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ABSTRACT: Masonry arch bridges are still in active usage in many countries across the 
globe. However, the analysis tools that generally underpin the assessment process for these 
structures have traditionally been 2D, which means that 3D modes of response cannot be cap
tured. This contribution introduces a multi-scale limit analysis method for 3D masonry arch 
bridges using discontinuity layout optimization (DLO), which is a highly efficient limit ana
lysis technique that automatically identifies the collapse load and associated failure mechan
ism of a solid or structure. Using this approach, a macroscopic shell continuum is assumed, 
using a homogenized material that is obtained by analysing the microscopic behaviour of 
a representative pattern of masonry units in the structure. Therefore, potential 3D failure 
modes for masonry arch bridges can be revealed. The basic model assumes rigid masonry 
units, and takes into account key engineering features such as aspect ratio of masonry units. 
Simple examples are used to validate the proposed method; then simple square and skew 
masonry arch bridges are analysed to demonstrate the efficacy of the proposed method.

1 INTRODUCTION

Masonry arch bridges are long-lived structures that are still in widespread usage across west
ern Europe and other parts of the world. Modern techniques for the structural analysis of 
masonry arch bridges can be traced back to works by Kooharian (1953) and Heyman (1966), 
where masonry was assumed to possess infinite stiffness, infinite crushing strength and sliding 
resistance and to have joints with zero tensile strength. Under these assumptions, an arch will 
collapse via the opening of a sufficient number of hinges, with the stability of the structure 
depending only on its geometry (Heyman 1969).

Many numerical tools have been developed to analyse the 2D behaviour of masonry arch 
bridges. For example, Livesley (1978) introduced a computational limit analysis tool to model 
the collapse behaviour of assemblies of rigid blocks, using linear programming (LP) to obtain 
solutions. Other computational methods based on the static or kinematic theorems of plastic 
analysis, have also been proposed since. Practical software tools have also been developed to 
analyse masonry arch bridges for industrial users, e.g., LimitState:RING (Gilbert 2001) and 
ArchNURBS (Chiozzi et al. 2016). Furthermore, strategies have been proposed to allow 
masonry crushing and sliding phenomena to be modelled (the latter with both associated and 
non-associated flow behaviour); see Gilbert (2007).

However, the main focus of previous work has been on the development of 2D modelling 
tools, which are clearly not capable of modelling the 3D behaviour of masonry arch bridges, 
which can be important in some cases (e.g. when skew bridges are involved). Whilst it is in 
principle straightforward to extend 2D methods to 3D if all constituent masonry units are 
explicitly modelled, and potential hinge locations coincide with the locations of mortar joints 
(e.g. see Portioli et al. (2014) and Grillanda et al. (2022)), this requires detailed geometrical 
information about the locations of all voussoirs in the bridge. Such information may not be 
readily available, and collecting it may involve laborious processes. Alternatively, a multi- 
scale (or homogenized) approach can be utilized, where the model is represented by 
a continuous material characterized by a suitable (homogenized) yield domain. de Buhan and 
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de Felice (1997) and Sab (2003) respectively introduced homogenization methods for in-plane and 
out-of-plane masonry structures. Their work has attracted significant interest, and several strat
egies have been presented to deduce the homogenized properties depending on the initial assump
tions, and various numerical approaches have been developed; see Milani et al. (2006a,b, 2008).

