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ABSTRACT

Cosmology faces a pressing challenge with the Hubble constant (Hy) tension, where the locally measured rate of the Universe’s
expansion does not align with predictions from the cosmic microwave background calibrated with lambda-cold dark matter
model. Simultaneously, there is a growing tension involving the weighted amplitude of matter fluctuations, known as Sgg
tension. Resolving both tensions within one framework would boost confidence in any one particular model. In this work,
we analyse constraints in {7) gravity, a framework that shows promise in shedding light on cosmic evolution. We thoroughly
examine prominent f{7) gravity models using a combination of data sources, including pantheon+ (SN), cosmic chronometers,
baryonic acoustic oscillations, and redshift space distortion data. We use these models to derive a spectrum of Hj and Sg o values,
aiming to gauge their ability to provide insights into, and potentially address, the challenges posed by the Hy and Ss o tensions.

Key words: cosmological parameters —dark energy —large-scale structure of Universe.

1 INTRODUCTION

Measurements of the accelerating expansion of the Universe (Riess
et al. 1998; Perlmutter et al. 1999) have led to the prospect that it
may be expanding faster than predicted by the lambda-cold dark
matter (ACDM) model (Di Valentino et al. 2021a). This may open
the possibility that the concordance model description of gravita-
tion through general relativity (GR), the as yet unobserved CDM
(Gaitskell 2004; Bertone, Hooper & Silk 2005; Baudis 2016), and
the theoretically problematic cosmological constant (Peebles & Ratra
2003; Copeland, Sami & Tsujikawa 2006) may require additions or
corrections to its explanation of some kind. Over the last few years
this has been expressed primarily through the value of the Hubble
constant (Di Valentino et al. 2021c) and fogy (Di Valentino et al.
2021b). The appearance of cosmic tensions has shaped into a tension
between observations based on direct measurements of the late
Universe such as those based on Type Ia supernovae (SNIa), the tip
of the red giant branch measurements, strong lensing measurements
(Freedman et al. 2020; Wong et al. 2020; Riess et al. 2022; Anderson,
Koblischke & Eyer 2023), and indirect measurements coming from
analyses of early time data from the cosmic microwave background
(CMB) radiation as well as big bang nucleosynthesis (BBN) data
(Cooke, Pettini & Steidel 2018; Alam et al. 2021; Abbott et al.
2022; Zhang et al. 2022) and others (Benisty, Davis & Evans
2023). Furthermore, recent data forecasting from new missions
that include structure formation have increased this tension at local
level (Atek et al. 2022; Lu et al. 2022), however, considering new
systematic techniques on the measurements these tensions can be
treated (Maldonado Alonso, Escamilla-Rivera & Sandoval-Orozco
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2023). The growth in both these tensions has led to a reinvigorated
exploration of possible modifications of the concordance model that
have been developed in the literature over the last few decades.

The literature features a myriad of novel approaches in which
to confront the growing issue of cosmic tensions. There have been
proposals involving a re-evaluation of the cosmological principle
(Krishnan et al. 2021, 2022), possible impacts of early Universe
dark energy (Poulin, Smith & Karwal 2023), the appearance of extra
degrees of freedom in the form of additional neutrino species in
the early Universe (Di Valentino & Melchiorri 2022; Di Valentino
et al. 2022), as well as modifications to gravity (Barack et al. 2019;
Alves Batista et al. 2021; Saridakis et al. 2021; Abdalla et al. 2022)
and others (Addazi et al. 2022). Many of these approaches modify
a small part of the evolution of the Universe using new physics.
On the other hand, modified gravity has the potential to make
smaller changes that infiltrate the larger range of redshifts. Moreover,
modifications to GR will also provide changes both at background
and perturbative levels. In the space of possible modifications to
GR, one approach that has become popular in recent years and
which natively builds a competitive way in which to consider new
physics is metric-affine gravity which is based on the exchange of
the underlying connection with other possible geometries (Hehl et al.
1995; Beltran Jiménez, Heisenberg & Koivisto 2019). In teleparallel
gravity (TG), the geometric curvature of the Levi—Civita connection

I’ . (overcircles denote quantities based on the curvature of the
Levi—Civita connection in this work) is interchanged with the torsion
of the teleparallel connection I'? ,,,. This may provide a more intuitive
approach in which to consider new physics in gravitational theory.
The connection of TG is curvature-free (Cai et al. 2016; Krssak
et al. 2019; Bahamonde et al. 2021) and produces an altogether
novel formulation of gravity. There exists a particular combination
of scalars in the theory that can produce a teleparallel equivalent of
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general relativity (TEGR), which is dynamically equivalent to GR but
may have different IR completions (Mylova, Said & Saridakis 2023).
A natural consequence of this is that both GR and TEGR are identical
at the level of phenomenological predictions. Taking the same

rationale as in f (10?) gravity (De Felice & Tsujikawa 2010; Sotiriou
& Faraoni 2010; Capozziello & De Laurentis 2011), TEGR can be
generalized to an f(T) general class of models (Ferraro & Fiorini
2007, 2008; Bengochea & Ferraro 2009; Linder 2010; Chen et al.
2011; Farrugia & Levi Said 2016; Finch & Said 2018; Paliathanasis,
Levi Said & Barrow 2018; Bahamonde, Flathmann & Pfeifer 2019;
Bahamonde, Levi Said & Zubair 2020; Farrugia, Levi Said & Finch
2020; Bahamonde et al. 2022) where the TEGR Lagrangian is simple
the torsion scalar 7. This is an interesting model since it produces
organically second-order equations of motion and agrees with the
polarization modes of GR despite being fundamentally different.

AT) cosmology has been probed in various scenarios. At back-
ground level, f{T) models have probed against several different types
of data showing consistent results with the relatively high value
of the Hubble constant (Briffa et al. 2022). Most recently this has
been in work that incorporates the latest pantheon™ data set (Briffa
et al. 2020; Cai, Khurshudyan & Saridakis 2020; Ren et al. 2022;
Briffa et al. 2023). There has also been working that probes the early
Universe using either BBN (Benetti, Capozziello & Lambiase 2020),
or constraints from the CMB (Nunes 2018; Nunes, Pan & Saridakis
2018; Kumar, Nunes & Yadav 2023) with interesting results related
to the best-fit values of the model parameters compared with both
early and late time constraints. Also, constraints from primordial
black holes seem to be consistent with a wide range of observations
(Papanikolaou et al. 2023) giving more freedom to the possible
cosmological models. From foundational physics recent work has
also been done on non-flat cosmologies (Bahamonde et al. 2023)
which may open a way to compare recent proposals in the literature
(Di Valentino, Melchiorri & Silk 2019) on the topic in ACDM
cosmology. Other works in the literature have explored possible
effects on the fine structure constant (Levi Said et al. 2020) which
are consistent with there being no variation.

In the current work, we are interested in determining constraints
on models of f{T) cosmology using fog(z) data. This window into
the large-scale structure of the Universe will be a key tool in
understanding the viability of new proposals for cosmology. The
topic has been explored for previous data sets in Nesseris et al.
(2013) where it was shown that f(T) cosmological models are
largely consistent with this probe of large-scale structure. Later in
Anagnostopoulos, Basilakos & Saridakis (2019), these analyses were
combined with background data sets which gave stricter constraints
on model parameters. Recently, the fo g(z) data have also been used to
check for consistency with background data in the context of model-
independent approaches to reconstructing modified cosmological
models (Levi Said et al. 2021). We start by briefly introducing the
background of TG and its predictions for fog in Section 2. We then
discuss our observational data sets under consideration in Section 3.
This is then followed by a presentation of our model constraints in
Section 4, and a comparative analysis in Section 5. The results are
summarized and discussed in our conclusion in Section 6.

2 f(T) GRAVITY AND SCALAR
PERTURBATIONS

TG is based on the exchange of curvature with torsion through
the geometric connection, which is realized through the teleparallel
connection I'},. This renders all measures of curvature identically
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o
zero, since I'?,, is curvature-less and satisfies metricity. While
the regular Levi—Civita objects remain non-vanishing, such as the

regular Riemann tensor Ig" wvp 7 0, its torsional analogue will vanish
Ry, = 0. This means that a different class of torsional objects
must be utilized to express the geometric deformation that embodies
gravitation effects from the energy-momentum tensor (see reviews
in Aldrovandi & Pereira 2013; Cai et al. 2016; Krssak et al. 2019;
Bahamonde et al. 2021).

