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A B S T R A C T 

Cosmology faces a pressing challenge with the Hubble constant ( H 0 ) tension, where the locally measured rate of the Universe’s 
expansion does not align with predictions from the cosmic microwave background calibrated with lambda-cold dark matter 
model. Simultaneously, there is a growing tension involving the weighted amplitude of matter fluctuations, known as S 8,0 

tension. Resolving both tensions within one framework would boost confidence in any one particular model. In this work, 
we analyse constraints in f ( T ) gravity, a framework that shows promise in shedding light on cosmic evolution. We thoroughly 

examine prominent f ( T ) gravity models using a combination of data sources, including pantheon + (SN), cosmic chronometers, 
baryonic acoustic oscillations, and redshift space distortion data. We use these models to derive a spectrum of H 0 and S 8,0 values, 
aiming to gauge their ability to provide insights into, and potentially address, the challenges posed by the H 0 and S 8,0 tensions. 

Key words: cosmological parameters – dark energy – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

easurements of the accelerating expansion of the Universe (Riess 
t al. 1998 ; Perlmutter et al. 1999 ) have led to the prospect that it
ay be expanding faster than predicted by the lambda-cold dark 
atter ( � CDM) model (Di Valentino et al. 2021a ). This may open

he possibility that the concordance model description of gravita- 
ion through general relativity (GR), the as yet unobserved CDM 

Gaitskell 2004 ; Bertone, Hooper & Silk 2005 ; Baudis 2016 ), and
he theoretically problematic cosmological constant (Peebles & Ratra 
003 ; Copeland, Sami & Tsujikawa 2006 ) may require additions or
orrections to its explanation of some kind. Over the last few years
his has been expressed primarily through the value of the Hubble 
onstant (Di Valentino et al. 2021c ) and f σ 8,0 (Di Valentino et al.
021b ). The appearance of cosmic tensions has shaped into a tension
etween observations based on direct measurements of the late 
niverse such as those based on Type Ia supernovae (SNIa), the tip
f the red giant branch measurements, strong lensing measurements 
Freedman et al. 2020 ; Wong et al. 2020 ; Riess et al. 2022 ; Anderson,
oblischke & Eyer 2023 ), and indirect measurements coming from 

nalyses of early time data from the cosmic microwave background 
CMB) radiation as well as big bang nucleosynthesis (BBN) data 
Cooke, Pettini & Steidel 2018 ; Alam et al. 2021 ; Abbott et al.
022 ; Zhang et al. 2022 ) and others (Benisty, Davis & Evans
023 ). Furthermore, recent data forecasting from new missions 
hat include structure formation have increased this tension at local 
evel (Atek et al. 2022 ; Lu et al. 2022 ), ho we ver, considering ne w
ystematic techniques on the measurements these tensions can be 
reated (Maldonado Alonso, Escamilla-Rivera & Sandoval-Orozco 
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023 ). The growth in both these tensions has led to a reinvigorated
xploration of possible modifications of the concordance model that 
ave been developed in the literature over the last few decades. 
The literature features a myriad of no v el approaches in which

o confront the growing issue of cosmic tensions. There have been
roposals involving a re-e v aluation of the cosmological principle 
Krishnan et al. 2021 , 2022 ), possible impacts of early Universe
ark energy (Poulin, Smith & Karwal 2023 ), the appearance of extra
egrees of freedom in the form of additional neutrino species in
he early Universe (Di Valentino & Melchiorri 2022 ; Di Valentino
t al. 2022 ), as well as modifications to gravity (Barack et al. 2019 ;
lves Batista et al. 2021 ; Saridakis et al. 2021 ; Abdalla et al. 2022 )

nd others (Addazi et al. 2022 ). Many of these approaches modify
 small part of the evolution of the Universe using new physics.
n the other hand, modified gravity has the potential to make

maller changes that infiltrate the larger range of redshifts. Moreo v er,
odifications to GR will also provide changes both at background 

nd perturbati ve le vels. In the space of possible modifications to
R, one approach that has become popular in recent years and
hich natively builds a competitive way in which to consider new
hysics is metric-affine gravity which is based on the exchange of
he underlying connection with other possible geometries (Hehl et al. 
995 ; Beltr ́an Jim ́enez, Heisenberg & Koivisto 2019 ). In teleparallel
ravity (TG), the geometric curvature of the Le vi–Ci vita connection

◦
 

σ

μν (o v ercircles denote quantities based on the curvature of the
e vi–Ci vita connection in this work) is interchanged with the torsion
f the teleparallel connection � 

σ
μν . This may provide a more intuitive

pproach in which to consider new physics in gravitational theory. 
The connection of TG is curvature-free (Cai et al. 2016 ; Krssak

t al. 2019 ; Bahamonde et al. 2021 ) and produces an altogether
o v el formulation of gravity. There exists a particular combination
f scalars in the theory that can produce a teleparallel equi v alent of
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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eneral relativity (TEGR), which is dynamically equi v alent to GR but
ay have different IR completions (Mylova, Said & Saridakis 2023 ).
 natural consequence of this is that both GR and TEGR are identical

t the level of phenomenological predictions. Taking the same

ationale as in f ( 
◦
R ) gravity (De Felice & Tsujikawa 2010 ; Sotiriou

 Faraoni 2010 ; Capozziello & De Laurentis 2011 ), TEGR can be
eneralized to an f ( T ) general class of models (Ferraro & Fiorini
007 , 2008 ; Bengochea & Ferraro 2009 ; Linder 2010 ; Chen et al.
011 ; Farrugia & Levi Said 2016 ; Finch & Said 2018 ; Paliathanasis,
evi Said & Barrow 2018 ; Bahamonde, Flathmann & Pfeifer 2019 ;
ahamonde, Levi Said & Zubair 2020 ; Farrugia, Levi Said & Finch
020 ; Bahamonde et al. 2022 ) where the TEGR Lagrangian is simple
he torsion scalar T . This is an interesting model since it produces
rganically second-order equations of motion and agrees with the
olarization modes of GR despite being fundamentally different. 
f ( T ) cosmology has been probed in various scenarios. At back-

round level, f ( T ) models have probed against se veral dif ferent types
f data showing consistent results with the relatively high value
f the Hubble constant (Briffa et al. 2022 ). Most recently this has
een in work that incorporates the latest pantheon + data set (Briffa
t al. 2020 ; Cai, Khurshudyan & Saridakis 2020 ; Ren et al. 2022 ;
riffa et al. 2023 ). There has also been working that probes the early
niverse using either BBN (Benetti, Capozziello & Lambiase 2020 ),
r constraints from the CMB (Nunes 2018 ; Nunes, Pan & Saridakis
018 ; Kumar, Nunes & Yadav 2023 ) with interesting results related
o the best-fit values of the model parameters compared with both
arly and late time constraints. Also, constraints from primordial
lack holes seem to be consistent with a wide range of observations
Papanikolaou et al. 2023 ) giving more freedom to the possible
osmological models. From foundational physics recent work has
lso been done on non-flat cosmologies (Bahamonde et al. 2023 )
hich may open a way to compare recent proposals in the literature

Di Valentino, Melchiorri & Silk 2019 ) on the topic in � CDM
osmology. Other works in the literature have explored possible
ffects on the fine structure constant (Levi Said et al. 2020 ) which
re consistent with there being no variation. 

In the current work, we are interested in determining constraints
n models of f ( T ) cosmology using f σ 8 ( z) data. This window into
he large-scale structure of the Universe will be a key tool in
nderstanding the viability of new proposals for cosmology. The
opic has been explored for previous data sets in Nesseris et al.
 2013 ) where it was shown that f ( T ) cosmological models are
argely consistent with this probe of large-scale structure. Later in
nagnostopoulos, Basilakos & Saridakis ( 2019 ), these analyses were

ombined with background data sets which gave stricter constraints
n model parameters. Recently, the f σ 8 ( z) data have also been used to
heck for consistency with background data in the context of model-
ndependent approaches to reconstructing modified cosmological

odels (Levi Said et al. 2021 ). We start by briefly introducing the
ackground of TG and its predictions for f σ 8 in Section 2 . We then
iscuss our observational data sets under consideration in Section 3 .
his is then followed by a presentation of our model constraints in
ection 4 , and a comparative analysis in Section 5 . The results are
ummarized and discussed in our conclusion in Section 6 . 

 f (  T )  G R AV I T Y  A N D  SCALAR  

E RTU R BAT I O N S  

G is based on the exchange of curvature with torsion through
he geometric connection, which is realized through the teleparallel
onnection � 

σ
μν . This renders all measures of curvature identically
NRAS 528, 2711–2727 (2024) 
ero, since 
◦

� 

σ
μν is curvature-less and satisfies metricity. While

he regular Le vi–Ci vita objects remain non-vanishing, such as the

egular Riemann tensor 
◦

R 

σ
μνρ �= 0, its torsional analogue will vanish

 

σ
μνρ = 0. This means that a different class of torsional objects
ust be utilized to express the geometric deformation that embodies

ravitation effects from the energy-momentum tensor (see reviews
n Aldrovandi & Pereira 2013 ; Cai et al. 2016 ; Krssak et al. 2019 ;
ahamonde et al. 2021 ). 
Another important aspect of TG is that it can be expressed in terms

f a tetrad field that embodies the gravitational effect of the metric
ensor through 

 μν = e a μe b νηab , ηab = E 

μ
A E 

ν
B g μν , (1) 

here E 

μ
A is the tetrad inverse, and where Latin indices represent

ocal inertial coordinates, while Greek ones denote general space–
ime coordinates. For internal consistency, these tetrads must also
atisfy orthogonality conditions 

 

a 
μE 

μ
B = δa 

b , e a μE 

ν
A = δν

μ . (2) 

he tetrad encompasses the gravitational freedom of the metric, while
he Lorentz invariance freedom can be assigned to the spin connection
 

a 
bμ. The teleparallel connection can then be defined as Cai et al.
 2016 ) and Krssak et al. ( 2019 ) 

 

σ
νμ : = e σa ∂ μe a ν + E 

σ
A ω 

a 
bμe b ν . (3) 

iven a metric, the infinite possible tetrad solutions in equation ( 1 )
re balanced by the spin connection components to retain general
if feomorphism inv ariance of the underlying theory. Together, the
etrad–spin connection pair defines a space–time. 