Discontinuity layout optimization (DLO) is a highly efficient numerical method that can be 
used to automatically identify the collapse load and the associated failure mechanism of 
a solid or structure. DLO directly models the potential discontinuities that can occur at fail
ure, and utilizes efficient mathematical programming solution methods to obtain solutions. 
DLO has been applied to a broad range of applications, including geotechnical engineering 
problems (e.g., Smith and Gilbert 2007) and slab yield-line analysis problems (e.g, Gilbert 
et al. 2014). Although DLO can be used to directly analyse masonry structures by modelling 
joints as discontinuities, following a ‘heterogeneous’ approach (e.g., Gilbert et al. 2010), the 
full potential of DLO becomes apparent when used in conjunction with a multi-scale represen
tation of the constituent masonry, since it obviates the need to model all constituent masonry 
units explicitly. Initial work in this area was recently carried out by Valentino et al. (2023), 
who introduced a multi-scale DLO method for in-plane masonry problems. In the present 
work the approach is extended to model 3D shell problems such as masonry arch bridges, 
where a macroscopic shell continuum is assumed and where a homogenized material obtained 
by analysing the microscopic in- and out-of-plane behaviour of a representative pattern of 
masonry units in the structure is employed. The paper is organized as follows: firstly, the 
standard DLO method is introduced; secondly, the proposed multi-scale approach is devel
oped and relevant mathematical expressions are given; thirdly, several numerical examples are 
used to demonstrate the efficacy of the method; finally, conclusions are drawn.

2 GENERAL DLO FORMULATION

The main steps in DLO are illustrated in Figure 1. Firstly, the geometry of the problem, 
together with boundary and load conditions are specified (Figure 1a). Secondly, the problem 
domain is discretized using nodes (Figure 1b). Thirdly, potential discontinuities are created by 
interconnecting nodes (Figure 1c). For a shell structure, each discontinuity involves 6 kine
matic variables, as shown in Figure 2, including in-plane shear displacement dt, in-plane 
normal displacement dn, out-of-plane shear displacement dz, bending rotation rt, twisting rota
tion rn and in-plane rotation rz. Finally, the most critical failure mechanism is identified 
(Figure 1d) by solving the following optimization problem (after Smith and Gilbert 2007):

Figure 1.  Steps in general DLO procedure (a) problem specification (square slab under out-of-plane 
UDL); (b) node discritization; (c) interconnection of nodes with all potential discontinuities; (d) identifica
tion of critical subset of potential discontinuities using optimization; (e) corresponding collapse kinematics.
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where fD and fL are vectors containing respectively specified dead and live loads, d and p are, 
respectively, vectors containing all kinematic variables shown in Figure 2 and their associated non- 
negative plastic multipliers. Also g is a work coefficient vector, so that gTp describes the internal 
energy dissipation along discontinuities. B is a compatibility matrix, used to ensure all kinematic 
variables are compatible at nodes. Finally, N is a flow rule matrix describing the failure criteria with 
respect to kinematic variables. With respect to variables d and p, optimization problem (1) is a LP 
problem, so that a globally optimal solution can be identified. In addition, a post-processing step 
can be carried out to visualize the failure mechanism; see Figure 1e. Note that the steps in Figure 1 
will create a large number of potential discontinuities (e.g., see Figure 1c), so a vast number of 
potential failure modes can be replicated. This means that DLO is capable of obtaining highly 
accurate solutions.

3 MULTI-SCALE APPROACH

As mentioned previously, DLO can readily be applied to masonry structures simply by only 
modelling joints as potential discontinuities (e.g., the heterogeneous model in Figure 3). How
ever, this approach does not take full advantage of DLO, since the numbers of potential dis
continuities involved is limited, such that a full ‘layout optimization’ is not required.

However, DLO becomes more valuable when a multi-scale approach is adopted, and the loca
tions of discontinuities are not known a priori. As shown in Figure 3, the multi-scale approach 
first defines a representative volume element (RVE), which captures the microscopic behaviour 
of a periodic masonry structure, including interlocking effects and the failure criteria at joints. 
Then a macroscopic model is created, assuming a continuum problem solvable via well- 
developed limit analysis methods, though which now involves the use of a homogeneous mater
ial model derived by analysing the heterogeneous behaviour of the RVE. To develop a multi- 
scale DLO method, the RVE, microscopic and macroscopic models are now examined.

Figure 2.  Kinematic varaibles in a discontinuity AB: (a) coordinate system; (b-g): in-plane shear dis
placement dt, in-plane normal displacement dn, out-of-plane shear displacement dz, bending rotation rt, 
twisting rotation rn and in-plane rotation rz.