Another important aspect of TG is that it can be expressed in terms
of a tetrad field that embodies the gravitational effect of the metric

tensor through
8 = €4einap . Nab = EXE}guy » (1

where E Z is the tetrad inverse, and where Latin indices represent
local inertial coordinates, while Greek ones denote general space—
time coordinates. For internal consistency, these tetrads must also
satisfy orthogonality conditions

eZEg =3y, el‘iEz Z‘S;i‘ 2)
The tetrad encompasses the gravitational freedom of the metric, while
the Lorentz invariance freedom can be assigned to the spin connection
wj,- The teleparallel connection can then be defined as Cai et al.
(2016) and Krssak et al. (2019)

[V, =eg0ue; + Ezwg#ef . 3)

Given a metric, the infinite possible tetrad solutions in equation (1)
are balanced by the spin connection components to retain general
diffeomorphism invariance of the underlying theory. Together, the
tetrad—spin connection pair defines a space—time.

The tensor structure of TG can be written in terms of the torsion
tensor which is defined as

T?, = =27, 4)

where square brackets denote an antisymmetric operator which
represents the translation field strength of TG (Aldrovandi & Pereira
2013). Taking a suitable choice of contractions of the torsion tensor,
we can write the torsion scalar as Hayashi & Shirafuji (1979) and
Bahamonde, Bohmer & Krssdk (2017)
T = lTot THY + lToz T — T Tﬂl’- (5)
T e 9wl patp
which is dependent only on the teleparallel connection in an analo-
gous way to the dependence of the Riemann tensor on the Levi—Civita
connection.
Naturally, the teleparallel Ricci scalar will vanish, namely R = 0,
while the teleparallel-based Ricci scalar turns out to be equal to the
torsion scalar (up to a total divergence term), that is

R=R+T—B=0, (6)

where B = (2/€)d,,(eT*) is a boundary term and e = det (%) =
/—g is the tetrad determinant. This relation ensures that the
equations of motion of the Einstein—Hilbert action will be the same
as those from the so-called TEGR which is based on the linear form
of the torsion scalar. TEGR is dynamically equivalent to GR, but
may differ in its UV completion. The TEGR Lagrangian can readily

be generalized using the same reasoning as f (Ioi’) gravity (De Felice
& Tsujikawa 2010; Capozziello & De Laurentis 2011), except that
we now consider an arbitrary function of the torsion scalar through
(Ferraro & Fiorini 2007, 2008; Bengochea & Ferraro 2009; Linder
2010; Chen et al. 2011; Capozziello, De Falco & Ferrara 2022; Calza

20z Iudy 9z uo Jasn ejep Jo ANsIoAuN Aq Z0€GLSL/L L LZ/2/82S/I0E/SEIUL/WOo"dNo oILBpEdE//:SA)lY WOJj POPEOjuMOQ



& Sebastiani 2023)
Sy = 1 d*x ef(T)+/d4x el
F(T) T 32 "

1
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K

where k? = 87 G, Ly, is the matter Lagrangian, and e = det (%) =

+/—g is the tetrad determinant.

The most impactful practical difference between f(R) and F(T')
gravity theories is that the boundary term is no longer a total

divergence term for f (103) gravity and so leads to fourth order equa-
tions of motion, while F(T') gravity retains generally second-order
equations of motion. This may be advantageous both for numerical
reasons as well as theoretical motivations when considering certain
types of ghosts in the theory. By taking a variation with respect to
the tetrad field, the field equations follow

W = e7'd, (eE4SL") (=1 + Fr) — EXT,, S (=1 + Fr)
1 L Ly
+ ZEQ (=T +FT))+ Eﬁsf, 0, (T) Frr
+ Ej0), S (=1 + Fr) = K EL O, ®)

av A

where subscripts denote derivatives (Fr = 0F /0T and Frr =
0°F/0T?), and ), = 8L /de;, is the regular energy-momentum
tensor. This limits to TEGR as F(T') — 0. TG contains two dynami-
cal variables, namely, the tetrad and spin connection which both have
associated variations of the F(7') action. It turns out that they can
both be expressed in terms of the above tetrad variation as

Wiy = k204, and Wi, =0, )

where the tetrad and spin connection field equations are, respectively,
the symmetric and antisymmetric operators acted upon W, (Baha-
monde et al. 2021). Indeed, a particular choice of tetrad components
exists in which the spin connection components vanish, called the
Weitzenbock gauge. Here, the spin connection equations on motion
are identically satisfied. More generally, the six spin connection field
equations express the Lorentz invariance freedom (three translations
and three rotations), while the 10 tetrad field equations manifest the
gravitational equations of motion.

‘We can now consider a flat homogeneous and isotropic cosmology
through the regular flat Friedmann—Lemaitre-Robertson—Walker
(FLRW) metric

ds® = —dr* + a*(t) (dx* + dy* + dz?) , (10)

from which we can identify the Hubble parameter as H = a/a, and
where overdots refer to derivatives with respect to cosmic time. It

can be shown that the tetrad (Tamanini & Boehmer 2012; Krssak &
Saridakis 2016)

¢t = diag (1, a(®), a(®), a(®)) , (11)

is compatible with the Weitzenbock gauge and so the spin connection
components can be set to zero (Hohmann et al. 2019). By considering
the tetrad field equations (9), the modified Friedmann equations can
be written as

T F 2
H>— ~Fr+=>=%p, 12
3 T+6 3P 12)
H(—Fr —2TFrp) =5 (p+p). (13)

where p and p denote the energy density and pressure of the matter
components, respectively.

TG can be used to interpret large-scale structure data by consider-
ing scalar perturbations of the flat FLRW metric. We probe this data

Growth of structures using RSD in f(T) 2713
through the growth rate measurements of fog(z) from RSD. This is
expressed by the logarithm derivative of the matter perturbation §(z)
with respect to the logarithm of the cosmic scale factor, namely

Cdns@) diné(z) 5(2)
F@ =g = U Fa—g— =-(+a5.

where a prime denotes a derivative with respect to redshift z = a~
— 1. On the other hand, the linear theory root-mean-square mass
fluctuation within a sphere of radius 8 h~! Mpc can be expressed as

)
og(2) = 08,0% ; (15)

(14)

1

where a 0 — subscript denotes the respective value at z = 0. Thus, the
growth rate can be generally written as

930 o
fog(z) = —(1 + 1)75 (@), (16)
0
which directly leads to the normalized form of §'(z) through
& 1
Mo _ 1 Jo@ (17)
8 og (1 +2)

By integrating this expression, the normalized redshift evolution of
the matter perturbation can be written as

6@ _ 1 [ fo®
d 030 Jo (1+32)
while equation (17) also gives the second-order derivative
0@ _ 1 [a +2) foy(a) - fag(zq
(1+2)? '

The result is the redshift evolution of f can now be determined

P £ ©)) ‘Lo)
S = ( P ) (8@
B (S//(Z) 570) - (8/(Z))2<570)2
(1“)[( 5 )(é(z) 5 ) \sw) |- @O

In the subhorizon limit, the linear matter perturbations equa-
tion can then be written as

S+ 2HS =4nGer p 8, 1)

where Gy is the effective Newton’s constant which is in general a
function of z and cosmic wave vector k (Amendola & Tsujikawa
2010; Hernandez 2017). However for this limit and the data sets
under consideration, the G can be taken to be independent of k. In
this setting, equation (22) takes the form

, H@ 1\, 3G ( Hy \* i
5(z)+<H(Z) 1+Z>a<z>72 G, (H@) Q,0(01+268:). (22)

dz, (18)

19)

8o 030

where 2, , denotes the current matter fractional density, H, is

Hubble’s constant, and G, is Newton’s gravitational constant. We
can also express this relation in terms of the growth rate f, giving

2 H'(z) ,
@+ 2*(1+Z)H f@—0+2f' ()
(2)
_ 364 ( Ho \? 3
T2 G, (H(z)) Fmoll +27- 23)

In the case of F(T') gravity, the linear matter perturbation evolution
equation (18) is expressed through Golovnev & Koivisto (2018),
Nunes (2018), Levi Said et al. (2020), and Sahlu et al. (2020)

Gy
14+ Fr2)
Hence, the linear matter perturbation equation is sensitive to F(7T')

gravity and so large-scale structure data sets can be used to probe
observational constraints on potential models.