The tensor structure of TG can be written in terms of the torsion
ensor which is defined as 

 

σ
μν : = −2 � 

σ
[ μν] , (4) 

here square brackets denote an antisymmetric operator which
epresents the translation field strength of TG (Aldrovandi & Pereira
013 ). Taking a suitable choice of contractions of the torsion tensor,
e can write the torsion scalar as Hayashi & Shirafuji ( 1979 ) and
ahamonde, B ̈ohmer & Kr ̌s ̌s ́ak ( 2017 ) 

 : = 

1 

4 
T αμνT 

μν
α + 

1 

2 
T αμνT 

νμ
α − T αμαT 

βμ
β , (5) 

hich is dependent only on the teleparallel connection in an analo-
ous way to the dependence of the Riemann tensor on the Le vi–Ci vita
onnection. 

Naturally, the teleparallel Ricci scalar will vanish, namely R = 0,
hile the teleparallel-based Ricci scalar turns out to be equal to the

orsion scalar (up to a total divergence term), that is 

 = 

◦
R + T − B = 0 , (6) 

here B = (2 /e ) ∂ μ( e T μ) is a boundary term and e = det 
(
e a μ
) =

 −g is the tetrad determinant. This relation ensures that the
quations of motion of the Einstein–Hilbert action will be the same
s those from the so-called TEGR which is based on the linear form
f the torsion scalar. TEGR is dynamically equi v alent to GR, but
ay differ in its UV completion. The TEGR Lagrangian can readily

e generalized using the same reasoning as f ( 
◦
R ) gravity (De Felice

 Tsujikawa 2010 ; Capozziello & De Laurentis 2011 ), except that
e now consider an arbitrary function of the torsion scalar through

Ferraro & Fiorini 2007 , 2008 ; Bengochea & Ferraro 2009 ; Linder
010 ; Chen et al. 2011 ; Capozziello, De Falco & Ferrara 2022 ; Calz ́a
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 Sebastiani 2023 ) 

 F( T ) = 

1 

2 κ2 

∫ 
d 4 x ef ( T ) + 

∫ 
d 4 x eL m 

= 

1 

2 κ2 

∫ 
d 4 x e ( −T + F ( T ) ) + 

∫ 
d 4 x eL m 

, (7) 

here κ2 = 8 πG , L m 

is the matter Lagrangian, and e = det 
(
e a μ
) =

 −g is the tetrad determinant. 

The most impactful practical difference between f ( 
◦
R ) and F ( T )

ravity theories is that the boundary term is no longer a total

ivergence term for f ( 
◦
R ) gravity and so leads to fourth order equa-

ions of motion, while F ( T ) gravity retains generally second-order 
quations of motion. This may be advantageous both for numerical 
easons as well as theoretical moti v ations when considering certain 
ypes of ghosts in the theory. By taking a variation with respect to
he tetrad field, the field equations follow 

 

μ
ρ : = e −1 ∂ ν

(
eE 

ρ
A S 

μν
ρ

)
( −1 + F T ) − E 

λ
A T 

ρ
νλS 

νμ
ρ ( −1 + F T ) 

+ 

1 

4 
E 

μ
A ( −T + F ( T ) ) + E 

ρ
A S 

μν
ρ ∂ ν ( T ) F T T 

+ E 

λ
B ω 

b 
aνS 

νμ
λ ( −1 + F T ) = κ2 E 

ρ
A � 

μ
ρ , (8) 

here subscripts denote deri v ati ves ( F T = ∂ F/ ∂ T and F T T =
 

2 F/ ∂ T 2 ), and � 

ν
ρ = δL m 

/δe a μ is the regular energy-momentum
ensor. This limits to TEGR as F ( T ) → 0. TG contains two dynami-
al variables, namely, the tetrad and spin connection which both have 
ssociated variations of the F ( T ) action. It turns out that they can
oth be expressed in terms of the above tetrad variation as 

 ( μν) = κ2 � μν , and W [ μν] = 0 , (9) 

here the tetrad and spin connection field equations are, respectively, 
he symmetric and antisymmetric operators acted upon W μν (Baha- 

onde et al. 2021 ). Indeed, a particular choice of tetrad components
xists in which the spin connection components vanish, called the 
eitzenb ̈ock gauge. Here, the spin connection equations on motion 

re identically satisfied. More generally, the six spin connection field 
quations express the Lorentz invariance freedom (three translations 
nd three rotations), while the 10 tetrad field equations manifest the 
ravitational equations of motion. 
We can now consider a flat homogeneous and isotropic cosmology 

hrough the regular flat Friedmann–Lema ̂ ıtre–Robertson–Walker 
FLRW) metric 

 s 2 = −d t 2 + a 2 ( t) 
(
d x 2 + d y 2 + d z 2 

)
, (10) 

rom which we can identify the Hubble parameter as H = ȧ /a, and
here o v erdots refer to deri v ati ves with respect to cosmic time. It

an be shown that the tetrad (Tamanini & Boehmer 2012 ; Kr ̌s ̌s ́ak &
aridakis 2016 ) 

 

a 
μ = diag ( 1 , a( t) , a( t) , a( t) ) , (11) 

s compatible with the Weitzenb ̈ock gauge and so the spin connection
omponents can be set to zero (Hohmann et al. 2019 ). By considering
he tetrad field equations ( 9 ), the modified Friedmann equations can
e written as 

 

2 − T 

3 
F T + 

F 

6 
= 

κ2 

3 ρ , (12) 

˙
 ( 1 − F T − 2 T F T T ) = − κ2 

2 ( ρ + p ) , (13) 

here ρ and p denote the energy density and pressure of the matter
omponents, respectively. 

TG can be used to interpret large-scale structure data by consider- 
ng scalar perturbations of the flat FLRW metric. We probe this data
hrough the growth rate measurements of f σ8 ( z) from RSD. This is
xpressed by the logarithm deri v ati ve of the matter perturbation δ( z)
ith respect to the logarithm of the cosmic scale factor, namely 

 ( z ) = 

d ln δ( z ) 

d ln a 
= −(1 + z ) 

d ln δ( z ) 

d z 
= −(1 + z ) 

δ′ ( z ) 
δ( z ) 

, (14) 

here a prime denotes a deri v ati ve with respect to redshift z = a −1 

1. On the other hand, the linear theory root-mean-square mass 
uctuation within a sphere of radius 8 h −1 Mpc can be expressed as 

8 ( z) = σ8 , 0 

δ( z) 

δ0 

, (15) 

here a 0 – subscript denotes the respective value at z = 0. Thus, the
rowth rate can be generally written as 

 σ8 ( z) = −(1 + z) 
σ8 , 0 

δ0 

δ′ ( z) , (16) 

hich directly leads to the normalized form of δ′ ( z) through 

δ′ ( z) 

δ0 

= − 1 

σ8 , 0 

f σ8 ( z) 

(1 + z) 
. (17) 

y integrating this expression, the normalized redshift evolution of 
he matter perturbation can be written as 

δ( z) 

δ0 

= 1 − 1 

σ8 , 0 

∫ z 

0 

f σ8 ( ̃ z ) 

(1 + ̃  z ) 
d ̃ z , (18) 

hile equation ( 17 ) also gives the second-order derivative 

δ′′ ( z) 

δ0 

= − 1 

σ8 , 0 

[
(1 + z ) f σ ′ 

8 ( z ) − f σ8 ( z) 

(1 + z) 2 

]
. (19) 

he result is the redshift evolution of f can now be determined 

 

′ ( z) = −
(

δ′ ( z) 

δ0 

) (
δ0 

δ( z) 

)

− (1 + z ) 

[ (
δ′′ ( z ) 
δ0 

)(
δ0 

δ( z ) 

)
−

(
δ′ ( z ) 
δ0 

)2 ( δ0 

δ( z ) 

)2 
] 

. (20) 

In the subhorizon limit, the linear matter perturbations equa- 
ion can then be written as 

¨ + 2 H ̇δ = 4 πG eff ρ δ , (21) 

here G eff is the ef fecti ve Ne wton’s constant which is in general a
unction of z and cosmic wav e v ector k (Amendola & Tsujikawa
010 ; Hern ́andez 2017 ). Ho we ver for this limit and the data sets
nder consideration, the G eff can be taken to be independent of k . In
his setting, equation ( 22 ) takes the form 

′′ ( z) + 

(
H 

′ ( z) 

H ( z) 
− 1 

1 + z 

)
δ′ ( z) = 

3 

2 

G eff ( z) 

G N 

(
H 0 

H ( z) 

)2 

�m, 0 (1 + z) δ( z) , (22) 

here �m, 0 denotes the current matter fractional density, H 0 is 
ubble ’s constant, and G N is Newton’s gravitational constant. We 

an also express this relation in terms of the growth rate f , giving 

f 2 ( z) + 

[
2 − (1 + z) 

H 

′ ( z) 

H ( z) 

]
f ( z) − (1 + z) f ′ ( z) 

= 

3 

2 

G eff ( z) 

G N 

(
H 0 

H ( z) 

