ2 ,

√
2i

λ

)

a2 =
(

1

λ

√
2

3
,−

√
2i

λ
,− 1

2λ2 ,

√
2i

λ

)

a3 =
(

1

λ

√
2

3
,

√
2i

λ
,− 1

2λ2 ,−
√

2i

λ

)

a4 =
(

1

λ

√
2

3
,−

√
2i

λ
,− 1

2λ2 ,−
√

2i

λ

)
.

(69)

We can now write the Kovalevskaya matrix to be

R =

⎛
⎜⎜⎜⎜⎜⎝

1 − ρ2

4u 0 ρ2x
4u2 −ρx

2u

−
√

3
2λy 1 −

√
3
2λx 0 0

3x
2 0 1 0

0 3ρy
2u − 3ρy2

4u2
3y2

4u + 1

⎞
⎟⎟⎟⎟⎟⎠

. (70)

Using the dominant balances we introduced in (69), we
can now plug them into the Kovalevskaya matrix (70) to get
the eigenvalues to be

r ∼ (−1, 1.6, 3.7,−0.2). (71)

We again see that there are eigenvalues besides −1 which
are negative, which again suggests that the model may not
have general singularities. Furthermore this truncation also
suggests that singularities could take place in non-finite time
as shown by the complex entries in the dominant balance
(69). While we can again go on for more truncations, what
we have found out is that the other truncations do not offer
anything new other than what we have seen so far. Namely,
no truncation suggests that the model can allow for general
singularities and so we are not going to be evaluating for
more truncations here.

5 Physical classification of the singularities

Until now, we have discussed the singularity structure within
the dark energy scenario from a dynamical perspective. How-
ever, it is insufficient to merely acknowledge the existence of
singularities in this system from a physical standpoint. Thus,
it becomes necessary to appropriately classify the potential
types of singularities that could occur in this model. Various
types of physical singularities for cosmology at a specific
time t = ts , where ts represents the occurrence of the singu-
larities, can be classified as follows [57,89]:

– Type I (“Big Rip”): In this case, the scale factor a, effec-
tive energy density ρeff, and effective pressure density
peff diverge.

– Type II (“Sudden/Quiescent singularity”): In this case,
peff diverges, as well as the derivatives of the scale factor
beyond the second derivative.

– Type III (“Big Freeze”): In this case, the derivative of the
scale factor from the first derivative onwards diverges.

– Type IV (“Generalized sudden singularities”): In this
case, the derivative of the scale factor diverges from a
derivative higher than the second.

Among these classifications, Type I singularities are con-
sidered strong singularities since they have the ability to dis-
tort finite objects, while singularities of Type II, Type III,
and Type IV are regarded as weak singularities as they can-
not be perceived as either the beginning or the end of the
universe. Although there are other minor types of singular-
ities, such as Type V singularities or “w” singularities, we
will focus solely on Type I to Type IV singularities here. The
most general form of the Hubble parameter for investigat-
ing singularities within the aforementioned classified types
is expressed as [72]:

H(t) = f1(t) + f2(t)(t − ts)
ε. (72)

Here, f1(t) and f2(t) are assumed to be nonzero regular
functions at the time of the singularity, and similar conditions
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apply to their derivatives up to the second order. Addition-
ally, ε is a real number. It is not mandatory for the Hubble
parameter (34) to be a solution to the field equations; how-
ever, we will consider this case and explore the implications
of this assumption on the singularity structure based on our
dynamic analysis. First, we observe that none of the vari-
ables x , y, or z as defined in (26) can ever become singular
for any cosmic time value. The singularities that can occur
considering the Hubble parameter as defined in (34) are as
follows:

– For ε < −1, a big rip singularity occurs.
– For −1 < ε < 0, a Type III singularity occurs.
– For 0 < ε < 1, a Type II singularity occurs.
– For ε > 1, a Type IV singularity occurs.

Another ansatz useful for classifying singularities was
introduced in [61] whereby the scale factor was written as:

a(t) = g(t)(t − ts)
ε + f (t), (73)

where g(t) and f (t) and all their higher-order derivatives
with respect to cosmic time are smooth functions of the cos-
mic time. For this ansatz, according to the values of the expo-
nent ε, one can have the following singularities:

– For ε < 0, a Type I singularity occurs.
– For 0 < ε < 1, a Type III singularity develops.
– For 1 < ε < 2, a Type II singularity occurs.
– For ε > 2, a Type IV singularity occurs.