G(2) = (24)
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In order to utilize equations like equations (22) and (23), we need
to determine the value of H'(z), obtained from the second Friedmann
equation (13), via

K2(p + p)

B = 0T DU = Fr = 2T Frp)

(25)

3 OBSERVATIONAL DATA

In this section, we will provide an overview of how we utilized
observational data in our research to evaluate the most favourable
AT) models from the literature. We include a variety of observational
data, such as the pantheon+ sample of SNla data, baryon acoustic
oscillations (BAO) data, cosmic chronometers (CC) data, and growth
rate (redshift space distortion, RSD) data. To analyse the data, we
implemented an MCMC (Monte Carlo Markov Chain) approach
using the EMCEE package publicly available at Foreman-Mackey et al.
(2013). This enabled us to constrain the model and cosmological
parameters and thus, investigate the posterior of the parameter
space. This yielded one-dimensional distributions that illustrate the
parameter’s posterior distribution, and two-dimensional distributions
that demonstrate the covariance between two different parameters.
These distributions were complemented by the 1o and 20 confidence
levels as will be shown in Section 4.

3.1 Cosmic chronometers

CC offer a useful tool to directly constrain the Hubble rate H(z) at
different redshifts. To this end, we adopt 31 data points as compiled
from Jimenez et al. (2003), Simon, Verde & Jimenez (2005), Stern
et al. (2010), Moresco et al. (2012, 2016), Zhang et al. (2014), and
Moresco (2015). The CC method involves using spectroscopic dating
techniques on passively evolving galaxies to estimate the age differ-
ence between two galaxies at different redshifts. By measuring this
age difference, Az/At can be inferred from observations, allowing
for the computation of H(z) = —(1 + z)~! Az/At. Thus, CC data were
found to be particularly reliable because they are independent of any
cosmological model, avoid any complex integration, and rely on the
absolute age determination of galaxies (Jimenez & Loeb 2002).

In our MCMC analysis, we used xéc to evaluate the agreement be-
tween the theoretical Hubble parameter values H(z;, ®), with model
parameters ©, and the observational Hubble data values Hops(z;),
with an observational error of o y(z;). The Xéc was calculated using
e i (Hi. ©) ~ Hon(@))

= 26
0121(2;') 26)

i=1

3.2 Type Ia supernovae—pantheon+ data set

The SNIa data set used in this study is the pantheon4
(PN* & SHOES) sample (Scolnic et al. 2022), which is one of
the largest compilations of SNIa data and contains 1701 SNIa
measurements spanning a redshift range of 0.0-2.26. The pantheon+
analysis (Brout et al. 2022), incorporates SHOES Cepheid host
distance anchors, Riess et al. (2019) in the likelihood, effectively
addressing the degeneracy between parameters M and H, in SNla
analysis. Following this approach, we also adopt the label ‘PN+ &
SHOES’ to signify our incorporation of the same methodology.

SNIa can be used to determine the expansion rate of the Universe,
H(z), by measuring the observed apparent magnitude, m, and the
absolute magnitude, M, through the equation:

Wz, ® =m— M = 5log)[Dr(z;, ®)] + 25, (27)
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where O represents the set of cosmological parameters that describe
the Universe, z; is the redshift of the SNIa measurement, and D, (z;,
©®) is the luminosity distance given by

Di(z.©) = (1 + z»/q 28)
0

dz’
H(Z,©)’
where c is the speed of light. To calibrate the observed apparent
magnitude of each SNIa, a fiducial absolute magnitude M is used,
as shown in equation (27). In our MCMC analyses, we treat M as a
nuisance parameter.

To constrain the cosmological parameters, the minimum y? is
calculated through Conley et al. (2011),

X = (Au(z), ©) Cal(Ap(z:), ©)), (29)

where (Au(z;), ®)) = (u(z;), ®) — (zi)obs and Csy is the corre-
sponding covariance matrix which accounts for the statistical and
systematic uncertainties.

3.3 Baryon acoustic oscillations

In this study, we use a variety of observational missions to constrain
cosmological parameters. These data sets include measurements
from the 6dF Galaxy Survey at an effective redshift of z.; = 0.106
(Beutler et al. 2011), the Baryon Oscillation Spectroscopic Survey
(BOSS) Data Release 11 (DR11) quasar Lyman-alpha measurements
at an effective redshift of z.; = 2.4 (du Mas des Bourboux et al. 2017),
and the Sloan Digital Sky Survey (SDSS) Main Galaxy sample at an
effective redshift of zeir = 0.15 (Ross et al. 2015). Additionally, mea-
surements of the Hubble parameter and the corresponding comoving
angular diameter at z.ss = 0.38, 0.51 were obtained from the third gen-
eration of the SDSS mission (SDSS BOSS DR12, Alam et al. 2021).
We also include H(z) measurements and angular diameter distances
at zer = 0.98, 1.23, 1.52, and 1.94 from the fourth generation of the
SDSS mission (SDSS-IV BOSS DR12, Zhao et al. 2019).

As has been mentioned these different data sets report different
observational quantities that are related to one another. For the
BAO data sets under consideration, we compute the Hubble distance
Dy(z) givenby Dy (z) = ﬁ We also consider the angular diameter
distance Dy (z) defined as

c od7
l4+2zJy HE@)'
from which two other quantities can be derived. The first is the
comoving angular diameter distance Dy, given trough Dy = (1 +

2)D4(z) whilst the second one is the volume average distance given
by

D4(z) =

(30)

1

cz |?

Dy(z) = (1 4+2)* | Dalz 2—} . 31
v(z) = ( ) [ A(2) 8 31
Using the BAO results, we calculate the

corresponding combination of results G(z;) =

Dy (zi)/rs(za), rs(za)/ Dv(zi), Du(zi), Dm(zi)(rs fia(za)/rs(za)),
H(zi)(rs(za)/7s.6d(za))s Da(zi)(rs6d(za)/75(zq))- In this case, we
require the comoving sound horizon at the end of the baryon
drag epoch at z; ~ 1059.94 (Aghanim et al. 2020) which can be
calculated using

* (@)

HE

rs(z) =

Z

1/1/(1+z) da
SV h @@, T+ BR0/62,0] 0

(32)
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where we have adopted a fiducial value of r, 44(zs) = 147.78 Mpc
(Aghanim et al. 2020) with an assumption of €2, ¢ = 0.02242
(Aghanim et al. 2020) and 7 = 2.7255 K (Fixsen 2009) Therefore,
the corresponding x? is calculated through

X2a0(©) = AG(z;, ©)T CpioAG(zi, ©), (33)

where AG(z;, ®) = G(z;, ®) — Gobs(z:)and Cpap is the corresponding
covariance matrix for the BAO observations. The total x3,o is
therefore the sum of all the individual x? corresponding to each
data set.

3.4 Growth rate data (RSD)

The final data compilation we used in this work is the growth rate
data compilation presented in table II of appendix A in Alestas,
Kazantzidis & Nesseris 2022). This data set consists of measurements
of the growth of cosmic structure and is commonly referred to as
RSD data, due to a phenomenon that occurs during observations
at both large and small scales. The peculiar velocity of galaxies
causes high-density regions of the Universe to appear elongated
in the line-of-sight direction at small scales and flattened at large
scales. As a result, maps of galaxies where distances are measured
from spectroscopic redshifts exhibit anisotropic deviations from the
true galaxy distribution. Therefore, RSD measurements can provide
valuable insights into the large-scale structure of the Universe, which
is shaped by the underlying theory of gravity governing the evolution
and formation of cosmic structure. Consequently, RSD presents a
promising approach to testing modified theories of gravity.

The growth rate f(z), can be estimated using RSD cosmological
probes as a way to constrain cosmological models (Gupta, Sen &
Sen 2012; Gonzalez, Alcaniz & Carvalho 2016; Lambiase et al.
2019). However, instead of reporting the growth rate directly,
Large Scale Structure (LSS) surveys typically report the density-
weighted growth rate, fos = f(z)os(z) which is bias-independent
(Kazantzidis & Perivolaropoulos 2018). Furthermore, we should
acknowledge the Alcock—Paczynski effect, which emerges from the
requirement of assuming a cosmological model for the conversion
of redshifts into distances. However, recent studies, including those
outlined in Levi Said et al. (2021), have indicated that the influence
of this effect is minimal and thus has been disregarded in our
analysis.