)2 

�m, 0 (1 + z) 3 . (23) 

n the case of F ( T ) gravity, the linear matter perturbation evolution
quation ( 18 ) is expressed through Golovnev & Koivisto ( 2018 ),
unes ( 2018 ), Levi Said et al. ( 2020 ), and Sahlu et al. ( 2020 ) 

 eff ( z) = 

G N 

1 + F T ( z) 
. (24) 

ence, the linear matter perturbation equation is sensitive to F ( T )
ravity and so large-scale structure data sets can be used to probe
bservational constraints on potential models. 
MNRAS 528, 2711–2727 (2024) 
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In order to utilize equations like equations ( 22 ) and ( 23 ), we need
o determine the value of H 

′ ( z), obtained from the second Friedmann
quation ( 13 ), via 

 

′ ( z) = 

κ2 ( p + ρ) 

2 H (1 + z) ( 1 − F T − 2 T F T T ) 
. (25) 

 OBSERVA  T I O NA L  DA  TA  

n this section, we will provide an o v ervie w of ho w we utilized
bservational data in our research to evaluate the most fa v ourable
 ( T ) models from the literature. We include a variety of observational
ata, such as the pantheon + sample of SNIa data, baryon acoustic
scillations (BAO) data, cosmic chronometers (CC) data, and growth
ate (redshift space distortion, RSD) data. To analyse the data, we
mplemented an MCMC (Monte Carlo Markov Chain) approach
sing the EMCEE package publicly available at F oreman-Macke y et al.
 2013 ). This enabled us to constrain the model and cosmological
arameters and thus, investigate the posterior of the parameter
pace. This yielded one-dimensional distributions that illustrate the
arameter’s posterior distribution, and two-dimensional distributions
hat demonstrate the covariance between two different parameters.
hese distributions were complemented by the 1 σ and 2 σ confidence

evels as will be shown in Section 4 . 

.1 Cosmic chronometers 

C offer a useful tool to directly constrain the Hubble rate H ( z) at
ifferent redshifts. To this end, we adopt 31 data points as compiled
rom Jimenez et al. ( 2003 ), Simon, Verde & Jimenez ( 2005 ), Stern
t al. ( 2010 ), Moresco et al. ( 2012 , 2016 ), Zhang et al. ( 2014 ), and
oresco ( 2015 ). The CC method involves using spectroscopic dating

echniques on passively evolving galaxies to estimate the age differ-
nce between two galaxies at different redshifts. By measuring this
ge difference, �z/ � t can be inferred from observations, allowing
or the computation of H ( z) = −(1 + z ) −1 �z / � t . Thus, CC data were
ound to be particularly reliable because they are independent of any
osmological model, a v oid an y comple x inte gration, and rely on the
bsolute age determination of galaxies (Jimenez & Loeb 2002 ). 

In our MCMC analysis, we used χ2 
CC to e v aluate the agreement be-

ween the theoretical Hubble parameter values H ( z i , � ), with model
arameters � , and the observational Hubble data values H obs ( z i ),
ith an observational error of σ H ( z i ). The χ2 

CC was calculated using 

2 
CC = 

39 ∑ 

i= 1 

( H ( z i , � ) − H obs ( z i ) ) 
2 

σ 2 
H 

( z i ) 
. (26) 

.2 Type Ia superno v ae –pantheon + data set 

he SNIa data set used in this study is the pantheon +
PN 

+ & SH0ES) sample (Scolnic et al. 2022 ), which is one of
he largest compilations of SNIa data and contains 1701 SNIa

easurements spanning a redshift range of 0.0–2.26. The pantheon +
nalysis (Brout et al. 2022 ), incorporates SH0ES Cepheid host
istance anchors, Riess et al. ( 2019 ) in the likelihood, ef fecti vely
ddressing the de generac y between parameters M and H 0 in SNIa
nalysis. Following this approach, we also adopt the label ‘PN + &
H0ES’ to signify our incorporation of the same methodology. 
SNIa can be used to determine the expansion rate of the Universe,
 ( z), by measuring the observed apparent magnitude, m , and the

bsolute magnitude, M , through the equation: 

( z i , � ) = m − M = 5 log 10 [ D L ( z i , � )] + 25 , (27) 
NRAS 528, 2711–2727 (2024) 
here � represents the set of cosmological parameters that describe
he Universe, z i is the redshift of the SNIa measurement, and D L ( z i ,
 ) is the luminosity distance given by 

 L ( z i , � ) = c(1 + z i ) 
∫ z i 

0 

d z ′ 

H ( z ′ , � ) 
, (28) 

here c is the speed of light. To calibrate the observed apparent
agnitude of each SNIa, a fiducial absolute magnitude M is used,

s shown in equation ( 27 ). In our MCMC analyses, we treat M as a
uisance parameter. 
To constrain the cosmological parameters, the minimum χ2 is

alculated through Conley et al. ( 2011 ), 

2 
SN = ( �μ( z i ) , � )) T C 

−1 
SN ( �μ( z i ) , � )) , (29) 

here ( �μ( z i ), � )) = ( μ( z i ), � ) − μ( z i ) obs and C SN is the corre-
ponding covariance matrix which accounts for the statistical and
ystematic uncertainties. 

.3 Baryon acoustic oscillations 

n this study, we use a variety of observational missions to constrain
osmological parameters. These data sets include measurements
rom the 6dF Galaxy Surv e y at an ef fecti ve redshift of z eff = 0.106
Beutler et al. 2011 ), the Baryon Oscillation Spectroscopic Surv e y
BOSS) Data Release 11 (DR11) quasar Lyman-alpha measurements
t an ef fecti ve redshift of z eff = 2.4 (du Mas des Bourboux et al. 2017 ),
nd the Sloan Digital Sk y Surv e y (SDSS) Main Galaxy sample at an
f fecti ve redshift of z eff = 0.15 (Ross et al. 2015 ). Additionally, mea-
urements of the Hubble parameter and the corresponding comoving
ngular diameter at z eff = 0.38, 0.51 were obtained from the third gen-
ration of the SDSS mission (SDSS BOSS DR12, Alam et al. 2021 ).
e also include H ( z) measurements and angular diameter distances

t z eff = 0.98, 1.23, 1.52, and 1.94 from the fourth generation of the
DSS mission (SDSS-IV BOSS DR12, Zhao et al. 2019 ). 
As has been mentioned these different data sets report different

bservational quantities that are related to one another. For the
AO data sets under consideration, we compute the Hubble distance
 H ( z) given by D H 

( z) = 

c 
H ( z) . We also consider the angular diameter

istance D A ( z) defined as 

 A ( z ) = 

c 

1 + z 

∫ z 

0 

d z ′ 

H ( z ′ ) 
, (30) 

rom which two other quantities can be derived. The first is the
omoving angular diameter distance D M 

given trough D M 

= (1 +
 ) D A ( z ) whilst the second one is the v olume a verage distance given
y 

 V ( z) = (1 + z) 2 
[
D A ( z) 2 

cz 

H ( z) 

] 1 
3 

. (31) 

Using the BAO results, we calculate the
orresponding combination of results G( z i ) =
 V ( z i ) /r s ( z d ) , r s ( z d ) /D V ( z i ) , D H 

( z i ) , D M 

( z i )( r s, fid ( z d ) /r s ( z d )) , 
 ( z i )( r s ( z d ) /r s, fid ( z d )) , D A ( z i )( r s, fid ( z d ) /r s ( z d )). In this case, we

equire the comoving sound horizon at the end of the baryon
rag epoch at z d ∼ 1059.94 (Aghanim et al. 2020 ) which can be
alculated using 

 s ( z) = 

∫ ∞ 

z 

c s ( ̃ z ) 

H ( ̃ z ) 
d z 

= 

1 √ 

3 

∫ 1 / (1 + z) 

0 

d a 

a 2 H ( a) 
√ 

1 + 

[
3 �b, 0 / (4 �γ, 0 ) 

]
a 

, (32) 
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here we have adopted a fiducial value of r s , fid ( z d ) = 147.78 Mpc
Aghanim et al. 2020 ) with an assumption of �b , 0 = 0.02242 
Aghanim et al. 2020 ) and T 0 = 2.7255 K (Fixsen 2009 ) Therefore,
he corresponding χ2 is calculated through 

2 
BAO ( � ) = �G ( z i , � ) T C 

−1 
BAO �G ( z i , � ) , (33) 

here � G ( z i , � ) = G ( z i , � ) − G obs ( z i )and C BAO is the corresponding
ovariance matrix for the BAO observations. The total χ2 

BAO is 
herefore the sum of all the individual χ2 corresponding to each 
ata set. 

.4 Growth rate data (RSD) 

he final data compilation we used in this work is the growth rate
ata compilation presented in table II of appendix A in Alestas, 
azantzidis & Nesseris 2022 ). This data set consists of measurements 
f the growth of cosmic structure and is commonly referred to as
SD data, due to a phenomenon that occurs during observations 
t both large and small scales. The peculiar velocity of galaxies 
auses high-density regions of the Universe to appear elongated 
n the line-of-sight direction at small scales and flattened at large 
cales. As a result, maps of galaxies where distances are measured 
rom spectroscopic redshifts exhibit anisotropic deviations from the 
rue galaxy distribution. Therefore, RSD measurements can provide 
aluable insights into the large-scale structure of the Universe, which 
s shaped by the underlying theory of gravity go v erning the evolution
nd formation of cosmic structure. Consequently, RSD presents a 
romising approach to testing modified theories of gravity. 
The growth rate f ( z), can be estimated using RSD cosmological

robes as a way to constrain cosmological models (Gupta, Sen & 

en 2012 ; Gonzalez, Alcaniz & Carvalho 2016 ; Lambiase et al.
019 ). Ho we ver, instead of reporting the growth rate directly,
arge Scale Structure (LSS) surv e ys typically report the density- 
eighted growth rate, f σ 8 ≡ f ( z ) σ 8 ( z ) which is bias-independent

Kazantzidis & Perivolaropoulos 2018 ). Furthermore, we should 
cknowledge the Alcock–Paczynski effect, which emerges from the 
equirement of assuming a cosmological model for the conversion 
f redshifts into distances. Ho we ver, recent studies, including those 
utlined in Levi Said et al. ( 2021 ), have indicated that the influence
f this effect is minimal and thus has been disregarded in our
nalysis. 