Again, it is not mandatory for the scale factor in Eq. (73)
to necessarily be a solution to the field equations, but we
would like to consider this and Eq. (72) in order to gain a
well-motivated understanding of the types of cosmological
singularities we can encounter in the various models we have
discussed so far.

To proceed further, we need to express the expansion nor-
malized variables that we defined for both models in terms
of the Hubble parameter alone. To do this, we realize that we
need to express the potential and the derivative of the field
parameter in each case in terms of the Hubble parameter as
these are the quantities on which the expansion normalized
variables really depend in both the scenario (in this scenario
we are talking about representing the x and y variables in
both cases in terms of the Hubble parameter). For the model

G(T ) = βT ln
(

T
T0

)
(33), we have

φ̇2
β = 2Ḣ

κ2 − ρm − 4

3
ρr − 4Ḣ

[
β ln

(
6H2

T0

)
+ 3β

]
(74)

While the potential for this case be written as

Vβ =
Ḣ

(
6β + 2β ln

(
6H2

T0

)
+ 1

κ2

)
− ρm

2 + ρr

H2

+3

(
4β + 2β ln

(
6H2

T0

)
+ 1

κ2

)
(75)

For the model G(T ) = T +αT 2, we have the same quantities
to be

φ̇2
α = Ḣ

(
−24αH2 − 2

κ2 − 4

)
− ρm − 4ρr (76)

Vα = H2
(

12α Ḣ + 3

κ2 + 1

)
+

(
1

κ2 + 2

)
Ḣ

+3αH4 − ρm

2
+ ρr (77)

Using these one can express the dynamical variables used
in the Goriely-Hyde analysis of both the models ((36), (57))
completely in terms of the Hubble parameter (we will not
write the variables out explicitly here as they have quite
long expressions) and now we can use both the ansatz (72)–
(73) to see under what conditions will the variables blow up.
Remember that we do not want the dynamical variables to
blow up and the values of the exponents of the ansatz for
which they do not blow up will tell us the singularities which
will be possible for these models. The interesting conclu-
sion that actually comes out when one puts both the ansatz
into the dynamical variables is that only Type IV singular-
ities are possible for both models. None of Type I, Type II
or Type III singularities can occur for any of the models for
any of the ansatz (72)–(73) while Type IV singularities do
take place for both the models, for any of the ansatz’. This
is quite an interesting behaviour which to the best of our
knowledge has only been shown in f (T, φ) theories, in that
one is only observing Type IV singularities for both of the
models considered. This leads one to speculate the possibility
that f (T, φ) gravity may be better suited for cosmology than
some of their other modified gravity counterparts as the the-
ory is only admitting weak singularities. Furthermore, given
the analysis from the Goriely-Hyde procedure, one is lead
to conclude that such singularities can only occur for a lim-
ited set of initial conditions and may occur in finite or even
non-finite time.

6 Concluding remarks

In this paper, we have considered a well studied formulation
of teleparallel dark energy in the form of f (T, φ) gravity,
where the scalar field drives the expansion of the universe. We
considered two particular well studied models of this theory
and probed cosmological singularities for both the scenarios.
For this endeavor, we used a method pioneered by the works
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of Odintsov in recent years, in which we applied the Goriely–
Hyde procedure to the various dynamical systems by which
the cosmological equations of these three models could be
described. This allowed us to make predictions about whether
singularities in these scenarios would be strongly dependent
on initial physical conditions and whether they could hap-
pen in finite or nonfinite times. After this, we employed two
very well-motivated ansatz’ for the Hubble parameter and the
scale factor to reach the conclusion that one can only have
Type IV singularities for both of the models considered in our
work, that too only for a limited set of initial conditions.This
work propels one to think in the direction that f (T, φ) the-
ories may only allow for weak cosmological singularities,
which may make them better placed than some of the other
modified gravity based dark energy regimes which allow for
more singularities and also those of the stronger types.
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