Therefore, while the theoretical prediction can be made
from equation (16), the aforementioned RSD data can
be wused to constrain cosmological parameters, in par-
ticular ogo such the corresponding x2;, can be given
as

Xasp = AQ(zi, ©) Crdp AQ(z;, ©), (34)

where Q(z;, ®) = (fog(zi, ©)theo — fO 30bs(2:i)) and C]{SID is the inverse
covariance matrix which is assumed to be a diagonal matrix except
for the WiggleZ subset data which can be found in Blake et al. (2012).
Therefore, the total covariance matrix can be written as

ol 0 0o ...
Crsp = | O Cwiggez 0 ... ). (35)
0 0 ...07

To compute Q(z;, ®), we start by obtaining the theoretical values
of fo3(zi, ®)meo Using equation (22) along with equation (16). On the
other hand, fog(z;, ©)ops is extracted from the compiled observational
data as described earlier.
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4 RESULTS

In this section, we delve into the outcomes yielded by various
combinations of data sets. Each subsection is dedicated to distinct
A(T) models, selected based on their potential to accurately reflect our
cosmological history, as demonstrated in previous studies (Nunes et
al. 2016; Briffa et al. 2022, 2023; dos Santos, Gonzalez & Silva
2022; Sandoval-Orozco et al. 2023). For every model, we showcase
the 1o and 20 uncertainty ranges. These results are accompanied by a
table showing the final results that include the Hubble constant (Hy)
expressed in kms~'Mpc~!, the matter density parameter €2, and
030 along with other model parameters. This will give us an insight
into how the different models and data set combinations affect the
H, tension and Sg, cosmological tensions.

4.1 Power-law model

The power-law model, initially proposed by Bengochea and Ferraro
in their work (Bengochea & Ferraro 2009), was adopted due to its
capability to replicate the observed late-universe acceleration without
the need for dark energy. Henceforth, this model will be referred to
as fiCDM and is specified by

Fi(T) = o (=T)". (36)

This power-law form is characterized by two constants, namely «;
and p; which is introduced as a modification to F(7) function. Being
a constant «; can be evaluated at any time and therefore, it can be
calculated at the current time by using the Friedmann equation (12),
which results in

1 —Qu0— R0

o = (6Hg) " —— W

(37
where the density parameter for matter and radiation is represented
by Q,,0 and 2, respectively. Consequently, by utilizing equation
(37), the fiCDM model introduces only one new parameter, namely
p1, thereby enhancing its elegance and simplicity. In combination
with the parameters Hy, 2,0, and oo, we determine the model
parameter p; through MCMC analyses performed on observational
data.

By substituting the above equation into the Friedmann equation
(12), we derive the resulting Friedmann equation for this model

EX2) = Quo(l +2)° + Q,0(1 + 2)*
+ (1 = Qo — 20 E?'(2), (38)

where E(z) := %}) It is worth noting that this equation cannot be
solved analytically, so we employ numerical methods to calculate
E(z) at each redshift point. Consequently, using MCMC analysis, we
solve for each redshift point where observational data exists to obtain
parameter values. Specifically, we extract values for Hy, €2,,0, and
p1- Additionally, when RSD data are included, we can obtain values
for og allowing us to assess the model’s compatibility with observa-
tional data and refine our understanding of the Universe’s properties.
When examining equation (36), it becomes apparent that the ACDM
limit can be attained when p; = 0. On the other hand, when p; = 1,
the model converges to the GR limit. In this scenario, an additional
component in the Friedmann equation emerges, introducing a re-
scaled gravitational constant term within the density parameters.
The contour plots together with their posteriors for the fjCDM
model are shown in Fig. 1. In this and subsequent models, the blue
and green contours represent the CC+BAQO and CC+PN* +BAO
data sets, respectively. The remaining colours correspond to various
data sets that incorporate the RSD data. On the other hand, the
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Figure 1. Confidence contours and posterior distributions for the fjCDM
model (power-law model) parameters, including Ho, 2,0, and p;. In cases
where the RSD data are incorporated (purple, red, and yellow contours), the
08,0 parameter is also displayed.

precise values for the parameters are tabulated in Table 1. Notably,
this table highlights that the highest H, value is obtained when
combining the PNt & SHOES data with the RSD data is used. This
result aligns with expectations, as the PN*& SHOES data converges
with values reported by the SHOES team, which reports a value of
Hy = 73.30 & 1.04km s~ '"Mpc~' (Scolnic et al. 2022). Conversely,
the lowest value for the Hy parameter is derived from the CC+BAO
data sets, primarily influenced by the BAO data, which relates to
conditions in the early Universe.

It is noteworthy to notice the relationship between the Hubble
parameter (Hj) and the matter density parameter (£2,0). As Hy
increases, indicating a faster expansion rate of the Universe, the
matter density decreases. This effect is particularly pronounced in
the PN & SHOES+RSD combination, where the Universe’s energy
predominantly manifests as an effective form of dark energy, driven
by the elevated H, parameter. The presence of this phenomenon is
further confirmed by the apparent anticorrelation depicted in Fig. 1.

As noted, the ACDM limit is reached for when p; = 0. Indeed, the
resultant values for p; are in proximity of 0, and this limit falls within
the 1o range. Furthermore, it can be observed that the inclusion of the
RSD data leads to tighter constraints on the p; parameter. However,
this effect is not exclusive to the p; parameter alone; it also extends
to other parameters, as evident from the contour plots in Fig. 1.

Incorporating the RSD data has been instrumental in constraining
the amplitude of mass fluctuations, ogo. Upon initial examination
of Table 1, it appears that there is a correlation between the Hy
parameter and o3, where a higher H, tends to correspond to a
slightly higher osy. However, the contour plots suggest a more
complex and degenerate relationship between these parameters. It
is worth noting that the RSD data appears to have more Gaussian
errors when compared to the other data sets. The influence of these
growth structure data is encapsulated by the parameter G.g, which,
in this model, is expressed as

Gy

I—aip(=T)n=1"’ o

Gegp =
where the specific values for the parameters are extracted from the
relevant table, and as a result, we observe that G.g approximates Gy
under these conditions.

Additionally, the constraint on these parameters has enabled us
to explore a tension quantified in terms of Sg o = 03,01/2m.0/0.3
(Anchordoqui et al. 2021; Beltrdn Jiménez et al. 2021; Benisty 2021;
Brieden, Gil-Marin & Verde2023; Clark et al. 2023; Preston, Amon
& Efstathiou 2023; Rubira, Mazoun & Garny 2023). The results and
the posteriors of these parameters can be found in Table 2 and Fig. 2,
respectively. Reflecting the values obtained for ogy, the highest
value observed for Sg was attained for the PN* & SHOES+RSD
combination, measuring at Sg o = 0.8011’81822. However, it is worth
noting that we also provide values for the RSD data set alone to
isolate the impact of RSD data on this parameter, where in this case,
the value for the RSD data set reaches a minimum. Furthermore, it is
evident that across all data sets, the constraints for such parameters
are notably tight. We also examine the relationship between the Sg
parameter and the model parameter p;, which is depicted in Fig. A1l
found in Appendix A. A significant anticorrelation exists between
these two parameters. In return, this might suggest that changes in the
power-law exponent (p;) might have a direct impact on the amplitude
of mass fluctuations (Sg).

4.2 Linder model

The second model under consideration is the Linder (2009) model,
explicitly developed to explain the Universe’s late-time acceleration
without invoking the presence of dark energy. This model introduces
an exponential component that incorporates the torsion scalar,
denoted as 7, and is expressed as follows

Fo=aTy (1-Exp[-p2V/T/T) ) . (40)

where both «, and p, are constants, while Ty = T'|,—, = —6H02
represents the torsion scalar at the current epoch. Similar to
the previous model, if o, is a constant, it can be immediately
determined from the Friedman equation at the present time,

Table 1. Exact results for fi model that include the parameters Ho, £2,,0, and p;. The o5 parameter and the nuisance parameter M, are provided for data sets

that include RSD or PN* & SHOES, respectively otherwise, they are left empty.