Therefore, while the theoretical prediction can be made 
rom equation ( 16 ), the aforementioned RSD data can 
e used to constrain cosmological parameters, in par- 
icular σ 8,0 such the corresponding χ2 

min can be given 
s 

2 
RSD = �Q ( z i , � ) T C 

−1 
RSD �Q ( z i , � ) , (34) 

here Q ( z i , � ) = ( f σ 8 ( z i , � ) theo − f σ 8 obs ( z i )) and C 

−1 
RSD is the inverse

ovariance matrix which is assumed to be a diagonal matrix except 
or the WiggleZ subset data which can be found in Blake et al. ( 2012 ).
herefore, the total covariance matrix can be written as 

 RSD = 

⎛ 

⎝ 

σ 2 
1 0 0 . . . 

0 C WiggleZ 0 . . . 

0 0 . . . σ 2 
N 

⎞ 

⎠ . (35) 

To compute Q ( z i , � ), we start by obtaining the theoretical values
f f σ 8 ( z i , � ) theo using equation ( 22 ) along with equation ( 16 ). On the
ther hand, f σ 8 ( z i , � ) obs is extracted from the compiled observational
ata as described earlier. 
 RESULTS  

n this section, we delve into the outcomes yielded by various
ombinations of data sets. Each subsection is dedicated to distinct 
 ( T ) models, selected based on their potential to accurately reflect our
osmological history, as demonstrated in previous studies (Nunes et 
l. 2016 ; Briffa et al. 2022 , 2023 ; dos Santos, Gonzalez & Silva
022 ; Sando val-Orozco et al. 2023 ). F or ev ery model, we showcase
he 1 σ and 2 σ uncertainty ranges. These results are accompanied by a
able showing the final results that include the Hubble constant ( H 0 )
xpressed in kms −1 Mpc −1 , the matter density parameter �m ,0 and 
8,0 along with other model parameters. This will give us an insight

nto how the different models and data set combinations affect the
 0 tension and S 8,0 cosmological tensions. 

.1 Power-law model 

he power-law model, initially proposed by Bengochea and Ferraro 
n their work (Bengochea & Ferraro 2009 ), was adopted due to its
apability to replicate the observed late-universe acceleration without 
he need for dark energy. Henceforth, this model will be referred to
s f 1 CDM and is specified by 

 1 ( T ) = α1 ( −T ) p 1 . (36) 

his power-law form is characterized by two constants, namely α1 

nd p 1 which is introduced as a modification to F ( T ) function. Being
 constant α1 can be e v aluated at any time and therefore, it can be
alculated at the current time by using the Friedmann equation ( 12 ),
hich results in 

1 = (6 H 

2 
0 ) 

1 −p 1 
1 − �m, 0 − �r, 0 

1 − 2 p 1 
, (37) 

here the density parameter for matter and radiation is represented 
y �m ,0 and �r ,0 respectively . Consequently , by utilizing equation 
 37 ), the f 1 CDM model introduces only one new parameter, namely
 1 , thereby enhancing its elegance and simplicity. In combination 
ith the parameters H 0 , �m ,0 , and σ 8,0 , we determine the model
arameter p 1 through MCMC analyses performed on observational 
ata. 
By substituting the abo v e equation into the Friedmann equation

 12 ), we derive the resulting Friedmann equation for this model 

 

2 ( z) = �m, 0 (1 + z) 3 + �r, 0 (1 + z) 4 

+ (1 − �m, 0 − �r, 0 ) E 

2 p 1 ( z) , (38) 

here E( z) : = 

H ( z) 
H 0 

. It is worth noting that this equation cannot be
olved analytically, so we employ numerical methods to calculate 
 ( z) at each redshift point. Consequently, using MCMC analysis, we
olve for each redshift point where observational data exists to obtain
arameter values. Specifically, we extract values for H 0 , �m ,0 , and
 1 . Additionally, when RSD data are included, we can obtain values
or σ 8,0 allowing us to assess the model’s compatibility with observa- 
ional data and refine our understanding of the Universe’s properties. 

hen examining equation ( 36 ), it becomes apparent that the � CDM
imit can be attained when p 1 = 0. On the other hand, when p 1 = 1,
he model converges to the GR limit. In this scenario, an additional
omponent in the Friedmann equation emerges, introducing a re- 
caled gravitational constant term within the density parameters. 

The contour plots together with their posteriors for the f 1 CDM
odel are shown in Fig. 1 . In this and subsequent models, the blue

nd green contours represent the CC + BAO and CC + PN 

+ + BAO
ata sets, respectively. The remaining colours correspond to various 
ata sets that incorporate the RSD data. On the other hand, the
MNRAS 528, 2711–2727 (2024) 
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Figure 1. Confidence contours and posterior distributions for the f 1 CDM 

model (power-law model) parameters, including H 0 , �m ,0 , and p 1 . In cases 
where the RSD data are incorporated (purple, red, and yellow contours), the 
σ 8,0 parameter is also displayed. 
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recise values for the parameters are tabulated in Table 1 . Notably,
his table highlights that the highest H 0 value is obtained when
ombining the PN 

+ & SH0ES data with the RSD data is used. This
esult aligns with expectations, as the PN 

+ & SH0ES data converges
ith values reported by the SH0ES team, which reports a value of
 0 = 73 . 30 ± 1 . 04 km s −1 Mpc −1 (Scolnic et al. 2022 ). Conversely,

he lo west v alue for the H 0 parameter is derived from the CC + BAO
ata sets, primarily influenced by the BAO data, which relates to
onditions in the early Universe. 

It is noteworthy to notice the relationship between the Hubble
arameter ( H 0 ) and the matter density parameter ( �m ,0 ). As H 0 

ncreases, indicating a faster expansion rate of the Universe, the
atter density decreases. This effect is particularly pronounced in

he PN 

+ & SH0ES + RSD combination, where the Universe’s energy
redominantly manifests as an ef fecti ve form of dark energy, driven
y the ele v ated H 0 parameter. The presence of this phenomenon is
urther confirmed by the apparent anticorrelation depicted in Fig. 1 . 

As noted, the � CDM limit is reached for when p 1 = 0. Indeed, the
esultant values for p 1 are in proximity of 0, and this limit falls within
he 1 σ range. Furthermore, it can be observed that the inclusion of the
SD data leads to tighter constraints on the p 1 parameter. Ho we ver,

his effect is not e xclusiv e to the p 1 parameter alone; it also extends
o other parameters, as evident from the contour plots in Fig. 1 . 
NRAS 528, 2711–2727 (2024) 

able 1. Exact results for f 1 model that include the parameters H 0 , �m ,0 , and p 1 . T
hat include RSD or PN 

+ & SH0ES, respectively otherwise, they are left empty. 

ata sets H 0 [km s −1 Mpc −1 ] �m ,0 

C + BAO 68 . 1 + 1 . 2 −1 . 4 0 . 314 + 0 . 0−0 . 0

C + BAO + RSD 69.17 ± 0.81 0 . 287 + 0 . 0−0 . 0

N 

+ & SH0ES + RSD 73.7 ± 1.0 0 . 290 + 0 . 0−0 . 0

C + PN 

+ & SH0ES + BAO 69 . 45 + 0 . 69 
−0 . 58 0 . 316 + 0 . 0−0 . 0

C + PN 

+ & SH0ES + BAO + RSD 69.90 ± 0.58 0 . 289 + 0 . 0−0 . 0
Incorporating the RSD data has been instrumental in constraining
he amplitude of mass fluctuations, σ 8,0 . Upon initial examination
f Table 1 , it appears that there is a correlation between the H 0 

arameter and σ 8,0 , where a higher H 0 tends to correspond to a
lightly higher σ 8,0 . Ho we ver, the contour plots suggest a more
omple x and de generate relationship between these parameters. It
s worth noting that the RSD data appears to have more Gaussian
rrors when compared to the other data sets. The influence of these
rowth structure data is encapsulated by the parameter G eff , which,
n this model, is expressed as 

 eff = 

G N 

1 − α1 p 1 ( −T ) p 1 −1 
, (39) 

here the specific values for the parameters are extracted from the
ele v ant table, and as a result, we observe that G eff approximates G N 

nder these conditions. 
Additionally, the constraint on these parameters has enabled us

o explore a tension quantified in terms of S 8 , 0 ≡ σ8 , 0 

√ 

�m, 0 / 0 . 3
Anchordoqui et al. 2021 ; Beltr ́an Jim ́enez et al. 2021 ; Benisty 2021 ;
rieden, Gil-Mar ́ın & Verde 2023 ; Clark et al. 2023 ; Preston, Amon
 Efstathiou 2023 ; Rubira, Mazoun & Garny 2023 ). The results and

he posteriors of these parameters can be found in Table 2 and Fig. 2 ,
espectively. Reflecting the values obtained for σ 8,0 , the highest
alue observed for S 8,0 was attained for the PN 

+ & SH0ES + RSD
ombination, measuring at S 8 , 0 = 0 . 801 + 0 . 052 

−0 . 046 . Ho we ver, it is worth
oting that we also provide values for the RSD data set alone to
solate the impact of RSD data on this parameter, where in this case,
he value for the RSD data set reaches a minimum. Furthermore, it is
vident that across all data sets, the constraints for such parameters
re notably tight. We also examine the relationship between the S 8,0 

arameter and the model parameter p 1 , which is depicted in Fig. A1
ound in Appendix A . A significant anticorrelation exists between
hese two parameters. In return, this might suggest that changes in the
ower-la w e xponent ( p 1 ) might hav e a direct impact on the amplitude
f mass fluctuations ( S 8,0 ). 