Figure 3.  Multi-scale approach: modelling a periodic masonry structure using a microscopic model 
defined via a RVE and a macroscopic model solvable via DLO.
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3.1  RVE

For sake of simplicity, the RVE in de Buhan and de Felice (1997) is used here (Figure 4a). The 
kinematic properties of the RVE are defined by a macroscopic strain rate tensor E, following 
the Love-Kirchoff plate model (after Cecchi and Sab 2002):

where E11, E22 and E12 are components of the in-plane strain rate tensor; also X11, X22 and 
X12 are components of the curvature tensor and y1 and y2 are the position coordinates in the 
RVE, as shown in Figure 4. Taking into account the periodicity conditions (see e.g. Cecchi 
and Sab 2002 for detailed derivations), the displacements and rotations of the four vertices 
ABCD can be written with respect to variables in E:

where uA, uB, uC and uD are the displacement vectors of the four vertices respectively; also ΩA, 
ΩB, ΩC and ΩD are the rotation vectors and uc and Ωc are constant displacement and rotation 
vectors of the RVE, respectively. Figure 5 shows the relative displacements and rotations of 
the RVE with respect to the variables in E.

Figure 4.  RVE and the corresponding macroscopic strain rate tensor: (a) geometry of the RVE, com
prising four rigid bodies (A, B, C and D) and five joints (1,2,. . .,5); (b) in-plane macroscopic strain rate 
tensor; (c) macroscopic curvature tensor.

Figure 5.  Associated displacements and rotations of the RVE (showing kinematics without reference to 
applicable flow rules).
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3.2  Microscopic model

Since the displacement and rotation vectors at the four vertices of the RVE are given in (3), 
the relative displacements at the five joints in Figure 4a can be calculated using:

where [u]αβ is the relative displacement vector (or ‘displacement jump’) between masonry 
blocks α and β. Also yd is a vector containing coordinates of a point at the joint. Note that for 
each joint, [u]αβ comprises the normal displacement [un], in-plane shear displacement [ut] and 
out-of-plane shear displacement [uz].

Given the relative displacements at joints, flow rules can now be written. Here Mohr- 
Coulomb failure criteria is assumed:

where μ is the coefficient of friction, [un]j, [ut]j and [uz]j are the relative displacements of joint 
j shown in Figure 4, calculated by substituting (3) in (4). The average energy dissipation 
within the RVE can be derived as:

where � is the average energy dissipation within the RVE, c is the cohesion, 
lj is the length of joint j in Figure 4a, and t is the thickness of masonry blocks. The inequality 
constraints in (5) and the equation in (6) define the microscopic behaviour of the RVE.

3.3  Macroscopic model

The macroscopic model assumes a continuum problem solvable via the standard DLO approach 
shown in Figure 1. Variables of the macroscopic strain rate tensor E can be derived as:

where T is a transformation matrix, readers interested in its derivations are referred to Valen
tino et al. (2023). Also E = [E11, E22, E12, X11, X22, X12]T is a vector containing components of 
macroscopic strain rate tensor in Equation (2) and d = [dt, dn, dz, rt, rn, rz]

T is a vector of kine
matic variables in DLO.

3.4  Multi-scale DLO formulation

Given both microscopic and macroscopic models, the full DLO formulation can be written as:

where di and Ei are, respectively, vectors containing DLO kinematic variables and macro
scopic strain rate tensors for discontinuity i and m is the number of discontinuities. Also �i is 

the averaged energy dissipation in the RVE, obtained in Equation (6), such that 
Pm

i¼1
li ∏i is the 
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total internal energy dissipation within the structure. B is a compatibility matrix, fL and fD are 
load effect vectors, as shown in Problem (1). Finally, N �ð Þ is the microscopic flow rule defined 
in Constraint (5). Since in (5) the constraints are quadratic cones, Problem (8) is a conic pro
gramming problem, which can be solved efficiently via modern convex optimization solvers 
such as MOSEK (MOSEK ApS 2022).