Data sets Hy [km s~! Mpc~'] p1 T80 M
CC + BAO 68.1%]7 0.31479033 —0.09102 - -
CC + BAO + RSD 69.17 £ 0.81 0.2877 0038 —0.09+037 0.785 £ 0.035 -

0.019 0.075 0.037 0.029
PN* & SHOES + RSD 737+ 1.0 0.29010:012 0.076759% 0.81710:031 —19.252790%9
CC + PN* & SHOES + BAO 69.45705 0.31670.5°8 —0.06193 - —19.375 £0.017
CC + PN* & SHOES + BAO + RSD 69.90 + 0.58 0.2891001¢ 0.0141091 0.8107903¢ 1936710016

MNRAS 528, 2711-2727 (2024)

202 111dy 9z uo Jasn elfe| Jo Ausiomun AQ 20€G LS./ | 22/2/82S /P Seluw/woo"dno-ojwapese//:sdny Wwoly papeojumoq



Table 2. Exact Sg values corresponding to various data sets for the fj CDM
model.

Data sets 58,0

+0.061
0.718% 060

+0.049
0.761 -0.046

0.052
0. 801+0 046

0.047
0.792% —-0.043

—RSD
---=CC + BAO + RSD
..... PN*+ & SHOES + RSD

R I

Sso

Figure 2. Posterior distribution for the Sg o parameter in the f{ CDM model.
Legend: grey denotes the RSD data, purple corresponds to CC+BAO+RSD
data, red represents the PN + & SHOES + RSD data set, while orange indicates
CC + PN* & SHOES + BAO + RSD data.

yielding

o = 1-— Qm,O - Qr,O ) (41)
(I + p2er —1
Therefore, in the Linder model, hereafter referred to as ,CDM, the
only new model parameter is denoted as p,, and it will be constrained
through the MCMC analysis. Consequently, equation (41) allows us
to express the Friedmann equation in terms of Hy, 2,0, and p»,
resulting in the following form

2 _ 3 4 L= Qo — &2y
E2@) = Quo (142 + 2y (149" 4+ o= oy
x [(1+ p2E@)Exp[—p2E(2)] — 1] . 42)

Contrary to the fiCDM model, this model can be reduced to the
ACDM when p, — oo. However, for numerical stability, the analysis
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Figure 3. Confidence contours and posterior distributions for the ,CDM
model (Linder model) parameters, including Ho, 2,0, and L In cases
where the RSD data are incorporated (purple, red, and yellow contours), the
03,0 parameter is also displayed.

is conducted with the reciprocal of p,, in such a way that the limit
effectively becomes 1/p, — 0.

The posterior distributions and confidence levels of the con-
strained parameters are depicted in Fig. 3. Similar to the fjCDM
model, the highest value for the Hy parameter is obtained when
combining PN* +RSD data as indicated by the precise values in
Table 3. However, in this case, the lowest Hy value, specifically

= 66.5"22kms 'Mpc~!, is obtained for the CC+BAO+RSD
combination. Overall, in this scenario, the parameter values trend
slightly lower compared to the fj CDM model.

Regarding the €2, parameter, we observe a similar trend to that
of the Hy parameter, with lower values being reported. However,
the consistent pattern persists, where data sets that include RSD
values yield lower values for 2,0 compared to their counter-
parts that do not incorporate RSD data. The anticorrelation be-
tween the H, parameter and the 2,0 parameter is still visible.
However, in comparison to the fiCDM model, the anticorrelation
between 2,0 and the model parameter is not as pronounced,
resulting in a higher degree of degeneracy between these two
parameters.

The 1/p, parameter values obtained are slightly higher than those
in the f{CDM model. Additionally, in contrast to the previous model,

Table 3. Exact results for f model that include the parameters Hy, 2,0, and é The o3 parameter and the nuisance parameter M, are provided for data sets
that include RSD or PNt & SHOES, respectively otherwise, they are left empty.

1

Data Sets Hy [km s™! Mpc_'] Qo o 08,0 M
CC + BAO 67.2712 0.3027903 0.007937 - -

2.2 0.016 0.21 0.038
CC + BAO + RSD 66.5773 0.286700,2 0.39703, 0.78410:03% -
PN & SHOES + RSD 732+ 1.0 0.287 £ 0.013 0.359+0:077 0.77015:933 —-19.26+033
CC + PN* & SHOES + BAO 69.3575:61 0.299+0:907 0.167+:9% - —19.401021
CC + PN* & SHOES + BAO + RSD 69.3810:67 0.282 + 0.011 0.27570083 0.793 £ 0.035 —~19.371038
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Table 4. Exact Sg ¢ values corresponding to various data sets for the f,CDM
model.

Data sets S3.0

+0.061
0.7847 065

0.052
0. 765+0 046

0.054
0.753% 031

+0.045
0.7687 0%

---=-CC + BAO + RSD
----- PN* & SHOES + RSD

N & & & > N ©
N N N Q N N N
Ss0

Figure 4. Posterior distribution for the S parameter in the ,CDM model.
Legend: grey denotes the RSD data, purple corresponds to CC+BAO+RSD
data, red represents the PN* & SHOES + RSD data set, while orange indicates
CC + PN* & SHOES + BAO + RSD data.

the ACDM limit does not fall within the 1o region of the ACDM,
indicating a slight deviation from the ACDM model.

Furthermore, the parameter og( continues to exhibit the same
trend observed previously, with lower values consistently reported.
Notably, we observe a correlation between this parameter and €2,
across all data sets. However, the degeneracy between o and Hy
remains valid in this model. Similar trend to previous model is also
seen with regards G, where G & Gy where

G
Gur = N i (43)

1+ Jaapay/ Exp [—sz/ Tlo

In the cases where RSD is included, we once again calculate the
quantity Sgo, and we obtain slightly different results compared to
the previous model as shown in Table 4 and Fig. 4. Similar results
are obtained for the CC+BAO+RSD data sets, but we observe a
lower value for the PN* & SHOES+RSD combination. Conversely,
we obtain higher values for the RSD data set on its own and for
CC + PN* & SHOES + BAO + RSD, with the maximum value
being achieved for the former data set, whereas previously it had
exhibited the minimum value. Lastly, we again check the correlation
between the parameters p and Sz where the degeneracy in the RSD
data persists, however, when the PN* & SHOES data are combined
with the RSD data, we now notice an anticorrelation that was not
previously evident. A visual representation of these findings can be
found in Appendix A, specifically in Fig. Al.
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Figure 5. Confidence contours and posterior distributions for the ;CDM
model (exponential model) parameters, including Hy, €2, 0, and % In cases
where the RSD data are incorporated (purple, red, and yellow contours), the
08,0 parameter is also displayed.

4.3 Exponential model

The next model under consideration in this analysis is the exponential
model, hereafter f;CDM, which draws inspiration from previous

works on f (103) (Linder 2009). In fact, a variant of the Linder model
is proposed in Nesseris et al. (2013), where the square root in the
exponential form is no longer present. In this case, F3 is expressed as
an exponential function with two model constants, a3 and ps, along
with the current torsion scalar T and the variable T, such that

F3=a3Ty(1 —Exp[—psT/Tp)) . 44)

By evaluating the Friedmann equation at the present time, we can

determine the value of the constant o3, which is calculated as
1— Qo — Q2
= ——m0 0 (45)
(14+2p3)er—1

Therefore, by substituting equation (45) into the modified Fried-
mann equation (12), we can derive the Friedmann equation for this
model, which can be solved numerically

E2(2) = Qo (142 4+ @ (1 4 2)* 4 om0 — S
" " (1 +2pyers — 1
x [(142psE*(2) Exp [-psE* ()] — 1] . (46)

This model exhibits behaviour similar to the Linder model, where
the ACDM limit is approached as p; — oo. Therefore, as previously
discussed, we perform the analyses using 1/p; to ensure numerical
stability, as this approach aligns with the previous model. In this case
the G is defined as

G
Geir = N

, (47)
1 + a3 p3Exp [—Ps%]

where this model exhibits a similar trend to the previous ones.
The confidence levels and the posteriors are found in Fig. 5, whilst
the constrained values are found in Table 5. Removing the square root
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Table 5. Exact results for f3 model that include the parameters Hy, £2,,0, and
that include RSD or PN* & SHOES, respectively otherwise, they are left empty.