.2 Linder model 

he second model under consideration is the Linder ( 2009 ) model,
 xplicitly dev eloped to e xplain the Univ erse’s late-time acceleration
ithout invoking the presence of dark energy. This model introduces

n exponential component that incorporates the torsion scalar,
enoted as T , and is expressed as follows 

 2 = α2 T 0 

(
1 − Exp 

[ 
−p 2 

√ 

T /T 0 

] )
, (40) 

here both α2 and p 2 are constants, while T 0 = T | t= t 0 = −6 H 

2 
0 

epresents the torsion scalar at the current epoch. Similar to
he previous model, if α2 is a constant, it can be immediately
etermined from the Friedman equation at the present time,
he σ 8,0 parameter and the nuisance parameter M , are provided for data sets 

p 1 σ 8,0 M 

34 
33 −0 . 09 + 0 . 24 

−0 . 30 – –
16 
20 −0 . 09 + 0 . 17 

−0 . 20 0.785 ± 0.035 –
19 
18 0 . 076 + 0 . 075 

−0 . 102 0 . 817 + 0 . 037 
−0 . 035 −19 . 252 + 0 . 029 

−0 . 030 
28 
29 −0 . 06 + 0 . 19 

−0 . 22 – −19.375 ± 0.017 
16 
18 0 . 014 + 0 . 091 

−0 . 125 0 . 810 + 0 . 036 
−0 . 033 −19 . 367 + 0 . 016 

−0 . 017 
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Table 2. Exact S 8,0 values corresponding to various data sets for the f 1 CDM 

model. 

Data sets S 8,0 

Figure 2. Posterior distribution for the S 8,0 parameter in the f 1 CDM model. 
Le gend: gre y denotes the RSD data, purple corresponds to CC + BAO + RSD 

data, red represents the PN 

+ & SH0ES + RSD data set, while orange indicates 
CC + PN 

+ & SH0ES + BAO + RSD data. 
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model (Linder model) parameters, including H 0 , �m ,0 , and 1 
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. In cases 
where the RSD data are incorporated (purple, red, and yellow contours), the 
σ 8,0 parameter is also displayed. 
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ielding 

2 = 

1 − �m, 0 − �r, 0 

(1 + p 2 ) e −p 2 − 1 
. (41) 

Therefore, in the Linder model, hereafter referred to as f 2 CDM, the
nly new model parameter is denoted as p 2 , and it will be constrained
hrough the MCMC analysis. Consequently, equation ( 41 ) allows us
o express the Friedmann equation in terms of H 0 , �m ,0 , and p 2 ,
esulting in the following form 

 

2 ( z ) = �m, 0 ( 1 + z ) 3 + �r 0 ( 1 + z ) 4 + 

1 − �m, 0 − �r 0 

( p 2 + 1) e −p 2 − 1 

× [
( 1 + p 2 E( z) ) Exp [ −p 2 E( z) ] − 1 

]
. (42) 

ontrary to the f 1 CDM model, this model can be reduced to the
 CDM when p 2 → ∞ . Ho we ver, for numerical stability, the analysis
able 3. Exact results for f 2 model that include the parameters H 0 , �m ,0 , and 1 
p 2 

. T

hat include RSD or PN 

+ & SH0ES, respectively otherwise, they are left empty. 

ata Sets H 0 [km s −1 Mpc −1 ] �m ,0 

C + BAO 67 . 2 + 1 . 2 −1 . 6 0 . 302 + 0 . 0−0 . 0

C + BAO + RSD 66 . 5 + 2 . 2 −1 . 3 0 . 286 + 0 . 0−0 . 0

N 

+ & SH0ES + RSD 73.2 ± 1.0 0.287 ± 0.

C + PN 

+ & SH0ES + BAO 69 . 35 + 0 . 61 
−0 . 63 0 . 299 + 0 . 0−0 . 0

C + PN 

+ & SH0ES + BAO + RSD 69 . 38 + 0 . 67 
−0 . 68 0.282 ± 0.
s conducted with the reciprocal of p 2 , in such a way that the limit
f fecti vely becomes 1/ p 2 → 0 + . 

The posterior distributions and confidence levels of the con- 
trained parameters are depicted in Fig. 3 . Similar to the f 1 CDM
odel, the highest value for the H 0 parameter is obtained when

ombining PN 

+ + RSD data as indicated by the precise values in
able 3 . Ho we ver, in this case, the lo west H 0 v alue, specifically
 0 = 66 . 5 + 2 . 2 

−1 . 3 km s −1 Mpc −1 , is obtained for the CC + BAO + RSD
ombination. Overall, in this scenario, the parameter values trend 
lightly lower compared to the f 1 CDM model. 

Regarding the �m ,0 parameter, we observe a similar trend to that 
f the H 0 parameter, with lo wer v alues being reported. Ho we ver,
he consistent pattern persists, where data sets that include RSD 

 alues yield lo wer v alues for �m ,0 compared to their counter-
arts that do not incorporate RSD data. The anticorrelation be- 
ween the H 0 parameter and the �m ,0 parameter is still visible. 
o we ver, in comparison to the f 1 CDM model, the anticorrelation
etween �m ,0 and the model parameter is not as pronounced, 
esulting in a higher degree of de generac y between these two
arameters. 
The 1/ p 2 parameter values obtained are slightly higher than those

n the f 1 CDM model. Additionally, in contrast to the previous model,
MNRAS 528, 2711–2727 (2024) 

he σ 8,0 parameter and the nuisance parameter M , are provided for data sets 

1 
p 2 

σ 8,0 M 

35 
30 0 . 00 + 0 . 37 

−0 . 00 – –
16 
15 0 . 39 + 0 . 21 

−0 . 22 0 . 784 + 0 . 038 
−0 . 032 –

013 0 . 359 + 0 . 077 
−0 . 071 0 . 770 + 0 . 042 

−0 . 039 −19 . 26 + 0 . 33 
−0 . 31 

17 
21 0 . 167 + 0 . 080 

−0 . 154 – −19 . 40 + 0 . 21 
−0 . 16 

011 0 . 275 + 0 . 083 
−0 . 096 0.793 ± 0.035 −19 . 37 + 0 . 31 

−0 . 30 

4
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Table 4. Exact S 8,0 values corresponding to various data sets for the f 2 CDM 

model. 

Data sets S 8,0 

Figure 4. Posterior distribution for the S 8,0 parameter in the f 2 CDM model. 
Le gend: gre y denotes the RSD data, purple corresponds to CC + BAO + RSD 

data, red represents the PN 

+ & SH0ES + RSD data set, while orange indicates 
CC + PN 

+ & SH0ES + BAO + RSD data. 
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he � CDM limit does not fall within the 1 σ region of the � CDM,
ndicating a slight deviation from the � CDM model. 

Furthermore, the parameter σ 8,0 continues to exhibit the same
rend observed previously, with lower values consistently reported.
otably, we observe a correlation between this parameter and �m ,0 

cross all data sets. Ho we v er, the de generac y between σ 8,0 and H 0 

emains valid in this model. Similar trend to previous model is also
een with regards G eff , where G eff ≈ G N where 

 eff = 

G N 

1 + 

1 
2 α2 p 2 

√ 

T 0 
T 

Exp 
[ 
−p 2 

√ 

T 
T 0 

] . (43) 

In the cases where RSD is included, we once again calculate the
uantity S 8,0 , and we obtain slightly different results compared to
he previous model as shown in Table 4 and Fig. 4 . Similar results
re obtained for the CC + BAO + RSD data sets, but we observe a
o wer v alue for the PN 

+ & SH0ES + RSD combination. Conversely,
e obtain higher values for the RSD data set on its own and for
C + PN 

+ & SH0ES + BAO + RSD, with the maximum value
eing achieved for the former data set, whereas previously it had
xhibited the minimum value. Lastly, we again check the correlation
etween the parameters p and S 8,0 where the de generac y in the RSD
ata persists, ho we ver, when the PN 

+ & SH0ES data are combined
ith the RSD data, we now notice an anticorrelation that was not
re viously e vident. A visual representation of these findings can be
ound in Appendix A , specifically in Fig. A1 . 
NRAS 528, 2711–2727 (2024) 
.3 Exponential model 

he next model under consideration in this analysis is the exponential
odel, hereafter f 3 CDM, which draws inspiration from previous

orks on f ( 
◦
R ) (Linder 2009 ). In fact, a variant of the Linder model

s proposed in Nesseris et al. ( 2013 ), where the square root in the
xponential form is no longer present. In this case, F 3 is expressed as
n exponential function with two model constants, α3 and p 3 , along
ith the current torsion scalar T 0 and the variable T , such that 

 3 = α3 T 0 ( 1 − Exp [ −p 3 T /T 0 ] ) . (44) 

By e v aluating the Friedmann equation at the present time, we can
etermine the value of the constant α3 , which is calculated as 

3 = 

1 − �m, 0 − �r, 0 

(1 + 2 p 3 ) e −p 3 − 1 
. (45) 

Therefore, by substituting equation ( 45 ) into the modified Fried-
ann equation ( 12 ), we can derive the Friedmann equation for this
odel, which can be solved numerically 

 

2 ( z ) = �m, 0 ( 1 + z ) 3 + �r 0 ( 1 + z ) 4 + 

1 − �m, 0 − �r 0 

(1 + 2 p 3 ) e −p 3 − 1 

× [(
1 + 2 p 3 E 

2 ( z) 
)

Exp 
[−p 3 E 

2 ( z) 
] − 1 

]
. (46) 

This model exhibits behaviour similar to the Linder model, where
he � CDM limit is approached as p 3 → ∞ . Therefore, as previously
iscussed, we perform the analyses using 1/ p 3 to ensure numerical
tability, as this approach aligns with the previous model. In this case
he G eff is defined as 

 eff = 

G N 

1 + α3 p 3 Exp 
[ 
−p 3 

T 
T 0 

] , (47) 

here this model exhibits a similar trend to the previous ones. 
The confidence levels and the posteriors are found in Fig. 5 , whilst

he constrained values are found in Table 5 . Removing the square root
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Table 5. Exact results for f 3 model that include the parameters H 0 , �m ,0 , and 1 
p 3 

. The σ 8,0 parameter and the nuisance parameter M , are provided for data sets 

that include RSD or PN 

+ & SH0ES, respectively otherwise, they are left empty. 