4 NUMERICAL EXAMPLES

4.1  Simple validation example: L-shaped wall

This example is a L-shaped wall previously studied by Portioli et al. (2014). The geometry of 
the wall is shown in Figure 6a. The masonry blocks have a dimension of 0.8 m × 0.03 m and 
a thickness of 0.04 m. Cohesion c and the coefficient of friction μ are set to 0 and 0.7, respect
ively. The wall is subject to a horizontal body force w = λG, where G is the self-weight of the 
structure, and λ is the load factor. Solutions obtained using rigid block and DLO methods are 
shown in Figure 6b-d, with the resulting failure mechanisms being quite similar. The load 
factor obtained using rigid block analysis was 0.195 (identical to that found by Portioli et al. 
2014), while the result obtained by multi-scale DLO is 0.155, which is lower than the former. 
This is because that the multi-scale approach effectively assumes that the consitutent masonry 
blocks are infinitely small, and block interlocking effects in this case become less significant 
than when blocks are larger; see Valentino et al. (2023) for more details.

4.2  Square masonry arch bridge

The second example involves a square masonry arch bridge subject to a centreline point load F = 
1 kN applied at quarter span. The geometry of the bridge is shown in Figure 7a, where the bridge 
span is L = 0.75 m, width is L/2, and thickness is t = 0.054 m, and the unit weight is set to 23.6 kN/m3. 
Cohesion c and the coefficient of friction μ are set to 0 and 0.75, respectively. In the rigid block 
model, a total of 24 voussoirs with an aspect ratio of 2.318 (full block measured at the mid-surface) 
are used, and the resulting failure mechanism is shown in Figure 7(b). On the other hand, using 
multi-scale DLO, the curved geometry is approximated via piecewise-linear surfaces; see solution 
obtained using a coarse (150 node) numerical discretization in Figure 7(c). Note that discontinuities 
(e.g., hinges) can now occur within a given arch segment, so the computed load factor is lower than 
that obtained via rigid block methods, where hinges can only occur at joints. Also, two intersecting 
discontinuities are observed to form under the point load applied on the arch centreline.

4.3  Skew bridge

In the third example two skew bridges are considered, using the same base configuration as in 
the previous example. In this case the arch geometries are obtained by ‘shearing’ the arch by 
15 and 45 degrees (i.e., the skew angle). In addition, voussoirs are configured using the heli
coidal method (see Forgács et al. 2017), which can be taken into account in DLO by rotating 
the local coordinate system in each piecewise-linear surface. Figure 8a and b show the results 
obtained using a skew angle of 15°; the load factor is 0.488, which is 57% higher than that 
obtained for the square bridge. This is due to interlocking effects arising from the helicoidal 
voussoir configuration, leading to rotated hinge lines. If the skew angle is increased to 45°, the 

Figure 6.  L-shaped wall: (a) geometry; (b) rigid-block analysis using a heterogeneous approach via 
standard DLO, λ = 0.195; (c) multi-scale DLO, λ = 0.155; (d) failure mechanism of (c).
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load factor increases further, with the failure mode clearly showing rotated hinge lines and 
twisting failure near the right abutment.

5 CONCLUSIONS

In this paper the powerful and highly efficient discontinuity layout optimization (DLO) pro
cedure is applied to the analysis of masonry arch bridge structures. Here DLO is used in con
junction with a multi-scale representation of the constituent masonry, obviating the need to 
model individual masonry units explicitly. In the multi-scale approach, a macroscopic shell 
continuum is assumed, using a homogenized material model that is obtained by analysing the 
microscopic behaviour of the representative volume element (RVE) of masonry units in the 
structure. Several numerical examples, including those involving square and skew arch 
bridges, are used to demonstrate that 3D responses of masonry arch structures can be cap
tured via the proposed approach. Bridges with complex geometries and spandrel walls can dir
ectly be modelled using the homogenized shell DLO method, though further developments are 
required to ensure soil-structure interaction in soil-filled masonry bridges.
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Figure 7.  Square bridge: (a) geometry; (b) rigid-block analysis (with 24 voussoirs), λ = 0.327; (c) multi- 
scale DLO, λ = 0.311; (d) failure mechanism of (c).

Figure 8.  Skew bridge: (a) and (b), skew angle 15°, λ = 0.488; (c) and (d), skew angle 45°, λ = 0.774.
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