1
p3
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. The o3 o parameter and the nuisance parameter M, are provided for data sets

Data Sets Ho [km s~! Mpc’l] Qo # 080 M
CC + BAO 67.5737 0.3117903 0.05870:152 - -
CC + BAO + RSD 68.6715 0.27610:918 0.02610:234 0.79810:93 -
PN & SHOES + RSD 732519 0.2801001 0.23210:04 0.79310.038 —19.25 £0.11

CC + PN* & SHOES + BAO
CC + PN* & SHOES + BAO + RSD

0.65
69.3410:63

0.017
0'3004:0016

+0.029 +0.24
0.1607 756 - —19.347,3)

69547064 0.282 + 0.012 0.19779:038 0.807 % 0.032 —19.380:29
Table 6. Exact Sg values corresponding to various data sets for the 3CDM
model.
Data sets 58,0
0.079 N
0.744+ e o
- =CC AC S +o. / |
CC + BAO + RSD 0.762_8'85532 ] \
..... + & 'S y +0. i i
PN™ & SHOES + RSD 0.765_0.052 i :
0.782 +0.043 4 i
i v
i \
l/’ \\\
. . . [l f \\
component has notably influenced the constraints, particularly on h i
03,0. The og( values are considerably higher in this model compared / A
to those reported in f,CDM. j/ k)
As with fiCDM, the model f3CDM exhibits the highest constrained /' i
value for Hy when considering the PN™ & SHOES+RSD data (Hy = £ T~
73.211:} +km s~'Mpc~!) combination, while the lowest value is ob- R T G RN
tained for CC+BAO data (Hy = 67.57) 7 kms~'Mpc™). Similarly, Sk

the density parameter €2,, o also shows the highest value for CC+BAO
(R0 = 0.31175039) and the lowest for CC+PN* & SHOES+BAO
(20 =0.211 £ 0.012). In addition, the RSD data appear to impose
more stringent constraints on these parameters, particularly on the
density parameter.

Regarding the model parameter, unlike in the case of ,CDM, we
observe that its range within the 1o and 20 confidence intervals
is narrower. In this instance, the 20 interval spans from O to a
maximum of 0.5, but akin in f,CDM still lie within 20" of the ACDM
limit.

However, the most significant difference in this model becomes
evident in the ogy parameter. This model reports a higher value for
this parameter. Furthermore, a correlation between the parameters
Q3.0 and o5 is now evident, which was not observed in the fjCDM
model but is apparent in the f,CDM model. The degeneracy between
the Hy and o parameters, however, remains apparent, as observed
in the other cases.

The highest value for oy is obtained for the CC + PN+ & SHOES
+ BAO + RSD combination, yielding a value of ogo =
0.793 + 0.035, as detailed in Table 6 and illustrated in Fig. 6.
Conversely, the lowest value for Sgo is achieved when using
the PN* & SHOES+RSD data, as indicated in both tables pre-
senting the ogp and Sso values respectively. Additionally, con-
sistent with previous models, the value for Sg, obtained us-
ing the RSD data alone is relatively low, akin to the fCDM
model.

The final piece of analysis for the 5CDM model is depicted
in Fig. Al in Appendix A. Here, we observe a degenerate re-
lationship between the parameters p; and Sso, which transitions
into an anticorrelation at higher values of p;. This effect is
particularly noticeable for the data sets that incorporate BAO
measurements.

Figure 6. Posterior distribution for the Sg o parameter in the f3CDM model.
Legend: grey denotes the RSD data, purple corresponds to CC+BAO+RSD
data, red represents the PN + & SHOES + RSD data set, while orange indicates
CC + PN* & SHOES + BAO + RSD data.

4.4 Logarithmic model

The last model, hereafter referred to as f4CDM, which was proposed
by Bamba et al. (2011), is known as the logarithmic model. This
model is characterized by the following expression

T paTo
Fu(T) = oaToy | —= log , (48)
paTo T

where «4 and p4 are the two model constants. To determine the
constant o4, we follow the standard procedure of evaluating the
Friedmann equation (13), at the current time, resulting in

(1 - 52m,O - SZr,()) A/ P4

= — . . (49)

This simplifies the Friedmann equation to a more straightforward
form

E*(2) = Qu (1427 + (1 + 2" + (1 = Qo — Q) E2)
(50)

Interestingly, the additional model parameter p4 does not feature
in equation (50), indicating that at background level this parameter
cannot be constrained. None the less, it is noteworthy that this
parameter does come into play at the perturbative level, particularly
in the context of linear matter perturbations, as illustrated in equation
(22), where py is featured in the G term, in particular in the F7 term.
Therefore, as can be seen in the contour plots in Fig. 7 and Table| 7,
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Figure 7. Confidence contours and posterior distributions for the f4CDM
model (logarithmic model) parameters, including Hp and €2,,, 0. In cases where
the RSD data are incorporated (purple, red, and yellow contours), the o5
and p4 parameter is also displayed.

the p4 parameter does not feature in the CC4+BAO (blue contours)
and CC+PN* & SHOES+BAO (green contour), but is relevant for
the rest of the data sets that include the RSD data.

The inclusion of the logarithmic function makes a noticeable dif-
ference in this model, particularly when examining the relationship
between the Hj and 2,,p parameters. In this case, the relationship
exhibits a distinct anticorrelation, which is more pronounced in this
model compared to the previous ones. Interestingly, this results in
more extreme values for the H,y parameter, with the highest value
achieved being Hy = 73.407{0/ km's~'Mpc ™" for the PN* & SHOES
data set. Conversely, the lowest value was obtained for the CC+BAO
data set, with a value of Hy = 65.3"} ) kms™'Mpc™!

The values of €2,, also exhibit significant variations. In this case,
the lowest value is achieved for the CC+PN* & SHOES+BAOQ data
set, while the highest is for the same data set but with the inclusion
of the RSD data (i.e CC+PN* & SHOES+BAO+RSD). It seems
like when the RSD model is included in the data sets, either the
H, parameter or the €2, is driven to higher values when compared
to its counterpart data set without the RSD data set. Therefore, in
this model, it appears that the presence of RSD data influences the
understanding of the Universe’s current acceleration and the role
of baryonic and dark matter components within this model. This
influence can be attributed to RSD data’s exceptional sensitivity to

the distribution of matter, which in turn plays a crucial role in shaping
the large-scale structure of the Universe through its gravitational
interactions.

A particularly intriguing aspect of this model, which sets it apart
from the fi — f3CDM models, is the absence of a ACDM limit both
at the background and perturbative levels. At the perturbative level,
the parameter p4 appears in G, which is expressed as

Gw

T\ pa T [ T .
1+ 23‘;—4 (?0) In (MTU) +Ol4 p4707‘

In this scenario, no choice of the value of p4 can reproduce a ACDM
model. Furthermore, given that it appears in the logarithmic function,
the parameter p, must be greater than zero, as illustrated in Fig. 7.
However, Table 7, still shows that the value of py is very close to zero,
which makes Gy, slightly higher than Gy, throughout the redshift
span.

The ogo parameter in this model appears to be significantly
higher when compared to the other models. Interestingly, the
CC+BAO+RSD and CC+PN* & SHOES+BAO+RSD data sets
both report the same value for ogy, suggesting that the inclusion
of PN & SHOES data has a minimal effect on this parameter in this
particular model. The CC+PN* & SHOES + RSD data set reports a
slightly lower value for ogg. This observation leads us to consider
Fig. 8 and Table 8, where we can see the values obtained for this
parameter. In this case, it’s evident that €2, has a notable impact
on this parameter. While o is the same for CC+BAO+RSD and
CC+PN* & SHOES+BAO+RSD, Sg varies significantly between
the two data sets. A higher value is obtained when PN* & SHOES
data are included, making it the data set with the highest Sg value.

The last Fig. A1 (Appendix A), shows the relationship between
the Ss and p4. As expected based on previous models, we observe
a degeneracy between these parameters, particularly concentrated
within the 1o region near ps = 0.

Geir = (51

=

5 ANALYSIS

To evaluate how well each f;CDM model performs with various data
sets, we employ several statistical measures. First, we calculate the
minimum x2,, values for each model and data set. These values are
derived from the maximum likelihood L., with the relationship
being x2., = —21n Ly.x. A lower 2, indicates a better fit of the
model to the data.