Data Sets H 0 [km s −1 Mpc −1 ] �m ,0 
1 
p 3 

σ 8,0 M 

CC + BAO 67 . 5 + 1 . 7 −2 . 3 0 . 311 + 0 . 039 
−0 . 034 0 . 058 + 0 . 182 

−0 . 056 – –

CC + BAO + RSD 68 . 6 + 1 . 3 −1 . 9 0 . 276 + 0 . 016 
−0 . 015 0 . 026 + 0 . 214 

−0 . 025 0 . 798 + 0 . 040 
−0 . 036 –

PN 

+ & SH0ES + RSD 73 . 2 + 1 . 0 −1 . 1 0 . 280 + 0 . 014 
−0 . 015 0 . 232 + 0 . 027 

−0 . 031 0 . 793 + 0 . 038 
−0 . 039 −19.25 ± 0.11 

CC + PN 

+ & SH0ES + BAO 69 . 34 + 0 . 65 
−0 . 64 0 . 300 + 0 . 017 

−0 . 016 0 . 160 + 0 . 029 
−0 . 126 – −19 . 34 + 0 . 24 

−0 . 31 

CC + PN 

+ & SH0ES + BAO + RSD 69 . 54 + 0 . 64 
−0 . 66 0.282 ± 0.012 0 . 197 + 0 . 038 

−0 . 092 0.807 ± 0.032 −19 . 38 + 0 . 20 
−0 . 19 

Table 6. Exact S 8,0 values corresponding to various data sets for the f 3 CDM 

model. 

Data sets S 8,0 
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Figure 6. Posterior distribution for the S 8,0 parameter in the f 3 CDM model. 
Le gend: gre y denotes the RSD data, purple corresponds to CC + BAO + RSD 

data, red represents the PN 

+ & SH0ES + RSD data set, while orange indicates 
CC + PN 

+ & SH0ES + BAO + RSD data. 
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omponent has notably influenced the constraints, particularly on 
8,0 . The σ 8,0 values are considerably higher in this model compared 

o those reported in f 2 CDM. 
As with f 1 CDM, the model f 3 CDM exhibits the highest constrained

alue for H 0 when considering the PN 

+ & SH0ES + RSD data ( H 0 =
3 . 2 + 1 . 1 

−1 . 14 km s −1 Mpc −1 ) combination, while the lowest value is ob- 
ained for CC + BAO data ( H 0 = 67 . 5 + 1 . 7 

−2 . 3 km s −1 Mpc −1 ). Similarly,
he density parameter �m ,0 also shows the highest value for CC + BAO
 �m, 0 = 0 . 311 + 0 . 039 

−0 . 034 ) and the lowest for CC + PN 

+ & SH0ES + BAO
 �m ,0 = 0.211 ± 0.012). In addition, the RSD data appear to impose
ore stringent constraints on these parameters, particularly on the 

ensity parameter. 
Regarding the model parameter, unlike in the case of f 2 CDM, we

bserve that its range within the 1 σ and 2 σ confidence intervals 
s narrower. In this instance, the 2 σ interval spans from 0 to a
aximum of 0.5, but akin in f 2 CDM still lie within 2 σ of the � CDM

imit. 
Ho we ver, the most significant difference in this model becomes 

vident in the σ 8,0 parameter. This model reports a higher value for
his parameter. Furthermore, a correlation between the parameters 

8, 0 and σ 8,0 is now evident, which was not observed in the f 1 CDM
odel but is apparent in the f 2 CDM model. The de generac y between

he H 0 and σ 8,0 parameters, ho we ver, remains apparent, as observed 
n the other cases. 

The highest value for σ 8,0 is obtained for the CC + PN 

+ & SH0ES
 BAO + RSD combination, yielding a value of σ 8,0 = 

.793 ± 0.035, as detailed in Table 6 and illustrated in Fig. 6 .
onversely, the lowest value for S 8,0 is achieved when using 

he PN 

+ & SH0ES + RSD data, as indicated in both tables pre-
enting the σ 8,0 and S 8,0 values respectively . Additionally , con- 
istent with previous models, the value for S 8,0 obtained us- 
ng the RSD data alone is relatively low, akin to the f 1 CDM

odel. 
The final piece of analysis for the f 3 CDM model is depicted

n Fig. A1 in Appendix A . Here, we observe a degenerate re-
ationship between the parameters p 3 and S 8,0 , which transitions 
nto an anticorrelation at higher values of p 3 . This effect is
articularly noticeable for the data sets that incorporate BAO 

easurements. 
.4 Logarithmic model 

he last model, hereafter referred to as f 4 CDM, which was proposed
y Bamba et al. ( 2011 ), is known as the logarithmic model. This
odel is characterized by the following expression 

 4 ( T ) = α4 T 0 

√ 

T 

p 4 T 0 
log 

[
p 4 T 0 

T 

]
, (48) 

here α4 and p 4 are the two model constants. To determine the
onstant α4 , we follow the standard procedure of e v aluating the
riedmann equation ( 13 ), at the current time, resulting in 

4 = −
(
1 − �m, 0 − �r, 0 

)√ 

p 4 

2 
. (49) 

his simplifies the Friedmann equation to a more straightforward 
orm 

 

2 ( z ) = �m 0 ( 1 + z ) 3 + �r 0 ( 1 + z ) 4 + 

(
1 − �m, 0 − �r 0 

)
E( z) 

. (50) 

Interestingly, the additional model parameter p 4 does not feature 
n equation ( 50 ), indicating that at background level this parameter
annot be constrained. None the less, it is noteworthy that this
arameter does come into play at the perturbative level, particularly 
n the context of linear matter perturbations, as illustrated in equation
 22 ), where p 4 is featured in the G eff term, in particular in the F T term.
herefore, as can be seen in the contour plots in Fig. 7 and Table | 7 ,
MNRAS 528, 2711–2727 (2024) 
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Figure 7. Confidence contours and posterior distributions for the f 4 CDM 

model (logarithmic model) parameters, including H 0 and �m ,0 . In cases where 
the RSD data are incorporated (purple, red, and yellow contours), the σ 8,0 

and p 4 parameter is also displayed. 
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he p 4 parameter does not feature in the CC + BAO (blue contours)
nd CC + PN 

+ & SH0ES + BAO (green contour), but is rele v ant for
he rest of the data sets that include the RSD data. 

The inclusion of the logarithmic function makes a noticeable dif-
erence in this model, particularly when examining the relationship
etween the H 0 and �m ,0 parameters. In this case, the relationship
xhibits a distinct anticorrelation, which is more pronounced in this
odel compared to the previous ones. Interestingly, this results in
ore extreme values for the H 0 parameter, with the highest value

chieved being H 0 = 73 . 40 + 0 . 97 
−1 . 06 km s −1 Mpc −1 for the PN 

+ & SH0ES
ata set. Conversely, the lowest value was obtained for the CC + BAO
ata set, with a value of H 0 = 65 . 3 + 1 . 1 

−1 . 0 km s −1 Mpc −1 

The values of �m ,0 also exhibit significant variations. In this case,
he lowest value is achieved for the CC + PN 

+ & SH0ES + BAO data
et, while the highest is for the same data set but with the inclusion
f the RSD data (i.e CC + PN 

+ & SH0ES + BAO + RSD). It seems
ike when the RSD model is included in the data sets, either the
 0 parameter or the �m ,0 is driven to higher values when compared

o its counterpart data set without the RSD data set. Therefore, in
his model, it appears that the presence of RSD data influences the
nderstanding of the Universe’s current acceleration and the role
f baryonic and dark matter components within this model. This
nfluence can be attributed to RSD data’s exceptional sensitivity to
NRAS 528, 2711–2727 (2024) 

able 7. Exact results for f 4 model that include the parameters H 0 and �m ,0 . The 
or data sets that include RSD or PN 

+ & SH0ES, respectively otherwise, they are le

ata Sets H 0 [km s −1 Mpc −1 ] �m ,0 

C + BAO 65 . 3 + 1 . 1 −1 . 0 0 . 266 + 0 .−0 .

C + BAO + RSD 66 . 62 + 0 . 87 
−0 . 91 0 . 224 + 0 .−0 .

N 

+ & SH0ES + RSD 73 . 40 + 0 . 97 
−1 . 06 0 . 213 + 0 .−0 .

C + PN 

+ & SH0ES + BAO 68 . 78 + 0 . 58 
−0 . 63 0.211 ± 0

C + PN 

+ & SH0ES + BAO + RSD 66 . 41 + 0 . 67 
−0 . 56 0 . 280 + 0 .−0 .
he distribution of matter, which in turn plays a crucial role in shaping
he large-scale structure of the Universe through its gravitational
nteractions. 