In addition to x2,,, we also compare the models to the standard
ACDM model using two criteria: the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). These criteria
consider both the model’s goodness of fit, represented by x2;., and
its complexity, which is determined by the number of parameters .
The AIC is calculated as

AIC = x2, +2n, (52)

Table 7. Exact results for f4 model that include the parameters Hy and €2,, 0. The o3 and p4 parameter together with the nuisance parameter M, are provided
for data sets that include RSD or PN+ & SHOES, respectively otherwise, they are left empty.

Data Sets Hy [km s~! Mpc™!] Qo P4 T80 M
CC + BAO 65.3%10 0.2667003 - - -
CC + BAO + RSD 66.6270%5 0.224790% 0.0057003 0.883 £ 0.033 -

PN+ & SHOES + RSD
CC + PN* & SHOES + BAO
CC + PN* & SHOES + BAO + RSD

0.97
73.401 %04
0.58
68.781 023

+0.67
66.417 3¢

0.013
021379013
0.211 £0.012

0.011
0.280%5 12

+0.057
0.007Z¢ 013

+0.009
0.0015+5:962

0.036
0.86Of04035

0.038
0.88375 036

0.16
—19.09%53
—19.388 £ 0.017

0.16
—19.5712
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—= CC + BAO + RSD
“PN* & SHOES # RSD

Figure 8. Posterior distribution for the Sg o parameter in the f4CDM model.
Legend: grey denotes the RSD data, purple corresponds to CC+BAO+RSD
data, red represents the PN + & SHOES + RSD data set, while orange indicates
CC + PN* & SHOES + BAO + RSD data.

Table 8. Exact Sg ¢ values corresponding to various data sets for the f4CDM
model.

Data sets A

+0.047
O'720—0.036

0.052
O'762J:0.050

0.035
07307 o

0.040
O'854:)‘()42

---=CC + BAO + RSD
..... PN* & SHOES + RSD

where a lower AIC value indicates a model that fits the data better
while accounting for complexity. It penalizes models with more
parameters, even if they exhibit a superior data fit. On the other

Growth of structures using RSD in f(T) 2721
hand, the BIC is given by
BIC = x2,, +nlnm, (53)

where m is the sample size of the observational data combination.
Similar to the AIC, the BIC aims to balance data fit against
model complexity. However, it imposes a heavier penalty on models
with more parameters as the sample size increases. Therefore, by
comparing the AIC and BIC values of different models, we can
determine which model is better supported by the data. Generally,
models with lower AIC and BIC values are preferred, provided the
differences are significant.

To assess the performance of different models using various
combinations of data sets, we calculate the differences in AIC and
BIC between each model (f;CDM) and the reference model, which
is the ACDM model. This comparison helps us understand how
well each model aligns with the standard model of cosmology. The
differences in AIC and BIC are denoted as AAIC = Ax2,, + 2An,
and ABIC = Ax2. + AnlInm, respectively. These metrics quantify
how each model deviates from the reference model (in this case,
ACDM) in which, smaller values of AAIC and ABIC indicate that
a model, along with its chosen data set, is more similar to the
ACDM model, suggesting better performance. Table 9 provides a
comparison of these metrics for two specific data set combinations:
CC+BAO and CC+BAO+RSD. Similarly, Table 10 allows us to
compare the AIC and BIC values for three different sets of data
combinations: PNT&SHOES+RSD, CC+PN*T&SHOES+BAO and
CC+PN*&SHOES+BAO+RSD.

Table 9 highlights that the CC+BAO data set generally exhibits
a lower x2,, implying a better fit without RSD. However, closer
inspection of the AAIC values for CC+BAO+RSD reveals a
significant reduction, indicating the increased favourability of this
data set in certain cases. It is noteworthy that the BIC values
for CC+BAO+RSD are slightly higher due to more data points.
Regarding model performance, the f, model consistently presents the
lowest AAIC and ABIC values, signifying its reliable performance.
The fi and f3 models also perform well, showing suitability for this
data set. In contrast, the f;CDM model tends to lean towards the

Table9. Comparison of x2,, and differences in AIC and BIC between the models and ACDM (i.e AAIC and ABIC). On the left-hand side, results are presented

for CC+BAO, while the right-hand side includes RSD.

CC+BAO CC+BAO+RSD
Xiin AAIC ABIC i AAIC ABIC
ACDM 20.93 0 0 37.14 0 0
fiCDM 20.87 1.94 1.61 37.04 1.91 3.15
/CDM 20.93 2.00 1.66 35.41 0.28 1.52
£;CDM 20.93 2.00 1.66 37.21 2.08 3.32
£:CDM 27.95 7.02 7.02 42.03 6.89 8.14

Table 10. Comparison of x2;, and differences in AIC and BIC between the models and ACDM (i.e AAIC and ABIC). On the left-hand side, results are
presented for PN* & SHOES+RSD, whilst in the middle CC+PN*+ & SHOES+BAO. On the right-hand side, the results for CC+PN* & SHOES+BAO+RSD

are displayed.
PN & SHOES+RSD CC+PN* & SHOES+BAO CC+PN* & SHOES+BAO+RSD

i AAIC ABIC Xin AAIC ABIC Xamin AAIC ABIC
ACDM 1550.20 0 0 1572.60 0 0 1590.71 0 0
f1CDM 1549.52 1.32 2.56 1572.56 1.96 1.78 1590.56 1.85 3.10
~~CDM 1541.46 —6.74 —5.50 1572.50 1.89 1.72 1587.49 —1.21 0.04
3CDM 1543.13 —5.07 —3.84 1572.31 1.71 1.53 1588.33 —0.37 0.88
f2CDM 1539.71 —8.48 —7.25 1586.67 14.07 14.07 1663.50 74.80 76.04

MNRAS 528, 2711-2727 (2024)

202 111dy 9z uo Jasn elfe| Jo Ausiomun AQ 20€G LS./ | 22/2/82S /P Seluw/woo"dno-ojwapese//:sdny Wwoly papeojumoq



2722  R. Briffa et al.

/2CDM me= CC + BAO
CC +BAO +RSD
PN* & SHOES + RSD
== CC + PN &SHOES + BAO
CC +PN" &SHOES + BAO+RSD

-

!jb' 0702 03 0.4 0.5 0.8PM

£CDM

Figure 9. Distances measured in standard deviations (o units) between
the constrained Hy values obtained from the f; - 3CDM models and their
corresponding values in the ACDM model.

ACDM model, as suggested by higher AAIC and ABIC values,
indicating weaker data support for fsCDM.

Table 10 reveals intriguing findings. Starting with the
PN* & SHOES+RSD data set, the models are favoured over ACDM,
as reflected in negative AIC and BIC values, indicating a preference
for the models. While this preference is not consistent across all
models for the CC+PN+ & SHOES+BAO data set, it re-emerges for
CC+PN* & SHOES+BAO+RSD, especially pronounced for the f>
and f3 models. This suggests that, for these two models within the
CC+PN+ & SHOES+BAO+RSD data sets, the data lean towards
favouring these models over ACDM. However, it is important to note
that the evidence is not strong enough to definitively favour these
models over ACDM. The BIC values, although not negative, are
nearly zero, indicating an inconclusive preference for either model.
Conversely, the f; model shows strong disfavour and preference for
ACDM, prompting its exclusion from further analysis, shifting our
focus to the first three models.

The previous analysis is further supported by Fig. 9. In this figure,
we compare the values of Hy obtained from f{(T) (i = 1, 2, 3)
models to the values of H, obtained from the ACDM model for
the same data sets, as shown in Appendix B. This visualization
illustrates the variations in Hy across different data sets, expressed
in terms of o units, with each data set represented by a distinct
colour. For each f{T) model, we observe that the H, values fall
within 1o of the corresponding ACDM values. Therefore, the Hy
values obtained for the different data sets are consistent with those of
ACDM.

The discrepancy between the locally measured expansion rate
of the Universe and the values inferred from observations of
the CMB has prompted us to extend our previous analysis. We
aim to investigate how these models perform with different val-
ues of Hp, specifically considering the P18 value HF'™® = 67.4 &
0.5kms™'Mpc~! (Aghanim et al. 2020) and R22 value of HY*? =
73.30 + 1.4kms~'Mpc™' (Riess et al. 2022), as shown in Fig. 10
(in both cases we include the ACDM values from Appendix B).