A particularly intriguing aspect of this model, which sets it apart
rom the f 1 − f 3 CDM models, is the absence of a � CDM limit both
t the background and perturbative levels. At the perturbative level,
he parameter p 4 appears in G eff , which is expressed as 

 eff = 

G N 

1 + 

α4 
2 
√ 

p 4 

(
T 
T 0 

)− 1 
2 

ln 
(

p 4 T 0 
T 

) + α4 

√ 

T 0 
p 4 T 

. (51) 

n this scenario, no choice of the value of p 4 can reproduce a � CDM
odel. Furthermore, given that it appears in the logarithmic function,

he parameter p 4 must be greater than zero, as illustrated in Fig. 7 .
o we ver, Table 7 , still shows that the value of p 4 is very close to zero,
hich makes G eff , slightly higher than G N , throughout the redshift

pan. 
The σ 8,0 parameter in this model appears to be significantly

igher when compared to the other models. Interestingly, the
C + B AO + RSD and CC + PN 

+ & SH0ES + B AO + RSD data sets
oth report the same value for σ 8,0 , suggesting that the inclusion
f PN 

+ & SH0ES data has a minimal effect on this parameter in this
articular model. The CC + PN 

+ & SH0ES + RSD data set reports a
lightly lo wer v alue for σ 8,0 . This observ ation leads us to consider
ig. 8 and Table 8 , where we can see the values obtained for this
arameter. In this case, it’s evident that �m ,0 has a notable impact
n this parameter. While σ 8,0 is the same for CC + BAO + RSD and
C + PN 

+ & SH0ES + BAO + RSD, S 8,0 varies significantly between
he two data sets. A higher value is obtained when PN 

+ & SH0ES
ata are included, making it the data set with the highest S 8,0 value. 
The last Fig. A1 (Appendix A ), shows the relationship between

he S 8,0 and p 4 . As expected based on previous models, we observe
 de generac y between these parameters, particularly concentrated
ithin the 1 σ region near p 4 = 0. 

 ANALYSI S  

o e v aluate ho w well each f i CDM model performs with various data
ets, we employ several statistical measures. First, we calculate the
inimum χ2 

min values for each model and data set. These values are
erived from the maximum likelihood L max , with the relationship
eing χ2 

min = −2 ln L max . A lower χ2 
min indicates a better fit of the

odel to the data. 
In addition to χ2 

min , we also compare the models to the standard
 CDM model using two criteria: the Akaike Information Criterion

AIC) and the Bayesian Information Criterion (BIC). These criteria
onsider both the model’s goodness of fit, represented by χ2 

min , and
ts complexity, which is determined by the number of parameters n .
he AIC is calculated as 

IC = χ2 + 2 n , (52) 
min 

σ 8,0 and p 4 parameter together with the nuisance parameter M , are provided 
ft empty. 

p 4 σ 8,0 M 

 031 
 030 – – –
 022 
 020 0 . 005 + 0 . 031 

−0 . 000 0.883 ± 0.033 –
 013 
 014 0 . 007 + 0 . 057 

−0 . 013 0 . 860 + 0 . 036 
−0 . 035 −19 . 09 + 0 . 16 

−0 . 23 

.012 – – −19.388 ± 0.017 
 011 
 012 0 . 0015 + 0 . 009 

−0 . 005 0 . 883 + 0 . 038 
−0 . 036 −19 . 57 + 0 . 16 

−0 . 15 
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Figure 8. Posterior distribution for the S 8,0 parameter in the f 4 CDM model. 
Le gend: gre y denotes the RSD data, purple corresponds to CC + BAO + RSD 

data, red represents the PN 

+ & SH0ES + RSD data set, while orange indicates 
CC + PN 

+ & SH0ES + BAO + RSD data. 

Table 8. Exact S 8,0 values corresponding to various data sets for the f 4 CDM 

model. 

Data sets S 8,0 
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here a lower AIC value indicates a model that fits the data better
hile accounting for complexity. It penalizes models with more 
arameters, ev en if the y e xhibit a superior data fit. On the other
able 9. Comparison of χ2 
min and differences in AIC and BIC between the models a

or CC + BAO, while the right-hand side includes RSD. 

CC + BAO 

χ2 
min � AIC � BIC 

 CDM 20.93 0 0 
 1 CDM 20.87 1.94 1.61 
 2 CDM 20.93 2.00 1.66 
 3 CDM 20.93 2.00 1.66 
 4 CDM 27.95 7.02 7.02 

able 10. Comparison of χ2 
min and differences in AIC and BIC between the mo

resented for PN 

+ & SH0ES + RSD, whilst in the middle CC + PN 

+ & SH0ES + BA
re displayed. 

PN 

+ & SH0ES + RSD CC + P
χ2 

min � AIC � BIC χ2 
min 

� CDM 1550.20 0 0 1572.60 
f 1 CDM 1549.52 1.32 2.56 1572.56 
f 2 CDM 1541.46 −6.74 −5.50 1572.50 
f 3 CDM 1543.13 −5.07 −3.84 1572.31 
f 4 CDM 1539.71 −8.48 −7.25 1586.67 
and, the BIC is given by 

IC = χ2 
min + n ln m , (53) 

here m is the sample size of the observational data combination.
imilar to the AIC, the BIC aims to balance data fit against
odel complexity. Ho we ver, it imposes a heavier penalty on models
ith more parameters as the sample size increases. Therefore, by 

omparing the AIC and BIC values of different models, we can
etermine which model is better supported by the data. Generally, 
odels with lower AIC and BIC values are preferred, provided the

ifferences are significant. 
To assess the performance of different models using various 

ombinations of data sets, we calculate the differences in AIC and
IC between each model ( f i CDM) and the reference model, which

s the � CDM model. This comparison helps us understand how
ell each model aligns with the standard model of cosmology. The
ifferences in AIC and BIC are denoted as � AIC = �χ2 

min + 2 �n ,
nd � BIC = �χ2 

min + �n ln m , respectively. These metrics quantify
ow each model deviates from the reference model (in this case,
 CDM) in which, smaller values of � AIC and � BIC indicate that
 model, along with its chosen data set, is more similar to the
 CDM model, suggesting better performance. Table 9 provides a 

omparison of these metrics for two specific data set combinations: 
C + B AO and CC + B AO + RSD. Similarly, Table 10 allows us to
ompare the AIC and BIC values for three different sets of data
ombinations: PN 

+ &SH0ES + RSD, CC + PN 

+ &SH0ES + BAO and 
C + PN 

+ &SH0ES + BAO + RSD. 
Table 9 highlights that the CC + BAO data set generally exhibits

 lower χ2 
min , implying a better fit without RSD. Ho we ver, closer

nspection of the � AIC values for CC + BAO + RSD reveals a
ignificant reduction, indicating the increased fa v ourability of this 
ata set in certain cases. It is noteworthy that the BIC values
or CC + BAO + RSD are slightly higher due to more data points.
egarding model performance, the f 2 model consistently presents the 

owest � AIC and � BIC values, signifying its reliable performance.
he f 1 and f 3 models also perform well, showing suitability for this
ata set. In contrast, the f 4 CDM model tends to lean towards the
MNRAS 528, 2711–2727 (2024) 

nd � CDM (i.e � AIC and � BIC). On the left-hand side, results are presented 

CC + BAO + RSD 

χ2 
min � AIC � BIC 

37.14 0 0 
37.04 1.91 3.15 
35.41 0.28 1.52 
37.21 2.08 3.32 
42.03 6.89 8.14 

dels and � CDM (i.e � AIC and � BIC). On the left-hand side, results are 
O. On the right-hand side, the results for CC + PN 

+ & SH0ES + BAO + RSD 

N 

+ & SH0ES + BAO CC + PN 

+ & SH0ES + BAO + RSD 

� AIC � BIC χ2 
min � AIC � BIC 

0 0 1590.71 0 0 
1.96 1.78 1590.56 1.85 3.10 
1.89 1.72 1587.49 −1.21 0.04 
1.71 1.53 1588.33 −0.37 0.88 
14.07 14.07 1663.50 74.80 76.04 

iversity of M
alta user on 26 April 2024
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Figure 9. Distances measured in standard deviations ( σ units) between 
the constrained H 0 values obtained from the f 1 − 3 CDM models and their 
corresponding values in the � CDM model. 
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 CDM model, as suggested by higher � AIC and � BIC values,
ndicating weaker data support for f 4 CDM. 

Table 10 reveals intriguing findings. Starting with the
N 

+ & SH0ES + RSD data set, the models are fa v oured o v er � CDM,
s reflected in ne gativ e AIC and BIC values, indicating a preference
or the models. While this preference is not consistent across all
odels for the CC + PN 

+ & SH0ES + BAO data set, it re-emerges for
C + PN 

+ & SH0ES + BAO + RSD, especially pronounced for the f 2 
nd f 3 models. This suggests that, for these two models within the
C + PN 

+ & SH0ES + BAO + RSD data sets, the data lean towards
a v ouring these models o v er � CDM. Ho we ver, it is important to note
hat the evidence is not strong enough to definitively fa v our these

odels o v er � CDM. The BIC values, although not ne gativ e, are
early zero, indicating an inconclusive preference for either model.
onversely, the f 4 model shows strong disfa v our and preference for
 CDM, prompting its exclusion from further analysis, shifting our

ocus to the first three models. 
The previous analysis is further supported by Fig. 9 . In this figure,

e compare the values of H 0 obtained from f i ( T ) ( i = 1, 2, 3)
odels to the values of H 0 obtained from the � CDM model for

he same data sets, as shown in Appendix B . This visualization
llustrates the variations in H 0 across different data sets, expressed
n terms of σ units, with each data set represented by a distinct
olour. For each f ( T ) model, we observe that the H 0 values fall
ithin 1 σ of the corresponding � CDM values. Therefore, the H 0 

alues obtained for the different data sets are consistent with those of
 CDM. 
The discrepancy between the locally measured expansion rate

f the Universe and the values inferred from observations of
he CMB has prompted us to extend our previous analysis. We
im to investigate how these models perform with different val-
es of H 0 , specifically considering the P18 value H 

P18 
0 = 67 . 4 ±

 . 5 km s −1 Mpc −1 (Aghanim et al. 2020 ) and R22 value of H 

R22 
0 =

3 . 30 ± 1 . 4 km s −1 Mpc −1 (Riess et al. 2022 ), as shown in Fig. 10
in both cases we include the � CDM values from Appendix B ). 

In Fig. 10 , on the left-hand-side, we observe that the H 0 values
re within 3.5 σ of the P18 value, except for the PN 

+ & SH0ES data
et. Ho we ver, in the figure, we also include values from RSD data
nly. This high σ value for the PN 

+ & SH0ES data is expected, as
t dominates and is included within the R22 value itself. Similarly,
n Fig. 10 , on the right-hand side, we also see that the H 0 values
re within approximately 3.5 σ of the R22 value. This suggests that
he H 0 values obtained from our analysis fall approximately midway
etween the two quoted values of P18 and R22. 
NRAS 528, 2711–2727 (2024) 
Additionally, we present a comprehensive comparison of our
 8,0 values with the Planck Collaboration’s S P18 

8 , 0 = 0 . 834 ± 0 . 016
Aghanim et al. 2020 ) and Kilo-Degree Survey (KiDS-1000) value
 

KiDS 
8 , 0 = 0 . 766 + 0 . 020 −0 . 014 (Asgari et al. 2021 ). The results are
ummarized in Fig. 11 , highlighting the impact of different data
ets on our models. a comparison between S 8,0 values in our
odels and those in � CDM is presented in Fig. 12 . Furthermore,
ig. 13 provides a comparison of S P18 

8 , 0 and S KiDS 
8 , 0 with values

erived from f 1 − 3 CDM models in σ units. When compared to
 

P18 
8 , 0 , on the left-hand side of same figure, we find a maximum
iscrepancy of 2 σ between the v alues deri ved from � CDM and
he f ( T ) models, and this is primarily observed when considering
he RSD data set in isolation. Ho we ver, as more data sets are
ncluded, particularly CC + PN 

+ & SH0ES + BAO + RSD, which is
he most comprehensive data set in our analysis, this discrepancy
iminishes. 
On the right-hand panel of Fig. 13 , where we compare with S KiDS 

8 , 0 ,
he discrepancy is further reduced to 1 σ , indicating that the values ob-
ained from our analysis are closer to the KiDS-1000 measurements
han the Planck values. Notably, CC + PN 

+ & SH0ES + BAO + RSD
erforms well in this regard, significantly reducing the σ values.
onsequently, it appears that with the combination of the available
ata sets and the f 1 − 3 ( T ) models, the tensions between the CMB and
ocally determined values are reduced, especially for S 8,0 . 

 C O N C L U S I O N  

he most popular models in the literature of TG have been probed
n this work against the latest expansion data as well as RSD
easurements which has expanded the constraint profile of each

f these models, as well as their impact on physically observable
osmological parameters. For the local data being used, we had a
ombination of CC, PN 

+ & SH0ES, and BAO data. Besides being
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Figure 11. A whisker plot illustrating the constrained values of S 8,0 as derived from the f 1 − 3 CDM models. The cyan and purple vertical bands depict the 
respective 1 σ ranges of S P18 

8 , 0 and S KiDS 
8 , 0 , whilst the error bars illustrate the inferred model dependent 1 σ constraints from each respective data set. 

Figure 12. Distances measured in standard deviations ( σ units) between 
the constrained S 8,0 values obtained from the f 1 − 3 CDM models and their 
corresponding values in the � CDM model. 
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Figure 13. Distances measured in standard deviations ( σ units) between the 
constrained S 8,0 values obtained from the f 1 − 3 CDM models together with 
� CDM and the S P18 

8 , 0 value on the left-hand side and S R22 
8 , 0 on the right-hand 

side. 
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he most populated data sets and highest precision, these data 
ets give a range of points across redshift space. In particular, the
N 

+ & SH0ES sample is the largest SNIa in the literature and the
rincipal late-time indicator of the cosmic tensions problem in the 
ubble constant. We use RSD data since it is sensitive to the
rowth of structure formation and so can be used to constrain the
erturbative sector of the models under consideration. In each of 
hese models and for each data set combination, we performed a 
ull MCMC analysis obtaining constraints on all the cosmological 
arameters. Additionally, we compared the performance of each 
odel for each data set combination against the standard � CDM
odel using the χ2 

min , AIC, and BIC statistical indicators. Given the 
ncreasing tension being reported by various studies on the value 
f the Hubble constant, we study its constrained value, but also 
onsider the effect of a changing Hubble constant will have on the
arameters related to the growth of structure formation, namely, 
8,0 and S 8,0 . 
For reference purposes, we provide the � CDM constraint values 
or each of the data set combinations we consider. This is done in
ppendix B , which is important for estimating the statistical indica-

ors in the model sections. Generally, our analysis shows consistency 
MNRAS 528, 2711–2727 (2024) 
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ith � CDM but some differences do arise, which may show further
istinction as the precision in measurements impro v es. As one might
xpect, the strongest data set in the analysis was the PN 

+ & SH0ES
ample since it consistently drastically reduces the statistical error
or any baseline data set. On the other hand, the statistical metrics
how that expansion data CC + PN 

+ & SH0ES + BAO combination
rovides evidence for � CDM while when the RSD data set is
ncluded, there is marginal preference for the f ( T ) model under
onsideration. Moreo v er, the y offer best fits on cosmic parameters
hat are more aligned with a higher Hubble constant. As for the S 8,0 

arameter, the models are largely consistent with the most recent
eported values in the literature. 

This analysis offers precision insights into the behaviour of these
odels, but also on TG more generally, when using combinations

f this expansion profile and RSD data sets. The study suggests
hat these models may offer some promise as toy models for

odified cosmological scenario model building. We intend to use
hese observations to extend this analysis to include CMB power
pectra as well as other early Universe data sets to more fully assess
he competitiveness of these models. 

ATA  AVA ILA BILITY  

he data used in this study are described in detail in Section 3 . For
urther information on the data underlying this article, contact the
orresponding author who will provide any additional information. 
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PPENDI X  A :  M O D E L  PARAMETER  p i VERS US  

 8 ,0 PLOTS  

n this section, we present the posteriors together with their con-
dence regions of the p i and S 8,0 parameters to investigate the
orrelation between the two. 
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M

Figure A1. Top left: contour plots showing the relationship between the p 1 parameter and the S 8,0 parameter for the f 1 CDM model (power-law model). Top 
right: contour plots showing the relationship between the 1 

p 2 
parameter and the S 8,0 parameter for the f 2 CDM model (Linder model). Left bottom: contour plots 

showing the relationship between the 1 
p 3 

parameter and the S 8,0 parameter for the f 1 CDM model (exponential model). Right bottom: contour plots showing the 
relationship between the p 4 parameter and the S 8,0 parameter for the f 1 CDM model (logarithmic model). 
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PPENDIX  B:  � C D M  M O D E L  

n Section 5 , we provide comparisons between the models and
heir corresponding � CDM values. Here, we present the poste-
ior distributions and confidence regions of the � CDM model
NRAS 528, 2711–2727 (2024) 
n Fig. B1 and provide additional details and precise values in
able B1 . In Fig. B2 the posetriors of the S 8,0 parameter for the
 CDM is shown, whilst in Table B2 the exact values for the

orresponding data sets are presented. 
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Table B1. Exact results for � CDM model that include the parameters H 0 and �m ,0 . The σ 8,0 parameter and the nuisance parameter M , are provided for data 
sets that include RSD or PN 

+ & SH0ES, respectively otherwise, they are left empty. 

Data sets H 0 [km s −1 Mpc −1 ] �m ,0 σ 8,0 M 

CC + BAO 67.8 ± 1.1 0 . 308 + 0 . 032 
−0 . 029 – –

CC + BAO + RSD 68 . 77 + 0 . 71 
−0 . 67 0 . 276 + 0 . 013 

−0 . 014 0 . 789 + 0 . 035 
−0 . 033 –

PN 

+ & SH0ES + RSD 73 . 71 + 0 . 97 
−1 . 06 0 . 298 + 0 . 011 

−0 . 012 0 . 814 + 0 . 037 
−0 . 034 −19 . 249 + 0 . 027 

−0 . 032 

CC + PN 

+ & SH0ES + BAO 69 . 47 + 0 . 59 
−0 . 63 0 . 304 + 0 . 015 

−0 . 014 – −19.375 ± 0.017 

CC + PN 

+ & SH0ES + BAO + RSD 69 . 84 + 0 . 55 
−0 . 56 0 . 288 + 0 . 010 

−0 . 010 0 . 815 + 0 . 030 
−0 . 033 −19 . 369 + 0 . 016 

−0 . 017 

Figure B1. Confidence contours and posterior distributions for the � CDM 

model (logarithmic model) parameters, including H 0 and �m ,0 . In cases where 
the RSD data are incorporated (purple, red, and yellow contours), the σ 8,0 

parameter is also displayed. 

Figure B2. Posterior distribution for the S 8,0 parameter in the � CDM model. 
Le gend: gre y denotes the RSD data, purple corresponds to CC + BAO + RSD 

data, red represents the PN 

+ & SH0ES + RSD data set, while orange indicates 
CC + PN 

+ & SH0ES + BAO + RSD data. 

Table B2. Exact S 8,0 values corresponding to various data sets for the � CDM 

model. 

Model S 8,0 
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