In Fig. 10, on the left-hand-side, we observe that the H, values
are within 3.50 of the P18 value, except for the PN & SHOES data
set. However, in the figure, we also include values from RSD data
only. This high o value for the PN* & SHOES data is expected, as
it dominates and is included within the R22 value itself. Similarly,
in Fig. 10, on the right-hand side, we also see that the H, values
are within approximately 3.50 of the R22 value. This suggests that
the Hy values obtained from our analysis fall approximately midway
between the two quoted values of P18 and R22.
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=== CC + BAO
CC +BAO +RSD
PN* & SHOES + RSD
CC+ PN & SHOES + BAO
CC +PN* & SHOES + BAO+RSD
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HCDM
CC+BAO
CC+BAO +RSD
PN* & SHOES + RSD
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Figure 10. Distances measured in standard deviations (o units) between the
constrained Hyp values obtained from the fj — 3CDM models together with
ACDM and the Hé’ 18 value on the left-hand side and Hauz on the right-hand
side.

Additionally, we present a comprehensive comparison of our
Sso values with the Planck Collaboration’s Sfi¥ = 0.834 +0.016
(Aghanim et al. 2020) and Kilo-Degree Survey (KiDS-1000) value
SKIPS = 0.76610920-0.014 (Asgari et al. 2021). The results are
summarized in Fig. 11, highlighting the impact of different data
sets on our models. a comparison between Ss, values in our
models and those in ACDM is presented in Fig. 12. Furthermore,
Fig. 13 provides a comparison of S{{ and S§¢’S with values
derived from f; _3;CDM models in ¢ units. When compared to
S§E, on the left-hand side of same figure, we find a maximum
discrepancy of 20 between the values derived from ACDM and
the f{T) models, and this is primarily observed when considering
the RSD data set in isolation. However, as more data sets are
included, particularly CC+PN™ & SHOES+BAO+RSD, which is
the most comprehensive data set in our analysis, this discrepancy
diminishes.

On the right-hand panel of Fig. 13, where we compare with S&DS,
the discrepancy is further reduced to 1o, indicating that the values ob-
tained from our analysis are closer to the KiDS-1000 measurements
than the Planck values. Notably, CC+PN* & SHOES+BAO+RSD
performs well in this regard, significantly reducing the o values.
Consequently, it appears that with the combination of the available
data sets and the f; _ 3(7) models, the tensions between the CMB and
locally determined values are reduced, especially for Sg .

6 CONCLUSION

The most popular models in the literature of TG have been probed
in this work against the latest expansion data as well as RSD
measurements which has expanded the constraint profile of each
of these models, as well as their impact on physically observable
cosmological parameters. For the local data being used, we had a
combination of CC, PN* & SHOES, and BAO data. Besides being
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—e— RSD —=— PN* &SHOES + RSD Spis
—4— CC+BAO+RSD CC +PN* &SHOES + BAO + RSD ssKilgs
£3CDM - -
£,CDM - i
f,CDM - -
0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850

Sg,0

Figure 11. A whisker plot illustrating the constrained values of Sgo as derived from the fi - 3CDM models. The cyan and purple vertical bands depict the
, whilst the error bars illustrate the inferred model dependent 1o constraints from each respective data set.

respective 1o ranges of Sé’ 108 and SgiODS

7,00M RSD
= CC + BAO + RSD
PN* & SHOES + RSD
CC + PN* & SHOES + BAO + RSD
//.
£,CDM «
EPPPPPPPPF’)"CBM N
B Rl 2 nan
f:CDM

Figure 12. Distances measured in standard deviations (o units) between
the constrained Sgo values obtained from the f; - 3CDM models and their
corresponding values in the ACDM model.

the most populated data sets and highest precision, these data
sets give a range of points across redshift space. In particular, the
PN* & SHOES sample is the largest SNIa in the literature and the
principal late-time indicator of the cosmic tensions problem in the
Hubble constant. We use RSD data since it is sensitive to the
growth of structure formation and so can be used to constrain the
perturbative sector of the models under consideration. In each of
these models and for each data set combination, we performed a
full MCMC analysis obtaining constraints on all the cosmological
parameters. Additionally, we compared the performance of each
model for each data set combination against the standard ACDM
model using the x2,, AIC, and BIC statistical indicators. Given the
increasing tension being reported by various studies on the value
of the Hubble constant, we study its constrained value, but also
consider the effect of a changing Hubble constant will have on the
parameters related to the growth of structure formation, namely,
T30 and Sg’o.

f20DM

side.

£1CDM

£CDM

f,CDM

e
0 02 04 06

£:CDM

RSD
== CC + BAO + RSD
PN* & SHOES + RSD
CC + PN* & SHOES + BAO + RSD

, ACDM

RSD
#== CC + BAO + RSD
PN* & SHOES + RSD
CC + PN* & SHOES + BAO + RSD

08 1 ACDM

Figure 13. Distances measured in standard deviations (o units) between the
constrained Sg o values obtained from the f; - 3CDM models together with
ACDM and the Sg 108 value on the left-hand side and SX2? on the right-hand

8,0

For reference purposes, we provide the ACDM constraint values
for each of the data set combinations we consider. This is done in
Appendix B, which is important for estimating the statistical indica-
tors in the model sections. Generally, our analysis shows consistency
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with ACDM but some differences do arise, which may show further
distinction as the precision in measurements improves. As one might
expect, the strongest data set in the analysis was the PN* & SHOES
sample since it consistently drastically reduces the statistical error
for any baseline data set. On the other hand, the statistical metrics
show that expansion data CC+PN* & SHOES+BAO combination
provides evidence for ACDM while when the RSD data set is
included, there is marginal preference for the f{7) model under
consideration. Moreover, they offer best fits on cosmic parameters
that are more aligned with a higher Hubble constant. As for the Sg
parameter, the models are largely consistent with the most recent
reported values in the literature.

This analysis offers precision insights into the behaviour of these
models, but also on TG more generally, when using combinations
of this expansion profile and RSD data sets. The study suggests
that these models may offer some promise as toy models for
modified cosmological scenario model building. We intend to use
these observations to extend this analysis to include CMB power
spectra as well as other early Universe data sets to more fully assess
the competitiveness of these models.

DATA AVAILABILITY

The data used in this study are described in detail in Section 3. For
further information on the data underlying this article, contact the
corresponding author who will provide any additional information.
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fidence regions of the p; and Sgy parameters to investigate the
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Figure Al. Top left: contour plots showing the relationship between the p; parameter and the Sg o parameter for the fj CDM model (power-law model). Top
right: contour plots showing the relationship between the i parameter and the Sg o parameter for the > CDM model (Linder model). Left bottom: contour plots

showing the relationship between the - parameter and the Sg 0 parameter for the f{ CDM model (exponential model). Right bottom: contour plots showing the
relationship between the p4 parameter and the Sg o parameter for the fj CDM model (logarithmic model).

in Fig. B1 and provide additional details and precise values in
Table B1. In Fig. B2 the posetriors of the Sgo parameter for the
In Section 5, we provide comparisons between the models and ACDM is shown, whilst in Table B2 the exact values for the
their corresponding ACDM values. Here, we present the poste- corresponding data sets are presented.

rior distributions and confidence regions of the ACDM model

APPENDIX B: ACDM MODEL
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Table B1. Exact results for ACDM model that include the parameters Hy and €2,,0. The og parameter and the nuisance parameter M, are provided for data
sets that include RSD or PN & SHOES, respectively otherwise, they are left empty.

Data sets

Hy [km s~' Mpc!]

Qm,O

08,0

M

CC + BAO

CC + BAO + RSD

PN+ & SHOES + RSD
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Figure B1. Confidence contours and posterior distributions for the ACDM
model (logarithmic model) parameters, including Hy and €2, 9. In cases where
the RSD data are incorporated (purple, red, and yellow contours), the ogg

parameter is also displayed.
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Figure B2. Posterior distribution for the Sg o parameter in the ACDM model.
Legend: grey denotes the RSD data, purple corresponds to CC+BAO+RSD
data, red represents the PNT & SHOES + RSD data set, while orange indicates
CC + PN* & SHOES + BAO + RSD data.

Table B2. Exact Sg values corresponding to various data sets for the ACDM

model.

Model Ss0
—RS 0.053
RSD 0.729*0:053
---=CC + BAO + RSD 0.758+0.046
----- PN* & SHOES + RSD 0.80970.050
0.038
0.797+0,038
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